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Abstract: We consider the problem of recovering a k-sparse signal β0 ∈ R
p

from noisy observations y = Xβ0 + w ∈ R
n. One of the most popular

approaches is the l1-regularized least squares, also known as LASSO. We
analyze the mean square error of LASSO in the case of random designs in
which each row of X is drawn from distribution N(0,Σ) with general Σ.
We first derive the asymptotic risk of LASSO for w �= 0 in the limit of
n, p → ∞ with n/p → δ ∈ [0,∞). We then examine conditions on n, p, and
k for LASSO to exactly reconstruct β0 in the noiseless case w = 0. A phase
boundary δc = δ(ε) is precisely established in the phase space defined by
0 ≤ δ, ε ≤ 1, where ε = k/p. Above this boundary, LASSO perfectly recovers
β0 with high probability. Below this boundary, LASSO fails to recover β0
with high probability. While the values of the non-zero elements of β0 do
not have any effect on the phase transition curve, our analysis shows that
δc does depend on the signed pattern of the nonzero values of β0 for general
Σ �= Ip×p. This is in sharp contrast to the previous phase transition results
derived in i.i.d. case with Σ = Ip×p where δc is completely determined by ε
regardless of the distribution of β0. Underlying our formalism is a recently
developed efficient algorithm called approximate message passing (AMP)
algorithm. We generalize the state evolution of AMP from i.i.d. case to
general case with Σ �= Ip×p. Extensive computational experiments confirm
that our theoretical predictions are consistent with simulation results on
moderate size system.

MSC2020 subject classifications: Primary 62F12, 62F12; secondary
62F12.
Keywords and phrases: Asymptotic risk, LASSO, mean square error,
phase transition, state evolution.

Received December 2021.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6513
1.1 LASSO phase transition . . . . . . . . . . . . . . . . . . . . . . 6513
1.2 Approximate message passing . . . . . . . . . . . . . . . . . . . 6514
1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6515

2 LASSO risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6516
3 Phase transition of LASSO under dependence . . . . . . . . . . . . . 6520

∗This research is supported in part by Division of Mathematical Sciences (National Science
Foundation) Grant DMS-1916411.

†This is an original survey paper.

6512

https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/22-EJS2092
mailto:huanghw@uga.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


LASSO risk and phase transition 6513

4 Numerical illustration . . . . . . . . . . . . . . . . . . . . . . . . . . 6523
4.1 LASSO risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6524
4.2 Phase transition verification . . . . . . . . . . . . . . . . . . . . 6525
4.3 Phase transition under different dependent settings . . . . . . . 6526

5 Proof of the main results . . . . . . . . . . . . . . . . . . . . . . . . 6526
6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6528
A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6529

A.1 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . 6529
A.2 Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . 6530
A.3 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . 6531
A.4 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . 6533
A.5 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . 6533
A.6 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . 6536
A.7 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . 6539
A.8 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . 6541
A.9 Proof of Lemma 7 . . . . . . . . . . . . . . . . . . . . . . . . . 6543
A.10 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . 6544
A.11 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . 6544
A.12 Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . . 6546
A.13 Proof of Corollary 1 . . . . . . . . . . . . . . . . . . . . . . . . 6548
A.14 Proof of Corollary 2 . . . . . . . . . . . . . . . . . . . . . . . . 6548

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6550
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6550

1. Introduction

1.1. LASSO phase transition

Consider the problem of recovering a sparse signal β0 ∈ R
p from a under-

sampled collection of noisy measurements y = Xβ0 + w, where the matrix X
is n× p, the p-vector β0 is k-sparse (i.e. it has at most k non-zero entries), and
w ∈ R

n is random noise. One of the most popular approaches for this problem is
called LASSO which estimates β0 by solving the following convex optimization
problem

β̂(λ) = argminβ∈Rp

{
1
2‖y − Xβ‖2 + λ‖β‖1

}
. (1)

In the noiseless case w = 0, exact reconstruction of β0 through (1) is possible
when n ≥ p or β0 is sufficiently sparse for the case of n < p. Knowing the precise
limits to such sparsity for the case of n < p is important both for theory and
practice.

In the noiseless case, the λ = 0 limit of (1) is identical to the solution of the
following l1 minimization problem

min ‖β‖1, (2)
subject to y = Xβ.
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Fig 1. Phase transition boundary in the plane (δ, ε) when the matrix X consisting of i.i.d.
Gaussian rows xi ∼ N(0,Σ). Black curve: Σ = I. Red curve: Σ is block-diagonal with AR(1)
block structure Σs, i.e. Σs,ij = ρ|i−j| with block length s = 2 and ρ = −0.9. Blue curve: Σ
is block-diagonal with AR(1) block structure, i.e. Σs,ij = ρ|i−j| with block length s = 2 and
ρ = 0.9.

The precise condition under which β̂(λ = 0) can successfully recover β0 has
been obtained through large system analysis by letting n, p, k tend to infinity
with fixed rates n/p and k/p. Let ε = k/p and δ = n/p denote the sparsity
and under-sampling fractions for sampling β0 and y according to y = Xβ0.
Then (δ, ε) ∈ [0, 1] defines a phase space which expresses different combinations
of under-sampling δ and sparsity ε. When the elements of the matrix X are
generated from i.i.d. Gaussian, the phase space can be divided into two phases:
“success” and “failure” by a phase transition curve δ = δc(ε) which has been
explicitly derived in the literature (see e.g. [14, 10, 19, 12]) as shown by the black
curve in Figure 1. Above this curve, LASSO perfectly recovers the sparse signal
β0 with high probability, i.e. β̂(λ = 0) = β0. Below this curve, the reconstruction
fails, i.e. β̂(λ = 0) �= β0 also with high probability.

Our aim in this paper is to study the LASSO phase transition under arbitrary
covariance dependence, i.e. X consists of i.i.d. Gaussian rows xi ∼ N(0,Σ)
with general covariance matrix Σ � 0 and Σ �= Ip×p. We present formulas that
precisely characterize the LASSO sparsity/undersampling trade-off for arbitrary
Σ. Our numerical results show that LASSO phase transition depends on the form
of Σ. For example, the red and blue curves in Figure 1 correspond to the phase
transition boundaries for block-diagonal covariance matrix Σ with AR(1) block
structure Σs, i.e. Σs,ij = ρ|i−j| with block length s = 2 and ρ = −0.9 and
ρ = 0.9 respectively. These results indicate that for a given sparsity fraction ε,
the limits of allowable undersampling δc(ε) of LASSO in the case when X has
non-independent entries can be either higher or lower than the corresponding
value in the case when X has i.i.d. entries. To the best of our knowledge, this
is the first result to illustrate the LASSO phase transition for matrices X that
have non-independent entries.

1.2. Approximate message passing

Our analysis is based on the asymptotic study of mean squared error (MSE)
of the LASSO estimator, i.e. the quantity ‖β̂(λ) − β0‖2/p, in the large system
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limit n, p → ∞ with n/p = δ ∈ [0,∞) fixed. We derive the asymptotic MSE
through the analysis of an efficient iterative algorithm first proposed by [12]
called approximate message passing (AMP) algorithm. The AMP algorithms
can be considered as quadratic approximations of loopy belief propagation algo-
rithms on the dense factor graph corresponding to the LASSO model. A striking
property of AMP algorithms is that their high-dimensional per-iteration behav-
ior can be characterized by a one-dimensional recursion termed state evolution.
The AMP’s state evolution was first conjectured in [12] and subsequently proved
rigorously in [5] for i.i.d. Gaussian matrices. This result was extended to i.i.d.
non-Gaussian matrices in [4] under certain regularity conditions. [17] further
extended the AMP’s state evolution to independent but non-identical Gaussian
matrices. But there remains the important question of how AMP behaves with
non-independent matrices.

In this paper, we establish the AMP’s state evolution for non-independent
Gaussian matrices whose fixed points are consistent with the replica predic-
tion derived in [18]. On the basis of this result, we first derive the MSE for
AMP estimators using the fixed points of state evolution, then we obtain the
MSE for LASSO by proving that, in the large system limits, the AMP algo-
rithm converges to the LASSO optimum after enough iterations. Our analysis
strategy is similar to the one used in [6] for i.i.d. Gaussian matrices. However,
our main result cannot be seen as a straightforward extension of the ones in
[6]. In particular, the proofs of some results for non-independent case are much
more complicated than for i.i.d. case, and our proof techniques are hence of
independent interest, see e.g. the proof of Lemma 1 for the concavity and strict
increasing of ψ function defined in (27), the proof of Theorem 2 for deriving
the phase transition curve, and the proof of Lemmas 4 and 5 for the structural
property of LASSO under dependent designs.

Note that although this study is motivated by the phase transition problem
shown in Figure 1 which is restricted to the case when (δ, ε) ∈ [0, 1], the AMP
and main results derived in Theorem 1 work fine for the entire range δ ∈ [0,∞).
The LASSO risk formulas derived in Theorem 1 apply to both noiseless and noisy
cases with quite general i.i.d. random error. The phase transition results derived
in Theorem 2 are only for the noiseless case. This result can also be generalized
to the noisy case and we have some discussion about this in Section 6.

1.3. Related work

[24] derived expressions for the asymptotic mean square error of LASSO. Similar
results were presented in [16, 18]. Unfortunately, these results were non-rigorous
and were obtained through the famous replica method from statistical physics
[22]. Some rigorous proofs were given in [3, 25, 6] to show that the replica
symmetric prediction for LASSO is exact. However, all these rigorous proofs are
limited to settings with i.i.d. Gaussian measurement matrices.

By now a large amount of empirical and theoretical studies have been con-
ducted to understand the phase transitions of regularized reconstruction exhib-
ited by different algorithms. In the noiseless case, the phase transition curve
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based on (2) was explored in [14] utilizing techniques of combinatorial geometry
for entries of X being i.i.d. Gaussians. The AMP algorithm was proposed in [12]
which produces the same phase transition curve. It has been proved in [6] that
the limit of AMP estimate corresponds to the solution of LASSO in the asymp-
totic settings. Statistical physics methods were used to study lq (0 ≤ q ≤ 1)
based reconstruction methods in [19]. [30] and [28] studied the phase transition
for lq penalized least square in the case of 0 ≤ q < 1 and 1 ≤ q ≤ 2 re-
spectively. [20] replaced the l1 regularization with a probabilistic approach and
studied its phase transition. [11] derived phase transition of AMP for a wide
class of denoisers. In noisy case, [13] studied the noise sensitivity phase tran-
sition of LASSO through deriving the minimax formulation of the asymptotic
MSE. [30, 28] studied the phase transition of lq-regularized least squares using
higher order analysis of regularization techniques. The phase transition in gen-
eralized linear models for i.i.d. matrices was characterized in [2]. [21] generalized
AMP to complex approximate message passing methods and used it to study
phase transitions for compressed sensing with complex vectors.

Most of the above results are for i.i.d. Gaussian matrices and some of them
are for independent but non-identical Gaussian matrices. This paper performs
the phase transition analysis of LASSO under dependent Gaussian matrices.
We derive the basic relation between minimax MSE and the phase-transition
boundary in the sparsity-undersampling plane. We adopt the message passing
analysis whose state evolution allows to determine whether AMP recovers the
signal correctly, by simply checking whether the MSE vanishes asymptotically
or not. Most closely related to the current paper are results by [27] that derives
the sharp thresholds for LASSO sparsity recovery in the case of random designs
in which each row of X is drawn from a broad class of Gaussian ensembles
N(0,Σ). However, the major difference is that [27] only provides the necessary
and sufficient conditions for the recovery of sparsity pattern, while we focus on
the recovery of complete signal including both signed support and magnitude.
Recently, based on Gordon’s inequality, [9] derived the LASSO risk under non-
standard Gaussian design for i.i.d. Gaussian random error, i.e. wi

i.i.d.∼ N(0, σ2
w).

But they didn’t study the phase transition problem and also we don’t have
Gaussian restriction here for random error w.

2. LASSO risk

The Gaussian random design model for linear regression is defined as follows.
We are given n i.i.d. pairs (y1,x1), · · · , (yn,xn) with yi ∈ R, xi ∈ R

p, and
xi ∼ N(0,Σ) for some positive definite p× p covariance matrix Σ � 0. Further,
yi is a linear function of xi, plus noise

yi = xT
i β0 + wi,

where wi
i.i.d.∼ pw with mean 0 and variance σ2

w, and β0 ∈ R
p is a vector of

parameters to be estimated. The special case Σ = Ip×p is usually referred to
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as standard Gaussian design model. In matrix form, letting y = (y1, · · · , yn)T ,
w = (w1, · · · , wn)T , and denoting by X the matrix with rows xT

1 , · · · ,xT
n , we

have
y = Xβ0 + w.

In this paper, our approach is based on the LASSO estimator

β̂ = argminβC(β), (3)

where
C(β) = 1

2‖y − Xβ‖2 + λ‖β‖1.

We will consider sequences of instances of increasing sizes. The sequence of
instances {β0(p),w(p), Σ(p),X(p)} parameterized by p is said to be a converging
sequence if β0(p) ∈ R

p,w(p) ∈ R
n,Σ(p) ∈ R

p×p,X(p) ∈ R
n×p with n = n(p) is

such that n/p → δ ∈ (0,∞), and in addition the following conditions hold:

1. The empirical distribution of the entries of β0(p) converges weakly to a
probability measure pβ0 on R with bounded second moment. Further∑p

i=1 β0,i(p)2/p → Epβ0
{β2

0}.
2. The empirical distribution of the entries of w(p) converges weakly to a

probability measure pw on R with
∑n

i=1 wi(p)2/n → σ2
w < ∞.

3. For any v ∈ R
p, ‖v‖2

Σ(p) = O(‖v‖2) and ‖v‖2
Σ(p)−1 = O(‖v‖2), where

‖v‖2
Σ = vTΣv.

4. The rows of X(p) are drawn independently from distribution N(0, 1
nΣ(p)).

5. The sequence of functions

E(p)(a, b) ≡ 1
p
E min

β∈Rp

{
1
2‖β − β0(p) −

√
aΣ(p)−1/2z‖2

Σ(p) + b‖β‖1

}
(4)

admits a differentiable limit E(a, b) on R+ × R+ with ∂E(p)(a,b)
∂a → ∂E(a,b)

∂a

and ∂E(p)(a,b)
∂b → ∂E(a,b)

∂b , where z ∼ N(0, Ip×p) is independent of β0(p).
6. For any a1, b1, a2, b2 ∈ R+ and any 2 × 2 positive definite matrix S, the

following limit exists and is finite

lim
p→∞

1
p

〈
β̂

(p)
1 , β̂

(p)
2

〉
,

where 〈·, ·〉 is the standard scalar product and

β̂
(p)
1 = argminβ∈Rp

{
1
2‖β − β0(p) −

√
a1Σ(p)−1/2z1‖2

Σ(p) + b1‖β‖1

}
,

β̂
(p)
2 = argminβ∈Rp

{
1
2‖β − β0(p) −

√
a2Σ(p)−1/2z2‖2

Σ(p) + b2‖β‖1

}
,

where (z1, z2) ∼ N(0,S ⊗ Ip×p) and is independent of β0(p).
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Conditions 1 and 2 have appeared in [6] which indicate that the entries of β0
and w are drawn i.i.d. from certain distributions with bounded second order mo-
ment. Note that the entries of w are not necessarily normal. Denote λmin(Σ(p))
and λmax(Σ(p)) the smallest and largest eigenvalues of Σ(p) respectively, then
Condition 3 is equivalent to that 1/λmin(Σ(p)) = O(1) and λmax(Σ(p)) = O(1).
Condition 5 indicates that the covariance matrix should satisfy such conditions
that the l1 penalized quadratic loss function specified in (4) has a differentiable
limit, i.e. the derivative over a, b and the limit of p are exchangeable. It is worth
stressing that Conditions 5 and 6 are satisfied by a larger family of covariance
matrices. For instance, based on law of large number, it can be proved that it
holds for block-diagonal matrices Σ as long as the blocks have bounded length
and the block’s empirical distribution converges. This condition has also ap-
peared in [18] and it ensures the existence of large dimensional limits of some
functions such as (6), (10), and (12) that will be used in describing the main
results of Theorems 1 and 2. It also allows us to exchange the order of operations
such as taking limit and derivative over these functions. In Section 4.3, we will
discuss the specific choice of covariance structure such that this condition can
be satisfied. We insist on the fact that β0(p), w(p), Σ(p), X(p) depend on p.
However, we will drop this dependence most of the time to ease the reading.

In order to present our main result, for any θ > 0 and Σ � 0, we need to
introduce the soft-thresholding operation ηθ : Rp → R

p which is defined as

ηθ(v) = argminβ∈Rp

{
1
2‖β − v‖2

Σ + θ‖β‖1

}
. (5)

Then for a converging sequence of instances, we can define the function

ψ(τ2, θ) = σ2
w + lim

p→∞
1
pδ

E
(
‖ηθ(β0 + τΣ−1/2z) − β0‖2

Σ

)
, (6)

where z ∼ N(0, Ip×p) is independent of β0. Notice that the function ψ depends
implicitly on the law pβ0 .

Condition 5 allows us to verify the existence of the limit in (6). Toward this
end, we start from (4) and have

E(p)(τ2, θ) = 1
p
E

{
1
2‖β̂ − β0 − τΣ−1/2z‖2

Σ + θ‖β̂‖1

}
, (7)

where β̂ = ηθ(β0 + τΣ−1/2z). In order to take derivative over τ2 and θ, we
need to conduct integrals over z ∈ R

p. We first divide the p-dimensional space
into regions such that β̂ is differentiable in each region and continuous across
the entire space (see Figure 7 for a simple 2-dimensional illustration). Then the
derivative of E(p)(τ2, θ) involves the explicit derivative inside each region and
integrals over the boundaries among different regions over p − 1-dimensional
measure. According to Stokes’s theorem, as in Theorem 1 of [1], we conclude
that the boundary effects are canceled and have no contribution due to the
continuity of β̂ (see detailed discussion in A.6). Further note that, according to
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the definition of β̂, the derivative of the integrand in (7) over β̂ is 0, therefore
we only need to consider the explicit dependence of the integrand on τ2 and θ
in deriving the corresponding derivatives. We obtain

∂E(p)(τ2, θ)
∂τ2 = − 1

2pτ E
〈
β̂ − β0,Σ1/2z

〉
+ 1

2 , (8)

∂E(p)(τ2, θ)
∂θ

= 1
p
E‖β̂‖1. (9)

From Condition 5, all the limits of E(p)(τ2, θ), ∂E(p)(τ2,θ)
∂τ2 , and ∂E(p)(τ2,θ)

∂τ2 exist,
therefore, limp→∞

1
pδE

(
‖β̂ − β0‖2

Σ

)
also exists, which is just the right hand

side of (6). Taking β0 = 0, we immediately obtain that the limit of the following
equation (10) also exists.

We choose θ = ατ , then we have the following result in order to establish a
calibration mapping between α and λ.

Proposition 1. Define function

f(α) ≡ lim
p→∞

1
pδ

E
(
‖ηα(Σ−1/2z)‖2

Σ

)
. (10)

Then the equation f(α) = 1 has a unique solution denoted by αmin(δ) when
δ < 1. Then for any δ ≥ 1 or δ < 1 and α > αmin(δ), the fixed point equation

τ2 = ψ(τ2, ατ) (11)

admits a unique solution.

We then define a function α → λ(α) on (αmin(δ),∞) by

λ(α)

= ατ�(α)
{

1 − lim
p→∞

1
pδ

E
[
divηατ�(α)(β0 + τ�(α)Σ−1/2z)

]}
, (12)

where the divergence of the vector field is defined as divηθ(v) =
∑p

j=1
∂ηθ,j(v)

∂vj
.

This function defines a correspondence between α and λ. The existence of the
limit of (12) can be obtained from the existence of the limit of ∂E(p)(τ2,θ)

∂τ2 in (8)
following by integration by parts. In the following we will need to invert this
function and define λ → α(λ) on (0,∞) in such a way that

α(λ) ∈ {a ∈ (αmin,∞) : λ(a) = λ}. (13)

The next result implies that the function λ → α(λ) is well defined.

Proposition 2. The function α → λ(α) is continuous on the interval (αmin,∞)
and for any given λ there exist a unique α such that λ(α) = λ.
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For two sequences (in n) of random variables xn and yn, write xn
P≈ yn

when their difference convergences in probability to 0, i.e. xn−yn
P−→ 0. For any

m ∈ N>0, we say a function ϕ : Rm×R
m → R is pseudo-Lipschitz if there exist a

constant L > 0 such that for all x,y ∈ R
m : |ϕ(x,y)| ≤ L(1+‖x‖+‖y‖)‖x−y‖.

A sequence (in m) of pseudo-Lipschitz functions {ϕm}m∈N>0 is called uniformly
pseudo-Lipschitz if, denoting by Lm is the pseudo-Lipschitz constant, we have
Lm < ∞ for each m and supm→∞ Lm < ∞. Note that the input and output
dimensions of each ϕm can depend on m. We call any L > supm→∞ Lm a
pseudo-Lipschitz constant of the sequence. We can now state our main result.

Theorem 1. Let {β0(p),w(p),Σ(p),X(p)}p∈N be a converging sequence of in-
stances. Denote β̂(λ) the LASSO estimator for instance {β0(p),w(p), Σ(p),
X(p)} with λ > 0 and P{β0(p) �= 0} > 0. For any sequence ϕp : Rp × R

p →
R, p ≥ 1, of uniformly pseudo-Lipschitz functions, we have

ϕp(β̂(λ), β0)
P≈ Eϕp(ηθ�(β0 + τ�Σ−1/2z), β0)

where z ∼ N(0, Ip×p) is independent of β0 ∼ pβ0 , τ� = τ�(α(λ)), and θ� =
α(λ)τ�(α(λ)).

Using function ϕp(a,b) = 1
p‖a−b‖2, we obtain LASSO MSE 1

p‖β̂(λ)−β0‖2

which can be used to evaluate competing optimization methods on large scale
applications. Using Theorem 1, we get

1
p
‖β̂(λ) − β0‖2 P≈ 1

p
E‖ηθ�(β0 + τ�Σ−1/2z) − β0‖2, (14)

where z ∼ N(0, Ip×p) is independent of β0 ∼ pβ0 , τ� = τ�(α(λ)), and θ� =
α(λ)τ�(α(λ)).

Therefore, for fixed λ, LASSO MSE explicitly depends on τ2
� which can be

obtained by solving the fixed point equation τ2
� = ψ(τ2

� , ατ�) together with (12).
Closer to the spirit of this paper, [18] non-rigorously derived the LASSO MSE
under the same setting considered here using the replica method from statistical
physics. The present paper is rigorous and putting on a firmer basis this line of
research.

3. Phase transition of LASSO under dependence

Note that the LASSO risk results based on Theorem 1 work fine for entire
σ2
w, δ ∈ [0,∞). To study phase transition, we only need to consider δ ∈ [0, 1]

and evaluate the results in the noiseless setting σ2
w = 0 and understand the

extend to which (3) accurately recovers β0 under this setting. Consider a class
of distributions Fε whose mass at zero is equal to 1 − ε, i.e.

Fε ≡ {pβ0 : pβ0({0}) = 1 − ε}.

When the matrix X has i.i.d. Gaussian elements, i.e. Σ = Ip×p, phase space
0 ≤ δ, ε ≤ 1 can be divided into two components, or phases, separated by a
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curve δc = δ(ε), which does not depend on the actual distribution of pβ0 and
can be explicitly computed. Above this curve, LASSO perfectly recovers the
sparse signal β0 with high probability. Below this curve, we have β̂ �= β0 with
high probability.

For non-standard Gaussian design, i.e. Σ �= Ip×p, we need to consider a more
general class of distributions Fε,Δ defined as

Fε,Δ ≡
{
pβ0 : pβ0({0}) = 1 − ε and |pβ0({> 0}) − pβ0({< 0})|

|pβ0({> 0}) + pβ0({< 0})| = Δ
}
.

Here we introduce an extra parameter Δ = |P (β0>0)−P (β0<0)|
|P (β0>0)+P (β0<0)| which represents

the positive-negative asymmetry for the nonzero components of β0. Clearly,
0 ≤ Δ ≤ 1, and if Δ = 0, we have P (β0 > 0) = P (β0 < 0), i.e. β0 has positive
and negative nonzero components with equal probability.

We denote by [p] = {1, · · · , p} the set of first p integers. For a subset I ⊆ [p],
we let |I| denote its cardinality. For an p× p matrix Σ and set of indices I ⊆ [p],
J ⊆ [p], we use ΣIJ to denote the |I| × |J| sub-matrix formed by rows in I and
columns in J. Likewise, for a vector β ∈ R

p, βI is the restriction of β to indices
in I. The following Theorem shows that, under general covariance Σ, the phase
transition curve exists and depends on the asymmetry parameter Δ.

Theorem 2. Let {β0(p),w(p),Σ(p),X(p)}p∈N be a converging sequence of in-
stances and w(p) = 0. Assume pβ0 ∈ Fε,Δ. Then the phase space 0 ≤ δ, ε ≤ 1
can be divided into two components separated by a curve δc = δ(ε). Above this
curve, LASSO algorithm (3) perfectly recovers the sparse signal β0 with high
probability, i.e. 1

p‖β̂(λ) − β0‖ → 0 after appropriately choosing the tuning pa-
rameter λ. Below this curve, we have β̂ �= β0 with high probability. For fixed ε,
the δc is determined by

δc = inf
α

M(ε,Δ, α), (15)

where

M(ε,Δ, α)

= lim
p→∞

1
p
E{((Σ1/2z)A − αsign(β̂A))TΣ−1

AA((Σ1/2z)A − αsign(β̂A))},(16)

where the active set A = B ∪ B̄ with B = {j : β0,j �= 0} and B̄ the active set of
LASSO problem

β̄ = argminβ∈Rp̄

{
1
2‖ȳ − X̄β‖2

2 + α‖β‖1

}
(17)

with

X̄ = (ΣBcBc − ΣBcBΣ−1
BBΣBBc)1/2,

ȳ = X̄−1
[
(Σ1/2z)Bc − ΣBcBΣ−1

BB{(Σ1/2z)B − αsign(β0,B)}
]
,

where p̄ = |Bc| and z ∼ N(0, Ip×p) is independent of pβ0 .
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Note that all the nonzero components of β0 contribute to function (16). Some
zero components also have contribution if they are selected by the LASSO prob-
lem (17). Theorem 2 shows that the LASSO phase transition is independent of
the actual distribution of pβ0 but depends on the positive-negative asymme-
try of the nonzero components of β0, i.e. depends on ε+ = #{β0 > 0}/p and
ε− = #{β0 < 0}/p with ε = ε+ + ε− and Δ = (ε+ − ε−)/(ε+ + ε−).

The following two Corollaries provide the explicit phase transition curves for
two special covariance matrices.

Corollary 1. For Σ = Ip×p, the LASSO phase transition curve is determined
by

δ = 2φ(α)
α + 2φ(α) − 2αΦ(−α) ,

ε = 2φ(α) − 2αΦ(−α)
α + 2φ(α) − 2αΦ(−α) , (18)

This is equivalent to the result provided in [12] based on techniques of com-
binatorial geometry.

Corollary 2. For block-diagonal matrix Σ with block
(

1 ρ
ρ 1

)
, the LASSO

phase transition curve is determined by

δ = ε2A(α,Δ) + ε(1 − ε)B(α) + (1 − ε)2C(α),

ε =
2C ′(α) −B′(α) +

√
B′(α)2 − 4∂A(α,Δ)

∂α C ′(α)

2{∂A(α,Δ)
∂α −B′(α) + C ′(α)}

, (19)

where

A(α,Δ) = 1 + α2

2

(
1 + Δ2

1 − ρ
+ 1 − Δ2

1 + ρ

)
, (20)

B(α) = B1(α) + B2(α) + B3(α), (21)
C(α) = C1(α) + C2(α) + C3(α) + C4(α), (22)

where

B1(α) = E(ξ1 − α)2I(|ξ2 − ρξ1 + ρα| ≤ α)
+E(ξ2 − α)2I(|ξ1 − ρξ2 + ρα| ≤ α),

B2(α) = E
(ξ1 − α)2 + (ξ2 − α)2 − 2ρ(ξ1 − α)(ξ2 − α)

1 − ρ2

{I(ξ2 − ρξ1 + ρα ≥ α) + I(ξ1 − ρξ2 + ρα ≥ α)},

B3(α) = E
(ξ1 − α)2 + (ξ2 + α)2 − 2ρ(ξ1 − α)(ξ2 + α)

1 − ρ2

I(ξ2 − ρξ1 + ρα ≤ −α)
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+E
(ξ1 + α)2 + (ξ2 − α)2 − 2ρ(ξ1 + α)(ξ2 − α)

1 − ρ2

I(ξ1 − ρξ2 + ρα ≤ −α),
C1(α) = E(ξ1 − α)2I(|ξ2 − ρξ1 + ρα| ≤ α)I(ξ1 ≥ α)

+E(ξ1 + α)2I(|ξ2 − ρξ1 + ρα| ≤ α)I(ξ1 ≤ −α),
C2(α) = E(ξ2 − α)2I(|ξ1 − ρξ2 + ρα| ≤ α)I(ξ2 ≥ α)

+E(ξ2 + α)2I(|ξ1 − ρξ2 + ρα| ≤ α)I(ξ2 ≤ −α),

C3(α) = E
(ξ1 − α)2 + (ξ2 − α)2 − 2ρ(ξ1 − α)(ξ2 − α)

1 − ρ2

I(ξ1 − ρξ2 + ρα ≥ α)I(ξ2 − ρξ1 + ρα ≥ α)

+E
(ξ1 − α)2 + (ξ2 + α)2 − 2ρ(ξ1 − α)(ξ2 + α)

1 − ρ2

I(ξ1 − ρξ2 + ρα ≥ α)I(ξ2 − ρξ1 + ρα ≤ −α),

C4(α) = E
(ξ1 + α)2 + (ξ2 − α)2 − 2ρ(ξ1 + α)(ξ2 − α)

1 − ρ2

I(ξ1 − ρξ2 + ρα ≤ −α)I(ξ2 − ρξ1 + ρα ≥ α)

+E
(ξ1 + α)2 + (ξ2 + α)2 − 2ρ(ξ1 + α)(ξ2 + α)

1 − ρ2

I(ξ1 − ρξ2 + ρα ≤ −α)I(ξ2 − ρξ1 + ρα ≤ −α),

where

ξ1 =
√

1 + ρ +
√

1 − ρ

2 z1 +
√

1 + ρ−√
1 − ρ

2 z2,

ξ2 =
√

1 + ρ−√
1 − ρ

2 z1 +
√

1 + ρ +
√

1 − ρ

2 z2,

and (z1, z2) ∼ N(0, I2×2).

For general Σ, it is difficult to derive closed form analytic result for δc due to
the complicated expression of (16) and LASSO problem (17). We provide Monte
Carlo based numerical solutions in following section.

4. Numerical illustration

In this section, we present some numerical studies to support our theoretical
results in Section 2 and Section 3. Our studies are based on simulations on
finite size systems of moderate dimensions. We compute asymptotic LASSO
risks and compare them with simulation results in Section 4.1. In Section 4.2,
we verify our theoretical prediction on LASSO phase transition through Monte
Carlo simulations. In Section 4.3, we study the dependence of LASSO phase
transition on the covariance structure Σ and positive negative asymmetrical
parameter Δ under various settings.
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Fig 2. LASSO MSE as a function of the regularization parameter λ compared to the asymp-
totic prediction. The solid curves represent theoretical prediction using (14) and the error
bars are summaries over 100 simulated data with p = 400. Here the covariance matrix is
block-diagonal with AR(1) block structure Σs,ij = ρ|i−j| with s = 2 and ρ = 0.5. The under-
sampling δ = 1 and the sparsity ε = 0.15. Left panel is for Δ = 0 and right panel is for
Δ = 1.

We consider block-diagonal covariance matrix with AR(1) block structure.
For this choice, we can easily verify that Condition 5 is satisfied with limit

lim
p→∞

E(p)(a, b) = 1
s
E

{
1
2‖β̂ − β0 −

√
aΣ− 1

2
s z‖2

Σs
+ b‖β̂‖1

}
, (23)

where Σs is the block matrix with length s and β̂ = ηb(β0 +
√
aΣ− 1

2
s z) with

covariance matrix Σs and z ∼ N(0, Is×s). Similarly, we can verify that Condition
6 is also satisfied. We use s = 2, 10, 20, 50 in our numeric studies.

4.1. LASSO risk

We compute LASSO risk using (14) with τ2
� determined by solving the fixed

point equation of τ2 = ψ(τ2, α(λ)τ), where α(λ) is defined in (13). We use the
bisection method to numerically solve the non-linear equation f(τ2) = τ2 −
ψ(τ2, ατ) = 0.

For each setting, we generate 100 data sets with p = 400 consisting of design
matrix X ∼ N(0,Σ) and measurement vector y = Xβ0 + w obtained from in-
dependent signal vector β0 and independent noise vector w. For each data set,
we obtain the LASSO optimum estimator β̂(λ) using glmnet, an efficient pack-
age for fitting lasso or elastic-net regularization path for linear and generalized
linear regression models. For each case, the dependence of MSE as a function
of tuning parameter λ is plotted as shown in Figure 3. Here the random error
wi

i.i.d.∼ N(0, 1) and the magnitude for nonzero components of β0 are sampled
from uniform [1, 2]. The agreement is remarkably good already for p, n of a few
hundred.
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Fig 3. Compare the theoretical phase transition curve with the one determined by simulation
studies with p = 500. Here the covariance matrix is based on AR(1) model with ρ = 0.5. The
black curves represent the theoretical estimations while the red curves represent the simulation
results. Left panel is for Δ = 0 and right panel is for Δ = 1.

4.2. Phase transition verification

For noiseless case, we compare the theoretical phase transition with the empirical
one estimated by applying the following optimization algorithm to simulated
data.

minimize‖β‖1,

subject to y = Xβ.

Using the similar procedure as in [12], we first fix a grid of 31 ε values between
0.05 and 0.95. For each ε, we consider a series of δ values between max(0, δc(ε)−
0.2) and min(1, δc(ε) + 0.2), where δc(ε) is the theoretically expected phase
transition based on Theorem 2. We then have a grid of δ, ε values in parameter
space [0, 1]2. At each δ, ε, we generate m = 100 problem instances (X, β0) with
size p = 500. Then y = Xβ0. For the ith problem instance, we obtain an output
β̂i by using the rq.lasso.fit function in package rqPen to the ith simulated data.
We set the success indicator variable Si = 1 if ‖β̂i−β0‖

‖β0‖ ≤ 10−4 and Si = 0
otherwise. Then at each (δ, ε) combination, we have S =

∑m
i=1 Si.

We analyze the simulated data-set to estimate the phase transition. At each
fixed value of ε in our grid, we model the dependence of S on δ using logistic
regression. We assume that S follows a binomial B(π, 100) distribution with
logit(π) = a + bδ. We define the phase transition as the value of δ at which
the success probability π = 0.5. In terms of the fitted parameters â, b̂, we have
the estimated phase transition δ̂(ε) = −â/b̂. Figure 3 shows that the agreement
between the estimated phase transition curve based on the simulated finite-size
systems and the analytical curve based on asymptotic theorem is remarkably
good. We have tried different distributions for the random error w and nonzero
components of β0 and found that our phase transition results are dependent of
those choices as illustrated by Theorem 2.
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Fig 4. The values of δc(ε) as a function of ε for several different values of block length s with
fixed Δ = 1. Here the block covariance matrix is based on AR(1) model with Σs,ij = ρ|i−j|.
Left panel is for ρ = 0.9 and right panel is for ρ = −0.9.

4.3. Phase transition under different dependent settings

In this section, we study the dependence of phase transition on the block length
s, correlation coefficient ρ, and asymmetric coefficient Δ. Figure 4 shows the
change of phase transition boundaries with the block length s for fixed Δ = 1
and ρ. As s increases, the boundary moves further away from the i.i.d. bound-
ary. For large s, in order to make a perfect recovery, less samples are needed
under positive correlation ρ = 0.9 and more samples are needed under negative
correlation ρ = −0.9. When s is big enough, e.g. s = 20, the boundaries only
change slightly for further increasing of s.

Figure 5 shows the dependence of phase transition on ρ for fixed s = 2 and
Δ. If the distribution of pβ0 is positive-negative symmetric, i.e. Δ = 0, the
boundaries are almost independent of ρ and very close to the Donoho-Tanner
phase transition observed in [10] as illustrated by the left panel of Figure 5. If
the distribution of the nonzero components of pβ0 is highly skewed, e.g. Δ = 1,
the phase transition curves fall below the Donoho-Tanner phase transition curve
for ρ > 0 and above it for ρ < 0. As is clear from the right panel of Figure 5,
for asymmetrically distributed signal β0, the performance can be improved by
increasing the correlation of covariance matrix Σ.

The phase transition curves for different Δ with fixed ρ are exhibited in
Figure 6. For positive correlation, at the same sparsity level ε, the number of
measurements δ that is required for successful recovery decreases as we increase
Δ as shown by the left panel of Figure 6. For negative correlation, the conclusion
is opposite as shown by the right panel of Figure 6.

5. Proof of the main results

We prove Theorem 1 using the limiting distribution of the approximate message
passing (AMP) estimator. The AMP algorithm is a recently developed efficient
iterative algorithm for solving the optimization problem (3). In order to define
AMP algorithm, we need to use the soft-thresholding operation ηθ : R

p →
R

p defined in (5). For an arbitrary sequence of thresholds {θt}t≥0, the AMP
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Fig 5. The values of δc(ε) as a function of ρ with fixed s = 2 and Δ. Left panel is for Δ = 0
and right panel is for Δ = 1.

Fig 6. The dependence of the phase transition curve on Δ for fixed s = 2 and ρ. Left panel
is for ρ = 0.9 and right panel is for ρ = −0.9.

constructs a sequence of estimates βt ∈ R
p, and residuals zt ∈ R

n, according to
the iteration

βt+1 = ηθt(Σ−1XT zt + βt),

zt = y − Xβt + 1
pδ

zt−1divηθt−1(Σ−1XT zt−1 + βt−1), (24)

where divηθ(v) is the divergence of the soft thresholding function. The algorithm
(24) is mainly designed for theoretical analysis rather than practical use due to
the fact that Σ is usually unknown. The following proposition shows the relation
between the fixed-point solution of AMP algorithm (24) and the optimization
solution of LASSO problem (3).

Proposition 3. Any fixed point βt = β�, zt = z� of the AMP iteration (24)
with θt = θ� is a minimizer of the LASSO cost function (3) with

λ = θ�

{
1 − 1

pδ
divηθ�(Σ−1XT z� + β�)

}
. (25)

For a converging sequence of instances {β0(p),w(p),Σ(p),X(p)}, the asymp-
totic behavior of the recursion (24) can be characterized as follows. Define the
sequence {τ2

t }t≥0 by setting τ2
0 = σ2

w + limp→∞ E{‖β0‖2
Σ}/(pδ) (for β0 ∼ pβ0)
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and letting, for all t ≥ 0:
τ2
t+1 = ψ(τ2

t , θt), (26)

where the function ψ(·, ·) is defined in (6) which depends implicitly on the law
pβ0 . The next proposition shows that the behavior of AMP can be tracked by the
above one dimensional recursion which was often referred to as state evolution.

Proposition 4. Let {β0(p),w(p),Σ(p),X(p)}p∈N be a converging sequence of
instances and let sequence ϕp : R

p × R
p → R, p ≥ 1 be uniformly pseudo-

Lipschitz functions. Then

ϕp(βt+1, β0)
P≈ Eϕp(ηθt(β0 + τtΣ−1/2z), β0),

where z ∼ N(0, Ip×p) is independent of β0 ∼ pβ0 and the sequence {τt}t≥0 is
given by the recursion (26).

In order to establish the connection with LASSO, a specific policy has to be
chosen for the thresholds {θt}t≥0. Throughout this paper we will take θt = ατt
with α is fixed. The sequence {τt}t≥0 is given by the recursion

τ2
t+1 = ψ(τ2

t , ατt). (27)

We prove Theorem 1 by proving the following result.

Theorem 3. Assume the hypothesis of Theorem 1. Let β̂(λ; p) be the LASSO
estimator for instance {β0(p),w(p), Σ(p),X(p)} and denote by {βt(α; p)}t≥0
the sequence of estimators produced by AMP algorithm (24) with θt = α(λ)τt,
where α(λ) is the calibration mapping between α and λ defined in (13) and τt
is updated by the recursion (27). Then

lim
t→∞

lim
p→∞

1
p
‖βt(α; p) − β̂(λ; p)‖2 = 0.

As mentioned by [6], Theorem 3 requires taking the limit of infinite dimen-
sions p → ∞ before the limit of an infinite number of t → ∞.

6. Discussion

This paper focuses on the behavior of LASSO for learning the sparse coeffi-
cient vector in high-dimensional setting. We rigorously analyze the asymptotic
behavior of LASSO for nonstandard Gaussian design models where the row of
design matrix X are drawn independently from distribution N(0,Σ). We first
obtain the formula for the asymptotic mean square error (AMSE) characterized
through a series of non-linear equations. Then we present an accurate charac-
terization of the phase transition curve δc = δ(ε) for separating successful from
unsuccessful reconstruction of β0 by LASSO in the noiseless case y = Xβ0. Our
results show that the values of the non-zero elements of β0 do not have any effect
on the phase transition curve. However, for general Σ, the phase boundary δc
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not only depends on the sparsity coefficient ε but also depends on the signed
sparsity pattern of the nonzero components of β0. This is in sharp contrast to
the result for i.i.d. case where δc is completely determined by ε regardless of the
distribution of β0.

[30] shows that, in the noiseless setting, the lq-regularized least squares ex-
hibits the same phase transition for every 0 ≤ q < 1 and this phase transition is
much better than that of LASSO. However, in the noisy setting, there is a major
difference between the performance of lp-regularized least squares with different
values of q. For instance, q = 0 and q = 1 outperform the other values of q for
very small and very large measurement noises. [28] further reveals some of the
limitations and misleading features of the phase transition analysis. To over-
come these limitations, they propose the small error analysis for lq-regularized
least squares to describe when phase transition analysis is reliable. [11] applied
the AMP framework to a wider range of shrinkers including firm shrinkage and
minimax shrinkage. Particularly, they show that the phase transition curve for
AMP firm shrinkage and AMP minimax shrinkage are slightly better than that
for LASSO.

An interesting future research direction is to generalize the results derived in
[30, 28, 11] from the case of Σ = Ip×p to the case of Σ �= Ip×p. Our goal is to
provide more accurate comparison for different regularizers in general setting for
Σ. One of the major challenges in this direction is to establish the correspondence
between regularized least square methods and specific AMP algorithms.

[23] introduces a class of generalized approximate message passing (GA MP)
algorithms that cope with the case where the noisy measurement vector y can be
non-linear function of the noiseless measurement Xβ0. [2] evaluate the asymp-
totic behavior of GLAM in standard Gaussian setting and locate the associated
sharp phase transitions separating learnable and nonlearnable regions in phase
space. Another interesting future direction is to generalize these GLM results
from the case of i.i.d. design matrix to the case of general design matrix.

This work deals with the phase transition in noiseless case. For i.i.d. design
matrix, [13] studied the phase transition behavior in the noisy case by intro-
ducing a quantity called noise sensitivity which is proportional to the mean-
squared error of LASSO estimator. They found a boundary curve in the phase
space 0 ≤ ε, δ ≤ 1 such that the noise sensitivity is bounded above the curve
and unbounded below the curve. This phase boundary is identical to the phase
transition curve in the noiseless case for i.i.d. design. We plan to investigate if
there is a similar phenomenon for LASSO phase transition with non-zero noise
under non-i.i.d. design.

Appendix A: Proofs

A.1. Proof of Proposition 3

Proof. First we need to prove that the fixed-point of iteration (24) is a solution
of (3). Toward this end, the first equation of (24) implies that

Σ{β� − (Σ−1XT z� + β�)} + θ�∂‖β�‖1 = 0.
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Therefore
XT z� = θ�∂‖β�‖1.

The second equation of (24) implies that

(1 − ω�) z� = y − Xβ�,

where
ω� = 1

pδ
divηθ�(Σ−1XT z� + β�). (28)

Therefore
XT (y − Xβ�) = θ� (1 − ω�) ∂‖β�‖1,

which is the solution of (3) for appropriately choosing tuning parameter λ =
θ�(1−ω�).

A.2. Proof of Proposition 4

Proof. Since the entries of X are not i.i.d. normal, we do transformation X̃ =
XΣ−1/2 and consider a different problem from (3)

ˆ̃β = argminβ̃ C̃(β̃), (29)

where
C̃(β̃) = 1

2‖y − X̃β̃‖2 + λ‖Σ−1/2β̃‖1.

Here the design matrix X̃ has i.i.d. normal entries but the penalty term is not
component-wise. The AMP algorithm for solving β̃ in (29) constructs a sequence
of estimates β̃

t ∈ R
p, and residuals zt ∈ R

n, according to the iteration

β̃
t+1 = η̃θt(X̃

T zt + β̃
t),

zt = y − X̃β̃
t + 1

pδ
zt−1divη̃θt−1

(X̃T zt−1 + β̃
t−1), (30)

initialized with β̃
0 = 0 ∈ R

p, where

η̃θ(v) = argminβ∈Rp

{
1
2‖β − v‖2 + θ‖Σ−1/2β‖1

}
. (31)

Comparing (31) and (5), we have

η̃θ(v) = argminβ∈Rp

{
1
2‖Σ

−1/2β − Σ−1/2v‖2
Σ + θ‖Σ−1/2β‖1

}
= Σ1/2ηθ(Σ−1/2v).

Substituting β = Σ−1/2β̃ into (30), the AMP update for βt+1 is

βt+1 = Σ−1/2β̃
t+1 = Σ−1/2η̃θt(X̃

T zt + β̃
t)
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= ηθt(Σ−1/2(X̃T zt + β̃
t)) = ηθt(Σ−1XT zt + βt)

zt = y − Xβt + 1
pδ

zt−1divηθt−1

(
Σ−1/2(X̃T zt−1 + β̃

t−1)
)

= y − Xβt + 1
pδ

zt−1divηθt−1

(
Σ−1XT zt−1 + βt−1)

which is equal to the AMP (24) constructed for solving the original problem
(3).

The asymptotic property of AMP algorithm (30) has been established in [7].
It can be verified that the assumptions (C1)-(C6) of Theorem 14 in [7] are satis-
fied for the AMP iteration problem (30) by using the Conditions 1-6 introduced
in the definition of converging sequences. More specifically, assumption (C1) is
trivial. Assumptions (C3) and (C4) can be implied by Conditions 1 and 2 re-
spectively. Assumption (C2) is satisfied due to the fact that both 1/λmin(Σ) and
λmax(Σ) are bounded. Assumptions (C5) and (C6) can be implied by Condition
6. Applying Theorem 14 in [7], for any sequence ϕ̃p : (Rp)2 → R, p ≥ 1, of
uniformly pseudo-Lipschitz functions, we obtain

ϕ̃p

(
β̃
t+1

, β̃0

)
P≈ Eϕ̃p

(
η̃θt(β̃0 + τtz), β̃0

)
, (32)

where z ∼ N(0, Ip×p) is independent of β̃0 and τt is determined by the following
state evolution recursion

τ2
0 = σ2

w + 1
pδ

E‖β̃0‖2,

τ2
t+1 = σ2

w + 1
pδ

E
(
‖η̃θt(β̃0 + τtz) − β̃0‖2) ,

where β̃0 = Σ1/2β0.
Define sequence of functions: ϕ̃p (x,y) = ϕp

(
Σ−1/2x,Σ−1/2y

)
which is also

uniformly pseudo-Lipschitz due to the fact that Σ−1/2 is well-conditioned. There-
fore, the distributional limit of βt+1 = Σ−1/2β̃

t+1 can be described by

ϕp

(
βt+1, β0

)
= ϕp

(
Σ−1/2β̃

t+1
,Σ−1/2β̃0

)
= ϕ̃p

(
β̃
t+1

, β̃0

)
P≈ Eϕ̃p

(
η̃θt(β̃0 + τtz), β̃0

)
= Eϕp

(
Σ−1/2η̃θt(β̃0 + τtz),Σ−1/2β̃0

)
= Eϕp

(
ηθt(Σ−1/2(β̃0 + τtz)), β0

)
= Eϕp

(
ηθt(β0 + τtΣ−1/2z), β0

)
.

A.3. Proof of Proposition 1

Proof. In order to prove Proposition 1, we need the following Lemma.
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Lemma 1. For any fixed α > 0, the function ψ(τ2, ατ) is strictly increasing
and concave with respect to τ2.

We first prove that f(α) = 1 has a unique solution when δ < 1. From the
definition (5), we get

ηα(Σ−1/2z) = β̂ (33)

= argminβ∈Rp

{
1
2‖β − Σ−1/2z‖2

Σ + α‖β‖1

}
,

which is equivalent to the solution of LASSO problem with X = Σ1/2, y = z,
and λ = α. It can be easily verified that f(α) = 1

pδE‖ŷ‖2 = 1
pδE‖Xβ̂‖2 with

f(0) = 1/δ and f(∞) = 0. Thus in order to find unique solution of f(α) = 1,
it is enough if we can prove that f(α) is a strictly decreasing function. Denote
A = {j : β̂j �= 0} the active set of LASSO solution β̂. From (33), we obtain

Σ(β̂ − Σ−1/2z) + α∂‖β̂‖1 = 0,

which implies

ΣAA(β̂A − (Σ−1/2z)A) − ΣAAc(Σ−1/2z)Ac + αsign(β̂A) = 0.

Taking derivative over α on both side, we obtain

ΣAA
∂β̂A
∂α

+ sign(β̂A) + h(α, z) = 0,

where h(α, z) is the contribution from the changing of active set A with α. Since
‖ηα(Σ−1/2z)‖2

Σ is continuous across the entire space z ∈ R
p, according to the

discussion before (48) in Section A.6, the term h(α, z) disappears after taking
expectation over z. Therefore

df(α)
dα

= 2
pδ

E

(
β̂
T

AΣAA
∂β̂A
∂α

)
= − 2

pδ
E
(
β̂
T

Asign(β̂A)
)
< 0,

and we prove that f(α) is a decreasing function from 1/δ to 0 as α increasing
from 0 to ∞. Hence f(α) = 1 has a unique solution denoted by αmin.

Next we prove that for fixed α > αmin, the solution of equation (11) exists.
According to the definition (6), we have

lim
τ2→∞

E
(
‖ηατ (β0 + τΣ−1/2z) − β0‖2

Σ

)
→ E

(
‖ηα(Σ−1/2z)‖2

Σ

)
τ2,

which implies

lim
τ2→∞

ψ(τ2, ατ)
τ2 = f(α)

based on the definition (10). From Lemma 1, we have that ψ(τ2, ατ) is strictly
increasing and concave function. Further, we have ψ(τ2, ατ)|τ2=0 = σ2

w > 0.
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Therefore, in order for the fixed point equation τ2 = ψ(τ2, ατ) to have solutions,
it is enough to show that f(α) < 1 for α > αmin(δ). This can be obtained
from the fact that f(α) is decreasing and f(αmin) = 1. Thus we conclude that
ψ(τ2, ατ) < τ2 as τ2 → ∞ and prove that the solution of (11) exists and is
unique.

A.4. Proof of Proposition 2

Proof. Consider a system of equations

τ2 = ψ(τ2, θ), (34)

θ = 1 − 1
δ
E
〈
ηθ(β0 + τΣ−1/2z), z

〉
. (35)

According to Theorem 1 in [9], for σ2
w > 0, equations (34) and (35) have a

unique solution denoted by τ�, θ�. Therefore, for any give λ, let α = λ/(θ�τ�),
then α satisfies equation (12) and is also unique.

A.5. Proof of Theorem 3

Proof. The proof of Theorem 3 is based on a series of Lemmas. The first Lemma
implies that, asymptotically for large p, the AMP estimates converge.

Lemma 2. The estimates {βt}t≥0 and residuals {zt}t≥0 of AMP (24) almost
surely satisfy

lim
t→∞

lim
p→∞

1
p
‖βt − βt−1‖2 = 0, lim

t→∞
lim
p→∞

1
p
‖zt − zt−1‖2 = 0.

Denote σmin(X) and σmax(X) the maximum and minimum non-zero singular
value of X. Then the second Lemma implies that with high probability, σmin(X)
is lower bounded and σmax(X) is upper bounded.

Lemma 3. For every t ≥ 0, there exists c5 > 0 such that

P
(
c−1
5 ≤ σmin(X) ≤ σmax(X) ≤ c5

)
> 1 − 2 exp(−t2/2).

According to the first equation of (24), denote the subgradient vt ∈ ∂‖βt‖1
such that

Σ{βt − (Σ−1XT zt−1 + βt−1)} + θt−1vt = 0. (36)

Then the next Lemma implies that with high probability, the subgradient vt

cannot have too many coordinates with magnitude close to 1.

Lemma 4. For large enough t, there exists c, C, c2 > 0 such that

P

(∣∣j ∈ [p] : |vtj | ≥ 1 − c2
∣∣

n
≥ 1 − ω�/2

)
≤ C exp(−cn),
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where ω� is defined in (28) and

ω� = 1
n
E
(∥∥∥ηθ� (β0 + τ�Σ−1/2z

)∥∥∥
0

)
.

Define the minimum singular value of X over a set S ⊂ [p] by

κ−(X, S) = inf {‖Xw‖2 : supp(w) ⊂ S, ‖w‖2 = 1} ,

and the s sparse singular value by

κ−(X, s) = min
|S|≤s

κ−(X, S).

Then the next Lemma implies that κ−(X, s) is lower bounded with high prob-
ability.

Lemma 5. For every c4 ≥ 0, there exists C, c > 0 such that

P (κ−(X, n(1 − ω�/4)) ≤ c4) ≤ Ce−cn.

We are now ready to prove Theorem 3. The remainder of the argument takes
place on the high-probability event determined by Lemmas 3, 4, and 5.

Let r = β̂ − βt denote the distance between the LASSO optimum and the
AMP estimate at t-th iteration, then

0 ≥ C(βt + r) − C(βt)
p

= 1
2p‖y − X(βt + r)‖2 + λ

p
‖βt + r‖1 −

1
2p‖y − Xβt‖2 − λ

p
‖βt‖1

= 1
2p‖Xr‖2 − rTXT (y − Xβt)

p
+ λ

p
(‖βt + r‖1 − ‖βt‖1).

Then by using equation (24) we have

0 ≥ 1
2p‖Xr‖2

︸ ︷︷ ︸
I

+ 1
p
〈r, sgC(βt)〉︸ ︷︷ ︸

II

+ λ

p
(‖βt + r‖1 − ‖βt‖1 − rTvt)︸ ︷︷ ︸

III

. (37)

where the sub-gradient sgC(βt) = −XT (y − Xβt) + λvt and vt is defined in
(36).

Let’s first take a look at the second term of (37). Substituting (24) and vt

from (36), we obtain

sgC(βt) = XT (ωtzt−1 − zt) − λ

θt−1
{Σ(βt − βt−1) − XT zt−1}

= λ− θt−1(1 − ωt)
θt−1

XT zt−1 − XT (zt − zt−1) − λ

θt−1
Σ(βt − βt−1),
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where ωt = divηθt−1(Σ−1XT zt−1 + βt−1)/p/δ. Hence

1
√
p
‖sgC(βt)‖ ≤ |λ− θt−1(1 − ωt)|

θt−1
σmax(X)‖z

t−1‖
√
p

+ σmax(X)‖z
t − zt−1‖
√
p

+ λ

θt−1
σmax(Σ)‖β

t − βt−1‖
√
p

.

By Lemmas 2, 3 and the fact that λmax(Σ) is bounded as p → ∞, we deduce
that the last two terms converge to 0 as p → ∞ and then t → ∞. For the
first term, using state evolution, we obtain ‖zt−1‖√

p = O(1). Finally, using the
calibration relation (25), we get

lim
t→∞

lim
p→∞

|λ− θt−1(1 − ωt)|
θt−1

a.s.= 1
θ�

|λ− θ�(1 − ω�)| = 0.

Therefore 1√
p‖sgC(βt)‖ → 0 almost surely. Since ‖β̂‖√

p = O(1) and ‖βt‖√
p = O(1),

we get that ‖r‖√
p = O(1) and hence the second term of (37) 〈r, sgC(βt)〉 → 0

almost surely. From (37), we have

1
2p‖Xr‖2 + λ

p
(‖βt + r‖1 − ‖βt‖1 − rTvt) ≤ c1ε.

Both the first and third terms on the right-hand side of (37) are non-negative.
The first one is trivial. Denote S ≡ {j ∈ N : βt

j �= 0} the support of βt. The
third one is non-negative since

‖βt + r‖1 − ‖βt‖1 − rTvt

= ‖βt
S + rS‖1 − ‖βt

S‖1 − rTS sign(βt
S) + ‖rS̄‖1 − rT

S̄
vt
S̄

= (βt
S + rS){sign(βt

S + rS) − sign(βt
S)} + ‖rS̄‖1 − rT

S̄
vt
S̄
≥ 0.

Since (βt
S + rS){sign(βt

S + rS) − sign(βt
S)} ≥ 0 and ‖vt

S̄
‖1 ≤ 1, we have

‖Xr‖2

p
≤ ξ1(ε), (38)

‖rS̄‖1 − rT
S̄
vt
S̄

≤ pξ1(ε), (39)

where ξ1(ε) → 0 as ε → 0.
Consider r = r⊥ +r‖ with r‖ ∈ ker(X) and r⊥ ⊥ ker(X). It follows from (38)

and Lemma 3 that
‖r⊥‖2 ≤ pc5ξ1(ε). (40)

We need to prove an analogous bound for r‖. Note that ‖r⊥
S̄
‖1 ≤ √

p‖r⊥
S̄
‖2 ≤

√
p‖r⊥‖2 ≤ p

√
ξ1(ε), from (39), we get

‖r‖
S̄
‖1 − (r‖

S̄
)Tvt‖

S̄
≤ pξ2(ε). (41)
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Define S(c2) ≡ {j ∈ N : |vtj | ≥ 1 − c2}, then S̄(c2) ⊆ S̄. We have

‖r‖
S̄
‖1 − (r‖

S̄
)Tvt‖

S̄
≥ ‖r‖

S̄(c2)
‖1 − |r‖

S̄(c2)
|T |vt‖

S̄(c2)
| ≥ c2‖r‖S̄(c2)

‖1.

Therefore using (41), we have

‖r‖
S̄(c2)

‖1 ≤ c−1
2 pξ2(ε). (42)

Denote c3 = δω�/4. Then from Lemma 4, we have |S(c2)| ≤ n − 2pc3. Thus if
|S̄(c2)| ≤ pc3/2, one obtains p ≤ n − 3pc3/2. In this case, ker(X) = {0} and
the proof is concluded. Let us now consider the case |S̄(c2)| ≥ pc3/2. Then
partition S̄(c2) = ∪K

l=1Sl, where pc3/2 ≤ |Sl| ≤ pc3, and for each i ∈ Sl,
j ∈ Sl+1, |r‖i | ≥ |r‖j |. Also define S̄+ ≡ ∪K

l=2Sl ⊆ S̄(c2). Since, for any i ∈ Sl,
|r‖i | ≤ ‖r‖Sl−1

‖1/|Sl−1|, we have

‖r‖
S̄+

‖2
2 =

K∑
l=2

‖r‖Sl
‖2
2 ≤

K∑
l=2

|Sl|

⎛
⎝‖r‖Sl−1

‖1

|Sl−1|

⎞
⎠2

≤ 4
pc3

K∑
l=2

‖r‖Sl−1
‖2
1 ≤ 4

pc3

(
K∑
l=2

‖r‖Sl−1
‖1

)2

≤ 4
pc3

‖r‖
S̄(c2)

‖2
1 ≤ 4ξ2(ε)2

c22c3
p ≡ pξ3(ε). (43)

To conclude the proof, it is sufficient to prove an analogous bound for ‖r‖S+
‖2
2

with S+ = S(c2)∪S1. Since |S1| ≤ pc3 and |S(c2)| ≤ n−2pc3, we have |S+| ≤ n−
pc3 and by Lemma 5 that σmin(XS+) ≥ c4. Since 0 = Xr‖ = XS+r‖S+

+XS̄+
r‖
S̄+

,
we have

c24‖r
‖
S+

‖2
2 ≤ ‖XS̄+

r‖
S̄+

‖2
2 = ‖XS+r‖S+

‖2 ≤ c5‖r‖S̄+
‖2
2 ≤ c5pξ3(ε). (44)

Combining (40), (43), and (44), we conclude the proof.

A.6. Proof of Theorem 2

Proof. Since there is no measurement noise, i.e. σ2
w = 0, we have ψ(τ2, ατ)|τ2=0 =

0. Thus in order for the fixed point equation τ2 = ψ(τ2, ατ) to have unique so-
lution τ2

� = 0, we need to have infα dψ(τ2,ατ)
dτ2 |τ2=0 ≤ 1 due to the fact that

ψ(τ2, ατ) is a increasing and concave function of τ2 for fixed α. Since ψ(τ2, ατ)
decreases with δ, the critical value δc is defined as

δc = inf
{
δ : inf

α

dψ(τ2, ατ)
dτ2 |τ2=0 ≤ 1

}
. (45)
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Then for any δ > δc, we have unique solution τ2
� = 0; for any δ < δc, we also

have solution τ2
� > 0. According to Theorem 1, we can consider the following

solution

β̂ = argminβ∈Rp

{
1
2‖β − β0 − τΣ−1/2z‖2

Σ + ατ‖β‖1

}
,

where z ∼ N(0, Ip×p) is independent of pβ0 . Define A = {j : β̂j �= 0}, then we
have β̂Ac = 0 and

{Σ(β̂ − β0) − τΣ1/2z}A + ατsign(β̂A) = 0,

which implies

ΣAA(β̂A − β0,A) = τ(Σ1/2z)A − ατsign(β̂A) + ΣAAcβ0,Ac ,

and

β̂A − β0,A (46)
= Σ−1

AA{τ(Σ1/2z)A − ατsign(β̂A) + ΣAAcβ0,Ac}.

Substituting into the definition, we get

E{‖β̂ − β0‖2
Σ}

= E{(β̂A − β0,A)TΣAA(β̂A − β0,A)
− 2(β̂A − β0,A)TΣAAcβ0,Ac + βT

0,AcΣAcAcβ0,Ac}
= E{τ2((Σ1/2z)A − αsign(β̂A))TΣ−1

AA((Σ1/2z)A − αsign(β̂A))}
+E{βT

0,Ac(ΣAcAc − ΣAcAΣ−1
AAΣAAc)β0,Ac}. (47)

To perform the integrals over z ∈ R
p, we divide the p-dimensional space into re-

gions such that the active set of β̂(z) keeps the same in each region and changes
by one variable between two neighboring regions that share a common boundary
hyperplane. In each region, the sign of β(z) also keeps the same. A illustration of
this space separation is shown in Figure 7 for a simple two dimensional example.
Let Si and Sj denote two neighboring regions that share a common hyperplane
Fij determined by equation gij(z, τ) = 0 with gij(z, τ) > 0 in Si and gij(z, τ) < 0
in Sj . Denote fi(z, τ) the function form of ‖β̂(z, τ) − β0‖2

Σ in region Si. Then
fi(z, τ) is differentiable over τ2 inside Si and the derivative of Efi(z, τ)I(z ∈ Si)
over τ2 involves integrals over face Fij with respect to d − 1 dimensional mea-
sure σFij (·). An application of Stokes’s theorem, as in Theorem 1 of [1], estab-
lishes differentiability of this integral which is given by σFij (fi(z, τ)∂gij(z,τ)

∂τ2 ).
Similarly, we can obtain the boundary contribution of Fij to the derivative
of Efj(z, τ)I(z ∈ Sj) over τ2 which is given by −σFij (fj(z, τ)∂gij(z,τ)

∂τ2 ). Since
β̂(z, τ) is continuous across Fij , we have fi(z, τ) = fj(z, τ) on Fij and thus the
contributions of the boundary effects due to Fij cancel each other between the
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derivative of Efi(z, τ)I(z ∈ Si) over τ2 and the derivative of Efj(z, τ)I(z ∈ Sj)
over τ2. Therefore, in taking derivative over τ2 for (47), the boundary effects
are canceled and one gets

dψ(τ2, ατ)
dτ2

= lim
p→∞

1
pδ

E{((Σ1/2z)A − αsign(β̂A))TΣ−1
AA((Σ1/2z)A − αsign(β̂A))},(48)

which only depends on the sign of the non-zero components of β̂.
We need to consider situations as τ2 → 0. Since β̂ → β0, we have β̂ =

β0 + oP (1) as τ2 → 0. Let B = {j : β0,j �= 0}, clearly B ⊆ A and Ac ⊆ Bc as
τ2 → 0. For B part, from (46), we obtain

{Σ(β̂ − β0) − τΣ1/2z}B + ατsign(β̂B) = 0,

which implies

ΣBB(β̂B − β0,B)
= τ(Σ1/2z)B − ατsign(β̂B) − ΣBBc β̂Bc ,

and thus

β̂B − β0,B (49)
= Σ−1

BB{τ(Σ1/2z)B − ατsign(β̂B) − ΣBBc β̂Bc}.

For Bc part, we have

{Σ(β̂ − β0) − τΣ1/2z}Bc + ατ∂‖β̂Bc‖1 = 0

which implies

ΣBcB(β̂B − β0,B)
= τ(Σ1/2z)Bc − ατ∂‖β̂Bc‖1 − ΣBcBc β̂Bc .

Using (49), we have

ΣBcBΣ−1
BB{τ(Σ1/2z)B − ατsign(β̂B) − ΣBBc β̂Bc}

= τ(Σ1/2z)Bc − ατ∂‖β̂Bc‖1 − ΣBcBc β̂Bc .

The final equation for β̂Bc is

(ΣBcBc − ΣBcBΣ−1
BBΣBBc)β̂Bc − τ(Σ1/2z)Bc

+τΣBcBΣ−1
BB{(Σ1/2z)B − αsign(β̂B)} + ατ∂‖β̂Bc‖1 = 0.

Therefore β̂Bc is equivalent to the solution of the following LASSO problem

β̂Bc = argminβ∈Rp

{
1
2‖y − Xβ‖2

2 + λ‖β‖1

}



LASSO risk and phase transition 6539

with

X = (ΣBcBc − ΣBcBΣ−1
BBΣBBc)1/2,

y = τX−1
[
(Σ1/2z)Bc − ΣBcBΣ−1

BB{(Σ1/2z)B − αsign(β0,B)}
]
,

and λ = ατ . Since (48) only involves the sign of β̂, without loss of generality,
we can take τ = 1. Therefore β̂Bc is independent of the actual distribution of
β0 but depends on ε and Δ. Denote B̄ = {j : j ∈ Bc and β̂j �= 0}, then we have
A = B ∪ B̄. Define function

M(ε,Δ, α) = lim
p→∞

1
p
E{((Σ1/2z)A − αsign(β̂A))TΣ−1

AA((Σ1/2z)A − αsign(β̂A))},

which exists according to Condition 5. Substituting (48) into (45), we obtain

δc = inf
α

M(ε,Δ, α).

A.7. Proof of Lemma 1

Proof. For fixed α, in order to prove that ψ(τ2, ατ) is an increasing and concave
function of τ2, we need to show that dψ(τ2,ατ)

dτ2 > 0 and d2ψ(τ2,ατ)
(dτ2)2 < 0. Since Σ−1

AA

is positive definite, from (48), we get dψ(τ2,ατ)
dτ2 > 0 and prove that ψ(τ2, ατ) is

an increasing function of τ2.
We need to take further derivative over τ2 to obtain d2ψ(τ2,ατ)

(dτ2)2 . Toward this
end, consider the LASSO problem with

X = Σ1/2,y = τz + Σ1/2β0,

and λ = ατ . Following the discussion in deriving (48), we can divide the p-
dimensional space z ∈ R

p into regions such that the active set and the sign
of each variable are fixed in each region. Denote by Ai and Aj the active sets
in two neighboring regions Si and Sj respectively. Further denote by Fij the
boundary hyperplane between Si and Sj . Assume that |Ai| = k, |Aj | = k −
1, and denote xk the active variable that drops when moving from Si to Sj .
Therefore, Aj ⊂ Aj and Ai \ Aj = xk. Then, from (46), we obtain that the
solution of β̂ inside Si is differentiable over τ2 and can be written as β̂Si

=
Σ−1

AiAi

{
(Σ1/2y)Ai − ατsign(β̂Si

)
}

. Assume that the k-th component of β̂Si
,

i.e. β̂Si
[k] > 0 in Si and β̂Si

[k] = 0 in Sj , then the boundary hyperplane Fij is
determined by equation

gij(z, τ) = eT(k)β̂Si
= eT(k)Σ

−1
AiAi

{
(Σ1/2y)Ai − ατsign(β̂Si

)
}

= 0, (50)

where e(k) represents the k-th coordinate vector for β̂Ai
. Denote by S̄i and S̄j the

other two neighboring regions that have the same active sets but opposite sign
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of variables comparing to Si to Sj , i.e. sign(β̂S̄i
) = −sign(β̂Si

) and sign(β̂S̄j
) =

−sign(β̂Sj
). Then their boundary hyperplane F̄ij is determined by equation

ḡij(z, τ) = eT(k)β̂S̄i
= eT(k)Σ

−1
AiAi

{
(Σ1/2y)Ai − ατsign(β̂S̄i

)
}

= 0,

Denote fi(z, τ) the integrand inside the expectation on the right hand side
of (48) in region Si, i.e.

fi(z, τ) = ((Σ1/2z)Ai − αsign(β̂Ai
))TΣ−1

AiAi
((Σ1/2z)Ai − αsign(β̂Ai

)),

which does not depend on τ2 explicitly, thus the dependence of the expecta-
tion on τ2 only comes from the boundary effects. From (47), the continuity of
‖β̂(z, τ) − β0‖2

Σ leads to

τ2[(Σ1/2z)Ai − αsign(β̂Ai
)]TΣ−1

AiAi
[(Σ1/2z)Ai − αsign(β̂Ai

)]
+βT

0,Ac
i
(ΣAc

iAc
i
− ΣAc

iAiΣ−1
AiAi

ΣAiAc
i
)β0,Ac

i

= τ2[(Σ1/2z)Aj − αsign(β̂Aj
)]TΣ−1

AjAj
[(Σ1/2z)Aj − αsign(β̂Aj

)]

+βT
0,Ac

j
(ΣAc

jAc
j
− ΣAc

jAjΣ−1
AjAj

ΣAjAc
j
)β0,Ac

j
.

Therefore, the difference of the integrand function on (48) caused by the change
of active set from region Si to region Sj can be written as

Δij = fi(z, τ) − fj(z, τ)
= [(Σ1/2z)Ai − αsign(β̂Ai

)]TΣ−1
AiAi

[(Σ1/2z)Ai − αsign(β̂Ai
)]

−[(Σ1/2z)Aj − αsign(β̂Aj
)]TΣ−1

AjAj
[(Σ1/2z)Aj − αsign(β̂Aj

)]

= {βT
0,Ac

j
(ΣAc

jAc
j
− ΣAc

jAjΣ−1
AjAj

ΣAjAc
j
)β0,Ac

j

−βT
0,Ac

i
(ΣAc

iAc
i
− ΣAc

iAiΣ−1
AiAi

ΣAiAc
i
)β0,Ac

i
}/τ2, (51)

which only depends on the active sets Ai and Aj . Therefore, we also have
Δ̄ij = Δij , where Δ̄ij represents the difference of the integrand function caused
by the change of active set from region S̄i to region S̄j .

According to Stokes’s theorem shown in Theorem 1 of [1], the contribution of
boundary Fij to the derivative of integral Efi(z, τ)I(z ∈ Si)+Efj(z, τ)I(z ∈ Sj)
over τ2 is given by σFij (Δij

∂gij(z,τ)
∂τ2 ). Similarly, we derive that the contribution

of boundary F̄ij to the derivative of integral Ef̄i(z, τ)I(z ∈ S̄i)+Ef̄j(z, τ)I(z ∈
S̄j) over τ2 is given by −σF̄ij

(Δij
∂ḡij(z,τ)

∂τ2 ). Define

ak = Σ1/2
,Ai

Σ−1
AiAi

e(k),

bk = eT(k)Σ
−1
AiAi

sign(β̂Si
),

ck = eT(k)Σ
−1
AiAi

(Σβ0)Ai .
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Then from (50), we have gij(z, τ) = τaT
k z − ατbk + ck. Therefore, ∂gij(z,τ)

∂τ2 =
1
2τ (aT

k z − αbk). We obtain the boundary contributions of Fij and F̄ij as

σFij

{
Δijck

2τ3‖ak‖

[
φ

(
ck

τ‖ak‖
+ αbk

‖ak‖

)
− φ

(
ck

τ‖ak‖
− αbk

‖ak‖

)]}
.

From (51), since Aj ⊂ Ai, we get Ac
j ⊃ Ac

i and hence Δij ≥ 0. Then we
conclude that the boundary contribution is less than or equal to zero since
x(φ(x + c) − φ(x− c)) ≤ 0 for any x and c ≥ 0. This complete the proof of the
concavity of function ψ(τ2, ατ).

A.8. Proof of Lemma 2

Proof. We begin with the convergence of the state evolution (27) iteration de-
scribed by the following lemma which can be immediately proved using the
concavity of ψ(τ2, ατ) over τ2.

Lemma 6. For any α ≥ αmin. The iteration (27) converges to the unique
solution of the fixed-point equation τ2

� = ψ(τ2
� , ατ�), i.e. τ2

t → τ2
� as t → ∞.

Next we need to generalize state evolution to compute large system limits
for functions of βt, βs, with t �= s. To this purpose, we define the covariances
{τs,t}s,t≥0 recursively by

τs+1,t+1 = σ2
w + lim

p→∞
1
pδ

E
{

[ηθs(β0 + Σ−1/2zs) − β0]TΣ

[ηθt(β0 + Σ−1/2zt) − β0]
}
, (52)

where (zs, zt) jointly Gaussian, independent from β0 ∼ pβ0 with mean 0 and
covariance given by E(zszTs ) = τs,sIp×p = τ2

s Ip×p, E(ztzTt ) = τt,tIp×p = τ2
t Ip×p,

and E(zszTt ) = τs,tIp×p. The boundary condition is fixed by letting τ0,0 =
σ2
w+E{‖β‖2

Σ}/δ and τ0,1 = σ2
w+limp→∞ E{[β0−ηθ0(β0+Σ−1/2z0)]TΣβ0}/p/δ.

With this definition, we have the following generalization of Proposition 1.

Lemma 7. Let {β0(p),w(p),Σ(p),X(p)}p∈N be a converging sequence of in-
stances and let sequence ϕp : (Rp)3 → R, p ≥ 1 be uniformly pseudo-Lipschitz
functions. Then for all s ≥ 0 and t ≥ 0, we get

ϕp(βs+1, βt+1, β0)
P∼ ϕp(ηθs(β0 + Σ−1/2zs), ηθt(β0 + Σ−1/2zt), β0),

where (zs, zt) jointly Gaussian, independent from β0 ∼ pβ0 with mean 0 and
covariance given by E(zszTs ) = τ2

s Ip×p, E(ztzTt ) = τ2
t Ip×p, and E(zszTt ) =

τs,tIp×p. The recursion τs,,t for all s, t ≥ 0 is determined by (6) and (52).

Proof of Lemma 2. Define sequence of {yt}t≥0 as

yt = lim
p→∞

1
pδ

E
∥∥∥ηθt(β0 + Σ−1/2zt) − ηθt−1(β0 + Σ−1/2zt−1)

∥∥∥2

Σ
.
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From (52), we have
yt = τ2

t + τ2
t−1 − 2τt,t−1. (53)

Take θt = ατt with α is fixed, then according to Lemma 6, we have τ2
t → τ2

�

and θt → θ� = ατ� as t → ∞. We will show that yt → 0 which in turn yields
τt,t−1 → τ2

� based on (53). For large enough t, we have the representation as
follows in terms of the two independent random vectors z,w ∼ N(0, Ip×p):

yt = lim
p→∞

1
pδ

E

∥∥∥∥ηθ�
(
β0 +

√
τ2
� − yt−1

4 Σ−1/2z +
√

yt−1

4 Σ−1/2w
)

−ηθ�

(
β0 +

√
τ2
� − yt−1

4 Σ−1/2z −
√

yt−1

4 Σ−1/2w
)∥∥∥∥

2

Σ
.

Consider yt as a function of yt−1 denoted by yt = R(yt−1). A straightforward
calculation yields

R′(yt−1) = lim
p→∞

1
pδ

E

(
Tr

[
Σ−1

{
∇ηθ�

(
β0 + Σ−1/2zt

)}T

Σ∇ηθ�

(
β0 + Σ−1/2zt−1

)])
,

where

zt =
√
τ2
� − yt−1

4 z +
√

yt−1

4 w, zt−1 =
√
τ2
� − yt−1

4 z −
√

yt−1

4 w,

and ∇ denotes the vector differential operator. For yt−1 = 0, we have zt = zt−1
and

R′(0) = lim
p→∞

1
pδ

E
(
Tr

[
Σ−1 {∇η̂}T Σ∇η̂

])
, (54)

where η̂ = ηατ�
(
β0 + τ�Σ−1/2z

)
. Denote A = {j : η̂j �= 0}. From the definition

(5), we get
Σ(η̂ − (β0 + Σ−1/2z)) + θ�∂‖η̂‖1 = 0,

which implies that

ΣAA(η̂A − (β0 + Σ−1/2z)A) − ΣAAc(β0 + Σ−1/2z)Ac + θ�sign(η̂A)) = 0.

Taking derivatives, we obtain

ΣAA(∇η̂)AA = ΣAAandΣAA(∇η̂)AAc = ΣAAc .

Substituting into (54), we obtain

R′(0)

= lim
p→∞

1
pδ

E
(
Tr

[{
(Σ−1)AA [(∇η̂)AA]T + (Σ−1)AAc [(∇η̂)AAc ]T

}
ΣAA

+
{

(Σ−1)AcA [(∇η̂)AA]T + (Σ−1)AcAc [(∇η̂)AAc ]T
}

ΣAAc

])
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= lim
p→∞

1
pδ

E
(
Tr

[
[(∇η̂)AA]T

{
ΣAA(Σ−1)AA + ΣAAc(Σ−1)AcA

}
+ [(∇η̂)AAc ]T

{
ΣAA(Σ−1)AAc + ΣAAc(Σ−1)AcAc

}])

= lim
p→∞

1
pδ

E{div(η̂)} = lim
p→∞

1
pδ

E

⎧⎨
⎩

p∑
j=1

I(η̂j �= 0)

⎫⎬
⎭ ≤ 1,

for any α ≥ αmin according to Propositions (1) and (2). By the argument in [6],
the covariance of zt and zt−1 is τ2

� − yt−1/2 decreasing with yt−1 which implies
that R′(yt−1) is a decreasing function. Moreover R(0) = 0. Therefore R(y) is
concave with R′(0) ≤ 1 and R(0) = 0. For any y0 > 0, the iteration procedure
yt = R(yt−1) leads to a convergent result with yt

t→∞−−−→ 0. Therefore,

lim
p→∞

1
p

∥∥βt+1 − βt
∥∥2

= lim
p→∞

1
p
E
∥∥∥ηθt(β0 + Σ−1/2zt) − ηθt−1(β0 + Σ−1/2zt−1)

∥∥∥2

which vanishes as t → ∞. The statement of limt→∞ limp→∞
1
p‖zt − zt−1‖2 = 0

can be proved similarly.

A.9. Proof of Lemma 7

Proof. Applying Corollary 2 of [7] to the AMP iteration (30), for any sequence
ϕ̃p : (Rp)3 → R, p ≥ 1, of uniformly pseudo-Lipschitz functions, we obtain

ϕ̃p

(
β̃
t+1

, β̃
s+1

, β̃0

)
P≈ ϕ̃p

(
η̃θt(β̃0 + zt), η̃θt(β̃0 + zs), β̃0

)
, (55)

where (zs, zt) jointly Gaussian, independent from β0 ∼ pβ0 with mean 0 and
covariance given by E(zszTs ) = τ2

s Ip×p, E(ztzTt ) = τ2
t Ip×p, and E(zszTt ) =

τs,tIp×p. The recursion τs,,t for all s, t ≥ 0 is determined by

τ2
t+1 = σ2

w + lim
p→∞

1
pδ

E
(
‖η̃θt(β̃0 + τtz) − β̃0‖2) ,

τ2
s+1 = σ2

w + lim
p→∞

1
pδ

E
(
‖η̃θs(β̃0 + τsz) − β̃0‖2) ,

τt+1,s+1 = σ2
w + lim

p→∞
1
pδ

E
(
η̃θt(β̃0 + τtz) − β̃0

) (
η̃θs(β̃0 + τtz) − β̃0

)
.

Then define sequence of functions: ϕ̃p (x,y, z) = ϕp

(
Σ−1/2x,Σ−1/2y,Σ−1/2z

)
which is also uniformly pseudo-Lipschitz. We then obtain the distributional limit
for βt+1 = Σ−1/2β̃

t+1 and βs+1 = Σ−1/2β̃
s+1 using (55).
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A.10. Proof of Lemma 3

Proof. The matrix X = X̃Σ1/2, where X̃ has entries distributed i.i.d. N(0, 1/n).
Thus, one has ([26], Corollary 5.35)

P

(√
δ − 1 − t ≤ σmin(X̃) ≤ σmax(X̃) ≤

√
δ + 1 + t

)
≥ 1 − 2 exp(−t2/2).

From the fact that

σmin(X) ≥ σmin(X̃)σmin(Σ1/2), andσmax(X) ≤ σmax(X̃)σmax(Σ1/2),

We conclude that, for every t ≥ 0, there exists c5 > 0 such that

P
(
c−1
5 ≤ σmin(X) ≤ σmax(X) ≤ c5

)
> 1 − 2 exp(−t2/2).

A.11. Proof of Lemma 4

Proof. Define S(c2) = {j ∈ [p] : |vtj | ≥ 1 − c2}, we have almost surely

|S(c2)|
p

= 1
p

p∑
i=1

I

{
1

θt−1
|XT zt−1 + Σ(βt−1 − βt)|i ≥ 1 − c2

}

→ 1
p

p∑
i=1

I

{
1

θt−1
|Σ{β0 + τt−1Σ−1/2z − ηθt−1(β0 + τt−1Σ−1/2z)}|i

≥ 1 − c2} .

Let us write Σ̄ = Σ/λmin, τ̄t−1 = τt−1/λ
1/2
min, θ̄t−1 = θt−1/λmin, so that

β̂ = ηθt−1(β0 + τt−1Σ−1/2z)

= argminβ∈Rp

{
1
2‖Σ

1/2(β − β0) − τt−1z‖2
2 + θt−1‖β‖1

}

= argminβ∈Rp

{
1
2‖Σ̄

1/2(β − β0) − τ̄t−1z‖2
2 + θ̄t−1‖β‖1

}
. (56)

The KKT conditions of this optimization problem are

Σ̄1/2(τ̄t−1z + Σ̄1/2(β0 − β̂)) ∈ θ̄t−1∂‖β̂‖1.

Define ŷ = β̂ + Σ̄1/2(τ̄t−1z + Σ̄1/2(β0 − β̂)), we have

β̂ = ηsoft(ŷ; θ̄t−1),

where ηsoft(x;α) = sign(x)(|x| − α)+ and applies coordinates-wise. Define
f(τ̄t−1z) = (Ip×p − Σ̄−1)Σ̄1/2(β0 − β̂), then ŷ can be written as

ŷ = β0 + Σ̄1/2(τ̄t−1z + (Ip×p − Σ̄−1)Σ̄1/2(β0 − β̂))
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= β0 + Σ̄1/2(τ̄t−1z + f(τ̄t−1z)).

Denote σj the j-th row of Σ̄1/2 and σT
j z = x, then x ∼ N(0, ‖σj‖2

2). Let P⊥
j

be the projection operator onto the orthogonal complement of the span of σj .
Then

ŷj = β0 + τ̄t−1σ
T
j z + σT

j f(τ̄t−1(σT
j z)σj/‖σj‖2

2 + τ̄t−1P
⊥
j z)

= β0 + τ̄t−1x + σT
j f(τ̄t−1xσj/‖σj‖2

2 + τ̄t−1P
⊥
j z) ≡ h(x). (57)

By (56), Σ̄1/2(β0 − β̂) is 1-Lipschitz in τ̄t−1z. Thus, f(τ̄t−1z) is (1 − κ−1
cond)-

Lipschitz in τ̄t−1z and τ̄t−1(1 − κ−1
cond)/‖σj‖2-Lipschitz in x, where κcond =

λmax/λmin. For any x1, x2 ∈ R, we have

|h(x1) − h(x2)|

≥ τ̄t−1|x1 − x2| −
∣∣∣∣σT

j

{
f
(
τ̄t−1x1σj

‖σj‖2
2

+ τ̄t−1P
⊥
j z

)

− f
(
τ̄t−1x2σj

‖σj‖2
2

+ τ̄t−1P
⊥
j z

)}∣∣∣∣
≥ τ̄t−1|x1 − x2| − τ̄t−1(1 − κ−1

cond)|x1 − x2| = τ̄t−1κ
−1
cond|x1 − x2|. (58)

According to (36), we have

vt = 1
θ̄t−1

(ŷ − ηsoft(ŷ; θ̄t−1)). (59)

By the definition of S(c2), one obtains

S(c2) = {j ∈ [p] : |ŷj | ≥ θ̄t−1(1 − c2)}.

Therefore

|S(c2)|
n

= {j ∈ [p] : |ŷj | > θ̄t−1}
n

+ {j ∈ [p] : 1 − |ŷj |/θ̄t−1 ∈ [0, c2]}
n

. (60)

Consider the function

g(ŷ, c2) = 1
n

p∑
j=1

g1(ŷj , c2),

where g1(ŷ, c2) = min
{

1,
(

|ŷ|
θ̄t−1c2

− 1
c2

+ 2
)

+

}
. Since

|g(ŷ1, c2) − g(ŷ2, c2)| ≤ 1
n

p∑
j=1

{|g1(ŷ1,j , c2) − g1(ŷ2,j , c2)|}

≤ 1
n

p∑
j=1

1
θ̄t−1c2

|ŷ1,j − ŷ2,j |
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≤
√
p

nθt−1c2
‖ŷ1 − ŷ2‖2,

the function g(ŷ, c2) is
√
p

nθ̄t−1c2
-Lipschitz in ŷ. For all ŷ, by definition we have

|S(c2)|
n ≤ g(ŷ, c2) ≤ |S(2c2)|

n . Moreover, by (58) and (60), one obtains

E(g(ŷ, c2)) ≤ E

(
‖β̂‖0

n

)
+ E

(
{j ∈ [p] : 1 − |ŷj |/θ̄t−1 ∈ [0, 2c2]}

n

)

≤ 1 − ω� + sup
a

Ex

(
I

(
a ≤ h(x)

θ̄t−1
≤ a + 4c2

))

≤ 1 − ω� + sup
a

Ex

(
I

(
aκcond

τ̄t−1
≤ x

θ̄t−1
≤ (a + 4c2)κcond

τ̄t−1

))

≤ 1 − ω� + 4c2κcondθ̄t−1√
2πτ̄t−1

.

From (57), ŷ is 2κ1/2
condτ̄t−1-Lipschitz in z. Therefore, g(ŷ, c2) is 2√pκ

1/2
condτ̄t−1

nθ̄t−1c2
-

Lipschitz in z. By Gaussian concentration of Lipschitz functions

P

(
|S(c2)|

n
≥ 1 − ω� + 4c2κcondθ̄t−1√

2πτ̄t−1
+ ε

)

≤ P

(
g(ŷ, c2) ≥ 1 − ω� + 4c2κcondθ̄t−1√

2πτ̄t−1
+ ε

)
≤ P(g(ŷ, c2) ≥ E(g(ŷ, c2)) + ε)

≤ exp
(
− nδθ̄2

t−1c
2
2

8κcondτ̄2
t−1

ε2

)
.

Absorbing constants appropriately, we conclude there exists C, c1 > 0 such that

P

(
|S(c2)|

n
≥ 1 − ω�/2

)
≤ C exp (−nc1) .

A.12. Proof of Lemma 5

Proof. Let k = [n(1 − ω�/4)] and note that k < p. Because for k > p, we
have κ−(X, n(1 − ω�/4)) = κ−(X, p) and thus P(κ−(X, n(1 − ω�/4)) ≥ c4) ≥
1 − C exp(−cn).

Because κ−(X, S′) ≥ κ−(X, S) when S′ ⊂ S, we have that κ−(X, n(1 −
ω�/4)) = min|S|=k κ−(X, S). By a union bound, for any t > 0

P(κ−(X, n(1 − ω�/4)) ≤ t) ≤
∑
|S|=k

P(κ(XS) ≤ t). (61)
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The matrix XS = X̃SΣ1/2
S,S where X̃S has entries distribution i.i.d. N(0, 1/n).

Thus, one has

κ−(XS) ≥ κ−(X̃S)κ−(Σ1/2
S,S) ≥ κ−(X̃S)κ1/2

min

Invoking the fact that X̃S has the same distribution for all |S| = k, expression
(61) implies

P(κ−(X, n(1 − ω�/4)) ≤ t) ≤
(

p
k

)
P(κ−(X̃S) ≤ t/κ

1/2
min).

Let fmin(k, n, λ) denote the probability density function for the smallest eigen-
value κ−(X̃S). By Prop. 5.2, pp.553 [15], fmin(k, n, λ) satisfies

fmin(k, n;λ) ≤ gmin(k, n;λ)

≡ Γ((n + 1)/2)
Γ(k/2)Γ((n− k + 1)/2)Γ((n− k + 2)/2)( π

2nλ

)1/2
(
nλ

2

)(n−k)/2

exp(−nλ/2).

It can be verified that the quantity gmin(k, n;λ) is strictly increasing in λ on
[0, (n−k−1)/n). Lemma 2.9 of [8] states that as n, k → ∞ with k/n → ρ ∈ (0, 1],

gmin(k, n;λ) → pmin(n, λ) exp(nψmin(λ, ρ)),

where pmin(n, λ) is a polynomial in n, λ, and ψmin(λ, ρ) = H(ρ)+ 1
2 [(1−ρ) log λ+

1− ρ+ ρ log ρ− λ], where H(ρ) = ρ log(1/ρ) + (1− ρ) log(1/(1− ρ)). Therefore,
for t/κ

1/2
min ≤ 1 − ρ, we have

P(κ−(X̃S) ≤ t/κ
1/2
min) =

∫ t/κ
1/2
min

0
fmin(k, n;λ)dλ

≤
∫ t/κ

1/2
min

0
gmin(k, n;λ)dλ

≤ t/κ
1/2
mingmin(k, n; t/κ1/2

min)
= C(n, t/κ1/2

min) exp(nψ(ρ, t/κ1/2
min)),

where C(a, b) is a polynomial in a, b. To simplify
(

p
k

)
, we apply the second

of Binet’s log gamma formulas [29] and obtain

1
n

log
(

p
k

)
→ ρ log 1

ρδ
+ (1

δ
− ρ) log 1

1 − ρδ
= H(ρδ)/δ.

We conclude that

P(κ−(X, n(1 − ζ�/4)) ≤ t) ≤ C(n, t/κ1/2
min) exp(n(H(ρδ)/δ + ψ(ρ, t/κ1/2

min))).
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Note that H(ρ) ≤ 1/2 for ρ ∈ (0, 1). Thus, there exists c > 0 such that

H(ρδ)/δ + ψ(ρ, t/κ1/2
min) ≤ −c

for all log(t/κ1/2
min) ≤ −1− 8(1/δ+1) log 2

ω� − 8c
ω� . Because C(n, t/κ1/2

min)e−cn is upper
bounded by a constant C, we conclude there exists C, c > 0 such that

P(κ−(X, n(1 − ω�/4)) ≤ t) ≤ Ce−cn.

A.13. Proof of Corollary 1

Proof. For Σ = Ip×p, (16) can be simplified as

M(ε,Δ, α) = ε+E(z − α)2 + ε−E(z + α)2 + (1 − ε)E[(z − α)2I(z ≥ α)
+ (z + α)2I(z ≤ −α)]

= ε(1 + α2) + 2(1 − ε)[(1 + α2)(1 − Φ(α)) − αφ(α)],

where the first term comes from the non-zero components of β0 and the second
term comes from the zero components of β0. To determine δc = infα M(ε,Δ, α),
we can solve ∂M(ε,Δ,α)

∂α = 0 and thus obtain the phase transition curve as shown
in (18).

A.14. Proof of Corollary 2

Proof. For block-diagonal matrix with block Σs =
(

1 ρ
ρ 1

)
, (16) can be sim-

plified as

M(ε,Δ, α)

= 1
2E{((Σ1/2

s z)A − αsign(β̂A))TΣ−1
sAA((Σ1/2

s z)A − αsign(β̂A))}, (62)

where z ∼ N(0, I2×2). Note that Σ1/2
s =

(
ρ1 ρ2
ρ2 ρ1

)
, where ρ1 =

√
1+ρ
2 and

ρ2 =
√

1−ρ
2 .

There are three scenarios. In the first scenario, both components of β0 are
non-zero, which means that B = {1, 2} and Bc = ∅. Its contribution to (16) can
be written as

M1(ε,Δ, α) = ε2+(1 + α2

1 + ρ
) + ε2−(1 + α2

1 + ρ
) + 2ε+ε−(1 + α2

1 − ρ
)

= ε2A(α,Δ),

where A(α,Δ) is defined in (20). In the second scenario, only one component of
β0 are non-zero, i.e. B = {1} or B = {2}. In the situation where B = {1} and
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β0,1 > 0, we need to consider the one-dimensional LASSO problem specified by
(17) with x̄ =

√
1 − ρ2 and ȳ = x̄−1(ξ2 − ρξ1 + ρα) whose solution is⎧⎨

⎩
positive if ξ2 − ρξ1 + ρα ≥ α

0 if |ξ2 − ρξ1 + ρα| < α
negative if ξ2 − ρξ1 + ρα ≤ −α

.

Plugging this result into (17), we obtain its contribution to (62) to be

ε+(1 − ε){E(ξ1 − α)2I(|ξ2 − ρξ1 + ρα| < α)

+ E
(ξ1 − α)2 + (ξ2 − α)2 − 2ρ(ξ1 − α)(ξ2 − α)

1 − ρ2 I(ξ2 − ρξ1 + ρα ≥ α)

+ E
(ξ1 − α)2 + (ξ2 + α)2 − 2ρ(ξ1 − α)2(ξ2 + α)2

1 − ρ2 I(ξ2 − ρξ1 + ρα ≤ −α)}.

The other situations in this scenario can be considered in a similar way. The
total contribution of the second scenario to (62) is

M2(ε,Δ, α) = ε(1 − ε)B(α),

where B(α) is defined in (21).
In the third scenario, both components of β0 are zero, i.e. B = ∅ and Bc =

{1, 2}. According to (17), we need to consider the following two dimensional
LASSO problem

β̄ = argminβ∈R2

{
1
2‖z− Σ1/2

s β‖2
2 + α‖β‖1

}
.

There exists subgradients ∂‖β1‖1 and ∂‖β2‖1 such that

β̄1 + ρβ̄2 = ξ1 − α∂‖β̄1‖1,

ρβ̄1 + β̄2 = ξ2 − α∂‖β̄2‖1. (63)

By dividing the two dimensional space into nine regions (as illustrated by Fig-
ure 7), we obtain the following solution for β̄⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β̄1 = β̄2 = 0 if ‖ξ1‖ < α & ‖ξ2‖ < α

β̄1 > 0, β̄2 = 0 if ‖ξ1‖ ≥ α & |ξ2 − ρξ1 + ρα| < α

β̄1 < 0, β̄2 = 0 if ‖ξ1‖ ≤ −α & |ξ2 − ρξ1 − ρα| < α

β̄1 = 0, β̄2 > 0 if ‖ξ2‖ ≥ α & |ξ1 − ρξ2 + ρα| < α

β̄1 = 0, β̄2 < 0 if ‖ξ2‖ ≤ −α & |ξ1 − ρξ2 − ρα| < α

β̄1 > 0, β̄2 > 0 if ξ1 − ρξ2 + ρα ≥ α & ξ2 − ρξ1 + ρα ≥ α

β̄1 > 0, β̄2 < 0 if ξ1 − ρξ2 − ρα ≥ α & ξ2 − ρξ1 + ρα ≤ −α

β̄1 < 0, β̄2 > 0 if ξ1 − ρξ2 + ρα ≤ −α & ξ2 − ρξ1 − ρα ≥ α

β̄1 < 0, β̄2 < 0 if ξ1 − ρξ2 − ρα ≤ −α & ξ2 − ρξ1 − ρα ≤ −α

. (64)

Substituting into (17), the total contribution of the third scenario to (62) can
be written as

M3(ε,Δ, α) = (1 − ε)2C(α),
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Fig 7. Illustration of the solution (64) for equation (63) in two dimensional space. Here
ρ = 0.5 and α = 1.

where C(α) is defined in (22). Therefore

M(ε,Δ, α) = M1(ε,Δ, α) + M2(ε,Δ, α) + M3(ε,Δ, α)
= ε2A(α,Δ) + ε(1 − ε)B(α) + (1 − ε)2C(α). (65)

To get δc, we need to solve the equation ∂M(ε,Δ,α)
∂α = 0 for ε which is given by

ε =
2C ′(α) −B′(α) +

√
B′(α)2 − 4∂A(α,Δ)

∂α C ′(α)

2{∂A(α,Δ)
∂α −B′(α) + C ′(α)}

.

Substituting into (65), we conclude that the transition curve is determined by
(19).
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