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Abstract: The logistic and probit link functions are the most common
choices for regression models with a binary response. However, these choices
are not robust to the presence of outliers/unexpected observations. The
robit link function, which is equal to the inverse CDF of the Student’s t-
distribution, provides a robust alternative to the probit and logistic link
functions. A multivariate normal prior for the regression coefficients is the
standard choice for Bayesian inference in robit regression models. The re-
sulting posterior density is intractable and a Data Augmentation (DA)
Markov chain is used to generate approximate samples from the desired pos-
terior distribution. Establishing geometric ergodicity for this DA Markov
chain is important as it provides theoretical guarantees for asymptotic va-
lidity of MCMC standard errors for desired posterior expectations/quan-
tiles. Previous work [16] established geometric ergodicity of this robit DA
Markov chain assuming (i) the sample size n dominates the number of
predictors p, and (ii) an additional constraint which requires the sample
size to be bounded above by a fixed constant which depends on the design
matrix X. In particular, modern high-dimensional settings where n < p
are not considered. In this work, we show that the robit DA Markov chain
is trace-class (i.e., the eigenvalues of the corresponding Markov operator
are summable) for arbitrary choices of the sample size n, the number of
predictors p, the design matrix X, and the prior mean and variance pa-
rameters. The trace-class property implies geometric ergodicity. Moreover,
this property allows us to conclude that the sandwich robit chain (obtained
by inserting an inexpensive extra step in between the two steps of the DA
chain) is strictly better than the robit DA chain in an appropriate sense,
and enables the use of recent methods to estimate the spectral gap of trace
class DA Markov chains.
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1. Introduction

Consider a regression setting with n independent binary responses Y1, Y2, · · · , Yn

and corresponding predictor vectors x1,x2, · · · ,xn ∈ R
p, such that

P (Yi = 1 | β) = F (xT
i β),

for 1 ≤ i ≤ n. Here F is a strictly increasing cumulative distribution function,
and G = F−1 is referred to as the link function. Two popular choices of F are
given by F (x) = ex

1+ex (logistic link) and F (x) = Φ(x) (probit link) where Φ(x)
denotes the standard normal CDF. It is well known that estimates of β produced
for both these choices are not robust to outliers [13, 5]. To address such settings,
F is set to be the CDF of the Student’s t-distribution, and the corresponding
model is referred to as the robit regression model [9]. For binary responses,
an outlier is an unexpected observation with large value(s) of the predictor(s)
and a misclassified response, and the robit model effectively down-weights such
outliers to produce a better fit [6].

Following [16, 1] we consider a Bayesian robit regression model specified as
follows.

P (Yi = 1 | β) = Fν(xT
i β) for 1 ≤ i ≤ n,

β ∼ Np

(
βa,Σ−1

a

)
,

where Fν denotes the CDF of the Student’s t-distribution with ν degrees of free-
dom (with location 0, scale 1) and Np denotes the p variate normal distribution.
Let Y denote the response vector, and let π(β | y) denote the posterior density
of β given Y = y. As demonstrated in [16], the posterior density π(β | y) is
intractable in the sense that relevant posterior expectations are ratios of two
intractable integrals and are not available in closed form. Also, generating IID
samples from this density is computationally infeasible even for moderately large
values of p. To resolve this, [16] develops a clever and effective Data Augmenta-
tion (DA) approach which can be used to construct a computationally tractable
Markov chain which has π(β | y) as its stationary density. We describe this
Markov chain below.



Convergence of robit regression DA algorithms 21

Let tν(μ, σ) denote the Student’s t-distribution with ν degrees of freedom,
location μ and scale σ. Consider unobserved latent variables

(Z1, λ1), (Z2, λ2), · · · , (Zn, λn)

which are mutually independent and satisfy Zi | λi ∼ N (xT
i β, 1/λi) and λi ∼

Gamma(ν/2, ν/2). Then, it can be shown that the marginal distribution of Zi

is given by Zi ∼ tν(xT
i β, 1). If Yi is defined as the indicator of Zi taking positive

values, i.e., Yi = 1{Zi>0}, then P (Yi = 1 | β) = P (zi > 0) = Fν(xT
i β), which

is consistent with the robit regression model specified in (1.1). Straightforward
calculations (see [16]) now show the following.

• (Z1, λ1), (Z2, λ2), · · · , (Zn, λn) are conditionally independent given β,Y =
y. Also,

Zi | β,y ∼ Ttν(xT
i β, yi),

λi | Zi = zi,β,y ∼ Gamma
(
ν + 1

2 ,
ν + (zi − xT

i β)2

2

)
.

Here Ttv(xT
i β, yi) denotes the tν distribution with location xT

i β and scale
1, truncated to R+ if yi = 1 and to R− if yi = 0.

• Let Z = (Z1, · · · , Zn)T , λ = (λ1, · · · , λn)T and Λ denote a diagonal matrix
whose diagonal is given by entries of λ. The conditional distribution of β
given Z = z,λ,Y = y is

Np

(
(XTΛX + Σa)−1(XTΛz + Σaβa), (XTΛX + Σa)−1) .

These observations are used in [16] to construct a DA Markov chain{β(m)}m≥0
on R

p (with stationary density π(β | y)) whose one step transition from β(m)

to β(m+1) is described in the following Algorithm 1. Harris ergodicity of the

Algorithm 1: (m + 1)-st Iteration of the Robit Data Augmentation
Algorithm

1. Make independent draws from the Ttν(xT
i β(m), yi) distributions for 1 ≤ i ≤ n.

Denote the respective draws by z1, z2, · · · , zn. Draw λi from the

Gamma
(

ν+1
2 ,

ν+
(
zi−xT

i β(m)
)2

2

)
distribution.

2. Draw β(m+1) from the Np
(
(XT ΛX + Σa)−1(XTΛz + Σaβa), (XT ΛX + Σa)−1)

distribution.

robit DA Markov chain {β(m)}m≥0 obtained through Algorithm 1 is established
in [16]. Suppose a posterior expectation Eπ(·|y)[h(β)] (assumed to exist) is of
interest. Then by Harris ergodicity, the cumulative averages 1

m+1
∑m

r=0 h(β(r))
converge to Eπ(·|y)[h(β)] as m → ∞, and can be used to approximate the
desired posterior expectation. However, any such approximation is useful only
with an estimate of the associated error. The standard approach for obtaining
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such error estimates is to establish a Markov chain central limit theorem (CLT)
which guarantees that

√
m

(
1

m + 1

m∑
r=0

h(β(r)) −Eπ(·|y)[h(β)]
)

D→ N (0, σ2
h)

as m → ∞, and then construct a consistent estimate σ̂h of the asymptotic
standard deviation σh. A key sufficient condition for establishing a Markov
chain CLT is geometric ergodicity. A Markov chain is geometrically ergodic if the
total variation distance between its distribution after m steps and the stationary
distribution converges to 0 as m → ∞. To summarize, establishing geometric
ergodicity of the robit DA chain is critical for obtaining asymptotically valid
standard errors for Markov chain based estimates of posterior quantities.

With this motivation [16] investigated and established geometric ergodicity
of the robit DA chain. However, it is assumed that the design matrix is full rank
(which implies n ≥ p and rules out high-dimensional settings), Σa = g−1XTX
and that

n ≤ g−1ν

(ν + 1)(1 + 2
√

βT
a X

TXβa)
.

The last upper bound on n involving the design matrix, the prior mean and
covariance and the degrees of freedom ν is in particular very restrictive. While
we found that these conditions can be relaxed to some extent by a tighter drift
and minorization analysis, the resulting constraints still remain quite restrictive.
Geometric ergodicity results for the related probit DA chain (see [2]) do not
require such assumptions, and quoting from [16, Page 2469] “Ideally, we would
like to be able to say that the DA algorithm is geometrically ergodic for any
n, ν,y, X,βa,Σa”.

In the probit DA setting (see [1]) the latent variables Zi have a normal distri-
bution, and there is no need to introduce the additional latent variables λi. This
additional layer of latent variables creates additional complexity in the structure
of the robit DA chain which makes the convergence analysis significantly more
challenging compared to the probit DA chain analyses undertaken in [17, 2].

It is not clear if the restrictive conditions listed above for geometric ergodicity
of the robit DA chain are really necessary or if they are an artifact of the
standard drift and minorization technique used in [16] for establishing geometric
ergodicity. We take a completely different approach, and focus on investigating
the trace class property for the robit DA chain. A Markov chain with stationary
density π is trace class if the corresponding Markov operator on L2(π) has a
countable spectrum and the corresponding eigenvalues are summable. The trace
class property implies geometric ergodicity, and can be established by showing
that an appropriate integral involving the transition density of the Markov chain
is finite (see Section 2). As the main technical contribution of this paper, we
establish that the robit DA chain is trace class for any n, p, ν > 0,y, X,βa

and positive definite Σa. This in particular establishes geometric ergodicity for
any n, p, ν > 0,y, X,βa and positive definite Σa, and significantly generalizes
existing results in [16].
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The trace class property is much stronger than geometric ergodicity, and the
bounding of the relevant integral can get quite involved and challenging (see
for example the analysis is [2] and in Section 2). It is therefore not surprising
that the conditions needed for establishing geometric ergodicity through the
trace class approach have typically been stronger than those needed to establish
geometric ergodicity using the drift and minorization approach (for chains where
both such analyses have been successful). For example, [2] considers convergence
analysis of the probit DA chain with a proper prior for β as in (1.1). Using drift
and minorization geometric ergodicity is established for all n, p,y, X,βa,Σa, but
the trace class property was only established under some constraints on X and
Σa (see [2, Theorem 2]). Hence, it is quite interesting that for the robit DA chain
the reverse phenomenon holds: the drift and minorization approach, with the
drift function chosen in [16], needs stronger conditions to succeed than the trace
class approach. Essentially, the additional layer of latent variables λi introduced
in the robit setting severely hampers the drift and minorization analysis, but
with careful additional analysis and direct utilization of the structure of a t-
cdf embodying the inverse robit link function, eases the path for showing the
finiteness of the relevant trace class integral.

Establishing the trace class property of the DA chain gives additional benefits
on top of geometric ergodicity. Using results from [8], it can now be concluded
that the sandwich robit DA chain constructed in [16] is also trace class and is
strictly better than the robit DA chain (in the sense that the spectrum of the
latter strictly dominates the spectrum of the former). Also, the trace class prop-
erty is a key sufficient condition for using recent approaches in [3, 14] to estimate
the spectral gap of Markov chains. The remainder of the paper is organized as
follows. Section 2 contains the proof of the trace class property for the robit DA
chain. Section 3 provides numerical illustrations of various chains on two real
datasets, one with n ≥ p, and one with n < p. Additional mathematical results
needed for the proof of the trace class property are provided in an appendix.

2. Trace-class property for the DA chain

Recall from [16] that the DA Markov chain has associated transition density
given by

k (β,β′) =
∫
R

n
+

∫
Rn

π
(
β′
∣∣∣λ, z,y)π (λ, z∣∣∣β,y) dz dλ

=
∫
R

n
+

∫
Rn

π
(
β′
∣∣∣λ, z,y)π (λ∣∣∣z,β,y)π (z∣∣∣β,y) dz dλ. (2.1)

Let L2
0(π(.|y)) denote the space of square-integrable functions with mean zero

(with respect to the posterior density π(β|y)). Let K denote the Markov op-
erator on L2

0(π(.|y)) associated with the transition density k. Note that the
Markov chain corresponding to k tracks the movement of one component of a
two-component DA algorithm. It follows from the results in [10] that the Markov



24 S. Mukherjee et al.

transition density k is reversible with respect to its invariant distribution, and
K is a positive, self-adjoint operator. The operator K is trace class (see Jörgens
[7]) if

I :=
∫
Rp

k (β,β) dβ < ∞. (2.2)

If the trace-class property holds, then the spectrum of K is countable and the
corresponding eigenvalues are summable. This in particular implies that K is
compact, and the associated Markov chain is geometrically ergodic.

The following theorem shows that the Markov operator K corresponding to
the robit DA chain is trace class under very general conditions.

Theorem 1. The Markov operator K corresponding to the DA Markov chain
is trace-class for an arbitrary choice of the design matrix X, sample size n,
number of predictors p, degrees of freedom ν > 0, prior mean vector βa, and
(positive definite) prior precision matrix Σa.

Proof. We shall show that (2.2) holds for the DA Markov chain. The proof is
quite lengthy and involved, and we have tried to make it accessible to the reader
by highlighting the major steps/milestones.

We begin by fixing our notations. Let IA(.) be the indicator function of the
set A and φ (x; a, b) be the univariate normal density evaluated at point x with
mean a and variance b. Further, let φp (x;μ,Σ) denote the p-variate normal
density with mean vector μ, covariance matrix Σ, evaluated at a vector x ∈ R

p.
Finally, let q (ω; a, b) = baωa−1e−bω/Γ(a) be the gamma density evaluated at ω
with shape parameter a and rate parameter b.

Note from Section 2.1 of [16] that the joint posterior density of (β,λ, z) is
given by

π
(
β,λ, z

∣∣∣y)

= 1
m(y)

[
n∏

i=1

{
IR+ (zi) I{1} (yi) + IR− (zi) I{0} (yi)

}

φ

(
zi;xT

i β,
1
λi

)
q
(
λi;

ν

2 ,
ν

2

)]
× φp

(
β;βa,Σ−1

a

)

= 1
m(y)

[
n∏

i=1

{
IR+ (zi) I{1} (yi) + IR− (zi) I{0} (yi)

}

×
√
λi√
2π

exp
{
−λi

2
(
zi − xT

i β
)2}×

(
ν
2
) ν

2

Γ
(
ν
2
) λ

ν
2−1
i exp

{
−ν

2λi

}]

× (2π)−
p
2
√

det (Σa) exp
[
−1

2 (β − βa)T Σa (β − βa)
]
,

for λ ∈ R
n
+, z ∈ R

n, β ∈ R
p.

Step I: A useful linear reparametrization to adjust for the prior
mean βa and derivation of associated conditionals. Consider the following
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reparametrization (
z,λ,β

)
→

(
z̃,λ, β̃

)
,

using the transformation

z̃i = zi − xT
i βa , for all i = 1, 2, . . . , n and β̃ = β − βa.

The absolute value of the Jacobian of this transformation is one, and the joint
posterior density of

(
β̃,λ, z̃

)
is given by

π
(
β̃,λ, z̃

∣∣∣y)

= 1
m(y)

[
n∏

i=1

{
IR+

(
z̃i + xT

i βa

)
I{1} (yi) + IR−

(
z̃i + xT

i βa

)
I{0} (yi)

}

×
√
λi√
2π

exp
{
−λi

2
(
z̃i − xT

i β̃
)2}×

(
ν
2
) ν

2

Γ
(
ν
2
) λ

ν
2−1
i exp

{
−ν

2λi

}]

× (2π)−
p
2
√

det (Σa) exp
[
−1

2 β̃TΣaβ̃

]
. (2.3)

Straightforward calculations using (2.3) show that

β̃
∣∣∣λ, z̃,y ∼ Np

((
XTΛX + Σa

)−1
XTΛz̃ ,

(
XTΛX + Σa

)−1)
,

and

π
(
β̃
∣∣∣λ, z̃,y) = (2π)−

p
2

√
det (XTΛX + Σa)

× exp
[
− 1

2

{
β̃T

(
XTΛX + Σa

)
β̃ − 2β̃TXTΛz̃

+ z̃TΛX
(
XTΛX + Σa

)−1
XTΛz̃

}]
. (2.4)

It is easy to notice from (2.3) that (λi, z̃i)’s are conditionally independent
given

(
β̃,y

)
, and moreover,

π
(
λi, z̃i

∣∣∣β̃, yi) ∝
{
IR+

(
z̃i + xT

i βa

)
I{1} (yi) + IR−

(
z̃i + xT

i βa

)
I{0} (yi)

}
× λ

ν+1
2 −1

i exp
[
−λi

2

{
ν +

(
z̃i − xT

i β̃
)2}]

. (2.5)

Hence, λ1, λ2, . . . , λn are conditionally independent given
(
z̃, β̃,y

)
, and

λi

∣∣∣z̃i, β̃, yi ∼ Gamma
(
ν + 1

2 ,
ν +

(
z̃i − xT

i β̃
)2

2

)
,
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for each i ∈ {1, 2, . . . , n}, which implies that

π
(
λ
∣∣∣z̃, β̃,y) = K1

⎡
⎣ n∏
i=1

(
ν +

(
z̃i − xT

i β̃
)2

2

) ν+1
2
⎤
⎦×

[
n∏

i=1
λ

ν−1
2

i

]

× exp
[
−1

2

n∑
i=1

λi

(
ν +

(
z̃i − xT

i β̃
)2)]

= K ′
1

[
n∏

i=1

(
ν +

(
z̃i − xT

i β̃
)2) ν+1

2

]

×
[

n∏
i=1

λ
ν−1
2

i

]
× exp

[
−ν

2

n∑
i=1

λi

]

× exp
[
−1

2
{
z̃TΛz̃ − 2β̃TXTΛz̃ + β̃TXTΛXβ̃

}]
, (2.6)

where K1 and K ′
1 are appropriate constants.

To find π
(
z̃
∣∣∣β̃,y), we use (2.5) to get for each i ∈ {1, 2, . . . , n},

π
(
z̃i

∣∣∣β̃, yi)
=
∫
R+

π
(
λi, z̃i

∣∣∣β̃, yi) dλi

= Cβ̃,yi
×
[
IR+

(
z̃i + xT

i βa

)
I{1} (yi) + IR−

(
z̃i + xT

i βa

)
I{0} (yi)

]
×
∫
R+

λ
ν+1
2 −1

i exp
[
−λi

2

{
ν +

(
z̃i − xT

i β̃
)2}]

dλi[
where, Cβ̃,yi

is a constant which depends on β̃, yi

]
= Cβ̃,yi

×
[
IR+

(
z̃i + xT

i βa

)
I{1} (yi) + IR−

(
z̃i + xT

i βa

)
I{0} (yi)

]
×

Γ
(
ν+1
2
)

(
ν+

(
z̃i−xT

i β̃
)2

2

) ν+1
2

= C ′
β̃,yi

×
[
IR+

(
z̃i + xT

i βa

)
I{1} (yi) + IR−

(
z̃i + xT

i βa

)
I{0} (yi)

]

×
(

1 +
(
z̃i − xT

i β̃
)2

ν

)− ν+1
2

, (2.7)

where C ′
β̃,yi

is the product of all constant terms that are free of z̃i. We conclude
from (2.3) and (2.7) that conditional on

(
β̃,y

)
, z̃1, z̃2, . . . , z̃n are independent

with z̃i

∣∣∣β̃,y following a truncated t distribution with location xT
i β̃, scale 1 and

degrees of freedom ν that is truncated left at −xT
i βa if yi = 1 and truncated

right at −xT
i βa if yi = 0.
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Now, if we denote tν (μ, 1) to be the univariate Student’s t distribution with
location μ, scale 1 and degrees of freedom ν, and Fν to be the cdf of the tν(0, 1)
distribution, then for yi = 0,

π
(
z̃i

∣∣∣β̃, yi) =
K2

(
1 +

(
z̃i−xT

i β̃
)2

ν

)− ν+1
2

P
(
tν
(
xT
i β̃, 1

)
≤ −xT

i βa

)

=
K2

(
1 +

(
z̃i−xT

i β̃
)2

ν

)− ν+1
2

P
(
tν (0, 1) ≤ −xT

i

(
β̃ + βa

))

=
K2

(
1 +

(
z̃i−xT

i β̃
)2

ν

)− ν+1
2

1 − Fν

(
xT
i

(
β̃ + βa

)) , (2.8)

and for yi = 1,

π
(
z̃i

∣∣∣β̃, yi) =
K2

(
1 +

(
z̃i−xT

i β̃
)2

ν

)− ν+1
2

P
(
tν
(
xT
i β̃, 1

)
≥ −xT

i βa

)

=
K2

(
1 +

(
z̃i−xT

i β̃
)2

ν

)− ν+1
2

P
(
tν (0, 1) ≥ −xT

i

(
β̃ + βa

))

=
K2

(
1 +

(
z̃i−xT

i β̃
)2

ν

)− ν+1
2

Fν

(
xT
i

(
β̃ + βa

)) . (2.9)

Combining (2.8) and (2.9), we have for any yi,

π
(
z̃i

∣∣∣β̃, yi)

= K2

(
1 +

(
z̃i − xT

i β̃
)2

ν

)− ν+1
2

×
{

1
Fν

(
xT
i

(
β̃ + βa

))
}yi

{
1

1 − Fν

(
xT
i

(
β̃ + βa

))
}1−yi

,

which implies,

π
(
z̃
∣∣∣β̃,y)
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= Kn
2 ν

n(ν+1)
2

n∏
i=1

[(
ν +

(
z̃i − xT

i β̃
)2)− ν+1

2

{
1

Fν

(
xT
i

(
β̃ + βa

))
}yi

×
{

1
1 − Fν

(
xT
i

(
β̃ + βa

))
}1−yi

]
. (2.10)

Let S := {i : yi = 0}. Then, Sc = {i : yi = 1}. Also, let

k̃(β̃, β̃′) =
∫
R

n
+

∫
Rn

π
(
β̃′
∣∣∣λ, z̃,y)π (λ∣∣∣z̃, β̃,y)π (z̃∣∣∣β̃,y) dz̃ dλ,

denote the transition density of the marginal β̃-chain which tracks the linearly
transformed version β̃ = β − βa of β. Using (2.1), (2.4), (2.6) and (2.10), we
get the following form for the integral I in (2.2) under the new parametrization.

I =
∫
Rp

k̃
(
β̃, β̃

)
dβ̃

=
∫
Rp

∫
R

n
+

∫
Rn

π
(
β̃
∣∣∣λ, z̃,y)π (λ∣∣∣z̃, β̃,y)π (z̃∣∣∣β̃,y) dz̃ dλ dβ̃

=
∫
R

n
+

∫
Rp

∫
Rn

π
(
β̃
∣∣∣λ, z̃,y)π (λ∣∣∣z̃, β̃,y)π (z̃∣∣∣β̃,y) dz̃ dβ̃ dλ

= C0

∫
R

n
+

∫
Rp

∫
Rn

√
det (XTΛX + Σa) ×

[
n∏

i=1
λ

ν−1
2

i

]
× exp

[
−ν

2

n∑
i=1

λi

]

×
∏
i∈S

[
1

1 − Fν

(
xT
i

(
β̃ + βa

))
]
×

∏
i∈Sc

[
1

Fν

(
xT
i

(
β̃ + βa

))
]

× exp
[
− 1

2

{
β̃T

(
XTΛX + Σa

)
β̃ − 2β̃TXTΛz̃

+ z̃TΛX
(
XTΛX + Σa

)−1
XTΛz̃

}]

× exp
[
−1

2
{
z̃TΛz̃ − 2β̃TXTΛz̃

+ β̃TXTΛXβ̃
}]

dz̃ dβ̃ dλ. (2.11)

Here, C0 denotes the product of all constant terms (independent of β̃, λ,
and z̃) appearing in the conditional densities π

(
β̃
∣∣∣λ, z̃,y), π

(
λ
∣∣∣z̃, β̃,y), and

π
(
z̃
∣∣∣β̃,y).

Step II: Another reparametrization to adjust for the prior precision
matrix Σa. Now, let us define θ = Σ1/2

a β̃, W = XΣ−1/2
a , and c̃ = Σ1/2

a βa.
Absolute value of the Jacobian of the transformation β̃ → θ is {det (Σa)}−1/2

>
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0. Therefore, the right hand side of (2.11), after this further reparametrization
becomes

I = C0

∫
R

n
+

∫
Rp

∫
Rn

√
det (WTΛW + Ip) ×

[
n∏

i=1
λ

ν−1
2

i

]
× exp

[
−ν

2

n∑
i=1

λi

]

×
∏
i∈S

[
1

1 − Fν

(
wT

i (θ + c̃)
)
]
×

∏
i∈Sc

[
1

Fν

(
wT

i (θ + c̃)
)
]

× exp
[
− 1

2

{
θT

(
WTΛW + Ip

)
θ − 2θTWTΛz̃

+ z̃TΛW
(
WTΛW + Ip

)−1
WTΛz̃

}]

× exp
[
−1

2
{
z̃TΛz̃ − 2θTWTΛz̃

+ θTWTΛWθ
}]

dz̃ dθ dλ

= C0

∫
R

n
+

∫
Rp

√
det (WTΛW + Ip) ×

[
n∏

i=1
λ

ν−1
2

i

]
× exp

[
−ν

2

n∑
i=1

λi

]

×
∏
i∈S

[
1

1 − Fν

(
wT

i (θ + c̃)
)
]
×

∏
i∈Sc

[
1

Fν

(
wT

i (θ + c̃)
)
]

× exp
[
− 1

2

{
θT

(
2WTΛW + Ip

)
θ

}]

×
(∫

Rn

exp
[
2θTWTΛz̃

− 1
2 z̃T

(
Λ + ΛW

(
WTΛW + Ip

)−1
WTΛ

)
z̃
]
dz̃
)
dθ dλ.

(2.12)

Step III: An upper bound for the innermost z̃ integral in (2.12). We
now derive an upper bound for the innermost integral in (2.12). Note that
∫
Rn

exp
[
2θTWTΛz̃ − 1

2 z̃T
(
Λ + ΛW

(
WTΛW + Ip

)−1
WTΛ

)
z̃
]

dz̃

= exp
[
1
2 4θTWTΛ

(
Λ + ΛW

(
WTΛW + Ip

)−1
WTΛ

)−1
ΛWθ

]
× (C1)−1

×
∫
Rn

C1 exp
[
−1

2 (z̃ − a�
1)T

(
Λ + ΛW

(
WTΛW + Ip

)−1
WTΛ

)
(z̃ − a�

1)
]

dz̃[
where, a�

1 = 2
(
Λ + ΛW

(
WTΛW + Ip

)−1
WTΛ

)−1
ΛWθ

]
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= C−1
1 exp

[
1
2 4θTWTΛ

(
Λ + ΛW

(
WTΛW + Ip

)−1
WTΛ

)−1
ΛWθ

]
,

(2.13)

where C1 = (2π)−n/2
{

det
(
Λ + ΛW

(
WTΛW + Ip

)−1
WTΛ

)}1/2
. The last

equality follows from the fact that the integrand is a normal density. However,

C1 = (2π)−n/2
{

det
(
Λ + ΛW

(
WTΛW + Ip

)−1
WTΛ

)}1/2

≥ (2π)−n/2 {det (Λ)}1/2

= (2π)−n/2

√√√√ n∏
i=1

λi . (2.14)

From (2.13) and (2.14), we have an upper bound for the inner integral in (2.12)
as follows∫

Rn

exp
[
2θTWTΛz̃ − 1

2 z̃T
(
Λ + ΛW

(
WTΛW + Ip

)−1
WTΛ

)
z̃
]

dz̃

≤ (2π)n/2
n∏

i=1
λ
−1/2
i

× exp
[
1
2 4θTWTΛ

(
Λ + ΛW

(
WTΛW + Ip

)−1
WTΛ

)−1
ΛWθ

]
. (2.15)

Combining (2.12) and (2.15), we get

I ≤ C0 (2π)n/2
∫
R

n
+

∫
Rp

√
det (WTΛW + Ip) ×

[
n∏

i=1
λ

ν
2−1
i

]
× exp

[
−ν

2

n∑
i=1

λi

]

×
∏
i∈S

[
1

1 − Fν

(
wT

i (θ + c̃)
)
]
×

∏
i∈Sc

[
1

Fν

(
wT

i (θ + c̃)
)
]

× exp
[
− 1

2

{
θT

(
2WTΛW + Ip

)
θ

− 4θTWTΛ
(
Λ + ΛW

(
WTΛW + Ip

)−1
WTΛ

)−1

× ΛWθ

}]
dθ dλ

= C2

∫
Rp

∫
R

n
+

√
det (WTΛW + Ip) ×

[
n∏

i=1
λ

ν
2−1
i

]
× exp

[
−ν

2

n∑
i=1

λi

]

×
∏
i∈S

[
1

1 − Fν

(
wT

i (θ + c̃)
)
]
×

∏
i∈Sc

[
1

Fν

(
wT

i (θ + c̃)
)
]



Convergence of robit regression DA algorithms 31

× exp
[
−1

2

{
G (θ,λ)

}]
dθ dλ, (2.16)

where C2 = C0 (2π)n/2 and

G (θ,λ) = θT
(
2WTΛW + Ip

)
θ

− 4θTWTΛ
(
Λ + ΛW

(
WTΛW + Ip

)−1
WTΛ

)−1
ΛWθ

= θT
[(

2WTΛW + Ip
)

−4WTΛ
(
Λ + ΛW

(
WTΛW + Ip

)−1
WTΛ

)−1
ΛW

]
θ.

(2.17)

Step IV: An upper bound for the products involving the cdf Fν . We
now target the product terms in the integrand involving the t-cdf Fν . Note that
for i ∈ S, if wT

i (θ + c̃) ≤ 0, then

Fν

(
wT

i (θ + c̃)
)
≤ Fν(0) = 1

2 =⇒ 1
1 − Fν

(
wT

i (θ + c̃)
) ≤ 2, (2.18)

and if wT
i (θ + c̃) > 0, then by Lemma A.1 in Appendix A we have

1
1 − Fν

(
wT

i (θ + c̃)
) ≤

((
wT

i θ + wT
i c̃
)2 + ν

) ν
2

κ
. (2.19)

From (2.18) and (2.19), we have for any i ∈ S,

1
1 − Fν

(
wT

i (θ + c̃)
) ≤ max

⎧⎪⎨
⎪⎩2 ,

((
wT

i θ + wT
i c̃
)2 + ν

) ν
2

κ

⎫⎪⎬
⎪⎭

≤

⎛
⎜⎝2 +

((
wT

i θ + wT
i c̃
)2 + ν

) ν
2

κ

⎞
⎟⎠ . (2.20)

Similarly for i ∈ Sc, if wT
i (θ + c̃) ≥ 0, then

Fν

(
wT

i (θ + c̃)
)
≥ Fν(0) = 1

2
=⇒ 1

Fν

(
wT

i (θ + c̃)
) ≤ 2, (2.21)

and if wT
i (θ + c̃) < 0, i.e., −wT

i (θ + c̃) > 0, then by Lemma A.1 in Appendix A
we have

1
Fν

(
wT

i (θ + c̃)
) = 1

1 − Fν

(
−wT

i (θ + c̃)
) ≤

((
wT

i θ + wT
i c̃
)2 + ν

) ν
2

κ
.

(2.22)
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From (2.21) and (2.22), we have for any i ∈ Sc,

1
Fν

(
wT

i (θ + c̃)
) ≤ max

⎧⎪⎨
⎪⎩2 ,

((
wT

i θ + wT
i c̃
)2 + ν

) ν
2

κ

⎫⎪⎬
⎪⎭

≤

⎛
⎜⎝2 +

((
wT

i θ + wT
i c̃
)2 + ν

) ν
2

κ

⎞
⎟⎠ . (2.23)

Finally from (2.20) and (2.23), we have

∏
i∈S

[
1

1 − Fν

(
wT

i (θ + c̃)
)
]
×

∏
i∈Sc

[
1

Fν

(
wT

i (θ + c̃)
)
]

≤
n∏

i=1

⎛
⎜⎝2 +

((
wT

i θ + wT
i c̃
)2 + ν

) ν
2

κ

⎞
⎟⎠ . (2.24)

Note that (
wT

i θ + wT
i c̃
)2 = (θ + c̃)T wiwT

i (θ + c̃)

≤ (θ + c̃)T
(

n∑
i=1

wiwT
i

)
(θ + c̃)

= (θ + c̃)T WTW (θ + c̃) , (2.25)

for every 1 ≤ i ≤ n. It follows from (2.24), (2.25), and the cr-inequality that

∏
i∈S

[
1

1 − Fν

(
wT

i (θ + c̃)
)
]
×

∏
i∈Sc

[
1

Fν

(
wT

i (θ + c̃)
)
]

≤
n∏

i=1

⎛
⎜⎝2 +

(
(θ + c̃)T WTW (θ + c̃) + ν

) ν
2

κ

⎞
⎟⎠

=

⎛
⎜⎝2 +

(
(θ + c̃)T WTW (θ + c̃) + ν

) ν
2

κ

⎞
⎟⎠

n

≤ 2n

⎡
⎢⎣2n +

(
(θ + c̃)T WTW (θ + c̃) + ν

)nν
2

κn

⎤
⎥⎦

≤ 2n

⎡
⎢⎢⎣2n +

2nν/2
{(

(θ + c̃)T WTW (θ + c̃)
)nν

2 + νnν/2
}

κn

⎤
⎥⎥⎦
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= C3 + C4

(
(θ + c̃)T WTW (θ + c̃)

)nν
2

≤ C3 + C6

(
(θ + c̃)T (θ + c̃)

)nν
2
, (2.26)

where C3 = 22n + 2n(2ν)nν/2

κn , C4 = 2n2nν/2

κn , C5 denotes the largest eigenvalue of
WTW , and C6 = C4C

nν
2

5 .
Let λmax denote the largest diagonal entry of the diagonal matrix Λ. Us-

ing (2.16), (2.26),
(
WTΛW + Ip

)
� max(1, λmax)

(
WTW + Ip

)
, and Fubini’s

theorem, it follows that

I ≤ C2

∫
R

n
+

∫
Rp

max
{

1, λp/2
max

}√
det (WTW + Ip)

×
[

n∏
i=1

λ
ν
2−1
i

]
× exp

[
−ν

2

n∑
i=1

λi

]

×
[
C3 + C6

(
(θ + c̃)T (θ + c̃)

)nν
2
]

× exp
[
−1

2

{
G (θ,λ)

}]
dθ dλ

= C7

∫
R

n
+

∫
Rp

max
{

1, λp/2
max

}
×
[

n∏
i=1

λ
ν
2−1
i

]
× exp

[
−ν

2

n∑
i=1

λi

]

×
[
C3 + C6

(
(θ + c̃)T (θ + c̃)

)nν
2
]

× exp
[
−1

2

{
G (θ,λ)

}]
dθ dλ, (2.27)

where C7 = C2
√

det (WTW + Ip) is a constant term free of θ and λ.

Step V: Showing G (θ,λ) is positive definite quadratic form in θ. In
order to show the finiteness of the upper bound for I in (2.27), we will first
prove that G (θ,λ) is a positive definite quadratic form in θ for all θ ∈ R

p and
λ ∈ R

n
+. For that, it is enough to show by (2.17) that the matrix[(
2WTΛW + Ip

)
− 4WTΛ

(
Λ + ΛW

(
WTΛW + Ip

)−1
WTΛ

)−1
ΛW

]
,

is a positive definite matrix for all λ ∈ R
n
+. We show this by working out the

spectral decomposition of this matrix separately in the low and high-dimensional
settings.

Low-dimensional setting: When n ≥ p

(
2WTΛW + Ip

)
− 4WTΛ

(
Λ + ΛW

(
WTΛW + Ip

)−1
WTΛ

)−1
ΛW
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=
(
2WTΛW + Ip

)
− 4WTΛ1/2

(
In + Λ1/2W

(
WTΛW + Ip

)−1
WTΛ1/2

)−1
Λ1/2W

=
(
2ATA + Ip

)
− 4AT

(
In + A

(
ATA + Ip

)−1
AT

)−1
A, (2.28)

where A = Λ1/2W . Now, by the Singular Value Decomposition, A can be written
as

An×p = Un×pDp×pV
T
p×p, (2.29)

where U is a semi-orthogonal matrix i.e. UTU = Ip, V is an orthogonal matrix
i.e. V TV = V V T = Ip, and D is a diagonal matrix with singular values of A be-
ing the diagonal entries. Since Un×p is a semi-orthogonal matrix with full column
rank p, there exists a matrix U0 n×(n−p) such that the matrix

[
Un×p U0 n×(n−p)

]
becomes an orthogonal matrix, i.e.,

[
U U0

] [UT

UT
0

]
=

[
UT

UT
0

] [
U U0

]
= In,

which implies that

UT
0 U = 0(n−p)×p , UTU0 = 0p×(n−p).

Using A = UDV T in (2.28), and standard matrix algebra leveraging the various
orthogonality properties discussed above, we get

(
2WTΛW + Ip

)
− 4WTΛ

(
Λ + ΛW

(
WTΛW + Ip

)−1
WTΛ

)−1
ΛW

=
(
2ATA + Ip

)
− 4AT

(
In + A

(
ATA + Ip

)−1
AT

)−1
A

=
(
2V D2V T + Ip

)
− 4V DUT

([
U U0

] [UT

UT
0

]

+
[
U U0

] [UT

UT
0

]
UDV T

(
V D2V T + Ip

)−1

× V DUT
[
U U0

] [UT

UT
0

])−1

UDV T

=
(
2V D2V T + Ip

)
− 4V DUT

([
U U0

] [UT

UT
0

]

+
[
U U0

] [DV T
(
V D2V T + Ip

)−1
V D 0

0 0

] [
UT

UT
0

])−1

UDV T

=
(
2V D2V T + Ip

)
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− 4V DUT
[
U U0

](
In +

[
DV T

(
V D2V T + Ip

)−1
V D 0

0 0

])−1

[
UT

UT
0

]
UDV T

=
(
2V D2V T + Ip

)
− 4V D

[
Ip 0

] [(Ip + DV T
(
V D2V T + Ip

)−1
V D

)−1
0

0 In−p

]
[
Ip
0

]
DV T

=
(
2V D2V T + Ip

)
− 4V D

(
Ip + DV T

(
V D2V T + Ip

)−1
V D

)−1
DV T

=
(
2V D2V T + V V T

)
− 4V D

(
Ip + D

(
D2 + Ip

)−1
D
)−1

DV T

= V
(
2D2 + Ip

)
V T − 4V D

(
Ip + D2

D2 + Ip

)−1

DV T

= V

[
Ip

2D2 + Ip

]
V T . (2.30)

High-dimensional setting: When n < p, the Singular Value Decomposition
of A = Λ1/2W can be written as

An×p = Vn×nDn×nU
T
n×p,

where Up×n is a semi-orthogonal matrix i.e. UTU = In, V is an orthogonal
matrix i.e. V TV = V V T = In, and D is a diagonal matrix with singular val-
ues of A being the diagonal entries. Since Up×n is a semi-orthogonal matrix
with full column rank n, there exists a matrix U0 p×(p−n) such that the matrix[
Up×n U0 p×(p−n)

]
becomes an orthogonal matrix, i.e.,

[
U U0

] [UT

UT
0

]
=

[
UT

UT
0

] [
U U0

]
= Ip,

which implies that

UT
0 U = 0(p−n)×n , UTU0 = 0n×(p−n).

Again, using A = V DUT in (2.28), and standard matrix algebra leveraging the
various orthogonality properties discussed above, we get

(
2WTΛW + Ip

)
− 4WTΛ

(
Λ + ΛW

(
WTΛW + Ip

)−1
WTΛ

)−1
ΛW

=
(
2ATA + Ip

)
− 4AT

(
In + A

(
ATA + Ip

)−1
AT

)−1
A
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=
(
2UD2UT + Ip

)
− 4UD

(
In + DUT

(
UD2UT + Ip

)−1
UD

)−1
DUT

=
(
2UD2UT + Ip

)
− 4UD

(
In + DUT

(
UD2UT +

[
U U0

] [UT

UT
0

])−1

UD

)−1

DUT

=
(
2UD2UT + Ip

)
− 4UD

(
In + DUT

(
U
(
D2 + In

)
UT + U0U

T
0
)−1

UD
)−1

DUT

=
(
2UD2UT + Ip

)
− 4UD

(
In + DUT

(
U
(
D2 + In

)−1
UT + U0U

T
0

)
UD

)−1
DUT

= U
(
2D2 + In

)
UT + U0U

T
0 − U

[
4D2 (D2 + In

) (
2D2 + In

)−1
]
UT

= U

[(
2D2 + In

)
−

4D2 (D2 + In
)

2D2 + In

]
UT + U0U

T
0

= U

[
In

2D2 + In

]
UT + U0U

T
0 . (2.31)

Now, if we denote

Ω (Λ) :=
(
2WTΛW + Ip

)
− 4WTΛ

(
Λ + ΛW

(
WTΛW + Ip

)−1
WTΛ

)−1
ΛW,

then from (2.30) and (2.31), it follows that

Ω (Λ) =

⎧⎪⎪⎨
⎪⎪⎩

V
[

Ip
2D2+Ip

]
V T if n ≥ p

U
[

In
2D2+In

]
UT + U0U

T
0 if n < p.

(2.32)

Then, clearly Ω (Λ) is a positive definite matrix for both the cases n ≥ p and
n < p, and for all λ ∈ R

n
+. This implies that G (θ,λ) = θTΩ (Λ)θ is a positive

definite quadratic form in θ for all θ ∈ R
p and λ ∈ R

n
+. Moreover,

Σ (Λ) := Ω (Λ)−1 =

⎧⎨
⎩

V
(
2D2 + Ip

)
V T if n ≥ p

U
(
2D2 + In

)
UT + U0U

T
0 if n < p.

(2.33)

Now, from (2.27) we get

I ≤ C7

∫
R

n
+

∫
Rp

max
{

1, λp/2
max

}
×
[

n∏
i=1

λ
ν
2−1
i

]
× exp

[
−ν

2

n∑
i=1

λi

]

×
[
C3 + C6

(
(θ + c̃)T (θ + c̃)

)nν
2
]
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× exp
[
−1

2

{
G (θ,λ)

}]
dθ dλ

= C7

∫
R

n
+

∫
Rp

max
{

1, λp/2
max

}
×
[

n∏
i=1

λ
ν
2−1
i

]
× exp

[
−ν

2

n∑
i=1

λi

]

×
[
C3 + C6

(
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)
dλ. (2.34)

Step VI: An upper bound for the inner integral in (2.34). We now
derive an upper bound for the inner integral in (2.34) using properties of the
multivariate normal distribution. Note that∫

Rp

[
C3 + C6

(
(θ + c̃)T (θ + c̃)

)nν
2
]

exp
[
−1

2 θTΩ (Λ)θ
]

dθ

= (2π)p/2
√

det (Σ (Λ))

×
∫
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(2π)−p/2 det (Σ (Λ))−1/2

×
[
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(
(θ + c̃)T (θ + c̃)

)nν
2
]

× exp
[
−1

2 θTΩ (Λ)θ
]

dθ

= (2π)p/2
√

det (Σ (Λ))

× ENp(0, Σ(Λ))

([
C3 + C6

(
(θ + c̃)T (θ + c̃)

)nν
2
])

(2.35)

where Np (0, Σ (Λ)) stands for multivariate normal distribution with mean vec-
tor 0 and covariance matrix Σ (Λ) (defined in (2.33)). Observe that

ENp(0, Σ(Λ))

([
C3 + C6

(
(θ + c̃)T (θ + c̃)

)nν
2
])

= C3 + C6 ENp(0, Σ(Λ))

[(
(θ + c̃)T Ω (Λ)1/2 Σ (Λ) Ω (Λ)1/2 (θ + c̃)

)nν
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]

≤ C3 + C6 eignν/2max (Σ (Λ)) ENp(0, Σ(Λ))

[(
(θ + c̃)T Ω (Λ) (θ + c̃)

)nν
2
]
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= C3 + C6 eignν/2max (Σ (Λ))

ENp(0, Σ(Λ))

[(
θTΩ (Λ)θ + 2c̃TΩ (Λ)θ + c̃TΩ (Λ) c̃

)nν
2
]
,

(2.36)

since Σ (Λ) � eigmax (Σ (Λ)) Ip, and
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[
since for any a, b, c, n ∈ R+ ∪ {0}, (a + b + c)n ≤ 3n (an + bn + cn)

]

= 3nν/2
[
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] ]

. (2.37)

We will show that each term in (2.37) is uniformly bounded in λ. Note that if
θ ∼ Np (0, Σ (Λ)), then θTΩ (Λ)θ ∼ χ2

p. Hence ENp(0, Σ(Λ))

[(
θTΩ (Λ)θ

)nν
2
]

is a finite quantity free of λ.
Again, using the fact that 2

∣∣aTb
∣∣ ≤ aTa + bTb, and taking a = Ω (Λ)

1
2 c̃

and b = Ω (Λ)
1
2 θ, we get

2
∣∣c̃TΩ (Λ)θ

∣∣ ≤ c̃TΩ (Λ) c̃ + θTΩ (Λ)θ
≤ eigmax (Ω (Λ)) c̃T c̃ + θTΩ (Λ)θ[
since Ω (Λ) � eigmax (Ω (Λ)) Ip

]
.

However, from the expression of Ω (Λ) in (2.32), it is easy to see that Ω (Λ) � Ip
and hence eigmax (Ω (Λ)) ≤ 1. It follows that

ENp(0, Σ(Λ))
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2
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2 + ENp(0, Σ(Λ))

[(
θTΩ (Λ)θ

)nν
2
]]

= C9 (say) ,

where C9 is finite and independent of λ based on the observations above. Finally,
since all eigenvalues of Ω (Λ) are non-negative and bounded above by 1, it follows
that (

c̃TΩ (Λ) c̃
)nν

2 ≤
(
c̃T c̃

)nν
2 .
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Using (2.36) and (2.37), we get

ENp(0, Σ(Λ))
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)nν
2
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(
2d2

max + 1
)nν

2 (by the expression of Σ (Λ) in (2.33)) ,

where C12 is an appropriate constant independent of λ and dmax is the largest
element of the diagonal matrix D in the expression of (2.33). Plugging this
in (2.35), we get the following upper bound for the inner integral in (2.34).∫
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This in turn leads to the following upper bound for the integral I of interest.
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Our final steps will be to bound the (single) integral in (2.38) separately in the
low and high-dimensional settings.

Step VII: An upper bound for the integral in (2.38) in the low- di-
mensional setting. Suppose n ≥ p. By the expression of Σ (Λ) in (2.33) for
n ≥ p, we have

det (Σ (Λ)) = det
(
V
(
2D2 + Ip

)
V T

)
=
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(
2d2

i + 1
)
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(
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, (2.39)

where {di}pi=1 are the singular values of A, and dmax is the largest singular value
of A = Λ1/2W in (2.29). Note that

d2
max = eigmax

(
AAT

)
= eigmax

(
Λ1/2WWTΛ1/2

)
. (2.40)

Since WWT is a fixed positive semi-definite matrix, there exists a large positive
real number C13 such that

Λ1/2WWTΛ1/2 � C13Λ � C13λmaxIn,
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where λmax is the largest element in the matrix Λ. It follows from (2.40) that
d2
max ≤ C13λmax. Using (2.38), (2.39) and the cr-inequality, we get
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polynomial terms in λmax in the integrand gives
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for an appropriate finite constant C15 which does not depend on λ. Using the
fact that λr
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Since all of the terms in the above bound are integrals over unnormalized gamma
densities (with strictly positive and finite shape and rate parameters), it follows
that I < ∞.
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Step VIII: An upper bound for the integral in (2.38) in the high-
dimensional setting. Suppose n < p. By the expression of Σ (Λ) in (2.33) for
n < p, we have
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By a similar argument as for the n ≥ p setting, we get d2
max ≤ C ′

13λmax for
an appropriate constant C ′

13 not depending on λ. Using (2.38), (2.42) and the
cr-inequality, we get
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setting. Expanding the product of the polynomial terms in λmax in the integrand
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for an appropriate finite constant C ′
15 which does not depend on λ. Using the

fact that λr
max ≤
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j=1 λ

r
j for any positive r, and similar arguments regarding
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gamma integrals as in (2.41) for the low-dimensional n ≥ p setting, it follows
that I < ∞ in the high-dimensional n < p setting as well. This establishes the
trace-class property of the DA Markov chain.

As discussed in the introduction, the trace-class property established above
implies compactness of the Markov operator K, which implies that the corre-
sponding DA Markov chain is geometrically ergodic.

Corollary 1. The DA Markov chain with transition density k (in (2.1)) is
geometrically ergodic for an arbitrary choice of the design matrix X, sample
size n, number of predictors p, degrees of freedom ν > 0, prior mean vector βa,
and (positive definite) prior precision matrix Σa.

Remark 2.1. We note that the arguments posited in Step IV of the proof above
directly utilize properties of a tν-cdf embodying the (inverse) robit link, and can-
not be directly extended to handle a probit model. In particular, equation (2.26)
produces a Mill’s ratio type upper bound for the product term involving recip-
rocal cumulative tν-probabilities. This upper bound is an nν-degree multi-linear
polynomial in the elements of θ, the linearly transformed β variables. The poly-
nomial nature of this upper bound is crucial in ensuring soundness of the subse-
quent arguments; e.g., this polynomial upper bound in steps V and VI combined
produces an upper bound for the inner θ integral in (2.16) in terms of moments
of a certain multivariate normal distribution. Heuristically, to extend the pre-
sented proof to the case of a probit model, one would need to let ν → ∞,
followed by setting λ ≡ 1 everywhere in the integral (2.12) and removing all
λ-only terms and the outer λ integral in (2.11). However for non-finite ν the
nν-degree polynomial upper bound (2.26) is invalid and instead one obtains an
upper bound that is exponential in θTθ [see 2]. This extra exponential term
renders several subsequent arguments posited in our proof inapplicable. Con-
sequently, despite lacking any λ terms or an outer λ integral, the target trace
class integral for a probit model Markov chain cannot be proven to be finite
via a simple adaptation of our arguments. To prove the trace class property of
the Bayesian probit model Markov chain separate arguments for the extra ex-
ponential term arising out of the Mill’s ratio upper bound are made in [2], and
regularity conditions bounding the eigenvalues of a product matrix involving
the design matrix X and the prior precision matrix Σa are imposed. Note that,
no such regularity condition is needed for the robit model in Theorem 1.

3. Numerical illustrations

This section presents numerical illustrations to compare/contrast the conver-
gence properties of the robit DA and some other relevant Markov chains. To
examine both the low and high-dimensional settings, we consider two real data
sets, viz., the Lupus data (n > p) from [18] and the prostate cancer data (n < p)
from [4]. We note at the outset that with a view to the main goal/contribution
of this paper, viz., theoretical convergence analysis for (robit) Markov chains,
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our focus in this section centers entirely around exemplification of the said con-
vergences. Prior elicitation for statistical inference are beyond the scope of this
section and the paper; we consider the data-driven Zellner’s g-prior following
[2] in the first example, and independent standard normal priors in the second
example to run the respective Markov chains.

As noted in the Introduction, a trace-class property ensures guaranteed im-
provements in the convergence of a DA algorithm by sandwiching (see Corol-
lary 2 below). To exemplify/visualize this improvement in the current context
we alongside consider a sandwich algorithm obtained by inserting an inexpen-
sive random generation step in between the two steps of Algorithm 1. More
specifically, we consider the sandwich algorithm from [16] which inserts a uni-
variate random gamma generation as presented in Algorithm 2. Note that both
the original DA algorithm and its sandwiched version share the same target
stationary distribution for β.

Algorithm 2: (m + 1)-st Iteration of the Robit Sandwich Algorithm
1. Make independent draws from the Ttν(xT

i β(m), yi) distributions for 1 ≤ i ≤ n.
Denote the respective draws by z1, z2, · · · , zn. Draw λi from the

Gamma
(

ν+1
2 ,

ν+
(
zi−xT

i β(m)
)2

2

)
distribution.

2. Generate h2 ∼ Gamma
(

n
2 ,

zT Λ1/2(I−Q)Λ1/2z
2

)
, where

Q = Λ1/2X
(
XT ΛX + Σa

)−1
XT Λ1/2, and subsequently define z′i=hzi; 1≤ i ≤ n.

3. Draw β(m+1) from the Np
(
(XT ΛX + Σa)−1(XTΛz′ + Σaβa), (XT ΛX + Σa)−1)

distribution.

The trace class property of the robit DA chain (Theorem 1) along with results
in [8] imply that the following properties hold for the sandwich chain.

Corollary 2. The sandwich Markov chain described in Algorithm 2 is trace
class (and hence geometrically ergodic) for an arbitrary choice of the design ma-
trix X, sample size n, number of predictors p, degrees of freedom ν > 0, prior
mean vector βa, and (positive definite) prior precision matrix Σa. Furthermore,
if (λi)∞i=0 and (λ∗

i )
∞
i=0 denote the non-increasing sequences of eigenvalues corre-

sponding to the robit DA and sandwich operators respectively, then λ∗
i ≤ λi for

every i ≥ 0, with at least one strict inequality.

To facilitate comparison in each example below we consider three robit models:
(i) one with degree of freedom ν = 1 (the cauchit model), (ii) one with ν = 3,
and (iii) one with ν = 1000. From an application point of view, both (i) and (ii)
are expected to produce robust binary models, with (i) inducing more robustness
than (ii). By contrast, (iii) is expected to mimic the conventional probit model,
owing to the limiting property of a t distribution with large degrees of freedom.
For each model we consider two Markov chains – the original DA chain and a
corresponding sandwich chain.
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Fig 1. Autocorrelation plots for Markov chains run on the Lupus data set.

3.1. Low dimensional (n > p) setting: Lupus data set

The Lupus data set of [18] comprises observations on two antibody molecule pre-
dictor variables and a binary outcome variable cataloging occurrences of latent
membranous lupus nephritis among n = 55 patients. Interest lies in regressing
the binary outcome on the predictors; in this regression we include an intercept
term which effectively makes the number of predictors to be p = 3. The data
set has been previously considered in the context of convergence analyses of the
probit model DA and sandwich Markov chains [18, 17, 2]. Here we use it to illus-
trate convergences of the robit model Markov chains. Following [2] we assign on
the regression coefficient vector β the Zellner’s g-prior β ∼ Np(0, g(XTX)−1)
with two choices of g: (a) g = 1000 which induces a diffuse prior on β, and (b)
g = 3.49 which ensures the trace-class property of the probit DA algorithm [2].
For this data set we thus collectively consider 12 Markov chains from 3 models,
2 priors, and 2 Markov chain types (DA or sandwich). All 12 chains are initiated
at the maximum likelihood estimates β0 = −1.778 (intercept), β1 = 4.374, and
β2 = 2.428 obtained from the probit model. We run each chain for 100,000 iter-
ations, after discarding the initial 10,000 iterations as burn-in; the adequacy of
the burn-in period is justified through traceplots (Appendix Figures D.1 - D.3).
We subsequently use the retained realizations from all the 12 Markov chains to
compute (a) Markov chain autocorrelations up to lag 50, and (b) running means
for each of the two non-intercept regression coefficients β1 and β2.

The autocorrelations and running means are displayed in Figures 1 and 2 as
plot-matrices with the rows corresponding to priors (g priors with g = 1000 and
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Fig 2. Running mean plots for the Markov chains run on the Lupus data set.

g = 3.49) and columns corresponding to β components. Individual plots in the
plot-matrices display as line diagrams autocorrelations (y-axis) plotted against
lags (x-axis) in Figure 1, or running means (y-axis) plotted against Markov chain
iterations (x-axis) in Figure 2. A separate line is drawn for each model/Markov
chain type combination (6 lines in total in each plot). The lines are color coded
by models with the probit model, the robit model with small ν, and the robit
model with large ν being displayed as red, gray, and blue lines respectively.
On the other hand, Markov chain types are displayed via line types: solid and
dashed lines are used for DA and sandwich chains respectively.

The following three observations are made from these two plots. First, for all
three models sandwiching appears to aid substantial improvements in conver-
gence and mixing over the original DA algorithm when the underlying prior is
vague (g = 1000). This is demonstrated by both lowered autocorrelations in Fig-
ure 1 (top rows/panels) and stabler running means in Figure 2 (top rows/pan-
els) for the β-components in the sandwich chains. Interestingly, when viewed as
functions of ν, the improvement pattern appears to differ in β1 and β2. For β2
(top-right panel of Figure 1) the ν = 1000 sandwich chain appears to enjoy the
least autocorrelation, followed by the ν = 3, and ν = 1 sandwich chains, with
the third having noticeably higher autocorrelations than the former two. In con-
trast, a less noticeable, but opposite pattern is observed for β1 (top-left corner of
Figure). The improvements in sandwich algorithms are not noticeable when the
more informative prior with g = 3.49 is used. There, the DA and the sandwich
chains display similar convergence properties, and the lines from the different
model/Markov chain type combinations all effectively get superimposed at the
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displayed scale (bottom rows/panels in Figures 1 and 2). Second, the running
means from the DA chain are less stable than the sandwich chain; however, they
do converge to the same limit within the same model. This is clearly expected
since both the DA and sandwich chain have the same stationary distribution
for β. This is particularly well-documented in the upper panels of Figure 2.
Third, when the vague prior (g = 1000) is used, the running means from robit
models with different ν’s owing to the differences in the likelihood caused by
the ν-values. However, when the more informative (g = 3.45) prior is used the
posteriors become less impacted by the systematic differences in the likelihoods
and are more driven by the prior information; a fact well visualized in the lower
panels of Figure 2. There, all chains from all models appear to share the same
limiting running means at the scale displayed.

3.2. High dimensional (n < p) setting: Prostate data set

In the second example we consider the prostate cancer dataset from [4]. The
dataset records gene expressions of 50 normal and 52 prostate tumor samples
at 6033 arrays, of which we select the first 150 arrays for our analysis. We are
interested in regressing the binary cancer status (normal = 0, tumor = 1) on
these selected 150 expression arrays (predictors). Similar to the analysis done
in the previous section, we include an intercept term to the regression model to
obtain the number of predictors p = 151 which is bigger than the total sample
size of n = 102. We consider three robit models as before: (a) with ν = 1
(cauchit model), (b) with ν = 3, and (c) with (large) ν = 1000, and in each
model assign independent standard normal priors on the components of the
regression coefficient vector β. For each model we then run two Markov chains
– the original DA chain, and the corresponding sandwich chain. All 6 chains are
initiated at β = 0 and are run for 100,000 iterations, after discarding the first
10,000 iterations as burn-in. Subsequently, the (un-normalized) log-likelihood
lik(β) and (un-normalized) log-posterior density lpd(β) values are calculated
as univariate functions of β on the retained realizations of each Markov chain.
Here

lik(β) =
n∑

i=1

{
yi logF (xT

i β) + (1 − yi) log[1 − F (xT
i β)]

}
, and

lpd(β) = lik(β) − p

2 log(2π) − 1
2β

Tβ,

and F is the normal/t CDF associated with the probit/robit model. Finally
for these computed log-likelihoods and log-posterior densities we calculate the
Markov chain autocorrelations upto lag 50 and running means as done in the
previous Lupus example. The resulting values are displayed in Figures 3 and 4
respectively. These figures follow the same color and line type conventions as
considered in Figures 1 and 2.

The following observations are made from these figures. First, as expected,
the sandwich chains (broken lines) are observed to have (moderately) better con-
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Fig 3. Autocorrelation plots for the Markov chains run on the Prostate data set.

Fig 4. Running mean plots for the Markov chains run on the Prostate data set.

vergences, i.e., smaller auto-correlations (Figure 3) and stabler running means
(Figure 4) than the original DA chains (solid lines). The improvement is more
prominent among the log-posterior density values (right panel in each figure).
Second, there appears to be some small/moderate difference in the autocorre-
lations for the DA chains corresponding to different ν values (noticeable more
on the right, log-posterior panel on Figure 4). The cauchit ν = 1 DA chain
appears to have the smallest autocorrelations, and the autocorrelations seem
to marginally increase with ν. By contrast, all three sandwich chains appear to
have similar auto-correlations. Third, for both the DA and sandwich chains, the
“limiting” running means for the log-likelihood and log-posterior density values
from the three robit models differ systematically owing to the difference in the
model likelihoods induced by differences in ν.
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Appendix A: A Mill’s ratio type result for student’s t distribution

Lemma A.1. For t > 0 we have

1
(1 − Fν (t)) ≤

(
t2 + ν

) ν
2

κ
,

where κ = Γ ((ν + 1) /2) νν/2−1/ (
√
πΓ (ν/2)), and Fν(.) is the cdf of tν(0, 1).

Proof. Firstly, let us introduce the incomplete beta function ratio, defined by

Ip (a, b) = 1
B(a, b)

∫ p

0
ua−1(1 − u)b−1du, 0 < p < 1, (A.1)

where, a, b ∈ R+, and B(a, b) = Γ(a)Γ(b)
Γ(a+b) .

Let, fν(.) be the pdf of tν(0, 1). The cumulative distribution function Fν(.)
can be written in terms of I, the incomplete beta function ratio. From Chapter
28 of [12], we have for t > 0,

Fν(t) =
∫ t

−∞
fν(u)du = 1 − 1

2Ix(t)

(
ν

2 ,
1
2

)
, (A.2)

where
x(t) = ν

t2 + ν
.

Now, from the definition (A.1) of the incomplete beta function ratio, it follows
that

Ix(t)

(
ν

2 ,
1
2

)
= 1

B
(
ν
2 ,

1
2
) ∫ x(t)

0
u

ν
2−1 (1 − u)

1
2−1

du

=
Γ
(
ν+1
2
)

Γ
(
ν
2
)
Γ
( 1

2
) ∫ x(t)

0
u

ν
2−1 (1 − u)

1
2−1

du

=
Γ
(
ν+1
2
)

Γ
(
ν
2
)
Γ
( 1

2
) ∫ ν

t2+ν

0

u
ν
2−1

√
1 − u

du. (A.3)

For the integral in the right hand side of (A.3), we have∫ ν
t2+ν

0

u
ν
2−1

√
1 − u

du ≥
∫ ν

t2+ν

0
u

ν
2−1

[
since 1√

1 − u
> 1 for u ∈

(
0, ν

t2 + ν

)]

= 2
ν

[
u

ν
2
]u= ν

t2+ν

u=0

= 2 νν/2−1

(t2 + ν)
ν
2
. (A.4)

Using (A.2), (A.3) and (A.4), we finally have

Ix(t)

(
ν

2 ,
1
2

)
≥

2 Γ
(
ν+1
2
)
νν/2−1

√
πΓ

(
ν
2
) × 1

(t2 + ν)
ν
2
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=⇒ 1 − Fν(t) ≥
Γ
(
ν+1
2
)
νν/2−1

√
πΓ

(
ν
2
) × 1

(t2 + ν)
ν
2

=⇒ 1
(1 − Fν (t)) ≤

(
t2 + ν

) ν
2

κ
,

where κ = Γ ((ν + 1) /2) νν/2−1/ (
√
πΓ (ν/2)).

Appendix B: Geometric ergodicity of the robit DA chain using drift
and minorization in the n ≥ p setting

In this section, we present a tighter drift and minorization analysis, and establish
geometric ergodicity of the robit DA chain under significantly weaker conditions
that those in [16]. We consider the n ≥ p setting here, and consider the high-
dimensional n < p setting in Appendix C.

Let W be an n × p matrix whose ith row is wT
i where wi = xiI{0} (yi) −

xiI{1} (yi). Let us define the following two notations which have been derived
in the proof of the theorem below.

ρ1 = ρ′
(
ν + 1
νa

)
and ρ2 = ρ′

(
ν + 1
νa

)⎛
⎝
√

(ν + 3)2

(ν + 1) (ν + 3) + a2ν2

⎞
⎠ ,

where ρ′ ≤ 1 is as defined in Appendix B in [16]. In fact, it is shown in [16] that
ρ′ < 1 if X has full column rank. By establishing a drift condition for the DA
algorithm we prove the following theorem.

Theorem B.1. The DA algorithm is geometrically ergodic if

(A) ν > 2,
(B) The design matrix X has full column rank, and Σa = aXTX,
(C) min {ρ1, ρ2} < 1.

Proof. One approach to prove the geometric convergence of the robit DA Markov
chain is to prove the existence of a drift function V : Rp → R+ which satisfies
the following two conditions:

1.
∫
Rp V (β)k (β0,β) dβ ≤ ρV (β0) + L, for some ρ ∈ [0, 1) and L > 0.

2. If V (β) ≤ α for α > 0, then ||β||2 ≤ d for some d. Such function V is
said to be an unbounded off compact sets.

As in [16], we will use V (β) = βTXTXβ to establish the above two con-
ditions. It is easy to see that the second condition is satisfied since Xn×p is
assumed to have full column rank p.

We now prove the first condition. Note that the robit DA Markov chain
transitions from the state β0 to the state β through the following two steps:
(i) by generating the intermediate latent variables (λ, z) first and, (ii) then
generating a new β from the relevant conditional distribution. This can be
represented by

β0 → (λ, z) → β.
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Then, the L.H.S. in the condition (1) can be written as:∫
Rp

V (β)k (β0,β) dβ

= E
[
βTXTXβ

∣∣∣ β0,y
]

= E
[
E
[
βTXTXβ

∣∣ λ, z,β0,y
] ∣∣∣ β0,y

]
= E

[
E
[
βTXTXβ

∣∣ λ, z,y] ∣∣∣ β0,y
]

= E
[
E
[
||Xβ||22

∣∣ λ, z,y] ∣∣∣ β0,y
]
, (B.1)

where the inner expectation is w.r.t. the conditional distribution of β given
(λ, z,y), and the outer expectation is w.r.t. the conditional distribution of (λ, z)
given (β,y).

Since

β
∣∣∣λ, z,y ∼ Np

((
XTΛX + aXTX

)−1 (
XTΛz + c

)
,
(
XTΛX + aXTX

)−1)
,

it follows that

Xβ
∣∣∣λ, z,y ∼ Nn

(
X
(
XTΛX + aXTX

)−1 (
XTΛz + c

)
,

X
(
XTΛX + aXTX

)−1
XT

)
, (B.2)

where c = Σaβa = aXTXβa, is a fixed vector free of the parameters. Us-
ing (B.2), the inner expectation in (B.1) is given by

E
(
||Xβ||22

∣∣∣λ, z,y) =
∣∣∣∣∣∣X (

XTΛX + aXTX
)−1 (

XTΛz + c
)∣∣∣∣∣∣2

2

+ tr
(
X
(
XTΛX + aXTX

)−1
XT

)
. (B.3)

Again, since X is a full column rank matrix, by the Singular Value Decomposi-
tion, X can be written as

Xn×p = Un×pDp×pV
T
p×p,

where U is a semi-orthogonal matrix, V is an orthogonal matrix, and D is a
diagonal matrix with the positive singular values of X being its diagonal entries.
Substituting X = UDV T in the second term in the R.H.S. of (B.3), we get

tr
(
X
(
XTΛX + aXTX

)−1
XT

)
= tr

(
UDV T

(
V DUTΛUDV T + aV DUTUDV T

)−1
V DUT

)
= tr

(
UDV T

(
V D

(
UTΛU + aUTU

)
DV T

)−1
V DUT

)
= tr

(
UDV T

(
DV T

)−1 (
UTΛU + aUTU

)−1 (V D)−1
V DUT

)
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= tr
(
U
(
UTΛU + aUTU

)−1
UT

)
= tr

(
U
(
UTΛU + aI

)−1
UT

)
[Since UTU = I].

For matrices A and B, A � B denotes that the matrix (B−A) is a positive semi-
definite or non-negative definite (N.N.D) matrix. Since (UTΛU +aI)−1 � a−1I,
it follows that

(UTΛU + aI)−1 ≺ a−1I =⇒ U
(
UTΛU + aI

)−1
UT � a−1UUT ,

and consequently

tr
(
U
(
UTΛU + aI

)−1
UT

)
≤ tr

(
a−1UUT

)
= a−1tr

(
UTU

)
= a−1p. (B.4)

Now, considering the first-term in the R.H.S. of (B.3), we apply triangle in-
equality to get∣∣∣∣∣∣X (

XTΛX + aXTX
)−1 (

XTΛz + c
)∣∣∣∣∣∣

2

≤
∣∣∣∣∣∣X (

XTΛX + aXTX
)−1

XTΛz
∣∣∣∣∣∣

2
+

∣∣∣∣∣∣X (
XTΛX + aXTX

)−1 c
∣∣∣∣∣∣

2
.

Hence,∣∣∣∣∣∣X (
XTΛX + aXTX

)−1 (
XTΛz + c

)∣∣∣∣∣∣2
2

≤
(∣∣∣∣∣∣X (

XTΛX + aXTX
)−1

XTΛz
∣∣∣∣∣∣

2
+

∣∣∣∣∣∣X (
XTΛX + aXTX

)−1 c
∣∣∣∣∣∣

2

)2

=
∣∣∣∣∣∣X (

XTΛX + aXTX
)−1

XTΛz
∣∣∣∣∣∣2

2
+

∣∣∣∣∣∣X (
XTΛX + aXTX

)−1 c
∣∣∣∣∣∣2

2

+ 2
(
X
(
XTΛX + aXTX

)−1
XTΛz

)T (
X
(
XTΛX + aXTX

)−1 c
)

=
∣∣∣∣∣∣X (

XTΛX + aXTX
)−1

XTΛz
∣∣∣∣∣∣2

2
+

∣∣∣∣∣∣X (
XTΛX + aXTX

)−1 c
∣∣∣∣∣∣2

2

+ 2
(
X
(
XTΛX + aXTX

)−1
XTΛz

d

)T

×
(
d X

(
XTΛX + aXTX

)−1 c
)

[where, d > 0 is an arbitrary real number]

≤
∣∣∣∣∣∣X (

XTΛX + aXTX
)−1

XTΛz
∣∣∣∣∣∣2

2
+

∣∣∣∣∣∣X (
XTΛX + aXTX

)−1 c
∣∣∣∣∣∣2

2

+ 2

∣∣∣∣∣∣
(
X
(
XTΛX + aXTX

)−1
XTΛz

d

)T

×
(
d X

(
XTΛX + aXTX

)−1 c
)∣∣∣
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≤
∣∣∣∣∣∣X (

XTΛX + aXTX
)−1

XTΛz
∣∣∣∣∣∣2

2
+

∣∣∣∣∣∣X (
XTΛX + aXTX

)−1 c
∣∣∣∣∣∣2

2

+

∣∣∣∣∣∣X (
XTΛX + aXTX

)−1
XTΛz

∣∣∣∣∣∣2
2

d2

+ d2
∣∣∣∣∣∣X (

XTΛX + aXTX
)−1 c

∣∣∣∣∣∣2
2

[since 2|xTy| ≤ ||x||22 + ||y||22, for any two vectors x,y]

=
(

1 + 1
d2

) ∣∣∣∣∣∣X (
XTΛX + aXTX

)−1
XTΛz

∣∣∣∣∣∣2
2

+
(
1 + d2) ∣∣∣∣∣∣X (

XTΛX + aXTX
)−1 c

∣∣∣∣∣∣2
2

≤
(

1 + 1
d2

) ∣∣∣∣∣∣X (
XTΛX + aXTX

)−1
XTΛz

∣∣∣∣∣∣2
2

+
(
1 + d2) ||X||22

∣∣∣∣∣∣(XTΛX + aXTX
)−1

∣∣∣∣∣∣2
2
||c||22 . (B.5)

Now by SVD, X = UDV T

∣∣∣∣∣∣(XTΛX + aXTX
)−1

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣(V DUTΛUDV T + aV DDV T

)−1
∣∣∣∣∣∣

2

=
∣∣∣∣∣∣[V D

(
UTΛU + aI

)
DV T

]−1
∣∣∣∣∣∣

2

=
∣∣∣∣∣∣(DV T

)−1 (
UTΛU + aI

)−1 (V D)−1
∣∣∣∣∣∣

2

≤
∣∣∣∣∣∣(DV T

)−1
∣∣∣∣∣∣

2

∣∣∣∣∣∣(UTΛU + aI
)−1

∣∣∣∣∣∣
2

×
∣∣∣∣∣∣(V D)−1

∣∣∣∣∣∣
2

≤ 1
a

∣∣∣∣∣∣(DV T
)−1

∣∣∣∣∣∣
2

∣∣∣∣∣∣(V D)−1
∣∣∣∣∣∣

2
:= K2,

where K2 > 0 is a constant not depending on Λ. It follows that

||X||22
∣∣∣∣∣∣(XTΛX + aXTX

)−1
∣∣∣∣∣∣2

2
||c||22 ≤ K2

2 ||X||22 ||c||
2
2 := K3, (B.6)

where K3 > 0 is a constant not depending on Λ. Combining (B.5) and (B.6),
we get∣∣∣∣∣∣X (

XTΛX + aXTX
)−1 (

XTΛz + c
)∣∣∣∣∣∣2

2

≤
(

1 + 1
d2

) ∣∣∣∣∣∣X (
XTΛX + aXTX

)−1
XTΛz

∣∣∣∣∣∣2
2

+
(
1 + d2)K3. (B.7)

Now, from (B.1) and (B.3),∫
Rp

V (β)k (β0,β) dβ
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≤
(

1 + 1
d2

)
E

[∣∣∣∣∣∣X (
XTΛX + aXTX

)−1
XTΛz

∣∣∣∣∣∣2
2

∣∣∣β0,y
]

+
(
1 + d2)K3 + a−1p

[By (B.4) and (B.7)]

=
(

1 + 1
d2

)
E

[∣∣∣∣∣∣X (
XTΛX + aXTX

)−1
XTΛz

∣∣∣∣∣∣2
2

∣∣∣β0,y
]

+ K4, (B.8)

where K4 =
(
1 + d2)K3 + a−1p. Again,

E

[∣∣∣∣∣∣X (
XTΛX + aXTX

)−1
XTΛz

∣∣∣∣∣∣2
2

∣∣∣β0,y
]

= E
[
zTΛX

(
XTΛX + aXTX

)−1

XTX
(
XTΛX + aXTX

)−1
XTΛz

∣∣∣β0,y
]

= 1
a
E
[
zTΛX

(
XTΛX + aXTX

)−1 (
aXTX

)
(
XTΛX + aXTX

)−1
XTΛz

∣∣∣β0,y
]
. (B.9)

Since (
XTΛX + aXTX

)−1 (
aXTX

) (
XTΛX + aXTX

)−1

�
(
XTΛX + aXTX

)−1 (
XTΛX + aXTX

) (
XTΛX + aXTX

)−1

=
(
XTΛX + aXTX

)−1
,

it follows from (B.9) that

E

[∣∣∣∣∣∣X (
XTΛX + aXTX

)−1
XTΛz

∣∣∣∣∣∣2
2

∣∣∣β0,y
]

= 1
a
E
[
zTΛX

(
XTΛX + aXTX

)−1 (
aXTX

)
(
XTΛX + aXTX

)−1
XTΛz

∣∣∣β0,y
]

≤ 1
a
E
[
zTΛX

(
XTΛX + aXTX

)−1
XTΛz

∣∣∣β0,y
]
.

Note that Λ 1
2X

(
XTΛX + aXTX

)−1
XTΛ 1

2 � I. It follows that

E

[∣∣∣∣∣∣X (
XTΛX + aXTX

)−1
XTΛz

∣∣∣∣∣∣2
2

∣∣∣β0,y
]

≤ 1
a
E
[
zTΛX

(
XTΛX + aXTX

)−1
XTΛz

∣∣∣β0,y
]

≤ 1
a
E
[
zTΛX

(
XTΛX

)−1
XTΛz

∣∣∣β0,y
]

≤ 1
a
E
[
zTΛz

∣∣∣β0,y
]
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= 1
a

n∑
i=1

E
[
λiz

2
i

∣∣∣β0,y
]

= 1
a

n∑
i=1

E
[
E
[
λiz

2
i

∣∣∣zi,β0

] ∣∣∣β0,y
]

= 1
a

n∑
i=1

E
[
z2
iE

[
λi

∣∣∣zi,β0

] ∣∣∣β0,y
]

= 1
a

n∑
i=1

E

⎡
⎣z2

i

(ν + 1)/2(
ν +

(
zi − xT

i β0
)2)

/2

∣∣∣β0,y

⎤
⎦ . (B.10)

However, (ν + 1)/2(
ν +

(
zi − xT

i β0
)2)

/2
= ν + 1

ν +
(
zi − xT

i β0
)2 ≤ ν + 1

ν
. Hence

E

[∣∣∣∣∣∣X (
XTΛX + aXTX

)−1
XTΛz

∣∣∣∣∣∣2
2

∣∣∣β0,y
]

≤ 1
a

n∑
i=1

E

⎡
⎣z2

i

(ν + 1)/2(
ν +

(
zi − xT

i β0
)2)

/2

∣∣∣β0,y

⎤
⎦

≤ 1
a

n∑
i=1

E

[
z2
i

ν + 1
ν

∣∣∣β0,y
]

= ν + 1
νa

n∑
i=1

E
[
z2
i

∣∣∣β0,y
]
. (B.11)

Now, from Appendix B in [16], we know that for all β0 ∈ R
p,

n∑
i=1

E
[
z2
i

∣∣∣β0,y
]

≤ nν

ν − 2 + nκM + ρ′V (β0)

= ρ′V (β0) + K5, (B.12)

where κ and M are as defined in Appendix A and B respectively in [16], and
K5 = nν

ν − 2 + nκM , is a fixed constant. Combining (B.8), (B.11), and (B.12),
we get ∫

Rp

V (β)k (β0,β) dβ

≤
(

1 + 1
d2

)(
ν + 1
νa

)
(ρ′V (β0) + K5) + K4

= ρ′
(

1 + 1
d2

)(
ν + 1
νa

)
V (β0) + L1

= ρ1

(
1 + 1

d2

)
V (β0) + L1, (B.13)
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where ρ1 = ρ′
(
ν+1
νa

)
≥ 0 and L1 > 0 is a fixed constant. The above inequality

establishes that V is a drift function if ρ1 < 1 (since d is arbitrary). However, a
different method of bounding various terms leads to an alternative bound that
we now derive. Note that

E

[∣∣∣∣∣∣X (
XTΛX + aXTX

)−1
XTΛz

∣∣∣∣∣∣2
2

∣∣∣β0,y
]

= E

[∣∣∣∣∣∣X (
XT (Λ + aI)X

)−1
XTΛz

∣∣∣∣∣∣2
2

∣∣∣β0,y
]

= E
[∣∣∣∣∣∣(Λ + aI)−

1
2 (Λ + aI)

1
2 X

(
XT (Λ + aI)X

)−1
XT

(Λ + aI)
1
2 (Λ + aI)−

1
2 Λz

∣∣∣∣∣∣2
2

∣∣∣β0,y
]

= E

[∣∣∣∣∣∣(Λ + aI)−
1
2 PB (Λ + aI)−

1
2 Λz

∣∣∣∣∣∣2
2

∣∣∣β0,y
]

[
where, B = (Λ + aI)

1
2 X,

and PB = B(BTB)−1BT is the projection matrix onto C(B).
]

≤ E

[∣∣∣∣∣∣(Λ + aI)−
1
2

∣∣∣∣∣∣2
2

∣∣∣∣∣∣PB (Λ + aI)−
1
2 Λz

∣∣∣∣∣∣2
2

∣∣∣β0,y
]

≤ 1
a
E

[∣∣∣∣∣∣PB (Λ + aI)−
1
2 Λz

∣∣∣∣∣∣2
2

∣∣∣β0,y
]

≤ 1
a
E

[∣∣∣∣∣∣(Λ + aI)−
1
2 Λz

∣∣∣∣∣∣2
2

∣∣∣β0,y
]

[since for any column vector w,

||PBw||22 = wTPT
BPBw = wTPBw ≤ wTw = ||w||22.

]
= 1

a
E

[
n∑

i=1

λ2
i

λi + a
z2
i

∣∣∣β0,y
]

= 1
a

n∑
i=1

E

[
λ2
i

λi + a
z2
i

∣∣∣β0,y
]

= 1
a

n∑
i=1

E

[
E

[
λ2
i

λi + a
z2
i

∣∣∣zi,β0

] ∣∣∣β0,y
]

= 1
a

n∑
i=1

E

[
z2
iE

[
λ2
i

λi + a

∣∣∣zi,β0

] ∣∣∣β0,y
]
. (B.14)

Now,

E

[
λ2
i

λi + a

∣∣∣zi,β0

]

= E

[
λi

λi

λi + a

∣∣∣zi,β0

]
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≤

√√√√E
[
λ2
i

∣∣∣zi,β0

]
E

[(
λi

λi + a

)2 ∣∣∣zi,β0

]

[ by Cauchy-Schwarz inequality ]

≤
√
E
[
λ2
i

∣∣∣zi,β0

]
E

[
λ2
i

λ2
i + a2

∣∣∣zi,β0

]
. (B.15)

Since the function f(x) = x
x+a2 is a concave function in x ( d2

dx2 f(x) < 0),
applying Jensen’s inequality gives

E

[
λ2
i

λ2
i + a2

∣∣∣zi,β0

]
≤

E
[
λ2
i

∣∣∣zi,β0

]
E
[
λ2
i

∣∣∣zi,β0

]
+ a2

. (B.16)

Combining (B.15) and (B.16), we get

E

[
λ2
i

λi + a

∣∣∣zi,β0

]
≤

√√√√√E
[
λ2
i

∣∣∣zi,β0

] E
[
λ2
i

∣∣∣zi,β0

]
(
E
[
λ2
i

∣∣∣zi,β0

]
+ a2

) . (B.17)

Since λi

∣∣∣zi,β0 ∼ Gamma
(

ν+1
2 ,

ν+
(
zi−xT

i β0

)2

2

)
, we have

E
[
λ2
i

∣∣∣zi,β0

]
= (ν + 1) (ν + 3)(

ν +
(
zi − xT

i β0
)2)2 ≤ (ν + 1) (ν + 3)

ν2 . (B.18)

Combining (B.17) and (B.18),

E

[
λ2
i

λi + a

∣∣∣zi,β0

]

≤

√√√√√ (ν + 1) (ν + 3)
ν2

(ν+1)(ν+3)
ν2(

(ν+1)(ν+3)
ν2 + a2

)
[
since x �→ x

x + a2 is an increasing function in x

]

= (ν + 1) (ν + 3)
ν2

√
ν2

(ν + 1) (ν + 3) + a2ν2

= (ν + 1)
ν

√
(ν + 3)2

(ν + 1) (ν + 3) + a2ν2 . (B.19)

Now, combining (B.14) and (B.19), we get

E

[∣∣∣∣∣∣X (
XTΛX + aXTX

)−1
XTΛz

∣∣∣∣∣∣2
2

∣∣∣β0,y
]
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≤ 1
a

n∑
i=1

E

[
z2
iE

[
λ2
i

λi + a

∣∣∣zi,β0

] ∣∣∣β0,y
]

≤ (ν + 1)
νa

⎛
⎝
√

(ν + 3)2

(ν + 1) (ν + 3) + a2ν2

⎞
⎠ n∑

i=1
E
[
z2
i

∣∣∣β0,y
]

≤ (ν + 1)
νa

⎛
⎝
√

(ν + 3)2

(ν + 1) (ν + 3) + a2ν2

⎞
⎠ (ρ′V (β0) + K5) [by (B.12)]

= ρ′
(
ν + 1
νa

)⎛
⎝
√

(ν + 3)2

(ν + 1) (ν + 3) + a2ν2

⎞
⎠ V (β0) + K̃, (B.20)

where K̃ = K5
(
ν+1
νa

)(√ (ν+3)2
(ν+1)(ν+3) + a2ν2

)
is a fixed constant. Finally, com-

bining (B.8) and (B.20), we get∫
Rp

V (β)k (β0,β) dβ

=
(

1 + 1
d2

)
E

[∣∣∣∣∣∣X (
XTΛX + aXTX

)−1
XTΛz

∣∣∣∣∣∣2
2

∣∣∣β0,y
]

+ K4

≤
(

1 + 1
d2

)⎡
⎣ρ′(ν + 1

νa

)⎛
⎝
√

(ν + 3)2

(ν + 1) (ν + 3) + a2ν2

⎞
⎠ V (β0)

+ K̃

]
+ K4

=

⎡
⎣ρ′(1 + 1

d2

)(
ν + 1
νa

)⎛
⎝
√

(ν + 3)2

(ν + 1) (ν + 3) + a2ν2

⎞
⎠
⎤
⎦ V (β0) + L2

= ρ2

(
1 + 1

d2

)
V (β0) + L2, (B.21)

where ρ2 = ρ′
(
ν+1
νa

)(√ (ν+3)2
(ν+1)(ν+3) + a2ν2

)
≥ 0 and L2 > 0 is a fixed constant.

From (B.13) and (B.21), we conclude∫
Rp

V (β)k (β0,β) dβ ≤ min {ρ1, ρ2}
(

1 + 1
d2

)
V (β0) + max {L1, L2} .

Since min {ρ1, ρ2} < 1 by assumption, d > 0 is an arbitrary real number which
can be chosen large enough so that

[
min {ρ1, ρ2}

(
1 + 1

d2

)]
is less than 1. This

establishes a geometric drift condition for the function V . Since V is unbounded
off compact sets, a standard argument using Fatou’s lemma along with Theorem
6.0.1 and Lemma 15.2.8 of [11] implies geometric ergodicity of the robit DA
chain.
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Appendix C: Geometric ergodicity of the robit DA chain using drift
and minorization in the high-dimensional setting
(with n < p)

We now establish geometric ergodicity of the robit DA chain in a high-dimensional
setting with n < p. This setting was not considered in [16]. Let

ρ′2 =
(

(ν+1)(ν+3)
ν2

(ν+1)(ν+3)
ν2 + a2

)
.

Theorem C.1. Suppose n < p. Then, the robit DA Markov chain is geometri-
cally ergodic if

(A) ν > 2,
(B) Σa = aXTX +Σ is positive definite, where Σ is non-negative definite with

XΣ = 0.

We briefly comment on the similarities and differences between the assumptions
for Theorem B.1 and those for Theorem C.1. Both results require ν > 2 and
both the corresponding proofs involve establishing a geometric drift condition
for V (β) = βTXTXβ. The required form of the prior precision matrix Σa is also
slightly different in the two results, partly because XTX is not non-singular in
the n < p setting. Finally, we will establish a geometric drift condition for V in
the proof of Theorem C.1 where the coefficient of V on the R.H.S. is min(ρ1, ρ

′
2).

Here

ρ′2 = ρ′

(
(ν+1)(ν+3)

ν2

(ν+1)(ν+3)
ν2 + a2

)
< 1.

Hence an analogue of assumption (C) in Theorem B.1 is not required for The-
orem C.1.

Proof. We will use the same function V : R
p → R+ as in Appendix B, i.e.,

V (β) = βTXTXβ. Since n < p, the design matrix X no longer has full column
rank and therefore, the level set {β : V (β) ≤ α} may not be compact for some
α > 0. In other words, V is not unbounded off compact sets in this setting,
and we will have to establish an additional minorization condition on top of a
geometric drift condition for V to establish geometric ergodicity.

We first establish a geometric drift condition for V . Recall that the robit DA
Markov chain transitions from the state β0 to the state β through the following
two steps i.e. by generating the intermediate latent variables (λ, z) first and
then generating β from the relevant conditional distribution. Now, following
the same arguments as in (B.1) in Appendix B, we note that∫

Rp

V (β)k (β0,β) dβ = E
[
E
[
||Xβ||22

∣∣ λ, z,y] ∣∣∣ β0,y
]
, (C.1)

where the inner expectation is w.r.t. the conditional distribution of β given
(λ, z,y), and the outer expectation is w.r.t. the conditional distribution of (λ, z)
given (β0,y).
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Using (B.2), the inner expectation in (C.1) is given by

E
(
||Xβ||22

∣∣∣λ, z,y) =
∣∣∣∣∣∣X (

XTΛX + Σa

)−1 (
XTΛz + c

)∣∣∣∣∣∣2
2

+ tr
(
X
(
XTΛX + Σa

)−1
XT

)
. (C.2)

Since n < p, the singular value decomposition of X is given by

Xn×p = Vn×nDn×nU
T
n×p,

where Up×n is a semi-orthogonal matrix with full column rank n, V is an or-
thogonal matrix and D is a diagonal matrix with singular values of X being
its diagonal entries. Let Ũp×(p−n) be a semi-orthogonal matrix whose column
space is the orthogonal complement of the column space of U . Hence, the ma-
trix

[
U Ũ

]
p×p

is an orthogonal matrix. Since XΣ = 0 by Assumption (B), it
follows that Σ = ŨD̃ŨT for some diagonal matrix D̃, and

Σa =
[
U Ũ

] [aD2 0
0 D̃

] [
UT

ŨT

]
.

Note that a > 0 and D, D̃ have positive diagonal entries as Σa is assumed to be
positive definite. Using the fact that V and

[
U Ũ

]
p×p

are orthogonal matrices,
the second-term in the R.H.S of (C.2) can be bounded as

tr
(
X
(
XTΛX + Σa

)−1
XT

)

= tr
(
DUT

[
UT

ŨT

]−1 [
DV TΛV D + aD2 0

0 D̃

]−1 [
U Ũ

]−1
UD

)

= tr
([

D 0
] [(DV TΛV D + aD2)−1 0

0 D̃−1

] [
D
0

])

= tr
(
D
(
DV TΛV D + aD2)−1

D
)

= tr
((

V TΛV + aIn
)−1) ≤ tr

(
a−1In

)
= a−1n.

For the first-term in the R.H.S. of (C.2), we follow the same arguments as
in (B.5) in Appendix B to get∣∣∣∣∣∣X (

XTΛX + Σa

)−1 (
XTΛz + c

)∣∣∣∣∣∣2
2

≤
(

1 + 1
d2

) ∣∣∣∣∣∣X (
XTΛX + Σa

)−1
XTΛz

∣∣∣∣∣∣2
2

+
(
1 + d2) ||X||22

∣∣∣∣∣∣(XTΛX + Σa

)−1
∣∣∣∣∣∣2

2
||c||22

≤
(

1 + 1
d2

) ∣∣∣∣∣∣X (
XTΛX + Σa

)−1
XTΛz

∣∣∣∣∣∣2
2
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+
(
1 + d2) ||X||22

∣∣∣∣Σ−1
a

∣∣∣∣2
2 ||c||

2
2 , (C.3)

where d > 0 is an arbitrary real number. Now, from (C.1), (C.2) and (C.3), it
follows that∫

Rp

V (β)k (β0,β) dβ

=
(

1 + 1
d2

)
E

[∣∣∣∣∣∣X (
XTΛX + Σa

)−1
XTΛz

∣∣∣∣∣∣2
2

∣∣∣ β0,y
]

+ K4, (C.4)

where K4 is a fixed constant. Again, using the fact that V and
[
U Ũ

]
p×p

are
orthogonal matrices, we get

∣∣∣∣∣∣X (
XTΛX + Σa

)−1
XTΛz

∣∣∣∣∣∣2
2

=
∣∣∣∣∣∣V DUT

(
UDV TΛV DUT + U

(
aD2)UT + ŨD̃ŨT

)−1
UDV TΛz

∣∣∣∣∣∣2
2

=
∣∣∣∣
∣∣∣∣V D

[
In 0

] [(DV TΛV D + aD2)−1 0
0 D̃−1

] [
In
0

]
DV TΛz

∣∣∣∣
∣∣∣∣
2

2

=
∣∣∣∣∣∣V (

V TΛV + aIn
)−1

V TΛz
∣∣∣∣∣∣2

2

=
∣∣∣∣∣∣(Λ + aIn)−1 Λz

∣∣∣∣∣∣2
2

=
n∑

i=1

(
λi

λi + a

)2

z2
i . (C.5)

Hence,

E

[∣∣∣∣∣∣X (
XTΛX + Σa

)−1
XTΛz

∣∣∣∣∣∣2
2

∣∣∣ β0,y
]

= E

[
n∑

i=1

(
λi

λi + a

)2

z2
i

∣∣∣ β0,y
]

[from (C.5)]

=
n∑

i=1
E

[(
λi

λi + a

)2

z2
i

∣∣∣ β0,y
]

≤
n∑

i=1
E

[
E

[
λ2
i

λ2
i + a2 z2

i

∣∣∣ zi,β0

] ∣∣∣ β0,y
]

≤
n∑

i=1
E

⎡
⎣z2

i

E
[
λ2
i

∣∣∣zi,β0

]
E
[
λ2
i

∣∣∣zi,β0

]
+ a2

∣∣∣ β0,y

⎤
⎦ [By (B.16) in Appendix B]

≤
(ν+1)(ν+3)

ν2(
(ν+1)(ν+3)

ν2 + a2
) n∑

i=1
E
[
z2
i

∣∣∣ β0,y
]
. (C.6)
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[By (B.18) in Appendix B

and since x �→ x

x + a2 is an increasing function in x

]
From Appendix B in [16], we know that

n∑
i=1

E
[
z2
i

∣∣∣ β0,y
]

= nν

ν − 2 +
n∑

i=1

(
wT

i β0
)2

− κ

n∑
i=1

wT
i β0

1 − Fν

(
wT

i β0
) . 1(

ν +
(
wT

i β0
)2) ν−1

2

≤ ρ′V (β0) + nν

ν − 2 + nκM, (C.7)

where ρ′, κ,M are defined in Appendix B of [16]. It follows from (C.4), (C.6)
and (C.7) that for all β0 ∈ R

p, we have∫
Rp

V (β)k (β0,β) dβ =
(

1 + 1
d2

)
ρ′2V (β0) + L, (C.8)

where L =
(
1 + 1

d2

)( (ν+1)(ν+3)
ν2

(ν+1)(ν+3)
ν2 +a2

)(
nν
ν−2 + nκM

)
+ K4 > 0.Since ρ′2 < 1

and d > 0 is arbitrary, the above already provides a geometric drift condition.
However, we can tighten our analysis by using an alternative bound instead
of (C.6). Note that (

λi

λi + a

)2

≤ λi

λi + a
≤ λi

a
.

It follows from (C.5) that

E

[∣∣∣∣∣∣X (
XTΛX + Σa

)−1
XTΛz

∣∣∣∣∣∣2
2

∣∣∣ β0,y
]

≤ E
[
a−1zTΛz

∣∣∣ β0,y
]

= 1
a

n∑
i=1

E

⎡
⎣z2

i

(ν + 1)/2(
ν +

(
zi − xT

i β0
)2)

/2

∣∣∣β0,y

⎤
⎦

[By (B.10) in Appendix B]

≤ 1
a

n∑
i=1

E

[
z2
i

ν + 1
ν

∣∣∣β0,y
]

= ν + 1
νa

n∑
i=1

E
[
z2
i

∣∣∣β0,y
]
. (C.9)

Using the definition of ρ′ in Appendix B of [16], and combining (C.4) and (C.9),
we get ∫

Rp

V (β)k (β0,β) dβ
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≤
(

1 + 1
d2

)(
ν + 1
νa

)(
ρ′V (β0) + nν

ν − 2 + nκM

)
+ K4

= ρ′
(

1 + 1
d2

)(
ν + 1
νa

)
V (β0) + L1

= ρ1

(
1 + 1

d2

)
V (β0) + L1, (C.10)

where ρ1 = ρ′
(
ν+1
νa

)
and L1 =

(
1 + 1

d2

) (
ν+1
νa

) (
nν
ν−2 + nκM

)
+ K4 > 0.

It follows from (C.8) and (C.10) that∫
Rp

V (β)k (β0,β) dβ ≤ min {ρ1, ρ
′
2}
(

1 + 1
d2

)
V (β0) + max {L1, L2} .

Since min {ρ1, ρ
′
2} < 1 by assumption, and d > 0 is arbitrary, the required

geometric drift condition follows.
Since V is not unbounded off compact sets in this setting, we will now estab-

lish an associated minorization condition, i.e., for any d > 0, establish the exis-
tence of an ε = ε(d) > 0 and a probability density h such that k (β0,β) ≥ εh(β)
whenever V (β0) ≤ d. Recall that the transition density k of the robit DA chain
is given by

k (β0,β) =
∫
R

n
+

∫
Rn

π
(
β
∣∣∣λ, z,y)π (λ, z∣∣∣β0,y

)
dz dλ

=
∫
R

n
+

∫
Rn

π
(
β
∣∣∣λ, z,y)π (λ∣∣∣z,β0,y

)
π
(
z
∣∣∣β0,y

)
dz dλ.

Note that to show the required minorization condition, it is enough to show that
whenever V (β0) ≤ d we have

π
(
λ, z

∣∣∣β0,y
)

≥ ε h̃ (λ, z) , (C.11)

for some real number ε > 0 and a probability density h̃. The minorization
condition will then hold with the choice

h(β) =
∫
R

n
+

∫
Rn

π
(
β
∣∣∣λ, z,y) h̃(λ, z)dz dλ.

Note that if V (β0) ≤ d, then
(
xT
i β0

)2 ≤ d for every 1 ≤ i ≤ n. Hence, for any
such β0, we get

π
(
λ
∣∣∣z,β0,y

)
=

n∏
i=1

(
ν+

(
zi−xT

i β0

)2

2

) ν+1
2

Γ
(
ν+1
2
) λ

ν−1
2

i e
−λi

2

(
ν+

(
zi−xT

i β0

)2)

≥
n∏

i=1

(
ν
2
) ν+1

2

Γ
(
ν+1
2
) λ

ν−1
2

i e
−λi

2

(
ν+2z2

i +2
(
xT
i β0

)2)
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≥
n∏

i=1

(
ν
2
) ν+1

2

Γ
(
ν+1
2
) λ

ν−1
2

i e−
λi
2
(
ν+2z2

i +2d
)

=
n∏

i=1

(
ν
2
) ν+1

2

Γ
(
ν+1
2
) λ

ν−1
2

i e−λi

(
ν
2 +z2

i +d
)

=
(ν

2

)n
(
ν+1
2

) ( n∏
i=1

(ν
2 + z2

i + d
)− ν+1

2

)
g
(
λ
∣∣∣z,y) ,

(C.12)

where

g
(
λ
∣∣∣z,y) =

n∏
i=1

(
ν
2 + z2

i + d
) ν+1

2

Γ
(
ν+1
2
) λ

ν−1
2

i e−λi

(
ν
2 +z2

i +d
)
,

is the product of n i.i.d Gamma
(

(ν+1)
2 ,

(
ν
2 + z2

i + d
))

densities.

Moreover, if we denote tν (μ, 1) to be a random variable having univariate
Student’s t distribution with location μ, scale 1 and degrees of freedom ν, then
for for any i ∈ {1, 2, . . . , n} with yi = 0, we get

π
(
zi

∣∣∣β0, yi

)
=

c

(
1 +

(
zi−xT

i β0

)2

ν

)− ν+1
2

P
(
tν
(
xT
i β0, 1

)
≤ 0

)
[where c is the normalizing constant.]

=
c

(
1 +

(
zi−xT

i β0

)2

ν

)− ν+1
2

P
(
tν (0, 1) ≤ −xT

i β0
)

≥
c

(
1 +

2z2
i +2

(
xT
i β0

)2

ν

)− ν+1
2

P
(
tν (0, 1) ≤ −xT

i β0
)

≥
c
(
1 + 2z2

i +2d
ν

)− ν+1
2

P
(
tν (0, 1) ≤

√
d
)

=
c
(
ν
2
) ν+1

2
(
ν
2 + z2

i + d
)− ν+1

2

P
(
tν (0, 1) ≤

√
d
) , (C.13)

whenever V (β0) ≤ d. Similarly for any i ∈ {1, 2, . . . , n} with yi = 1, we get
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π
(
zi

∣∣∣β0, yi

)
=

c

(
1 +

(
zi−xT

i β0

)2

ν

)− ν+1
2

P
(
tν
(
xT
i β0, 1

)
≥ 0

)
[where c is the same as in (C.13)]

=
c

(
1 +

(
zi−xT

i β0

)2

ν

)− ν+1
2

P
(
tν (0, 1) ≥ −xT

i β0
)

≥
c

(
1 +

2z2
i +2

(
xT
i β0

)2

ν

)− ν+1
2

P
(
tν (0, 1) ≥ −xT

i β0
)

≥
c
(
1 + 2z2

i +2d
ν

)− ν+1
2

P
(
tν (0, 1) ≥ −

√
d
)

=
c
(
1 + 2z2

i +2d
ν

)− ν+1
2

P
(
tν (0, 1) ≤

√
d
)

[As tν (0, 1) is symmetric around 0]

=
c
(
ν
2
) ν+1

2
(
ν
2 + z2

i + d
)− ν+1

2

P
(
tν (0, 1) ≤

√
d
) , (C.14)

whenever V (β0) ≤ d. Combining (C.13) and (C.14), we obtain

π
(
z
∣∣∣β0,y

)
≥

cn
(
ν
2
)n( ν+1

2
)

[
P
(
tν (0, 1) ≤

√
d
)]n n∏

i=1

(ν
2 + z2

i + d
)− ν+1

2
, (C.15)

for every 1 ≤ i ≤ n whenever V (β0) ≤ d. Now, using (C.12) and (C.15), we
have

π
(
λ
∣∣∣z,β0,y

)
π
(
z
∣∣∣β0,y

)
≥

cn
(
ν
2
)n(ν+1)[

P
(
tν (0, 1) ≤

√
d
)]n g

(
λ
∣∣∣z,y)

×
n∏

i=1

(ν
2 + z2

i + d
)−(ν+1)

. (C.16)

Again, for any i ∈ {1, 2, . . . , n},∫ ∞

−∞

(ν
2 + z2

i + d
)−(ν+1)

dzi
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=
∫ ∞

−∞

(
K + z2

i

)−(ν+1)
dzi[

where, K =
(ν

2 + d
)

is a fixed constant
]

= K−(ν+1)
∫ ∞

−∞

(
1 + z2

i

K

)−(ν+1)

dzi

= K−(ν+1)
∫ π

2

−π
2

(
1 + tan2(x)

)−(ν+1)
√
K

cos2(x) dx

[
by taking zi√

K
= tan(x) =⇒ dzi =

√
K sec2(x) dx =

√
K

cos2(x) dx

]

= K−
(
ν+ 1

2
) ∫ π

2

−π
2

(
sec2(x)

)−(ν+1) 1
cos2(x) dx

[
since 1 + tan2(x) = sec2(x)

]
= K−

(
ν+ 1

2
) ∫ π

2

−π
2

cos2ν(x) dx

= 2 K−
(
ν+ 1

2
) ∫ π

2

0
cos2ν(x) dx[

since cos2ν(x) is an even function in x
]

≤ 2 K−
(
ν+ 1

2
) ∫ π

2

0
1 dx[

since cos2(x) ≤ 1 =⇒ cos2ν(x) ≤ 1 as ν > 2
]

= π K−
(
ν+ 1

2
)

< ∞.

Hence, the lower bound in (C.16) (which does not depend on β0) can be nor-
malized to a probability density to obtain ε and h̃ as required in (C.11). This
establishes the minorization condition. The drift and minorization conditions
above can be combined with Theorem 12 of [15] to establish geometric ergodic-
ity of the robit DA Markov chain.

Remark C.1. A key step, both in the proof of Theorem B.1 and of Theorem C.1
is the bounding of the expectation (see Eq. (B.10) and Eq. (C.5)):

E

[∣∣∣∣∣∣X (
XTΛX + aXTX

)−1
XTΛz

∣∣∣∣∣∣2
2

∣∣∣β0,y
]
.

The expectation is with respect to the conditional distribution of (λ, z) given
β0,y. If Λ is replaced by the identity matrix (as in the probit case), then it can
be shown (see [2]) that

∣∣∣∣∣∣X (
XTX + Σa

)−1
XT z

∣∣∣∣∣∣2
2
≤ emax‖z‖2

2
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where emax < 1 if Σa is positive definite. This enables establishing a drift con-
dition in the probit setting without any (additional) constraints on ν and Σa.
However, the presence of Λ in the robit setting, and the corresponding addi-
tional expectation step, leads to modified bounds as provided in Eq. (B.11)
and Eq. (C.6) in the Appendix. These modified bounds necessitate the use of
appropriate assumptions on Σa and ν for obtaining a geometric drift condition.

Appendix D: Traceplots for MCMC chains associated with the
Lupus data example

Below we show the traceplots for the Markov chain realizations for β1 and β2
corresponding to Bayesian robit models fitted to the Lupus dataset with ν = 1,
ν = 3, and ν = 1000.

Fig D.1. Traceplots for the realizations of regression coefficients β1 and β2 obtained from
the DA and sandwich algorithms for Bayesian robit model with ν = 1 implemented on the
Lupus dataset, using two different Zellner’s g priors. The iterations on the left-hand side of
the vertical bar (iteration 10,000) are treated as burn-in.



Convergence of robit regression DA algorithms 67

Fig D.2. Traceplots for the realizations of regression coefficients β1 and β2 obtained from
the DA and sandwich algorithms for Bayesian robit model with ν = 3 implemented on the
Lupus dataset, using two different Zellner’s g priors. The iterations on the left-hand side of
the vertical bar (iteration 10,000) are treated as burn-in.
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Fig D.3. Traceplots for the realizations of regression coefficients β1 and β2 obtained from the
DA and sandwich algorithms for Bayesian robit model with ν = 1000 implemented on the
Lupus dataset, using two different Zellner’s g priors. The iterations on the left-hand side of
the vertical bar (iteration 10,000) are treated as burn-in.
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