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We develop a novel doubly-robust (DR) imputation framework for longi-
tudinal studies with monotone dropout, motivated by the informative dropout
that is common in FDA-regulated trials for Alzheimer’s disease. In this ap-
proach the missing data are first imputed using a doubly-robust augmented
inverse probability weighting (AIPW) estimator; then the imputed completed
data are substituted into a full-data estimating equation, and the estimate is
obtained using standard software. The imputed completed data may be in-
spected and compared to the observed data, and standard model diagnostics
are available. The same imputed completed data can be used for several dif-
ferent estimands, such as subgroup analyses in a clinical trial, allowing for
reduced computation and increased consistency across analyses. We present
two specific DR imputation estimators, AIPW-I and AIPW-S, study their the-
oretical properties, and investigate their performance by simulation. AIPW-
S has substantially reduced computational burden, compared to many other
DR estimators, at the cost of some loss of efficiency and the requirement
of stronger assumptions. Simulation studies support the theoretical proper-
ties and good performance of the DR imputation framework. Importantly, we
demonstrate their ability to address time-varying covariates, such as a time by
treatment interaction. We illustrate using data from a large randomized Phase
III trial, investigating the effect of donepezil in Alzheimer’s disease, from the
Alzheimer’s Disease Cooperative Study (ADCS) group.

1. Background and a motivating example. Dropout rates of 25% or more are common
in large randomized trials for Alzheimer’s disease and other dementias. The dropout rate is
generally higher for patients with more severe disease and also for patients receiving active
treatment (Figure 1). Thus, estimates of treatment effect from the trial may be substantially
biased, unless the dropout is properly accounted for. However, the primary analysis of such a
trial is tightly prespecified. U.S. Food and Drug Administration (FDA) guidance and practices
support the use of a mixed-effects model with repeated measures (MMRM) or a generalized
estimating equations (GEE) approach with a restricted set of covariates; the primary analy-
sis usually tests a model-adjusted estimate of a contrast between treatment arms. Because of
restricted covariates and modeling strategies, it is very possible that the covariate adjustment
may be insufficient to assure unbiased estimates from the model. To address this problem in
the regulatory setting of clinical trials, additional imputation-based sensitivity analyses are
recommended to assess the potential bias from dropout, usually through sequential multiple
imputation by chained equations (International Council for Harmonisation Of Technical Re-
quirements for Pharmaceuticals for Human Use (2017), Committee for Medicinal Products
for Human Use (2010)).

Motivated by this setting, we investigate a principled doubly-robust approach to such im-
putation for longitudinal dropout, derived from the theory of optimal augmented inverse
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probability weighted (AIPW) estimators, as developed by Bang and Robins (2005), Tsiatis
(2006), Seaman and Copas (2009), Tsiatis, Davidian and Cao (2011), Rotnitzky et al. (2012),
Schnitzer, Lok and Bosch (2016), and others in the longitudinal setting. Formally, the interest
lies in obtaining a robust, consistent, and asymptotically normally distributed (CAN) estimate
of an estimand g, defined as the solution to a prespecified estimating equation E[U (8)] = 0.
A simple example is where § = E(Y) and U(B) =Y — B. If U(B) is applied to the “full”
data (fully observed data with no dropout), the solution ﬁ is a CAN estimator of 8. However,
the primary intent-to-treat analysis from the trial usually applies U (8) to the observed data.
Under a missing at random (MAR) assumption conditional on covariates, this would indeed
provide a consistent estimator if all covariates are appropriately controlled for. As explained
above, however, in our setting U is usually a GEE derived from a generalized linear model
with limited covariates rather than a fully specified likelihood. Therefore, the approach, in
practice, is generally not assumed to provide unbiased estimates in the presence of missing
data.

Consistent estimators in the setting of longitudinal monotone dropout have been well stud-
ied in theory, including doubly-robust (DR) estimators; for a recent review, see Seaman and
Vansteelandt (2018). Paik (1997) constructed an imputation approach to obtain consistent
estimators for longitudinal data with dropout, using a sequential regression algorithm to im-
pute the missing outcome values. Robins, Rotnitzky and Zhao (1995) noted that consistent
estimates of § may be obtained by solving an inverse probability weighted (IPW) version
of the estimating functions U (8) applied to the data from completers only, or by using an
AIPW estimator, which increases the efficiency by augmenting the IPW estimator with the
observed information from dropout subjects using a regression model. Scharfstein, Rotnitzky
and Robins (1999) noticed that these AIPW estimators are doubly-robust (DR), in that they
are consistent when either the regression model or the IPW model is correctly specified.
Bang and Robins (2005) proposed a regression representation of an AIPW estimator, using
a recursive regression approach which incorporates the IPW’s as covariates; however, in the
longitudinal setting, they only explicitly studied the case where § = E[Y] at last visit. Tsiatis
(2006) developed the theory of optimal AIPW estimating equations in the setting of longitu-
dinal data with monotone dropout for a general class of U (8) and implemented an improved
DR estimator with MMRM as the regression model in Tsiatis, Davidian and Cao (2011),
which, however, is quite complex in practice. Following Tsiatis (2006), Seaman and Copas
(2009) considered U (B), arising as generalized estimating equations, and used Paik’s se-
quential regression framework to construct an AIPW estimator for the regression coefficients.
Rotnitzky et al. (2012) further developed an optimal AIPW estimator which may obtain good
efficiency when the outcome model is misspecified and provided simulation studies in the
cross-sectional setting. More recently, Schnitzer, Lok and Bosch (2016) adapted the Bang
and Robins (2005) approach in the longitudinal setting to include more general estimands de-
fined by a GLM with baseline covariates; however, the class of estimands, in particular, does
not include the regression coefficient of a time-varying covariate. Schnitzer, Lok and Bosch
(2016) also study a closely related targeted maximum likelihood estimator (TMLE) (van der
Laan and Rubin (2006)) and show that it has similar performance as the adapted Bang and
Robins method by simulation. Long, Hsu and Li (2012) and Hsu et al. (2016) considered
incorporating a DR estimator into a multiple imputation (MI) approach in the cross-sectional
setting; however, this differs from the longitudinal approach we consider here.

It is worth noting that, compared with the cross-sectional setting, DR methods for longitu-
dinal data are comparatively less well developed and less often used in practice. In particular,
we know of relatively few simulation studies that study these longitudinal doubly-robust es-
timators (Seaman and Copas (2009), Tsiatis, Davidian and Cao (2011), Schnitzer, Lok and
Bosch (2016)). While several approaches can in theory estimate the coefficient of a time vary-
ing covariate (Seaman and Copas (2009), Tsiatis, Davidian and Cao (2011)), we did not find
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simulation studies that cover this case which is critical to the clinical trials setting. We are
unfamiliar with examples of the use of DR estimators in clinical trials, where we think they
may have a useful and important role.

In this paper we further develop results from Seaman and Copas (2009) into a general
imputation-based framework for construction of a locally efficient doubly-robust estimator in
the setting of longitudinal data with monotone dropout. The approach is to impute a complete
dataset, using a suitable doubly-robust estimator, and then apply the estimating functions
U (B) to the fully-imputed data. We first investigate a standard AIPW-based doubly-robust
estimator (AIPW-I) within the framework, and then we propose a simpler doubly-robust
estimator (AIPW-S) also within the framework. Confidence intervals are provided by the
bootstrap in an imputation setting which is familiar to practitioners of clinical trials. This im-
putation framework has several advantages compared to existing approaches in the literature:
(1) once the imputed completed data are obtained, the same completed dataset will support
doubly-robust estimation of additional estimands, such as additional additional group or sub-
group effects, providing computational efficiency and consistency across multiple analyses;
(2) the imputed completed data can be inspected, using standard descriptive statistics, to
better understand the behavior of the resulting doubly-robust estimator and any differences
from the primary analysis (which uses the observed data directly). Both the imputation step
and the analysis step use well-understood modeling approaches which are easy to prespecify
and are suitable for the clinical trials setting. The imputation framework is applicable to any
AIPW-based doubly-robust estimator, including the existing highly-developed doubly-robust
methods, and we hope will facilitate the construction of doubly robust estimates of causal
effects in clinical trial settings. Importantly, our proposed framework supports doubly robust
estimation of the coefficient of a time-varying covariate as the estimand, such as a treatment
by time interaction term.

The outline of the approach is as follows: for U (8) a GEE, Seaman and Copas (2009) con-
structed a DR estimator of regression coefficients by substituting Paik’s sequential regression
into the optimal longitudinal AIPW equations of Tsiatis (2006) and solving the resulting
equations by Newton—Raphson. Our contribution is to notice that the resulting estimating
equations might be rearranged into an imputation form, after establishing some algebraic
identities, and to exploit the result. The resulting estimator only requires standard software
tools and inherits the optimality properties of the doubly-robust imputation for a wide class of
estimating functions. Using this framework, we develop a computationally simpler doubly-
robust estimator, AIPW-S, under explicit assumptions which may be practical in clinical trials
and other settings. Finally, we study the performance of these estimators through simulation,
and through an application to the primary estimands of interest in a clinical trial of prodromal
Alzheimer’s Disease. These simulation studies may be of independent interest, as they add to
the sparse literature on longitudinal AIPW approaches.

1.1. Organization of this paper. In Section 2 we describe our motivating example. Sec-
tion 3 gives notation and the details of consistent IPW and sequential regression approaches
for longitudinal data with dropout. These form the building blocks of our DR imputation
method. We briefly review existing DR methods for longitudinal data in Section 4. In Sec-
tion 5 we develop the AIPW-based DR imputation framework for general longitudinal data
estimating equations. In Section 6 we use the DR imputation framework to define two specific
DR estimators for longitudinal data with dropout, AIPW-I and AIPW-S. We use simulation
to compare AIPW-I and AIPW-S with the original Bang and Robins estimator as well as with
maximum likelihood and GEE approaches in Section 7. Section 8 presents an application to
the donepezil trial in Alzheimer’s disease, and Section 9 is discussion and conclusions.
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F1G. 1. Time course of the mean Clinical Dementia Rating Sum of Boxes (CDR-SOB) score, using all subjects
who provided data on this measure in the MCI trial (n = 769). The CDR-SOB is commonly used in Alzheimer’s
disease to stage severity of dementia, with a higher score indicating worse severity; it is expected to increase
over time in this population with mild cognitive impairment (MCI) at baseline. Left panel: Mean CDR-SOB at
each time point, for subjects who completed the study (solid line, 62% of subjects) vs. subjects who dropped out
before the end of the study (dashed line, 38% of subjects). Subjects who dropped out are observed to have higher
change scores. Right panel: Mean CDR-SOB using the available data at each time point (solid line); doubly-robust
estimate of the mean CDR-SOB, using all available data and adjusting for dropout (dashed line).

2. A motivating example: The MCI trial of donepezil. Donepezil is a widely used
cholinesterase inhibitor that improves symptoms and may delay the clinical diagnosis of
Alzheimer’s disease (AD) in subjects with the amnestic form of mild cognitive impairment
(MCI). A randomized, double-blind, placebo-controlled, parallel-arm trial was conducted by
the Alzheimer’s Disease Cooperative Study (ADCS) between March 1999 and January 2004
(Petersen et al. (2005)). The study compared the time to progression from MCI to possible
or probable AD among 769 subjects with MCI who were randomized to receive donepezil
(n = 253), vitamin E (n = 257), or placebo (n = 259) for 36 months. Final dropout rates
were 42.7%, 38.1%, and 32.0% for the donepezil, Vitamin E, and placebo arms, respectively.
Figure 1 displays evidence of bias due to dropout for the mean score on the Clinical Demen-
tia Rating sum of boxes (CDR-SOB), one of the common primary outcome measures of AD
trials. The left panel shows that patients who eventually withdrew from the study had a much
higher CDR-SOB (higher is worse) than the completers, indicating that those who dropped
out had greater cognitive impairment and that this gap increased over time. The figure on the
right shows that the estimated mean from a DR approach is consistently higher than the mean
of the observed data, especially at the later times with more dropout, indicating that a DR
approach may help to improve estimated effects from this trial. These data are taken from the
data archives at the ADCS; these and similar data are often used in simulation studies that
inform the design of current AD trials.
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3. Regression modeling and inverse probability weighting approaches to longitudinal
dropout.

3.1. Notation and data structure. Assume we have N i.i.d. subjects potentially observed
attimes j =1,..., M, and for individual i at time j, there is data L;; = (¥;;, X;;), where Y;;
is a univariate outcome and X;; is a vector of potentially time-varying covariates; when X;;
is independent of time, it will be simplified to a vector of always observed baseline covariates

Xio for any j. Let L,] = (L11= e, Ll-Tj)T denote the historical data from time 1 to j. We may

drop the subscript i when the meaning is clear. We assume the distribution of L;j; has finite
second moments.

Each subject can potentially drop out from the study. Let R;; € {0, 1} be a missing in-
dicator so that we observe R;; and (R;;Y;j, R;jX;;) at time j. Under the assumption of
monotone dropout, if R; =0, then, for any ¢ > j, R; = 0. Let C;; be a censoring indica-
tor, where C;; = 1 indicates j is the final observed time for subject i, otherwise C;; = 0;
let J; be the index of the last observed time point for subject i so that C; j, =1 for sub-
ject i. For completers, define J; = M and Cy = Ry = 1. Under the missing completely
at random assumption (MCAR), R; is independent of L. Under the missing at random
assumption (MAR), Pr(R; =O0|Ly, Rj—1 =1) =Pr(R; =0|L;_1,R;j_1 = 1) so that the
probability of a missing outcome depends only on previously observed data. We also assume
there is probability bounded away from zero of seeing full data over the whole support of
Liy: Pr(Ry = 1|Ly) > € > 0 for some existing €.

3.2. Estimating equations which define the estimand. We assume that there is a vector of
parameters B and a corresponding vector of sufficiently smooth estimating functions U (-, 8)
such that 8* is the unique solution (the truth) to E[U (Lium, B)] = 0. One of the parameters in
B* is the primary estimand of interest in the study. The solution B to the full data, estimating
equations Zf-V:l Ui (Lip, B) =0, is consistent for B* and asymptotically normal, by standard
arguments. It is often assumed that the data follow a generalized linear model for the mean
wnj = E(Y;]X;), with link function g(u;) = X;B, including of course the MMRM of the
Introduction. Thus, U (L; s, B) might be taken to be the score equations from the likelihood
or, alternatively, a set of generalized estimating equations (GEE) (Liang and Zeger (1986))
applied to the full data,

N
(1) ZUi(LiM)—Z M-y, iy =
i=1 i=l1 8ﬂ
where Y; = (Yi1, ..., Yis) 7T, W, = (iit, ooy ia)T, and V; is an assumed working covari-

ance matrix for Y;. Here the efficient choice for Vi_1 is the true covariance matrix of the data.
However, under general regularity conditions the solution § to the full data GEE’s (equation
(1)) is consistent for §* and asymptotically normal for any arbitrary V;.

With missing data, instead of equation (1) we observe

N
= H
2 ZUi(Lin—Z —L VI Di(Y; — ) =0
i=1 i=l1 aﬂ
where D; = diag(R;1, ..., Ripr). If the data are MCAR, the solution ,B to equation (2) re-
mains consistent, because E[R;Y;] = E[Y;], and thus equation (2) is a consistent estimator

of E[U;(L;)]. However, when the dropout is MAR such that E[R;Y;] # E[Y/], the solu-

tion ﬁ to equation (2) will be consistent for 8 if the U are the score equations from the correct
likelihood but not generally otherwise.
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3.3. IPW estimating equations for dropout that is MAR. Robins, Rotnitzky and Zhao
(1995) showed how to incorporate inverse-probability weights into U applied to observed
data when the dropout is MAR. Let

(3) Aij=P(R;j =0|R; j_1=1, Zi,_/—l)

be the discrete-time hazard function of i at time j, let

J
4) mij =[] =) = P(Rij =1|Li j_1)
=1
be the corresponding probability of being observed at time j, and let the weight matrix be
W; = diag(R;1/mi1, - .., Rim/min). The hazard function can be consistently estimated by lo-
gistic regression if the MAR assumption holds; thus, 7 ; and W, can be consistently estimated
as well. Then the inverse probability weighted GEE (WGEE) has the estimating equations

N
= ou/
(5) ZUiW<LiJ>—Z gV Wi (Y — ) =0.
i=1 i=1
For longitudinal data with dropout that is MAR, WGEE provides consistent estimates of
the parameters B* if the 77;;’s are consistent, because then E[R;Y;/m;] = E[Y|], even if the
working correlation is not correctly specified.

3.4. Regression-based sequential imputation, for dropout that is MAR. Alternatively,
Paik (1997) described a sequential regression approach for imputing the missing outcome val-
ues. Recall that J; is the last observed visit for subject i so that Y;x is missing for any k > J;.
In order to impute Y, the idea is to conduct a recursive regression process by defining k — 1
parametric imputation models m,ﬁ (Zj) = E[Yklij, Rj41 = 1], where j is taken from k — 1 to
1. By the MAR assumption, E[Yk|ij, Rji1=0]= E[Yk|£j, Rj1 = 1]. Hence, we may use
observed data to construct a consistent estimated model 727 (L ;) and then use the estimated
model to impute missing Yj recursively. This process can then be repeated sequentially for
k=2,..., M in order to obtain a fully imputed data set.

Here we give a formal version of Paik’s sequential mean imputation algorithm which will
make the relation with Bang and Robins (2005) more explicit.

The above imputation requires M (M — 1)/2 estimated models. Then estimating equation
(1) is solved, using the completed data,

(6) ZUZ L, Z OH; Y ) =o0.

Under regularity conditions, as long as the mean models m}_ are correctly specified and the
data are MAR, this procedure gives consistent estimates of the parameters 8* (Paik (1997)).

4. Doubly-robust estimators for longitudinal data with dropout.

1. Optimal longitudinal AIPW estimating equations. In the longitudinal setting with
known monotone MAR dropout mechanism, Tsiatis (2006) showed that, under regularity
conditions, any consistent and asymptotically normal estimator ﬁ of B* using the observed
data solves AIPW estimating equations of the form

N Cim Aiit1R;i S oA =
(7) Z(ﬂ Liy) + Z <—’1+11>H"(,3,Lij)> =0,

i=1 7Ti,j+1
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Algorithm 1: Paik’s sequential mean imputation

Result: A fully imputed data Y
imputed.
1 Fork=2,..., M sequentially:
2 Initialize: Identify all subjects i with J; > k. Use these data to regress the observed

; /, in which all longitudinal missing outcomes have been

values of Y;; on l_,i, k—1 to obtain a consistently estimated model n%lli_l (l_Ji,k_l). For
subjects with J; > k — 1, let
phel _ N Ligm) ifT=k—1,
ik Ylk if J >k—1.
3 Fors=k —2,...,1 recursively: Identify all subjects i with J; > s 4 1, and regress the

values of fi‘}:rl on L; to obtain a consistently estimated model n%‘k(l_,,-s). For all subjects
with J; > s, let

o |myLi) if Ji=s,
fiSkH if J; > s.

4 Final step: Output the completed data I?llk =

where H/ is an arbitrary function. The choice
®) H'(B,Lij) = E(UB, Lim)|Lij, Rij =1)
yields the estimator with the smallest variance; thus (7) and (8) give the optimal observed

data estimating equations. More generally, when A;; (and thus 7;;) is estimated by maximum
likelihood and the A/ in equation (8) are estimated by corresponding models, the solution

~ AIPW
B to the optimal estimating equations has the following properties (Tsiatis (2006)):

A~ AIPW | _ . e 2
1. B is consistent for * and asymptotically normal if either the dropout models A ; or

the imputation models H/ are correctly specified and thus consistent for the true conditional
expectations they aim to estimate.

2. If both sets of models are correctly specified, ﬁAIPw has the smallest asymptotic vari-
ance among all doubly-robust estimators of f.

3. Improved, but more complex, doubly-robust estimators have been proposed, which also
attain the minimum asymptotic variance when the imputation models are misspecified, but
the dropout models are correctly specified and A is an effcient estimator (Tsiatis, Davidian
and Cao (2011)). We do not consider these estimators here.

4.2. Seaman and Copas’ doubly-robust AIPW estimator for longitudinal GEE. For the
case where U;(B) is a GEE of the form (1), Seaman and Copas (2009) proposed a two-step
procedure: first, obtain estimates of the H/, and then substitute into the corresponding AIPW
estimating equations (7). In particular, for subject i with j < J;, take

nia 7oyl O e
9) H (ﬁ,Li])—EVi (Y; —w),

where i(l] is imputed from Paik’s sequential mean imputation as in Algorithm 1. For j > J;,
H/ can be taken to be 0, as the weights for H/ in (7) are 0. Then the Newton—Raphson
algorithm is used to solve equations (7) to obtain .
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Algorithm 2: Bang and Robins doubly-robust estimator ;lﬁf for E(Yipm)

Result: Bang and Robins doubly-robust estimator ,&fﬁf for E(Y;p) where
Ui(Lim) =Yim — EYim)
1 Preliminary step: Estimate 77;7, ..., ;) by maximum likelihood.
2 Initialize: Identify all subjects i with R;j; = 1. Use these data to regress the observed

values of Y;s on I:i, M—1 and 77 to obtain a consistently estimated model
nﬁ%_l (Li p—1, tin)- For all subjects with R; py—; =1 let

o M—1 ~M—1,7 A
Yi,M =m;y  (Lim—1,Tim)-

3 Fors=M—2,...,1recursively:
4 Identify all subjects i with R; ;41 = 1, and regress the values of ?iMA] "on Ei s and 7T g4

to obtain a consistently estimated model 71}, (ii s> i s+1)- For all subjects with R;s =1,
let

Yy =mip(Lis, i s+1)-

5 Final step: Let l?iﬁf = YilM. Substitute I?iﬁ,,R into the full data estimating functions U,
and solve to obtain A58 = (1/N) YN | VAR

4.3. Bang and Robins’ doubly-robust recursive regression estimator for E(Y;pr) and ex-
tensions. Bang and Robins (2005) introduced a regression-based approach for longitudi-
nal data with dropout in the particular case where the estimand of interest is E(Y;p). The
estimator, given in Algorithm 2, uses recursive regression to impute the values of Y;jy, in-
cluding 7%51 as a covariate in each imputation model in order to achieve double robustness.
The algorithm differs from Paik’s sequential mean imputation in that it uses imputed val-
ues f’,- m as the outcome in each estimation step, rather than as predictors, and uses l?l- Mo
even when observed values Yjys are available. The estimator is shown to be asymptotically
equivalent to the doubly-robust AIPW estimator from equation (7) in the cross-sectional set-
ting (Bang and Robins (2005)). Although Bang and Robins (2005) only provided the case of
U; =Yy — E(Yim), they noted that this approach can be generalized by modifying the U;
and its corresponding score equation.

Schnitzer, Lok and Bosch (2016) extended the Bang and Robins approach to estimate the
coefficients 8, giving the association between Y;j3; and baseline covariates X;o of interest,
in the context of a generalized linear model. The idea is to take U; = X;o(Yiy — g(BXi0)),
with g an appropriate link function and where X;o includes an intercept. The model for
m?®(-) is also taken to use the same link function g(-). Then the approach is similar to Al-
gorithm 2; however, rather than including 77; s+ as a predictor in the model for m*, one

includes 7, ; X;o. Finally, substitute YilM into the estimating functions U;, and solve to ob-

,s+1
tain the estimate of B . For the special case U; (1_4 m) = Yiyr — E(Yip), this recovers the Bang
and Robins (2005) estimator.

We note here that, when applying the Bang and Robins approach for longitudinal data to
estimate E(Y;pr), Tsiatis, Davidian and Cao (2011) used forward selection to select variables
in both the logistic regression models for estimating 2 j and in the OLS models for estimat-
ing E(Y;pm|L;j). Similarly, in their implementation Schnitzer and colleagues performed a
variable selection step in each regression. In our simulations we incorporate a similar vari-
able selection step for these estimators, as it greatly improved their performance in practice.
We denote this slightly modified and extended estimator BR*. Also note that the estimator
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requires the sequential regression models m*® in Algorithm 2 to be consistent with the esti-
mating equation U that defines the estimand of interest; thus, a change of estimating equation
may require a new set of sequential regressions. This seems to be a key difference from the
imputation framework proposed below.

5. Animputation framework for longitudinal data using AIPW estimators. Here we
show that the optimal AIPW estimating equations (7) can be written in a form that applies
the full data estimating functions U (B, L;) to the “completed” data in which all levels of
missing observations have been filled in using a set of doubly-robust imputed observations.
In this approach U (B, L;j) may be any equation of interest linear in Y;, including a GEE.
The approach has the advantage that standard software can be used to solve for the estimates

A

B , and it provides a framework for flexible construction of AIPW estimators. In partic-
ular, unlike other doubly-robust approaches, when the parameters of interest change, there is
no need to run the doubly-robust estimating procedure again.

5.1. The optimal AIPW estimating equations in imputation form. Consider the estimat-
ing functions U(B, Lim) = q(B)(Y; — 1;), where Y; = (yi,l,yi,z,...,y,-,M)T and W, =

oul 1 . _
(t4i,15 32, - i, )5 for example, g (8) = 55V, with ju(8) = g(BX) when U (B, Lim)

is a GEE. Then one can show that the optimal AIPW estimator, given by equations (7) and
(8), has an equivalent substitution form,

N N
(10) SURB LAY = " gB) (YA — ) =0,
i=1

i=l

where SA(?IPW is a corresponding AIPW estimator of the full data Y;, given in (14) below.
Specific examples of such AIPW imputation estimators are given in Section 6.
To demonstrate (10), first, it is straightforward to show that

M—1
(11) G v (—Ci" — M’MR""') —1.

i, M T, j+1

j=1
Thus, letting 7t; pr4+1 = mipm and A;; = A; y+1 = 0, equation (7) can be rewritten as

N M

Cii — i i1 R: . _

(12) ZZ( ij — i+l ”)H"(,B,L,‘j):O.

i=1j=I T j+1

T
Next, following Seaman and Copas (2009) (for the case where g () = 38u é Vi_l), we have

that (8) can be written as

HI (B, Lij) = q(B)(EIY:|Lij] — 1)
Then substituting into (12), switching the order of summation, and recognizing that
?4=1(Cij — AJ-HR,-J-)/J%jH = 1,we obtain that (7) can be written as

M
Cii —Mi iv1Rii _
(13) q(ﬂ){(Z(M)E[YuLU, Rij= 1]) —ui}-
et T, j+1
Finally, we can write
Iy .
3 Cij — Ai j+1Rij
(14) FAPW _ Z( j — M,
j=1

_ )E[i{,-mj,Rj:l]
T, j+1
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to obtain (10), recognizing SA{'?IPW
B = E[Y;].

Form (10) has the advantage over the original approach in Seaman and Copas (2009)
that, once the values of SA(;-MPW are obtained, standard software for the estimating functions
U(B, L; ) can be used to solve for the doubly-robust estimator 8*. Furthermore, the form of
]A(;MPW is independent of the details of the estimating functions U, an independence that we
can exploit to address additional estimands, defined by different estimating functions, using
the same set of values SA(?IPW. From the theory in Tsiatis (2006), we can be assured that
B* is a member of the class of locally efficient DR estimators. We may also use the above

as the representation of an optimal AIPW estimator of

~ AIPW
considerations to provide a direct demonstration that a general estimator 8 is doubly-
robust. A formal development of this proof can be found in Section 1 of the Supplementary
Material (Qiu and Messer (2023)).

6. Imputation framework with two specific DR estimators. Here we apply the AIPW
imputation framework to construct two particular DR estimators for longitudinal data with
monotone dropout.

6.1. AIPW-I: Sequential mean imputation. We denote the sequential mean imputation
. . . . . ~ AIPW—1 ,
implementation of the DR imputation estimator as 8 . The procedure can be described

in two steps:

Imputation step: For each subject i, impute a doubly-robust complete data vector using the
AIPW estimate of Y, k=2,...M

N CiYir *rcii—hipiRi\ i -

(15) PATPW = I Z(—” A lj)mk(Lij)
Tik =1 Tij+1

with the models I’I’\ik.(-) = E[Yix|L; j» Rij = 1] estimated by Paik’s sequential mean regres-

sion as in Algorithm 1.

Estimation step: Substitute SA(?IPW into the full data estimating equations. These equations
. . . ~ AIPW—1
are then solved using standard software to obtain the doubly-robust estimator 8 .

6.2. AIPW-S: A computationally simpler baseline x time imputation model. Our sec-

A

ond implementation is computationally simpler, denoted as 8 PW*S. It uses only baseline
covariates and time for the imputation models, at the cost of potential efficiency loss and
stronger required assumptions. This is motivated by the clinical trials setting in which it may
be desirable to restrict attention to modeling with prerandomization covariates. For the impu-
tation models, it uses up to M — 1 models with baseline covariates and time rather than the

~AIPW—1
M (M — 1)/2 sequential recursive regression models required by 8 or the Bang and
Robins estimator. It can be thought of as a simplified version of the fully efficient approach,
given in Tsiatis, Davidian and Cao (2011). If the covariates are sufficient to render the data

MAR, then ﬁ AIPW=S will be doubly robust. The cost is potential efficiency loss and a stronger
assumption regarding the MAR conditions. In the simulations and application, we give an ex-
ample of the simplest implementation, in which only one single MMRM is estimated rather
than M — 1 models or M (M — 1)/2 models, as in the AIPW-I and related estimators.

Here we give a sketch of the development; please refer to Section 2 of the Supplementary
Material (Qiu and Messer (2023)) for details. To develop the estimator, we start with (13) and
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note that £ [Y,-k|i ij1 = Yix for j > k. Hence, we can write the kth component of SA(;AIPW as
(16) AW _ Z(Clj l]-HRl])Y +Z(Cu zj+1th)Yle.
i i+l =1 7T i+l

Next, we take I?/k to be a consistent estimate of E[Y;x]| X0, t] independent of j, where X;o
contains baseline covariates and ¢ indicates time. This amounts to the choice H/ (8, L; i) =
E[Yix|Xio0, t]. Note that, while we are now outside the set of possible efficient estimators,
given by equation (7), except in the special case where E [Yik|L; il = E[Yir|X;o, t], the argu-
ments for double robustness remain unchanged. (Please see Section 2 of the Supplementary
Material (Qiu and Messer (2023)) for details.)

In this case (16) simplifies to a repeated cross-sectional form,

N R; Rit\ »
a7 PAPS = Sy (1= 25 ) B
Tik Tik
because Z _k((C,] 1J+1R,])/7Tz j+1) = Ri /i
The procedure can be described in two steps:

Imputation step: For each subject i, impute a doubly-robust complete data vector using the
AIPW-S estimate of Y, k =2,... M, given by (17), with I?ik = m (X0, ), depending
only on baseline covariates X;o and time ¢, and where m(X;o,t) = E[Yix| X0, t] is esti-
mated from the observed data.

Estimation step: Substitute Y?IPW_S into the full data estimating equations. These equa-

tions are then solved using standard software to obtain the doubly-robust estimator
ﬁAIPW—S

A detailed development can be found in Section 2 of the Supplementary Material (Qiu and
Messer (2023)). In the simulation and applications below, we give examples where a single
mixed-effects model # (X, ¢) is estimated using all observed responses as the outcomes,
regressed on baseline covariates Xo and time ¢. Then }A’ik = m(X;o,1), and formula (17)
is used to derive a completed doubly-robust data set. In this case, instead of M (M — 1)/2
regressions as for the other sequential regression estimators, only one regression needs to be
estimated.

7. Simulations. We use simulation to investigate the performance of the two DR
imputation-framework estimators in the setting of normal longitudinal generalized estimating
equations under MAR monotone dropout: AIPW-I, based on AIPW using Paik’s sequential
mean imputation (Section 6.1), and AIPW-S, AIPW with a computationally simpler impu-
tation model using only baseline covariates (Section 6.2). We also compare the use of the
Bang and Robins regression-based estimator BR* in both its original form and as extended
by Schnitzer, Lok and Bosch (2016) to more general estimating equations for generalized
linear models.

We study two different estimands in two sets of simulations: first, E[Y] for the case k =
1,...M in which case BR* reduces to the original Bang and Robins estimator, and second,
the vector of regression coefficients 8 defined as the solution (using the full-data distribution)
to the score equations U, given by a mixed model with repeated measures (MMRM), similar
to what might be used in the primary analysis of a clinical trial. In particular, 8 includes a
time by treatment interaction which represents an important estimand in the clinical trials
setting.

For comparison, we also include two traditional observed-data regression estimators of-
ten used in clinical trials: (1) a mixed model of repeated measures (MMRM) with random



2484 Y. QIU AND K. MESSER

intercept and slope and (2) a generalized estimating equations model using an independence
working correlation (GEE-IND) with a sandwich estimator of variance. As negative controls,
which adjust for dropout but are not DR, we also include Paik’s sequential mean imputation
(Paik), as described in Section 3.4, and inverse probability weighted GEE (WGEE), as im-
plemented in the R package wgeesel (Xu et al. (2019)). Finally, as a further negative control
in the imputation framework, we use data imputed using BR* in the first simulation for es-
timating a time by treatment interaction in the second simulation. As BR* is not designed
to work as an imputation estimator, under model misspecification this may demonstrate the
utility of the new estimators, in practice, in a special case. Notably, we allow the imputa-
tion model to differ from the estimation model in order to show the utility of the imputation
framework.

The two sets of simulations are linked for the imputation estimators. We used the estimates
of E[Yy] from the first set of simulations to obtain a completed dataset. We then used a
standard GEE model with the completed data to estimate the regression coefficients B in the
second set of simulations.

For each simulated data set and estimation method, we compute both a point estimate for
the estimand of interest and an associated 95% normal-theory confidence interval, where
the variance of the parameter is computed using the nonparametric bootstrap. We con-
sider both a moderate dropout construct (* 30% dropout) and an extreme dropout construct
(= 50% dropout). To investigate double robustness, we construct four scenarios, depending
on whether the dropout models and/or the imputation models are specified correctly or incor-
rectly.

Importantly, we include in the study an extreme form of model misspecification, as de-
scribed in 7.2 and 7.3, in which the incorrect dropout models or imputation models do not
include the treatment indicator, and the estimand is the coefficient of a treatment by time
interaction. This case allows the estimand analysis model to differ substantially from the im-
putation model and illustrates what might happen when using a preexisting imputed complete
dataset to study a different estimand of interest.

7.1. Performance metrics and sample sizes. We report Monte Carlo estimates (500 re-
peats) for the bias, standard deviation, and root mean square error (RMSE) of the point esti-
mate. For the confidence interval, we report the coverage probability, the mean of the boot-
strap standard error estimate, and the mean interval score of Gneiting and Raftery (2007),
given by

A A 2 4 A
(18) Sla,0)=@—0)+ —(I—-0)1{6 <} + (0 —a)l{u < 6}),
o
where 6 is the true parameter of interest, 1 — « is the nominal confidence level, (i , i) are
the interval limits. and 1{} denotes the indicator function. A MMRM model with correct
covariates and random intercept and slope will serve as the gold standard in our comparisons;
this reflects the complete data generating model.

7.2. Specification of the data generating model, the primary estimand, and the correct and
incorrect imputation models. Longitudinal responses Y;; are generated from a mixed-effects
model, using similar parameters as in Tsiatis, Davidian and Cao (2011), as

(19) Yij = boi + b1it + Bo + Bix1 + Baxz + Baxa Xt +€.

The covariates are generated as x; ~ N(5,1), x> ~ Bernoulli(0.5), with € ~ N(0, 1). Consid-
ering the clinical trial setting, x, would indicate the treatment variable and x; a continuous
covariate. The sample size is n = 500, and three time points are ¢t = 1, 2, 3. The bootstrap



DOUBLY-ROBUST IMPUTATION FRAMEWORK FOR DROPOUT 2485

sample size (for variance estimation) is 300. Here by and b are random intercepts and slopes
from a bivariate normal with mean p = ( é) and covariance X = (8:? 8:;). The data generat-
ing coefficients are By = 0.5, B =2, B = —0.25, B3 = —6. Thus, the expectation of Y;; is
11.375,14.375,17.375 for j =1, 2, 3.

Only a few studies have performed longitudinal simulations to evaluate AIPW estimators.
Comparing with Tsiatis, Davidian and Cao (2011) and others, we further include an arm by
time interaction, providing a more realistic model for randomized trials. The primary esti-
mand is either E[Y3] or the vector of regression coefficients 8. = (E(b1;), B2, B3), obtained
from the estimating equations for model (19), referring to the slope of time, difference be-
tween arms at baseline, and effect of treatment along with time.

For all methods the correctly specified mean model includes categorical time (if needed),
(x1,x2), and the interaction of time by x,. For sequential imputation methods, the correct
models are of the form Y; ~ Y| +---+Y; 1 +x1 + x2 + e for j = (2, 3). For all methods
the misspecified imputation model excludes the treatment indicator x; and the corresponding
interaction terms. Note that, in our setting, this is a case of severe model misspecification, as
the difference between treatment arms is of primary interest. From another perspective there
is a severe mismatch between the imputation models m, which omit the variable of primary
interest, and the estimating equations U which define the estimand. Thus, this may also be
thought of as a test of the robustness of the imputation framework to changing the estimand
of interest after the imputation step has been carried out. Details of the model specifications
can be found in Section 3 of the Supplementary Material (Qiu and Messer (2023)).

7.3. Specification of the dropout generating model and of correct and incorrect models
for missingness. We generate dropout according to the logistic regression models

logit(A2) = y20 + y21y1 — v22x2 + e,
logit(A3) = y30 + ¥31y1 + v32)2 — ¥33X2 + e,

where A;; is the hazard function of dropout, as defined in formula (3). For the moderate
dropout construct, ()20, 21, V22, V30, V31, V32, ¥33) = (—7.625,0.5,2, —5.225,0.1,0.2, 4).
The empirical mean dropout rates from 500 Monte Carlo repeats were 10% for Y and 30%
for Y3. For the high dropout construct, (20, ¥21, ¥22, V30, ¥31, V32, ¥33) = (—7,0.5, 1, —4.5,
0.1, 0.2, 2) and the mean dropout rates were 20% and 48% for Y, and Y3, respectively. Mis-
specified dropout models omit the treatment indicator x, which again omits the difference
between treatment arms in the clinical trials setting.

7.4. Specification of the BR* estimator used as an imputation estimator. In the case when
the estimand of interest is the coefficient of a baseline covariate X and where the imputation
models are consistent with the estimating equations, the BR* estimator, given in Section (4.3),
is similar in form to an imputation framework estimator. Hence, we investigated empirically
the use of BR* in the imputation step (15). This can be done by setting M in Algorithm 2
sequentially from M = 2 to the final visit and then substituting each fi‘ZIPW in (15) by [Lﬁ{R.
Note that, in the case of estimating the coefficient of a treatment by time interaction term,
we are outside of the category of estimands considered by Bang and Robins (2005) and
Schnitzer, Lok and Bosch (2016). Also, the imputation framework allows the model in the
imputation step to differ from the estimating equations model and so in this case is again
outside the class of estimators considered in those papers. In our simulations we used forward
variable selection in the imputation models, following the implementations in both Tsiatis,
Davidian and Cao (2011) and Schnitzer, Lok and Bosch (2016), as this, in practice, improved
performance.
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TABLE 1
Comparison by simulation of point and interval estimators for E(Y3) under a moderate dropout rate of 30%
missing. Performance metrics are: Bias, Root mean square error (RMSE), the interval score (IntS), coverage
probability (CovP), Monte Carlo standard deviation (MCSD), and mean bootstrap estimate of standard error
(AveSE) from 500 simulation runs. The sample size was n=500, and the bootstrap sample size was 300. The true
value of E(Y3) =17.4

Bias RMSE IntS CovP MCSD AveSE Bias RMSE IntS CovP MCSD AveSE

Y correct P correct Y correct P incorrect
BR* —0.01 0.30 1.37 0.95 0.30 0.30 —-0.01 0.30 1.37 0.95 0.30 0.30
AIPW-I —-0.01 0.30 1.39 0.95 0.30 0.31 —-0.00 0.30 1.37 0.95 0.30 0.30
AIPW-S —0.01 0.31 1.39 0.95 0.31 0.31 0.04 0.31 1.39 0.95 0.31 0.31
Paik —0.01 0.30 1.35 0.95 0.30 0.30 —-0.01 0.30 1.35 0.95 0.30 0.30
MMRM -0.01 0.30 1.38 0.95 0.30 0.30 —-0.01 0.30 1.38 0.95 0.30 0.30
WGEE 0.00 0.30 1.37 0.95 0.30 0.30 0.03 0.31 1.39 0.95 0.31 0.31
GEE-IND —-0.09 0.31 1.40 0.94 0.29 0.30 —-0.09 0.31 1.40 0.94 0.29 0.30

Y incorrect P correct Y incorrect P incorrect
BR* —0.00 0.33 1.54 0.95 0.33 0.34 —-0.64 0.71 6.06 0.53 0.31 0.33
AIPW-I —0.01 0.31 1.44 0.95 0.31 031 —-0.68 0.74 7.65 0.42 0.31 0.31
AIPW-S  —0.04 0.38 1.72  0.95 0.38 036 —-0.62 0.71 6.44 0.55 0.36 0.36
Paik —-0.65 0.72 6.95 0.45 0.31 0.32 —-0.65 0.72 6.95 0.45 0.31 0.32
MMRM —-0.60 0.67 5.83 0.50 0.31 032 —-0.60 0.67 5.83 0.50 0.31 0.32
WGEE 0.00 0.32 1.44 0.94 0.32 032 -0.62 0.71 6.11 0.53 0.34 0.36
GEE-IND —-2.18 2.20 63.84 0.00 0.30 0.31 —-2.18 220 6394 0.00 0.30 0.31

7.4.1. Results for estimating E(Y3) under moderate dropout. The upper-left panel of
Table 1 shows results for estimating E(Y3) under the moderate dropout construct when both
imputation and dropout models are correct. The “gold standard” MMRM model (correct
complete data maximum likelihood estimator with MAR data) has a bias of —0.01. GEE-
IND has a worse bias of —0.09, which supports the theory that, even if the mean structure
is correct, an incorrect working correlation may still cause bias under MAR longitudinal
dropout. The bias of all three doubly-robust methods is less than 0.01, and the performance
is very similar to the gold standard, consistent with their asymptotic local efficiency. Paik’s
imputation and WGEE also perform well in terms of bias and efficiency. However, across all
moderate dropout scenarios, approximately 1% of Monte Carlo repeats for WGEE reported
convergence issues, sometimes resulting in substantial standard errors and outlier estimates.
The program also consumes much more time than other methods, by a factor of about 5.

When the imputation model is correct but the dropout model is misspecified (upper-right
panel), all doubly-robust methods have acceptable bias, ranging from 0.037 to —0.005, with
RMSE:s, coverage probabilities, interval scores, Monte Carlo standard deviations, and aver-
age estimated standard errors all similar to the gold standard, indicating the estimators are
consistent and remain close to efficient.

When the dropout model is correct but the imputation model is misspecified (bottom-
left panel), all doubly-robust methods again have acceptable bias, indicating their double
robustness. AIPW-I has the best efficiency, and AIPW-S loses some efficiency, compared
to prior scenarios. In this scenario the original BR estimator without variable selection had
an unacceptably large bias and low coverage probability (85%, not shown), although the
modified estimator BR* (Tsiatis, Davidian and Cao (2011)) performs well, as shown in the
Table 1. As expected, the nondoubly-robust regression-based methods did not work well. The
incorrect MMRM model and Paik’s imputation have coverage probabilities less than 50%,
with large bias and bad efficiencies. A GEE model with wrong mean structure and wrong
working correlation matrix performed the worst.
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TABLE 2
Comparison by simulation of point and interval estimators for regression coefficients 8 under a moderate
dropout rate of 30% missing. Performance metrics are: Bias, Root mean square error (RMSE), the interval score
(IntS), and coverage probability (CovP) for a 95% confidence interval from 500 simulation runs. The sample size
was n = 500, and the bootstrap sample size was 300. The true values of the parameters 8 are 2, -0.25, and 6 for
the coefficients of x; (treatment indicator), time, and the x;:time interaction term, respectively

Coefficient of xp Coefficient of time Coefficient of time x xp
Bias RMSE IntS CovP Bias RMSE IntS CovP Bias RMSE IntS CovP

Y correct P correct
BR* 0.01 0.13 2.24  0.98 0.00 0.11 0.50 0.93 —-0.01 0.14 0.67 0.94
AIPW-1 0.01 0.10 0.50 0.95 0.00 0.11 0.50 0.94 —-0.01 0.14 0.68 0.93
AIPW-S 0.01 0.10 0.50 0.95 0.00 0.11 0.50 0.95 —-0.01 0.14 0.68 0.93
Paik 0.01 0.10 0.50 0.95 0.00 0.10 0.50 0.93 —-0.01 0.14 0.67 0.93
MMRM 0.01 0.10 0.50 0.94 0.00 0.10 0.50 0.94 —-0.01 0.14 0.66 0.94
WGEE 0.01 0.10 0.50 0.95 —-0.01 0.10 0.50 0.95 0.00 0.14 0.65 0.94
GEE-IND 0.01 0.10 0.50 095 —-0.03 0.11 0.51 0.94 0.02 0.14 0.64 0.95

Y correct P incorrect
BR* 0.01 0.18 1.70  0.98 0.00 0.10 0.50 094 -0.01 0.14 0.66 0.94
AIPW-I 0.01 0.10 0.50 0.95 0.00 0.10 0.50 094 -0.01 0.14 0.68 0.93
AIPW-S 0.01 0.10 0.50 0.95 -0.01 0.10 0.50 0.94 0.02 0.14 0.66 0.94
Paik 0.01 0.10 0.50 0.95 0.00 0.10 0.50 0.93 -0.01 0.14 0.67 0.93
MMRM 0.01 0.10 0.50 0.94 0.00 0.10 0.50 094 -0.01 0.14 0.66 0.94
WGEE 0.01 0.10 0.51 095 -0.01 0.10 0.50 0.95 0.02 0.14 0.65 0.95
GEE-IND 0.01 0.10 0.50 095 -0.03 0.11 0.51 0.94 0.02 0.14 0.64 0.95

Y incorrect P correct
BR* 0.00 0.14 2779 098 —-0.83 0.89 20.82 0.04 1.65 1.75 61.60 0.00
AIPW-1 0.01 0.10 0.50 0.95 0.00 0.11 0.53 0.95 —-0.01 0.15 0.70 0.94
AIPW-S 0.01 0.11 0.51 0.95 0.00 0.11 0.55 095 -0.01 0.15 0.71 0.94
Paik 0.01 0.10 0.51 0.95 —-0.59 0.61 13.43  0.01 0.67 0.69 15.12 0.01
MMRM 0.25 0.25 10.00 0.00 —-3.24 325 117.84 0.00 6.00 6.00 240.00 0.00
WGEE 0.25 0.25 10.00 0.00 -3.07 3.08 111.33 0.00 6.00 6.00 240.00 0.00
GEE-IND 0.25 0.25 10.00 0.00 —-3.30 3.31 120.29 0.00 6.00 6.00 240.00 0.00

Y incorrect P incorrect
BR* 0.02 0.25 3,59 097 -3.30 331 119.88 0.00 6.08 6.08 238.57 0.00
AIPW-1 0.01 0.11 0.50 095 -0.29 0.31 3.38 0.34 0.05 0.15 0.67 0.95
AIPW-S 0.01 0.11 050 095 —-0.32 0.34 4.05 0.28 0.10 0.18 0.79 0.91
Paik 0.01 0.10 0.51 095 —-0.59 0.61 13.43  0.01 0.67 0.69 15.12  0.01
MMRM 0.25 0.25 10.00 0.00 —-3.24 325 117.84 0.00 6.00 6.00 240.00 0.00
WGEE 0.25 0.25 9.98 0.00 —3.27 327 11858 0.00 6.00 6.00 23997 0.00
GEE-IND 0.25 0.25 10.00 0.00 —3.30 3.31 120.29 0.00 6.00 6.00 240.00 0.00

The bottom-right panel shows results when both models are incorrect. All methods have
worse performance than in other scenarios, indicating that the misspecification in the models
is substantial and thus provides a good test of double robustness. In this scenario all methods
report similar bias and efficiencies, except GEE-IND, which reports a much worse result.

7.4.2. Results for estimating coefficients f under moderate dropout. Table 2 presents re-
sults for estimating the vector of three regression coefficients § = (E(b1), B2, 83), as defined
in (19). The three regression coefficients are the coefficients of time, x,, and x, by time. In a
randomized trial, these coefficients would correspond to the time trend for the placebo arm,
the baseline difference between arms, and the treatment effect on the time trend.

With both models correctly specified, the estimated 8 appears to be consistent and efficient
in all methods, except that the Bang and Robins—Schnitzer approach (BR*) reports a larger
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variance for the estimated f,, the coefficient of the treatment indicator x;. After excluding
simulation runs with substantial standard errors (greater than 50), BR* still has a large mean
interval score and some unusual standard errors from Monte Carlo repeats.

When the imputation model is correctly specified but the dropout model incorrectly ex-
cludes the treatment indicator x7, the performance of the three doubly-robust estimators is as
good as the first scenario, indicating that all three doubly-robust imputed data sets have min-
imal bias in this scenario. While AIPW-I and AIPW-S also obtain comparable efficiencies to
the gold standard, BR* again has larger RMSE and mean interval scores when estimating 7,
the treatment arm indicator.

An interesting case occurs when the dropout model is correctly specified but the imputation
model omits x, and the time X xp interaction. First, consider the coefficient of the baseline
indicator x, where all three estimators AIPW-I, AIPW-S, and BR* perform as before, with
minimal bias in accordance with their double-robustness. Next, consider the coefficients of
the omitted terms time and time X xp. Here AIPW-I and AIPW-S continue to obtain unbi-
ased and efficient estimators for the coefficients of these terms. This illustrates their double
robustness and that the imputation model does not need to accord with the estimation model.
However, in this setting BR*, when used as an imputation estimator, fails to consistently es-
timate the coefficients for time and time x x;. This is not entirely unexpected, because the
BR* approach is not developed for time-varying predictors of interest and also because it
requires the variables of interest in the final estimating equations to be included in the impu-
tation models. Thus, the BR* estimator is indeed not robust to this particular kind of model
misspecification. Paik’s mean imputation derives an unbiased estimator for S, but fails to
consistently estimate 83 and E(b1). MMRM, WGEE, and GEE-IND do not perform well in
this scenario.

When both models are misspecified, none of the methods obtain consistent estimates for
B. As before, this indicates that the misspecification in the imputation and weighting models
is substantial and thus provides a good test of double robustness. Notably, in our simulation
AIPW-I and AIPW-S are more robust than other methods, especially for estimating ,B for x»
and time by x», the treatment and treatment by time interaction terms.

7.5. Extreme dropout construct. We conduct a similar comparison of these estimators
in the extreme dropout construct, where the mean dropout rates for Y, is 20% and for Y3
is 48%. Other simulation parameters are kept as previously described. Results are quali-
tatively similar to the moderate dropout construct with generally good performance of the
three doubly-robust estimators, compared to the MMRM estimator when estimating E[Y3],
and good performance of AIPW-I and AIPW-S when estimating 8 through the fully imputed
data sets. In some scenarios the loss of efficiency of AIPW-S relative to AIPW-I becomes ap-
parent, although its performance is still acceptable. Compared with the moderate construct,
WGEE has even more convergence issues reported. Details are given in Section 4 of the
Supplementary Material (Qiu and Messer (2023)).

8. Application to the MCI trial. The MCI trial has been described in Section 2. The
primary outcome of the trial was time to progression to Alzheimer’s disease (AD). The
main conclusion of the trial was that Vitamin E had no benefit, while donepezil provided
some benefit over placebo at 12 months but not at 36 months, in accordance with the known
symptomatic benefits of donepezil. The trial showed no benefit in secondary analyses com-
paring within-patient change on the two cognitive measures Mini-Mental State Examination
(MMSE) and the Clinical Dementia Rating sum of boxes (CDR-SOB) at 36 months.

Here, for simplicity, only the donepezil arm and placebo arm are studied. The two arms
have similar demographic and clinical characteristics at baseline. The within-subject change
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from baseline for the MMSE and the CDR-SOB are used as our repeated measures outcomes.
Lower MMSE (range: 0 to 30) and higher CDR-SOB (range: 0 to 18) indicate worse cogni-
tion. These measures are assessed at baseline, 12 months, 24 months, and 36 months. The
mean values of MMSE for placebo group vs. donepezil group are 27.3 (SD = 1.80) vs. 27.2
(SD = 1.86) at baseline, 26.6 (SD = 2.81) vs. 27.1 (SD = 2.46) at 12 months, 26.2 (SD
= 3.48) vs. 26.4 (SD = 3.14) at 24 months, and 25.0 (SD = 5.05) vs. 25.3 (SD = 4.79) at
36 months. The mean values of CDR-SOB for placebo group vs. donepezil group are 1.87
(SD = 0.79) vs. 1.78 (SD = 0.80) at baseline, 2.28 (SD = 1.45) vs. 1.98 (SD = 1.22) at 12
months, 2.72 (SD = 2.02) vs. 2.56 (SD = 2.04) at 24 months, and 3.32 (SD = 3.09) vs. 3.20
(SD = 2.66) at 36 months. The missing rates for the donepezil arm and the placebo arm are
26.1% and 16.6% at 12 months, 34.0% and 29.3% at 24 months, and 42.7% and 32.0% at 36
months. In order to ensure that the dropout is monotone, we use Paik’s mean imputation (Paik
(1997)) to fill in the intermediate missing responses. Only about 1.5% of missing responses
are intermediate missing values.

We compare results of the two doubly-robust imputation estimators, AIPW-I and AIPW-S,
and an estimator from a GEE model with an independence working correlation (GEE-IND).
We also present unadjusted estimates of the mean at each time point, using all observed data.
All models include the baseline outcome score and model time as a linear trend, including
both arm and the arm by time interaction as covariates, similar to one type of standard analysis
model for AD trials. Two primary estimands of interest are considered for each outcome. The
first estimand is the mean difference between arms, placebo arm—treatment arm, in within-
patient change at the final visit (36 months) which is the primary estimand in many late
stage AD trials. The least-squares mean difference, a model adjusted estimate, would be used
(SAS Institute Inc. (2012)). The second estimand of interest is the regression coefficient for
the interaction between treatment arm and time. In addition, the model-adjusted estimates
of the average difference between arms at intermediate time points (12 and 24 months) and
the coefficient of time are also presented, as these statistics would normally be computed in
the final analysis of a clinical trial. The dropout model for the AIPW methods include arm,
baseline outcome score, and historical Y as covariates. Normal theory confidence intervals
are constructed using the nonparametric bootstrap estimates of variance; the bootstrap sample
size is 500.

Figure 2 displays the least-squares mean estimates for the mean difference between arms
in within-patient change for the MMSE (left panel) and the CDR-SOB (right panel) at 12, 24,
and 36 months. The gray solid line shows the underlying mean differences at each time point
in the observed data. For the MMSE comparison, a positive difference is in favor of active
treatment; for the CDR-SOB comparison, a negative difference is in favor of active treatment.
Consistent with the known transient benefit of donepezil, the raw data for both measures show
some benefit to the active arm at the 12 month assessment which then diminishes toward zero
at the 24 month and 36 month assessments.

The two doubly-robust imputation estimators (dotted and dashed) give similar results to
each other, showing a modest average benefit from doenpizil at the 12 months time point,
as expected. In all cases this estimated early benefit tends to diminish over time, linearly
because of the form of the model.The estimates made using the GEE-IND approach (black
solid line) diminish faster than the doubly-robust estimates, resulting in a smaller estimated
treatment effect at the last visit. In fact, the GEE-IND estimate at 36 months concluded that
the CDR-SOB change between the donepezil arm and the placebo arm was 0.001, which is
in nominal favor of the placebo arm, while the AIPW-I and AIPW-S imputation methods
obtained estimated values of —0.078 and —0.059 in support of the donepezil arm. Table 3
presents the estimates and standard errors. Since all the covariates are baseline characteristics,
the AIPW-S method shows good relative efficiency, with the smallest standard errors of 0.458
and 0.262 for MMSE and CDR-SOB at 36 months, respectively.
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FIG. 2. Least-Squares Estimates of Mean Difference between Donepezil and Placebo Arms in Within-Patient
Change, for the MCI trial. Left-hand panel shows MMSE; a positive difference is in favor of active treatment.
Right-hand panel shows CDR-SOB; a negative difference is in favor of active treatment. In both cases the apparent
early benefit of donepezil (12 months time point) appears to diminish over time. Gray solid line: Unadjusted mean
difference, using the avialible data; Black solid line: Adjusted estimates from a GEE model with independent
working correlation; Dotted line: Doubly-robust estimate using the simplified AIPW-S imputation for missing
outcomes; Dashed line: Doubly-robust estimate using AIPW-I to adjust for missing outcomes.

Table 3 also shows the estimated values of Bime and Biime:arm by the two AIPW impu-
tation methods and the GEE-IND model. Again, the AIPW-I and AIPW-S obtained similar
estimated values, while overall AIPW-S had smaller estimated standard errors. GEE-IND re-
ported different estimated values and greater standard errors comparing with the two doubly-
robust imputation methods.

9. Discussion. In this paper, using the approach of Seaman and Copas (2009), we have
developed an imputation framework for AIPW-based doubly-robust estimators which is suit-
able for a class of general longitudinal estimating equations when the data are observed with
monotone dropout under MAR. Confidence intervals are constructed using the bootstrap, and

TABLE 3
MCI trial, Estimates of Regression Coefficients for time and time:arm, and Least-Squares Estimates of Mean
Difference between Arms in Within-Patient Change, at 12, 24, and 36 Months

Diff. in one-yr Diff. in two-yr Diff. in three-yr
time time:arm change change change

Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE

Mini-Mental State Exam (MMSE)

GEE-IND -0.803 0.148 —0.137 0.226 0.525 0.224 0.388  0.285 0.251  0.463
AIPW-1 —0.924 0.138 —0.113 0.224 0.533 0.223 0.420  0.290 0.307 0.468
AIPW-S —0.909 0.138 —0.112 0.218 0.526  0.222 0.414  0.286 0.302  0.458

Clinical Dementia Rating Scale (CDR) Sum of Boxes

GEE-IND 0.538  0.087 0.057 0.122 —-0.113 0.113 —-0.056 0.173 0.001  0.277
AIPW-I 0.632  0.081 0.022 0.111 -0.121 0.110 -0.100 0.168 —0.078  0.263
ATPW-S 0.625  0.081 0.034 0.110 —-0.128 0.109 —-0.093 0.168 —0.059 0.262

Standard errors were derived from 500 times nonparametric bootstrap.
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the estimators can be implemented using standard software tools. We develop two specific
imputation estimators, AIPW-I, and AIPW-S that appear to have reliable performance within
the framework. The simpler AIPW-S estimator uses only baseline values in the imputation
models and reduces the number of models that need to be estimated from M(M — 1)/2 to
maximum M — 1, at the cost of some stronger assumptions and potential loss of efficiency. We
show that the imputed completed data from either AIPW-I or AIPW-S can be substituted into
a full data estimating equation ZzN:1 U;(B) = 0 to obtain an estimator which inherits doubly-
robust properties from the imputation step. In particular, as is the case in other imputation
settings, a given APIW-imputed data set can be used across several different estimands, as
the imputation models and the analysis models do not need to be coupled to one another. For
example, a single AIPW-imputed data set might be used across several primary or secondary
analyses in a clinical trial. Under a prespecified estimand, the AIPW-I estimator has the same
workflow as the estimator of Seaman and Copas (2009); however, once a completed data set
has been created, it can be used for variety of other estimands without refitting the doubly-
robust model again. AIPW-S has considerably simplified computational demands, compared
to AIPW-1.

We conducted extensive simulation studies across different estimands to evaluate the per-
formance of these AIPW-based imputation estimators, including comparison with the ap-
proach proposed by Bang and Robins (BR*), which incorporates the probability weights
inside the estimating equations as an additional covariate. The BR* estimator, as originally
proposed, is suitable for estimating the outcome at a final time point, E[Y;/]. Interestingly,
we found only a few prior studies which make similar comparisons in the longitudinal set-
ting (Tsiatis, Davidian and Cao (2011), Seaman and Copas (2009), Schnitzer, Lok and Bosch
(2016)).

When the estimand of interest was E[Y;js] or was the regression coefficient of a baseline
covariate, the three doubly-robust estimators, BR*, AIPW-I, and AIPW-S were consistent as
expected, even when the imputation models or the dropout models were badly misspecified.
Furthermore, these doubly-robust estimators appeared to be competitive in efficiency with the
correctly specified MLE estimators, when the imputation models were correctly specified.
Bootstrap confidence intervals had correct coverage probabilities with reasonable bootstrap
sample sizes.

When the primary estimand was the coefficient of a time-varying covariate, the two AIPW
imputation methods, AIPW-I and AIPW-S, again demonstrated performance comparable to
efficient MLE estimators whenever the imputation models were correctly specified. When the
imputation model was incorrect but the dropout model was correct, the two AIPW imputation
estimators still performed well, with low bias and good coverage probabilities, although with
some loss of efficiency. In particular, we studied an extreme case of a misspecified imputation
model which omitted the time-varying covariate of interest (i.e., the estimand in the analysis
model was the coefficient of a time-variable which was omitted from the imputation model).
This illustrates a case when the imputation model might be constructed prior to considering
the estimand of interest, such as could be the case when using already imputed data to study
a new estimand. The two imputation-framework estimators worked well in this case.

In this last scenario, we also compared use of the BR* estimator for the imputation step
within the imputation framework. Our rationale for doing this is because, in the case when
the imputation model is correct and agrees with the analysis model, the BR* estimator is
similar in form to an imputation estimator. However, when used as an imputation estimator
in the extreme case described above, where the estimand in the analysis model was the coeffi-
cient of a time-varying variable which was omitted from the imputation model, the result had
unacceptably large bias, compared to AIPW-I or AIPW-S. This is not unexpected, because
the BR* estimator is, as yet, only demonstrated to work in the case of baseline covariates of
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interest and outcome at a given time point, and we included time-varying covariates and lon-
gitudinal outcomes. Additionally, our misspecified models omitted one of the variables in the
final estimating equations, a common approach to model misspecification in prior simulation
studies (Tsiatis, Davidian and Cao (2011), Seaman and Copas (2009), Schnitzer, Lok and
Bosch (2016)). In our case we omitted one of the variables that defines the target estimand,
a case of potentially severe model misspecification. Notably, the BR* estimator requires that
the X, which define the estimand of interest, are included in the imputation models. This adds
a requirement that the imputation models be tailored to the final estimand, a requirement that
our imputation-based approach is designed to avoid.

This AIPW-based doubly-robust imputation framework provides a good opportunity for
sensitivity analysis in randomized trials and other settings. For example, in our application
to a trial of donepezil for Alzheimer’s disease, it was clear that differential dropout might
introduce significant bias in the comparisons of interest between study arms (Figure 1). Be-
cause the dropout rates depended on disease severity and differed significantly between the
donepezil and placebo arms, it is unclear whether a standard regression model using a GEE
approach would produce consistent estimates. Our application of doubly-robust imputation
to the donepezil data illustrates a case where the direction of the estimated treatment effect
might be reversed by using a doubly-robust estimator, indicating significant bias in the stan-
dard MMRM estimates. Indeed, our simulation studies demonstrated how a mixed-effects
model with a simplified covariance matrix, such as is not infrequently used in clinical trials,
can produce badly biased results. In such a situation, doubly-robust AIPW-imputation based
estimators, such as AIPW-I and AIPW-S, might be helpful as a sensitivity analysis for the
primary analysis. The same data might then be useful for additional analyses which is an ad-
vantage of the imputation-based approach. Importantly, the theoretical basis for consistency
is well established for these DR imputation estimators in the setting of informative longitudi-
nal dropout, which is not the case, to our knowledge, for the imputation by chained equations
approach in common use. Future work will compare these doubly-robust estimators to the
more usual multiple imputation approaches used as sensitivity analyses in the clinical trials
setting.
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