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Abstract. We study the nonlinear wave equation (NLW) on the two-dimensional torus T2 with Gaussian random initial data on
Hs(T2) × Hs−1(T2), s < 0, distributed according to the base Gaussian free field μ associated with the invariant Gibbs measure
studied by Thomann and the first author (2020). In particular, we investigate the approximation property of the corresponding solution
by smooth (random) solutions. Our main results in this paper are two-fold. (i) We show that the solution map for the renormalized
cubic NLW defined on the Gaussian free field μ is the unique extension of the solution map defined for smoothed Gaussian initial data
obtained by mollification, independent of mollification kernels. (ii) We also show that there is a regularization of the Gaussian initial
data so that the corresponding smooth solutions almost surely have no limit in the natural topology. This second result in particular
states that one can not use arbitrary smooth approximation for the renormalized cubic NLW dynamics.

As a preliminary step for proving (ii), we establish a (deterministic) norm inflation result at general initial data for the (unrenor-
malized) cubic NLW on Td and Rd in negative Sobolev spaces, extending the norm inflation result by Christ, Colliander, and Tao
(2003).

Résumé. On considère l’équation des ondes (NLW) posée sur le tore de dimension deux T2 avec une condition initiale aléatoire dans
Hs(T2) × Hs−1(T2), s < 0, distribuée selon le champ libre gaussien μ associé à la mesure invariante de Gibbs étudiée par Thomann
et le premier auteur (2020). En particulier, nous essayons de comprendre si on peut approximer les solutions avec condition initiale
typique par des solutions lisses aléatoires. Nous obtenons deux résultats complémentaires : (i) Nous démontrons que le flot du NLW
cubique renormalisé défini sur le champ libre gaussien est l’unique extension du flot défini sur des données gaussiennes régularisées
par convolution (et cela indépendamment du noyau de convolution). (ii) Nous démontrons également qu’il existe une régularisation des
données initiales gaussiennes telle que les solutions régulières correspondantes n’ont pas de limite presque sûrement dans la topologie
naturelle. Par conséquent, nous ne pouvons pas utiliser une approximation arbitraire pour construire la dynamique du NLW cubique
renormalisé. Une étape préliminaire dans la preuve de (ii) consiste en une élaboration significative sur un résultat d’inflation de norme
dû à Christ, Colliander, et Tao (2003).
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1. Introduction

1.1. Nonlinear wave equations

We consider the defocusing nonlinear wave equation (NLW) on T2 = (R/Z)2:{
∂2
t u + (1 − �)u + uk = 0

(u, ∂tu)|t=0 = (u0, u1),
(x, t) ∈ T2 ×R,(1.1)
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where k ≥ 3 is an odd integer and the unknown function u is real-valued.1 In particular, we study the Cauchy problem2
 

(1.1) with Gaussian random initial data (uω
0 , uω

1 ) distributed according to the massive Gaussian free field3 μ on Hs(T2)
def=

Hs(T2) × Hs−1(T2), s < 0, with the covariance operator (Id − �)−1+s , whose density is formally given by4

dμ = Z−1e− 1
2

∫
T2 (u2+|∇u|2) dx du ⊗ e− 1

2

∫
T2 v2 dx dv.(1.2)

This problem naturally appears in the study of invariant Gibbs measures for (1.1); see the next subsection. In particular,
the (renormalized) NLW on T2 is known to be almost surely globally well-posed with respect to the massive Gaussian
free field μ (see Theorem A below).

Our main goal in this paper is to study the approximation property of the (random) solution to the renormalized NLW
with5 L(uω

0 , uω
1 ) = μ (constructed in Theorem A) by smooth (random) solutions. In other words, we are interested in

understanding the following question: “In what sense is the solution map: (uω
0 , uω

1 ) �→ (u, ∂tu) to the (renormalized)
NLW with L(uω

0 , uω
1 ) = μ an extension of the solution map, a priori defined on smooth (random) initial data?” A natural

way to study this question is to approximate the rough initial data by regular functions and see whether the obtained
sequence of smooth solutions converges to a unique limit (independent of the choice of the regularization). This is the
strongest form of uniqueness and it basically holds when the problem is deterministically locally well-posed, allowing
us to conclude that any approximation would give a good approximating sequence of smooth solutions, tending to the
unique limit. It turns out that for our problem at hand with L(uω

0 , uω
1 ) = μ, this strongest form of uniqueness does not

hold because of the low regularity of the initial data. See (ii) below. This gives rise to the “non-uniqueness” part in the title
of this paper. On the other hand, if we restrict our attention to regularization by convolution (which is a very particular
way of approximating the rough initial data), then the sequence converges to a unique limit, justifying the “uniqueness”
part of the title.

In this paper, we will establish the following two claims:

(i) We show that the solution map: (uω
0 , uω

1 ) �→ (u, ∂tu) to the (renormalized) NLW with L(uω
0 , uω

1 ) = μ is the unique
extension of the solution map defined for smoothed Gaussian initial data obtained by mollification (Theorem 1.6).
Here, the uniqueness refers to the fact that the whole sequence of regularized solutions converges. Note that conver-
gence of a subsequence typically follows from weak solution (= compactness) arguments; see [9,10,52]. Moreover,
the limiting solution map is independent of mollification kernels. See Theorem 1.6.

(ii) We show that there exists a regularization of the Gaussian initial data (uω
0 , uω

1 ) with L(uω
0 , uω

1 ) = μ such that the
corresponding smooth solutions almost surely have no limit in the natural topology; see Theorem 1.7. We prove this
second result by establishing almost sure norm inflation for the renormalized NLW (Proposition 1.10).

As a preliminary step for (ii), we prove (deterministic) norm inflation for NLW in negative Sobolev spaces (Theorem 1.11)
by following the argument in [42]. See Section 1.6.

1.2. Invariant Gibbs measures

With v = ∂tu, we can write the equation (1.1) in the following Hamiltonian formulation:

∂t

(
u

v

)
=
(

0 1
−1 0

)
∂H

∂(u, v)
,

where H = H(u,v) is the Hamiltonian given by

H(u,v) = 1

2

∫
T2

(
u2 + |∇u|2)dx + 1

2

∫
T2

v2 dx + 1

k + 1

∫
T2

uk+1 dx.(1.3)

By drawing an analogy to the finite dimensional setting, the Hamiltonian structure of the equation and the conservation
of the Hamiltonian suggest that the Gibbs measure P

(k+1)
2 of the form:

“dP
(k+1)
2 = Z−1 exp

(−H(u,v)
)
du ⊗ dv”(1.4)

1The equation (1.1) is also referred to as the nonlinear Klein–Gordon equation. We, however, simply refer to (1.1) as NLW in the following. Moreover,
we only consider real-valued functions in the following. The modifications required to handle the complex-valued case are straightforward. See [52].
2More precisely, we study a renormalized version of (1.1). See the Wick ordered NLW (1.18) below.
3In fact, μ is a measure on a vector (u0.u1), given as the tensor product of the mass Gaussian free fields on the u0 component and the white noise
measure on the u1 component. For simplicity, however, we refer to μ as the (massive) Gaussian free field in the following.
4Henceforth, we use Z to denote various normalization constants so that the corresponding measures are probability measures when appropriate.
5Given a random variable X, we use L(X) to denote the law (= distribution) of X.
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is invariant under the dynamics of (1.1). By substituting (1.3) for H(u,v) in the exponent, we can rewrite the formal
expression (1.4) as

dP
(k+1)
2 = Z−1e− 1

k+1

∫
T2 uk+1 dxe− 1

2

∫
T2 (u2+|∇u|2) dx du ⊗ e− 1

2

∫
T2 v2 dx dv

∼ e− 1
k+1

∫
T2 uk+1 dx dμ,(1.5)

where μ is the massive Gaussian free field defined in (1.2).
Recall that the Gaussian measure μ in (1.2) is the induced probability measure under the map:

ω ∈ � �−→ (
uω

0 , uω
1

)
,

where (uω
0 , uω

1 ) is given by the following random Fourier series:6

(
uω

0 , uω
1

)=
(∑

n∈Z2

g0,n(ω)

〈n〉 ein·x,
∑
n∈Z2

g1,n(ω)ein·x
)

.(1.6)

Here, 〈n〉 = √
1 + |n|2 and {g0,n, g1,n}n∈Z2 is a sequence of independent standard complex-valued Gaussian random

variables on a probability space (�,F,P ) conditioned that gj,−n = gj,n, n ∈ Z2, j = 0,1. It is easy to check that (uω
0 , uω

1 )

belongs to Hs(T2) \ H0(T2), s < 0, almost surely. In particular, for an odd integer k ≥ 3, we have
∫
T2 uk+1 dx = ∞

almost surely with respect to μ and thus the density e− 1
k+1

∫
T2 uk+1 dx in (1.5) vanishes almost surely. As a result, the

expression in (1.5) does not make sense as a probability measure. This forces us to renormalize the potential part of the
Hamiltonian, which enables us to define the Gibbs measure P

(k+1)
2 corresponding to the renormalized Hamiltonian as a

probability measure (absolutely continuous with respect to the Gaussian free field μ). See [21,25,52,59] for details. As
a consequence, one is led to study the renormalized NLW dynamics (see (1.18) below) associated with the renormalized
Hamiltonian.

1.3. Wick ordered NLW

In this subsection, we go over a derivation of the renormalized NLW by directly introducing a renormalization at the level
of the equation. By writing (1.1) in the Duhamel formulation with the random initial data (uω

0 , uω
1 ) in (1.6), we have

u(t) = S(t)
(
uω

0 , uω
1

)−
∫ t

0

sin((t − t ′)〈∇〉)
〈∇〉 uk

(
t ′
)
dt ′,(1.7)

where 〈∇〉 = √
1 − � and S(t) denotes the linear wave propagator given by

S(t)(f, g) = cos
(
t〈∇〉)f + sin(t〈∇〉)

〈∇〉 g.

Let z denote the random linear solution given by

z = zω = S(t)
(
uω

0 , uω
1

)
.(1.8)

Recalling that (uω
0 , uω

1 ) ∈ Hs(T2) \ H0(T2), s < 0, almost surely, we see that z(t) is merely a Schwartz distribution.
Hence, there is an issue in making sense of the power zk(t) and thus the full nonlinearity uk(t) appearing in (1.7). In
fact, by following the argument in [44,48], a phenomenon of triviality may be shown for (1.1) without renormalization
(at least when k = 3). Namely, by considering smooth solutions uN to (1.1) with regularized random initial data, we may
show that, as the regularization is removed, uN converges to a trivial solution u ≡ 0. This shows the necessity of a proper
renormalization at the level of the equation.

With (1.8), we easily see that, for any t ∈ R, the distribution of z(t) is once again given by the massive Gaussian free
field μ in (1.2). Namely, μ is invariant under the linear wave dynamics. Indeed, we have

(
z(t), ∂t z(t)

)=
(∑

n∈Z2

gt
0,n

〈n〉 ein·x,
∑
n∈Z2

gt
1,ne

in·x
)

,(1.9)

6We drop the harmless factor 2π in the following.
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where

gt
0,n

def= cos
(
t〈n〉)g0,n + sin

(
t〈n〉)g1,n,

gt
1,n

def= − sin
(
t〈n〉)g0,n + cos

(
t〈n〉)g1,n.

(1.10)

It is easy to check that {gt
0,n, g

t
1,n}n∈Z2 forms a sequence of independent standard complex-valued Gaussian random

variables conditioned that

gt
j,−n = gt

j,n(1.11)

for any n ∈ Z2 and j = 0,1. This shows that the massive Gaussian free field μ in (1.2) is invariant under the linear wave
dynamics.

Let PN denote the frequency projection onto the spatial frequencies {|n| ≤ N} and set zN = PNz. Then, for each
(x, t) ∈ T2 ×R, zN(x, t) is a mean-zero real-valued Gaussian random variable with variance7

σN
def= Var

(
zN(x, t)

)= E
[
z2
N(x, t)

]=
∑

|n|≤N

1

〈n〉2
∼ logN.(1.12)

Note that σN is independent of (x, t) ∈ T2 ×R, reflecting the translation-invariant nature of the problem. We then define
the Wick powers :z�

N :, � ∈N∪ {0}, by setting

:z�
N(x, t): def= H�

(
zN(x, t);σN

)
(1.13)

in a pointwise manner, where H�(x;σ) denotes the Hermite polynomial of degree � with a parameter σ > 0. See Section 2
for more on the Hermite polynomials. We now recall the following proposition from [26,53].

Proposition 1.1. Let � ∈ N ∪ {0}. Then, for any p < ∞, T > 0, and ε > 0, the sequence {: z�
N :}N∈N is Cauchy in

Lp(�;C([−T ,T ];W−ε,∞(T2))). Denoting the limit by

:z� := :z�∞: def= lim
N→∞ :z�

N :,(1.14)

we have :z� : ∈ C([−T ,T ];W−ε,∞(T2)), almost surely.

In [53], the convergence was shown only in Lp(�;Lq([−T ,T ];W−ε,r (T2))) for q, r < ∞. By repeating the argument
in [26, Proposition 2.1], however, we can easily upgrade this to the claimed regularity result in Proposition 1.1. One may
also apply Proposition 2.7 below and directly verify Proposition 1.1. See Section 4.1. See also [27,28,43].

Given N ∈ N, consider the following truncated NLW:

∂2
t uN + (1 − �)uN + PN

[
(PNuN)k

]= 0

with the random initial data (uω
0 , uω

1 ) in (1.6). In view of the Duhamel formula, it is natural to decompose uN as

uN = z + vN(1.15)

with vN = PNvN . Then, by the binomial theorem, we have

(PNuN)k = (zN + vN)k =
k∑

�=0

(
k

�

)
z�
N · vk−�

N(1.16)

7While it may be common to denote the variance by σ 2
N

, we chose to use σN to denote the variance in (1.12) so that it is consistent with the notation
H(x;σ) for the Hermite polynomial with a parameter σ , which is used for the Wick renormalization (1.13); see (2.1) and (2.2). See also Kuo’s book
[36, Chapter 9].
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and thus we see that there is an issue in taking a limit as N → ∞, since the limit of z�
N does not exist. By recalling the

following identities for the Hermite polynomials:

Hk(x + y) =
k∑

�=0

(
k

�

)
H�(y) · xk−� and Hk(x;σ) = σ

k
2 Hk

(
σ− 1

2 x
)
,

we define the renormalized nonlinearity :(PNuN)k: by setting

:(PNuN)k: = N k
(PNuω

0 ,PNuω
1 )(uN)

def= Hk(zN + vN ;σN) =
k∑

�=0

(
k

�

)
H�(zN ;σN) · vk−�

N

=
k∑

�=0

(
k

�

)
:z�

N : ·vk−�
N .

(1.17)

Namely, we replaced z�
N in (1.16) by the Wick power :z�

N :. In view of Proposition 1.1, we can take a limit of (1.17) as
N → ∞. This leads to the following Wick ordered NLW:{

∂2
t u + (1 − �)u+ :uk := 0,

(u, ∂tu)|t=0 = (
uω

0 , uω
1

)
,

(1.18)

where the Wick ordered nonlinearity :uk : is defined by

:uk:= N k
(uω

0 ,uω
1 )(u)

def=
k∑

�=0

(
k

�

)
:z� : ·vk−�(1.19)

for functions u of the form:

u = z + v(1.20)

with some sufficiently smooth v such that vk−� in (1.19) makes sense. We stress that the Wick ordered nonlinearity :uk :
is not defined for general functions u but is defined only for functions u of the form (1.20).

In [53], the first author and Thomann studied the Wick ordered NLW (1.18) by considering the following fixed point
problem for the residual term v = u − z: {

∂2
t v + (1 − �)v + :(v + z)k := 0,

(v, ∂tv)|t=0 = (0,0).
(1.21)

A result of interest to us reads as follows:

Theorem A ([53]). The Wick ordered NLW (1.18) is almost surely globally well-posed with respect to the massive Gaus-
sian free field μ in (1.2). Moreover, the solution (u, ∂tu) to (1.18) almost surely lies in the class:

(u, ∂tu) ∈ (z, ∂t z) + C
(
R;H1−ε

(
T2))⊂ C

(
R;H−ε

(
T2)).(1.22)

for any ε > 0.

Remark 1.2. Consider the following truncated Wick ordered NLW:{
∂2
t uN + (1 − �)uN + PN

[:(PNuN)k :]= 0,

(uN , ∂tuN)|t=0 = (
uω

0 , uω
1

)
,

(1.23)

where the truncated Wick ordered nonlinearity is interpreted as in (1.17) for uN of the form (1.15). Then, it follows
from iterating the local theory in [53] that, for given T > 0, the solution uN to (1.23) converges almost surely to the
solution u to (1.18) in C([−T ,T ];H−ε(T2)), ε > 0 (and the residual part vN = uN − z converges to v = u − z in
C([−T ,T ];H 1−ε(T2)), almost surely).
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The proof of almost sure local well-posedness of (1.18) follows from studying the fixed point problem (1.21) for v

with Sobolev’s inequality8 and the space-time control on the stochastic terms (Proposition 1.1). The almost sure global
well-posedness follows from (i) almost sure global well-posedness of the Wick ordered NLW (1.18) with respect to the
Gibbs measure P

(k+1)
2 (by Bourgain’s invariant measure argument [5,6,12]) and (ii) the mutual absolute continuity of the

Gibbs measure P
(k+1)
2 and the massive Gaussian free field μ. Lastly, the second claim (1.22) follows from iterating the

local-in-time argument with Proposition 1.1.
Let u be the random solution to the Wick ordered NLW (1.18) with L((u, ∂tu)|t=0) = μ constructed in Theorem A.

In the following, we study the approximation property of the random solution u to the renormalized NLW (1.18) by
the smooth solutions corresponding to smooth approximating (random) initial data. We point out that the renormalized
nonlinearity :uk : in (1.18) is defined for the specific random initial data (uω

0 , uω
1 ) in (1.6). In particular, in considering

the renormalized dynamics corresponding to smooth random initial data, we need to make it clear what we mean by the
renormalized nonlinearity for smooth random initial data. This is the topic of the next subsection.

1.4. Renormalized NLW with smooth Gaussian initial data

In this subsection, we consider the renormalized NLW with smooth Gaussian random initial data. While there is no
need to consider any renormalization in studying (1.1) with smooth random initial data, we introduce a renormalization
even for smooth random initial data so that we can study smooth approximations to the Wick ordered NLW (1.18) with
L(uω

0 , uω
1 ) = μ. For this purpose, we introduce the following definition.

Definition 1.3. Let (ϕω
0 , ϕω

1 ) be an Hs(T2)-valued random variable for some s ≥ 0. Set

σ(t)
def= Var

(
S(t)

(
ϕω

0 , ϕω
1

))= E
[(

S(t)
(
ϕω

0 , ϕω
1

))2]− (
E
[
S(t)

(
ϕω

0 , ϕω
1

)])2
.

Then, we define the renormalized nonlinearity N k
(ϕω

0 ,ϕω
1 )

(v) by

N k
(ϕω

0 ,ϕω
1 )(v)

def= Hk

(
S(t)

(
ϕω

0 , ϕω
1

)+ v;σ(t)
)
.

In view of the previous discussion, we aim to study the following problem:{
∂2
t v + (1 − �)v +N k

(ϕω
0 ,ϕω

1 )(v) = 0,

(v, ∂tv)|t=0 = (0,0)
(1.24)

for a sequence of (smoother) random initial data (ϕω
0 , ϕω

1 ) ∈ H0(T2) approximating (uω
0 , uω

1 ) given in (1.6). Our goal is
then to try to understand how much the obtained sequence of (smoother) solutions converges to the solution obtained in
Theorem A (modulo the free evolution), i.e. the solution v = u − z = u − S(t)(uω

0 , uω
1 ) to (1.21). For this purpose, we

will first solve (1.24) for a large class of (ϕω
0 , ϕω

1 ) in Hs(T2), s ≥ 0.
Let us now describe the class of data (ϕω

0 , ϕω
1 ) for which we study (1.24). Let (φ0, φ1) ∈ Hs(T2), s ≥ 0, with the

Fourier series expansions

φj =
∑
n∈Z2

φ̂j (n)ein·x with φ̂j (−n) = φ̂j (n), j = 0,1.

We define the randomization (φω
0 , φω

1 ) of (φ0, φ1) by setting

φω
j

def=
∑
n∈Z2

gj,n(ω)φ̂j (n)ein·x,(1.25)

where {g0,n, g1,n}n∈Z2 is as in (1.6). Let (r0, r1) ∈Hs+1(T2). We then study (1.24) with (ϕω
0 , ϕω

1 ) given by(
ϕω

0 , ϕω
1

)= (
φω

0 , φω
1

)+ (r0, r1).(1.26)

8While the argument in [53] used the Strichartz estimates, it is possible to prove the local well-posedness part in Theorem A by Sobolev’s inequality.
See [28].
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Note that

σ(t) = Var
(
S(t)

(
ϕω

0 , ϕω
1

))= Var
(
S(t)

(
φω

0 , φω
1

))
=

∑
n∈Z2

(
cos2(t〈n〉)∣∣φ̂0(n)

∣∣2 + sin2(t〈n〉)
〈n〉2

∣∣φ̂1(n)
∣∣2)�

∥∥(φ0, φ1)
∥∥2
H0 < ∞,(1.27)

which shows that the renormalized nonlinearity N k
(ϕω

0 ,ϕω
1 )

(v) in (1.24) is well defined for the random data (ϕω
0 , ϕω

1 ) given

in (1.26). Compare this with the renormalized nonlinearity in (1.21) which is defined only via a limiting procedure via
Proposition 1.1. We have the following proposition on almost sure global existence of unique solutions to the Wick
ordered NLW (1.24) with the random data (ϕω

0 , ϕω
1 ) given by (1.26).

Proposition 1.4. Let k ≥ 3 be an odd integer and let s ∈R satisfy

(i) s > 0 when k = 3 and (ii) s ≥ 1 when k ≥ 5.

Given (φ0, φ1) ∈ Hs(T2) and (r0, r1) ∈ Hs+1(T2), let (φω
0 , φω

1 ) be the randomization of (φ0, φ1) defined in (1.25) and
define (ϕω

0 , ϕω
1 ) as in (1.26). Then, there exists almost surely a unique global solution (v, ∂t v) ∈ C(R;H1(T2)) to (1.24).

We present the proof of Proposition 1.4 in Section 3. The almost sure local well-posedness for s ≥ 0 (with any k)
follows from a standard fixed point argument with the probabilistic Strichartz estimate (Lemma 2.4). See, for example,
[13,58]. As for the almost sure global well-posedness, we proceed with a Gronwall argument as in [13] when k = 3. For
k ≥ 5, we also use the integration-by-parts trick, introduced in [47], to control higher order terms with respect to v

Remark 1.5. (i) Observe that if the data in (1.26) is deterministic, i.e. φω
j = 0, then σ(t) = 0 and the nonlinearity is of

pure power type, namely N k
(ϕω

0 ,ϕω
1 )

(v) becomes (S(t)(r0, r1) + v)k .

(ii) For simplicity of the presentation, we chose (r0, r1) ∈ Hs+1(T2) in the statement of Proposition 1.4 such that the
Cameron–Martin theorem [14] allows us to reduce the proof to the case r0 = r1 = 0 at the beginning of Section 3. In fact,
a slight modification of the argument in Section 3 shows that Proposition 1.4 also holds for (r0, r1) ∈ H1(T2), whether
(r0, r1) is deterministic or random. Indeed, given (r0, r1) ∈H1(T2), by setting w = v +S(t)(r0, r1), where v is a solution
to (1.24), we see that w satisfies the following Cauchy problem:{

∂2
t w + (1 − �)w + Hk

(
S(t)

(
φω

0 , φω
1

)+ w(t);σ(t)
)= 0,

(w, ∂tw)|t=0 = (r0, r1) ∈H1(T2).(1.28)

Then, by noting that Lemma 3.1 on local well-posedness holds for general H1-initial data, global well-posedness of
(1.28) follows from proceeding as in the proof of Proposition 1.4 presented in Section 3, which is about controlling the
H1-norm of a solution; see (3.7). Once we have constructed a unique global-in-time solution w to (1.28), we simply set
v = w − S(t)(r0, r1), which is a unique global-in-time solution to (1.24).

1.5. Unique and non-unique extensions of the solution map to the Wick ordered NLW with the Gaussian free field μ as
initial data

In this subsection, we state our main results in this paper. In the following, we restrict our attention to the cubic case (k =
3). In the previous subsection, we constructed almost surely well-defined global-in-time dynamics for the Wick ordered
NLW (1.24) with smooth random initial data (Proposition 1.4). In particular, there exists a solution map, sending smooth
random initial data to smooth random solutions. On the other hand, Theorem A shows that the solution map “extends” to
the (rough) Gaussian random initial data (uω

0 , uω
1 ) of the form (1.6), distributed according to the massive Gaussian free

field μ in (1.2). In the following, we investigate in what sense the solution map constructed in Proposition 1.4 extends to
that in Theorem A.

We first establish a (partial) positive answer. Namely, we show that the solution map constructed in Theorem A is
the unique extension of the solution map defined on a certain class of smooth random initial data. We say that a smooth
function ρ ∈ L1(R2) is a mollification kernel if

∫
R2 ρ(x)dx = 1 and suppρ ⊂ (− 1

2 , 1
2 ]2. Given a mollification kernel ρ,

define ρδ by setting

ρδ(x) = δ−2ρ
(
δ−1x

)
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for 0 < δ ≤ 1. Then, {ρδ}δ∈(0,1] is an approximate identity on R2. By noting that suppρδ ⊂ (− 1
2 , 1

2 ]2 ∼= T2 for any
δ ∈ (0,1], we see that {ρδ}δ∈(0,1] is also an approximate identity on T2.

The following theorem shows that the solution map constructed in Theorem A is the unique extension of the solution
map defined on smooth random initial data, regularized by a mollification. Here, the uniqueness refers to the convergence
of the whole sequence and also to the fact that the extension is independent of mollification kernels ρ.

Theorem 1.6. Let (uω
0 , uω

1 ) be the Gaussian random initial data defined in (1.6). Given a mollification kernel ρ, define
(uω

0,δ, u
ω
1,δ) ∈ C∞(T2) × C∞(T2), 0 < δ ≤ 1, via the regularization by mollification:

uω
0,δ = ρδ ∗ uω

0 and uω
1,δ = ρδ ∗ uω

1 ,(1.29)

where ρδ is as above (of course, limδ→0 ‖(uω
0,δ, u

ω
1,δ)− (uω

0 , uω
1 )‖Hs = 0, almost surely). Denote by (vδ, ∂tvδ) the solution

to the Wick ordered NLW (1.24) with (
ϕω

0 , ϕω
1

)= (
uω

0,δ, u
ω
1,δ

)
,

constructed in Proposition 1.4, and set uδ
def= S(t)(uω

0,δ, u
ω
1,δ)+ vδ . Then, given any T > 0 and s < 0, (uδ, ∂tuδ) converges

in probability to (u, ∂tu) in C([−T ,T ];Hs(T2)), where (u, ∂tu) is the solution to the Wick ordered NLW (1.18) with the
initial data (uω

0 , uω
1 ) constructed in Theorem A. Namely, u = z + v, where z and v are as in (1.8) and (1.21), respectively.

Next, we turn our attention to a negative direction. We prove the following instability result for the Wick ordered NLW
(1.18) with the Gaussian free field μ in (1.2) as initial data.

Theorem 1.7. Let s < 0 and (uω
0 , uω

1 ) be as in (1.6). Then, there exists a set � ⊂ � with P(�) = 1 such that given ω ∈ �,
there exists a sequence (uω

0,ε, u
ω
1,ε) ∈ C∞(T2) × C∞(T2), 0 < ε ≤ 1, such that almost surely

lim
ε→0

∥∥(uω
0,ε, u

ω
1,ε

)− (
uω

0 , uω
1

)∥∥
Hs = 0

but for every T > 0, the solutions vε to (1.24) with(
ϕω

0 , ϕω
1

)= (
uω

0,ε, u
ω
1,ε

)
defined in Proposition 1.4 satisfy almost surely

lim
ε→0

‖vε‖L∞([−T ,T ];Hs) = ∞.

As a consequence, uε
def= S(t)(uω

0,ε, u
ω
1,ε) + vε diverges almost surely in C([−T ,T ];Hs(T2)).

Theorems 1.6 and 1.7 together imply that the choice of regularization of the random initial data plays an important role.
On the one hand, there is a class of “admissible” regularizations yielding the conclusion of Theorem 1.6. On the other
hand, there is also a regularization, leading to a strong instability. This is a sharp contrast with the smoother regime, where
(deterministic) local well-posedness theory, in particular continuous dependence, guarantees any regularization gives a
good approximation. See Theorems 1.33 and 2.7 in [64] for analogous results in the context of the three-dimensional
cubic NLW (without the need of renormalization). One main difference between our results (Theorems 1.6 and 1.7) and
those in [64] appears in the fact that, in our problem, the effect of the random initial data shows up in the equation through
the renormalized nonlinearity, giving further complication to the problem.

Remark 1.8. In a recent work [60], the third author and Sun established a certain pathological behavior for NLW on the
three-dimensional torus T3 with initial data of super-critical (but positive9) regularity. They constructed a dense subset
S of the Sobolev space of super-critical regularity such that for any (u0, u1) ∈ S, the family of global smooth solutions
uδ , generated by the mollified initial data (ρδ ∗ u0, ρδ ∗ u1), diverges. While it is a purely deterministic result, this result
nicely complements Theorem 1.6, since it shows that a mollification does not in general (and in fact on a dense set) lead
to a good approximation in the super-critical regularity.

9In particular, there is no need for renormalization in [60].
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Before proceeding to the next subsection, we briefly discuss a reduction of the proof of Theorem 1.7 in the following.
Our main strategy is as follows. Given ε > 0, let (uω

0,δ, u
ω
1,δ) be the mollified random initial data as in (1.29) for some

small δ = δ(ε) > 0. We then construct the smooth solution vδ,ε = vω
δ,ε to (1.24):{

∂2
t vδ,ε + (1 − �)vδ,ε +N 3

(ϕω
0,δ,ε,ϕ

ω
1,δ,ε)

(vδ,ε) = 0,

(vδ,ε, ∂t vδ,ε)|t=0 = (0,0),
(1.30)

where (
ϕω

0,δ,ε, ϕ
ω
1,δ,ε

)= (
uω

0,δ, u
ω
1,δ

)+ (φ0,ε, φ1,ε)

for some suitably chosen deterministic functions (φ0,ε, φ1,ε) ∈ C∞(T2) × C∞(T2). The first observation is that the
conclusion of Theorem 1.6 holds true even if we replace (uω

0 , uω
1 ) (and (uω

0,δ, u
ω
1,δ), respectively) by (uω

0 , uω
1 )+(φ0,ε, φ1,ε)

(and (uω
0,δ, u

ω
1,δ) + (φ0,ε, φ1,ε), respectively) for any (φ0,ε, φ1,ε) ∈ C∞(T2) × C∞(T2). Namely, the smooth solution vδ,ε

to (1.30) converges in probability to the solution vε to{
∂2
t vε + (1 − �)vε +N 3

(ϕω
0,ε,ϕ

ω
1,ε)

(vε) = 0,

(vε, ∂tvε)|t=0 = (0,0)
(1.31)

as δ → 0, where (
ϕω

0,ε, ϕ
ω
1,ε

)= (
uω

0 , uω
1

)+ (φ0,ε, φ1,ε).(1.32)

See Remark 4.5. Note that, in (1.31), the nonlinearity N 3
(ϕω

0,ε,ϕ
ω
1,ε)

(vε) is interpreted in the limiting sense as δ → 0. This

observation allows us to drop the smoothness assumption on data in Theorem 1.7. More precisely, Theorem 1.7 is a
consequence of the following statement.

Proposition 1.9. Let s < 0 and (uω
0 , uω

1 ) be as in (1.6). Then, there exists a set � ⊂ � with P(�) = 1 such that given
ω ∈ � and ε > 0, there exist a solution vω

ε to (1.31) on T2 with the random data (ϕω
0,ε, ϕ

ω
1,ε) in (1.32) and a random time

tε = tε(ω) ∈ (0, ε) such that ∥∥(φ0,ε, φ1,ε)
∥∥
Hs < ε but

∥∥vω
ε (tε)

∥∥
Hs > ε−1.

In our reduction of Theorem 1.7 to Proposition 1.9, we moved from the smooth setting to the rough setting, contrary
to the usual reduction, where one approximates rough objects by smooth objects. This reduction, however, helps us since
the solutions v to (1.21) and vε to (1.31) satisfy the same equation, where the renormalization on the nonlinearity is based
on (uω

0 , uω
1 ) defined in (1.6).

We now express (1.31) in terms of wε = vε + S(t)(φ0,ε, φ1,ε). Then, wε satisfies the following perturbed NLW:{
∂2
t wε + (1 − �)wε + w3

ε +R(wε, z) = 0,

(wε, ∂twε)|t=0 = (φ0,ε, φ1,ε),
(1.33)

where R(w, z) is given by

R(w, z) =:(z + w)3 : −w3

= 3zw2 + 3 :z2 : w+ :z3 : .
Then, the proof of Proposition 1.9 is reduced to the following proposition on almost sure norm inflation for the perturbed
NLW (1.33).

Proposition 1.10. Let s < 0 and z = zω be as in (1.8). Then, there exists a set � ⊂ � with P(�) = 1 such that given
ω ∈ � and ε > 0, there exist a solution wω

ε to (1.33) on T2 and a random time tε = tε(ω) ∈ (0, ε) such that∥∥(wω
ε (0), ∂tw

ω
ε (0)

)∥∥
Hs < ε and

∥∥wω
ε (tε)

∥∥
Hs > ε−1.
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With R(wε, z) = 0, such a norm inflation phenomenon has been studied for the (unrenormalized) NLW (1.1); see
[11,18,64,66]. In Proposition 1.10, we establish norm inflation almost surely in the presence of the random perturbation
R(wε, z). We point out that the known result on norm inflation for NLW (1.1) on Td or Rd in negative Sobolev spaces
only covers a partial range s ≤ − d

2 in the general setting; see [18]. While there is a norm inflation result for s < 1
6 by

reducing the analysis to the one-dimensional case via the finite speed of propagation (see [18, Corollary 7]), this result is
not useful to our problem due to the genuine two-dimensional nature of the random perturbation. Therefore, we first need
to extend the deterministic norm inflation result to cover this missing range (− d

2 ,0) without reducing the analysis to the
one-dimensional setting. In fact, this is the goal of the next subsection. More precisely, we consider the (unrenormalized)
NLW and prove norm inflation (at general initial data) in negative Sobolev spaces, including the missing range (− d

2 ,0).
This will be a basic building block for the proof of Proposition 1.10.

Even with norm inflation for the (unrenormalized) NLW (see Theorem 1.11 below), the actual proof of Proposition 1.10
requires a careful analysis. The main strategy for proving Proposition 1.10 is to establish a good approximation argument
for the perturbed NLW (1.33) and the cubic NLW (1.1) and then to invoke the norm inflation for the latter equation.
For this purpose, we need to have local well-posedness of the perturbed NLW (1.33) for a sufficiently long time. In
[53], Thomann and the first author proved almost sure local well-posedness of (1.33) via the Strichartz estimates and
Lemma 2.6. Due to the use of the space-time estimates, such an argument provides a rather short local existence time,
which is not sufficient for our purpose. In order to observe the desired growth for norm inflation, we need to maximize the
local existence time by avoiding any use of space-times estimates such as the Strichartz estimates. Unfortunately, the local
well-posedness argument based on Sobolev’s inequality and the product estimates (Lemma 2.3) within the framework of
the L2-based Sobolev spaces (see [28]) or the Wiener algebra (see Section 5) does not seem to suffice for our purpose.
We instead establish local well-posedness of the perturbed NLW (1.33) in a carefully chosen Fourier–Lebesgue space,
which provides a sufficiently large time of local existence and allows us to implement an approximation argument. See
Section 6 for details.

1.6. Norm inflation for the (unrenormalized) NLW in negative Sobolev spaces

In this subsection, we change gears and consider the following (deterministic) NLW:{
∂2
t u + (m − �)u + uk = 0

(u, ∂tu)|t=0 = (u0, u1),
(x, t) ∈M×R,(1.34)

where m ≥ 0 and M = Td or Rd . When m = 0, the equation (1.34) on Rd enjoys the scaling symmetry, which induces the
so-called scaling critical Sobolev index: sscaling = d

2 − 2
k−1 . On the other hand, NLW also enjoys the Lorentzian invariance

(conformal symmetry), which yields its own critical regularity sconf = d+1
4 − 1

k−1 (at least in the focusing case); see [37]
and [62, Exercise 3.67]. We then define the critical regularity scrit for a given integer k ≥ 2 by

scrit
def= max(sscaling, sconf,0) = max

(
d

2
− 2

k − 1
,
d + 1

4
− 1

k − 1
,0

)
.(1.35)

The Cauchy problem (1.34) has been studied extensively and it is known that (1.34) is locally well-posed in Hs(M) for
s ≥ scrit in many cases (possibly under an extra condition); see [33,34,37,61].

On the other hand, ill-posedness of (1.34) below the critical regularity scrit has been studied in various papers [11,18,
37,64,66]. In particular, Christ, Colliander, and Tao [18] proved the following norm inflation phenomenon for NLW (1.34)
on Rd ; given any ε > 0, there exist a solution uε to (1.34) on Rd and tε ∈ (0, ε) such that∥∥(uε(0), ∂tuε(0)

)∥∥
Hs (Rd )

< ε but
∥∥uε(tε)

∥∥
Hs(Rd )

> ε−1,(1.36)

provided that one of the following conditions holds:

(a) 0 < s < sscaling or s < −1

2
, or (b) − 1

2
< s < ssob

def= 1

2
− 1

k
.(1.37)

In particular, when k = 3, the norm inflation holds except for s = − 1
2 .10 We point out that, in [18, Corollary 7], the

conditions (a) and (b) are obtained first for d = 1 ([18, Theorem 6]) and then extended for d ≥ 2 by reducing the analysis
to the one-dimensional case via the finite speed of propagation.

10While Theorem 4 in [18] claims a norm inflation for s = − 1
2 when d = 1, their argument uses a scaling and hence seems to break down when

s = scrit = − 1
2 , contrary to their claim.
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The norm inflation (1.36) is a stronger form of instability than discontinuity of the solution map (at the trivial function).
In [66], Xia proved norm inflation based at general initial data (see (1.38) below) for NLW on T3 when 0 < s < sscaling.
See also the lecture note [64] by the third author. We point out that norm inflation at general initial data can not be reduced
to the one-dimensional setting and thus the conditions in (1.37) should be disregarded in the following discussion. In fact,
without reducing the analysis to the one-dimensional setting, the argument in [18] yields norm inflation for

(c) d ≥ 2 : 0 < s < sscaling or s ≤ −d

2
, or (d) d = 1 : s <

1

6
and s �= −1

2
,

leaving a gap − d
2 < s ≤ 0 for d ≥ 2. See [18, Theorems 4 and 6].

In what follows, we only consider the cubic case (k = 3). See [23] for the general case, where Forlano and the second
author extended our result (Theorem 1.11) to general k ≥ 2. The next theorem establishes norm inflation at general initial
data in negative Sobolev spaces.

Theorem 1.11. Given d ∈ N, let M = Rd or Td . Let k = 3 and m ≥ 0. Suppose that s ∈ R satisfies either (i) s ≤ − 1
2

when d = 1 or (ii) s < 0 when d ≥ 2. Fix (u0, u1) ∈Hs(M). Then, given any ε > 0, there exist a solution uε to (1.34) on
M and tε ∈ (0, ε) such that∥∥(uε(0), ∂tuε(0)

)− (u0, u1)
∥∥
Hs (M)

< ε but
∥∥uε(tε)

∥∥
Hs(M)

> ε−1.(1.38)

When (u0, u1) = 0, Theorem 1.11 reduces to the usual norm inflation (based at the zero function) stated in (1.36). It
follows from Theorem 1.11 that the solution map � : (u0, u1) ∈ Hs(M) �→ (u, ∂tu) ∈ C([−T ,T ];Hs(M)) to the cubic
NLW is discontinuous everywhere in Hs(M). Theorem 1.11 fills the regularity gap s �= − 1

2 left open in [18] for the
usual norm inflation in the case of the cubic nonlinearity (k = 3). Furthermore, our argument exploits a more robust
high-to-low energy transfer mechanism than that in [18] and yields a norm inflation without reducing the analysis to the
one-dimensional setting, which is crucial for proving norm inflation at general initial data.

The proof of Theorem 1.11 is a basic building block for proving Proposition 1.10 on almost sure norm inflation for
the perturbed NLW (1.33). While the argument in [11,18,66] is based on the (dispersionless) ODE approach and an
approximation argument, we adapt the Fourier analytic approach employed in [42], where the first author proved an
analogous norm inflation at general initial data for the cubic nonlinear Schrödinger equation on Rd and Td in negative
Sobolev spaces. The main idea is to exploit high-to-low energy transfer in the Picard second iterate. We refer readers to
the previous works [1,16,32,35,57], where a similar approach has been taken. We also mention the work [4,22] which
exploits high-to-low energy transfer.

Let us briefly describe the idea of the proof of Theorem 1.11. By a density argument, we may assume that (u0, u1) ∈
S(M)×S(M), where S(M) denotes the class of Schwartz functions if M =Rd and the class of C∞-functions if M =
Td . See Proposition 5.1 below. Then, the main goal is to construct a pair (φ0,ε, φ1,ε) ∈ C∞(M) × C∞(M), ε > 0, such
that a solution uε to (1.34) with initial data (u0,ε, u1,ε) = (u0, u1) + (φ0,ε, φ1,ε) satisfies the conclusion of Theorem 1.11.

By expressing uε in the Duhamel formulation (with m = 1), we have

uε(t) = S(t)(u0,ε, u1,ε) −
∫ t

0

sin((t − t ′)〈∇〉)
〈∇〉 u3

ε

(
t ′
)
dt ′.

As in [42], the main ingredient is to express a smooth solution uε in the following power series expansion:

uε =
∞∑

j=0

�j(u0,ε, u1,ε),

where �j(u0,ε, u1,ε) denotes homogeneous multilinear terms of degree 2j + 1 (in the linear solution S(t)(u0,ε, u1,ε)).
We then construct (φ0,ε, φ1,ε) such that, as ε → 0,

(i) (φ0,ε, φ1,ε) tends to 0 in Hs(M),
(ii) the second order term �1(u0,ε, u1,ε)(tε) tends to ∞ for some tε → 0,

(iii) the sum of the higher ordered terms �j(u0,ε, u1,ε)(tε), j ≥ 2, is of smaller order than the second order term
�1(u0,ε, u1,ε)(tε).

This yields the conclusion of Theorem 1.11. We remark that, in [16,32,35,57], �j was defined in a recursive manner
and the (scaled) modulation space M2,1(M) and its algebra property played an important role. In the following, however,
we follow a simplified approach presented in [42] and directly define �j via the power series expansion indexed by trees
and use the Wiener algebra FL1(M) instead of the modulation space. This latter approach is more suitable for proving
norm inflation at general initial data.
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1.7. Remarks and comments

We conclude this introduction by several remarks.
(i) In the main results (Theorems 1.6 and 1.7), we only considered the cubic case. It is easy to see that Theorem 1.6

is readily extendable to the case k ≥ 5. Our method for proving Theorem 1.11 on the norm inflation at general initial
data is elementary and can be applied to other power-type nonlinearities. Following this paper, the second author and
Forlano [23] recently established an analogous norm inflation result for (1.34) with a general power-type nonlinearity
uk . It is likely that Theorem 1.7 can also be extended for k ≥ 5. We point out, however, that a careful analysis (beyond
establishing norm inflation at general initial data) is needed in proving an analogue of Proposition 1.10. See Section 6.

(ii) The defocusing nature of the equation is needed only in obtaining global solutions (Theorems A and Proposi-
tion 1.4).

(iii) Consider the cubic nonlinear Schrödinger equation (NLS) on Td :

i∂tu − �u + |u|2u = 0.(1.39)

In this case, we can introduce a renormalization in a deterministic manner:

i∂tu − �u +
(

|u|2 − 2
∫

|u|2 dx

)
u = 0(1.40)

to study the dynamics with either random or deterministic initial data of low regularity. See [6,19,29,51,56]. Thanks to
the L2-conservation, the equations (1.39) and (1.40) are equivalent, at least for smooth solutions, via the invertible gauge
transform: u �→ e2it

∫ |u|2 dxu. Furthermore, in the case of Gaussian random initial data (under some regularity restriction),
the renormalized equation (1.40) is equivalent to the renormalized equation via the Wick renormalization (as in (1.19) but
in the complex-valued setting); see [6,51,52]. We point out that a deterministic renormalization as in (1.40) has also been
used to study the fractional NLS; see [54,55].

In case of the cubic NLW, it is tempting to consider a deterministic renormalization analogous to (1.40):

∂2
t u + (1 − �)u +

(
u2 − 3

∫
u2 dx

)
u = 0.(1.41)

Denoting the nonlinearity in (1.41) by f (u), its spatial Fourier transform is written as

f̂ (u)(n) =
∑

n=n1+n2+n3
(n1+n2)(n2+n3)(n3+n1)�=0

3∏
j=1

û(nj ) − 3
∣∣̂u(n)

∣∣2û(n) + 1n=0
(̂
u(0)

)3
.(1.42)

This renormalization cancels certain resonant interactions (nj +nk = 0 for j �= k), which allows us to make sense of f (u)

for u of the form (1.20) with z as in (1.8) and smoother v. Indeed, the problematic terms z3 and 3z2v in (z + v)3 are now
modified into z3 − 3

∫
z2 dx · z and 3(z2 − ∫

z2)v, each of which has a well-defined meaning.
There are, however, two issues in using the renormalized model (1.42). Unlike the cubic NLS, the renormalized model

(1.42) is not naturally associated with the unrenormalized model (1.1) with k = 3 in the sense that it is not equivalent to
the unrenormalized model even for smooth solutions, in particular, due to the lack of the L2-conservation for NLW. The
second point is that the renormalized model (1.42) possesses finite-time blowup solutions,11 whereas the Wick ordered
NLW (1.18) is almost surely globally well-posed; see Theorem A and Proposition 1.4. See also [28].

(iv) The main results of this paper are readily applicable to the two-dimensional stochastic NLW with space-time
white noise forcing studied in [26,28,43]. Moreover, our work provides a natural framework for obtaining similar non-
uniqueness results for singular stochastic PDEs. For instance, it would be interesting to establish an analogue of Theo-
rem 1.7 in the context of the stochastic wave equations in higher dimensions [7,8,45,46] and the stochastic heat equations
[15,20,30,38]. We mention a recent work [31] on the stochastic Navier–Stokes equations.

This remaining part of the paper is organized as follows. In Section 2, we collect some deterministic and stochastic
lemmas. In Section 3, we prove Proposition 1.4. In Section 4, we show the convergence and uniqueness of Wick powers
and then present the proof of Theorem 1.6. In Section 5, we prove norm inflation at general initial data for the deterministic

11For a function u independent of the spatial variable, the defocusing “renormalized” nonlinearity in (1.41) becomes the focusing (unrenormalized)

nonlinearity: (u2 −3
∫

u2 dx)u = −2u3, showing that there exists a finite time blowup solution u(t) ∼ √
2(T∗ − t)−1 in the sense of asymptotic equality

as t − T∗−.
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cubic NLW (1.34) with k = 3 (Theorem 1.11). In Section 6, we first establish local well-posedness of the perturbed NLW
(1.33) in a carefully chosen Fourier–Lebesgue space (Lemma 6.1) and an approximation lemma (Lemma 6.2), which
implies Proposition 1.10. In the Appendix, we present the proof of the almost sure convergence of stochastic objects
(Proposition 2.7).

2. Deterministic and stochastic lemmas

2.1. Hermite polynomials and white noise functional

First, we recall the Hermite polynomials Hk(x;σ) defined via the generating function:

F(t, x;σ)
def= etx− 1

2 σ t2 =
∞∑

k=0

tk

k!Hk(x;σ).(2.1)

For simplicity, we set F(t, x)
def= F(t, x;1) and Hk(x)

def= Hk(x;1). Note that Hk(x;σ) = σ
k
2 Hk(σ

− 1
2 x) holds. In the

following, we list the first few Hermite polynomials for readers’ convenience:

H0(x;σ) = 1, H1(x;σ) = x, H2(x;σ) = x2 − σ, H3(x;σ) = x3 − 3σx.(2.2)

For the derivative, the following properties hold:

∂xHk(x) = kHk−1(x) and Hk(x) = xHk−1(x) − ∂xHk−1(x).(2.3)

Next, we define the white noise functional. Let ξ(x;ω) be the (real-valued) mean-zero Gaussian white noise on T2

defined by

ξ(x;ω) =
∑
n∈Z2

gn(ω)ein·x,

where {gn}n∈Z2 is a sequence of independent standard complex-valued Gaussian random variables conditioned that g−n =
gn, n ∈ Z2. It is easy to see that ξ ∈Hs(T2) \H−1(T2), s < −1, almost surely. In particular, ξ is a distribution, acting on
smooth functions. In fact, the action of ξ can be defined on L2(T2). We define the white noise functional W(·) : L2(T2) →
L2(�) by

Wf (ω) = 〈
f, ξ(ω)

〉
L2 =

∑
n∈Z2

f̂ (n)gn(ω)(2.4)

for a real-valued function f ∈ L2(T2). Note that Wf = ξ(f ) is basically the Wiener integral of f . In particular, Wf is a
real-valued Gaussian random variable with mean 0 and variance ‖f ‖2

L2 . Moreover, W(·) is unitary:

E[Wf Wh] = 〈f,h〉L2(2.5)

for f,h ∈ L2(T2). In general, we have the following lemma. See [41, Lemma 1.1.1].

Lemma 2.1. (i) Let g1 and g2 be mean-zero real-valued jointly Gaussian random variables with variances σ1 and σ2.
Then, we have

E
[
Hk(g1;σ1)Hm(g2;σ2)

]= δkmk!{E[g1g2]
}k

.

(ii) Let f,h ∈ L2(T2) such that ‖f ‖L2 = ‖h‖L2 = 1. Then, for k,m ∈N∪ {0}, we have

E
[
Hk(Wf )Hm(Wh)

]= δkmk![〈f,h〉L2

]k
.

Here, δkm denotes the Kronecker’s delta function.
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Part (i) of Lemma 2.1 easily follows from the definition (2.1) of the generating function:

E
[
F(t, g1;σ1)F (s, g2;σ2)

]=
∞∑

k,m=0

tk

k!
sm

m!E
[
Hk(g1;σ1)Hm(g2;σ2)

]
,

while Part (ii) is an immediate corollary of Part (i) and (2.5).
As in [53], we also employ the white noise functional adapted to z(t). In view of (1.9), we define the white noise

functional Wt
(·) : L2(T2) → L2(�) with a parameter t ∈ R by

Wt
f (ω) = 〈

f, ξ t (ω)
〉
L2 =

∑
n∈Z2

f̂ (n)gt
0,n(ω).(2.6)

Here, ξ t denotes (a specific realization of) the white noise on T2 given by

ξ t (x;ω) =
∑
n∈Z2

gt
0,n(ω)ein·x,

where gt
0,n is defined in (1.10). Since {gt

0,n}n∈Z2 is a sequence of independent standard Gaussian random variables with

gt
0,−n = gt

0,n, the white noise functional Wt
(·) defined in (2.6) satisfies the same properties as the standard white noise

functional W(·) defined in (2.4). Moreover, we have the following lemma.

Lemma 2.2. Let f,h ∈ L2(T2) such that ‖f ‖L2 = ‖h‖L2 = 1. Then, for k,m ∈ N∪ {0} and t1, t2 ∈R, we have

E
[
Hk

(
W

t1
f

)
Hm

(
W

t2
h

)]= δkmk! (I(f,h)[t1 − t2]
)k

,(2.7)

where

I(f,h)[t] =
∑
n∈Z2

f̂ (n)̂h(n) cos
(
t〈n〉).

While Lemma 2.2 follows from a similar argument as in the proof of Lemma 3.4 in [50], for readers’ convenience, we
provide a proof here.

Proof. From (2.6) with (1.10), we have

W
t1
f (ω) + W

t2
h (ω) =

∑
n∈Z2

{(
f̂ (n) cos

(
t1〈n〉)+ ĥ(n) cos

(
t2〈n〉))g0,n(ω)

+ (
f̂ (n) sin

(
t1〈n〉)+ ĥ(n) sin

(
t2〈n〉))g1,n(ω)

}
=

∑
n∈Z2

{
Re

(
f̂ (n) cos

(
t1〈n〉)+ ĥ(n) cos

(
t2〈n〉))Reg0,n(ω)

+ Im
(
f̂ (n) cos

(
t1〈n〉)+ ĥ(n) cos

(
t2〈n〉)) Img0,n(ω)

+ Re
(
f̂ (n) sin

(
t1〈n〉)+ ĥ(n) sin

(
t2〈n〉))Reg1,n(ω)

+ Im
(
f̂ (n) sin

(
t1〈n〉)+ ĥ(n) sin

(
t2〈n〉)) Img1,n(ω)

}
,

where the second equality follows from (1.11) and the fact that f and h are real-valued. Since Regj,n and Imgj,n are
independent Gaussian random variables with mean 0 and variance 1

2 for n �= 0 (1 if n = 0) and gj,−n = gj,n, we have∫
�

e
tW

t1
f (ω)

esW
t2
h (ω) dP (ω) = e

1
2 (t2‖f ‖2

L2 +s2‖h‖2
L2 +2I(f,h)[t1−t2])

for any t, s ∈R, where once again we used the fact that f and h are real-valued.
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Let F be as in (2.1). Then, for any t, s ∈ R and f,h ∈ L2(T2) with ‖f ‖L2 = ‖h‖L2 = 1, we have∫
�

F
(
t,W

t1
f (ω)

)
F
(
s,W

t2
h (ω)

)
dP (ω) = e− t2+s2

2

∫
�

e
tW

t1
f (ω)+sW

t2
h (ω)

dP (ω)

= etsI(f,h)[t1−t2].(2.8)

Thus, it follows from (2.1) and (2.8) that

etsI(f,h)[t1−t2] =
∞∑

k,m=0

tksm

k!m!
∫

�

Hk

(
W

t1
f (ω)

)
Hm

(
W

t2
h (ω)

)
dP (ω).

By comparing the coefficients of tksm, we obtain (2.7). �

2.2. Product estimates

We recall the following product estimates. See [26] for the proof.

Lemma 2.3. Let 0 ≤ α ≤ 1.
(i) Suppose that 1 < pj , qj , r < ∞, 1

pj
+ 1

qj
= 1

r
, j = 1,2. Then, we have∥∥〈∇〉α(fg)

∥∥
Lr(Td )

�
(‖f ‖Lp1 (Td )

∥∥〈∇〉αg
∥∥

Lq1 (Td )
+ ∥∥〈∇〉αf

∥∥
Lp2 (Td )

‖g‖Lq2 (Td )

)
.

(ii) Suppose that 1 < p,q, r < ∞ satisfy the scaling condition: 1
p

+ 1
q

≤ 1
r

+ α
d

. Then, we have∥∥〈∇〉−α(fg)
∥∥

Lr(Td )
�
∥∥〈∇〉−αf

∥∥
Lp(Td )

∥∥〈∇〉αg
∥∥

Lq(Td )
.

Note that while Lemma 2.3 (ii) was shown only for 1
p

+ 1
q

= 1
r

+ α
d

in [26], the general case 1
p

+ 1
q

≤ 1
r

+ α
d

follows

from the inclusion Lr1(Td) ⊂ Lr2(Td) for r1 ≥ r2.

2.3. Tools from stochastic analysis

We use the short-hand notation L
q
T Lr

x = Lq([−T ,T ];Lr(T2)) for T > 0 and 1 ≤ q, r ≤ ∞, etc. Thanks to the random-
ization of the initial data, the following probabilistic Strichartz estimates hold.

Lemma 2.4. Given (φ0, φ1) ∈ H0(T2), let (φ0
0 , φω

1 ) be its randomization defined in (1.25). (i) Given 2 ≤ q < ∞ and
2 ≤ r < ∞, there exist C,c > 0 such that

P
(∥∥S(t)

(
φω

0 , φω
1

)∥∥
L

q
T Lr

x
> λ

)≤ C exp

(
−c

λ2

T
2
q ‖(φ0, φ1)‖2

H0

)

for any T > 0 and λ > 0.
(ii) Let s > 0 and (φ0, φ1) ∈Hs(T2). Then, given 2 ≤ r ≤ ∞, there exist C,c > 0 such that

P
(∥∥S(t)

(
φω

0 , φω
1

)∥∥
L∞

T Lr
x
> λ

)≤ C(1 + T ) exp

(
−c

λ2

max(1, T 2)‖(φ0, φ1)‖2
Hs

)
for any T > 0 and λ > 0.

The probabilistic Strichartz estimate in (i) of Lemma 2.4 is proved in [2,13,19]. See [9,47] for (ii) of Lemma 2.4.
While the (deterministic) Strichartz estimate holds only for admissible pairs (see [24,34,37,62]), Lemma 2.4 states that
the randomization allows us to take a wide range of exponents.

Next, we recall the Wiener chaos estimates. Let {gn}n∈N be a sequence of independent standard Gaussian random
variables defined on a probability space (�,F,P ), where F is the σ -algebra generated by this sequence. Given k ∈
N∪ {0}, we define the homogeneous Wiener chaoses Hk to be the closure (under L2(�)) of the span of Fourier–Hermite
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polynomials
∏∞

n=1 Hkn(gn), where Hj is the Hermite polynomial of degree j and k = ∑∞
n=1 kn.12 Then, we have the

following Ito–Wiener decomposition:

L2(�,F,P ) =
∞⊕

k=0

Hk.

See Theorem 1.1.1 in [41]. We also set

H≤k =
k⊕

j=0

Hj

for k ∈N.
Then, as a consequence of the hypercontractivity of the Ornstein–Uhlenbeck semigroup U(t) = etL due to Nelson

[40], we have the following Wiener chaos estimate [59, Theorem I.22]. See also [63, Proposition 2.4].

Lemma 2.5. Let k ∈N. Then, we have

‖X‖Lp(�) ≤ (p − 1)
k
2 ‖X‖L2(�)

for any p ≥ 2 and any X ∈ H≤k .

Note that :z�(t): defined in (1.14) belongs to H≤� for � ∈ N. By using the white noise functional defined in (2.6) and
Lemma 2.5, Thomann and the first author [53] proved the following estimate on Wick powers.

Lemma 2.6. Let � ∈N∪ {0}. Then, given 2 ≤ q, r < ∞ and ε > 0, there exists C,c > 0 such that

P
(∥∥〈∇〉−ε :z� :∥∥

L
q
T Lr

x
> λ

)≤ C exp

(
−c

λ
2
�

T
2
q�

)
for any T > 0 and λ > 0.

Note that an analogous estimate also holds even when q = r = ∞; see [28].
We conclude this section by stating a proposition useful for studying regularities of stochastic objects. We say that a

stochastic process X : R+ →D′(Td) is spatially homogeneous if {X(·, t)}t∈R+ and {X(x0 +· , t)}t∈R+ have the same law
for any x0 ∈ Td . Given h ∈ R, we define the difference operator δh by setting

δhX(t) = X(t + h) − X(t).(2.9)

Proposition 2.7. Let {XN }N∈N and X be spatially homogeneous stochastic processes : R+ → D′(Td). Suppose that
there exists k ∈ N such that XN(t) and X(t) belong to H≤k for each t ∈R+.

(i) Let t ∈R+. If there exists s0 ∈R such that

E
[∣∣X̂(n, t)

∣∣2]� 〈n〉−d−2s0(2.10)

for any n ∈ Zd , then we have X(t) ∈ Ws,∞(Td), s < s0, almost surely. Furthermore, if there exists γ > 0 such that

E
[∣∣X̂N(n, t) − X̂(n, t)

∣∣2]� N−γ 〈n〉−d−2s0(2.11)

for any n ∈ Zd and N ≥ 1, then XN(t) converges to X(t) in Ws,∞(Td), s < s0, almost surely.
(ii) Let T > 0 and suppose that (i) holds on [0, T ]. If there exists θ ∈ (0,1) such that

E
[∣∣δhX̂(n, t)

∣∣2]� 〈n〉−d−2s0+θ |h|θ ,(2.12)

12This implies that kn = 0 except for finitely many n’s.
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for any n ∈ Zd , t ∈ [0, T ], and h ∈ [−1,1],13 then we have X ∈ C([0, T ];Ws,∞(Td)), s < s0 − θ
2 , almost surely. Fur-

thermore, if there exists γ > 0 such that

E
[∣∣δhX̂N(n, t) − δhX̂(n, t)

∣∣2]� N−γ 〈n〉−d−2s0+θ |h|θ ,(2.13)

for any n ∈ Zd , t ∈ [0, T ], h ∈ [−1,1], and N ≥ 1, then XN converges to X in C([0, T ];Ws,∞(Td)), s < s0 − θ
2 , almost

surely.

Proposition 2.7 follows from a straightforward application of the Wiener chaos estimate (Lemma 2.5). For the proof,
see Proposition 3.6 in [39] and the Appendix. In particular, for the almost sure convergence claimed in Proposition 2.7,
we need to proceed as in a standard proof of Kolmogorov’a continuity criterion; see the Appendix for details. See also
Section 3 in [48].

As a corollary, we also have the following (See Remark A.3).

Corollary 2.8. Let {XN }N∈N be a spatially homogeneous stochastic process : R+ → D′(Td). Suppose that there exists
k ∈ N such that XN(t) belongs to H≤k for each t ∈R+.

(i) Let t ∈ R+. If there exist s0 ∈ R and γ > 0 such that

E
[∣∣X̂N(n, t)

∣∣2]� 〈n〉−d−2s0 ,

E
[∣∣X̂N(n, t) − X̂M(n, t)

∣∣2]�N−γ 〈n〉−d−2s0

for any n ∈ Zd and M ≥ N ≥ 1, then XN(t) converges in Ws,∞(Td), s < s0, almost surely.
(ii) Let T > 0 and suppose that (i) holds on [0, T ]. If there exist γ > 0 and θ ∈ (0,1) such that

E
[∣∣δhX̂N(n, t)

∣∣2]� 〈n〉−d−2s0+θ |h|θ ,
E
[∣∣δhX̂N(n, t) − δhX̂M(n, t)

∣∣2]�N−γ 〈n〉−d−2s0+θ |h|θ ,

for any n ∈ Zd , t ∈ [0, T ], h ∈ [−1,1], and M ≥ N ≥ 1, then XN converges in C([0, T ];Ws,∞(Td)), s < s0 − θ
2 , almost

surely.

Proposition 2.7 and Corollary 2.8 have been useful widely in the recent study of singular stochastic PDEs; see for
example, [27,28,43,45,46].

3. Global existence of smooth solutions for the renormalized NLW

In this section, we present the proof of Proposition 1.4. We point out that, thanks to the Cameron–Martin theorem [14],
we can assume that r0 = r1 = 0. See also [49]. Hence, it suffices to study

∂2
t v + (1 − �)v + Hk

(
S(t)

(
φω

0 , φω
1

)+ v(t);σ(t)
)= 0(3.1)

with the zero initial data, where σ(t) is defined by (1.27). In particular, it satisfies

σ(t)�
∥∥(φ0, φ1)

∥∥2
H0 and

∣∣∂tσ (t)
∣∣� ∥∥(φ0, φ1)

∥∥2

H
1
2
.(3.2)

We first go over local well-posedness of (3.1). For this purpose, we consider the following deterministic perturbed
cubic NLW:

∂2
t v + (1 − �)v + Hk

(
f (t) + v(t);σ(t)

)= 0,(3.3)

where f is a given deterministic function and σ(t) satisfies (3.2).

13We impose h ≥ −t such that t + h ≥ 0.
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Lemma 3.1. Let k ≥ 3 be an odd integer, (φ0, φ1) ∈ H0(T2), (v0, v1) ∈ H1(T2), and f ∈ Lk([t0, t0 + 1];L∞(T2)) for
some t0 ∈R. Suppose that there exist R,θ > 0 such that∥∥(v0, v1)

∥∥
H1 ≤ R and ‖f ‖Lk(I ;L∞(T2)) ≤ |I |θ(3.4)

for any interval I ⊂ [t0, t0 + 1]. Then, there exist τ = τ(R, θ,‖(φ0, φ1)‖H0) > 0 and a unique solution (v, ∂tv) ∈
C([t0, t0 + τ ];H1(T2)) to (3.3) with (v, ∂tv)|t=t0 = (v0, v1).

Remark 3.2. We point out that the second condition in (3.4) can be weakened as follows. Let τ = τ(R, θ,

‖(φ0, φ1)‖H0) > 0 be as in Lemma 3.1. If we assume

‖f ‖Lk([t0,t0+τ∗];L∞(T2)) ≤ τ θ∗

for some 0 < τ∗ ≤ τ instead of the second condition in (3.4), then the conclusion of Lemma 3.1 still holds on [t0, t0 + τ∗].

Proof of Lemma 3.1. Without loss of generality, we may assume t0 = 0 and restrict our attention only to positive times.
By writing (3.3) in the Duhamel formulation, we have

v(t) = �(v)(t)

def= S(t)(v0, v1) −
∫ t

0

sin((t − t ′)〈∇〉)
〈∇〉 Hk

(
f
(
t ′
)+ v

(
t ′
);σ (t ′))dt ′.

Let ��(v) = (�(v), ∂t�(v)) and �v = (v, ∂t v). Our goal is to show that �� is a contraction mapping in a suitable functional
framework.

Let 0 < T ≤ 1. Then, it follows from (3.2), (3.4), and Sobolev’s inequality that

∥∥Hk(f + v;σ)
∥∥

L1
T L2

x
≤

k∑
�=0

(
k

�

)∥∥H�(f ;σ)vk−�
∥∥

L1
T L2

x

≤ ∥∥vk
∥∥

L1
T L2

x
+

k∑
�=1

(
k

�

)∥∥H�(f ;σ)
∥∥

L1
T L∞

x

∥∥vk−�
∥∥

L∞
T L2

x

� T ‖v‖k
L∞

T L2k
x

+
k∑

�=1

(‖f ‖�

L�
T L∞

x

+ T ‖σ‖
�
2
L∞

T

)‖v‖k−�

L∞
T L

2(k−�)
x

� T ‖v‖k
L∞

T L2k
x

+
k∑

�=1

(
T θ� + T

∥∥(φ0, φ1)
∥∥�

H0

)‖v‖k−�

L∞
T L

2(k−�)
x

� T θ ′(
1 + ∥∥(φ0, φ1)

∥∥k

H0 + ‖v‖k
L∞

T H 1
x

)
,

where θ ′ = min(θ,1) > 0. Hence, we have∥∥ ��(v)
∥∥

L∞
T H1

x
≤ ∥∥(v0, v1)

∥∥
H1 + ∥∥Hk(f + v;σ)

∥∥
L1

T L2
x

≤ R + CT θ ′(
1 + ∥∥(φ0, φ1)

∥∥k

H0 + ‖v‖k
L∞

T H 1
x

)
.

A similar computation yields the difference estimate:∥∥ ��(v1) − ��(v2)
∥∥

L∞
T H1

x

≤ ∥∥Hk(f + v1;σ) − Hk(f + v2;σ)
∥∥

L1
T L2

x

≤ CT θ ′(
1 + ∥∥(φ0, φ1)

∥∥k−1
H0 + ‖v1‖k−1

L∞
T H 1

x
+ ‖v2‖k−1

L∞
T H 1

x

)‖v1 − v2‖L∞
T H 1

x
.
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By taking τ as

τ ∼
(

min(1,R)

1 + ‖(φ0, φ1)‖k
H0 + Rk

) 1
θ ′

,

we see that �� is a contraction mapping on the ball B2R = {�v ∈ C([0, τ ];H 1(T2)) : ‖�v‖L∞
τ H1

x
≤ 2R}. Therefore, we obtain

a unique14 local solution �v = (v, ∂t v) ∈ C([0, τ ];H1(T2)). �

We now present the proof of Proposition 1.4.

Proof of Proposition 1.4. As in [3,19], it suffices to show the following “almost” almost global existence; given any
T , ε > 0, there exists a set �T,ε ⊂ � such that P(�c

T,ε) < ε and for each ω ∈ �T,ε , there exists a solution �v = (v, ∂tv) to
(3.1) on [−T ,T ].

Let z(t) = S(t)(φω
0 , φω

1 ). Given T , ε > 0, we set

�T,ε = {
ω ∈ � : ‖z‖L∞

T ,x
+ ∥∥〈∇〉s z̃∥∥

Lk+1
T ,x

≤ M
}
,

where M is given by

M = M
(
T , ε,

∥∥(φ0, φ1)
∥∥
Hs

)∼ 〈T 〉∥∥(φ0, φ1)
∥∥
Hs

(
log

〈T 〉
ε

) 1
2

(3.5)

and z̃ is defined by

z̃(t) = − sin
(
t〈∇〉)φω

0 + cos(t〈∇〉)
〈∇〉 φω

1 .

Note that z̃ also satisfies Lemma 2.4 and that

∂t z = 〈∇〉̃z.(3.6)

Then, it follows from Lemma 2.4 that

P
(
�c

T,ε

)
< ε.

We point out that the condition s > 0 is needed to apply Lemma 2.4 (ii).
As in [13,47], we use the energy E(�v) = H(v, ∂tv), where H is as in (1.3). Using the energy E(�v), we show that there

exists R = R(T , ε,‖(φ0, φ1)‖Hs ) > 0 such that ∥∥(v, ∂tv)
∥∥

L∞
T H1

x
≤ R(3.7)

for any ω ∈ �T,ε .
For now, let us assume (3.7) and conclude “almost” almost sure global existence. Given τ > 0, we write

[−T ,T ] =
[T/τ ]⋃

j=−[T/τ ]−1

[
jτ, (j + 1)τ

]∩ [−T ,T ].

By making τ = τ(M) = τ(T , ε,‖(φ0, φ1)‖Hs ) > 0 small, we have

‖z‖Lk([jτ,(j+1)τ ];L∞(T2)) ≤ τ
1
k M ≤ τ

1
2k

for ω ∈ �T,ε . By iteratively applying Lemma 3.1 and Remark 3.2, we can construct a solution �v to (1.24) (with r0 = r1 =
1) on [jτ, (j + 1)τ ], j = −[T

τ
] − 1, . . . , [T

τ
]. This proves the “almost” almost sure global existence.

14At this point, the uniqueness holds only in B2R but by a standard continuity argument, we can extend the uniqueness to the entire C([0, τ ];H1(T2)).
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It remains to prove (3.7). We first consider the k = 3 case. In this case, it follows from (3.1), (2.2), (3.2), and Hölder’s
and Young’s inequalities that

E
(�v(t)

)=
∫ t

0

∫
T2

∂tv · (∂2
t v + (1 − �)v + v3)dx dt ′

=
∫ t

0

∫
T2

∂tv · (−H3(z + v;σ) + v3)dx dt ′

=
∫ t

0

∫
T2

∂tv · (−3zv2 − 3
(
z2 − σ

)
v − z3 + 3σz

)
dx dt ′

�
∫ t

0

∥∥∂tv
(
t ′
)∥∥

L2
x

{∥∥z(t ′)∥∥
L∞

x

∥∥v(t ′)∥∥2
L4

x

+ (∥∥z(t ′)∥∥2
L8

x
+ ∥∥(φ0, φ1)

∥∥2
H0

)∥∥v(t ′)∥∥
L4

x

+ ∥∥z(t ′)∥∥3
L6

x
+ ∥∥(φ0, φ1)

∥∥2
H0

∥∥z(t ′)∥∥
L2

x

}
dt ′

�
(
1 + ‖z‖L∞

T L∞
x

)∫ t

0
E
(�v(t ′))dt ′ + ‖z‖8

L8
T ,x

+ ∥∥(φ0, φ1)
∥∥8
H0)

+ ‖z‖6
L6

T ,x

+ ∥∥(φ0, φ1)
∥∥4
H0‖z‖L2

T ,x

� (1 + M)

∫ t

0
E
(�v(t ′))dt ′ + C

(
T ,M,

∥∥(φ0, φ1)
∥∥
H0

)
(3.8)

for ω ∈ �T,ε . Hence, from Gronwall’s inequality, we obtain (3.7) for k = 3 and s > 0.
Next, we consider the case k ≥ 5. From (2.3), we have

∂tH�

(
z(x, t);σ(t)

)= �H�−1
(
z(x, t);σ(t)

)
∂t z(x, t)

− 1�≥2 · �(� − 1)

2
H�−2

(
z(x, t);σ(t)

)
∂tσ (t).(3.9)

Then, from (3.1) and integration by parts with (3.9), we have

E
(�v(t)

)=
∫ t

0

∫
T2

∂tv · (∂2
t v + (1 − �)v + vk

)
dx dt ′

=
∫ t

0

∫
T2

∂tv · (−Hk(z + v;σ) + vk
)
dx dt ′

= −
k∑

�=1

(
k

�

)∫ t

0

∫
T2

∂tv · H�(z;σ)vk−� dx dt ′

= −
k∑

�=1

(
k

�

)
1

k − � + 1

{∫
T2

H�(z;σ)vk−�+1 dx|t0

−�

∫ t

0

∫
T2

H�−1(z;σ)∂t z · vk−�+1 dx dt ′

+ 1�≥2 · �(� − 1)

2

∫ t

0

∫
T2

H�−2(z;σ)∂tσ · vk−�+1 dx dt ′
}
.(3.10)

From Young’s inequality and (3.2), we have∣∣∣∣∫
T2

H�(z;σ)vk−�+1(t) dx

∣∣∣∣≤ C(δ)
∥∥H�

(
z(t);σ(t)

)∥∥ k+1
�

L
k+1
�

x

+ δ
∥∥v(t)

∥∥k+1
Lk+1

x

≤ C(δ)
(∥∥z(t)∥∥�

Lk+1
x

+ ∥∥(φ0, φ1)
∥∥ �

2
H0

) k+1
� + δE

(�v(t)
)
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≤ C(δ)
(
Mk+1 + ∥∥(φ0, φ1)

∥∥ k+1
2

H0

)+ δE
(�v(t)

)
(3.11)

for ω ∈ �T,ε and 1 ≤ � ≤ k, where δ > 0 is a small constant to be chosen later. From (3.6) and Young’s and Hölder’s
inequalities with (3.5), we have∣∣∣∣ ∫ t

0

∫
T2

H�−1(z;σ)∂t z · vk−�+1 dx dt ′
∣∣∣∣= ∣∣∣∣∫ t

0

∫
T2

H�−1(z;σ)〈∇〉̃z · vk−�+1 dx dt ′
∣∣∣∣

�
∫ t

0

∥∥H�−1
(
z
(
t ′
);σ (t ′))〈∇〉̃z(t ′)∥∥ k+1

�

L
k+1
�

x

+ ∥∥v(t ′)∥∥k+1
Lk+1

x
dt ′

�
((∥∥z(t)∥∥�−1

Lk+1
x

+ ∥∥(φ0, φ1)
∥∥ �−1

2
H0

)∥∥〈∇〉̃z(t)∥∥
Lk+1

x

) k+1
� +

∫ t

0
E
(�v(t ′))dt ′

� C
(
T ,M,

∥∥(φ0, φ1)
∥∥
H0

)+
∫ t

0
E
(�v(t ′))dt ′(3.12)

for ω ∈ �T,ε and 1 ≤ � ≤ k. Lastly, from Young’s inequality and (3.2), we have∣∣∣∣∫ t

0

∫
T2

H�−2(z;σ)∂tσ · vk−�+1 dx dt ′
∣∣∣∣

�
∥∥(φ0, φ1)

∥∥2

H
1
2

∫ t

0

∥∥H�−2
(
z
(
t ′
);σ (t ′))∥∥ k+1

�

L
k+1
�

x

+ ∥∥v(t ′)∥∥k+1
Lk+1

x
dt ′

�
∥∥(φ0, φ1)

∥∥2

H
1
2

∫ t

0

(∥∥z(t ′)∥∥�−2
Lk+1

x
+ ∥∥(φ0, φ1)

∥∥ �−2
2

H0

) k+1
� + E

(�v(t ′))dt ′

� C
(
T ,M,

∥∥(φ0, φ1)
∥∥
H

1
2

)+ ∥∥(φ0, φ1)
∥∥2

H
1
2

∫ t

0
E
(�v(t ′))dt ′(3.13)

for ω ∈ �T,ε and 2 ≤ � ≤ k. Hence, by taking δ > 0 small, it follows from (3.10), (3.11), (3.12), and (3.13) that

E
(�v(t)

)=
∫ t

0

d

dt
E
(�v(t ′))dt ′

≤ 1

2
E
(�v(t)

)+ C
(
T ,M,

∥∥(φ0, φ1)
∥∥
H

1
2

)+ ∥∥(φ0, φ1)
∥∥2

H
1
2

∫ t

0
E
(
v
(
t ′
))

dt ′,

which implies that

E
(�v(t)

)≤ C
(
T ,M,

∥∥(φ0, φ1)
∥∥
H

1
2

)+ ∥∥(φ0, φ1)
∥∥2

H
1
2

∫ t

0
E
(
v
(
t ′
))

dt ′

for ω ∈ �T,ε . Therefore, from Gronwall’s inequality, we obtain (3.7) for k ≥ 5 and s ≥ 1. This concludes the proof of
Proposition 1.4. �

Remark 3.3. Noting that Lemma 2.4(̇i) holds for s ≥ 0, we see that we can handle all the terms in (3.8) for s = 0, except
for

∫ t

0

∫
T2 ∂tv · zv2 dx dt ′. As for this term, we can use Yudovich’s argument as in [13] and hence Proposition 1.4 with

k = 3 indeed holds for s = 0.
For k ≥ 5, we used the assumption s ≥ 1 to control ‖〈∇〉̃z‖

Lk+1
T ,x

in (3.12). By proceeding as in [47] via the Littlewood–

Paley decomposition, we may extend the result to some s < 1. However, since the main purpose of Proposition 1.4 is to
give a remark on the almost sure global existence with smooth random initial data, we do not pursue this issue further.

4. Unique limit of smooth solutions with mollified data

In this section, we present the proof of Theorem 1.6. We first prove the almost sure convergence of the Wick powers
for the Gaussian initial data (1.6) in Section 4.1. We then show convergence in probability of the Wick powers for
smooth Gaussian initial data in Section 4.2. Moreover, we prove that the limit is independent of mollification kernels.
In Section 4.3, we go over local well-posedness of the perturbed NLW with deterministic perturbations (Lemma 4.4).
Finally, in Section 4.4, we iteratively apply Lemma 4.4 for short time intervals to prove Theorem 1.6.
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4.1. Convergence of the Wick powers

In this subsection, we present a proof of Proposition 1.1. We first estimate the variance of the Fourier coefficients of the
truncated Wick powers :z�

N(t): defined in (1.13).

Lemma 4.1. Let � ∈N∪ {0}. For any ε > 0, γ > 0, n ∈ Z2, t ∈R, and M ≥ N ≥ 1, we have

E
[∣∣〈:z�

N(t):, en

〉
L2

∣∣2]� 〈n〉−2+ε,(4.1)

E
[∣∣〈:z�

N(t): − :z�
M(t):, en

〉
L2

∣∣2]� N−γ 〈n〉−2+ε+γ ,(4.2)

where en(x) = ein·x . In addition, for any ε > 0, γ > 0, θ ∈ (0,1), n ∈ Z2, t ∈ R, h ∈ [−1,1], and M ≥ N ≥ 1, we have

E
[∣∣〈δh :z�

N(t):, en

〉
L2

∣∣2]� 〈n〉−2+ε+θ |h|θ ,(4.3)

E
[∣∣〈δh :z�

N(t): − δh :z�
M(t):, en

〉
L2

∣∣2]� N−γ 〈n〉−2+ε+γ+θ |h|θ ,(4.4)

where δh is as in (2.9).

Once we prove Lemma 4.1, by choosing γ and θ sufficiently small such that γ + θ < ε, Proposition 1.1 follows from
Corollary 2.8.

For the proof of Lemma 4.1, we employ the argument used in the proofs of [52, Lemma 2.5] and [53, Proposition 2.3].
Let us first introduce some notations. For fixed x ∈ T2, we define

ηN(x)(·) def= 1

σ
1
2
N

∑
|n|≤N

en(x)

〈n〉 en(·),(4.5)

where σN is as in (1.12). Note that ηN(x)(·) is real-valued with ‖ηN(x)‖L2(T2) = 1 for any x ∈ T2 and N ∈N. Moreover,
we have 〈

ηN(x), ηM(y)
〉
L2 = 1

σ
1
2
N σ

1
2
M

∑
|n|≤N

1

〈n〉2
en(y − x) = 1

σ
1
2
N σ

1
2
M

∑
|n|≤N

1

〈n〉2
en(x − y)(4.6)

for any x, y ∈ T2 and M ≥ N ≥ 1.

Proof of Lemma 4.1. We only consider (4.2) and (4.4), since (4.1) and (4.3) follow from an analogous (but simpler)
argument.

By (2.6) and (4.5) (see also (1.9)), we note that

zN(x, t) = σ
1
2
N

zN(x, t)

σ
1
2
N

= σ
1
2
N Wt

ηN(x).

Then, from (1.13), we have

:z�
N(t):= H�

(
zN(x, t);σN

)= σ
�
2
N H�

(
Wt

ηN(x)

)
.(4.7)

Given n ∈ Z2, define ��(n) by

��(n)
def= {

(n1, . . . , n�) ∈ (
Z2)� : n1 + · · · + n� = n

}
.

For (n1, . . . , n�) ∈ ��(n), we have maxj |nj | � |n|. It follows from (4.7), Lemma 2.1, and (4.6) that

E
[∣∣〈:z�

N(t): − :z�
M(t):, en

〉
L2

∣∣2]
=
∫
T2

x×T2
y

en(x)en(y)
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�

[
σ�

NH�

(
Wt

ηN(x)

)
H�

(
Wt

ηN(y)

)+ σ�
MH�

(
Wt

ηM(x)

)
H�

(
Wt

ηM(y)

)
− σ

�
2
N σ

�
2
M

{
H�

(
Wt

ηN(x)

)
H�

(
Wt

ηM(y)

)+ H�

(
Wt

ηM(x)

)
H�

(
Wt

ηN(y)

)}]
dP dx dy

= �!
{ ∑

��(n)
|nj |≤M

�∏
j=1

1

〈nj 〉2
−

∑
��(n)

|nj |≤N

�∏
j=1

1

〈nj 〉2

}

� N−γ 〈n〉−2+ε+γ .(4.8)

for any M ≥ N ≥ 1. This prove (4.2).
Next, we consider (4.4). From (4.7), Lemmas 2.1, and 2.2 with (4.6), we have

E
[∣∣〈δh :z�

N(t): − δh :z�
M(t):, en

〉
L2

∣∣2]
=
∫
T2

x×T2
y

en(x)en(y)

∫
�

[
σ�

N

{
H�

(
Wt+h

ηN (x)

)
H�

(
Wt+h

ηN (y)

)− H�

(
Wt+h

ηN (x)

)
H�

(
Wt

ηN(y)

)
− H�

(
Wt

ηN(x)

)
H�

(
Wt+h

ηN (y)

)+ H�

(
Wt

ηN(x)

)
H�

(
Wt

ηN(y)

)}
+ σ�

M

{
H�

(
Wt+h

ηM(x)

)
H�

(
Wt+h

ηM(y)

)− H�

(
Wt+h

ηM(x)

)
H�

(
Wt

ηM(y)

)
− H�

(
Wt

ηM(x)

)
H�

(
Wt+h

ηM(y)

)+ H�

(
Wt

ηM(x)

)
H�

(
Wt

ηM(y)

)}
− σ

�
2
N σ

�
2
M

{
H�

(
Wt+h

ηN (x)

)
H�

(
Wt+h

ηM(y)

)− H�

(
Wt+h

ηN (x)

)
H�

(
Wt

ηM(y)

)
− H�

(
Wt

ηN(x)

)
H�

(
Wt+h

ηM(y)

)+ H�

(
Wt

ηN(x)

)
H�

(
Wt

ηM(y)

)
+ H�

(
Wt+h

ηM(x)

)
H�

(
Wt+h

ηN (y)

)− H�

(
Wt+h

ηM(x)

)
H�

(
Wt

ηN(y)

)
− H�

(
Wt

ηM(x)

)
H�

(
Wt+h

ηN (y)

)+ H�

(
Wt

ηM(x)

)
H�

(
Wt

ηN(y)

)}]
dP dx dy

= 2�!
∑
��(n)

N<maxj |nj |≤M

{
�∏

j=1

1

〈nj 〉2
−

�∏
j=1

cos(h〈nj 〉)
〈nj 〉2

}
.(4.9)

By writing the last expression in a telescoping sum and applying the mean-value theorem, we have

RHS of (4.9) �
∑
��(n)

N<maxj |nj |≤M

�∑
k=1

|h|θ 〈nk〉θ
�∏

j=1

1

〈nj 〉2

�N−γ 〈n〉−2+ε+γ+θ |h|θ .

This proves (4.4). �

4.2. Uniqueness of the Wick powers

In this subsection, we study the Wick powers for smooth Gaussian initial data (uω
0,δ, u

ω
1,δ) in (1.29) and show that they

converge in probability to the Wick powers :z� : constructed in the previous subsection, which in particular implies that
limit is independent of mollification kernels. In order to signify the dependence on a mollification kernel ρ, we write

zρ,δ = S(t)
(
uω

0,δ, u
ω
1,δ

)
,
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σρ,δ = Var
(
zρ,δ(x, t)

)= E
[
z2
ρ,δ(x, t)

]=
∑
n∈Z2

|ρ̂(δn)|2
〈n〉2

,

:z�
ρ,δ(x, t): = H�

(
zρ,δ(x, t);σρ,δ

)
,

where (uω
0,δ, u

ω
1,δ) is defined in (1.29). Our main goal in this subsection is to prove the following proposition.

Proposition 4.2. Let � ∈N∪{0}. Then, for any T > 0 and ε > 0, the mollified Wick powers :z�
ρ,δ : converges in probability

to :z� : in C([−T ,T ];W−ε,∞(T2)) as δ → 0, where :z� : is defined in (1.14).

We point out that Proposition 4.2 establishes convergence in probability, not almost sure convergence. This is due to the
fact that we take a limit along a continuous parameter δ → 0. Indeed, in the second part of the proof of Proposition 4.2, by
restricting our attention to a discrete sequence tending to 0 (i.e. δ = 1

N
, N ∈ N), we show that the sequence { :z�

ρ, 1
N

: }N∈N
converges almost surely.15

As in the proof of Proposition 1.1, we first estimate the variance of the Fourier coefficients of the mollified Wick
powers :z�

ρ,δ(t):.

Lemma 4.3. Let � ∈N∪ {0}. For any ε > 0, γ ∈ (0,1), n ∈ Z2, t ∈ R, and δ, δ′ ∈ (0,1] we have

E
[∣∣〈:z�

ρ,δ(t):, en

〉
L2

∣∣2]� 〈n〉−2+ε,(4.10)

E
[∣∣〈:z�

ρ,δ(t): − :z�
ρ,δ′(t):, en

〉
L2

∣∣2]� ∣∣δ − δ′∣∣γ 〈n〉−2+ε+γ .(4.11)

In addition, for any ε > 0, γ, θ ∈ (0,1), n ∈ Z2, t ∈R, h ∈ [−1,1], and δ, δ′ ∈ (0,1], we have

E
[∣∣〈δh :z�

ρ,δ(t):, en

〉
L2

∣∣2]� 〈n〉−2+ε+θ |h|θ ,
E
[∣∣〈δh :z�

ρ,δ(t): − δh :z�
ρ,δ′(t):, en

〉
L2

∣∣2]� ∣∣δ − δ′∣∣γ 〈n〉−2+ε+γ+θ |h|θ .(4.12)

Proof. Since these estimates follow from a slight modification of the proof of Lemma 4.1, we give a brief explanation of
the proof of (4.11) and (4.12). Proceeding as in (4.8), we have

E
[∣∣〈:z�

ρ,δ(t): − :z�
ρ,δ′(t):, en

〉
L2

∣∣2]
= �!

∑
��(n)

{
�∏

j=1

|ρ̂(δnj )|2
〈nj 〉2

+
�∏

j=1

|ρ̂(δ′nj )|2
〈nj 〉2

−
�∏

j=1

ρ̂(δnj )ρ̂(δ′nj )

〈nj 〉2
−

�∏
j=1

ρ̂(δ′nj )ρ̂(δnj )

〈nj 〉2

}

= �!
∑
��(n)

�∏
j=1

|ρ̂(δnj ) − ρ̂(δ′nj )|2
〈nj 〉2

.(4.13)

Since ρ ∈ L1(T2), it follows from the mean value theorem that∣∣ρ̂(δn) − ρ̂
(
δ′n

)∣∣≤ ∫
T2

∣∣1 − ei(δ−δ′)n·x∣∣∣∣ρ(x)
∣∣dx � min

(
1,
∣∣δ − δ′∣∣|n|).(4.14)

Hence, (4.11) follows from (4.13) and (4.14).
Similarly, proceeding as in (4.9) with (4.14) and the mean value theorem, we have

E
[∣∣〈δh :z�

ρ,δ(t): − δh :z�
ρ,δ′(t):, en

〉
L2

∣∣2]
15It seems possible to adapt the argument in the proof of Proposition 2.3 in [65] to prove almost sure convergence of :z�

ρ,δ : along a continuous parameter
δ → 0. We, however, do not pursue this issue here.
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= 2�!
∑
��(n)

{
�∏

j=1

|ρ̂(δnj )|2
〈nj 〉2

−
�∏

j=1

|ρ̂(δnj )|2 cos(h〈nj 〉)
〈nj 〉2

+
�∏

j=1

|ρ̂(δ′nj )|2
〈nj 〉2

−
�∏

j=1

|ρ̂(δ′nj )|2 cos(h〈nj 〉)
〈nj 〉2

−
(

�∏
j=1

ρ̂(δnj )ρ̂(δ′nj )

〈nj 〉2
−

�∏
j=1

ρ̂(δnj )ρ̂(δ′nj ) cos(h〈nj 〉)
〈nj 〉2

+
�∏

j=1

ρ̂(δ′nj )ρ̂(δnj )

〈nj 〉2
−

�∏
j=1

ρ̂(δ′nj )ρ̂(δnj ) cos(h〈nj 〉)
〈nj 〉2

)}

= �!
∑
��(n)

{
�∏

j=1

|ρ̂(δnj ) − ρ̂(δ′nj )|2
〈nj 〉2

−
�∏

j=1

|ρ̂(δnj ) − ρ̂(δ′nj )|2 cos(h〈nj 〉)
〈nj 〉2

}

�
∣∣δ − δ′∣∣γ 〈n〉−2+ε+γ+θ |h|θ ,(4.15)

yielding (4.12). �

We are now ready to prove Proposition 4.2.

Proof of Proposition 4.2. Fix small γ, θ > 0 such that γ + θ < ε. Fix t ∈ R. Then, it follows from (4.10), (4.11), and
Lemma 2.5 (see also Remark A.3) that, as δ → 0, :z�

ρ,δ(t) : converges to some limit :z�
ρ(t) : in Lp(�;W−ε,∞(T2)) for

any finite p ≥ 1.
Let {δj }j∈N be a sequence satisfying δj → 0 as j → ∞. There exists a subsequence {δj (m)}m∈N ⊂ {δj }j∈N such that

δj (m) < m−1 for m ∈ N. It follows from Corollary 2.8 with Lemma 4.3 that the subsequence :z�
ρ,δj (m)

: converges almost

surely (and hence in measure) to :z�
ρ : in C([−T ,T ];W−ε,∞(T2)), as m → ∞. Since the limit :z�

ρ : is independent of the

choice of a sequence {δj }j∈N, we deduce that :z�
ρ,δ : converges in probability to :z�

ρ : in C([−T ,T ];W−ε,∞(T2)).

Next, we prove that the limit is independent of mollification kernels. Since ρ ∈ L1(T2) and ρ̂(0) = 1, it follows from
the mean value theorem that ∣∣∣∣1 − ρ̂

(
n

N

)∣∣∣∣≤ ∫
T2

∣∣1 − e−i n
N

·x∣∣∣∣ρ(x)
∣∣dx � min

(
1,

|n|
N

)
.

Given h ∈ [−1,1], proceeding as in (4.15), we have

E
[∣∣〈δh :z�

N(t): − δh :z�

ρ, 1
N

(t):, en

〉
L2

∣∣2]
= 2�!

∑
��(n)

{
�∏

j=1

1|nj |≤N

〈nj 〉2
−

�∏
j=1

1|nj |≤N cos(h〈nj 〉)
〈nj 〉2

+
�∏

j=1

|ρ̂(
nj

N
)|2

〈nj 〉2
−

�∏
j=1

|ρ̂(
nj

N
)|2 cos(h〈nj 〉)
〈nj 〉2

−
(

�∏
j=1

1|nj |≤N ρ̂(
nj

N
)

〈nj 〉2
−

�∏
j=1

1|nj |≤N ρ̂(
nj

N
) cos(h〈nj 〉)

〈nj 〉2

+
�∏

j=1

1|nj |≤N ρ̂(
nj

N
)

〈nj 〉2
−

�∏
j=1

1|nj |≤N ρ̂(
nj

N
) cos(h〈nj 〉)

〈nj 〉2

)}

= 2�!
∑
��(n)

{
�∏

j=1

|1|nj |≤N − ρ̂(
nj

N
)|2

〈nj 〉2
−

�∏
j=1

|1|nj |≤N − ρ̂(
nj

N
)|2 cos(h〈nj 〉)

〈nj 〉2

}
.(4.16)
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By writing the summand in a telescoping sum and applying the mean value theorem (to 1 − cos(h〈nj 〉)) and (4.16), we
have

RHS of (4.16) �
∑
��(n)

�∑
k=1

|h|θ 〈nk〉θ
�∏

j=1

|1|nj |≤N − ρ̂(
nj

N
)|2

〈nj 〉2

�
∑
��(n)

�∑
k=1

|h|θ 〈nk〉θ
�∏

j=1

1|nj |>N

〈nj 〉2

+
∑
��(n)

�∑
k=1

|h|θ 〈nk〉θ
�∏

j=1

|1|nj |≤N − ρ̂(
nj

N
)|2

〈nj 〉2

�N−γ 〈n〉−2+ε+γ+θ |h|θ .
A similar estimate holds for the difference:

E
[∣∣〈:z�

N(t): − :z�

ρ, 1
N

(t):, en

〉
L2

∣∣2].
Therefore, from the above computation with Lemma 4.1 and Proposition 2.7, we see that, as N → ∞, :z�

ρ, 1
N

: converges

almost surely to : z� : (constructed in Proposition 1.1) in C([−T ,T ];W−ε,∞(T2)). Together with the convergence in
probability of {:z�

ρ,δ :}δ∈(0,1] to :z�
ρ :, we conclude that :z� := :z�

ρ : almost surely. This completes the proof of Proposi-
tion 4.2. �

4.3. Local well-posedness of the perturbed NLW with deterministic perturbation

In this subsection, we consider the local well-posedness of the following Cauchy problem:{
∂2
t v + (1 − �)v + v3 + 3f1v

2 + 3f2v + f3 = 0,

(v, ∂tv)|t=0 = (v0, v1),
(4.17)

where f1, f2, f3 are given (deterministic) functions. We define the function space

Xs(I) = C
(
I ;Hs

(
T2))∩ C1(I ;Hs−1(T2))

for s ∈ R and an interval I ⊂R. If I = [−T ,T ], we write Xs
T = Xs([−T ,T ]).

Lemma 4.4. Let 1
2 < s < 1. There exists ε = ε(s) > 0 such that if f1, f2, f3 ∈ L

2
ε

loc(R;W−ε, 2
ε (T2)), then the Cauchy

problem (4.17) is locally well-posed in Hs(T2). More precisely, given (v0, v1) ∈ Hs(T2), there exist T > 0 and a unique
solution v ∈ Xs

T to (4.17), depending continuously on the enhanced data set

� = (v0, v1, f1, f2, f3)(4.18)

in the class:

X s,ε
T =Hs

(
T2)× L

2
ε
([−T ,T ];W−ε, 2

ε
(
T2))3

.

By using the Strichartz estimates as in [26,53], we can indeed prove local well-posedness of (4.17) for 1
4 < s < 1.

Note that s = 1
4 is the critical regularity as in (1.35). For simplicity, however, we only consider the case 1

2 < s < 1,
where the local well-posedness follows from a fixed point argument with Sobolev’s inequality and the product estimates
(Lemma 2.3).

Proof. The proof is essentially contained in Proposition 4.1 in [28] and thus we will be brief here. By writing (4.17) in
the Duhamel formulation, we have

v(t) = ��(v)(t)
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def= S(t)(v0, v1) −
∫ t

0

sin((t − t ′)〈∇〉)
〈∇〉

(
v3 + 3f1v

2 + 3f2v + f3
)(

t ′
)
dt ′.

We will show that �� is a contraction mapping on a ball in Xs
T .

By Sobolev’s inequality, we have∥∥∥∥∫ t

0

sin((t − t ′)〈∇〉)
〈∇〉 v3(t ′)dt ′

∥∥∥∥
Xs

T

� T
∥∥v3

∥∥
L∞

T Hs−1
x

� T
∥∥v3

∥∥
L∞

T L

2
2−s
x

� T ‖v‖3

L∞
T L

6
2−s
x

� T ‖v‖3

L∞
T H

1+s
3

x

� T ‖v‖3
Xs

T
(4.19)

for 1
2 ≤ s ≤ 1. From Lemma 2.3 and Sobolev’s inequality, we have∥∥∥∥∫ t

0

sin((t − t ′)〈∇〉)
〈∇〉

(
f1v

2)(t ′)dt ′
∥∥∥∥

Xs
T

�
∥∥〈∇〉−ε

(
f1v

2)∥∥
L1

T L2
x

� T 1− ε
2
∥∥〈∇〉−εf1

∥∥
L

2
ε
T L

2
ε
x

∥∥〈∇〉ε(v2)∥∥
L∞

T L2
x

� T 1− ε
2
∥∥〈∇〉−εf1

∥∥
L

2
ε
T L

2
ε
x

∥∥〈∇〉εv∥∥
L∞

T L4
x
‖v‖L∞

T L4
x

� T 1− ε
2
∥∥〈∇〉−εf1

∥∥
L

2
ε
T L

2
ε
x

‖v‖2
Xs

T
,(4.20)

provided that 1
2 < s < 1 and ε = ε(s) > 0 is sufficiently small. Similarly, we have∥∥∥∥∫ t

0

sin((t − t ′)〈∇〉)
〈∇〉 (f2v)dt ′

∥∥∥∥
Xs

T

� T 1− ε
2
∥∥〈∇〉−εf2

∥∥
L

2
ε
T L

2
ε
x

∥∥〈∇〉εv∥∥
Xs

T
,(4.21)

∥∥∥∥∫ t

0

sin((t − t ′)〈∇〉)
〈∇〉 f3

(
t ′
)
dt ′

∥∥∥∥
Xs

T

� T 1− ε
2
∥∥〈∇〉−εf3

∥∥
L

2
ε
T L

2
ε
x

.(4.22)

A standard argument with (4.19)–(4.22) then shows that �� is a contraction on a small ball in Xs
T by choosing

T = T (‖�‖X s,ε
1

) > 0 sufficiently small. Moreover, a slight modification of the argument allows us to show continuous
dependence of the solution on the enhanced data set � in (4.18). Since the argument is standard, we omit details. �

4.4. Proof of Theorem 1.6

We conclude this section by presenting the proof of Theorem 1.6. Set v = u − z, where u is the solution constructed in
Theorem A and z = S(t)(uω

0 , uω
1 ) is as in (1.8). Let vρ,δ be the solution of (1.24) with the mollified initial data (uω

0,δ, u
ω
1,δ)

defined in (1.29) with a mollification kernel ρ. Let T > 0 and 1
2 < s0 < 1. In view of Proposition 4.2, it suffices to show

that vρ,δ converges in probability to v in C([−T ,T ];Hs0(T2)).
By Theorem A, the global solution u ∈ C(R;Hs(T2)) to (1.18) satisfies v = u− z ∈ C(R;Hs0(T2)), almost surely. In

particular, from the construction of the global solution, for any η > 0, there exists R = R(T ,η) ≥ 1 such that �1 = {ω ∈
� : ‖(v, ∂tv)‖

L∞
T Hs0

x
≤ R} satisfies

P
(
�c

1

)
<

η

4
.(4.23)

We divide the interval [−T ,T ] into finitely many subintervals:

[−T ,T ] =
[T/τ ]⋃

j=−[T/τ ]−1

Ij , Ij = [
jτ, (j + 1)τ

]∩ [−T ,T ],
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where τ > 0 is to be chosen later. Let ε = ε(s0) > 0 be as in Lemma 4.4. We set

�2 =
{
ω ∈ � : ∥∥:z� :∥∥

L
2
ε (Ij ;W−ε, 2

ε (T2))
≤ 1, � = 1,2,3, j = −

[
T

τ

]
− 1, . . . ,

[
T

τ

]}
.

By Lemma 2.6 and taking τ = τ(T , η) > 0 small, we have

P
(
�c

2

)≤
3∑

�=1

[ T
τ
]∑

j=−[ T
τ
]−1

P
(∥∥:z� :∥∥

L
2
ε (Ij ;W−ε, 2

ε (T2))
> 1

)

�
3∑

�=1

T

τ
exp

(−cτ− ε
�
)

� T

τ
τ exp

(
− c

2
τ− ε

3

)
= T exp

(
− c

2
τ− ε

3

)
<

η

4
.(4.24)

Moreover, we set

�3,δ = {
ω ∈ � : ‖ :z� : − :z�

ρ,δ : ‖
L

2
ε
T W

−ε, 2
ε

x

≤ 8− T
τ
−5, � = 1,2,3

}
.

From Proposition 4.2, there exists δ0 > 0 such that for any 0 < δ < δ0, we have

P
(
�c

3,δ

)
<

η

4
.(4.25)

Then, we define �T,η,δ = �1 ∩ �2 ∩ �3,δ . It follows from (4.23), (4.24), and (4.25) that

P
(
�c

T,η,δ

)
<

3

4
η.(4.26)

Let wρ,δ = v − vρ,δ . Then, wρ,δ satisfies{
∂2
t wρ,δ + (1 − �)wρ,δ +N 3

(uω
0 ,uω

1 )(v) −N 3
(uω

0,δ ,u
ω
1,δ)

(vρ,δ) = 0,

(wρ,δ, ∂twρ,δ)|t=0 = (0,0),

where N 3
(uω

0 ,uω
1 )

(v) is well defined thanks to Theorem A. From (1.19), we have

N 3
(uω

0 ,uω
1 )(v) −N 3

(uω
0,δ ,u

ω
1,δ)

(vρ,δ)

= v3 − v3
ρ,δ + 3

(
v2 − v2

ρ,δ

)
z + 3v2

ρ,δ(z − zρ,δ) + 3wρ,δ :z2 :
+ 3vρ,δ

(:z2 : − :z2
ρ,δ :

)+ :z3 : − :z3
ρ,δ :

= −3v2wρ,δ + 3v(2v − wρ,δ)wρ,δ + w3
ρ,δ + 3(2v − wρ,δ)wρ,δz

+ 3
(
v2 − 2vwρ,δ + w2

ρ,δ

)
(z − zρ,δ) + 3wρ,δ :z2 :

+ 3(v − wρ,δ)
(:z2 : − :z2

ρ,δ :
)+ :z3 : − :z3

ρ,δ : .
By taking τ = τ(R) > 0 sufficiently small, the local well-posedness argument in the proof of Lemma 4.4 yields

‖v‖Xs0 (Ij ) ≤ 2R(4.27)

for ω ∈ �T,η,δ and j = −[T
τ
] − 1, . . . , [T

τ
].
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In the following, we restrict our attention to positive times, i.e. we work on Ij for j = 0, . . . , [T
τ
]. By applying the

estimates (4.19), (4.20), (4.21), and (4.22) with (4.27) and taking τ = τ(R) > 0 sufficiently small, we have

‖wρ,δ‖Xs0 (Ij ) ≤ ∥∥(wρ,δ(jτ ), ∂twρ,δ(jτ )
)∥∥

Hs0

+ Cτ 1− ε
2
((

R2 + ‖wρ,δ‖2
Xs0 (Ij )

)‖wρ,δ‖Xs0 (Ij )

+ (
R + ‖wρ,δ‖Xs0 (Ij )

)‖wρ,δ‖Xs0 (Ij )

+ (
R2 + ‖wρ,δ‖2

Xs0 (Ij )

)‖z − zρ,δ

∥∥
L

2
ε
T W

−ε, 2
ε

x

+ (
R + ‖wρ,δ‖Xs0 (Ij )

)∥∥ :z2 : − :z2
ρ,δ : ‖

L
2
ε
T W

−ε, 2
ε

x

+ ‖ :z3 : − :z3
ρ,δ : ‖

L
2
ε
T W

−ε, 2
ε

x

)
≤ ∥∥(wρ,δ(jτ ), ∂twρ,δ(jτ )

)∥∥
Hs0

+ 1

2

3∑
�=1

(∥∥wρ,δ‖�
Xs0 (Ij )+

∥∥ :z� : − :z�
ρ,δ : ‖

L
2
ε
T W

−ε, 2
ε

x

)
for any ω ∈ �T,η,δ and j = 0, . . . , [T

τ
]. By setting

A =
3∑

�=1

‖ :z� : − :z�
ρ,δ : ‖

L
2
ε
T W

−ε, 2
ε

x

,

we have

‖wρ,δ‖Xs0 (Ij ) ≤ 2
∥∥(wρ,δ(jτ ), ∂twρ,δ(jτ )

)∥∥
Hs0

+ ‖wρ,δ‖2
Xs0 (Ij ) + ‖wρ,δ‖3

Xs0 (Ij ) + A.(4.28)

When j = 0, since (wρ,δ(0), ∂twρ,δ(0)) = (0,0) and A < 8−3, a continuity argument yields

‖wρ,δ‖Xs0 (I0) ≤ 2A.

In particular, we have ‖(wρ,δ(τ ), ∂twρ,δ(τ ))‖Hs0 ≤ 2A. For j = 1, . . . , [T
τ
], since A < 8−j−3 for ω ∈ �T,η,δ , we can

repeatedly apply (4.28) and the continuity argument to obtain

‖wρ,δ‖Xs0 (Ij ) ≤ 2 · 8jA.

Hence, we have

‖wρ,δ‖L∞
T H

s0
x

≤ 2 · 8[ T
τ
]+1

3∑
�=1

‖ :z� : − :z�
ρ,δ : ‖

L
2
ε
T W

−ε, 2
ε

x

.(4.29)

Finally, from (4.29) and Proposition 4.2, we see that for any λ > 0, there exists δ1 ∈ (0, δ0) such that

P
({

ω ∈ �T,η,δ : ‖wρ,δ‖L∞
T H

s0
x

> λ
})

<
η

4

for 0 < δ < δ1. Together with (4.26), we conclude that wρ,δ converges in probability to 0 in C([−T ,T ];Hs0(T2)).
Recalling that wρ,δ = v − vρ,δ , this concludes the proof of Theorem 1.6.

Remark 4.5. Since (φ0,ε, φ1,ε) is smooth, Theorem A with the Cameron–Martin theorem [14] implies almost sure global
existence of the solution vε to (1.31); see [49]. Moreover, for any T > 0 and η > 0, there exists R̃ = R̃(T , η,φ0,ε, φ1,ε)

such that

P
(∥∥(vε, ∂tvε)

∥∥
L∞

T Hs0
x

> R̃
)
<

η

4
.
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Then, we can use this bound instead of (4.23) and repeat the argument presented above to conclude that the solution vδ,ε

to (1.30) converges in probability to the solution vε to (1.31).

5. Norm inflation for the (unrenormalized) NLW in negative Sobolev spaces

In this section, we present the proof of Theorem 1.11, norm inflation for the cubic NLW (1.34) with k = 3. In the
remaining part of the paper, when we refer to (1.34) (and (1.1)), it is understood that k = 3. Furthermore, for simplicity
of the presentation, we set m = 1, where m denotes the mass m ≥ 0 in (1.34). Namely, we consider (1.1) with k = 3.

We first state the following norm inflation result for smooth initial data.

Proposition 5.1. Let d ∈ N. Suppose that s ∈ R satisfies either (i) s ≤ − 1
2 when d = 1 or (ii) s < 0 when d ≥ 2. Fix

�u0 = (u0, u1) ∈ S(M) × S(M). Then, given any n ∈ N, there exist a solution un to the cubic NLW (1.1) with k = 3 and
tn ∈ (0, 1

n
) such that

∥∥(un(0), ∂tun(0)
)− (u0, u1)

∥∥
Hs (M)

<
1

n
and

∥∥un(tn)
∥∥

Hs(M)
> n.(5.1)

Once we prove Proposition 5.1, Theorem 1.11 follows from the density of S(M) × S(M) in Hs(M) and a diagonal
argument. See [42,57,66]. While the basic structure of the argument is the same as that presented in [42], we establish
different multilinear estimates by exploiting one degree of smoothing in the Duhamel integral operator I in (5.4) below.
In the following, we fix �u0 ∈ S(M) × S(M) and may suppress the dependence of various constants on �u0.

Before proceeding further, we introduce some notations. Given M = Rd or Td , let M̂ denote the Pontryagin dual of
M, i.e.

M̂ =
{
Rd if M =Rd,

Zd if M = Td .
(5.2)

When M̂ = Zd , we endow it with the counting measure. We then define the Fourier–Lebesgue space FLs,p(M) by the
norm:

‖f ‖FLs,p(M) = ∥∥〈ξ〉s f̂ ∥∥
Lp(M̂)

.

In particular, FL1(M)
def= FL0,1(M) corresponds to the Wiener algebra. We also define

−→FLs,p(M)
def= FLs,p(M) ×FLs−1,p(M).(5.3)

In Section 5.1, we first go over local well-posedness of (1.1) in the Wiener algebra
−→FL0,1(M). Then, we express

solutions in a power series expansion in terms of initial data, where the summation ranges over all finite ternary trees. We
then establish basic nonlinear estimates on the multilinear terms arising in the power series expansion in Section 5.2. In
Section 5.3, we present the proof of Proposition 5.1.

5.1. Power series expansion indexed by trees

We define the Duhamel integral operator I by

I[u1, u2, u3](t) def= −
∫ t

0

sin((t − t ′)〈∇〉)
〈∇〉 [u1u2u3]

(
t ′
)
dt ′.(5.4)

When all the three arguments u1, u2, and u3 are identical, we use the following shorthand notation:

I3[u] def= I[u,u,u].(5.5)

We say that u is a solution to (1.1) with (u, ∂tu)|t=0 = (u0, u1) if u satisfies the following Duhamel formulation:

u(t) = S(t)(u0, u1) + I3[u](t).(5.6)

We first state the local well-posedness of (1.1) in
−→FL0,1(M).
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Lemma 5.2. The cubic NLW (1.1) with k = 3 is locally well-posed in
−→FL0,1(M). More precisely, given �u0 = (u0, u1) ∈−→FL0,1(M), there exist T ∼ ‖�u0‖−1−→FL0,1

> 0 and a unconditionally unique solution u ∈ C([−T ,T ];FL1(M)), satisfying

(5.6).

The unconditional uniqueness refers to the uniqueness of solutions in the entire C([−T ,T ];FL1(M)). Unconditional
uniqueness is a concept of uniqueness which does not depend on how solutions are constructed.

In view of the boundedness of S(t) in
−→FL0,1(M) and the algebra property of FL1(M) together with the bound:∫ t

0

| sin((t − t ′)〈ξ〉)|
〈ξ〉 dt ′ ≤ Ct2(5.7)

uniformly in ξ ∈ M̂ (also see (6.17) below) Lemma 5.2 follows from a standard fixed point argument. We omit details.

Let �u0 ∈ −→FL0,1(M). Then, (the proof of) Lemma 5.2 guarantees the convergence of the following Picard iteration
scheme:

P0( �φ) = S(t)�u0 and Pj (�u0) = S(t)�u0 + I3[Pj−1(�u0)
]
, j ∈N,(5.8)

at least for short times. It follows from (5.5) and (5.8) that Pj consists of multilinear terms of degrees at most 3j (in �u0).
In the following, we discuss a more general recursive scheme and express a solution in a power series indexed by trees as
in [17,42]. We introduce the following notion of (ternary) trees. Our trees refer to a particular subclass of usual trees with
the following properties:

Definition 5.3. (i) Given a partially ordered set T with partial order ≤, we say that b ∈ T with b ≤ a and b �= a is a child
of a ∈ T , if b ≤ c ≤ a implies either c = a or c = b. If the latter condition holds, we also say that a is the parent of b.

(ii) A tree T is a finite partially ordered set, satisfying the following properties:

• Let a1, a2, a3, a4 ∈ T . If a4 ≤ a2 ≤ a1 and a4 ≤ a3 ≤ a1, then we have a2 ≤ a3 or a3 ≤ a2.
• A node a ∈ T is called terminal, if it has no child. A non-terminal node a ∈ T is a node with exactly three children.
• There exists a maximal element r ∈ T (called the root node) such that a ≤ r for all a ∈ T .
• T consists of the disjoint union of T 0 and T ∞, where T 0 and T ∞ denote the collections of non-terminal nodes and

terminal nodes, respectively.

Note that the number |T | of nodes in a tree T is 3j + 1 for some j ∈N∪ {0}, where |T 0| = j and |T ∞| = 2j + 1. Let
us denote the collection of trees of j generations (i.e. with j parental nodes) by T(j), i.e.

T(j)
def= {

T : T is a tree with |T | = 3j + 1
}
.

Recall the following exponential bound on the number #T(j) of trees of j generations. See [42] for a proof.

Lemma 5.4. Let T(j) be as above. Then, there exists C > 0 such that

#T(j) ≤ Cj

for all j ∈N∪ {0}.

Next, we express the solution u constructed in Lemma 5.2 in a power series indexed by trees. Fix �u0 ∈ −→FL0,1(M).
Given a tree T ∈ T(j), j ∈ N∪ {0}, we associate a multilinear operator (in �u0) by the following rules:

• Replace a non-terminal node “ ” by the Duhamel integral operator I defined in (5.4) with its three children as argu-
ments u1, u2, and u3,

• Replace a terminal node “ ” by the linear solution S(t)�u0.

In the following, we denote this mapping from
⋃∞

j=0 T(j) to D′(M× [−T ,T ]) by ��u0 .
For example, ��u0 maps the trivial tree “ ”, consisting only of the root node to the linear solution S(t)�u0. Namely, we

have ��u0( ) = S(t)�u0. Similarly, we have

��u0( ) = I3[S(t)�u0
]
,

��u0( ) = I
[
I3[S(t)�u0

]
, S(t)�u0, S(t)�u0

]
,
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where I3 is as in (5.5). In view of the algebra property of FL1(M) along with the continuity and boundedness of S(t),

we have ��u0(T ) ∈ C([−T ,T ];FL1(M)) for any tree T , provided �u0 ∈ −→FL0,1(M). Note that, if T ∈ T(j), then ��u0(T )

is (2j + 1)-linear in �u0.
Lastly, we define �j by

�j(�u0)
def=

∑
T ∈T(j)

��u0(T ).(5.9)

When j = 0 and 1, we have

�0(�u0) = S(t)�u0 and �1(�u0) = I3[S(t)�u0
]
.(5.10)

Then, from Lemma 5.4, (5.9), the definition of ��u0(T ), and Young’s inequality together with (5.7), we obtain the follow-
ing lemma. See [42].

Lemma 5.5. There exists C > 0 such that∥∥�j(�u0)(t)
∥∥
FL1 ≤ Cj t2j‖�u0‖2j+1−→FL0,1

.

for all �u0 ∈ −→FL0,1(M) and all j ∈N. In particular, there exist T ∼ ‖�u0‖−1−→FL0,1
> 0 such that the power series expansion:

u =
∞∑

j=0

�j(�u0) =
∞∑

j=0

∑
T ∈T(j)

��u0(T )(5.11)

converges in C([−T ,T ];FL1(M)).

It is easy to check that u defined by the power series (5.11) is indeed a solution to the cubic NLW (1.1). Then, thanks
to the unconditional uniqueness of the solution constructed in Lemma 5.2, we conclude that the power series expansion
(5.11) must agree with the solution constructed in Lemma 5.2. Note that the time of local existence in Lemma 5.2 and the
time of convergence in Lemma 5.5 are of the same order ∼ ‖�u0‖−1−→FL0,1

> 0.

5.2. Multilinear estimates

We first go over our choice of initial data for proving Proposition 5.1. Given n ∈ N, fix N = N(n) � 1 (to be chosen
later). We define �φn = (φ0,n, φ1,n) by setting

φ̂0,n(ξ) = R
∑

j∈{−2,−1,1,2}
1jNe1+QA

(ξ) and φ1,n = Nφ0,n,(5.12)

where QA = [−A
2 , A

2 )d , e1 = (1,0, . . . ,0), R = R(N) ≥ 1, and A = A(N) � 1, satisfying

RA
d
2 � ‖�u0‖−→FL0,1 , and A � N,(5.13)

are to be chosen later. Note that we have

‖ �φn‖Hs ∼ RA
d
2 Ns and ‖ �φn‖−→FL0,1 ∼ RAd,(5.14)

for any s ∈R. Lastly, given �u0 ∈ S(M) × S(M), set �u0,n = (u0,n, u1,n) by

�u0,n = (u0,n, u1,n) = (u0, u1) + (φ0,n, φ1,n)

= �u0 + �φn.(5.15)

Let un be the corresponding solution to (1.1) with (un, ∂tun)|t=0 = �u0,n. Lemmas 5.4 and 5.5 with (5.14) guarantee
the convergence of the following power series expansion:

un =
∞∑

j=0

�j(�u0,n) =
∞∑

j=0

�j(�u0 + �φn),(5.16)
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on [−T ,T ], as long as

T �
(‖�u0‖−→FL0,1 + RAd

)−1 ∼ (
RAd

)−1
,(5.17)

where the last equivalence follows from (5.13). Our main goal is to show that un satisfies (5.1) by estimating each of
�j(�u0,n) in the power series expansion (5.16).

We now state the basic multilinear estimates. Keep in mind that implicit constants in Lemma 5.6 depend on (various
norms of) �u0.

Lemma 5.6. Let �u0,n = (u0,n, u1,n) and �φn = (φ0,n, φ1,n) be as in (5.15) and (5.12). Let s < 0. Then, there exists C > 0
such that

‖�u0,n − �u0‖Hs ≤ CRA
d
2 Ns,(5.18) ∥∥�0(�u0,n)(t)

∥∥
Hs ≤ C

(
1 + RA

d
2 Ns

)
,(5.19) ∥∥�1(�u0,n)(t) − �1( �φn)(t)

∥∥
Hs ≤ Ct2‖�u0‖H0R

2A2d ,(5.20) ∥∥�1( �φn)(t)
∥∥

Hs ≤ Ct2R3A2d · f (A),(5.21) ∥∥�j(�u0,n)(t)
∥∥

Hs ≤ Cj t2jR2j+1A2dj · f (A),(5.22)

for any integer j ≥ 2, where f (A) is given by

f (A) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if s < −d

2
,

(logA)
1
2 , if s = −d

2
,

A
d
2 +s , if s > −d

2
.

(5.23)

This lemma in particular shows that the power series (5.16) is convergent in C([−T ,T ];Hs(M)), provided that
T 2R2A2d � 1, which is consistent with (5.17).

Proof. Recalling that �φn = �u0,n − �u0, the first two estimates (5.18) and (5.19) follow from (5.14) and the boundedness
of S(t) on Hs(M).

Next, we prove (5.20). In this case, we use the multilinearity of �1. See (5.4) and (5.10). By the Cauchy–Schwarz
inequality, (5.7), and Young’s inequality with (5.13), we have∥∥�1(�u0,n)(t) − �1( �φn)(t)

∥∥
Hs ≤ ∥∥�1(�u0,n)(t) − �1( �φn)(t)

∥∥
L2

� t2‖�u0‖H0

(‖�u0‖2−→FL0,1
+ ‖�φn‖2−→FL0,1

)
� t2‖�u0‖H0

(
1 + R2A2d

)
� t2‖�u0‖H0R

2A2d .

Lastly, we consider (5.21) and (5.22). It follows from the definition (5.12) that suppF[S(t) �φn] consists of four disjoint
cubes of volume ∼ Ad . Given T ∈ T(j), � �φn

(T ) is basically a (2j + 1)-fold product of S(t) �φn under iterated time

integrations and spatial smoothing. Hence, the spatial support of F[� �φn
(T )] consists of (at most) 42j+1 cubes of volume

∼ Ad . Namely, we have ∣∣suppF
[
� �φn

(T )
]∣∣≤ CjAd = ∣∣Cj

0 QA

∣∣
for some C,C0 > 0. Noting that, for s < 0, 〈ξ〉s is a decreasing function in |ξ |, we obtain∥∥〈ξ〉s∥∥

L2
ξ (suppF [� �φn

(T )]) ≤ ∥∥〈ξ〉s∥∥
L2

ξ (C
j
0 QA)

� Cjf (A).(5.24)
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By (5.7) and Young’s inequality, we have

∥∥I[u1, u2, u3](t)
∥∥
FLp ≤ Ct2

3∏
j=1

‖uj‖FL
pj(5.25)

for 1 ≤ p,p1,p2,p3 ≤ ∞, satisfying

1

p
+ 2 = 1

p1
+ 1

p2
+ 1

p3
.

Then, by first applying (5.24) and then iteratively applying (5.25), we have∥∥� �φn
(T )(t)

∥∥
Hs ≤ ∥∥〈ξ〉s∥∥

L2
ξ (suppF [� �φn

(T )])
∥∥� �φn

(T )(t)
∥∥
FL∞

≤ Cj t2j f (A)‖ �φn‖−→FL0,1‖ �φn‖2j−→FL0,q

≤ Cj t2jRAd · R2jA
2j
q

d
f (A)

= Cj t2jR2j+1A2dj f (A),(5.26)

where q satisfies 2j = 2j
q

+ 1. Hence, it follows from (5.26) with (5.9) and Lemma 5.4 that∥∥�j( �φn)(t)
∥∥

Hs ≤ Cj t2jR2j+1A2dj f (A).(5.27)

In particular, this proves (5.21).
Next, we estimate the difference �j(�u0 + �φn) − �j( �φn). Since we do not know anything about the Fourier support of

�u0, we simply proceed with a loss in the first step:∥∥�j(�u0 + �φn)(t) − �j( �φn)(t)
∥∥

Hs ≤ ∥∥�j(�u0 + �φn)(t) − �j( �φn)(t)
∥∥

L2 .(5.28)

Then, with (5.9), Lemma 5.4, the multilinearity of � �φ(T ), and (5.25), we have∥∥�j(�u0 + �φn)(t) − �j( �φn)(t)
∥∥

L2 ≤ Cj t2j‖�u0‖−→FL0,1

(‖�u0‖2j−→FL0,r
+ ‖�φn‖2j−→FL0,r

)
,(5.29)

where r satisfies 2j = 2j
r

+ 1
2 . Hence, from (5.28) and (5.29), we obtain∥∥�j(�u0 + �φn)(t) − �j( �φn)(t)

∥∥
Hs ≤ Cj t2j‖�u0‖−→FL0,1

(‖�u0‖2j−→FL0,̃q
+ R2jA2dj− d

2
)

≤ Cj t2j‖�u0‖−→FL0,1R
2jA2dj− d

2 ,(5.30)

where the last step follows from (5.13). Therefore, the desired estimate (5.22) follows from (5.27) and (5.30) with
(5.13). �

Next, we state a crucial lemma, establishing a lower bound on �1( �φn). As in [16,35,42], the argument exploits the
high-to-low energy transfer mechanism in �1( �φn).

Lemma 5.7. Let �φn = (φ0,n, φ1,n) be as in (5.12) and s < 0. Then, for 0 < t � N−1, we have∥∥�1(φn)(t)
∥∥

Hs � t2R3A2d · f (A),(5.31)

where f (A) is as in (5.23).

Proof. From (5.4), we have

F
[
�1( �φn)(t)

]
(ξ)

= −
∫

ξ=ξ1+ξ2+ξ3

∫ t

0

sin((t − t ′)〈ξ〉)
〈ξ〉

(
3∏

j=1

F
[
S
(
t ′
) �φn

]
(ξj )

)
dξ1 dξ2 dξ3 dt ′.(5.32)
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From the definition (5.12), we have |ξj | �N for ξj ∈ supp φ̂k,n, k = 0,1. Then, for 0 < t � N−1 � 1, we have

cos
(
t〈ξj 〉

)= 1 + O
(
t2〈ξj 〉2)>

1

2
,

t

2
<

sin(t〈ξj 〉)
〈ξj 〉 = t + O

(
t3〈ξj 〉2)� N−1.

(5.33)

Moreover, in view of ξ = ξ1 + ξ2 + ξ3, we have

sin((t − t ′)〈ξ〉)
〈ξ〉 = t − t ′ + O

((
t − t ′

)3〈ξ〉2)>
1

2

(
t − t ′

)
(5.34)

for 0 < t ′ < t � N−1 � 1.
Recalling that

1a+QA
∗ 1b+QA

(ξ) � Ad1a+b+QA
(ξ)

for all a, b, ξ ∈ M̂ and A ≥ 1, where M̂ is as in (5.2), it follows from (5.32), (5.33), and (5.34) with (5.12) that∣∣F[
�1( �φn)(t)

]
(ξ)

∣∣� t2R3A2d · 1QA
(ξ).

Lastly, noting that ‖〈ξ 〉s‖L2
ξ (QA) ∼ f (A), we obtain (5.31). �

5.3. Proof of Proposition 5.1

We conclude this section by briefly discussing the proof of Proposition 5.1. As in [42], it suffices to show that, given
n ∈N, the following properties hold:

(i) RA
d
2 Ns � 1

n
,

(ii) T 2R2A2d � 1,

(iii) T 2R3A2d · f (A) � n,

(iv) T 2R3A2d · f (A) � T 4R5A4d · f (A),

(v) T � N−1,

(vi) RA
d
2 � 1

for some A,R,T , and N , depending on n. Here, f (A) is as in (5.23). As mentioned before, implicit constants depend on
(fixed) �u0 ∈ S(M) × S(M).

We first show how the conditions (i)–(vi) imply Proposition 5.1. This argument is essentially contained in [42]16

but we include it for readers’ convenience. The first condition (i) together with (5.18) in Lemma 5.6 verifies the first
estimate in (5.1). The second condition (ii) with (5.17) guarantees local existence of the solution un on [−T ,T ] with
(un, ∂tun)|t=0 = �u0,n and the convergence of the power series expansion (5.16) in C([−T ,T ];FL1(M)). Moreover,
assuming the conditions (ii)–(vi), it follows from Lemmas 5.6 and 5.7 with the power series expansion (5.16) that∥∥un(T )

∥∥
Hs ≥ ∥∥�1( �φn)(T )

∥∥
Hs − ∥∥�0(�u0,n)

∥∥
Hs

− ∥∥�1(�u0,n)(T ) − �1( �φn)(T )
∥∥

Hs −
∥∥∥∥∥

∞∑
j=2

�j(�u0,n)(T )

∥∥∥∥∥
Hs

� T 2R3A2d · f (A) − (
1 + RA

d
2 Ns

)
− T 2R2A2d‖�u0‖H0 − T 4R5A4d · f (A)

∼ T 2R3A2d · f (A) � n.

16Simply replace T � N−2 in [42] by T 2 � N−2 in our setting.
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This verifies the second estimate in (5.1) at time tn = T . Lastly, by choosing N = N(n) sufficiently large, the condition
(v) guarantees that tn ∈ (0, 1

n
). This completes the proof of Proposition 5.1.

Therefore, it remains to verify the conditions (i)–(vi). Note that the conditions (i)–(iv) are identical to those in the
Schrödinger case studied in [42] with T 2(� N−2) replaced T � N−2. Namely, we simply use the same choices for A

and R and the square root for the choice of T from [42].
• Case 1: s < − d

2 . In this case, we set

A = N
1
d
(1−δ), R = N2δ, and T = N−1− 3

2 δ,(5.35)

where δ > 0 is sufficiently small such that s < − 1
2 − 3

2δ.
• Case 2: s = − d

2 . In this case, we set

A = N
1
d

(logN)
1

16d

, R = 1, and T = 1

N(logN)
1
16

.

• Case 3: − d
2 < s < 0. Recall that this case is relevant only for d ≥ 2. We set

A = N
2
d
−δ,R = N−1−s+ d

2 δ−θ , and T = N−1+s+ 1
2 dδ+ 1

2 θ ,(5.36)

where δ � θ > 0 are sufficiently small such that

−2s > dδ + θ and − sδ > 2θ.

Then, by repeating the argument in [42], we see that the conditions (i)–(vi) are satisfied in each case.

Remark 5.8. It is easy to check that the choices in (5.35) of Case 1 is also valid for s < − 1
2 . Namely, Cases 1 and 3

are sufficient to prove Proposition 5.1 for d ≥ 2. In particular, a logarithmic divergence as in Case 2 appears only when
d = 1, since s = − 1

2 is the scaling critical regularity.

6. Almost sure norm inflation for the Wick ordered cubic NLW

In this section, we present the proof of Proposition 1.10 on almost sure norm inflation for the Wick ordered cubic NLW on
T2. While the discussion in Section 5 was for a general dimension d ≥ 1, we restrict our attention to the two-dimensional
case in this section.

6.1. Local well-posedness of the Wick ordered NLW

In this subsection, we briefly go over local well-posedness of the perturbed NLW (1.33) on T2. More precisely, we
consider {

∂2
t v + (1 − �)v + v3 +R(v, z) = 0,

(v, ∂tv)|t=0 = (φ0, φ1),
(6.1)

where R(v, z) is given by

R(v, z) =:(z + v)3 : −v3 = 3zv2 + 3 :z2 : v+ :z3 : .
In [53], Thomann and the first author proved almost sure local well-posedness of (6.1) via the Strichartz estimates and
Lemma 2.6. Note that, while only the zero initial data17 for (6.1) is considered in [53], the same proof applies to any
(φ0, φ1) ∈ Hs(T2), s > scrit = 1

4 . See also [26]. On the other hand, in proving Proposition 1.10, we need to maximize the
local existence time. In this respect, the Strichartz estimates are not very efficient. In order to simultaneously handle the
Wick powers and make the local existence time longer, we prove local well-posedness of (6.1) in the Fourier–Lebesgue

space
−→FLα, 1

1−α (T2) for sufficiently small α > 0, where
−→FLα, 1

1−α (T2) is as in (5.3).

17This corresponds to the Wick ordered NLW (1.18) with the random initial data (1.6).
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Lemma 6.1. Let α > 0 be sufficiently small. Then, the perturbed NLW (6.1) is almost surely locally well-posed in−→FLα, 1
1−α (T2) on a time interval [−T ,T ], where

T �
{
max

(∥∥(φ0, φ1)
∥∥ 1

1−α

−→FL
α, 1

1−α

,Kω

(
1 + ∥∥(φ0, φ1)

∥∥−→FL
α, 1

1−α

))}−1(6.2)

for some almost surely finite constant Kω > 0. Moreover, we have

sup
t∈[−T ,T ]

∥∥v(t)
∥∥
FL

α, 1
1−α

�
∥∥(φ0, φ1)

∥∥−→FL
α, 1

1−α
.

Proof. Let I be the Duhamel integral operator defined in (5.4). Then, by the algebra property of FL1(T2) with (5.7), we
have

∥∥I[v1, v2, v3]
∥∥

L∞
T FL1

x
� T 2

3∏
j=1

‖vj‖L∞
T FL1

x
.(6.3)

On the other hand, by Sobolev’s inequality, we have∥∥I[v1, v2, v3]
∥∥

L∞
T H

1
2

x

≤ T
∥∥〈∇〉− 1

2 (u1u2u3)
∥∥

L∞
T L2

x
� T ‖u1u2u3‖

L∞
T L

4
3
x

≤ T

3∏
j=1

‖vj‖L∞
T L4

x
� T

3∏
j=1

‖vj‖
L∞

T H
1
2

x

.(6.4)

By the interpolation of weighted �p-spaces applied to (6.3) and (6.4) with α = θ · 1
2 + (1 − θ) · 0 = θ

2 , we obtain

∥∥I[v1, v2, v3]
∥∥

L∞
T FL

α, 1
1−α

x

� T 2(1−α)
3∏

j=1

‖vj‖
L∞

T FL
α, 1

1−α
x

(6.5)

for 0 < α < 1
2 .

Next, we consider the terms

I =
∫ t

0

sin((t − t ′)〈∇〉)
〈∇〉 [v1v2z]

(
t ′
)
dt ′,

II =
∫ t

0

sin((t − t ′)〈∇〉)
〈∇〉

[
v :z2 : ](t ′)dt ′,

III =
∫ t

0

sin((t − t ′)〈∇〉)
〈∇〉 :z3(t ′): dt ′.

(6.6)

By Proposition 1.1, there exists an almost surely finite constant Kω > 0 such that∥∥:z� :∥∥
L∞([−1,1];W− α

2 ,∞
x )

≤ Kω(6.7)

for � = 1,2,3. Let 0 < T ≤ 1 in the following. Note that Hausdorff–Young’s inequality yields that FL
1

1−α (T2) ↪→
L

1
α (T2), in particular, FL

1
1−α (T2) ↪→ L4(T2) holds if 0 < α ≤ 1

4 . Then, it follows from Hölder’s inequality, Lemma 2.3,
and (6.7) with α < 1

2 that

‖ I‖
L∞

T FL
α, 1

1−α
x

≤ T
∥∥〈∇〉−1+α[v1v2z]

∥∥
L∞

T FL
0, 1

1−α
x

� T
∥∥〈∇〉− α

2 [v1v2z]
∥∥

L∞
T L2

x

� T
∥∥〈∇〉 α

2 [v1v2]
∥∥

L∞
T L2

x

∥∥〈∇〉− α
2 z
∥∥

L∞
T L

4
α
x

� T Kω‖v1‖
L∞

T FL
α, 1

1−α
x

‖v2‖
L∞

T FL
α, 1

1−α
x

.(6.8)
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Similarly, by Hölder’s inequality, Lemma 2.3, and (6.7), we have

‖II‖
L∞

T FL
α, 1

1−α
x

� T
∥∥〈∇〉− α

2
[
v :z2 : ]∥∥

L∞
T L2

x

� T
∥∥〈∇〉 α

2 v
∥∥

L∞
T L2

x

∥∥〈∇〉− α
2 :z2 :∥∥

L∞
T L

4
α
x

� T Kω‖v‖
L∞

T FL
α, 1

1−α
x

(6.9)

and

‖III‖
L∞

T FL
α, 1

1−α
x

� T
∥∥〈∇〉− α

2 :z3 :∥∥
L∞

T L2
x
≤ T Kω.(6.10)

By putting (6.5), (6.8), (6.9), and (6.10) together, a standard fixed point argument establishes almost sure local well-
posedness of (6.1), provided that T = T (ω) such sufficiently small such that

T 2(1−α)
∥∥(φ0, φ1)

∥∥2
−→FL

α, 1
1−α

� 1,

T Kω

(
1 + ∥∥(φ0, φ1)

∥∥−→FL
α, 1

1−α

)
� 1,

yielding the condition (6.2). �

6.2. Proof of Proposition 1.10

In this subsection, we present the proof of Proposition 1.10. We prove this almost sure norm inflation result by viewing
(1.33) as the (unrenormalized) NLW (1.1) with a random perturbation and invoking the norm inflation result (Proposi-
tion 5.1) for the cubic NLW (1.1).

Let s < 0. Given n ∈ N, fix N = N(n) � 1 to be chosen later. Let �φn = (φ0,n, φ1,n) be as in (5.12) with A = A(N),
R = R(N), and T = T (N) > 0 as in Section 5.3. Then, by taking some small α > 0, we have

T � ‖ �φn‖− 1
1−α

−→FL
α, 1

1−α

= (
RA2(1−α)Nα

)− 1
1−α = (

RNα
)− 1

1−α A−2.(6.11)

In fact, when s < − 1
2 , it follows from (5.35) and Remark 5.8 that

T
(
RNα

) 1
1−α A2 = N−1− 3

2 δN
2δ+α
1−α N1−δ = N

− δ−(2+5δ)α
2(1−α) .(6.12)

Hence, (6.11) holds, provided that α < δ
2+5δ

. When − 1
2 ≤ s < 0, (5.36) yields

T
(
RNα

) 1
1−α A2 = N−1+s+δ+ θ

2 N
−1−s+δ−θ+α

1−α N2−2δ = N
− θ+(2s−2δ+θ)α

2(1−α) ,(6.13)

and hence (6.11) holds, provided that α < θ
−2s+2δ−θ

.
Let u = u(n) and v = v(n) be the solutions to the unrenormalized NLW (1.1) and the perturbed NLW (1.33) with the

initial data �φn, respectively. Then, the above observation guarantees that u and v exist on [−T ,T ]. Moreover, in view of
(5.17), the power series expansion (5.16) for un (with �u0 = 0) converges uniformly on [−T ,T ]. Then, it follows from
Proposition 5.1 that ∥∥u(T )

∥∥
Hs � n(6.14)

for suitably chosen N = N(n,ω) � 1. Therefore, Proposition 1.10 follows from (6.14) once we prove the following
approximation lemma.

Lemma 6.2. Given n ∈ N, let u = u(n), v = v(n), and T = T (n) be as above. Namely, they are the solutions to the
unrenormalized NLW (1.1) and the perturbed NLW (1.33) with the initial data �φn, respectively. Then, there exists Cω > 0,
almost surely tending to 0 as n → 0 (and hence N → ∞), such that

sup
t∈[−T ,T ]

∥∥u(t) − v(t)
∥∥

L2
x
≤ Cω.(6.15)
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Proof. By our choice of T in (5.35) and (5.36), (6.12), (6.13), and the local well-posedness of (1.1) and (1.33) in−→FL0,1(T2) and
−→FLα, 1

1−α (T2), respectively, there exists ε > 0 such that

T 2‖u‖2
L∞

T FL1
x
+ T 2(1−α)‖v‖2

L∞
T FL

α, 1
1−α

x

� T 2‖ �φn‖2−→FL0,1
+ T 2(1−α)‖ �φn‖2

−→FL
α, 1

1−α

� T 2ε.(6.16)

By Young’s inequality with (5.7), we have

∥∥I[u1, u2, u3]
∥∥

L∞
T L2

x
≤ T 2‖u1‖L∞

T L2
x

3∏
j=2

‖uj‖L∞
T FL1

x
.(6.17)

By Hölder’s and Young’s inequalities with a variant of (5.7), we have

∥∥I[u1, u2, u3]
∥∥

L∞
T L2

x
�
∥∥∥∥∫ t

0

sin((t − t ′)〈∇〉)
〈∇〉1−2α−2ε

[u1u2u3]
(
t ′
)
dt ′

∥∥∥∥
L∞

T FL

2
1−2α−ε
x

� T 2−2α−2ε‖u1‖L∞
T L2

x

3∏
j=2

‖uj‖
L∞

T FL

4
4−2α−ε
x

� T 2−2α−2ε‖u1‖L∞
T L2

x

3∏
j=2

‖uj‖
L∞

T FL
α, 1

1−α
x

.(6.18)

Similarly, we have

∥∥I[u1, u2, u3]
∥∥

L∞
T L2

x
�
∥∥∥∥∫ t

0

sin((t − t ′)〈∇〉)
〈∇〉1−α−ε

[u1u2u3]
(
t ′
)
dt ′

∥∥∥∥
L∞

T FL

4
2−2α−ε
x

� T 2−α−ε‖u1‖L∞
T L2

x
‖u2‖L∞

T FL1
x
‖u3‖

L∞
T FL

4
4−2α−ε
x

� T 2−α−ε‖u1‖L∞
T L2

x
‖u2‖L∞

T FL1
x
‖u3‖

L∞
T FL

α, 1
1−α

x

.(6.19)

Hence, it follows from (6.17), (6.18), and (6.19) that∥∥I3[u] − I3[v]∥∥
L∞

T L2
x
� T −2ε

{
T 2‖u‖2

L∞
T FL1

x
+ T 2(1−α)‖v‖2

L∞
T FL

α, 1
1−α

x

}‖u − v‖L∞
T L2

x

� ‖u − v‖L∞
T L2

x
,(6.20)

where the last inequality follows from (6.16).
Let I , II, and III be as in (6.6). Then, proceeding as in the proof of Lemma 6.1 with a variant of (5.7), we obtain

‖ I‖L∞
T L2

x
� T 2− α

2
∥∥〈∇〉− α

2
[
v2z

]∥∥
L∞

T L2
x
� T 2− α

2 Kω‖v‖2

L∞
T FL

α, 1
1−α

x

,

‖II‖L∞
T L2

x
≤ T 2− α

2
∥∥〈∇〉− α

2
[
v :z2 :]∥∥

L∞
T L2

x
� T 2− α

2 Kω‖v‖
L∞

T FL
α, 1

1−α
x

,

‖III‖L∞
T L2

x
≤ T 2− α

2
∥∥〈∇〉− α

2 :z3 :∥∥
L∞

T L2
x
� T 2− α

2 Kω.

Hence, in view of (6.16), we can choose n � 1 (and hence N � 1 and T � 1) depending on ω such that

‖ I‖L∞
T L2

x
+ ‖II‖L∞

T L2
x
+ ‖III‖L∞

T L2
x
� 1.(6.21)

Finally, noting that u = I3[u] and v = I3[v] + I + II + III, the desired bound (6.15) follows from (6.20) and (6.21). �



On the two-dimensional Wick ordered cubic NLW 1723

Appendix: On almost sure convergence of stochastic objects

We present the proof of Proposition 2.7. First, we show the following lemma which relates the decay in the hypothesis of
Proposition 2.7 to the boundedness of the relevant norms.

Lemma A.1. Let {XN } and X satisfy the assumption in Proposition 2.7.
(i) For p ≥ 1, s < s0, t ∈ [0, T ], and N ≥ 1, we have

E
[∥∥X(t)

∥∥p

Ws,∞
]
� p

kp
2 ,(A.1)

E
[∥∥XN(t) − X(t)

∥∥p

Ws,∞
]
� p

kp
2 N−γp.(A.2)

(ii) For p ≥ 1, s < s0 − θ
2 , t ∈ [0, T ], h ∈ [−1,1], and N ≥ 1, we have

E
[∥∥δhX(t)

∥∥p

Ws,∞
]
� |h|θp,(A.3)

E
[∥∥δhXN(t) − δhX(t)

∥∥p

Ws,∞
]
� N−γp|h|θp.(A.4)

Proof. We only consider the proof of (A.1) since the remaining estimates follow from the same argument with (2.11),
(2.12), and (2.13).

From s < s0 and Sobolev’s inequality, there exists finite r > 1 such that W
s0−s

2 ,r (Td) ↪→ L∞(Td). Then, it follows
from Lemma 2.5 that ∥∥∥∥X(t)

∥∥
Ws,∞

∥∥
Lp(�)

�
∥∥∥∥〈∇〉s+ s0−s

2 X(t)
∥∥

Lp(�)

∥∥
Lr

� p
k
2
∥∥∥∥〈∇〉s+ s0−s

2 X(t)
∥∥

L2(�)

∥∥
Lr(A.5)

for p ≥ r .
Now, note that the spatially homogeneity yields that

E
[
X̂(n1, t)X̂(n2, t)

]= 0(A.6)

if n1 + n2 �= 0. Indeed, we have

E
[
X̂(n1, t)X̂(n2, t)

]=
∫
Td

∫
Td

E
[
X(x1, t)X(x2, t)

]
e−i(n1·x1+n2·x2) dx1 dx2

=
∫
Td

∫
Td

E
[
X(x1, t)X(x2, t)

]
e−i(n1+n2)·x1+in2·(x1−x2) dx1 dx2.

The spatially homogeneity implies that E[X(x1, t)X(x2, t)] is a function of x1 − x2. Then, by a change of variables
y2 = x1 − x2, we have, for some function F on Td ,

E
[
X̂(n1, t)X̂(n2, t)

]=
∫
Td

F̂ (n2)e
−i(n1+n2)·x1 dx1,

which vanishes unless n1 + n2 = 0. We thus obtain (A.6). Therefore, from (A.6) and (2.10), we have∥∥〈∇〉s+ s0−s

2 X(x, t)
∥∥2

L2(�)
�

∑
n∈Zd

〈n〉s+s0E
[∣∣X̂(n, t)

∣∣2]� ∑
n∈Zd

〈n〉−d+s−s0 � 1.

By combining this with (A.5), we obtain (A.1). �

We now present the proof of Proposition 2.7.

Proof of Proposition 2.7. (i) From (A.1), we have X(t) ∈ Ws,∞(Td) almost surely. Given j ∈N, it follows from Cheby-
shev’s inequality and (A.2) that

∞∑
N=1

P

(∥∥XN(t) − X(t)
∥∥

Ws,∞ >
1

j

)
�

∞∑
N=1

e−cN
2γ
k j

− 2
k

< ∞.
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Therefore, we conclude from the Borel–Cantelli lemma that there exists �j with P(�j ) = 1 such that for each ω ∈ �j ,
there exists M = M(ω) ∈ N such that ‖XN(t;ω)−X(t;ω)‖Ws,∞ < 1

j
for any N ≥ M . By setting � =⋂∞

j=1 �j , we have

P(�) = 1. Hence, we conclude that XN(t) converges almost surely to X(t) in Ws,∞(Td). Note that the set of almost
sure convergence depends on t ∈ [0, T ] at this point.

(ii) Next, we prove the second part of Proposition 2.7. By (A.3), Kolmogorov’s continuity criterion implies that X ∈
C([0, T ];Ws,∞(Td)) almost surely. We now modify the proof of Kolmogorov’s continuity criterion to prove almost sure
convergence of {XN }N∈N in C([0, T ];Ws,∞(Td)).

In the following, fix t ∈ [0, T ] and h ∈ [−1,1] (such that t + h ∈ [0, T ]). We choose p � 1 such that

θp ≥ 1 + ε > 1 and γp > 2.(A.7)

Let YN = XN − X. Then, for any α > 0, it follows from Chebyshev’s inequality, (A.4), and (A.7) that

P

(
sup
N∈N

max
j=1,...,2�

N
γ
2

∥∥∥∥YN

(
j

2�

)
− YN

(
j − 1

2�

)∥∥∥∥
Ws,∞

≥ 2−α�

)

= P

(⋃
N∈N

2�⋃
j=1

∥∥∥∥YN

(
j

2�

)
− YN

(
j − 1

2�

)∥∥∥∥
Ws,∞

≥ N− γ
2 2−α�

)

≤
∞∑

N=1

2�∑
j=1

P

(∥∥∥∥YN

(
j

2�

)
− YN

(
j − 1

2�

)∥∥∥∥
Ws,∞

≥ N− γ
2 2−α�

)

≤
∞∑

N=1

2�∑
j=1

N
γp
2 2αp�E

[∥∥∥∥YN

(
j

2�

)
− YN

(
j − 1

2�

)∥∥∥∥p

Ws,∞

]

� 2(αp−ε)�

∞∑
N=1

N− γp
2 � 2(αp−ε)�.

Now, let α ∈ (0, ε
p
), i.e. αp − ε < 0. Then, summing over � ∈ N, we obtain

∞∑
�=0

P

(
sup
N∈N

max
j=1,...,2�

N
γ
2

∥∥∥∥YN

(
j

2�

)
− YN

(
j − 1

2�

)∥∥∥∥
Ws,∞

≥ 2−α�

)
< ∞.

Hence, by the Borel–Cantelli lemma, there exists a set �̃ ⊂ � with P(�̃) = 1 such that, for each ω ∈ �̃, we have

sup
N∈N

max
j=1,...,2�

N
γ
2

∥∥∥∥YN

(
j

2�
;ω

)
− YN

(
j − 1

2�
;ω

)∥∥∥∥
Ws,∞

≤ 2−α�

for all � ≥ L = L(ω). This in particular implies that there exists C = C(ω) > 0 such that

max
j=1,...,2�

∥∥∥∥YN

(
j

2�
;ω

)
− YN

(
j − 1

2�
;ω

)∥∥∥∥
Ws,∞

≤ C(ω)N− γ
2 2−α�(A.8)

for any � ≥ 0, uniformly in N ∈N.
For simplicity, let T = 1 and t ∈ [0,1]. Express t in the following binary expansion:

t =
∞∑

j=1

bj

2j
,(A.9)

where bj ∈ {0,1}. Let t� =∑�
j=1

bj

2j and t0 = 0. Then, from (A.8), we have

∥∥YN(t;ω)
∥∥

Ws,∞ ≤
∞∑

�=1

∥∥YN(t�;ω) − YN(t�−1;ω)
∥∥

Ws,∞ + ∥∥YN(0;ω)
∥∥

Ws,∞
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≤ C(ω)N− γ
2

∞∑
�=1

2−α� + ∥∥YN(0;ω)
∥∥

Ws,∞

≤ C′(ω)N− γ
2 + ∥∥YN(0;ω)

∥∥
Ws,∞(A.10)

for ω ∈ �̃. Note that the right-hand side of (A.10) is independent of t ∈ [0,1]. Hence, by taking a supremum in t ∈ [0,1],
we obtain ∥∥XN(ω) − X(ω)

∥∥
C([0,1];Ws,∞(Td ))

≤ C′(ω)N− γ
2 + ∥∥YN(0;ω)

∥∥
Ws,∞

−→ 0,

as N → ∞. Here, we used Part (i) of Proposition 2.7; YN(0) = XN(0) − X(0) converges to 0 in Ws,∞(Td), almost
surely. This yields almost sure convergence of {XN }N∈N in C([0,1];Ws,∞(Td)), which completes the proof of Proposi-
tion 2.7. �

Remark A.2. By slightly modifying the argument, we can also prove that XN converges almost surely to X in
Cα([0,1];Ws,∞(Td)) for α < ε

p
(and hence α < θ by taking p → ∞ in view of (A.7)).

Let t, τ ∈ [0,1] such that 1
2j−1 ≤ |t − τ | ≤ 1

2j . Express t and τ in the binary expansions (A.9) and

τ =
∞∑

j=1

cj

2j
,

where cj ∈ {0,1}, and set τ� =∑�
j=1

cj

2j . Then, from (A.8), we have

∥∥YN(t;ω) − YN(τ ;ω)
∥∥

Ws,∞ ≤
∞∑

�=j+1

∥∥YN(t�;ω) − YN(t�−1;ω)
∥∥

Ws,∞

+ ∥∥YN(tj ;ω) − YN(τj ;ω)
∥∥

Ws,∞

+
∞∑

�=j+1

∥∥YN(τ�;ω) − YN(τ�−1;ω)
∥∥

Ws,∞

≤ C(ω)N− γ
2

∞∑
�=j

2−α�

≤ C′(ω)N− γ
2 2−αj

for ω ∈ �̃. Then, dividing both sides by 2−αj and taking a supremum in t �= τ , we obtain

‖XN − X‖Cα([0,1];Ws,∞(Td )) ≤ C′′(ω)N− γ
2 ,

which tends to 0 as N → ∞.

Remark A.3. If {XN } satisfies the assumption of Corollary 2.8, then by proceeding as in the proof of Lemma A.1, we
have

(i) For p ≥ 1, s < s0, t ∈ [0, T ], and M ≥ N ≥ 1, we have

E
[∥∥XN(t)

∥∥p

Ws,∞
]
� p

kp
2 ,(A.11)

E
[∥∥XN(t) − XM(t)

∥∥p

Ws,∞
]
� p

kp
2 N−γp.(A.12)

(ii) For p ≥ 1, s < s0 − θ
2 , t ∈ [0, T ], h ∈ [−1,1], and M ≥ N ≥ 1, we have

E
[∥∥δhXN(t)

∥∥p

Ws,∞
]
�p |h|θp,(A.13)

E
[∥∥δhXN(t) − δhXM(t)

∥∥p

Ws,∞
]
�p N−γp|h|θp.(A.14)
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It follows from (A.11) and (A.12) that XN(t) converges to some X(t) in Lp(�;Ws,∞(Td)) and also in Ws,∞(Td),
almost surely. Moreover, (A.1) and (A.2) hold. Then, by applying Fatou’s lemma applied to (A.13) and (A.14) (in taking
N → ∞), we obtain (A.3) and (A.4), which allows us to repeat the proof of Proposition 2.7.
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