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1. Introduction

This work is largely inspired by recent papers in the estimation of discrete dis-
tributions with shape constraints. The first paper in this area is [19], where the
authors studied the method of rearrangement and maximum likelihood estima-
tor (MLE) of probability mass function (p.m.f.) under monotonicity constraint.
The MLE under monotonicity constraint is also known as Grenander estimator.
Next, in the paper [13] the authors introduced the least squares estimator of a
discrete distribution under the constraint of convexity and, further, its limiting
distribution was obtained in [1]. Furthermore, the MLE of log-concave p.m.f.
was studied in detail in [4], and in [20] the problem was generalised to the case
of multidimensional discrete support. Next, in paper [3] the authors introduced
the MLE of unimodal p.m.f. with unknown support, proved the consistency and
obtained the asymptotic distribution. The problem of least squares estimation
of a completely monotone p.m.f. was considered in papers [2, 5].

In most of the papers listed above the authors considered both the well- and
the mis-specified cases and studied the asymptotic properties of the estimators
in both cases. In this work we do not have the mis-specified case in a sense that
we assume that the true p.m.f. can be non-monotone and our estimators are
strongly consistent even if the true p.m.f. is not decreasing.

The estimators introduced and studied in this paper are in some sense similar
to nearly-isotonic regression approach, cf. [33] and [23] for multidimensional
case. Nearly-isotonic regression is a convex optimisation problem, which provides
intermediate less restrictive solution and the isotonic regression is included in
the path of the solutions.

At the same time, our approach is in some sense opposite to liso (lasso-
isotone), cf. [14], and to bounded isotonic regression, cf. [22]. The liso is a
combination of isotonic regression and lasso penalties, and bounded isotonic
regression imposes additional penalisation to the range of the fitted model.

In this paper we combine Grenander estimator and the method of rearrange-
ment with cross-validation-based model-mix concept, cf. [31]. The estimator is
constructed as a convex combination of the empirical estimator and Grenander
estimator or the empirical estimator and rearrangement estimator. Following
the terminology for regression and classification problems in [9, 21, 35], we call
the resulting estimators as stacked Grenander estimator and stacked rearrange-
ment estimator, respectively. Therefore, we do not impose the strict monotonic
restriction and let the data decide.

There are several papers where the authors studied a convex combination of
the empirical estimator with a prescribed probability vector, cf. [15, 16, 31, 34].
In particular, in [31] the authors proposed the combination of the empirical
estimator and a constant p.m.f. with a mixture parameter selected by cross-
validation. Also, the minimax estimator of a p.m.f. with respect to �2-loss with
a fixed known finite support and sample size n is given by a convex combi-
nation of the empirical estimator and the uniform distribution with a mixture
parameter equal to

√
n

n+
√
n
, cf. [34]. Furthermore, in [16] the authors provide a

geometrical explanation on the gain from stacking the empirical estimator with
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a fixed probability vector and show that the improvement of the estimation
increases as the size of the support becomes larger.

In the case of continuous support the first paper on the density estimation
via stacking is [30], where it is shown that the method of stacking performs bet-
ter than selecting the best model by cross-validation. Next, in [27] the authors
studied the approach of linear and convex aggregation of density estimators
and, in particular, proved that the aggregation of two estimators allows to com-
bine the advantages of both. To the authors’ knowledge the constrained stacked
estimators have not been investigated for the case of continuous density.

To the authors’ knowledge, the problem of staking the shape constrained
estimators has not been studied much even in a regression setup, except for
the paper [36]. In the paper [36] the author used a convex combination of lin-
ear regression with isotonic regression to obtain a strictly monotonic solution.
Also, it is worth to mention the paper [18], where it was shown that in terms
of prediction accuracy the simplified relaxed lasso (which is stacking of least
squares estimator and lasso) performs almost equally to the lasso in low signal-
to-noise ratio regimes, and nearly as well as the best subset selection in high
signal-to-noise ratio scenarios.

The paper is organised as follows. In Section 2 we state the problem and
introduce notation. The derivation of cross-validation based mixture parameter
is given in Section 3. Section 4 is dedicated to the theoretical properties of the
estimators such as consistency, rate of convergence and asymptotic distribution.
Also, in Section 4 we construct asymptotic confidence bands. In Section 5 we do
simulation study to compare the performance of the estimators with empirical,
minimax, rearrangement and Grenander estimators. The article closes with a
conclusion and a discussion of possible generalisations in Section 6. The ancillary
results and the proofs of some statements are given in Appendix. The R code
for the simulations is available upon request.

2. Statement of the problem and notation

First, let us introduce notation and several definitions. Assume that z1, z2, . . . , zn
is a sample of n i.i.d. random variables with values in N and generated by a p.m.f.
p. For a given data sample let us create the frequency data x = (x0, . . . , xtn),
where xj =

∑n
i=1 1{zi = j} and tn = sup{j : xj > 0} denotes the largest order

statistic for the sample.
The empirical estimator of p is given by

p̂n,j = xj

n
, j ∈ N,

and it is strongly consistent, unbiased and asymptotically normal in �2-space.
The rearrangement estimator studied in [19] is defined as

r̂n = rear(p̂n), (2.1)
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where rear(w) denotes the reversed-ordered vector. Also, equivalently, the re-
arrangement estimator can be written as r̂n,j = sup{u : Qn(u) ≤ j}, where
Qn(u) = #{k : p̂n,k ≥ u}.

The MLE of decreasing p.m.f., or Grenander estimator, which we denote
by ĝn, is equivalent to the isotonic regression of the empirical estimator, cf.
[6, 19, 28], i.e.

ĝn = Π(p̂n|Fdecr) := argmin
f∈Fdecr

∑
j

[p̂n,j − fj ]2, (2.2)

where Fdecr is the monotonic cone in �2, i.e. Fdecr =
{
f ∈ �2 : f0 ≥ f1 ≥ . . .

}
,

p̂n is the empirical estimator and Π(p̂n|Fdecr) denotes the �2-projection of p̂n

onto Fdecr 1.
In our work we construct the estimator in the following way:

φ̂n = βĥn + (1 − β)p̂n, (2.3)

where

ĥn =
{
r̂n, for the stacked rearrangement estimator,
ĝn, for the stacked Grenander estimator,

with the data-driven selection of β:

β̂n = argmin
β∈[0,1]

CV (β),

where CV (β) is a cross-validation criterion, which we introduce and study below.
We associate each component xj of the frequency vector x with multinomial

indicator δ[j] ∈ R
tn+1, given by

δ[j] = (0, . . . , 0, 1, 0, . . . , 0) (2.4)

for j = 0, . . . , tn, cf. [31]. All elements of δ[j] are zeros, except for the one with
index j.

Next, let p̂\[j]
n for j = 0, . . . , tn denote the leave-one-out version of the empir-

ical estimator φ̂n for the frequency data x = (x0, . . . , xtn), i.e. for j such that
xj > 0 let

p̂\[j]
n = x− δ[j]

n− 1 .

Next, for the rearrangement estimator, the leave-one-out version is given by

r̂\[j]n = rear(p̂\[j]
n ),

1The notion of “isotonic regression” in (2.2) might be confusing. Though, for historical
reasons, it is a standard notion in the subject of constrained inference, cf. the monographs
[28, 29] and also papers [7, 32], dedicated to the computational aspects, where the notation
“isotonic regression” is used for the isotonic projection of a general vector.
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and for Grenander estimator:

ĝ\[j]
n = Π

(
p̂\[j]
n |Fdecr

)
.

Therefore, for j such that xj > 0 the leave-one-out versions of stacked rear-
rangement and stacked Grenander estimators for a fixed misture parameter β
are given by

φ̂\[j]
n = β ĥ\[j]

n + (1 − β)p̂\[j]
n , (2.5)

with ĥ
\[j]
n = r̂

\[j]
n for the case of stacked rearrangement estimator, and ĥ

\[j]
n =

ĝ
\[j]
n for the case of stacked Grenander estimator, respectively.
For an arbitrary vector f ∈ �k we define �k-norm

||f ||k =

⎧⎨
⎩
(∑∞

j=0 |fj |k
)1/k

, if k ∈ N\{0},
supj∈N |fj |, if k = ∞,

and for v ∈ �2 and w ∈ �2 let 〈v,w〉 =
∑∞

j=0 vjwj denote the inner product on
�2.

For a random sequence bn ∈ R we will use the notation bn = Op(nq) if for
any ε > 0 there exists a finite M > 0 and a finite N > 0 such that

P[n−q|bn| > M ] < ε,

for any n > N .

3. Data-driven selection of the mixture parameter β

Let us consider squared �2-distance between the true p.m.f. p and the stacked
estimator φ̂n:

Ln = ||φ̂n − p||22 :≡ L(1)
n − 2L(2)

n + L(3)
n , (3.1)

where L
(1)
n =

∑tn
j=0 φ̂

2
n,j , L

(2)
n =

∑tn
j=0 φ̂n,jpj and L

(3)
n =

∑tn
j=0 p

2
j .

We aim to minimise Ln. Obviously, p is unknown, and we will use the ap-
proach introduced in [24] to estimate Ln. First, note that L(3)

n is a constant and
can be omitted. Next, note that for a given n we have for L2 we have

L2 =
tn∑
j=0

φ̂n,jpj = E[φ̂n],

and following [24] we estimate L
(2)
n by

L̂(2)
n =

tn∑
j=0

p̂n,j φ̂
\[j]
n,j ,

with φ̂
\[j]
n defined in (2.5). Therefore, we select the mixture parameter β to

minimise
CV (β) = L(1)

n − 2L̂(2)
n , (3.2)
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i.e.
β̂n = argmin

β∈[0,1]
CV (β).

This cross-validation approach for estimation of discrete distributions was first
introduced in [24] for smoothing kernel estimator and was also used in, for ex-
ample, [11, 12, 25]. The mixture parameter β̂n is given in the following theorem.

Theorem 1. The leave-one-out least-squares cross-validation mixture parame-
ter β̂n is given by

β̂n =

⎧⎪⎨
⎪⎩

bn
an

, if an 
= 0 and 0 ≤ bn ≤ an,

1, if 0 < an ≤ bn,

0, otherwise,

where

an =
tn∑
j=0

(ĥn,j − p̂n,j)2,

and

bn =
tn∑
j=0

p̂n,j(ĥ\[j]
n,j − p̂

\[j]
n,j ) −

tn∑
j=0

p̂n,j(ĥn,j − p̂n,j),

with ĥ
\[j]
n = r̂

\[j]
n for the case of stacked rearrangement estimator, and ĥ

\[j]
n =

ĝ
\[j]
n for the case of stacked Grenander estimator, respectively.

In the sequel of the paper we always assume that both φ̂n and φ̂
\[j]
n are con-

structed with the leave-one-out least-squares cross-validation mixture parameter
β̂n.

4. Theoretical properties of the estimator

In this section we study theoretical properties of stacked rearrangement and
stacked Grenander estimators. First, let us assume that p ∈ Fdecr, i.e. the
underlying p.m.f. is decreasing. Note that from the subadditivity of the norms
for ||φ̂n − p||k, with 1 ≤ k ≤ ∞, we have

||φ̂n − p||k = ||β̂nĥn + (1 − β̂n)p̂n − p||k ≤
β̂n||ĥn − p||k + (1 − β̂n)||p̂n − p||k.

From the error reduction property of the rearrangement and Grenander estima-
tors, i.e. ||ĥn − p||k ≤ ||p̂n − p||k, with 1 ≤ k ≤ ∞, cf. Theorem 2.1 in [19], we
have

||φ̂n − p||k ≤ ||p̂n − p||k (4.1)

for all 1 ≤ k ≤ ∞. Therefore, in the case of a decreasing true p.m.f. both the
stacked rearrangement and stacked Grenander estimators also provide the error
reduction.
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Assume that the true p.m.f. is not decreasing. Let r = rear(p) and g =
Π
(
p|Fdecr

)
. Note that r 
= p nor g 
= p, if p 
∈ Fdecr, i.e. the vector r is

reversed ordered vector p and g is decreasing vector in �2 which is closest in
�2-norm to the true p.m.f. p.

Then, since the isotonic regression and the rearrangement, viewed as a map-
ping from �2 into �2, are continuous in the case of a finite support, and the
empirical estimator is strongly consistent, then

r̂n
a.s.→ r, and ĝn

a.s.→ g,

pointwise. Note that from the statements (i), (ii) and (iv) of Lemma 3 in Ap-
pendix it follows that ĝn always exists, and it is a probability vector for all n.
Clearly, the same result holds for the rearrangement estimator r̂n for all n. The
almost sure convergence in �k-norm, for 1 ≤ k ≤ ∞, of r̂n and ĝn to r and g,
respectively, now follows from Lemma C.2 in the supporting material of [4].

4.1. Consistency

First, let us study the leave-one-out versions of the empirical, rearrangement
and Grenander estimators. Recall that

p̂\[j]
n = x− δ[j]

n− 1 , r̂\[j]n = rear(p̂\[j]
n ) and ĝ\[j]

n = Π
(
p̂\[j]
n |Fdecr

)
,

for j such that xj > 0.
Let us define vectors π̂n ∈ �1, ρ̂n ∈ �1, and γ̂n ∈ �1 as

π̂n,j =
{
p̂
\[j]
n,j , if xj > 0,

0, otherwise,

ρ̂n,j =
{
r̂
\[j]
n,j , if xj > 0,

0, otherwise,

γ̂n,j =
{
ĝ
\[j]
n,j , if xj > 0,

0, otherwise.

(4.2)

Lemma 1. The sequences of vectors π̂n, ρ̂n and γ̂n converge pointwise a.s. to
p, r, and g, respectively.

Proof. The proof is given in Appendix.

Next, we prove the following important lemma.

Lemma 2. For the vectors π̂n we have

π̂n,j ≤ p̂n,j

for all j, and for ρ̂n and γ̂n we have

ρ̂n,j ≤
n

n− 1 r̂n,j and γ̂n,j ≤
n

n− 1 ĝn,j

for all j.
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Proof. The proof is given in Appendix.

In Lemma C.2 in the supporting material of [4] it was proved that for prob-
ability mass functions the pointwise convergence and the convergence in �k for
1 ≤ k ≤ ∞ are all equivalent. Note, in our case the sequences π̂n, ρ̂n and γ̂n

are not probability vectors. Nevertheless, as we prove below, all π̂n, ρ̂n and γ̂n

converge a.s. to p, r and g, respectively, in �k-norm for 1 ≤ k ≤ ∞.

Theorem 2. For the vectors π̂n, ρ̂n and γ̂n we have

π̂n
a.s.→ p,

ρ̂n
a.s.→ r,

and
γ̂n

a.s.→ g

in �k-norm for 1 ≤ k ≤ ∞.

Proof. The proof starts in a similar way as the one for Lemma C.2 in [4]. Let
us, first, study the case of π̂n. Fix some ε > 0. Then, we can choose K such
that ∑

j≤K

pj ≥ 1 − ε

4 .

Since both πn and the empirical estimator pn converge to p pointwise, then
there exists random n0 such that for all n ≥ n0

sup
j≤K

|p̂n,j − pj | ≤
ε

4(K + 1) ,

sup
j≤K

|π̂n,j − pj | ≤
ε

4(K + 1) ,

almost surely.
This implies that for all n ≥ n0 we have

∑
j≤K p̂n,j ≥ 1− ε

2 and
∑

j≤K |π̂n,j−
pj | ≤ ε

4 , almost surely.
Next, for any n

∞∑
j=0

|π̂n,j−pj |=
∑
j≤K

|π̂n,j−pj |+
∑
j>K

|π̂n,j−pj | ≤
∑
j≤K

|π̂n,j−pj |+
∑
j>K

π̂n,j+
∑
j>K

pj .

Furthermore,
∑

j>K π̂n,j ≤
∑

j>K p̂n,j since 0 < π̂n,j ≤ p̂n,j . Then, for all
n > n0 we have proved that

∞∑
j=0

|π̂n,j − pj | ≤
ε

4 + ε

2 + ε

4 = ε,

almost surely. This means that for any ε > 0 there exists random n0, such that
for all n > n0

||π̂n − p||1 ≤ ε,
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almost surely.
Furthermore, since �1 ⊂ �k, for all k > 1, then a.s. convergence holds in �k,

for all 1 ≤ k ≤ ∞.
Let us prove the convergence for γ̂n. First, from Lemma 2 it follows that

n− 1
n

γ̂n,j ≤ ĝn,j .

Then, since both n−1
n γ̂n and ĝn converge to g a.s., we can use the same approach

as for π̂ above, and prove that
n− 1
n

γ̂n
a.s.→ g,

in �k, for 1 ≤ k ≤ ∞, which means that

γ̂n
a.s.→ g,

in �k, for 1 ≤ k ≤ ∞.
Now, using the result of Lemma 2, we can prove the result for ρ̂n in the same

way as we did for γ̂n.

Now we can summarize the above results in the following theorem.
Theorem 3. For any underlying distribution p, both the stacked rearrangement
and stacked Grenander estimators are strongly consistent:

φ̂n
a.s.→ p

in �k-norm for 1 ≤ k ≤ ∞.
Proof. Firs, let us assume that p is decreasing. Then the result of the theorem
follows from the strong consistency of ĝn, r̂n and p̂n.

Next, assume that p is not decreasing. From Theorem 2 it follows that for
the case of stacked rearrangement estimator we have

an
a.s.→ ||r − p||22,

and
bn

a.s.→ 〈p, (r − p)〉 − 〈p, (r − p)〉 = 0,
and for the case of stacked Grenander estimator we have

an
a.s.→ ||g − p||22,

and
bn

a.s.→ 〈p, (g − p)〉 − 〈p, (g − p)〉 = 0.
Therefore,

β̂n
a.s.→ 0.

Next, since

||φ̂n − p||k ≤ β̂n||ĥn − p||k + (1 − β̂n)||p̂n − p||k
for all 1 ≤ k ≤ ∞, it follows

φ̂n
a.s.→ p

in �k-norm for 1 ≤ k ≤ ∞.
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4.2. Rate of convergence

In this section we study the rate of convergence of stacked estimator. In the
case of bounded support the

√
n-rate of convergence follows from pointwise

convergence of the vectors π̂n, ρ̂n and γ̂n. In this work we assume that the
support can be infinite.

Theorem 4. Stacked rearrangement and Grenander estimators have
√
n-rate

of convergence for any underlying p.m.f. p:
√
n||φ̂n − p||k = Op(1)

for 1 < k ≤ ∞. Next, if
∑∞

j=0
√
p
j
< ∞, then

√
n||φ̂n − p||1 = Op(1).

Proof. Assume that p is decreasing. Then the result follows from (4.1) and
Corollaries 4.1 and 4.2 in [19].

Next, assume that p is not decreasing. Let us, first, prove the case of stacked
Grenander estimator. Recall that

βn =

⎧⎪⎨
⎪⎩

bn
an

, if an 
= 0 and 0 ≤ bn ≤ an,

1, if 0 < an ≤ bn,

0, otherwise,

where

an =
tn∑
j=0

(ĝn,j − p̂n,j)2,

and in the notation introduced in 4.2, we can write bn as

bn =
tn∑
j=0

p̂n,j(γ̂n,j − π̂n,j) −
tn∑
j=0

p̂n,j(ĝn,j − p̂n,j).

First, as we proved in Theorem 3

an
a.s.→ ||g − p||22 > 0. (4.3)

Second, note that from Lemma 2 it follows that for all n we have

bn =
tn∑
j=0

p̂n,j(γ̂n,j − ĝn,j) +
tn∑
j=0

p̂n,j(p̂n,j − π̂n,j) ≤

n

n− 1

tn∑
j=0

p̂n,j ĝn,j −
tn∑
j=0

p̂n,j ĝn,j +
tn∑
j=0

p̂n,j(p̂n,j − π̂n,j).

Next,
n

n− 1

tn∑
j=0

p̂n,j ĝn,j −
tn∑
j=0

p̂n,j ĝn,j =
∑tn

j=0 p̂n,j ĝn,j

n− 1 .
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Recall that

π̂n,j =
{

xj−1
n−1 = n

n−1 p̂n,j −
1

n−1 , if xj 
= 0,
0, otherwise,

which leads to
tn∑
j=0

p̂n,j(p̂n,j − π̂n,j) =
tn∑
j=0

p̂n,j(p̂n,j − π̂n,j) =
1 −

∑tn
j=0 p̂

2
n,j

n− 1 .

Therefore, the upper bound for bn is given by

bn ≤
∑tn

j=0 p̂n,j ĝn,j

n− 1 +
1 −

∑tn
j=0 p̂

2
n,j

n− 1 ,

and, consequently, √
nbn

a.s.→ 0, (4.4)
since both sequences

∑tn
j=0 p̂n,j ĝn,j and p̂2

n,j are bounded.
Next, since βn ≥ 0, from (4.3) and (4.4) it follows that

√
nβ̂n

a.s.→ 0. (4.5)

Then, from (4.5) for any p and all 1 ≤ k ≤ ∞ the following holds

β̂n

√
n||ĝn − p||k a.s.→ 0,

for all 1 ≤ k ≤ ∞. Further, as it follows from Corollary 4.2 in [19], if
∑∞

j=0
√
p
j
<

∞, then √
n||p̂n − p||1 = Op(1).

Therefore, for all 2 ≤ k ≤ ∞ and all p we have

(1 − β̂n)
√
n||p̂n − p||k = Op(1),

and, if
∑∞

j=0
√
p
j
< ∞, then we have

(1 − β̂n)
√
n||p̂n − p||1 = Op(1).

Finally, recall that
√
n||φ̂n − p||k ≤ β̂n

√
n||ĝn − p||k + (1 − β̂n)

√
n||p̂n − p||k,

which finishes the prove of theorem for the case of Grenander estimator.
Similarly, using the results of Lemma 2, for the case of stacked rearrangement

estimator we can show that

bn ≤
∑tn

j=0 p̂n,j r̂n,j

n− 1 +
1 −

∑tn
j=0 p̂

2
n,j

n− 1 ,

for all n. Then, the rest of the proof is the same as for Grenander estimator
with ĝn and g suitably changed to r̂n and r, respectively.
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4.3. Asymptotic distribution and global confidence band

In this section we study the asymptotic distribution of stacked rearrangement
and Grenander estimators and discuss calculation of global confidence band
for p. The limit distribution of rearrangement and Grenanader estimators were
obtained in [19]. The asymptotic distribution of stacked Grenander estimator
for the case when true p.m.f. p is either not decreasing with a countable support
or strictly decreasing with a finite support is given in the next theorem.

Theorem 5. Assume that p is either not decreasing with a countable support
or strictly decreasing with a finite support. Then stacked rearrangement and
Grenander estimators are asymptotically normal

√
n(φ̂n − p) d→ Y0,C ,

in �2, where Y0,C is a Gaussian process in �2 with mean zero and the covariance
operator C such that 〈Cei, ei′〉 = piδi,i′ − pipi′ , with ei ∈ �2 the orthonormal
basis in �2 such that in a vector ei all elements are equal to zero but the one
with the index i is equal to 1, and δi,j = 1, if i = j and 0 otherwise, cf. [19].

Proof. The proof is given in Appendix.

For the case of a general decreasing underlying p.m.f. with some constant
regions the limit distribution of the stacked estimator remains an open problem.
Figure 1 illustrates the difference of the asymptotic distributions of the empirical
estimator, monotonically constrained estimators and the stacked estimators.
Let U(s) denote the uniform distribution over {0, . . . , s} and T d(s) be strictly
decreasing triangular function with the support {0, . . . , s} (for the definition of
triangular function see e.g. [13]). Figure 1 shows standard normal QQ-plots of
1000 samples of

√
n(p̂n,1 − p1),

√
n(ĝn,1 − p1),

√
n(r̂n,1 − p1) and

√
n(φ̂n,1 − p1)

for both ĥn = ĝn and ĥn = r̂n, with n = 1000 for the following distributions:

(a) (left) p = U(11),
(b) (middle) p = 0.15U(3) + 0.1U(7) + 0.75U(11),
(c) (right) p = T d(11).

From Figure 1 we can conclude that, first, in the case of a decreasing p.m.f.
the distributions of stacked estimators asymptotically are not equivalent to the
distribution of the empirical estimator, and, second, stacked estimators and
constrained estimators have different asymptotic distribution if the underlying
p.m.f. has constant regions.

For the process Y0,C defined in Theorem 5 let qα denote the α-quantile of its
�∞-norm, i.e.

P[||Y0,C ||∞ > qα] = α.

Then, if p is not decreasing or strictly decreasing, from Theorem 5 for stacked
estimator we have

lim
n

P[
√
n||φ̂n − p||∞ ≤ qα] = 1 − α.
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Fig 1. Standard normal QQ-plots of 1000 samples of
√
n(p̂n,1−p1),

√
n(ĝn,1−p1),

√
n(r̂n,1−

p1) and
√
n(φ̂n,1−p1) for both ĥn = ĝn and ĥn = r̂n, with n = 1000 for uniform distribution

(left), decreasing distribution (middle) and strictly decreasing distribution (right).
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Next, note that in the case of a decreasing p.m.f. p from (4.1) it follows

P[
√
n||φ̂n − p||∞ ≤ qα] ≥ P[

√
n||p̂n − p||∞ ≤ qα]

for all n. Therefore, in the case of a decreasing p we have

lim inf
n

P[
√
n||φ̂n − p||∞ ≤ qα] ≥ 1 − α.

In the same way as in [3], to estimate qα we can use the stacked estimator
φ̂n in place of p in Y0,C , and then each quantile can be estimated using Monte-
Carlo method. In Proposition B.7 in the supplementary material of [3] it was
proved that q̂α

a.s.→ qα. Therefore, the following confidence band
[
max

(
(φ̂n,j −

q̂α√
n

), 0
)
, φ̂n,j + q̂α√

n

]
, for j ∈ N

is asymptotically correct global confidence band if p is either not decreasing or
strictly decreasing, and it is asymptotically correct conservative global confi-
dence band if p is decreasing with some constant regions.

5. Simulation study of performance of the stacked estimators

In this section we do simulation study to compare the performance of stacked
estimators with the empirical, Grenander, rearrangement and the minimax es-
timators. For the p.m.f. with finite support {0, . . . , s} and for a given sample
size n the minimax estimator of p with respect to �2-loss is given by

p̂mm
n = αmm

n λ + (1 − αmm
n )p̂n, (5.1)

with λ = ( 1
s+1 , . . . ,

1
s+1 ) and αmm

n =
√
n

n+
√
n
, cf. [34]. To the authors’ knowledge,

the minimax estimation with respect to �2-loss for infinitely supported p.m.f.
is an open problem. With some abuse of notation, in this and next sections for
infinitely supported distributions we refer the estimator defined in (5.1) with
s = tn as “minimax”.

5.1. Performance of the estimators

We study the cases of decreasing and not decreasing true p.m.f. p separately.

5.1.1. True p.m.f. is decreasing

Let us consider the following uniform and decreasing p.m.f.:

M1 : p = U(11),
M2 : p = 0.15U(3) + 0.1U(7) + 0.75U(11),
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Fig 2. The boxplots for �1-distances of the estimators: the empirical estimator (e), minimax
estimator (mm), rearrangement estimator (r), Grenander estimator (G), the stacked rear-
rangement estimator (sr) and the stacked Grenander estimator (sG) for the models M1, M2,
M3 and M4.

Fig 3. The boxplots for �2-distances of the estimators: the empirical estimator (e), minimax
estimator (mm), rearrangement estimator (r), Grenander estimator (G), the stacked rear-
rangement estimator (sr) and the stacked Grenander estimator (sG) for the models M1, M2,
M3 and M4.

M3 : p = 0.25U(1) + 0.2U(3) + 0.15U(5) + 0.4U(7),
M4 : p = Geom(0.25),
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Fig 4. The estimates of the scaled risk for the models M1, M2, M3 and M4.

where Geom(θ) is Geometric distribution, i.e. pj = (1 − θ)θj for j ∈ N with
0 < θ < 1.

The models M2, M3 and M4 were used in [19] to assess the performance
of Grenander estimator and compare its performance with empirical and rear-
rangement estimators. First, we compare the performance of the estimators in
�1 (Figure 2) and �2 (Figure 3) distances for small n = 20 and moderate n = 300
sample sizes with 1000 Monte Carlo simulations.

From the boxplots at Figure 2 and Figure 3 we can conclude that for both
small and moderate sized data sets stacked Grenander estimator outperforms
in �1 and �2 norms both the empirical estimator and minimax estimator (“min-
imax” for the case of Geometric distribution). Further, stacked Grenander esti-
mator outperforms stacked rearrangement estimator when the underlying dis-
tribution has constant regions and it performs almost the same in the case of
strictly decreasing p.m.f. The superiority of Grenander estimator over the rear-
rangement estimator was proved in [19].

Next, in order to summarise the results and demonstrate the superiority
of stacked Grenander estimator we plot the estimates of scaled risk nE[||ξ̂n −
p||22] (with ξ̂n one of the following estimators: empirical, minimax Grenander or
stacked Grenander estimator) versus the sample size n, based on 1000 Monte
Carlo simulations, cf. Figure 4. We can conclude that in the case of a decreasing
underlying distribution stacked Grenander estimator performs almost as good
as Grenander estimator and it performs significantly better than the empirical
and the minimax estimators.

5.1.2. True p.m.f. is not decreasing

Now let us consider the case when the underlying distributions are not decreas-
ing:

M5 : p = T i(11),
M6 : p = NBin(7, 0.4),

M7 : p = 3
8Pois(2) + 5

8Pois(15),
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Fig 5. The boxplots for �1-distances of the estimators: the empirical estimator (e), minimax
estimator (mm), rearrangement estimator (r), Grenander estimator (G), the stacked rear-
rangement estimator (sr) and the stacked Grenander estimator (sG) for the models M5, M6
and M7.

where T i(s) stands for strictly increasing triangular function; NBin(r, θ) is the
negative binomial distribution with r the number of failures until the experiment
is stopped and θ the success probability; Pois(λ) is Poisson distribution with
rate λ. Therefore, we consider very non-monotonic distributions. Indeed, model
M5 is a strictly increasing p.m.f., M6 is a unimodal distribution, and M7 is
bimodal.

From Figure 5 and Figure 6 we can conclude that stacked Grenander estima-
tor outperforms in �1 and �2 norms the empirical, rearrangement and minimax
estimators (“minimax” for the cases of Negative Binomial and Poisson mixture).

Next, it is interesting to note that even if the underlying distribution is not
monotone, Grenander estimator can still outperform the empirical estimator in
both �1 and �2 norms for small sample size. This happens because the isotoni-
sation decreases the variance of the estimator though bias becomes larger.

Let us summarise the results at Figure 7 by plotting the estimates of the
scaled risk nE[||ξ̂n − p||22] (with ξ̂n one of the following estimators: empiri-
cal, minimax or stacked Grenander estimator). Note that in the case of non-
decreasing true p.m.f. we do not plot the risk for Grenander estimator, because,
obviously, in the miss-specified case the scaled risks of the constrained estima-
tors are worse than the risk of consistent estimators. Based on the simulations
we can conclude that stacked Grenander estimator performs better than em-
pirical and minimax estimators even when the underlying distribution is not
decreasing.

The result might look surprising at the first sight. Nevertheless, the explana-
tion of the effect of �2-risk reduction by stacking empirical estimator with some
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Fig 6. The boxplots for �2-distances of the estimators:the empirical estimator (e), minimax
estimator (mm), rearrangement estimator (r), Grenander estimator (G), the stacked rear-
rangement estimator (sr) and the stacked Grenander estimator (sG) for the models M5, M6
and M7.

Fig 7. The estimates of the scaled risk for the models M5, M6 and M7.

fixed probability vector was explained in [16]. Further, let us consider the case
of model M5, i.e. very non-decreasing case when the underlying distribution
is strictly increasing. Then, since the empirical estimator is strongly consistent
there exist a random n1 such that for all n > n1 the vector is p̂n is strictly
increasing almost surely. Next, note that from Lemma 4 it follows that for all
n > n1 we have ĝj = 1/12, for all j = 0, . . . 11, almost surely. Therefore, for
n > n1 stacked Grenander estimator becomes the stacking of the empirical es-
timator with a uniform distribution U(11) almost surely, which is similar to
what, for example, minimax estimator in (5.1) does. One can also see from Fig-
ure 7 that in the case of model M5 stacked Grenander estimator performs very
similarly to the minimax estimator in a sense of �2-risk.
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5.2. Coverage probabilities for the confidence bands

The Table 1 presents the proportion of times that

max
(
(φ̂n,j −

q̂α√
n

), 0
)
≤ pj ≤ φ̂n,j + q̂α√

n
, for all j ∈ N

among 1000 runs for the models M1–M7. The quantiles q̂α are estimated based
on 100000 Monte-Carlo simulations.

First, one can see that the proposed global confidence band performs well.
Second, note that for the decreasing p.m.f (models M1-M4) the coverage proba-
bilities mostly larger than 0.95, while for non-decreasing p.m.f (models M5-M7)
the coverage probabilities are closer to 0.95 when n becomes large, because in
the former case the confidence band is asymptotically conservative, while in the
later case it is asymptotically correct.

Table 1

Empirical coverage probabilities for the confidence bands for α = 0.05 of the empirical
estimator (e), stacked rearrangement estimator (sr) and stacked Grenander estimator (sG).

Estimator n M1 M2 M3 M4 M5 M6 M7

e
100 0.961 0.961 0.957 0.956 0.963 0.973 0.971
1000 0.945 0.945 0.952 0.949 0.953 0.964 0.956
5000 0.955 0.943 0.95 0.955 0.945 0.953 0.951

sr
100 0.994 0.994 0.981 0.982 0.969 0.996 0.996
1000 0.994 0.985 0.972 0.952 0.95 0.973 0.959
5000 0.996 0.981 0.97 0.959 0.945 0.954 0.949

sG
100 0.996 0.994 0.979 0.981 0.989 0.999 0.997
1000 0.998 0.984 0.971 0.951 0.953 0.976 0.963
5000 0.997 0.984 0.97 0.959 0.945 0.954 0.953

5.3. Computational times

First, note, that in general the complexity of the solution for the mixture pa-
rameter β̂n depends on the largest order statistic tn. In Table 2 we provide the
“worst case” computational times, i.e. we compute β̂n for the estimator based
on the following strictly increasing frequency data vector x′ = (x′

0, . . . , x
′
s), with

x′
j = j + 1 for the different values of s, averaged over 10 runs for every s.

Table 2

The “worst case” averaged over 10 runs computational times of the mixture parameter β̂n

for stacked rearrangement (SR) and stacked Grenander (SG) estimators for different sizes s
of the frequency data vector x.

Estimator s=500 s=1000 s=3000 s=5000
SR 0.4 s 2.6 s 3.1 m 14.1 m
SG 0.3 s 1.6 s 3.0 m 14.0 m

Second, recall that in order to compute the confidence band for a given esti-
mated distribution θ̂n for estimation of the coverage probability in Table 1 we



4266 V. Pastukhov

performed 100000 Monte-Carlo simulations of the multivariate normal distribu-
tion N (0,Σ(θ̂n)), with Σi,j(θ̂n) = θ̂n,jδi,j− θ̂n,iθ̂n,j (i, j = 0, . . . , tn) to estimate
the quantile q̂α. The Table 3 shows the averaged over 10 runs computational
times of the estimation of q̂α of N (0,Σ(θ)) for a fixed non-random p.m.f. vec-
tor θ = T d(s) (recall that T d(s) is a strictly decreasing triangular function), for
different values of s based on 100000 Monte-Carlo simulations.

Table 3

The averaged over 10 runs computational times of the quantile q̂α for different values of the
support size s.

s=500 s=1000 s=3000 s=5000
14.9 s 49.6 s 7.8 m 22.0 m

All the computations were performed on MacBook Air (Apple M1 chip),
16 GB RAM. We can conclude that both stacked rearrangement and stacked
Grenander estimators are computationally feasible.

6. Conclusion and discussion

In this paper we introduced and studied estimation of a discrete infinitely sup-
ported distribution by stacking the empirical estimator with Grenander estima-
tor and the empirical estimator with rearrangement estimator.

The main results of the paper: the stacked Grenander estimator is compu-
tationally feasible, it outperforms the empirical estimator, and it is almost as
good as Grenander estimator for the case of decreasing true p.m.f. Also, stacked
Grenander estimator outperforms the stacked rearrangement estimator, except
for the case of a strictly decreasing p.m.f. The same effect was shown in [19] for
rearrangement and Grenander estimators in the case when underlying p.m.f. is
decreasing. We proved that even when the true distribution is not decreasing,
the estimator remains strongly consistent with

√
n-rate of convergence. There-

fore, the stacked Grenander estimator provides a trade-off between goodness of
fit and monotonicity.

The first natural generalisation of stacked Grenander estimator could be
stacking with isotonic regression for a general isotonic constraint (cf. Appendix
for the definition). Throughout the paper, in almost all the proofs we used
properties of a general isotonic regression, cf. Lemma 3. However, the proof of
Lemma 2 is based on the maximum upper sets algorithm, which is given in
Lemma 4 in Appendix, and this algorithm is valid only for one dimensional
monotonic case. Therefore, the generalisation of stacked Grenander estimator
to the general isotonic case for finite support is straightforward, though the case
of an infinite support remains an open problem.

Second, it is also important to consider other shape constraints, such as
unimodal, convex and log-concave cases. Stacking these estimators is, in effect,
similar to the generalisation of nearly-isotonic regression to the nearly-convex
regression in [33].
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Third, in this work we studied the case of discrete distribution with infinite
support. The empirical estimator is closely related to estimation of probability
density functions via histograms. Therefore, another direction is stacking the
histogram estimators with isotonised histogram.

Forth, as mentioned in the introduction, the constrained stacked estimators
have not been investigated for the case of continuous density. The interesting
property of Grenander estimator in a continuous case is that the distributional
pointwise rate of convergence depends on the local behaviour of the underly-
ing distribution: if the true distribution is flat, the Grenander estimator has
n1/2-rate of convergence cf. [10], and n1/3-rate otherwise, cf. [26]. Therefore, in
the case of a continuous support it would be interesting to study stacking, for
example, Grenander estimator and kernel density estimator.

Another interesting direction of research concerns the stacking with a cross-
validation based on other loss functions. For the overview and theoretical prop-
erties of different loss functions for evaluation of discrete distributions we refer
to the paper [17].

Finally, as we mentioned in the introduction, the problem of stacking shaped
constrained regression estimators has not been studied much. Therefore, since
stacked Grenander estimator performs quite well, it would be interesting to
explore, for example, the prediction performance of stacked isotonic regression.

Appendix A: Appendix

We start with the definition of a general isotonic regression. Let J = {j1, . . . , js},
with s ≤ ∞, be some index set. Next, let us define the following binary relations
on J :

A binary relation � on J is a simple order if

(i) it is reflexive, i.e. j � j for j ∈ J ;
(ii) it is transitive, i.e. j1, j2, j3 ∈ J , j1 � j2 and j2 � j3 imply j1 � j3;
(iii) it is antisymmetric, i.e. j1, j2 ∈ J , j1 � j2 and j2 � j1 imply j1 = j2;
(iv) every two elements of J are comparable, i.e. j1, j2 ∈ X implies that either

j1 � j2 or j2 � j1.

A binary relation � on J is a partial order if it is reflexive, transitive and anti-
symmetric, but there may be noncomparable elements. A pre-order is reflexive
and transitive but not necessary antisymmetric and the set J can have non-
comparable elements. Note, that in some literature the pre-order is called as a
quasi-order.

Next, a vector v with the elements indexed by J is isotonic if j1 � j2 implies
vj1 ≤ vj2 . We denote the set of all isotonic square summable vectors by F is,
which is also called isotonic cone.

Furthermore, a vector v∗ ∈ R
s, with s ≤ ∞, is the isotonic regression of an

arbitrary vector v ∈ R
s (or v ∈ �2, if s = ∞) over the pre-ordered index set J
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if

v∗ = argmin
f∈Fis

∑
j∈J

(fj − vj)2.

In Lemma 3 we provide properties of a general isotonic regression which are
referred to in the paper.

Lemma 3. [Properties of a general isotonic regression] Let v∗
n ∈ �2 be the

isotonic regressions of some set of vectors vn ∈ �2, for n = 1, 2 . . . . Then, the
following holds.

(i) v∗
n exists and it is unique.

(ii)
∑

j vn,j =
∑

j v
∗
n,j, for all n = 1, 2, . . . .

(iii) v∗
n, viewed as a mapping from �2 into �2, is continuous.

(iv) v∗
n satisfies the same bounds as the basic estimator, i.e. a ≤ v∗n,j ≤ b, for

all n = 1, 2, . . . and j = 1, 2, . . . .
(v) Π(avn|F is) = aΠ(vn|F is) for all a ∈ R+.

Proof. Statements (i), (ii) and (iii) follow from Theorem 8.2.1, Corollary B
of Theorem 8.2.7 and Theorem 8.2.5, respectively, in [28], statements (iv), (v)
and (vi) follow from Corollary B of Theorem 7.9, Theorems 7.5, respectively, in
[6].

In the next lemma we describe the maximum upper sets algorithm for the
solution to the isotonic regression in the monotone case.

Lemma 4. [Maximum upper sets algorithm] For a given x ∈ R
t+1
+ the solution

x∗ of a simple order isotonic regression, i.e.

x∗ = argmin
f0 ≥f1≥···≥ftn

tn∑
j=0

[xj − fj ]2

is given by the following algorithm. First, let us define m(−1) = −1. Second, we
choose m(0) > m(−1) to be the largest integer which maximizes the following
mean

m(0)∑
k=m(−1)+1

xk

m(0) −m(−1) .

Next, let us choose m(1) > m(0) to be the largest integer which maximizes

m(1)∑
k=m(0)+1

xk

m(1) −m(0) .

We continue this process and get

−1 = m(−1) < m(1) < · · · < m(l) = tn.
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The solution x∗ (i.e. the isotonic regression of x) is given by

x∗
j =

m(r)∑
k=m(r−1)+1

xk

m(r) −m(r − 1)

for j ∈ [m(r − 1) + 1,m(r)] and r ∈ [0, l].

Proof. The proof is given on p. 77 in [6] and p. 26 in [28], and, also, for simpler
explanation of the algorithm we refer to [37].

Proof of Lemma 1. In order to prove the statement of the lemma, we show that
the pointwise convergence almost surely of p̂

\[j]
n , r̂

\[j]
n and ĝ

\[j]
n for a fixed j

holds. First, note that for j such that pj = 0 the statement holds, since in this
case we have

π̂n,j = ρ̂n,j = γ̂n,j = 0
for all n almost surely.

Second, let us fix some 0 ≤ j ≤ tn, such that pj 
= 0. Next, clearly,

p̂\[j]
n

a.s.→ p (A.1)

in �k-norm for 1 ≤ k ≤ ∞. Next, from (A.1) for the sequence ĝ
\[j]
n we have

ĝ\[j]
n = Π

(
p̂\[j]
n |Fdecr

) a.s.→ g

in �2-norm, since the isotonic regression is a continuous map (cf. statement (iii)
in Lemma 3). Therefore, we have proved the statement of the lemma for the
sequences π̂n and γ̂n.

Next, we prove the statement for ρ̂n. Let us fix some s > j such that pk < pj
for all k > s. Next, let

p̂(k) = the kth largest of {p̂\[j]n,0 , . . . , p̂
\[j]
n,tn}.

Further, from (A.1) it follows that there exists n1 such that for all n > n1

[r̂\[j]n ](0,j) = {p̂(1), . . . , p̂(j)} ⊂ {p̂\[j]n,0 , . . . , p̂
\[j]
n,s },

almost surely, where [·](0,j) denotes the first (j + 1) elements of the vector.
Finally, since the rearrangement operator is continuous map in a finite dimen-
sional case (Lemma 6.1 in [19]), the result of the lemma follows from continuous
mapping theorem.

Proof of Theorem 1. Recall that the least-squares cross-validation criterion is
given by

CV (β) =
tn∑
j=0

φ̂2
n,j − 2

tn∑
j=0

p̂n,j φ̂
\[j]
n,j =

tn∑
j=0

(β ĥn,j + (1 − β)p̂n,j)2 − 2
tn∑
j=0

p̂n,j(β ĥ
\[j]
n,j + (1 − β)p̂\[j]n,j ).
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Then, after simplification we get

CV (β) = anβ
2 − 2bnβ + cn,

where the term cn does not depend on β, and

an =
tn∑
j=0

(ĥn,j − p̂n,j)2,

and

bn =
tn∑
j=0

p̂n,j(ĥ\[j]
n,j − p̂

\[j]
n,j ) −

tn∑
j=0

p̂n,j(ĥn,j − p̂n,j).

Assume, that an 
= 0. Then, CV (β) is minimised by

βn =

⎧⎪⎨
⎪⎩

bn
an

, if 0 ≤ bn ≤ an,

1, if an ≤ bn,

0, if bn ≤ 0.

Next, note that if p̂n = ĥn, then φ̂n = p̂n = ĥn for any 0 ≤ βn ≤ 1, and,
therefore, for consistency of notation we define β̂n = 0 when an = 0.

Proof of Lemma 2. First, we prove the statement for π̂n. Assume that for some
j we have p̂

\[j]
n,j 
= 0 and recall that

π̂n,j = p̂
\[j]
n,j = xj − 1

n− 1 .

Next, note that
xj − 1
n− 1 − xj

n
= −n + xj

n(n− 1) < 0.

Let us study the case of γ̂n. To prove the statement of the lemma we will use
maximum upper sets algorithm, which is given in Lemma 4 in the Appendix.
Let x = (x0, . . . , xtn) be frequency data from p. Next, let x∗ = (x∗

0, . . . , x
∗
tn) be

the isotonic regression of x and assume that x∗ has (l+1) constant regions. Let

m(0) < · · · < m(l) = tn

be the indices of the last elements in the constant regions of x∗ and m(−1) = −1.
Therefore, we have

x∗
j =

m(r)∑
k=m(r−1)+1

xk

m(r) −m(r − 1)

for j ∈ [m(r − 1) + 1,m(r)] and r ∈ [0, l].
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Let us consider the first constant region of x∗ and for some integer q ∈
[0,m(0)] define vector y ∈ R

t+1
+

yj =
{
xj − 1, if j = q,

xj , otherwise,

and let y∗ be isotonic regression of y.
Recall, m(0) is the largest non-negative integer which maximizes the following

mean

S1 =

m(0)∑
k=0

xk

m(0) + 1 .

Further, let m′(0) be the largest non-negative integer which maximizes the
following mean for the vector y

S2 =

m′(0)∑
k=0

yk

m′(0) + 1 .

Let us prove that S2 ≤ S2. First, assume that m′(0) = m(0), then, clearly,
S2 ≤ S1 since yj ≤ xj . Second, let us assume that m′(0) 
= m(0). Then, from
the definitions of m(0) and m′(0) it follows

S2 =

m′(0)∑
k=0

yk

m′(0) + 1 ≤

m′(0)∑
k=0

xk

m′(0) + 1 ≤

m(0)∑
k=0

xk

m(0) + 1 = S1.

Next, assume that q is not in the first constant region. Then in this case
from maximum upper sets algorithm it follows that the constant regions in the
isotonic regressions x∗ and y∗ are the same up to the region which contains
element with index m. Then, we can use the same approach as for the first
region. Therefore, we have proved that y∗q ≤ x∗

q .
Next, from statement (v) of Lemma 3 for ĝn and γ̂n we have

ĝn,j =
x∗
j

n
,

and
γ̂n,j =

y∗j
n− 1 ,

therefore, we proved that
γ̂n,j ≤

n

n− 1 ĝn,j .

Finally, we prove the inequality for ρ̂n. Analogously to the case of γ̂n, let
us consider the vectors x and y, discussed above. Note that yj ≤ xj for all



4272 V. Pastukhov

j, therefore, the same componentwise inequality holds for the sorted vectors
rear(x) and rear(y). Next, using the definition of r̂n and ρ̂n we prove that

ρ̂n,j ≤
n

n− 1 r̂n,j .

Proof of Theorem 5. Assume that the p.m.f. p is not decreasing. Note that

||
√
n(φ̂n − p) −

√
n(p̂n − p))||2 =

√
n||φ̂n − p̂n||2 ≤

β̂n

√
n||ĥn − p̂n||2 + (1 − β̂n)

√
n||p̂n − p̂n||2 = β̂n

√
n||ĥn − p̂n||2.

Then, since
||r̂n − p̂n||2 a.s.→ ||r − p||2 < ∞,

||ĝn − p̂n||2 a.s.→ ||g − p||2 < ∞,

and using (4.5) we have

β̂n

√
n||r̂n − p̂n||2 a.s.→ 0,

β̂n

√
n||ĝn − p̂n||2 a.s.→ 0,

which leads to √
n||φ̂n − p̂n||2 a.s.→ 0.

The statement of the theorem now follows from Theorem 3.1 in [8].
Assume that p is a strictly decreasing p.m.f. over {0, . . . , s}, with s < ∞.

Next, let ε = inf{|pj − pj+1| : j = 0, . . . , s− 1} and note that

{sup
j
{|p̂j − pj | < ε/2} ⊆ {ĥn,j = p̂n,j}

for both ĥn = ĝn and ĥn = r̂n. Therefore, this implies that for any j = {0, . . . , s
we have

P[φ̂n,j = p̂n,j ] ≥ P[sup
j
{|p̂n,j − pj | < ε/2] → 1,

since the empirical estimator is strongly consistent. The statement of the theo-
rem follows from Theorem 3.1 in [8].
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