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Network models are useful tools for modelling complex associations. In
statistical omics such models are increasingly popular for identifying and as-
sessing functional relationships and pathways. If a Gaussian graphical model
is assumed, conditional independence is determined by the nonzero entries
of the inverse covariance (precision) matrix of the data. The Bayesian graph-
ical horseshoe estimator provides a robust and flexible framework for preci-
sion matrix inference, as it introduces local, edge-specific parameters which
prevent over-shrinkage of nonzero off-diagonal elements. However, its ap-
plicability is currently limited in statistical omics settings, which often in-
volve high-dimensional data from multiple conditions that might share com-
mon structures. We propose: (i) a scalable expectation conditional maximi-
sation (ECM) algorithm for the original graphical horseshoe and (ii) a novel
joint graphical horseshoe estimator, which borrows information across mul-
tiple related networks to improve estimation. We show numerically that our
single-network ECM approach is more scalable than the existing graphical
horseshoe Gibbs implementation, while achieving the same level of accuracy.
We also show that our joint-network proposal successfully leverages shared
edge-specific information between networks while still retaining differences,
outperforming state-of-the-art methods at any level of network similarity. Fi-
nally, we leverage our approach to clarify gene regulation activity within and
across immune stimulation conditions in monocytes, and formulate hypothe-
ses on the pathogenesis of immune-mediated diseases.

1. Introduction. In statistical omics, network models are increasingly popular for rep-
resenting complex associations and assessing pathway activity. With such models the links
between genes, proteins or other types of omics data can be represented and studied, provid-
ing valuable insight into functional relationships. The progress of high-throughput genomic
technologies has led to the collection of large, genome-wide data sets, and the availability of
biomeasurements of different types has enabled the development of integrative modelling ap-
proaches which can increase statistical power while providing detailed insight into complex
biological mechanisms (Someren et al. (2002), Karczewski and Snyder (2018)).

If a Gaussian graphical model is assumed, an association (conditional independence) net-
work can be estimated by determining the nonzero entries of the inverse covariance (preci-
sion) matrix of the data. There is significant literature on this problem, both frequentist and
Bayesian. Notable frequentist methods include the neighbourhood selection (Meinshausen
and Bühlmann (2006)), the graphical lasso (Friedman, Hastie and Tibshirani (2008)) and
the graphical SCAD (Fan, Feng and Wu (2009)). In later years Bayesian methods, such
as the Bayesian graphical lasso (Wang (2012)), Bayesian spike-and-slab approaches (Wang
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(2015)) and the graphical horseshoe (Li, Craig and Bhadra (2019)), have gained popularity.
The Bayesian model formulation of the graphical horseshoe leads to many desirable prop-
erties, particularly for identifying weak edges. Indeed, the global-local horseshoe prior it
relies on permits the introduction of edge-specific parameters that prevent overshrinkage of
nonzero off-diagonal elements, resulting in a highly flexible framework. However, in the
high-dimensional settings commonly needed for investigating biological networks, the Gibbs
sampling implementation, proposed by Li, Craig and Bhadra (2019), becomes computation-
ally inefficient or even unfeasible. Moreover, the graphical horseshoe has only been formu-
lated for a single network, whereas interest has grown in the network analysis of multiple
data sets that might share common structures. In biomedical applications such related data
sets could be different tissues, conditions or patient subgroups, or different omics types, such
as gene levels and the protein levels encoded by these genes. A joint approach that utilises
the common information while preserving the differences will both have increased statistical
power and provide insight into the different mechanisms in play.

In the field of multiple Gaussian graphical models, notable frequentist methods include
variations of the joint graphical lasso (Danaher, Wang and Witten (2014), Lingjærde and
Richardson (2023)), which enforce similar graphical structures by solving a penalised like-
lihood problem, and a group extension of the graphical lasso to multiple networks (Guo
et al. (2011)). In a Bayesian framework, Peterson, Stingo and Vannucci (2015) propose a
Gibbs sampling approach which uses a Markov random field prior on multiple graphs to
learn the similarity of graphical structures. Very recently, Busatto and Stingo (2023) have
proposed an extension of the graphical horseshoe which does not build upon our method,
but models pairwise network similarity. Implemented with a Metropolis-within-Gibbs sam-
pler, it is fully Bayesian and hence less scalable. Other notable Bayesian approaches include
two expectation-maximisation (EM) approaches, namely, the Bayesian spike-and-slab joint
graphical lasso (Li, Mccormick and Clark (2019)), which builds on seminal work by Wang
(2015) and formulates a multiple-network model based on a Gaussian spike-and-slab prior,
and GemBag (Yang et al. (2021)), which relies on a spike-and-slab prior with Laplace distri-
butions. For a more thorough review on existing Bayesian graphical methods, we refer to Ni
et al. (2022).

The method presented in this paper is, to our knowledge, the first to adapt graphical mod-
elling based on global-local priors to the multiple network setting. We first propose an ex-
pectation conditional maximisation (ECM) algorithm for the graphical horseshoe, which al-
lows us to tackle network inference in biological problems of realistic sizes. Building on this
efficient implementation, we then formulate a joint model that permits borrowing informa-
tion between multiple networks using the graphical horseshoe prior. We provide the two R
packages fastGHS and jointGHS, available on Github and in Supplementary Material D
(Lingjærde et al. (2024a)), which implement the single and joint methods, respectively.

The paper is organised as follows. In Section 2 we recall the classical graphical horseshoe
estimator of Li, Craig and Bhadra (2019) and discuss the advantages of the horseshoe prior
in graphical settings. In Section 3 we motivate the need for further development to enable
practical and meaningful inference at scale by introducing a multicondition gene regulation
study in monocytes. In Section 4 we describe our new inference procedure for the single-
network graphical horseshoe, and in Section 5 we present our joint graphical horseshoe model
formulation. In Section 6 we demonstrate the performance of our proposed methodology on
simulated data, and in Section 7 we apply it to the monocyte gene regulation study. Finally,
we highlight possible extensions in Section 8.

2. Problem statement. Consider a network model where each node is associated
with some measurable attribute. Observed values of the multivariate random vector x =
(X1, . . . ,Xp)T of node attributes, each entry corresponding to one of p variables, can then
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be used to infer a graph under suitable model assumptions. Given multivariate Gaussian node
attributes, with n × p observation matrix X with i.i.d. rows x1, . . . ,xn ∼ N (0,�), we can
infer a partial correlation network by estimating the inverse covariance matrix, or precision
matrix, � = �−1. The partial correlation between nodes i and j , conditioned upon all others,
is then given by

ρij |V \{i,j} = − θij√
θiiθjj

,

where the θij ’s are the entries of � and V is the set of all node pairs (Lauritzen (1996)). For
Gaussian variables, correlation equal to zero is equivalent to independence, which implies
that a conditional independence graph can be constructed by determining the nonzero entries
of the precision matrix. The graph is assumed to be sparse; that is, the number of edges in the
edge set E relative to the number of potential edges in the graph, 2|E|/(p2 − p), is small.
The precision matrix must also necessarily be positive definite, � � 0.

Li, Craig and Bhadra (2019) have recently proposed the graphical horseshoe to obtain
a sparse estimate of the precision matrix �, repurposing the horseshoe prior initially in-
troduced by Carvalho, Polson and Scott (2010) in the normal means setting to a graphical
setting. The graphical horseshoe model puts horseshoe priors on the off-diagonal elements
of the precision matrix, encouraging sparse solutions. An uninformative prior is put on the
diagonal elements, and the positive definiteness constraint is respected. Due to symmetry, it
is sufficient to consider the upper off-diagonal elements of �. Normal scale mixtures with
half-Cauchy hyperpriors are used on the off-diagonal elements. The hierarchy of the model
is as follows:

θii ∝ 1, i = 1, . . . , p,

θij |λij ∼N
(
0, λ2

ij τ
2)

, 1 ≤ i < j ≤ p,(1)

λij ∼ C+(0,1),

with � � 0 and where C+(0,1) is the half-Cauchy distribution with density p(x) ∝ (1 +
x2)−1, x > 0. A key feature of the horseshoe prior in (1) is the presence of local shrinkage
parameters, λij , which are meant to flexibly capture edge-specific effects with no or very
limited overshrinkage, while the global parameter τ is set to ensure overall sparsity. In the
next section, we motivate the extension of the graphical horseshoe to a multiple network
setting, with a scalable implementation.

3. Data and motivating example. A wide array of prevalent diseases, such as inflam-
matory bowel disease, rheumatoid arthritis and cancer, are believed to result from an inap-
propriate immune activity and consequent inflammation. It is now established that exposing
monocyte cell cultures to specific stimuli can create conditions that resemble certain immune-
mediated disease states (Biswas and Mantovani (2010)). Indeed, different stimuli may acti-
vate different cellular or molecular pathways that contribute to disease development. Hence,
systematically investigating the impact of different types of immune stimulation on gene
regulatory activity—and pinpointing the mechanisms that are common to several stimuli or
stimulus specific—can provide valuable insights into the pathophysiology of such diseases.

We propose to contribute to this research by analysing graphical structures from a de-
tailed gene expression dataset where primary CD14+ monocytes in 432 healthy European
individuals were exposed to different types of immune stimulation (hereafter “conditions”).
Specifically, monocyte expression was quantified using Illumina HumanHT-12 v4 BeadChip
arrays before and after immune stimulation via exposition to inflammation proxies, namely,
interferon-γ (IFN-γ ) or differing durations of lipopolysaccharide (LPS 2h or LPS 24h). The
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number of samples available in each condition is nunstim = 413, nIFN-γ = 366, nLPS2h = 260,
nLPS24h = 321 for unstimulated cells, and IFN-γ -, LPS 2h- and LPS 24h-stimulated cells,
respectively (Fairfax et al. (2014)).

Examining the effect of genetic variation on gene regulatory activity after stimulation
can help pinpointing gene sets implicated in disease risk and development. Indeed, previ-
ous studies suggest that gene stimulation triggers regulatory activity that leads to a benefi-
cial environment for hotspots to establish (Fairfax et al. (2014), Lee et al. (2014), Kim et
al. (2014), Ruffieux et al. (2020)); hotspots are genetic variants regulating large numbers of
genes, thereby potentially representing important players in disease mechanisms (Yao et al.
(2017)). We will, therefore, focus our study to networks of genes under hotspot control in the
different conditions.

While Fairfax et al. (2014) mainly report condition-specific gene regulatory activities, they
also observe effects across all conditions. The largest hotspot, identified by Ruffieux et al.
(2020), is persistent across all four conditions. Specifically, using their global-local hotspot
modelling approach ATLASQTL, they found that the genetic variant rs6581889 was the top
hotspot in the IFN-γ , unstimulated and LPS 2h studies (associated with 333, 242 and 96 tran-
scripts, respectively), and it was the second largest hotspot in the LPS 24h study (associated
with 18 transcripts). This hotspot is located on chromosome 12, only a few Kb away from
two genes it controls, namely, LYZ and YEATS4, which are thought to play a central role in
the pathogenesis of immune disorders (Fairfax et al. (2012)).

Given the shared hotspot control in all four immune stimulation conditions, borrowing
information with a joint network approach on the controlled genes across these conditions
seems particularly appropriate to further investigate the gene regulation mechanisms trig-
gered by rs6581889. At the same time, Ruffieux et al. (2020) found that there is only a partial
overlap between the genes associated with the hotspot across the different conditions, which
calls for a modelling approach that can also effectively detect stimulus-specific effects—such
effects being highly relevant to understand how distinct pathways may be activated in differ-
ent disease states. Such an analysis should help characterising the complex interplays among
the genes controlled, that is, the direct effects on the distal genes or the indirect effects, medi-
ated via other genes controlled by the hotspot (typically via proximal genes, such as LYZ and
YEATS4). Although graphical modelling approaches seem particularly appropriate to disen-
tangle direct and mediated effects, they have not been employed thus far.

With its desirable theoretical properties as well as its high performance in numerical
studies, the graphical horseshoe estimator (Li, Craig and Bhadra (2019)) would be a natu-
ral choice for graph inference. However, its applicability in the above monocyte setting is
hampered by two limitations: first, its Gibbs sampler implementation does not scale to the
problem dimensions (p = 381 genes for n ≤ 413 observations in each condition). Second, its
model is formulated for the analysis of a single network, meaning that it can only be applied
separately to each of the four conditions. Although relevant for identifying common struc-
tures across the conditions, the Bayesian spike-and-slab joint graphical lasso (Li, Mccormick
and Clark (2019)) and the joint graphical lasso (Danaher, Wang and Witten (2014)) do not
enjoy the flexibility granted by the horseshoe prior’s local scales for identifying network-
specific effects (whose detection is key to disentangle disease-specific mechanisms, as ex-
plained above). Moreover, these methods did not reach convergence within 48 hours, as
jointly modelling all four conditions requires inferring a total of 289,560 edges. This severe
high dimensionality makes it essential to develop approaches that are specifically designed
to scale to the current statistical omics problem sizes.

Motivated by the monocyte problem, this work is concerned with proposing a new frame-
work that addresses the two shortcomings outlined above to enable effective network infer-
ence in realistic practical settings. Namely, we aim to: (i) develop an expectation conditional
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maximisation (ECM) algorithm for the graphical horseshoe as a fast yet accurate alternative
to the Gibbs sampling procedure proposed by Li, Craig and Bhadra (2019) and (ii) formulate
a joint model for multiple networks, leveraging the global-local horseshoe feature to borrow
strength across shared patterns while preserving differences across networks.

Equipped with this framework, we will return to the monocyte problem in Section 7 to
demonstrate the computational feasibility of joint network modelling on these data and ex-
ploit the advantages of the global-local formulation for inferring and interpreting condition-
specific and shared gene regulation structures.

4. An ECM algorithm for estimating the graphical horseshoe. As a first step in de-
tailing our proposal, we outline the expectation conditional maximisation (ECM) procedure
for estimating the joint posterior of the precision matrix and its local scale parameters, which
adapts the spike-and-slab EM approach of Ročková and George (2014) to the graphical
horseshoe setting. Similar to the latter approach, we propose to identify the joint posterior
of (�,�) instead of � marginally, to ensure analytical tractability of the objective func-
tion and computational effectiveness. Note that this is in contrast to the usual application of
ECM, where one would integrate out the local scale parameters. We first detail the updates
for the single-network graphical horseshoe prior (1) based on a classical inverse Gamma
prior reparametrisation of the horseshoe local scales, which guarantees parameter conjugacy.
The ECM approach, described first by Meng and Rubin (1993), is a generalised EM algo-
rithm (Dempster, Laird and Rubin (1977)) where a complex maximisation step (M-step) is
replaced with several computationally simpler conditional maximisation steps (CM-steps).

4.1. Full conditional posteriors. As in Li, Craig and Bhadra (2019), the full conditional
posteriors of the local λij ’s can be derived by introducing the augmented variables νij . We
next employ the following reparameterisation, introducing the latent νij and writing

λ2
ij |νij ∼ InvGamma(1/2,1/νij ), 1 ≤ i < j ≤ p,

νij ∼ InvGamma(1/2,1).

Using a key observation from Makalic and Schmidt (2015), we find the full conditional pos-
teriors as

λ2
ij |· ∼ InvGamma

(
1,1/νij + θ2

ij /
(
2τ 2))

,

νij |· ∼ InvGamma
(
1,1 + 1/λ2

ij

)
,

(2)

where · denotes all other variables. The latent variables can be collected in the latent ma-
trix N = (νij ). The global shrinkage parameter τ in (1) is for now treated as a known fixed
hyperparameter; its specification will be detailed in Section 5.3. To obtain conditional pos-
teriors for the precision matrix and the local scale parameters, each column and row of the
matrices � and � = (λ2

ij ) are partitioned from a p ×p matrix of parameters. Without loss of
generality, we describe the updates for the last row and column. As in Wang (2012), we write

� =
(
�(−p)(−p) θ (−p)p

θT
(−p)p θpp

)
, S =

(
S(−p)(−p) s(−p)p

sT
(−p)p spp

)
,

� =
(
�(−p)(−p) λ(−p)p

λT
(−p)p 1

)
,

where S = XT X is the scatter matrix of the observed data X. The diagonal elements of �
are not of relevance and can be set to an arbitrary value such as 1. The posterior distribution
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for the last column (and row) of � can be obtained as

p(θ (−p)p, θpp|�(−p)(−p),S,�)

∝ (
θpp − θT

(−p)p�−1
(−p)(−p)θ (−p)p

)n/2

× exp
{−sT

(−p)pθ (−p)p − sppθpp/2 − θT
(−p)p

(
�∗τ 2)−1

θ (−p)p/2
}
.

With a variable change, the conditional distributions can be reformulated as

θ (−p)p|�(−p)(−p),S,� ∼ Normal(−Cs(−p)p,C),

θpp − θT
(−p)p�−1

(−p)(−p)θ (−p)p|�(−p)(−p),S,� ∼ Gamma(n/2 + 1, spp/2),
(3)

where C = {spp�−1
(−p)(−p) + (�∗τ 2)−1}−1 and �∗ = diag(λ(−p)p). By iteratively permuting

each row and column to be the last, the conditional posterior of all elements of the precision
matrix can then be found row and columnwise.

4.2. ECM algorithm. Given the estimates from the previous iteration l, the objective
function is obtained as

Q
(
�,�|�(l),�(l)) = EN |�(l),�(l),S

{
logp(�,�,N |S)|�(l),�(l)}

= n

2
log (det�) − 1

2
tr(S�) + ∑

i<j

{
−4 log (λij ) − θ2

ij

2τ 2λ2
ij

(4)

− 2E·|·
{
log (νij )

} −
(

1

λ2
ij

+ 1
)

E·|·
(

1

νij

)}
+ const.,

where E·|·(·) denotes EN |�(l),�(l),S(·) and const. is a constant not depending on � or �. Note
that the objective function accounts for the full priors of � and �.

In the E-step of the algorithm, the conditional expectations in (4) are computed over the
latent parameter N , while the CM-step performs the maximisation with respect to (�,�).
Similar to the Bayesian spike-and-slab joint graphical lasso of Li, Mccormick and Clark
(2019) where the objective function is maximised over both the precision matrix and sparsity
parameters, this approach finds a posterior mode of (�,�), accounting for prior distributions
on all other parameters.

From (2) the full conditional distributions of the νij ’s are inverse Gamma. Therefore, the
E-step updates are

E·|·
{
log (νij )

} = log
(

1 + 1

λ2(l)

ij

)
− ψ(1),

E·|·
(

1

νij

)
= 1

1 + 1/λ2(l)

ij

= λ2(l)

ij

λ2(l)

ij + 1
=: λ∗(l)

ij ,

(5)

where ψ(·) is the digamma function.
Next, the CM-step maximises (4) with respect to (�,�) in a coordinate ascent fashion,

with the expectations replaced with the expressions found in (5). The following closed-form
updates are obtained for the λ2

ij ’s:

λ2(l+1)

ij = λ∗(l)

ij + θ2
ij /(2τ 2)

2
.(6)
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There is no closed form for the update of the precision matrix; however, (3) gives the updates
for the last row and column of �,:

θ(l+1)
pp = θ

(l+1)T

(−p)p

(
�

(l+1)
(−p)(−p)

)−1
θ

(l+1)
(−p)p + n

spp

,

θ
(l+1)
(−p)p = −

{
spp

(
�

(l+1)
(−p)(−p)

)−1 + 1

τ 2

(
�∗(l+1))−1

}−1
s(−p)p,

(7)

setting l+1 = l at each iteration. By iteratively permuting each row and column to be the last,
all elements of the precision matrix can be updated row and columnwise. With these updates
the positive definiteness constraint for � is maintained at each iteration as long as the initial
value is positive definite. This can be shown with an argument equivalent to that of Wang
(2012): assume that the update �(l) is positive definite, then all its p leading principal minors
are positive. After updating the last row and column as in (7), the updated precision matrix
�(l+1) has the same leading principal minors as in �(l), except for the last one, which is of
order p. The last leading principal minor is clearly equal to det(�(l+1)) = γ det(�(l)

(−p)(−p)),

where det(�(l)
(−p)(−p)) is the (p − 1)th leading principal minor of �(l) and thus positive, and

we have, from (3), that γ = θpp − θT
(−p)p�−1

(−p)(−p)θ (−p)p > 0. Consequently, det(�(l+1)) >

0, and so the updated �(l+1) is positive definite.
With this CM-step update, it is ensured that Q(�(l+1),�(l+1)|�(l),�(l)) ≥ Q(�(l),

�(l)|�(l),�(l)) (Meng and Rubin (1993)). By iterating between the E-step and the CM-step
until convergence, we obtain an estimator of a posterior mode of (�,�). It is important to
note that we are finding posterior modes of p(�,�|S) rather than p(�|S). As previously
discussed, this enables closed-form updates and hence substantial computational savings;
our simulation studies in Section 6 indicate that this approach still permits identifying high
posterior regions of p(�|S), with our algorithm achieving a very good recovery of the pre-
cision matrix. The full derivations for this section are given in Section S.1 of Supplementary
Material A (Lingjærde et al. (2024b)).

One of the main computational advantages of the ECM approach over stochastic search
is that a posterior mode is fast to obtain. The estimates are computed directly, and a full
stochastic search is not necessary. Further, while the updates for the local scales never become
exactly zero, as they are half Cauchy, they can be very small in the absence of an edge. As
a result, the precision matrix entries corresponding to unidentified edges tend to converge to
values close to zero whose inclusion is not meaningful, and the separation with the identified
edges increases as the algorithm converges—such an observation has also been reported by
others in the context of EM or variational inference (Kook et al. (2021)). To ensure numerical
stability and avoid under- and overflow in the implementation of the algorithm, the updates
are reformulated using the exponential and logarithmic functions to avoid direct divisions.
We hereafter refer to this ECM implementation as “fastGHS.”

5. Multiple network inference. In this section we describe the joint graphical horse-
shoe for multiple network inference. By sharing information through common latent vari-
ables, the method gives more precise estimates for networks with any level of similarity.
The heavy tails of the horseshoe prior permits effectively capturing network-specific edges, a
property that few Bayesian methods developed for similar purposes share. The resulting joint
graphical horseshoe estimator simultaneously shares information between networks and cap-
tures their differences. In addition, due to the scalability of the ECM implementation, our
method allows for joint network modelling for a larger number of networks than existing
Bayesian approaches do.
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5.1. Joint graphical horseshoe model formulation. Given K networks with p nodes
each, and nk × p observation matrices Xk for k = 1, . . . ,K , we are interested in estimating
the precision matrices {�1, . . . ,�K}. We let the kth precision matrix follow the hierarchical
model

θiik ∝ 1, i = 1, . . . , p,

θijk|λijk ∼ N
(
0, λ2

ijkτ
2
k

)
, 1 ≤ i < j ≤ p,

λijk ∼ C+(0,1),

with �k � 0, k = 1, . . . ,K . This is the standard graphical horseshoe model for each network
separately. To share information across networks, we introduce the latent variables νij and
write

λ2
ijk|νij ∼ InvGamma(1/2,1/νij ),

νij ∼ InvGamma(1/2,1).

We then derive the full conditional posteriors. Because the λijk’s of the different data sets are
independent, given the νij ’s, we have

λ2
ijk|· ∼ InvGamma

(
1,1/νij + θ2

ijk/
(
2τ 2

k

))
,

similarly to the standard graphical horseshoe. Hence, information is now shared across net-
works through the common latent variable νij , and the full conditional posterior of the νij ’s
now depends on the λijk’s of all K networks,

p(νij |·) ∝ InvGamma

(
K + 1

2
,1 +

K∑
k=1

1

λ2
ijk

)
.(8)

The derivation of (8) is given in Section S.1.4 of Supplementary Material A (Lingjærde et al.
(2024b)).

The global scales τk are network-specific to allow for different sparsity levels across net-
works; their specification is detailed in Section 5.3. Alternative approaches that directly
model structured and shared sparsity, for example, using a Markov random field prior as
in the spike-and-slab graphical approach of Peterson, Stingo and Vannucci (2015), could also
be considered. In practice, however, the use of local scales results in considerable flexibility in
adapting to the overall sparsity levels of the different networks, as our numerical experiments
from Sections 6 and 7 below suggest.

5.2. ECM approach. The E-step and CM-step of the multiple-network ECM algorithm
are similar to the single network version. Since the networks are independent, given the com-
mon latent variables νij , we can perform the maximisation of the λijk’s and the θijk’s for
k = 1, . . . ,K separately. The main difference is that the distribution of νij now depends on
the local shrinkage parameters of all K networks.

Using the full conditional distribution (8), the E-step updates are

E·|·
{
log (νij )

} = log

(
1 +

K∑
k=1

1

λ2(l)

ijk

)
− ψ

(
K + 1

2

)
,

E·|·
(

1

νij

)
= K

2(1 + ∑K
k=1 1/λ2(l)

ijk )
=: λ∗(l)

ij · .

(9)
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The CM-step updates for the λ2
ijk’s are obtained by replacing the expectation E·|·(ν−1

ij ) =
λ∗(l)

ij in (6) by the λ∗(l)

ij · update of the E-step in (9),

λ2(l+1)

ijk = λ∗(l)

ij · + θ2
ijk/(2τ 2

k )

2
.(10)

The precision matrices �k are also updated separately for each network, as they are inde-
pendent, given the νij ’s. Setting l + 1 = l at each iteration, we get the ordinary graphical
horseshoe block updates (Li, Craig and Bhadra (2019)) given by

θ
(l+1)
ppk = θ

(l+1)T

(−p)pk

(
�

(l+1)
(−p)(−p)k

)−1
θ

(l+1)
(−p)pk + nk

sppk

,

θ
(l+1)
(−p)pk = −

(
sppk

(
�

(l+1)
(−p)(−p)k

)−1 + 1

τ 2
k

(
�∗(l+1)

k

)−1
)−1

s(−p)pk,

where the matrix partitioning is analogous to (7). We iterate between the E-step and the
CM-step until convergence is achieved for all K graphs, when the updates for all precision
matrix elements of all K graphs differ from their previous estimate in absolute value by less
than some tolerance threshold. We hereafter refer to this ECM implementation of our joint
graphical network model as “jointGHS.”

5.3. Global shrinkage parameter selection. The specification of the horseshoe global
scale parameter τ (or τk in the multiple network case) has been a subject of active debate
over the past years (see, e.g., Carvalho, Polson and Scott (2009), Carvalho, Polson and Scott
(2010), Piironen and Vehtari (2017)). The different proposals may be grouped into three
strategies: (i) use a prior on τ , typically a half-Cauchy prior, (ii) fix it or (iii) use a selection
criterion. Previous work has found that strategy (i) can result in degenerate solutions when
using deterministic inference algorithms (such as our ECM algorithm) or other empirical
Bayes procedures, in very sparse settings (Scott and Berger (2010), Polson and Scott (2010),
Bhadra et al. (2019), van de Wiel, Te Beest and Münch (2019)). As Li, Craig and Bhadra
(2019) indicate, strategy (ii) can be employed to control the sparsity level of the graphical
horseshoe estimates and avoid overshrinkage. This is a common approach in nongraphical
horseshoe settings. For instance, van der Pas, Kleijn and van der Vaart (2014) fix τ based on
theoretical justification, namely, τ should be of the order of the proportion of nonnull effects
to guarantee asymptotic minimaxity, an argument that Bhadra et al. (2017) also follow in the
context of the horseshoe+ estimator. Piironen and Vehtari (2017) instead proposed to make
assumptions on the “effective model size;” their approach is, however, not transferable to
our graphical setting due to the iterative nature of our updates (7). We instead implement a
procedure based on strategy (iii), as detailed hereafter.

Assuming the multiple network setting, we propose to select each τ 2
k separately for each

network using the AIC criterion for Gaussian graphical models (Akaike (1973)), before
running the joint analysis. As demonstrated in Section S.5 of Supplementary Material A
(Lingjærde et al. (2024b)), fastGHS and jointGHS typically do not overselect edges, and us-
ing more stricter criteria, such as the BIC, would result in severe underselection of edges. For
a given global shrinkage parameter τ 2

k and corresponding precision matrix estimate �̂k,τ 2
k

found with fastGHS, the AIC score is given by

AIC
(
τ 2
k

) = nk

nk − 1
tr(Sk�̂k,τ 2

k
) − nk log

{
det(�̂k,τ 2

k
)
} + 2|Eτ 2

k
|,

where tr is the trace, Sk = XT
k Xk is the scatter matrix and |Eτ 2

k
| is the size of the correspond-

ing edge set.
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For small τ 2
k , small increases lead to large changes in the AIC score (see Section S.5 of

Supplementary Material A (Lingjærde et al. (2024b))). However, for sufficiently large values,
the AIC score stabilises as the global shrinkage parameter increases. This can be attributed
to the flexibility of the local scale parameters, which compensate for the larger global scale
parameter, thus still effectively capturing the magnitude of local effects. Hence, instead of
attempting to identify the globally AIC minimising value of τ 2

k , which is computationally ex-
pensive, we start with a small value and increase it until the AIC has stabilised. This approach
shares similarities with the “dynamic posterior search” of Ročková and George (2018). For-
mally, using a suitable grid of M increasing values {τ 2

k,1, . . . , τ
2
k,M}, we set τ 2

k to be

τ 2
k,AIC = min

{
τ 2
k,m : ∣∣AIC

(
τ 2
k,m

) − AIC
(
τ 2
k,m−1

)∣∣ < ε
}

for some convergence tolerance ε.
By selecting the τk’s separately, we allow for different sparsity levels across networks. In

practice, our jointGHS implementation runs the single-network approach on each network
separately (optionally in parallel for computational efficiency), sets τk using the above pro-
cedure and then uses them in the final joint network run.

5.4. More on the heavy horseshoe tail. In the joint graphical horseshoe, information is
shared through the common latent parameter νij . In practice, only the full conditional ex-
pectation of 1/νij is used in the ECM algorithm. The larger 1/νij in (9), the larger the CM-
updates (10) for the local scales λijk , k = 1, . . . ,K , and hence the larger the updates for the
corresponding precision matrix elements. Thus, a large posterior expected value of 1/νij sig-
nifies strong evidence for the edge (i, j) being present in all networks. It is also clear from
the CM-updates (10) that a conditional expectation of 1/νij close to zero does not imply
that the updates for all the local scales will be close to zero. That is, thanks to the heavy tail
of the half-Cauchy distribution, if there is enough evidence from the data, an edge can be
identified in an individual network, even though the common latent parameter suggests no
edge. This is illustrated by Figure 1, which shows the precision elements estimated by the
joint graphical horseshoe for K = 2 networks, plotted against the posterior expectations of
the corresponding shared latent parameters 1/νij . The true networks have 99 edges each, of
which 39 in common. Figure 1 shows that the expectation of 1/νij is only far from zero when
an edge is present in both networks. When this expectation is close to zero, that is, shared
information is not found, posterior output still captures edges (i.e., nonzero θijk) specific to
each network. This illustrates how the joint graphical horseshoe estimator can simultaneously
share information between networks and capture their differences.

6. Simulations. To evaluate the performance of our approach, we have performed com-
prehensive simulation studies in R (R Core Team (2013)). We have generated data as close
as possible to our omics application of interest, with nonzero partial correlations between 0.1
and 0.2 in magnitude and with the scale-free property (i.e., the degree distribution follows
a power-law distribution), a common assumption for omics data (Chen and Sharp (2004)).
We assess graph accuracy by the precision, that is, the fraction of the inferred edges that are
actually present in the true graph (also known as positive predictive value or complement of
the false discovery rate), and by the recall, that is, the fraction of edges in the true graph that
are present in the inferred one (also known as sensitivity or true positive rate). Because the
networks inferred by the different methods may result in different sparsity estimates, some
consideration is needed when comparing their precision and recall. For example, the recall
tends to increase as the number of edges increases, favouring methods that overselect edges.
In omics applications, one rather wishes to identify few but highly reliable associations than a
large number of associations, many of which will be spurious. In the discussion of the results,
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FIG. 1. Off-diagonal precision matrix elements estimated by the joint graphical horseshoe, plotted against the
expectation of the corresponding inverse shared latent parameters for local scales. The data sets consist of K = 2
networks with 40% edge agreement, with p = 100 nodes, and n1 = 100 and n2 = 150 observations, respectively.
Both networks have simulated sparsity of 0.02. The shade of a point indicates which network it is estimated for,
and the shape indicates whether the corresponding edge truly is present in both, one or neither networks. The
details of the data generation and analysis are given in Section S.3 of Supplementary Material A (Lingjærde et al.
(2024b)).

we, therefore, put more emphasis on the precision and consider the recall to be an informative
additional measure, particularly in situations when two methods have comparable precision.

Our numerical experiments are divided into three parts. In Section 6.1 we assess the sta-
tistical and computational performance of fastGHS in a single-network setting, comparing
it to the Gibbs sampling version of Li, Craig and Bhadra (2019) and to the graphical lasso
(Friedman, Hastie and Tibshirani (2008)). Additional simulations demonstrating that fast-
GHS is robust to random initialisations can be found in Section S.7.4 of Supplementary
Material A (Lingjærde et al. (2024b)). In Section 6.2 we demonstrate that, thanks to joint
modelling, the accuracy of the jointGHS increases with the number of related networks. Fi-
nally, in Section 6.3 we compare the performance of jointGHS to the Bayesian spike-and-slab
joint graphical lasso (Li, Mccormick and Clark (2019)), the joint graphical lasso (Danaher,
Wang and Witten (2014)) and GemBag (Yang et al. (2021)). Details on all simulation studies
are given in Section S.3 of Supplementary Material A (Lingjærde et al. (2024b)), and the cor-
responding code is available on Github (https://github.com/Camiling/jointGHS_simulations)
and in Supplementary Material D (Lingjærde et al. (2024a)).

6.1. Comparison of fastGHS with the Gibbs sampling scheme for single networks. In this
section we compare the performance of our ECM implementation of the graphical horseshoe
to that of the Gibbs sampler by Li, Craig and Bhadra (2019). As a baseline reference, we
also provide the results of the widely used graphical lasso algorithm (Friedman, Hastie and
Tibshirani (2008)). We consider settings with different numbers of nodes, p ∈ {50,100}, and
observations, n ∈ {100,200}. For each setting we construct a p × p precision matrix and
sample N = 20 data sets with n observations from the corresponding multivariate Gaussian
distribution.

6.1.1. Runtime profiling. All above graphical settings give rise to high-dimensional prob-
lems: for instance, with n = 200 and p = 100, there are (p2 − p)/2 = 4950 potential edges.

https://github.com/Camiling/jointGHS_simulations
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For the Gibbs sampling implementation of the graphical horseshoe, a larger p, such as 200,
leads to computational problems as the algorithm entails singular updates, likely a result over-
flow not being properly dealt with (this holds for both the original MATLAB implementation
and our translation into R, where the algorithm halts as it attempts to solve a singular system);
running examples for this can be found at https://github.com/Camiling/jointGHS_simulations
or in Supplementary Material D (Lingjærde et al. (2024a)). In this comparison we, there-
fore, only consider up to p = 100 nodes. We emphasise that the limitation p < 200 for the
Gibbs sampler applies to our particular simulation settings. In their simulations, Li, Craig
and Bhadra (2019) apply the Gibbs sampler to networks with as many as p = 400 nodes,
but these networks are sparser than ours and have larger partial correlations of magnitude
0.25 −−0.75 (ours are of magnitude 0.1–0.2). This makes the networks strongly identifiable
from data, and thus fewer singularity and convergence issues are encountered.

6.1.2. Edge-selection performance. Table 1 indicates the edge-selection performance of
fastGHS is comparable to the Gibbs sampler. The two graphical horseshoe implementations
perform better than the graphical lasso in terms of both precision and recall in all but one case.
For this exception the graphical lasso has the best performance in terms of precision, likely
because it has the sparsest estimate, and, therefore, its inferred edges are more accurate, yet at
the expense of a lower recall. The horseshoe-based methods have the best overall performance
for a wider range of scenarios.

As anticipated, our runtime profiling for the Gibbs sampler and our ECM implementation
of the graphical horseshoe indicate striking differences. Comparing the two types of inference
is not straightforward, as they rely on different stopping rules and convergence diagnostics. To
alleviate the risk of unfair comparison, we run the Gibbs sampler for a relatively small number
of MCMC samples, namely, 1000, after 100 burn-in iterations, while for the ECM algorithm,
we use a maximum of 10,000 iterations. Figure 2 shows on a logarithmic scale the CPU time
used to infer a network for different numbers of nodes p, with n = 100 observations. For
p = 90 nodes, fastGHS is 30 times faster than the Gibbs sampler. For larger p, only the ECM

TABLE 1
Simulation results for our ECM implementation of the graphical horseshoe (fastGHS), the Gibbs sampling
implementation of the graphical horseshoe (GHS) and the graphical lasso (Glasso) applied to multivariate

Gaussian data from graphs with different numbers of vertices p and observations n. The results are averaged
over N = 20 replicates and show sparsity, precision and recall as well as their standard errors in parentheses.

For each case the highest value of the precision (resp., recall) is marked in bold (resp., italic) and so is the
precision (resp. recall) of any other method within one standard error of it

Case True sparsity p n Method Estimated Sparsity Precision Recall

1 0.04 50 100 Glasso 0.019 (0.006) 0.80 (0.12) 0.37 (0.08)
GHS 0.017 (0.002) 0.91 (0.06) 0.38 (0.05)

fastGHS 0.017 (0.002) 0.94 (0.04) 0.39 (0.05)

2 0.04 50 200 Glasso 0.020 (0.003) 0.88 (0.08) 0.44 (0.03)
GHS 0.017 (0.002) 0.98 (0.03) 0.42 (0.04)

fastGHS 0.017 (0.002) 0.99 (0.02) 0.43 (0.04)

3 0.02 100 100 Glasso 0.011 (0.002) 0.61 (0.08) 0.33 (0.04)
GHS 0.015 (0.001) 0.49 (0.06) 0.37 (0.04)

fastGHS 0.015 (0.001) 0.46 (0.05) 0.35 (0.03)

4 0.02 100 200 Glasso 0.008 (0.001) 0.86 (0.06) 0.36 (0.02)
GHS 0.009 (0.001) 0.91 (0.05) 0.40 (0.03)

fastGHS 0.009 (0.001) 0.93 (0.05) 0.41 (0.04)

https://github.com/Camiling/jointGHS_simulations
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FIG. 2. CPU time in seconds on a logarithmic scale to infer a network for a grid of node numbers p and
n = 100 observations, for our ECM implementation (fastGHS) and the Gibbs sampling implementation (GHS) of
the graphical horseshoe. Computations were performed on a 16-core Intel Xeon CPU, 2.60 GHz.

estimator can be used, which, in practice, is limited only by the available memory to store the
p × p matrix updates for �, � and N .

6.2. Increased accuracy with joint modelling. Now that we have established that the per-
formance of our ECM implementation of the graphical horseshoe is comparable to that of
the Gibbs sampler, we aim to investigate the gain in statistical power when applying our joint
graphical horseshoe estimator, as a function of the number of networks modelled jointly.
We use jointGHS to reconstruct K ∈ {2,4,10} graphs with p = 50 nodes, also applying our
single-network method fastGHS on each network separately to serve as baseline. While we
simulate scenarios with different degrees of shared information across the K graphs (edge
disagreement), for a given scenario the edge disagreement is the same for any pair of net-
works. Of note, neither the spike-and-slab joint graphical lasso (Li, Mccormick and Clark
(2019)) nor the joint graphical lasso (Danaher, Wang and Witten (2014)) can run within rea-
sonable time for the setting with K = 10 networks (<48 hours, see Section S.7.3 of Sup-
plementary Material A (Lingjærde et al. (2024b))). The results are averaged over N = 40
replicates and show the precision and recall for the first estimated graph in each setting, re-
constructed from n = 80 observations. All graphs have true sparsity 0.04.

Figure 3 shows the precision and recall for jointGHS and fastGHS as a function of the
available information (total number of graphs K) and level of disagreement between them.
Although the simulated graph structure remains the same in all settings, the sparsity of the
inferred jointGHS graphs varies with total number of graphs and their level of similarity.
Hence, to ensure a fair comparison, we obtained single-network estimates with the same
sparsity as the joint estimates in each setting, making the fastGHS results vary with both K

and the level of similarity; we refer to Section S.3 of Supplementary Material A (Lingjærde
et al. (2024b)) for details.

As expected, the joint approach clearly outperforms the single network approach in terms
of both precision and recall, and the improvement increases with the number of graphs K ,
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FIG. 3. Performance of the joint graphical horseshoe (jointGHS) and single network graphical horseshoe (fast-
GHS), reconstructing K ∈ {2,4,10} graphs with p = 50 nodes and various similarity of the true graph structures.
The edge disagreement between the two graphs is shown as the percentage of edges in one network not present in
the other. The results are averaged over N = 40 replicates and show the precision and recall for the first estimated
graph in each setting, reconstructed from n = 80 observations. All graphs have true sparsity 0.04.

since more shared information is available. This applies to all levels of edge disagreement,
including when the graphs have no common edges. This may be explained by the sparsity of
the graphs: while the networks do not share any edge, they do share the fact that no edge is
present for a large number of pairs (i, j). Thus, information is still be shared through condi-
tional expectations of the common ν−1

ij ’s being equal to zero. The larger K is, the stronger
this information is, leading to a large improvement compared to a single network approach.

6.3. Comparison of jointGHS with other joint network inference methods. Now that we
have demonstrated the benefit of joint modelling, we next assess the computational and statis-
tical performance of our joint graphical horseshoe estimator, jointGHS, through comparisons
with the Bayesian spike-and-slab joint graphical lasso (SSJGL; Li, Mccormick and Clark
(2019)), the joint graphical lasso (JGL; Danaher, Wang and Witten (2014)) and GemBag
(Yang et al. (2021)).

6.3.1. Runtime profiling. Figure 4 compares the runtime of all methods for a grid of
node numbers p, K ∈ {2,3,4} networks each with nk ∈ {100,150}: jointGHS is the fastest
of the four methods for all settings, followed by GemBag, JGL and finally SSJGL. The last
two approaches become computationally prohibitive as the number of networks K increases.
Indeed, Danaher, Wang and Witten (2014) highlight that the JGL algorithm scales well in
problems with only two classes (K = 2), as a closed-form solution to the generalised fused
lasso problem can be obtained in that case (this also holds for SSJGL). Both SSJGL and JGL
use the same alternating direction method of multipliers (ADMM) algorithm to update the
precision matrix estimates.
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FIG. 4. CPU time in seconds on a logarithmic scale to jointly infer networks for various numbers of nodes p and
networks K , using the joint graphical horseshoe (jointGHS), the spike-and-slab joint graphical lasso (SSJGL),
the joint graphical lasso (JGL) and GemBag. In all settings the networks agree on 50% of their edges. For K = 2,
the networks are inferred from n1 = 100 and n2 = 150 observations, for K = 3, the networks are inferred from
n1 = n2 = 100 and n3 = 150 observations, and for K = 4 the networks are inferred from n1 = n2 = 100 and
n3 = n4 = 150 observations. Computations were performed on a 16-core Intel Xeon CPU, 2.60 GHz.

Notably, in their respective simulation studies, Li, Mccormick and Clark (2019) and
Danaher, Wang and Witten (2014) apply their methods to as many as p = 400 and p = 500
nodes. However, in the SSJGL numerical experiments, precision matrix elements are sampled
from the G-Wishart distribution with three degrees of freedom, giving very strong partial cor-
relations (0.5 − 0.9 in absolute value). Similarly, following the precision matrix construction
described in the JGL experiments gives partial correlations of ≈ 0.6 in absolute value. This
renders the networks strongly identifiable from data, leading to faster convergence than in our
simulations where partial correlations and between 0.1 and 0.2. Thus, motivated by realistic
biological network strengths, we are considering a more challenging inference problem.

The lower runtime of jointGHS and GemBag can be explained by their EM/ECM imple-
mentations, although their higher scalability compared to SSJGL, which also implements an
EM algorithm, could be due to their computationally efficient C++ subroutines. Because of
these computational limitations, we use relatively small numbers of nodes p to make, so all
methods can run within reasonable time (< 48 hours). Note, however, that jointGHS success-
fully completes within this timeframe on examples with p > 1000 nodes (see Section S.7.3
of Supplementary Material A (Lingjærde et al. (2024b))).

6.3.2. Edge-selection performance. We next compare the edge-selection performance of
all four methods on problems with K = 2 graphs of p = 50 nodes each, and n1 = 50 and
n2 = 80 observations, respectively. We consider six settings, with different levels of graph
similarity, that is, proportion of edges present in both graphs. Namely, we simulate data with
similarity varying between 0% edge disagreement (i.e., the same edge set) to 100% edge
disagreement (i.e., no common edges). For each setting we construct two p × p precision
matrices with the desired level of similarity, and we sample N = 100 data sets from each of
the two corresponding multivariate Gaussian distributions. In all settings both graphs have
true sparsity 0.04, corresponding to 49 edges. We report the precision and recall of the final
estimate of each method. A threshold-free comparison, based on precision-recall curves and
corresponding areas under the curves, is given in Section S.7.2 of Supplementary Material A
(Lingjærde et al. (2024b)).

Table 2 shows the performance of the joint network approaches. The joint graphical
lasso JGL, applied with its default AIC-based selection criteria for sparsity- and similarity-
selection, has low precision in all settings. The method tends to severely overselect edges,
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Performance of the joint graphical horseshoe (jointGHS), the spike-and-slab joint graphical lasso (SSJGL), the joint graphical lasso (JGL) and GemBag for reconstructing K = 2
graphs with various similarity of the true graph structures. Results are averaged over N = 100 replicates. The edge disagreement between the two simulated graphs is shown as the

percentage of edges in one network not present in the other, along with the average edge disagreement of the graphs estimated by each method. The graphs are simulated from a
multivariate Gaussian distribution with p = 50 variables and with n1 = 50 and n2 = 80 observations; both graphs have simulated sparsity of 0.04. The estimated sparsity, precision

and recall for both graphs is reported, with standard errors in parentheses. For each case the highest value of the precision is marked in bold and so is the precision of any other
method within one standard error of it

n1 = 50 n2 = 80

Disagr. % Method ̂Disagr. % Sparsity Precision Recall Sparsity Precision Recall

0 JGL 63 0.312 (0.011) 0.11 (0.01) 0.83 (0.05) 0.269 (0.011) 0.13 (0.01) 0.91 (0.04)
GemBag 41 0.039 (0.006) 0.65 (0.07) 0.62 (0.06) 0.064 (0.008) 0.49 (0.05) 0.77 (0.06)
SSJGL 0 0.025 (0.003) 0.85 (0.09) 0.53 (0.06) 0.025 (0.003) 0.85 (0.09) 0.53 (0.06)

jointGHS 17 0.017 (0.002) 0.82 (0.08) 0.34 (0.04) 0.016 (0.001) 0.93 (0.06) 0.38 (0.03)

20 JGL 65 0.310 (0.02) 0.11 (0.01) 0.83 (0.05) 0.266 (0.017) 0.14 (0.01) 0.90 (0.04)
GemBag 42 0.041 (0.007) 0.61 (0.07) 0.61 (0.06) 0.064 (0.01) 0.47 (0.06) 0.73 (0.06)
SSJGL 1 0.025 (0.003) 0.77 (0.10) 0.48 (0.05) 0.025 (0.003) 0.79 (0.10) 0.49 (0.05)

jointGHS 25 0.016 (0.002) 0.79 (0.10) 0.32 (0.04) 0.016 (0.001) 0.93 (0.06) 0.38 (0.03)

40 JGL 67 0.291 (0.048) 0.12 (0.02) 0.82 (0.06) 0.252 (0.059) 0.14 (0.05) 0.83 (0.08)
GemBag 49 0.038 (0.005) 0.57 (0.08) 0.54 (0.05) 0.066 (0.007) 0.41 (0.04) 0.66 (0.05)
SSJGL 1 0.020 (0.002) 0.76 (0.09) 0.38 (0.04) 0.020 (0.002) 0.77 (0.09) 0.39 (0.05)

jointGHS 34 0.016 (0.002) 0.76 (0.08) 0.30 (0.04) 0.010 (0.002) 0.98 (0.04) 0.25 (0.05)

60 JGL 69 0.291 (0.049) 0.12 (0.02) 0.82 (0.07) 0.247 (0.058) 0.15 (0.05) 0.84 (0.07)
GemBag 48 0.039 (0.004) 0.52 (0.07) 0.50 (0.05) 0.064 (0.009) 0.43 (0.04) 0.67 (0.06)
SSJGL 2 0.021 (0.003) 0.63 (0.09) 0.33 (0.05) 0.021 (0.003) 0.70 (0.08) 0.37 (0.05)

jointGHS 47 0.016 (0.002) 0.74 (0.08) 0.29 (0.04) 0.010 (0.002) 0.98 (0.04) 0.25 (0.05)

80 JGL 71 0.299 (0.040) 0.11 (0.02) 0.81 (0.06) 0.259 (0.046) 0.14 (0.04) 0.89 (0.06)
GemBag 47 0.040 (0.005) 0.46 (0.07) 0.46 (0.06) 0.068 (0.008) 0.42 (0.05) 0.70 (0.06)
SSJGL 2 0.022 (0.004) 0.52 (0.08) 0.27 (0.04) 0.021 (0.003) 0.60 (0.09) 0.32 (0.05)

jointGHS 59 0.015 (0.002) 0.70 (0.11) 0.26 (0.04) 0.010 (0.002) 0.98 (0.04) 0.25 (0.05)

100 JGL 72 0.313 (0.012) 0.11 (0.01) 0.83 (0.05) 0.251 (0.009) 0.16 (0.01) 0.98 (0.02)
GemBag 43 0.050 (0.004) 0.34 (0.05) 0.43 (0.06) 0.074 (0.006) 0.48 (0.04) 0.89 (0.04)
SSJGL 3 0.029 (0.003) 0.29 (0.06) 0.21 (0.03) 0.029 (0.003) 0.55 (0.06) 0.40 (0.05)

jointGHS 78 0.015 (0.002) 0.65 (0.12) 0.24 (0.04) 0.013 (0.002) 0.95 (0.06) 0.31 (0.05)
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reporting nearly 10 times more edges as the number simulated edges: this leads to high recall
values but very low precision.

For GemBag, overselection of edges is not as severe as for (JGL), but the method still
reports more edges than the joint graphical horseshoe (jointGHS) and the spike-and-slab
joint graphical lasso (SSJGL) in all settings, which results in a lower precision but a higher
recall than the two methods. Interestingly, while the first network with n1 = 50 seems to
benefit from GemBag’s joint modelling, it is not the case of the second network with the
largest sample size n2 = 80, as its estimation does not improve as the level of similarity
between the two networks increases. Further, due to the larger sample size, GemBag selects
more edges for the second network in all settings, which yields a higher recall yet a lower
precision than for the first network. Remarkably, the disagreement level (percentage of edges
present in only one of the two networks) of the estimated GemBag networks remains almost
the same in all settings and hence does not reflect the different simulated similarity between
the two graphs: the method does not appear to adapt to varying network similarity levels, with
possibly too much information shared between unrelated networks, yet too little information
shared between highly related ones.

The precision of jointGHS is either higher or comparable to that of SSJGL in all settings. In
general, jointGHS is more conservative than the other methods and hence is most suitable for
detecting edges with high confidence. This is further exemplified in our extended simulations,
particularly in our threshold-free comparisons for sparse edge selection where jointGHS in all
settings considered had the highest precision for a given recall level (Section S.7.1 of Supple-
mentary Material A (Lingjærde et al. (2024b))). The graphs estimated by SSJGL are denser,
which tends to result in a large recall values: this holds for very similar networks, where
SSJGL has the highest recall, yet as network dissimilarity increases, the recall of SSJGL de-
creases and becomes similar to that of jointGHS. This happens because SSJGL shrinks all
precision matrices toward a common structure, thereby overselecting edges that are absent in
some networks while being present in others, as exemplified further in Section 6.3.3. Table 2
indicates that the two networks are estimated by jointGHS as being increasingly different
from each other as the simulated level of disagreement increases, while they are invariably
estimated as almost identical by SSJGL, even when the true networks are completely unre-
lated. Of note, the precision of SSJGL deteriorates in settings where the simulated networks
share little information, while jointGHS effectively adapts to this setting, maintaining rel-
atively high values of both the precision and recall for completely unrelated networks. As
further demonstrated in Section 6.3.3 hereafter, this clear advantage can be attributed to the
local scales λijk of the graphical horseshoe, which flexibly capture isolated effects thanks to
their heavy Cauchy tails.

6.3.3. Ability to capture edges on the individual-graph level. We next provide a more
detailed illustration of the benefits of the horseshoe heavy-tailed local scales for capturing
graph-specific edges by comparing precision matrix estimates obtained with our joint graph-
ical horseshoe, jointGHS and the spike-and-slab joint graphical lasso, SSJGL. We use the
same data generation procedure as in Section 5.4, with networks reconstructed from two data
sets corresponding to K = 2 graphs with 40% edge agreement, p = 100 nodes, and n1 = 100
and n2 = 150 observations, respectively. Both graphs have a true sparsity of 0.02.

Figure 5 indicates that jointGHS effectively identifies both common and graph-specific
edges. Thanks to its network-specific local scales, when an edge is present in only one of
the graphs, the corresponding precision matrix element in the other graph is correctly esti-
mated as null; hence, no false positive is reported due to excess shrinkage toward a common
graph. As a result, jointGHS is more inclined to false negatives than false positives; in a few
instances, it reports edges in only one of the two networks, while they actually present in
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FIG. 5. Comparison of estimated precision matrix elements (scaled by the diagonal as when finding partial
correlations) of two networks with 40% edge agreement and p = 100 nodes, for the joint graphical horseshoe
and for the spike-and-slab joint graphical lasso separately. The points’ shape indicates whether the corresponding
edge is simulated as present is both, one or neither network.

both. SSJGL displays the opposite behaviour: it shrinks excessively toward a common graph
and, therefore, largely fails to identify the network-specific edges. While the SSJGL does
well in capturing edges common to both graphs, an edge in one graph tends to be reported
as present in both, resulting in a large number of false positives. This explains its excellent
performance for very similar networks, but poorer performance as the similarity between two
networks decreases, as discussed in Table 2. Regardless of how similar the networks may be,
jointGHS effectively borrows shared information across them, while successfully avoiding
overshrinkage toward a common structure to preserve graph-specific information.

While our simulations have illustrated the flexibility of the joint graphical horseshoe, per-
forming joint modelling of K data sets consisting of many highly similar networks and a few
unrelated or a priori more loosely similar networks would make little sense. While, thanks to
the horseshoe local scales, the risk of the many similar networks dominating the analysis is
lower with jointGHS compared to other joint graphical methods, including the spike-and-slab
joint graphical lasso (Li, Mccormick and Clark (2019)) and the joint graphical lasso (Danaher,
Wang and Witten (2014)); it may be helpful to investigators to rule out this scenario. To this
end, we outline a Bayesian bootstrapping procedure (Rubin (1981)) in Section S.6 of Supple-
mentary Material A (Lingjærde et al. (2024b)) to check whether the joint network estimates
are in strong contradiction with each of the single network estimates; this optional routine is
implemented in our R package jointGHS.

7. Application to a study of hotspot activity with stimulated monocyte expression.
Returning to the monocyte data set from Section 3, we now apply our proposed methodology
to estimate conditional independence among the gene levels under genetic control. Specifi-
cally, the finding of Ruffieux et al. (2020) about the top hotspot genetic variant (rs6581889,
on chromosome 12) being persistent across all four monocytic conditions (unstimulated cells,
IFN-γ -, LPS 2h- & LPS 24h-stimulated cells) makes a joint graphical approach particularly
relevant to study the interplay within and across the different gene networks. The number of
genes associated with the top hotspot in each condition was 294, 88, 16 and 215, respectively
(permutation-based FDR < 0.05); hereafter, we focus on the p = 381 genes associated with
the hotspot in at least one condition. Further information on the data and preprocessing steps
is available in Ruffieux et al. (2020), and details on the analysis presented below can be found
in Section S.4 of Supplementary Material A (Lingjærde et al. (2024b)). Complete lists of the
node degree of all genes in the estimated networks and all edges identified by the method are
given in Supplementary Material B and C (Lingjærde et al. (2024c, 2024d)), respectively.
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FIG. 6. Upset plot of the joint graphical horseshoe graphs of the monocyte data, an alternative to a Venn
diagram, showing the number of edges shared strictly between given conditions (Conway, Lex and Gehlenborg
(2017)). For each intersection the number of edges shared only by the corresponding conditions is shown. The total
number of edges for each condition is represented on the left bar plot. Every possible intersection is represented
by the bottom plot, and their occurrence is shown in the top bar plot.

We first present and interpret the results obtained by applying jointGHS to jointly esti-
mate the precision matrices and hence network structures of the genes in the four conditions.
We then describe a comparative study with: (i) the classical graphical horseshoe applied
separately to each network (using our fastGHS ECM implementation, which scales to this
problem) and (ii) a competing joint modelling approach. For the latter comparison, we use
GemBag (Yang et al. (2021)), as neither the spike-and-slab joint graphical lasso (Li, Mc-
cormick and Clark (2019)) nor the joint graphical lasso (Danaher, Wang and Witten (2014))
runs within 48 hours on the data; as previously discussed in Section 6.3.1, both algorithms be-
come substantially slower in problems with K > 2 classes, due to the absence of closed-form
solution for K 
= 2.

Figure 6 shows the number of edges shared between the different conditions, as inferred
by jointGHS. Many edges are common to all four networks, suggesting a high degree of
similarity across all monocytic conditions, likely reflecting the effect of the shared hotspot
control. Very few edges are shared across three conditions only, but many pairs of conditions
have edges that are shared strictly between them. In particular, LPS 2h and LPS 24h have
the largest number of shared edges that are not present in the other two conditions, which is
expected as they correspond to an exposition to differing durations of a same lipopolysac-
charide activation. While LPS is a component of gram-negative bacterial cell walls, IFN-γ
is a cytokine important in myobacterial and viral infections (Fairfax et al. (2014)). In addi-
tion and in line with the results of our simulation studies, jointGHS is able to capture many
condition-specific edges, with LPS 24h having the highest number of unique edges, possi-
bly because it corresponds to the densest graph across all conditions. These observations call
for further biological investigations, which may motivate new mechanistic studies, such as
whether groups of edges shared by two or more conditions pertain to known pathway activa-
tion or whether pathways of genes involved in edges unique to one stimulated condition are
indicative of some condition-specific functional mechanisms. We explore such questions in
the next sections.

Network-specific activity. A number of the network-specific structures identified by
jointGHS warrant close inspection. For example, the Cytochrome C Oxidase Subunit 6A1
(COX6A1) gene has large degree in both LPS 2h and LPS 24h, moderately large degree in
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IFN-γ but low degree in the unstimulated condition. The oxidative phosphorylation pathway
and immune system processes both include COX6A1 (Wang et al. (2019)), and the gene has
been shown to have key functions in the replication of influenza A viruses (Hao et al. (2008)),
making it noteworthy that this gene’s activity is found elevated only in the stimulated condi-
tions. Another example pertains to the PHD-finger 1 protein encoding gene (PHF1), which
has high degree only in the IFN-γ condition, where it is also found to be controlled by the
top hotspot rs6581889. The PHD-finger 1 protein is an essential factor for epigenetic regu-
lation and genome maintenance and contains two kinds of histone reader modules, a Tudor
domain and two PHD fingers (Baker, Allis and Wang (2008), Liu et al. (2018)). The centrality
of PHF1 in the network of the IFN-γ stimulated monocytes suggests a potential role in the
immune reaction and provides a relevant alley for further studies.

Hub genes. Investigating hub genes in the jointGHS networks for the different condi-
tions can help gain better understanding of the immune response driving disease mecha-
nisms. Remarkably, the autoimmune regulator (AIRE) gene, which is highly expressed in
monocytes, has by far the most links to other genes in all conditions but IFN-γ , where it has
the second most (Section S.4 of Supplementary Material A (Lingjærde et al. (2024b))). This
gene is known to play an important role in immunity through gene and autoantigen activa-
tion and regulation and negative selection of autoreactive T-cells in the thymus (Liston et al.
(2003), Kyewski and Klein (2006), Peterson, Org and Rebane (2008)). Mutations in this gene
have been associated with autoimmune polyendocrinopathy-candidiasis-ectodermal dystro-
phy (APECED), distinguished by multiorgan autoimmunity (Mathis and Benoist (2007),
Akirav, Ruddle and Herold (2011)). Similarly, the arylformamidase (AFMID) gene, also
known as kynurenine formamidase, is found to have among the higher degrees in all four
conditions, in addition to being associated with the top hotspot in all; it also has a link to
LYZ in all four conditions. Arylformamidase is a rate-limiting enzyme in tryptophan conver-
sion, and deficiency is associated with immune system abnormalities (Hugill et al. (2015),
Dobrovolsky et al. (2005)). Additional biological results and discussion can be found in Sec-
tion S.4 of Supplementary Material A (Lingjærde et al. (2024b)).

Hotspot control. We next explore the extent to which the top genetic hotspot rs6581889
influences the conditional independence structure of the genes it controls. Using permutation
testing to derive empirical p-values, we find that the subnetwork of genes associated with
rs6581889 in each condition has significantly more links than the overall network (p < 0.01),
except in the IFN-γ network, suggesting a hotspot-induced increase in activity. We similarly
find that, in all conditions, there is a significant enrichment of genes associated with the top
hotspot among the neighbours of the LYZ gene. As LYZ is located a few Kb away from
rs6581889, this may suggest a mediation of the hotspot effect on other genes via LYZ—a
hypothesis already examined in different studies (Fairfax et al. (2012), Ruffieux et al. (2021))
but which would require experimental validation or dedicated inspection, for example, with
Mendelian randomisation analysis. The findings are summarised in Table 3.

Comparison to the single-network analysis. We next aim to assess the possible added
value of joint modelling for increasing biological insight by comparing the jointGHS results
to those of our single-network ECM implementation of the graphical horseshoe, fastGHS.
To obtain comparable networks, we use for fastGHS the same sparsity levels as in the joint-
GHS estimates for each condition separately (see Section S.4 of Supplementary Material A
(Lingjærde et al. (2024b)) for details). The subgraph of hotspot-controlled genes inferred by
jointGHS is denser as that inferred by fastGHS in all conditions; a dense graph agrees with the
expectation that the hotspot triggers substantial activity among the controlled genes (Ruffieux
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TABLE 3
Sparsity and hotspot control with jointGHS. Sparsity of the jointGHS subnetwork of top-hotspot-controlled genes

as well as the overall sparsity of the full network in each condition. Proportion of neighbour genes of the two
genes proximal to the hotspot (LYZ and YEATS4) as well as the overall proportion in the different conditions. For

each condition a proportion higher than the overall proportion is marked in bold with statistical significance
(compared to randomly sampled subsets of genes of the same size) marked by ∗ (empirical p-value < 0.05) or ∗∗

(empirical p-value < 0.01)

IFN-gamma LPS 2h LPS 24h Unstim

Sparsity Overall 0.018 0.020 0.021 0.016
Controlled by top hotpot 0.019 0.042** 0.183** 0.022*

Controlled by top hotspot Overall 0.77 0.23 0.04 0.56
LYZ neighbourhood 0.78 0.42* 0.33** 0.77*
YEATS4 neighbourhood 0.62 0.17 0.22** 0.43

et al. (2020)). Moreover, both LYZ and YEATS4 have a more central role in the joint network,
with more edges to other genes as well as more edges among their neighbours. This lends
further support to the mediation hypothesis formulated above. Finally, many genes directly
associated with LYZ and YEATS4 have very high degree, suggesting that their interplay with
other genes could be relevant for disease-driving mechanisms. All these observations high-
light the biological insight gained by sharing information across networks with jointGHS.

Comparison to the GemBag analysis. The comparison of jointGHS with the other joint
modelling approach GemBag (Yang et al. (2021)) is also informative. Strikingly, GemBag
identifies a strict subset of the edges identified by jointGHS. Moreover, almost all edges are
estimated as shared by all four conditions, and very few are condition-specific edges; this
stands in strong contrast to jointGHS, which finds many condition-specific edges. Similarly,
the four conditions have an almost complete overlap of top hubs (genes with node degree
larger than the 90th percentile) in the GemBag networks, again contrasting the jointGHS
networks where the top hubs are mainly network-specific. The biological plausibility of the
network specificities discussed above lends support to the argument that jointGHS succeeds
at capturing network-specific effects thanks to its horseshoe local scales. Further, LYZ and
YEATS4 have very low node degrees in all conditions in the GemBag networks, whereas the
two genes are central in the jointGHS networks, with a large number of neighbours, many
central neighbours (i.e., hubs) and many top hotspot controlled neighbours, which align with
evidence from previous studies (Fairfax et al. (2012), Ruffieux et al. (2021)). Further results
and details on comparison of GemBag and jointGHS are given in Section S.4 of Supplemen-
tary Material A (Lingjærde et al. (2024b)).

While it is reassuring that our method identifies genes known from literature to be rele-
vant, this type of validation is biased towards gene and protein functions that have already
been explored. We believe though that jointGHS could serve to generate further unexplored
hypotheses about genetic coregulation and coexpression across the stimulated monocyte net-
works; this would deserve further follow-up research. More generally, our findings illustrate
the potential of the joint graphical horseshoe for gaining deeper insight into the mechanisms
at play among large networks of cellular and/or molecular variables for multiple conditions
or tissues.

8. Conclusion. We have introduced an efficient ECM algorithm for jointly estimating
the precision matrix in the graphical horseshoe and their associated local scale, fastGHS,
and a novel joint graphical horseshoe estimator for multiple-network inference, jointGHS.
Through simulations we have shown that fastGHS achieves equivalent performance to the
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fully Bayes graphical horseshoe Gibbs sampler for selecting edges while being substantially
more scalable. In the multiple-network setting, we have also shown that jointGHS success-
fully shares information between networks while capturing their differences, outperforming
competing methods, such as the joint graphical lasso, GemBag and the spike-and-slab joint
graphical lasso, which can be very anticonservative. This holds for any level of network
similarity, even when there is little or no information to share between networks. This clear
advantage of the jointGHS can be attributed to the horseshoe heavy-tailed local scales, which
are able to adapt even in the absence of shared information, favouring the detection of isolated
network-specific edges. To date, no existing joint graphical modelling approach enjoys this
property. Hence, jointGHS stands out as a joint approach capable to also pinpoint differences
across networks, which, in practice, is often of great interest, sometimes even more than the
identification of shared structures. Finally, while our ECM implementation does not provide
a fully Bayesian solution, we have demonstrated that this does not affect performance for our
primary inference goal, namely, edge selection, but now enables estimation for problems of
realistic dimensions, which was a key ambition of our work. If desired, parameter uncertainty
could still be quantified using an additional bootstrapping procedure.

We have taken advantage of jointGHS to study the gene regulation mechanisms underpin-
ning immune-mediated diseases, using monocyte expression from four immune stimulation
conditions. Joint inference on these data identified biologically-supported links and allowed
us to formulate sound mechanistic hypotheses.

As our interest lies in the computational aspect of the algorithm, our ECM algorithm is
formulated to find modes of the joint posterior of the precision matrices and the local scales,
which ensures analytical tractability of the objective function and computational effective-
ness. This leads to a different posterior landscape compared to that induced by the marginal
posterior distribution of the precision matrices alone; multimodality may be exacerbated in
the former case. While our simulations suggest that the performance of our algorithm is
barely affected by this problem, there are multiple ways to alleviate the risk of entrapment into
local modes. As the objective function in an ECM algorithm is typically not concave, a com-
mon recommendation is to perform multiple runs using different starting values (McLachlan
and Basford (1988)). In practice, this could be done by implementing multiple restarts and
performing Bayesian averaging, for example, by weighing estimates by their objective func-
tion value. Another approach to improve the chances of finding global modes would be to
implement annealing schemes (Kirkpatrick, Gelatt and Vecchi (1983)). While out of scope
for this paper, these are relevant alleys of future work.

There are many possible extensions. For example, given the increasing prevalence of lon-
gitudinal studies, a natural continuation would be to propose a time-variant version of the
model. Such an extension could be particularly profitable for studies aimed at understanding
disease progression and may also be relevant for the omics application of this paper, where
two of the monocyte conditions involved exposure to differing durations of lipopolysaccha-
ride (LPS 2h and LPS 24h). In settings with large numbers of timepoints, autoregression-like
approach could be developed, where information would be shared between successive time
points.

To conclude, our approach is, to our knowledge, the first to extend graphical models based
on global-local priors to the multiple network setting. Additionally, thanks to its remarkable
scalability, jointGHS effectively bridges the gap between Bayesian joint network modelling
and large-scale inference for real-world studies such as encountered in statistical omics.
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