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Abstract: In this paper, we propose the nonparametric empirical Bayes
(NPEB) estimator based on the nonparametric maximum likelihood esti-
mation (NPMLE) in Poisson mean vector estimation, also known as the
g-modeling in the nonparametric empirical Bayes method. Due to the re-
cent developments of highly scalable algorithms of empirical Bayes, it is
more attractive to use g-modelling, while most of the studies have focused
on the performance of f -modeling in the NPEB estimator. We study the
theoretical properties of the NPEB estimator of Poisson mean vector based
on g-modeling combined with the NPMLE, such as the convergence rate,
and compare our result with some existing studies. Our simulation studies
and real data examples of protein domain data show that the estimator
based on the g-modeling outperforms existing f -modeling based estimators
in both computational efficiency and accuracy.
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1. Introduction

In this paper, we consider the simultaneous mean vector θ = (θ1, . . . , θn) esti-
mation based on the observed data vector X = (X1, . . . , Xn). There are two
general problems of estimation of Normal and Poisson mean vectors, and there
has been tremendous effort to develop efficient estimators for both problems.
Regarding the Normal mean vector, the most recent development of estimators
includes the nonparametric empirical Bayes (NPEB) approach by [2] and general
maximum likelihood estimation (GMLE) by [14]. These methods are shown to
be better than classical linear estimators such as Stein’s shrinkage estimator. [8]
demonstrated two types of empirical Bayes approaches, called g-modeling and
f -modeling: the former is based on estimating the prior distribution of mean
values, while the latter is based on estimation of the marginal density. In fact,
[2] and [14] are f -modeling and g-modeling, respectively. [14] included delicate
theoretical results on g-modeling on estimation of the Normal mean vector, in-
cluding risk-consistency for different scenarios. The extensive literature on the
Poisson mean vector estimation has also been done along with this Normal mean
vector. For example, the James-Stein type estimators in [12] and [5] and NPEB
in [19], [24] and [7]. [25] and [23] originally proposed NPEB estimator based on
f -modeling using estimate of the marginal probability function of Xi. In addi-
tion, [20] proposed a regularized Robbins type NPEB estimator and investigated
the asymptotic performance of their regularized NPEB estimator. Meanwhile,
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[3] showed the necessity of modifying the Robbin’s estimator in their numerical
studies and proposed modified version of the Robbin’s estimator by smoothing
the marginal probabilities and imposing monotonicity on the estimated deci-
sion function. Furthermore, they also considered a Normal approximation to
the Poisson model.

To the best of our knowledge, most studies on estimating the Poisson mean
vector have focused on the f -modeling and its theoretical properties. On the
other hand, the g-modeling in the estimation of Poisson mean vector based on
the nonparametric maximum likelihood estimation (NPMLE) [16] has not been
investigated theoretically, although it has been used in practice, and there have
been many studies on the Normal model [14, 15, 13].

Thanks to the development of some highly scalable algorithms, such as [18],
the g-modeling based on the NPMLE is getting more attention in such esti-
mation problems since it is more efficient in reflecting the structure of mean
values, for example, bi-modality and sparsity, etc. With this motivation, we
propose the Poisson mean vector estimator based on the g-modeling version of
the nonparametric empirical Bayes method (g-NPEB). In particular, we present
theoretical results of our proposed g-NPEB from the view of the convergence
rate of risk and provide numerical studies to compare with methods based on f -
modeling such as [20] and [3]. Inspired by many previous kinds of research such
as [30, 28, 32, 14], our theoretical development and proof techniques are based
on the empirical process for evaluating the properties of a maximum likelihood
estimator.

In terms of application, estimation of the Poisson mean vector has been paid
relatively less attention than that of the Normal mean vector. However, since
counting data in genetics, such as RNAseq and protein data, are becoming more
common, it is more demanding to consider accurate and computationally effi-
cient statistical inference for those types of count data. As real data examples,
we provide protein domain data sets that consist of mutation counts from dif-
ferent positions in the protein domain. The numbers of mutation counts for
different positions are modeled using Poisson distribution, and it is of interest
to estimate the intensity of mutations for each position.

This paper is organized as follows. In Section 2, we present the g-NPEB
estimator based on the NPMLE to estimate the mixing distribution. Section 3
includes the main results on asymptotic properties of the estimator, such as the
convergence rate of the risk of the estimator and section 4 provides the detail of
the proof of the main results. Section 5 and section 6 show simulation studies and
real data examples of protein domains, respectively, and we also compare with
some existing methods. We provide concluding remarks and proofs in Section 7
and Appendices, respectively.

2. Simultaneous Poisson mean vector estimation

Suppose we have independent bivariate random vectors (Xi, θi) i = 1, . . . , n
such that Xi|θi ∼ Poisson(θi) for a given θi under a probability measure Pn,θ
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with deterministic θ = (θ1, . . . , θn). When (θ1, . . . , θn) is fixed, estimation of θ is
known as a compound decision problem in [25] On the other hand, when θi s are
generated from an unknown distribution G, it is known as an empirical Bayes
estimation problem. In the next section, we describe the relationship between
a compound decision problem and empirical Bayes. Throughout this paper, we
consider the compound decision problem for the unknown and deterministic
parameters θ which is also considered for Normal distribution in [14].

Based on the observed vector (X1, . . . , Xn), one main goal is to present es-

timator of θ by minimizing the square error Ln(θ̂,θ) = 1
n

∑n
i=1(θ̂i − θi)

2 or

ELn(θ̂,θ) for some estimator θ̂. There have been numerous studies on this es-
timation problem; James-Stein type estimators by [12] and [5] nonparametric
empirical Bayes estimator (NPEB) by [19] and [24] and [7]. One most typi-
cal well known estimator is the Robbins estimator, which is the nonparametric
empirical Bayes type estimator proposed by [24] which is

θ̂ = Ê(θ|X = x) =
(x+ 1)p̂G(x+ 1)

p̂G(x)
, (2.1)

where pG(x) =
∫
p(x|θ)dG(θ) for p(x|θ) = e−θθx

x! and its estimator p̂G(x) =
#{Xi=x}

n is the relative frequency of Xi = x. The estimated Bayes rule in (2.1)
depends only on estimator of the marginal probability pG(x). However, if p̂G(x) =
0 or p̂G(x) ≈ 0 and (x + 1)p̂G(x + 1) > 0, then the estimator (2.1) is not well
defined or not stable. To avoid this, there are different ways of estimating pG(x)
such as regularization of 2.1, for example [20] proposed to use

θ̂ = x+
(x+ 1)p̂G(x+ 1)− xp̂G(x)

p̂G(x) ∨ ρ
, (2.2)

for some regularizing constant ρ and a ∨ b = max(a, b). [20] investigated some
asymptotic performances of (2.2) such that the regularized estimator in (2.2)
obtains the risk consistency, but not any result of rate of convergence. The
numerical studies in [20] demonstrates that the estimator in (2.2) achieves slow
convergence rate to the optimal risk. [3] also provided the convergence rate of
the risk of (2.1). In fact, [3] does not discuss the theoretical property of their
proposed estimator, which is based on the tuning parameter chosen by cross-
validation.

While [20] and [3] used the idea of f -modeling, we consider the NPEB using
the NPMLE of G which is based on the g-modeling in [8].This idea in the si-
multaneous estimation problem has been used in [14] for Normal mean vector
estimation. In Poisson mean vector estimation, it can be used similarly. How-
ever, the derivation of asymptotic properties is different from those in Normal
mean vector estimation since the parameter of the Poisson distribution affects
the variance as well as mean and the mean of the Normal distribution with
fixed scale parameter is simply location parameter. It is attractive to use the g-
modeling since the estimation of G is expected to provide a more flexible fitting
to the various structure of mean values.
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3. Main results

In this section, we provide asymptotic results for Poisson mean vector estimation
based on the NPMLE. Although there have been numerous studies on simul-
taneous estimation of Poisson means, theoretical studies such as optimality are
limited. [20] provided the risk consistency of the regularized Robbins estimator
under increasing parameter space as n increases. [3] proposed the data splitting
method to estimate a tuning parameter to improve the Robbins estimator. Both
of these studies focus on the Robbins estimator, which is f -modeling in [8].

In particular, we discuss the asymptotic performance of the g-modeling which
is based on estimating G resulting in p̂G(x) = pĜ(x). Throughout this paper,
we assume the true underlying G0 of mean values has a bounded support such
that

G0([0, b]) = 1, (3.1)

Moreover, we do not consider the trivial situation where the distribution
G0 degenerates to point 0. That is, there exists constant b1 > 0 such that
G0([0, b1)) ≤ δ0 for some δ0 < 1 which implies

G0([b1, b]) = w0 ≥ 1− δ0. (3.2)

This bounded support condition (3.1) was also used in [3] in their theoreti-
cal study. For Normal distribution, [14] allowed support to be increased as n
increases while [6] considered a compact support for G. We investigate the situ-
ations where b is an unknown positive constant or increases with the number of
observations n. For the latter, we develop our theory by considering cases where

the order of b is up to o
(

logn
log logn

)
.

Since we assume that b is unknown, we use a support for estimator Ĝn such
that

Ĝn([0,M ]) = 1, (3.3)

for an increasing sequence of M depending on n. We take M so that the sup-
port [0,M ] of Ĝn can include [0, b] of G0 as n increases. It is worth noting
that the mean parameter θ in Poisson distribution is somewhat different from
that in Normal distribution because one parameter serves as both mean and
variance. Therefore, there must be a constraint on the support of the Poisson
distribution. Specifically, we set the maximum value b of the support only up to

o
(

logn
log logn

)
to expect a similar theoretical result to that from Normal distribu-

tion [14]. Moreover, in the Normal case, there are many elegant properties (e.g.,
the probability density function with a sufficiently thin tail and no deformation
depending on the average parameter), so a lot of previous studies have been
accumulated that can be used to develop the theory of the Normal distribution
model [30, 27, 33, 14]. On the contrary, in the Poisson case such nice properties
cannot be expected and some careful and meticulous approaches are needed.
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In the theoretical results described later, we point out a tricky part that arises
from the Poisson model in Remark 4.1 and 4.2.

As in [23], the compound estimation of a vector of deterministic Poisson
parameters is highly related to the Bayes estimation of a single random Poisson
mean with proper prior. For deteministic θ, define the empirical distribution of
θi s,

Gn(u) =
1

n

n∑
i=1

I(θi ≤ u), (3.4)

where I(·) is the indicator function, equal to one if the condition in parentheses
is true and zero otherwise. Next, consider the following single random variable
which has the Bayesian perspective structure,

Y |λ ∼ P (λ), λ ∼ G0. (3.5)

If the prior distribution G0 = Gn which is the empirical distribution (3.4), then

for any separable rule θ̂ = t(X), the fundamental theorem of compound decisions
[25] implies, under the squared error loss, the compound risk of a separable rule
t(X) = (t(X1), · · · , t(Xn)) and the Bayes risk of a t(Y ) with prior Gn are same,
i.e.,

En,θLn(t(X),θ) = EGn(t(Y )− λ)2, (3.6)

where Ln(θ̂,θ) =
1
n ||θ̂ − θ||2 = 1

n

∑n
i=1(θ̂i − θi)

2. Furthermore, the compound
decision problem is not limited to the squared loss, but can also explain about
the general loss function. See [33] for details. For any prior G, denote the Bayes
rule as

t∗G = argmin
t

EG(t(Y )− λ)2, (3.7)

and the minimum Bayes risk as

R∗(G) = EG(t
∗
G(Y )− λ)2. (3.8)

Then, out of all separable rules, the compound risk is minimized by the Bayes
rule along with the empirical distribution prior Gn defined on (3.4), resulting
in the oracle benchmark as,

R∗(Gn) = En,θLn(t
∗
Gn

(X),θ) = min
t(·)

En,θLn(t(X),θ). (3.9)

Therefore, as in [14, 13], our goal is to derive an estimator t̂n(·) of the general
EB oracle rule t∗Gn

(·) such that minimize the regret for the square root of the

MSE r̃n,θ(t̂n) which is defined as,

r̃n,θ(t̂n) =

√
En,θLn(t̂n(X),θ)−

√
R∗(Gn). (3.10)
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We now define the Bayes rule in the estimation of Poisson mean vector. For
any distribution G of θi s, the Bayes rule is

t∗G(X) = (t∗G(X1), . . . , t
∗
G(Xn)), (3.11)

where

t∗G(x) =
(x+ 1)pG(x+ 1)

pG(x)
. (3.12)

Additionally, let gG(x) = (x+ 1)pG(x+ 1)− xpG(x) and define the regularized
Bayes rule with regularizing constant ρ,

t∗G(X; ρ) = (t∗G(X1; ρ), . . . , t
∗
G(Xn; ρ)), (3.13)

where

t∗G(x; ρ) = x+
gG(x)

pG(x) ∨ ρ
. (3.14)

However, an oracle estimator, t∗Gn
(·) is infeasible in practice as it requires

information on the unknown θ1, · · · , θn through the empirical distribution Gn

defined on (3.4). Therefore, [23] proposed the concept of the general empirical
Bayes estimator, which aims to approximate the oracle rule t∗Gn

(·) without any
assumptions about the prior.

Meanwhile, to derive an estimator t̂n(·) of the general EB oracle rule t∗Gn
, we

replace Gn with the NPMLE estimator Ĝn by Kiefer-Wolfowitz in [16] satisfying

Ĝn = argmaxG∈G

n∏
i=1

∫
p(Xi|θ)dG(θ), (3.15)

where G is a certain class of G.
As in [14, 13, 26], we allow approximate solutions to be used.
That is, the NPMLE is any solution of

Ĝn ∈ G,
n∏

i=1

∫
p(Xi|θ)dĜn ≥ qn sup

G∈G

n∏
i=1

∫
p(Xi|θ)dG(θ), (3.16)

with qn = e
n2 ∧ 1.

Remark 3.1. We can rewrite (3.16) as

1

n
log qn +

1

n

n∑
i=1

log

∫
p(Xi|θ)dGn

∗ ≤ 1

n

n∑
i=1

log

∫
p(Xi|θ)dĜn (3.17)

≤ 1

n

n∑
i=1

log

∫
p(Xi|θ)dG∗

n, (3.18)

where G∗
n is the optimal solution which maximize

∏n
i=1

∫
p(Xi|θ)dG(θ) among

the class G ∈ G. Due to the characteristics of qn, our solution Ĝn requires
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that it exist within some error compared to the optimal solution G∗
n, so (3.17)

and (3.18) is a relatively moderate condition. Specifically, we use this inequal-
ity (3.16) to quantify some regularized constant ρ = ρn which connecting the
g-NPEB and regularized version of g-NPEB defined defined below.

To find out Ĝn, we assume Ĝn has the form of

Ĝn =
m∑
j=1

ŵjδbj , ŵj ≥ 0, and
m∑
j=1

ŵj = 1, (3.19)

for given grid points bj , 1 ≤ j ≤ m, 0 < b1 < b2 < · · · < bm = M and δu
is a point mass function at u. There are various ways to determine bi and we
determine bi based on n observed data points X1, · · · , Xn. Specifically, as in
[14, 6, 9], we consider that bi s are equally spaced apart in the interval [X(1) =
min (X1, . . . , Xn) , X(n) = max (X1, . . . , Xn)] and proceed with simulation and
case studies.

Remark 3.2. If θi = λ, i = 1, . . . , n, for some fixed λ > 0, [17] showed that
Pn,θ

(
X(n) ∈ (In, In + 1)

)
→ 1 as n → ∞ where In ∼ logn/ log logn. There-

fore, considering b = o
(

logn
log logn

)
in our case, the interval support [X(1), X(n)]

asymptotically covers the support [0, b] of true G0.

There are many approaches to solve the optimization in (3.15), for example,
the EM algorithm, the convex optimization in [18] etc. In our numerical studies,

we use the Pmix function in the R packages “REBayes” [11] to obtain Ĝn.

In our theoretical studies, we derive asymptotic results for a Ĝn satisfy-
ing (3.16). In practice, we use Ĝn estimated from the REBayes function which
is assumed to satisfy (3.16). See [13, 26] for a similar argument.

Therefore for any Ĝn satisfying (3.16), we further define the proposed esti-
mator based on the g-modeling version of the nonparametric empirical Bayes
estimator (g-NPEB) which is

t̂n(X) ≡ t∗
Ĝn

(X) = (t∗
Ĝn

(X1), . . . , t
∗
Ĝn

(Xn)), (3.20)

and its regularized version of g-NPEB is

t∗
Ĝn

(X; ρ) = (t∗
Ĝn

(X1; ρ), . . . , t
∗
Ĝn

(Xn; ρ)). (3.21)

We investigate the accuracy of t∗
Ĝn

(X) as an estimate of t∗G(X) in detail with

respect to the Ln(θ̂,θ) =
1
n‖θ̂−θ‖2 loss. The corresponding result is presented

in Theorem 3.1 as the main result in this paper.

Remark 3.3. Related to the context of the empirical Bayes, the problem we
consider in this paper is a special case when G = Gn defined in (3.4) is con-
sidered as a prior of θ. The Bayes rule under X|θ ∼ Poisson(θ) and θ ∼ Gn

is EGn(θ|X = x), so this Bayes rule is the optimal among all separable rules

under the loss 1
n ||θ̂ − θ||2.
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Before presenting our theoretical results, we define some notations that will
be used throughout the paper.

Notations.

1. For any r ∈ R, �r� (�r�) is the smallest (largest) integer greater (less) than
or equal to r.

2. an � bn denotes an/bn + bn/an = O(1).
3. an � bn denotes an/bn = O(1).

4. ‖f‖h ≡
{∫

f2(x)h(x)dx
}1/2

is the L2(h(x)dx) norm for h ≥ 0.
5. ‖h‖∞,B ≡ sup|x|≤B |h(x)| is the seminorm with B > 0.
6. For x ∈ R

p and y ∈ R
p with p ∈ N

• ‖x− y‖1 =
∑p

i=1 |xi − yi|.

• ‖x− y‖ =
(∑p

i=1(xi − yi)
2
)1/2

.

• ‖x− y‖∞ = sup
1≤i≤p

|xi − yi|.

7. For any class A, #A denotes the cardinality of A.
8. Let dH(pG, pG0) be the Hellinger distance, i.e.,

dH(pG, pG0)
2 =

∞∑
x=0

(√
pG(x)−

√
pG0(x)

)2
. (3.22)

Now we provide our main theorem of this paper regarding an oracle inequality
that gives upper bounds for the regret of the proposed g-NPEB as follows.

Theorem 3.1. Let {Xi}ni=1 be independent Poisson random variables such that
Xi|θi ∼ Poisson(θi) under Pn,θ with a deterministic θ ∈ [0, b]n ⊂ R

n for some

unknown positive b that can have up to an order of o
(

logn
log logn

)
. Additionally, let

L(θ̂,θ) = 1
n

∑n
i=1(θ̂i − θi)

2 be the average squared, and t∗
Ĝn

(X) be the proposed

g-NPEB defined on (3.20) with Ĝn satisfying (3.16). Then there exists some
universal constants C∗ such that

r̃n,θ(t
∗
Ĝn

(X)) =
√
En,θLn(t∗Ĝn

(X),θ)−
√
R∗(Gn)

≤
[
C∗
{
(log n)3 ∨ (log n)2 (b1)

2
}
ε2n

]1/2
, (3.23)

where b1 = b ∨ 1, and nε2n = (logn)3.

Proof. See Appendix.

Remark 3.4. Theorem 3.1 shows that, for b = O(
√
logn), we have

En,θLn(t
∗
Ĝn

(X),θ)−R∗(Gn) ≤ M0ε
2
n(log n)

3 = O((log n)6/n).

On the other hand, [3] claimed that the Robbins estimator in (2.1) achieves the
convergence rate
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(log n)2/(log log n)2/n which is a faster rate than (logn)6/n. The result in
Theorem 3.1 provides the upper bound for the regret while

(log n)2/(log log n)2/n in [3] is the exact rate. There may exist a chance that
the actual rate of the regret in (3.23) has a faster rate than (log n)2/(log logn)2/n.
Our numerical studies in section 5 demonstrate that the proposed g-NPEB
t∗
Ĝn

(X) converges to the Bayes risk faster than two f -modelling based estima-

tors in [3] and [20]. In fact, the Robbins estimator in (2.1) is unstable since
the denominator p̂G(x) can be zero or fairly small, so (2.1) is not directly used
without further modification in practice.

Regarding the proof of our Theorem 3.1, we refer to the proof process of
Theorem 5 in [14], and the complete proof is represented in the appendix sec-
tion. Here, we provide a simple overview of the proofs of our main results,
Theorem 3.1. Since our proposed g-NPEB t∗

Ĝn
(X) defined in (3.20) can be un-

stable when the denominator of it closes to 0, we replace t∗
Ĝn

(X) with the

regularized version t∗
Ĝn

(X; ρ) defined on (3.21) in our theoretical development

to exclude such circumstances. To justify this replacement step, we present
Proposition 4.1 below which implies t∗

Ĝn
(Xi) = t∗

Ĝn
(Xi; ρn), i = 1, · · · , n with

proper regularizing constant ρn. We define An =
{
dH

(
pĜn

, pGn

)
≤ t∗εn

}
,

where t∗ = t∗ ∨ 1 and t∗ is sufficiently large constant. The large deviation
inequality in Theorem 4.2 implies Pn,θ (A

c
n) ≤ 1/n. Furthermroe, we define a

2η∗ net
{
t∗Hj

(·; ρn) , j ≤ N
}
of Tρn ∩{t∗G : dH (pG, pGn) ≤ t∗εn} under the semi-

norm ‖·‖∞,M where Tρ =
{
t∗G(·; ρ) : G ∈ G[0,M ]

}
and η∗ defined in Theorem 4.3.

Then we show that N is manageable size by deriving the entropy bound of N
in Theorem 4.3.

Next, we show
√
nr̃n,θ(t

∗
Ĝn

(X)) ≤
√

En,θ

(∑4
j=0 |ζjn|

)2
where

ζ0n = ||tĜn
(X)− tĜn

(X; ρn)|| (3.24)

ζ1n =
∥∥∥tĜn

(X; ρn)− θ
∥∥∥ IAc

n
, (3.25)

ζ2n =

{∥∥∥t∗
Ĝn

(X; ρn)− θ
∥∥∥ IAn −max

j≤N

∥∥∥t∗Hj
(X; ρn)− θ

∥∥∥}
+

, (3.26)

ζ3n = max
j≤N

{∥∥∥t∗Hj
(X; ρn)− θ

∥∥∥− En,θ||t∗Hj
(X; ρn)− θ‖

}
+
, (3.27)

ζ4n = max
i<N

√
En,θ||t∗Hj

(X; ρn)− θ‖2 −
√

nR∗ (Gn). (3.28)

To end the proof of Theorem 3.1, we control each of the four terms related to
{ζjn}4j=0 as follows.

0. En,θζ
2
0n is bounded by C0,0nε

2
n for some constant C0,0 based on Lemma 4.1.

1. En,θζ
2
1n is bounded by C0,1nε

2
n for some constant C0,1 using Theorem 4.2,

Lemma 4.4 and some elementary calculations.
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2. En,θζ
2
2n is bounded by C0,2nε

2
n for some constant C0,2 using the non-

random net
{
t∗Hj

(·; ρn) , j ≤ N
}

with size N is asymptotically less then{
log 1

η

}2

from Theorem 4.3.

3. En,θζ
2
3n is bounded by C0,3(logn)

2nε2n for some constant C0,3 using the
isopherimetric inequality for Poisson process case in Lemma 4.5 in addition
to Theorem 4.3.

4. En,θζ
2
4n is bounded by C0,4

{
(logn)3 ∨ (logn)2 (b1)

2
}
nε2n for some con-

stant C0,4 using Theorem 4.1 which implies upper bound of the regret of
not knowing the empirical distribution Gn.

In the following section 4, we present relevant lemmas and theorems for the
upper bounds of En,θζ

2
jn, j = 1, · · · , 4 to completes the proof of Theorem 3.1.

4. Proof of Theorem 3.1

This section consists of subsections which are used to show the connection be-
tween g-NPEB in (3.20) and regularized version of g-NPEB (3.21) with specific
regularized constant and computation of upper bounds for En,θζ

2
jn. For the up-

per bounds of En,θζ
2
jn, we investigate the properties of regularized Bayes rule

and deliver the Hellinger consistency of the NPMLE to exploit the large devia-
tion inequality. Finally, we demonstrate the important theoretical development
by showing the entropy bound of the regularized Bayes rule.

4.1. Relationship between g-NPEB and regularized version of
g-NPEB

The following proposition provides the connection between our g-NPEB in (3.20)
and the regularized version of g-NPEB in (3.21). The proof of the following
proposition is described in Proposition 2 of [14]. Although [14] dealt with the
Normal case, they provided a general proof for all parametric families.

Proposition 4.1. Let {Xi}ni=1 be given data. Let Ĝn be an approximate NPMLE
of a mixing distribution satisfying (3.16) with qn = e

n2 ∧ 1. Then for all j =
1, · · · , n,

pĜn
(Xj) ≥

qn
en

sup
u

{p(Xj |u)} =
qn
en

{p(Xj |Xj)} . (4.1)

Remark 4.1. Proposition 4.1 shows that the lower bound of pĜn
(Xj) depends

on p(Xj |Xj), which is a random quantity in Poisson distribution while the lower
bound in case of Normal distribution in [14] does not depend on the data. As
stated in the following lemma, we can take a deterministic sequence as a low
bound leads to asymptotic equivalence between t∗

Ĝn
(Xi) and t∗

Ĝn
(Xi; ρn).



3800 H. Park and J. Park

Lemma 4.1. Let {Xi}ni=1 be independent Poisson random variables such that
Xi|θi ∼ Poisson(θi) under Pn,θ with a deterministic θ ∈ [0, b]n ⊂ R

n for

some unknown positive b that can have up to an order of o
(

logn
log logn

)
. From the

Proposition 4.1, we show that, for i = 1, · · · , n, the probability of the event in
which the proposed estimator t∗

Ĝn
(Xi) and its regularized version t∗

Ĝn
(Xi; ρn)

being different is asymptotically 0 provided ρn = qn
en

1√
2π logn

, i.e.,

Pn,θ

(
t∗
Ĝn

(Xi) �= t∗
Ĝn

(Xi; ρn)
)

≤ n

(
eb

�logn/e�

)�logn/e�
→ 0. (4.2)

Proof. See Appendix.

With a proper choice of ρn, we use the Lemma 4.1 in the proof of Theorem 3.1.

4.2. Properties of the regularized Bayes rule

In this subsection, we show several properties of the regularized Bayes rule,
which play crucial roles in the proof of Theorem 3.1. First, we show the iso-
pherimetric inequality of the Bayes rule of our Poisson setting. Meanwhile, in
[14], they used the isopherimetric inequality for Normal distributions which is
presented in [28]. For Normal case, [28] used the Wiener process to construct
a semigroup operator. In a similar way, we use Poisson process to generate a
semigroup operator to derive the following lemma.

Lemma 4.2. Let Z be a n-dimensional random vector with the Poisson distri-
butions where Zi|θi ∼ Poisson(θi), i = 1, · · · , n, under Pn,θ with a deterministic
θ ∈ [0, b]n ⊂ R

n for some unknown b > 0. Then for every Lipschitz function

f : Rn → R with ||f ||Lip ≡ supx 	=y
|f(x)−f(y)|

|x−y| ≤ 1, for some κb = (3 − e)b > 0,

we have

Pn,θ(f(Z)− En,θf(Z) > λ) ≤ exp

(
−κbλ

2

2

)
. (4.3)

Proof. See Appendix.

The following lemma shows the bound of |gG(x)|/pG(x) when θ is bounded
by some constant. It will be shown that the bound of |gG(x)|/pG(x) depends
on the upper bound of θ as well as ρ while the similar bound for Normal case
depends only on ρ. As mentioned, this is because the parameter of Poisson
distribution also affects the scale of Poisson distribution while the parameter of
Normal distribution in [14] determines only location.

Lemma 4.3. If G([0, b]) = 1 for some unknown b > 0 then we have

|gG(x)|
pG(x)

≤ L(pG(x); b), (4.4)

where L(ρ; b) = − log ρ+ b1 for b1 = b ∨ 1.
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Proof. See Appendix.

The following lemma shows the upper bound of the absolute value distance
between the regularized Bayes estimator (3.14) and the MLE estimator, which
is mainly used in the proof of Lemma 4.5 presented below.

Lemma 4.4. If G([0, b]) = 1 for some unknown b > 0 and 0 < ρ < 1, we have

|x− t∗G(x; ρ)| =
|gG(x)|

pG(x) ∨ ρ
≤ L(ρ; b), (4.5)

where L(ρ; b) = − log ρ+ b1 for some b1 = b ∨ 1.

Proof. See Appendix.

Based on Lemma 4.2, 4.3 and 4.4, we derive the following lemma regarding
the isopherimetric inequality to be used for En,θζ

2
3n’s upper bound where ζ3n is

defined in (3.27)

Lemma 4.5. Suppose that Xi|θi ∼ Poisson(θi), i = 1, · · · , n, under Pn,θ with
a deterministic θ ∈ [0, b]n ⊂ R

n for some unknown b > 0 and let t∗G(x; ρ) be the
regularized Bayes rule with G satisfying G([0, b]) = 1 for some constant b > 0,
then for some 0 ≤ ρ < 1, we have

Pn,θ(||t∗G(X; ρ)− θ|| ≥ En,θ||t∗G(X; ρ)− θ||+ x) ≤ exp

(
− κbx

2

2Aρ,b
2

)
, (4.6)

where Aρ,b = 1 + 2L(ρ; b) with L(ρ; b) defined in Lemma 4.4 and κb in the
Lemma 4.2.

Proof. See Appendix.

Remark 4.2. Lemma 4.2-4.5 includes upper bounds, which depend on b, the
maximum value of θ. [14] has similar results, however they do not depend on the
upper bound of θ. In particular, unlike the case of the Normal model case in [14],
the upper bound of exponential inequality (4.6) for the difference between the
loss and risk of regularized Bayes rules depends on the maximum value b of the
support of the mean parameter. Furthermore, as b increases, the upper bound
of inequality (4.6) converges to 1. So for this upper bound to be meaningful, b
should not be incremented in any order, and we need to constrain the order of b

properly. Throughout the paper, we show that b can increase up to o
(

logn
log logn

)
order.

4.3. Upper bound of a regularized Bayes estimator discrepancy with
a misspecified prior

Now we present the Theorem 4.1, which provides the upper bound of the regret
using the regularized Bayes rule (3.14) due to the lack of the knowledge of
the true G0. Theorem 4.1 provides the bound for En,θζ

2
4n where ζ4n is defined
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in (3.28). First, we define the following notation ||f ||2g be the L2 norm of f with
respect to g, i.e.,

||f ||2g =

∞∑
x=0

f(x)2g(x). (4.7)

Theorem 4.1. Suppose that (3.5) holds with G0 where G0 is any distribution
that satisfies G0([0, b]) = 1 for some unknown b > 0. Additionally, let t∗G(y; ρ)
be the regularized Bayes rule as defined on (3.14), where G is any distribution
with support [0,M ] and M is any constant greater than b1 = b ∨ 1. Then, we
have the following results.

1. Let D = 4(M + 1) and L(ρ;M) = − log ρ + M then for a > M + 2, we
have

{EG0(t
∗
G(Y ; ρ)− θ)2 −R∗(G0)}1/2

≤ 2
√
D

(
adH(pG, pG0) +

√
8M2e−M

(eM)a−2

(a− 2)a−2

)
+2

√
2L(ρ;M)dH(pG, pG0) + ||(1− pG0/ρ)+gG0/pG0 ||pG0

.

2. Let a = C(− log dH(pG, pG0)) with constant C > 1 satisfying a−2
e3M > 1,

and assume that b = o
(

− log ρ
log(− log(ρ))

)
. Then for constant K defined in

Lemma A.7.1 we have,

{EG0(t
∗
G(Y ; ρ)− θ)2 −R∗(G0)}1/2

≤
{
2
√
D(C(− log dH(pG, pG0)) +

√
K (dH(pG, pG0))

C−1
)

+2
√
2L(ρ;M)

}
dH(pG, pG0) + ρ1/2b1. (4.8)

Additionally, if D � − log dH(pG, pG0), then for ε0 satisfying
dH(pG, pG0) ≤ ε0 ≤ e−3/2, ρ ≤ | log ρ|2ε20 and some constant M0, we have

EG0(t
∗
G(Y ; ρ)− θ)2 −R∗(G0)

≤ M0

(
|log ε0|3 + |log ε0| εC−2

0 + |log ε0|L(ρ;M)2 + | log ρ|2(b1)2
)
ε20.

(4.9)

Proof. See Appendix.

4.4. Hellinger consistency of the NPMLE

Our main Theorem 3.1 uses a large deviation inequality for the Hellinger dis-

tance dH

(
pĜn

, pGn

)
at a certain convergence rate εn represented in Theo-

rem 4.2. For the large deviation inequality, we need to derive the entropy bounds
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of the class P ≡
{
pG : G ∈ G[0,M ]

}
where G[0,M ] is the class of all probability

distributions supported on [0,M ]. We present Lemma 4.6 ∼ 4.8 for the proof of
Theorem 4.2 which will be used in the upper bound of En,θζ

2
1n..

The following Lemma 4.6 implies that we can approximates a Poisson mixture
pG(x) =

∫
p(x | θ)dG(θ) by pG∗(x) where G∗ is a distribution function with a

finite support.

Lemma 4.6. Let 0 < η < 1 be given, and B be an any positive integer. For any
distribution G with support [0,M ] where M = L log 1

η for some constant L ≥ 1,

there exist a discrete distribution Gm on [0,M ] with at most m ≤ �4.32M�+B+2
support points such that

||pG − pGm ||∞,B ≤ C1η,

||gG − gGm ||∞,B ≤ C1η(B ∨M),

for some constant C1 > 0.

Proof. See Appendix.

Lemma 4.7 below follows Lemma 4.6 and provides a covering bound for the
family of all convolution functions with distributions bounded on [0,M ] for
some M > 0. This result will be used in the proof of Theorem 4.2. We first
introduce the well-known definition in the empirical process field and then state
Lemma 4.7.

Definition 4.1. For any metric d, the η-covering number N(η,P , d) is the
minimal number of η-balls {g : d(g, p) ≤ η; p ∈ P} of radius η needed to cover
the set P .

Lemma 4.7. Let η > 0 be given and B be an any positive integer. Define
P ≡

{
pG : G ∈ G[0,M ]

}
where G[0,M ] is the class of all probability distributions

supported on [0,M ] with M = L log 1
η for some constant L ≥ 1. Then we have

logN(η,P , || · ||∞,B) � (�4.32M�+B + 2) log
(

1
η

)
.

Proof. See Appendix.

As the last lemma for Theorem 4.1, we provide the following Lemma 4.8
which also plays an important role in the proof of Theorem 4.2.

Lemma 4.8. Let Xi|θi ∼ Poisson(θi), i = 1, . . . , n, under Pn,θ with a de-
terministic θ ∈ [0, b]n ⊂ R

n for some unknown b > 0. Then, for any positive
integer B satisfying B − 1 > b1 = max(1, b), 0 < λ ≤ 1 and a > 0,

En,θ

{
n∏

i=1

(aXi)
I{Xi≥B}

}λ

≤ exp

[
aλnBλ−1bBe−b

(
e

B − 1

)B−1
]
. (4.10)

Proof. See Appendix.
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We now present the following theorem for our Poisson case corresponding
to Theorem 1 in [34] for Normal case. This shows the convergence rate of the

hellinger distance between the NPMLE solution Ĝn and the empirical distribu-
tion Gn as defined on (3.4). We consider any approximate the NPMLE satisfying

Ln(pĜn
, pGn) =

n∏
i=1

pĜn
(Xi)

pGn(Xi)
≥ e−2t2nε2n/15. (4.11)

While [14] showed that the Ĝn from the EM algorithm satisfies a similar con-

dition to (4.11), [34] and [13] assume that any solution Ĝn satisfying a similar
condition to (4.11) can be obtained from the EM algorithm or the REBayes

package. We also assume that well known methods such as the EM algorithm
and the REBayes pacakge provide the solution Ĝn satisfying (4.11) as in [15,
13, 26]. Then the following theorem provides the large deviation inequality for
dH(pĜn

, pGn). Using this result, we can ignore the event where dH(pĜn
, pGn)

deviates from zero and then we can derive the upper bound of En,θζ
2
1n where

ζ21n is defined in (3.25).

Theorem 4.2. Let Let Xi|θi ∼ Poisson(θi), i = 1, . . . , n, under Pn,θ with a
deterministic θ ∈ [0, b]n ⊂ R

n for some unknown b > 0. Additionally, let Gn be
an empirical distribution of θi s defined on (3.4) with satisfying Gn([0, b]) = 1.

Then for Ĝn is the NPMLE satisfying (4.11) with Ĝn([0,M ]) = 1, there exits
some universal constants t∗ such that for all t ≥ t∗,

Pn,θ{dH(pĜn
, pGn) ≥ tεn} ≤ C0 exp

(
− t2nε2n
2 logn

)
, (4.12)

where C0 is universal constant and εn = (logn)3/2√
n

.

Proof. See Appendix.

4.5. Entropy bound of the regularized Bayes rule

Now we provide an entropy bound for collections of regularized Bayes rules used
to control En,θζ

2
2n and En,θζ

2
3n where ζ2n and ζ3n are defined in equations (3.26)

and (3.27). The challenge is that the regularized version t∗
Ĝn

(Xi; ρn) is not sepa-

rable since the regularized version t∗
Ĝn

(Xi; ρn) in (3.21) with ρ = ρn includes the

NPMLE Ĝn which depends on all observed data X1, · · · , Xn. We choose a class
of regularized Bayes rule with a nonrandom collection, say {Hj}Nj=1, which has
controllable size N . We can approximate t∗

Ĝn
(Xi; ρn) by t∗Hj

(Xi; ρn) for some

j. Our solution needs an entropy bound for this class of regularized Bayes rule
for Poisson distribution as [14], [26] and [13] did for Normal distribution. The
following theorem gives an entropy bound for class of all regularized Bayes rules
defined in (3.11).
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Theorem 4.3. For any ρ > 0 and 0 < η ≤ ρ, define Tρ =
{
t∗G(·; ρ) : G ∈ G[0,M ]

}
where G[0,M ] is the class of all probability distributions supported on [0,M ] with

M = L log 1
η for some constant L ≥ 1. Then, for the integer B = �M� the

following holds,

logN(η∗, Tρ, ‖ · ‖∞,B) �
{
log

1

η

}2

, (4.13)

where η∗ = D∗ η
ρ

(
log 1

η + L(ρ;M)
)
for some constant D∗ > 0 and L(ρ;M) =

− log ρ+M .

Proof. See Appendix.

5. Simulation studies

In this section, we present numerical studies comparing our proposed estimator
g-NPEB and the estimators in [20] and [3]. [20] considered various simulation
settings to compared their NPEB estimator with linear shrinkage estimators
such as [12] and [21]. Numerical studies in [20] show that their NPEB outper-
forms linear shrinkage estimators, so we do not consider those linear shrinkage
estimators in our simulations.

We use the following settings which were used in [20].

• Simulation 1. G0 ∼ Gamma(10, 2)
• Simulation 2. G0 ∼ Gamma(10, 5)
• Simulation 3. G0 ∼ U(5, 10)
• Simulation 4. G0 ∼ U(1, 5)
• Simulation 5. G0 ∼ 0.8δ(0.5) + 0.2Gamma(10, 2)
• Simulation 6. G0 ∼ 0.8δ(0.5) + 0.2Gamma(10, 5)
• Simulation 7. G0 ∼ 0.8δ(0.5) + 0.2U(5, 10)
• Simulation 8. G0 ∼ 0.8δ(0.5) + 0.2U(1, 5)

where δ(·) is the Dirac-measure, Gamma(α, β) is a gamma distribution with

probability density fG(x;α, β) = βα

Γ(α)x
α−1e−βxI(x ≥ 0) and U(a, b) is a uni-

form distribution with probability density fU (x; a, b) =
1

b−aI(a ≤ x ≤ b). Sim-
ulation 1-4 represent the situations that θi s form unimodal distributions while
Simulation 5-8 bimodal distributions, which are mixture of point mass and some
unimodal distribution. In particular, the latter four simulation settings may be
useful in estimation when there are many small counts in the data, for example,
protein domain data which will be demonstrated in our real data examples. The
estimators of proposed method, [20] and [3] are referred to here as “g-NPEB”,
“Park” and “Brown” respectively. In addition, “Bayes” represents the oracle
error rate which is theoretically the optimal error rate. Our numerical studies
show that the proposed g-NPEB based on the g-modeling is efficient in detecting
such multimodality of θ values compared to [3] and [20] based on f -modeling.
We set the number of Poisson data observed in each simulation from n = 200
to 2000. For each n, we set the number of repetitions to 100.
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Table 1

Result table of the Simulation 1 ∼ 4 which assume the true parameter θi s distributed from
some unimodal distributions.

Simulation 1.
n 200 400 600 800 1000 1200 1400 1600 1800 2000

g-NPEB 1.87 1.78 1.74 1.72 1.73 1.73 1.71 1.70 1.70 1.70
Brown 1.85 1.79 1.76 1.74 1.75 1.75 1.73 1.73 1.72 1.73
Park 4.73 3.94 3.28 2.93 2.91 2.80 2.71 2.56 2.47 2.43
Bayes 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69

Simulation 2.
n 200 400 600 800 1000 1200 1400 1600 1800 2000

g-NPEB 0.41 0.37 0.36 0.35 0.35 0.35 0.35 0.34 0.34 0.34
Brown 0.38 0.36 0.36 0.35 0.35 0.35 0.35 0.35 0.35 0.35
Park 0.99 0.78 0.66 0.63 0.61 0.58 0.57 0.55 0.53 0.54
Bayes 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34

Simulation 3.
n 200 400 600 800 1000 1200 1400 1600 1800 2000

g-NPEB 1.86 1.75 1.74 1.71 1.68 1.69 1.66 1.66 1.67 1.67
Brown 1.83 1.76 1.74 1.73 1.70 1.71 1.68 1.69 1.68 1.69
Park 8.78 6.14 5.27 4.68 4.15 3.98 3.64 3.35 3.30 3.23
Bayes 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62

Simulation 4.
n 200 400 600 800 1000 1200 1400 1600 1800 2000

g-NPEB 1.00 0.96 0.95 0.94 0.93 0.93 0.92 0.92 0.92 0.92
Brown 1.00 0.97 0.98 0.97 0.96 0.96 0.95 0.96 0.95 0.96
Park 2.25 1.75 1.70 1.54 1.45 1.44 1.36 1.35 1.30 1.29
Bayes 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

Table 1 and 2 show the results for Simulation 1-8. As displayed, we see that
the proposed g-NPEB outperforms the other two methods. Furthermore, the
risks from the proposed g-NPEB converge to the Bayes error rate faster than
the other two f -modelling based estimators. Regarding computational efficiency,
the proposed g-NPEB and the nonparametric empirical Bayes method in [20]
are quite fast in computation. However the method proposed by [3] is com-
putationally inefficient to be derived. Considering the risks and computational
efficiency, the proposed g-NPEB based on g-modeling has superiority over two
other methods in [20] and [3].

6. Real data examples

To study cancer at the molecular level, it is important to understand which
somatic mutations are involved in tumor initiation or progression. [22] found
that known cancer mutations tend to cluster more in specific locations than
those associated with unrelated diseases. This finding implies that understand-
ing the molecular mechanisms related to cancer may be achieved from protein
domain hotspots. Protein domains are regarded as the structural and functional
units of proteins, and it has huge potential to exhibit tumor variants. For our
case study, we analyze the mutation data of 5,848 patients from The Cancer
Genome Atlas (TCGA) http://tcga-data.nci.nih.gov/tcga/. These data
were mapped to specific positions within protein domain models to identify

http://tcga-data.nci.nih.gov/tcga/
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Table 2

Result table of the Simulation 5 ∼ 8 which assume the true parameter θi s distributed from
some mixture of point mass and some unimodal distribution.

Simulation 5.
n 200 400 600 800 1000 1200 1400 1600 1800 2000

g-NPEB 0.92 0.86 0.86 0.84 0.84 0.84 0.82 0.82 0.82 0.83
Brown 1.06 1.00 0.98 0.96 0.97 0.96 0.91 0.90 0.93 0.91
Park 1.27 1.24 1.26 1.24 1.21 1.24 1.21 1.20 1.18 1.16
Bayes 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

Simulation 6.
n 200 400 600 800 1000 1200 1400 1600 1800 2000

g-NPEB 0.32 0.30 0.29 0.28 0.28 0.28 0.28 0.28 0.28 0.28
Brown 0.34 0.33 0.33 0.32 0.32 0.31 0.32 0.32 0.31 0.31
Park 0.48 0.44 0.42 0.41 0.40 0.40 0.39 0.39 0.38 0.38
Bayes 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27

Simulation 7.
n 200 400 600 800 1000 1200 1400 1600 1800 2000

g-NPEB 0.94 0.85 0.84 0.82 0.82 0.82 0.80 0.80 0.79 0.79
Brown 1.20 1.04 1.02 1.00 1.00 0.98 0.95 0.96 0.91 0.92
Park 1.77 1.71 1.62 1.67 1.56 1.55 1.57 1.55 1.50 1.52
Bayes 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72

Simulation 8.
n 200 400 600 800 1000 1200 1400 1600 1800 2000

g-NPEB 0.56 0.53 0.52 0.52 0.51 0.51 0.51 0.51 0.51 0.51
Brown 0.65 0.62 0.59 0.62 0.59 0.59 0.59 0.58 0.59 0.57
Park 0.78 0.76 0.75 0.74 0.72 0.71 0.70 0.70 0.69 0.69
Bayes 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

clusters. TCGA MAF files were obtained on July 7th, 2014 for 20 cancer types.
Each protein domain consists of positions that have mutation counts. We analyze
five protein domains that can be obtained from the supplementary material in
[10] (https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111
%2Fbiom.12779&file=biom12779-sup-0003-SuppData.txt).

To give a brief explanation on the 5 protein domains we analyze, there are
growth factors (cd00031), the calcium-binding domain of epidermal growth fac-
tors (cd00054), protein kinases (cd00180), ankyrin domains (cd00204), which
play a role in mediating protein-protein interactions and finally RAS-Like GT-
Pase family of genes (cd00882) are well-known for their role in regulating path-
ways. For the detailed description, see [10]. Figure 1 provides the histogram of
mutations of each protein domain and its number of position n respectively.
One typical phenomenon in those protein domain data in Figure 1 is that we
see mixtures of many zero or small counts and large valued counts. Such small
counts are considered background noise while large values represent mutation
counts at hot spots related to some disease. When the number of mutations
in each protein data is assumed to follows the Poisson model, we conjecture
that the corresponding true mean values have bi-modality or multi modality
which are considered in Simulation 5-8 in section 5. In this case, we assume that
the mutation counts in each position follow the Poisson model independently
and apply our proposed g-NPEB to estimate the mean vector of the Poisson
model. We base our protein domain data analysis on two main assumptions.

https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fbiom.12779&file=biom12779-sup-0003-SuppData.txt
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fbiom.12779&file=biom12779-sup-0003-SuppData.txt
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Fig 1. Histograms of protein domain data for cd00031, cd00054, cd00180, cd00204 and
cd00882 with total number of positions n.

The first assumption is that each mutation count follows a Poisson distribution
with different mean parameters, and the second is that the mutation counts
are independent of each other. First of all, we would like to emphasize that the
mutation counts observed in the protein domain have been studied recently, and
researches that apply the Poisson or negative binomial model to count data with
few prior biological knowledge are quite common [1, 4, 10]. In particular, hav-
ing analyzed protein domains identical to ours, [10] applied the Zero-inflated
Generalized Poisson model under the assumption that most mutation counts
are independently and identically generated, but this model does not meet our
goal of estimating heterogeneous mean values for different positions. Second, in
a practical application of the mean vector estimation, many studies assume the
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independence of data without its validation. For example, in Brown’s batting
average in baseball data [2], many studies have been conducted under the rule
of independence between players, even though it is not clear whether the perfor-
mances of all players are independent of each other [2, 31, 9, 29]. If correlations
among mutation counts are considered, mutation counts should be viewed as
multivariate data and their mean vector can be estimated when there is many
replication of data that is not currently available. If independence and Pois-
son distribution are seriously violated, then estimation of the mean vector is of
course inaccurate, however estimation of mean vector under these assumptions
of independence and Poisson distribution for count data is currently most com-
mon due to limited data and lack of methodology for multivariate data with
correlations.

For comparison, we compare the f -modelling methods considered in the pre-
vious simulation study with our g-NPEB. Evaluating estimators in mean vector
estimation is not feasible in general since we do not know the true mean vector
in real data. However, by borrowing the insight from [3], we define the following
procedure to evaluate estimators in real data:

Step 1 : Prefix the proportion parameter p ∈ (0, 1).

Step 2 : Generate random variable Ui|Yi ∼ Binomial(Yi, p) where Yi is the
number of mutations in the protein domain data and assumed to be distributed
from the Poisson(θi), i = 1, · · · , n.
Step 3 : Define Vi ≡ Yi − Ui, i = 1, · · · , n.
Step 4 : Calculate R̂n defined as

R̂n =
1

n

n∑
i=1

(
Δ(Ui)−

p

1− p
Vi

)2

. (6.1)

Step 5 : Repeat 2∼4, T times and average R̂n s.

Remark 6.1. If we generate Ui and Vi as above then, marginally,

Ui ∼ Poisson(pθi) and Vi ∼ Poisson((1− p)θi),

and they are independent given θi, i = 1, · · · , n. Then we consider p
1−pVi with

the mean as pθi to be true parameter and we estimate pθi as a function of Ui,
Δ(Ui).

Remark 6.2. The intuition of using R̂n as a criterion of the performance of
Δ(·) is as follows. Define the following average risks:

Rn =
1

n

n∑
i=1

Eθi

(
Δ(Ui)−

p

1− p
Vi

)2

, (6.2)

R∗
1,n =

1

n

n∑
i=1

Eθi (Δ(Ui)− pθi)
2
, (6.3)
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Table 3

Mean vector estimation results for the Protein domain data.

p = 0.5
Protein domain g-NPEB Brown Park

cd00031 8.090 8.269 12.787
cd00054 12.506 12.561 18.620
cd00180 6.418 6.554 8.875
cd00204 4.457 4.726 6.916
cd00882 2.049 2.174 2.642

p = 0.7
Protein domain g-NPEB Brown Park

cd00031 21.932 22.071 30.331
cd00054 31.297 31.671 40.656
cd00180 16.724 16.912 20.496
cd00204 12.533 12.692 16.329
cd00882 5.386 5.524 6.309

p = 0.9
Protein domain g-NPEB Brown Park

cd00031 96.237 96.573 108.752
cd00054 126.660 128.195 139.214
cd00180 70.719 71.037 76.143
cd00204 55.137 55.476 60.660
cd00882 23.462 23.576 24.715

R∗
2,n =

1

n

n∑
i=1

Eθi

(
pθi −

p

1− p
Vi

)2

, (6.4)

where Eθi represents the expectation given θi. Then, it can be shown easily that
Rn = R∗

1,n + R∗
2,n. Note that R∗

2,n is unrelated to the mean estimator Δ(Ui) s.
Therefore, a small value of Rn implies a small value of R∗

1,n. From this result,

we quantify the performance of Δ(Ui) s using the R̂n in (6.1).

Remark 6.3. There are mainly two reasons that we have an independence
assumption in our protein domain analysis. First, the research on the protein
domain we used has been relatively recently studied, as demonstrated in [10].
So there doesn’t seem to be enough information such as the location or spatial
structure of the positions in protein domain. For a similar reason, [10] assumed
the independence of mutations counts for different spots of the protein domain.
Second, in order to consider the correlation structure of the mean parameters
in mean vector estimation, we need to replicate the data corresponding to each
parameter. However, since there is no replication for the data given to us, the
correlation structure cannot be considered.

Table 3 represents the average of R̂n s with repeat number T = 500 of our
“g-NPEB”, “Brown” in [3] and “Park” in [20] with proportion p =0.5, 0.7 and
0.9. In Table 3, we can see that for all protein domains and all proportions
p, as with the simulation study results, our “g-NPEB” and “Brown” achieve
almost similar risks, however our “g-NPEB” performs better consistently than
“Brown”s method.
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7. Concluding remarks

In this paper, we presented theoretical results of the estimated Bayes rule (g-
NPEB) using the NPMLE, which has not been addressed. [3] stated that an
advantage of their methodology based on f -modeling is that it does not re-
quire complex optimization and can derive an estimator with an elementary
procedure. However, due to the development of many built-in functions of de-
convolution and demixing, such as REBayes in R-package implementing [18],
we believe that the g-modeling is implemented efficiently without any difficulty.
Although many empirical Bayes approaches have been mainly concerned with f -
modeling in estimating the mean vector of the Poisson model (e.g., [20] and [3]),
our numerical studies show that each of them shows some drawbacks: [20] has
slow convergence to the Bayes risk implying poor performance in finite samples,
and [3] needs some significant computation time to implement their method
since it requires cross-validation to select the smoothing parameter and tunning
step to impose monotonicity on the decision function. On the other hand, we
show that the g-modeling based estimator is as efficient as [20] in computations
and achieves more accurate risk than [20] and [3].

We believe that such g-modeling based methods have more advantages in
both accuracy and computational efficiency than f -modeling due to many built-
in functions such as REBayes in R-package. In particular, the g-modeling based
estimators for the Poisson mean vector can be potentially used in statistical
inference for count data examples from genetics and bioinformatics. Especially,
we assumed that mutation counts were independent of each other in protein
domain analysis for several practical reasons. However, considering that protein
domain research has been conducted relatively recently, the authors believe that
additional data will be given in the future to reveal the biological knowledge
of the mutation counts and consider the correlation of the mutation counts.
Then, it is of great interest to estimate the intensity rates of mutation counts
considering spatial correlations along with the development of a new estimator.
We leave this as a future research.

Appendix A: Proofs

A.1. Proof of Theorem 3.1

Let L(ρ;M) = log(eM/ρ) = − log ρ+M and take the following

ρn =
1

n3

1√
2π log n

, η =
ρn
n
,

and

η∗ = D∗ η

ρn

(
log

1

η
+ L(ρn;M)

)
, M = L log

1

η

where L ≥ 1 and D∗ are some universal constants.
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Note that (4.2) holds with ρn = 1
n3

1√
2π logn

and qn = e
n2 . Let {t∗Hj

(·; ρn) ,
j ≤ N } be a 2η∗ net of Tρn ∩ {t∗G : d (pG, pGn) ≤ t∗εn} under the seminorm
‖·‖∞,M and N = logN (η∗, Tρn , ‖ · ‖∞,M ). We adopt the preliminary calculation
for r̃n,θ((t

∗
Ĝn

(X)) from [14] such that

√
En,θnLn(t∗Ĝn

(X),θ) ≤
√

nR∗(Gn) +

√√√√√En,θ

⎛⎝ 4∑
j=0

|ζjn|

⎞⎠2

, (A.1)

where

ζ0n = ||tĜn
(X)− tĜn

(X; ρn)||, (A.2)

ζ1n = ||tĜn
(X; ρn)− θ||IAc

n
, (A.3)

ζ2n =

{
||t∗

Ĝn
(X; ρn)− θ||IAn −max

j≤N
||t∗Hj

(X; ρn)− θ||
}

+

, (A.4)

ζ3n = max
j≤N

{||t∗Hj
(X; ρn)− θ|| − En,θ||t∗Hj

(X; ρn)− θ||}+, (A.5)

ζ4n = max
j≤N

√
En,θ||t∗Hj

(X; ρn)− θ||2 −
√

nR∗(Gn), (A.6)

for An = {dH(pĜn
, pGn) ≤ t∗εn}, t∗ = t∗ ∨ 1. Note that Pn,θ(A

c
n) ≤ 1

n from

Theorem 4.2 for t∗ = t∗∨1. Since En,θ

(∑4
j=0 |ζjn|

)2
≤ 5

∑4
j=0 En,θζ

2
jn in (A.1)

using (
∑4

j=0 aj)
2 ≤ 5

∑4
j=0 a

2
j for any real values of aj s, we compute the bound

of En,θζ
2
jn for j = 0, 1, . . . , 4 as follows:

0. Note that tĜn
(X; ρn) − tĜn

(X) �= 0 only when pĜn
(Xi) < ρn. Define

In = I(pĜn
(Xi) < ρn) then,

En,θζ
2
0n ≤

n∑
i=1

En,θ

{(
tĜn

(Xi)− tĜn
(Xi; ρn)

)2
In

}

=
n∑

i=1

En,θ

⎧⎨⎩
(
gĜn

(Xi)

pĜn
(Xi)

)2(
1−

pĜn
(Xi)

pĜn
(Xi) ∨ ρn

)2

In

⎫⎬⎭
≤

n∑
i=1

En,θ

⎧⎨⎩
(
gĜn

(Xi)

pĜn
(Xi)

)2

In

⎫⎬⎭
=

n∑
i=1

En,θ

⎧⎨⎩
(∫

(θ −Xi)p(Xi|θ)dĜn(θ)∫
p(Xi|θ)dĜn(θ)

)2

In

⎫⎬⎭
≤

n∑
i=1

En,θ

{
(M +Xi)

2
In

}
, provided Ĝn([0,M ]) = 1

≤
n∑

i=1

{
En,θ (M +Xi)

4
}1/2 {

Pn,θ(pĜn
(Xi) < ρn)

}1/2
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≤
n∑

i=1

{
En,θ (M +Xi)

4
}1/2

{
n

(
eb

�logn/e�

)�logn/e�}1/2

≤ C0,0(M)2

≤ C0,0nε
2
n. (A.7)

Note that the third inequality from the bottom is derived from (4.2),
and in the second to last inequality, we take advantage of the property
that the second curly brace term vanishes to zero faster than any poly-
nomial n. In addition, C0,0 is universal constant and we use the fact that

En,θ (M +Xi)
4 � M4 provided ∀i, θi ≤ b ≤ M = O(log n).

1. We rearrange tĜn
(X; ρn) − θ as tĜn

(X; ρn) − X − (θ − X) in ζ1n. Then

using Lemma 4.4 and L(ρn;M) ≤ C0(logn) for ρn = 1
n3

1√
2π logn

, we have

En,θζ
2
1n ≤ 2nL(ρn;M)2Pn,θ(A

c
n) + 2

n∑
i=1

En,θ(Xi − θi)
2IAc

n

≤ 2nL(ρn;M)2Pn,θ(A
c
n)

+2

n∑
i=1

∑
x≥0

min{Pn,θ((Xi − θi)
2 ≥ x), 1/n}

≤ C2
0 (log n)

2

+2

n∑
i=1

⎛⎝ ∑
x≤(logn)2

1

n
+

∑
x>(logn)2

Pn,θ((Xi − θi)
2 ≥ x)

⎞⎠ .

Note that as n → ∞, if x > (logn)2, we have θi −
√
x < 0 asymp-

totically. Therefore, Pn,θ((Xi − θi)
2 ≥ x) = Pn,θ(Xi > θi +

√
x) ≤∑

y>θi+
√
x

e−θiθy
i

y! ≤ e−θi(eθi)
√

x

√
x
√

x ≤
(

eb√
x

)√x

. For logn ≥ e2b, we have

eb/ logn ≤ e−1, so
(

eb√
x

)√x

≤ e−
√
x ≤ 1

n when x > (log n)2. Using

this, we obtain
∑

x≥(logn)2 Pn,θ((Xi − θi)
2 ≥ x) ≤

∑
x≥(logn)2 exp(−

√
x)

for 1 ≤ i ≤ n. Therefore, by using change of variable
√
x = t, we

have
∑

x≥(logn)2 e
−√

x ≤ C
∫
(logn)2

e−
√
xdx = −2C1(t + 1)e−t

∣∣∣∣∣
∞

logn

=

2C1(
logn
n + 1

n ) for some constant C1. Finally, for some constants C0, C1

and C0,1, we have

En,θζ
2
1n ≤ C2

0 (log n)
2 + 2(logn)2 + 2C1(logn+ 1) ≤ C0,1(logn)

2

≤ C0,1nε
2
n, (A.8)

from nε2n = (log n)3.

2. For ζ2n,
{
t∗Hj

(·; ρn) , j ≤ N
}
is a 2η∗ net of

Tρn ∩ {t∗G : dH (pG, pGn) ≤ x∗εn}
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under the seminorm ‖ · ‖∞,M and by Lemma 4.4, we know that

|t∗G(x; ρn)− x| ≤ L1(ρn;M)

for G = Ĝn or Hj . Let N = logN (η∗, Tρn , ‖ · ‖∞,M ), then we obtain

N �
{
log 1

η

}2

from Theorem 4.3. Therefore we have

ζ22n ≤ min
j≤N

||tĜn
(X; ρn)− tHj (X; ρn)||2IAn

≤ (2η∗)2#{i : Xi < M}+ 4L(ρn;M)2
n∑

i=1

I(Xi ≥ M) (A.9)

leading to

En,θζ
2
2n ≤ n(2η∗)2 + 4L(ρn;M)2

n∑
i=1

En,θI(Xi ≥ M)

= n(2η∗)2 + 4L(ρn;M)2
n∑

i=1

Pn,θ(Xi ≥ M)

≤ n(2η∗)2 + 4L(ρn;M)2
n∑

i=1

∑
x≥M

e−θiθxi
x!

.

Note that,
∑

x≥M
e−θiθx

i

x! ≤
∑

x≥M
e−bbx

x! ≤ e−b
(
eb
M

)M
for M > b. Addi-

tionally, η∗ = D∗ η
ρn

(
log 1

η + L(ρn;M)
)

≤ C2
(logn)

n and M = O(log n).

Furthermore, M = O(logn) implies
(
eb
M

)M ≤ 1
n2 for sufficiently large n

and L(ρn;M) = O(log n). Hence with some constant C2 and C0,2, we have
the upper bound of En,θζ

2
2n as follows:

En,θζ
2
2n ≤ n(2η∗)2 + 4L(ρn;M)2ne−b

(
eb

M

)M

≤ C2

(
n
(log n)2

n2
+ (logn)2n

1

n2

)
≤ C0,2ε

2
n. (A.10)

3. For ζ3n, we use Lemma 4.5 and Theorem 4.3 andAρn,M = 1+2L1 (ρn;M) =
O(log n) which lead to

En,θζ
2
3n ≤

∞∑
x=0

Pn,θ(ζ3n >
√
x)

≤
∫ ∞

0

min
{
1, N exp

(
−κbx/(2A

2
ρn,M )

)}
dx, κb = (3− e)b

=
∑

x≤(2A2
ρn,M logN)/κb

1
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+
∑

x>(2A2
ρn,M logN)/κb

N exp(−κbx/(2A
2
ρn,M ))

≤ (2A2
ρn,M logN)/κb

−2A2
ρn,MN/κb exp

(
−κbx/(2A

2
ρn,M )

)
|∞(2A2

ρn,M logN)/κb

≤ (2A2
ρn,M logN)/κb

� 2A2
ρn,M

{
log

1

η

}2

/κb

≤ C0,3(logn)nε
2
n/κb.

≤ C0,3(logn)nε
2
n, (A.11)

where C0,3 is universal constant and the last inequality we use the fact
that 1/κb = O(1).

4. For ζ4n, take any constant C satisfies C
(
− log dH

(
pĜn

, pG0

))
> 2+e3M .

Then, with G0 = Gn, G = Hj , ρ = ρn ε0 = t∗εn ≥ dH(pĜn
, pGn) we

apply (4.9) in Theorem 4.1. Since, | log εn| = O(log n) from εn = (logn)3/2√
n

and L(ρn;M) = O(log n), we obtain

En,θζ
2
4n ≤ nmax

j≤N

{
EGn(t

∗
Hj

(Y ; ρn)− θ)2 −R∗(Gn)
}

≤ nM0

(
|log ε0|3 + |log ε0| εC−2

0

+ |log ε0|L(ρ; b)2 + | log ρn|2(b1)2
)
ε20,

≤ C0,4

{
(log n)3 ∨ (log n)2(b1)

2
}
nε2n, (A.12)

where C0,4 is universal constant and M0 is constants defined on Theo-
rem 4.1 and C0,4 is universal constant.

Therefore, by combining (A.8), (A.10), (A.11) and (A.12), we have

En,θ

⎛⎝ 4∑
j=0

|ζjn|

⎞⎠2

≤ 5

4∑
j=0

En,θζ
2
jn ≤ C∗ {(logn)3 ∨ (log n)2(b1)

2
}
nε2n (A.13)

with for some universal constant C∗ > 0. This proves the inequality in (3.23).

A.2. Proof of Lemma 4.1

Pn,θ

(
t∗
Ĝn

(Xi) �= t∗
Ĝn

(Xi; ρn)
)

= Pn,θ

(
pĜn

(Xi) < ρn

)
≤ Pn,θ

( qn
en

{p(Xi|Xi)} < ρn

)
, by (4.1)



3816 H. Park and J. Park

≤ Pn,θ

( qn
en

{
p(X(n)|X(n))

}
< ρn

)
≤ Pn,θ

(
logn/e1/(6X(n)) < X(n)

)
≤ Pn,θ

(
logn/e < X(n)

)
(A.14)

≤
n∑

i=1

Pn,θ (Xi > log n/e)

≤
n∑

i=1

e−θi

(
eθi

�logn/e�

)�logn/e�

≤ n

(
eb

�logn/e�

)�logn/e�
→ 0, (A.15)

where (A.14) is obtained by using the fact that N ! <
√
2πN

(
N
e

)N
e

1
12N for any

positive integer N , and (A.15) uses the upper bound of the right tail probability
of a Poisson distribution.

A.3. Proof of Lemma 4.2

This is the corresponding to the second result for Normal distribution Z in
Lemma A.2.2. in [28]. Let Zt is Poisson process with θt, then Zt − Zs ∼
Poisson(θ(t − s)) for t > s. Let Xt = xeZt−2bt where Zt ∼ Poisson(θt).
We know that Zt is a stationary process with independent increment. Define
Ptf(x) = E(f(Xt)|Z0 = 0) = Ef(eZt−2btx), then we show that Pt forms a
semigroup (P0 = I, Ps+t = PtPs). Without loss of generality, we assume that
E(f(X)) = 0. It is obvious that P0 = I since P0f(x) = E(f(X0)|X0 = x) =
f(x). We now show Pt+s = PtPs. Since Zs+t − Zt and Zt are independent, we
have

Pt+sf(x) = E(f(eZt+s−2b(t+s)x)) = EE(f(eZt+s−Zt−2bseZt−2btx)|Xt = y)

= EEf(eZs−2bsy|Xt = y) = EPsf(Xt) = Pt(Psf(x)) = PtPsf(x),

which shows that Pt forms a semigroup. Define G(t) = E exp (rPtf(Z)), then
G(0) = E exp (rf(Z)) and G(∞) = E exp (rP∞f(Z)) = E exp(r0) = 1 since
Zt − 2bt → −∞ a.e.. We also have −G′(t) = −rE exp(rPtf(Z))APtf(Z) =
r2E exp(rPt(f(Z)))||∇Ptf(Z)||2 where A = d

dtPt|t=0 and d
dtPt = APt. We

can assume without loss of generality that f is differentiable with gradient
supx ||∇f(x)|| ≤ 1. See p.439 in [28] for more detail. From this,

||∇Ptf(Z)|| = ||E∇f(eZt−2btZ)||eZt−2bt ≤ E(eZt−2bt)

=

∞∑
x=0

ex−2bt e
−θt(θt)x

x!
= exp(−2bt− θt+ eθt)

= exp(−t(2b− (e− 1)θ)) ≤ exp(−(2− (e− 1))bt) = exp(−κbt),
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where κb = (3 − e)b. Since −G′(t) ≤ r2G(t)e−2κbt, we have (κb logG(t))′ ≥
( 12r

2e−2κbt)′. Since κb logG(∞) = 0 and 1
2r

2e−2κbt = 0 for t = ∞, we have
κb logG(0) ≤ 1

2r
2 for t = 0 due to (κb logG(t))′ ≥ ( 12r

2e−2κbt)′. Therefore we

obtain E exp(rf(Z)) = G(0) ≤ exp
(

r2

2κb

)
. Using this result, we have P (f(Z) ≥

λ) = P (erf(Z) ≥ erλ) ≤ e−rλEerf(Z) ≤ e
r2

2κb
−rλ

and then by maximization

w.r.t. r, we obtain e−
κbλ

2

2 . Since Ef(X) = 0 is assumed, it still holds for f(Z)−
E(f(Z)) which proves this lemma.

A.4. Proof of Lemma 4.3

First, define the function h(ζ) = eζ , we proof the inequality for two cases: x ≥ 1
and x = 0.

1. When x ≥ 1, we have

h

(
|gG(x)|
pG(x)

)
≤ exp(E(|θ − x||x)) ≤ E(e|θ−x||X = x)

≤ 1√
2πxpG(x)

∫
e|u−x|−u+x log u−x log x+xG(du)

≤ 1√
2πpG(x)

∫
e|u−x|−u+x log u−x log x+xG(du), (A.16)

from 1
x! ≤ 1√

2π
e−(x+1/2) log x+x. Define fθ(x) = |θ − x| − θ + x log θ −

x log x+x. We show the upper bound of equation (A.16) for three cases:
(i) x ≥ eθ, (ii) θ ≤ x < eθ and (iii) x < θ.
(i) For x ≥ eθ, we have |x − θ| = x − θ which leads to fθ(x) = 2x −
2θ + x log θ − x log x. Since fθ(x) is decreasing in x for x ≥ eθ, so fθ(x)
has the maximum when x = eθ which is fθ(eθ) = (e − 2)θ. This leads to
(A.16) ≤ 1√

2πpG(x)
e(e−2)b, provided θ ∈ [0, b].

(ii) For θ ≤ x < eθ, we have fθ(x) = 2x− 2θ + x log θ − x log x and fθ(x)
is increase on x ∈ [θ, eθ]. Therefore, we obtain (A.16) ≤ 1√

2πpG(x)
e(e−2)b.

(iii) For x < θ, we have fθ(x) = x log θ − x log x. Since f ′
θ(x) = log θ/e −

log x, we see that fθ(x) has the maximum at x = θe−1, so we have
fθ(θe

−1) = θe−1 ≤ be−1 which leads to (A.16) ≤ 1√
2πpG(x)

eb/e.

From the results of (i), (ii) and (iii) for x ≥ 1 and e− 2 ≥ e−1, we have

h

(
|gG(x)|
pG(x)

)
≤ e(e−2)b

√
2πpG(x)

≤ eb

pG(x)
, (A.17)

which means

|gG(x)|
pG(x)

≤ − log

(
pG(x)

eb

)
≤ L1(pG(x)). (A.18)
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2. When x = 0, we have h( |gG(0)|
pG(0) ) ≤ E(eθ|x = 0) = 1

pG(0)

∫
dG(θ) = 1

pG(0) .

This leads to

|gG(0)|
pG(0)

≤ − log pG(0) ≤ − log pG(0) + b ≤ L(pG(0); b). (A.19)

Combining (A.18) and (A.19), we prove the lemma for x ≥ 0.

A.5. Proof of Lemma 4.4

If ρ < pG(x), then we obtain

|x− t∗G(x; ρ)| =
|gG(x)|
pG(x)

≤ L(pG(x); b) ≤ L(ρ; b), (A.20)

from Lemma 4.3 and the fact that L(ρ; b) is decreasing in ρ.
If pG(x) ≤ ρ < 1, then we obtain

|x− t∗G(x, ρ)| ≤
|gG(x)|

ρ
=

pG(x)

ρ

|gG(x)|
pG(x)

≤ pG(x)L(pG(x); b)

ρ
, (A.21)

from Lemma 4.3. Since yL1(y) is increasing for ρ < 1, we have

pG(x)L(pG(x); b) ≤ ρL(ρ; b)

which results in

|x− t∗G(x, ρ)| =
|gG(x)|

pG(x) ∨ ρ
≤ 1

ρ
pG(x)L(pG(x); b) ≤ 1

ρ
ρL(ρ; b)

= L(ρ; b). (A.22)

Combining (A.20) and (A.22), we prove (4.5).

A.6. Proof of Lemma 4.5

Using the result |t∗G(x, ρ)− x| = |gG(x)|
pG(x)∨ρ ≤ L(ρ; b) from Lemma 4.4,

|t∗G(x+ 1; ρ)− t∗G(x; ρ)| ≤ 1 + |t∗G(x+ 1; ρ)− (x+ 1)|+ |t∗G(x; ρ)− x|
≤ 1 + 2L(ρ; b).

Without loss of generality, we assume x < y and then we obtain

|t∗G(y; ρ)− t∗G(x; ρ)| ≤
y−1∑
i=x

|t∗G(i+ 1; ρ)− t∗G(i; ρ)| ≤ (1 + 2L(ρ; b))|y − x|

≡ Aρ,b|y − x|,
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for Aρ,b = 1 + 2L(ρ; b). Let h(x) = ||t∗G(x; ρ)− θ||, then
|h(x)− h(y)| ≤ ||t∗G(x; ρ)− t∗G(y; ρ)|| ≤ Aρ,b||x− y|| leading to

Pn,θ(||t∗G(X; ρ)− t∗G(Y; ρ)|| ≥ En,θ||t∗G(X; ρ)− t∗G(Y; ρ)||+ x)

≤ exp

(
− κbx

2

2A2
ρ,b

)
,

by Lemma 4.2.

A.7. Proof of Theorem 4.1

We first demonstrate the following two lemmas, Lemma A.7.1 and Lemma A.7.2,
which will be used to prove Theorem 4.1.

Lemma A.7.1. Let G0 satisfying G0([0, b]) = 1 and G([0,M ]) = 1 with M >
max(1, b) then we have

∞∑
x=0

(gG(x)− gG0(x))
2

pG(x) ∨ ρ+ pG0(x) ∨ ρ

≤ 4(M + 1)

(
a2dH(pG, pG0)

2 + 8M2e−M (eM)a−2

(a− 2)a−2

)
, (A.23)

for a > M + 2.
In particular, if M satisfies a−2

e3M > 1 as a → ∞, then

∞∑
x=0

(gG(x)− gG0(x))
2

pG(x) ∨ ρ+ pG0(x) ∨ ρ
≤ 4(M + 1)

(
a2dH(pG, pG0)

2 +Ke−2a
)
, (A.24)

for some constant K > 0.

Proof. Using (gG(x)−gG0(x))
2 ≤ 2(x+1)2(pG(x+1)−pG0(x+1))2+2x2(pG(x)−

pG0(x))
2, we have

∞∑
x=0

(gG(x)− gG0(x))
2

pG(x) ∨ ρ+ pG0(x) ∨ ρ
≤ 2

∞∑
x=0

(x+ 1)2(pG(x+ 1)− pG0(x+ 1))2

pG(x) ∨ ρ+ pG0(x) ∨ ρ

+2

∞∑
x=0

x2(pG(x)− pG0(x))
2

pG(x) ∨ ρ+ pG0(x) ∨ ρ
.

We first show
pG(x+1)∨ρ+pG0

(x+1)∨ρ

pG(x)∨ρ+pG0
(x)∨ρ ≤ M .

For this, it is enough to show that pG(x+1)∨ρ
pG(x)∨ρ ≤ M and similary for G0. There

are four different cases which are

1. if pG(x+ 1) < ρ and pG(x) < ρ, pG(x+1)∨ρ
pG(x)∨ρ = ρ

ρ = 1,
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2. if pG(x+ 1) ≥ ρ and pG(x) < ρ, pG(x+1)∨ρ
pG(x)∨ρ = pG(x+1)

ρ ≤ M , since pG(x+

1) ≤ M
x+1pG(x) < Mρ < M ,

3. if pG(x+ 1) < ρ and pG(x) ≥ ρ, pG(x+1)∨ρ
pG(x)∨ρ = ρ

pG(x) ≤ 1,

4. if pG(x+ 1) ≥ ρ and pG(x) ≥ ρ, pG(x+1)∨ρ
pG(x)∨ρ = pG(x+1)

pG(x) ≤ M .

From these four cases, we have pG(x+1)∨ρ ≤ M(pG(x)∨ρ) and pG0(x+1)∨ρ ≤
M(pG0(x) ∨ ρ) leading to

1

pG(x) ∨ ρ+ pG0(x) ∨ ρ
≤ M

pG(x+ 1) ∨ ρ+ pG0(x+ 1) ∨ ρ
. (A.25)

We also have
∞∑
x=0

(gG(x)− gG0(x))
2

pG(x) ∨ ρ+ pG0(x) ∨ ρ

≤ 2M

∞∑
x=0

(x+ 1)2(pG(x+ 1)− pG0(x+ 1))2

pG(x+ 1) ∨ ρ+ pG0(x+ 1) ∨ ρ

+2

∞∑
x=0

x2(pG(x)− pG0(x))
2

pG(x) ∨ ρ+ pG0(x) ∨ ρ

≤ 2(M + 1)

∞∑
x=0

x2(pG(x)− pG0(x))
2

pG(x) ∨ ρ+ pG0(x) ∨ ρ
. (A.26)

By using

(
√

pG(x) +
√
pG0(x))

2

pG(x) ∨ ρ+ pG0(x) ∨ ρ
≤ 2(pG(x) + pG0(x))

pG(x) ∨ ρ+ pG0(x) ∨ ρ
≤ 2, (A.27)

we have

(A.26) ≤ 4(M + 1)

∞∑
x=0

x2(
√

pG(x)−
√
pG0(x))

2

= 4(M + 1)

(
a2
∑
x<a

(√
pG(x)−

√
pG0(x)

)2
+
∑
x≥a

x2(
√

pG(x)−
√
pG0(x))

2

)

≤ 4(M + 1)

(
a2dH(pG, pG0)

2

+2
∑
x≥a

x2(pG(x) + pG0(x))

)
. (A.28)

To obtain the upper bound of (A.28), we first find out bounds of
∑

x≥a x
2pG(x)

and
∑

x≥a x
2pG0(x) in (A.28). By using e−θθx

x! ≤ e−MMx

x! for x ≥ a > M +2, we
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have ∑
x≥a

x2pG(x) ≤
∫
[0,M ]

∑
x≥a

x2 e
−θθx

x!
dG(θ) ≤

∑
x≥a

x2 e
−MMx

x!

≤
∑
x≥a

x(x− 1)
e−MMx

x!
+
∑
x≥a

x
e−MMx

x!

≤ M2
∑
x≥a

e−MMx−2

(x− 2)!
+M

∑
x≥a

e−MMx−1

(x− 1)!

≤ 2M2P (X ≥ a− 2|θ = M)

≤ 2M2
∑

x≥a−2

e−MMx

x!

≤ 2M2e−M (eM)a−2

(a− 2)a−2
,

where the last inequality is from P (X ≥ x) ≤ e−θ(eθ)x

xx for X ∼ Poisson(θ).

Similarly, we also have
∑

x≥a x
2pG0(x) ≤ 2M2e−M (eM)a−2

(a−2)a−2 . Therefore we have

∞∑
x=0

(gG(x)− gG0(x))
2

pG(x) ∨ ρ+ pG0(x) ∨ ρ

≤ 4(M + 1)

(
a2dH(pG, pG0)

2 + 8M2e−M (eM)a−2

(a− 2)a−2

)
,

which proves (A.23).
To prove (A.24), by using 8M2e−M ≤ K for some constant K > 0, if M

satisfies the following condition

a− 2

M
> e3, (A.29)

then we have

a− 2

M
> e3 ⇐⇒ a− 2

e3M
> 1

⇐⇒ e2 ≤
(√

a− 2

e3M

)a−2

for sufficiently large a

⇐⇒ ea ≤
(√

a− 2

eM

)a−2

⇐⇒
(√

eM

a− 2

)a−2

≤ e−a,

which leads to
∞∑
x=0

(gG(x)− gG0(x))
2

pG(x) ∨ ρ+ pG0(x) ∨ ρ
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≤ 4(M + 1)

(
a2dH(pG, pG0)

28M2e−M (eM)a−2

(a− 2)a−2

)

≤ 4(M + 1)

(
a2dH(pG, pG0)

2 +Ke−2a

)
. (A.30)

Lemma A.7.2. Define ‖f‖h =
{∫

f2(x)h(x)dx
}1/2

. For ρ → 0, assume that

the support of the distribution G0 is [0, b] with b = o
(

− log ρ
log(− log ρ)

)
. Then we have,

||(1− pG0/ρ)+gG0/pG0 ||pG0
= O

(
ρ1/2b1

)
, (A.31)

where b1 = b ∨ 1.

Proof. Note that pG0(x) =
∫
p(x|θ)dG0(θ) is decreasing as x → 0 or x → ∞.

Therefore, for sufficiently small ρ, the following two sets {x : 0 ≤ x ≤ c1} and
{x : x ≥ c2} with some constants c1 and c2 depending on ρ can be considered as
candidates for the asymptotically upper set of the set {x : pG0(x) < ρ}. However,
in the former case, pG0(x) =

∫
p(x|θ)dG0(θ) has a as a lower bound as p(0|b) =

e−b, which is always greater than ρ due to the assumption of b = o
(

− log ρ
log(− log ρ)

)
.

Thus, for sufficiently small ρ, we have {x : pG0(x) < ρ}⊆{x : x ≥ Cρ} for some
constant Cρ depending on ρ.

From now on, we figure out the specific form of Cρ. Recall that we only
consider the distribution G0 which does not degenerate at 0. That is there
exists constant b1 > 0 such that G0([0, b1)) ≤ δ0 for some δ0 < 1. Therefore,
G0([b1, b]) = w0 ≥ 1− δ0. We consider the following two cases according to the
relationship between x and b. We mainly use the following facts:

1. b = o
(

− log ρ
log(− log ρ)

)
implies b log b = o(− log ρ)

2. For any x ∈ R, define fx : [0, b] → R such that fx(θ) = θxe−θ. Then fx(θ)
is increasing (decreasing) function when θ ≤ x (θ > x).

Case 1. x > b
We show that the set {x : pG0(x) < ρ} is asymptotically subset of {x : x log x >

− log ρ}. Note that

w0b
x
1e

−b1 ≤
∫

θxe−θdG0(θ) ≤ bxe−b.

Therefore using the fact that log x! = O(x log x) for x → ∞, we derive the
following

{x : pG0(x) < ρ} ⊆ {x : w0b
x
1e

−b1/x! < ρ}
= {log x!− x log b1 + b1 − logw0 > − log ρ}
= {log x!(1 + o(1)) > − log ρ}
� {x : x log x > − log ρ}. (A.32)

Case 2. x ≤ b
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In this case we show that pG0(x) > ρ.
Note that

w0p(�b�|b1) � ρ, (A.33)

(∵)− logw0p(�b�|b1) = log�b�!− �b� log b1 + b1 − logw0

� b log b

= o(− log ρ) < − log ρ,

and

w0p(0|b) = w0e
−b � ρ. (A.34)

Combining (A.33) and (A.34)

pG0(x) ≥ w0 min (p(�b�|b1), p(0|b)) � ρ. (A.35)

Therefore for the Case 2. x ≤ b, the set {x : pG0(x) < ρ} is asymptotically
empty set.

{x : pG0(x) < ρ} � φ. (A.36)

Thus from the results (A.32) and (A.36), we conclude that pG0(x) < ρ only
happens only when x > b and the set of x satisfying pG0(x) < ρ becomes a subset
of the set {x : x log x > − log ρ} asymptotically. Define Cρ = − log ρ

log(− log ρ) (1+o(1))

then x log x ∼ − log ρ when x = Cρ. Therefore, it can be shown asymptotically
that

{x : pG0(x) < ρ} ≈ {x : x ≥ Cρ}. (A.37)

Therefore,

||(1− pG0/ρ)+gG0/pG0 ||2pG0
≤

∑
x:pG0

(x)<ρ

(
gG0(x)

pG0(x)

)2

pG0(x)

≤
∑

x:pG0
(x)<ρ

x2pG0(x)

≤
∑

x:pG0
(x)<ρ

(b2pG0(x− 2) + bpG0(x− 1))

≤ 2(b ∨ 1)2
∑

x:pG0
(x)<ρ

p(x− 2|b)

≤ 2(b1)
2
∑

x>Cρ−2

p(x|b)

≤ 2(b1)
2 (eb)Cρ−2

(Cρ − 2)Cρ−2
,

∼ 2(b1)
2e−Cρ(logCρ−log(eb)) ∼ 2(b1)

2ρ,

leading to ||(1− pG0/ρ)+gG0/pG0 ||pG0
= O

(
ρ1/2b1

)
as ρ → 0.
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Now the proof of Theorem 4.1 is directly demonstrated by the previous two
lemmas, Lemma A.7.1 and Lemma A.7.2.

Proof of Theorem 4.1. We denote dH (pG, pG0) as dH for notation simplicity.

1. Let w∗ = 1/ (pG ∨ ρ+ pG0 ∨ ρ). We have

{EG0(t
∗
G(Y ; ρ)− θ)2 −R∗(G0)}1/2

= ||gG/(pG ∨ ρ)− gG0/(pG0 ∨ ρ)||pG0

≤ 2||gG − gG0 ||w∗ + 2L(ρ;M)
√
2dH

+||(1− pG0/ρ)+gG0/pG0 ||pG0

≤ 2
√
D

(
a2d2H + 8M2e−M (eM)a−2

(a− 2)a−2

)1/2

+2
√
2L(ρ;M)dH + ||(1− pG0/ρ)+gG0/pG0 ||pG0

≤ 2
√
D

(
adH +

√
8M2e−M

(eM)a−2

(a− 2)a−2

)
+2

√
2L(ρ;M)dH + ||(1− pG0/ρ)+gG0/pG0 ||pG0

. (A.38)

Here we use the result

||gG − gG0 ||2w∗ ≤ 4(M + 1)

(
a2dH (pG, pG0)

2
+ 8M2e−M (eM)a−2

(a− 2)a−2

)
,

from Lemma A.7.1
2. (4.8) can be derived directly from the equation (A.30), (A.38) and Lemma

A.7.2.
3. For (4.9), note that D = 4(M + 1) � − log dH (pG, pG0) implies there is

constant C0 such that{
EG0 (t

∗
G(Y ; ρ)− θ)

2 −R∗ (G0)
}1/2

≤
{
2
√
D
(
C (− log dH) +

√
K (dH)

C−1
)
+ 2

√
2L(ρ;M)

}
dH

+ρ1/2b1

≤ C0

{
(− log dH)

3/2
+ (− log dH)

1/2
(
(dH)

C−1
+ L(ρ; b)

)}
dH

+ρ1/2b1. (A.39)

Therefore,

EG0 (t
∗
G(Y ; ρ)− θ)

2 −R∗ (G0)

≤ 2

{
3C2

0

(
(− log dH)

3
+ (− log dH) (dH)

2C−2

+(− log dH)L(ρ;M)2

)
(dH)2 + ρ(b1)

2

}
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≤ M0

(
|log ε0|3 + |log ε0| εC−2

0 + |log ε0|L(ρ;M)2

+| log ρ|2(b1)2
)
ε20, (A.40)

where the last inequality above can be derived from the fact that
(− log y)3y2, (− log y)y2C , and (− log y)y2 are increasing with respect to
y for y ≤ e−3/2, and ρ ≤ | log ρ|2ε20.

A.8. Proof of Lemma 4.6

Define I = [0,M ] and notice that [0,M ] is the support of Gm and G. We also
define k∗ = �4.32M�. From the Carathéodory’s theorem, there exists a discrete
distribution function Gm for each G such that the Gm with support on [0,M ]
and no more than m = �4.32M�+B + 2 support points satisfying∫

I

ujG(du) =

∫
I

ujGm(du), (A.41)

for j = 0, 1, · · · , k∗+B. Hence the total number of moments of two distributions
must be equal is k∗ +B +1. By using the Taylor expansion of e−θ at θ = 0, we
have

e−θ =

k−1∑
j=0

(−1)jθj

j!
+Rk, |Rk| ≤

θk

k!
. (A.42)

Using the above result, we can define the approximation error between the prob-
ability mass function of Poisson distribution with parameter θ and its Taylor
expansion function of order k − 1 as follows,

Remk(x, θ) ≡
θxe−θ

x!
− θx

x!

k−1∑
j=0

(−1)jθj

j!
. (A.43)

Then for x = 0, 1, · · · , B and θ ∈ [0,M ],∣∣∣Remk∗(x, θ)
∣∣∣ ≤ θx

x!

θk
∗

k∗!
=

θxe−θ

x!

θk
∗
eθ

k∗!

≤ Mk∗
eM

k∗!
(A.44)

≤ 1√
2πk∗

(
eM

k∗

)k∗

eM (A.45)

≤ 1

2
e−M , (A.46)

where in (A.44) we use the fact that p(x|θ) = θxe−θ

x! ≤ 1 and θ ≤ M , in (A.45)

the well-known factorial inequality
√
2πk∗(k∗/e)k

∗
e1/(12k

∗+1)<k∗!, and in (A.46)
the assumption k∗ ≥ 4.32M which implies (eM/k∗)k

∗ ≤ e−2M .
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Therefore,

‖pG(x)− pGm(x)‖∞,B = sup
x≤B

∣∣∣∣∣
∫
I

θx

x!

k∗−1∑
j=0

(−1)jθj

j!
d(G−Gm)(θ)

∣∣∣∣∣
+2 sup

x≤B,θ≤M

∣∣∣Rem(x, θ)
∣∣∣

≤ e−M ≤ C1η. (A.47)

where C1 > 0 is an universal constant.
Similarly, we obtain a bound for
||gGm − gG||∞,B as follows:

gG(x) =

∫
((x+ 1)p(x+ 1|θ)− xp(x|θ))G(dθ) =

∫
p(x|θ) (θ − x)G(dθ).

For x ≤ B, we have

|θ − x|Remk∗(x, θ) ≤ (B ∨M)
1

2
e−M . (A.48)

Therefore, we have

||gG(x)− gGm(x)||∞,B ≤ C1η(B ∨M). (A.49)

A.9. Proof of Lemma 4.7

Let PG′ ⊂ P be the set of all distribution
∫
p(x|u)dG′(u) where G′ has at most

m ≤ �4.32M�+B + 2 support points on [0,M ]. By Lemma 4.6, PG′ is an η-net
over P with distance ‖ · ‖∞,M . Therefore, with ‖ · ‖∞,M , an η-net over PG′ is an
2η-net over P .

Next we define the followings:

η-covering set {Wm
1 , · · · ,Wm

Nw
} of the L dimensional simplex Wm

with ‖ · ‖1 s.t Nw = N(η,Wm, ‖ · ‖1) then Nw �
(
5

η

)m

,

and

η-covering set {Um
1 , · · · ,Um

Nu
} of [0,M ]m with ‖ · ‖∞

s.t Nu = N(η, [0,M ]m, ‖ · ‖∞) then Nu � 1

η

(
M

η

)m

. (A.50)

For any pG ∈ P , by the Lemma 4.6, there exists pG′ ∈ PG′ such that
‖pG − pG′‖∞,M � η with G′(u) =

∑m
j=1 wjI(u ≤ uj).

Define weight and location parameters Wm and Um of G′ denoted by

Wm = (w1, · · · , wm), Um = (u1, · · · , um).
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Then, there exist

W̃
m
(= (w̃1, · · · , w̃m)) ∈ {Wm

1 , · · · ,WNm
w
},

and

Ũ
m
(= (ũ1, · · · , ũm)) ∈ {Um

1 , · · · ,Um
Nu

}

such that ‖Wm − W̃
m
‖1 ≤ η and ‖Um − Ũ

m
‖∞ ≤ η.

We define PG′′ ⊂ P which is the set of all distributions
∫
p(x|u)dG′′(u) where

G′′ is constructed of a combination of

{Um
1 , · · · ,Um

Nu
} and {Wm

1 , · · · ,Wm
Nw

}.

Then the cardinality of the PG′′ , #PG′′ has an upper bound which is

#PG′′ � 1

η

(
5

η

)m

×
(
M

η

)m

. (A.51)

Now we show that there exists pG′′ ∈ PG′′ such that

‖pG′ − pG′′‖∞ � η.

First, let us construct the following two distributions:

H ′′(u) =
m∑
j=1

wjI(ũj ≤ u), G′′(u) =
m∑
j=1

w̃jI(ũj ≤ u).

Note that∥∥∥∥∫ p(x|u)d(G′ −H ′′)(u)

∥∥∥∥
∞,B

≤

∥∥∥∥∥∥
m∑
j=1

wj {p(x|uj)− p(x|ũj)}

∥∥∥∥∥∥
∞,B

≤ ‖U − Ũ‖∞ × sup
x≤B,u≤M

∣∣∣∣ ∂∂up(x|u)
∣∣∣∣

≤ η × sup
x≤B,u≤M

∣∣∣∣ ∂∂up(x|u)
∣∣∣∣ , (A.52)

and ∥∥∥∥∫ p(x|u)d(H ′′ −G′′)(u)

∥∥∥∥
∞,B

≤

∥∥∥∥∥∥
m∑
j=1

(wj − w̃j)p(x|ũi)

∥∥∥∥∥∥
∞,B

≤ ‖W − W̃ ‖1 × sup
x,u∈[0,M ]

|p(x|u)|

≤ η × sup
x≤B,u≤M

|p(x|u)|. (A.53)
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We can easily show supx≤B,u≤M

∣∣ ∂
∂up(x|u)

∣∣ ≤ 1 in (A.52) from

∂

∂u
{p(x|u)} =

{
− exp(−θ) x = 0,

p(x− 1|θ)− p(x|θ) x ≥ 1.

Similarly, we also obtain supx≤B,u≤M |p(x|u)| ≤ 1 since p(x|u) ≤ 1. Therefore,
the sup norm between pG′ and pG′′ is

‖pG′ − pG′′‖∞,B ≤
∥∥∥∥∫ p(x|u)d(G′ −H ′′)(u)

∥∥∥∥
∞,B

+

∥∥∥∥∫ p(x|u)d(H ′′ −G′′)(u)

∥∥∥∥
∞,B

≤ η × sup
x≤B,u≤M

∣∣∣∣ ∂∂up(x|u)
∣∣∣∣+ η × sup

x≤B,u≤M
|p(x|u)|

� η. (A.54)

Using #PG′′ � 1
η

(
M
η

)m
×
(

5
η

)m
in (A.51) with

m ≤ �4.32M�+B + 2

we derive the following result by Lemma 4.6 and M � log 1
η :

logN (η,P , ‖ · ‖∞,B) � (�4.32M�+B + 2) log

(
1

η

)
. (A.55)

A.10. Proof of Lemma 4.8

We first have

En,θ

{
n∏

i=1

(aXi)
I{Xi≥B}

}λ

≤
n∏

i=1

(1 + aλEn,θX
λ
i I(Xi ≥ B))

≤ exp
{
aλnEn,θX

λI(X ≥ B)
}
.

In (4.10), using B ≥ 1 and θi ∈ [0, b], for some b > 0,
we have Xλ ≤ X

B1−λ for B ≥ 1 which leads to

En,θ(X
λI(X ≥ B)) ≤ Bλ−1En,θ(XI(X ≥ B))

≤ Bλ−1b
∑

x≥B−1

e−θθx

x!
≤ Bλ−1b

e−b(eb)B−1

(B − 1)B−1
.

From this, we have En,θ(X
λI(X ≥ B)) ≤ Bλ−1bBe−b

(
e

B−1

)B−1

and we prove

the lemma.
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A.11. Proof of Theorem 4.2

The proof adopts the idea of Theorem 1 in [34], however there exist some dif-

ferent techniques due to using Poisson probability function p(x|θ) = e−θθx

x! in-
stead of the Normal density. Let η = 1

n4 and M = L log 1
η with some constant

L ≥ 1 as in Lemma 4.6. Additionally, let B = �M�, and define p∗(x) ≡ ηI(x ≤
B) + (ηB2)x−2I(x > B). We first consider any approximate solution of the

NPMLE satisfying Ln(pĜn
, pGn) =

∏n
i=1{pĜn

(Xi)/pGn(Xi)} ≥ e−2t2nε2n/15. We
also let {pj , j ≤ N} be an η-net of P under || · ||∞,B with N ≡ N(η,P , || · ||∞,B)
where P defined on Lemma 4.7.

Let p0,j ∈ P satisfying dH(p0,j , pGn) ≥ tεn, ‖p0,j − pj‖∞,B ≤ η if they exist
and define J ≡ {j ≤ N ; ∃p0,j}. Then for any p ∈ P with dH(p, pGn) ≥ tεn, there
exists j ∈ J such that

p(x) ≤
{

p0,j(x) + 2η = p0,j(x) + 2p∗(x), x ≤ B
1, x > B.

(A.56)

Following the proof of Theorem 1 in Zhang (2009), we obtain

Pn,θ{dH(pĜn
, pGn) ≥ tεn}

≤ Pn,θ

(
sup
j∈J

n∏
i=1

p0,j(Xi) + 2p∗(Xi)

pGn(Xi)
≥ e−4t2nε2n/5

)

+Pn,θ

( ∏
Xi>B

1

2p∗(Xi)
≥ e2t

2nε2n/3

)
. (A.57)

We consider the first term in equation (A.57). For εn = (logn)3/2√
n

, Lemma 4.7

implies,

logN + n
√
4ηB ≤ C1 (logn)

2
+ 2
√
L logn, some constants C1 and L ≥ 1.

≤ nt2ε2n
20

, for sufficiently large t. (A.58)

Note that,

Pn,θ

(
n∏

i=1

p0,j(Xi) + 2p∗(Xi)

pGn(Xi)
≥ e−4t2nε2n/5

)

≤ e2t
2nε2n/5

n∏
i=1

En,θ

√
p0,j (Xi) + 2p∗ (Xi)

pGn (Xi)

≤ exp

{
2nt2ε2n

5
+

n∑
i=1

En,θ

(√
{p0,j (Xi) + 2p∗ (Xi)}

pGn (Xi)
− 1

)}

= exp

{
2nt2ε2n

5
+ n

(∫ √
(p0,j + 2p∗) pGn − 1

)}
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≤ exp

{
−nt2ε2n

10
+ n
√
4ηB

}
, (A.59)

where the last inequality above is derived from
∫ √

(p0,j + 2p∗) pGn − 1 ≤
−d2

H(p0,j ,pGn )
2 +

√
2
∫
p∗,−d2

H(p0,jpGn )
2 ≤ − t2ε2n

2 and
√

2
∫
p∗ ≤

√
4ηB. Therefore,

we obtain the bound of the first term in (A.57) as follows:

Pn,θ

(
sup
j∈J

n∏
i=1

p0,j(Xi) + 2p∗(Xi)

pGn(Xi)
≥ e−4t2nε2n/5

)
≤ elogN+n

√
4ηB−nt2ε2n

10

≤ e−
nt2ε2n

20 . (A.60)

Next, consider the second term in equation (A.57). By Lemma 4.8 with a =
n2/B and λ = 1

logn , we know that

Pn,θ

( ∏
Xi>B

1

2p∗(Xi)
≥ e2t

2nε2n/3

)

≤ e−2nt2ε2n/(3 logn)En,θ

{ ∏
Xi>B

n2

B
Xi

}1/ logn

≤ e−2nt2ε2n/(3 logn) exp

{(
n2

B

)1/ logn

nB
1

log n−1bBe−b

×
(

e

B − 1

)B−1
}
. (A.61)

The second exponential term in (A.61) can be handled using the following
fact, (

n2

B

)1/ logn

nB
1

log n−1bBe−b

(
e

B − 1

)B−1

= exp

{
2 + logn+ log

(
b

B

)
− b− (B − 1) log

(
B − 1

eb

}}
≤ exp

{
2 + logn− (B − 1) log

(
B − 1

eb

)}
≤ exp

{
3 + (4L logn− 1)− (B − 1) log

(
B − 1

eb

)}
= exp

{
3− (B − 1) log

(
B − 1

e2b

)}
,

for sufficiently large n, equivalently

exp

{(
n2

B

)1/ logn

nB
1

log n−1bBe−b

(
e

B − 1

)B−1
}

≤ exp (exp(3)) .
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Therefore, we obtain the bound of the second term in (A.57) as follows:

Pn,θ

⎛⎝ ∏
Xi≥M

1

2p∗(Xi)
≥ e2nt

2ε2n/3

⎞⎠ ≤ e−( 2t2

3 −K)
nε2n
log n

≤ e−( t2

3 )
nε2n
log n , (A.62)

where K = exp(3)
(logn)2 hence the last term is derived by K ≤ t2/3 for sufficiently

large n. By combining (A.60) and (A.62) we finally obtain the result.

A.12. Proof of Theorem 4.3

We show that for any G ∈ G[0,M ], there exists H such that t∗G(·; ρ) is approx-
imated by t∗H(·; ρ) where H(u) =

∑m
j=1 wjI (uj ≤ u) is a discrete distribution

on [0,M ] with at most m ≤ (�4.32M�+M + 2) support points. First using
Lemma 4.4 and 4.6, we have

‖t∗G(x; ρ)− t∗H(x; ρ)‖∞,B

≤
∥∥∥∥ gG(x)

pG(x) ∨ ρ
− gH(x)

pG(x) ∨ ρ

∥∥∥∥
∞,B

+

∥∥∥∥ gH(x)

pG(x) ∨ ρ
− gH(x)

pH(x) ∨ ρ

∥∥∥∥
∞,B

≤ 1

ρ
‖gG(x)− gH(x)‖∞,B +

L(ρ;M)

ρ
‖pG(x)− pH(x)‖∞,B

≤ η

ρ
(C1L(ρ; b) + C2(− log η)) , (A.63)

for some constant C1 > 0 and C2 > 0.
Similar to Lemma 4.7, let

H ′(u) =
m∑
j=1

wjI (ũj ≤ u) , and H ′′(u) =
m∑
j=1

w̃jI (ũj ≤ u) , (A.64)

where max
1≤j≤m

|ũj − uj | ≤ η and |
∑m

j=1(wj − w̃j)| ≤ η. Then, we obtain

‖pH − pH′‖∞,B ≤ C∗
1η, ‖gH − gH′‖∞,B ≤ C∗

2η,

for C∗
1 = ‖sup

u

∂
∂u{p(x|u)}‖∞,B and C∗

2 = ‖sup
u

∂
∂u{(x − u)p(x|u)}‖∞,B , where

C∗
1 is uniformly bounded. Next, we consider the following equation,

∂

∂u
{(x− u)p(x|u)}

=

{
exp(−u)(u− 1) x = 0,

−(2x+ 1)p(x|u) + (x+ 1)p(x+ 1|u) + xp(x− 1|u) x ≥ 1,
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which implies C∗
2 = O(M) provided x ≤ B ≤ M . Therefore, we obtain

‖t∗H(x; ρ)− t∗H′(x; ρ)‖∞,B ≤ 1

ρ
‖gH(x)− gH′(x)‖∞,B

+
L(ρ;M)

ρ
‖pH(x)− pH′(x)‖∞,B

≤ η

ρ
(C∗

2 + C∗
1L(ρ; b)) . (A.65)

Furthermore, from H ′ and H ′′ in (A.64), we also have

‖pH′ − pH′′‖∞,B ≤ η, ‖gH′ − gH′′‖∞,B ≤ C∗
3η,

where C∗
3 = ‖sup

u
{g(x|u)}‖∞,B for

g(x|u) = {(x− u)p(x|u)} =

{
−u exp(−u) x = 0,

xp(x|u)− (x+ 1)p(x+ 1|u) x ≥ 1.

Therefore, we obtain C∗
3 = O(M) provided x ≤ B ≤ M .

Also,

‖t∗H′(x; ρ)− t∗H′′(x; ρ)‖∞,B ≤ 1

ρ
‖gH′(x)− gH′′(x)‖∞,B

+
L(ρ;M)

ρ
‖pH′(x)− pH′′(x)‖∞,B

≤ η

ρ
(C∗

3 + L(ρ;M)) . (A.66)

Using triangular inequality for || · ||∞,B and equations (A.63), (A.65) and
(A.66), we derive

‖t∗G(x; ρ)− t∗H′′(x; ρ)‖∞,B

≤ ‖t∗G(x; ρ)− tH(x; ρ)‖∞,B + ‖tH(x; ρ)− t∗H′(x; ρ)‖∞,B

+ ‖t∗H′(x; ρ)− t∗H′′(x; ρ)‖∞,B

≤ η

ρ
{C∗

2 + C∗
3 + C2(− log η) + L(ρ;M)(C1 + C∗

1 + 1)}

≤ D∗ η

ρ

(
log

1

η
+ L(ρ;M)

)
≡ η∗, (A.67)

for a universal constant D∗, where the last inequality holds since we use the
fact that M � log 1

η , C1, C2, and C∗
1 are uniformly bounded and C∗

2 = O(M)

and C∗
3 = O(M).
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Also, as in Lemma 4.7, H ′′ can be chosen from the set with cardinality

asymptotically less than 1
η

(
M
η

)m
×
(

5
η

)m
and m �

(
log 1

η

)
leading to

logN (η∗, Tρ, ‖ · ‖∞,B) �
{
log

1

η

}2

, (A.68)

provided M � log 1
η .

Acknowledgments

We are grateful to two referees and the editor, whose valuable suggestions and
comments have greatly improved the presentation of the paper. Research of J.
Park was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2020R1A2C1A01100526).

References

[1] Anders, S. and Huber, W. (2010). Differential expression analysis for
sequence count data. Nature Precedings 1–1.

[2] Brown, L. D. and Greenshtein, E. (2009). Nonparametric Empiri-
cal Bayes and Compound Decision Approaches to Estimation of a High-
Dimensional Vector of Normal Means. The Annals of Statistics 37 1685–
1704. MR2533468

[3] Brown, L. D., Greenshtein, E. and Ritov, Y. (2013). The Poisson
Compound Decision Problem Revisited. Journal of the American Statistical
Association 108 741–749. MR3174656

[4] Choi, H., Gim, J., Won, S., Kim, Y. J., Kwon, S. and Park, C. (2017).
Network analysis for count data with excess zeros. BMC genetics 18 1–10.

[5] Clevenson, M. L. and Zidek, J. V. (1975). Simultaneous Estimation of
the Means of Independent Poisson Laws. Journal of the American Statis-
tical Association 70 698–705. MR0394962

[6] Dicker, L. H. and Zhao, S. D. (2016). High-dimensional classifica-
tion via nonparametric empirical Bayes and maximum likelihood inference.
Biometrika 103 21–34. MR3465819

[7] Efron, B. (2003). Robbins, empirical Bayes and microarrays. The Annals
of Statistics 31 366–378. MR1983533

[8] Efron, B. (2014). Two modeling strategies for empirical Bayes estima-
tion. Statistical science: a review journal of the Institute of Mathematical
Statistics 29 285–301. MR3264543

[9] Feng, L. and Dicker, L. H. (2018). Approximate nonparametric max-
imum likelihood for mixture models: A convex optimization approach to
fitting arbitrary multivariate mixing distributions. Computational Statis-
tics & Data Analysis 122 80–91. MR3765816

https://www.ams.org/mathscinet-getitem?mr=2533468
https://www.ams.org/mathscinet-getitem?mr=3174656
https://www.ams.org/mathscinet-getitem?mr=0394962
https://www.ams.org/mathscinet-getitem?mr=3465819
https://www.ams.org/mathscinet-getitem?mr=1983533
https://www.ams.org/mathscinet-getitem?mr=3264543
https://www.ams.org/mathscinet-getitem?mr=3765816


3834 H. Park and J. Park

[10] Gauran, I. I. M., Park, J., Lim, J., Park, D., Zylstra, J., Peter-
son, T., Kann, M. and Spouge, J. L. (2018). Empirical null estimation
using zero-inflated discrete mixture distributions and its application to pro-
tein domain data. Biometrics 74 458–471. MR3825332

[11] Gu, J. and Koenker, R. (2017). Rebayes: An R package for empirical
Bayes mixture methods cemmap working paper No. CWP37/17, London.

[12] Hudson, H. M. and Tsui, K.-W. (1981). Simultaneous Poisson Estima-
tors for a Priori Hypotheses about Means. Journal of the American Statis-
tical Association 76 182–187. MR0608191

[13] Jiang, W. (2020). On general maximum likelihood empirical Bayes estima-
tion of heteroscedastic IID normal means. Electronic Journal of Statistics
14 2272–2297. MR4109006

[14] Jiang, W. and Zhang, C.-H. (2009). General maximum likelihood empir-
ical Bayes estimation of normal means. The Annals of Statistics 37 1647–
1684. MR2533467

[15] Jiang, W. and Zhang, C.-H. (2016). GENERALIZED LIKELIHOOD
RATIO TEST FOR NORMAL MIXTURES. Statistica Sinica 26 955–978.
MR3559938

[16] Kiefer, J. andWolfowitz, J. (1956). Consistency of the Maximum Like-
lihood Estimator in the Presence of Infinitely Many Incidental Parameters.
The Annals of Mathematical Statistics 27 887–906. MR0086464

[17] Kimber, A. (1983). A note on Poisson maxima. Zeitschrift für Wahrschein-
lichkeitstheorie und Verwandte Gebiete 63 551–552. MR0705624

[18] Koenker, R. and Mizera, I. (2014). Convex Optimization, Shape Con-
straints, Compound Decisions, and Empirical Bayes Rules. Journal of the
American Statistical Association 109 674–685. MR3223742

[19] Maritz, J. S. (1969). Empirical Bayes estimation for the Poisson distri-
bution. Biometrika 56 349–359. MR0258180

[20] Park, J. (2012). Nonparametric empirical Bayes estimator in simultaneous
estimation of Poisson means with application to mass spectrometry data.
Journal of Nonparametric Statistics 24 245-265. MR2885836

[21] Peng, J. (1975). Simultaneous Estimation of the Parameters of Indepen-
dent Poisson Distributions Technical Report No. No. 78, Stanford Univer-
sity, Department of Statistics. MR2625889

[22] Peterson, T. A., Gauran, I. I. M., Park, J., Park, D. and
Kann, M. G. (2017). Oncodomains: A protein domain-centric framework
for analyzing rare variants in tumor samples. PLOS Computational Biology
13 e1005428.

[23] Robbins, H. (1956). An Empirical Bayes Approach to Statistics. In Pro-
ceedings of the Third Berkeley Symposium on Mathematical Statistics and
Probability, Volume 1: Contributions to the Theory of Statistics 157–163.
University of California Press, Berkeley, Calif. MR0084919

[24] Robbins, H. (1977). Prediction and estimation for the compound Poisson
distribution. Proceedings of the National Academy of Sciences 74 2670–
2671. MR0451479

[25] Robbins, H. et al. (1951). Asymptotically subminimax solutions of com-

https://www.ams.org/mathscinet-getitem?mr=3825332
https://www.ams.org/mathscinet-getitem?mr=0608191
https://www.ams.org/mathscinet-getitem?mr=4109006
https://www.ams.org/mathscinet-getitem?mr=2533467
https://www.ams.org/mathscinet-getitem?mr=3559938
https://www.ams.org/mathscinet-getitem?mr=0086464
https://www.ams.org/mathscinet-getitem?mr=0705624
https://www.ams.org/mathscinet-getitem?mr=3223742
https://www.ams.org/mathscinet-getitem?mr=0258180
https://www.ams.org/mathscinet-getitem?mr=2885836
https://www.ams.org/mathscinet-getitem?mr=2625889
https://www.ams.org/mathscinet-getitem?mr=0084919
https://www.ams.org/mathscinet-getitem?mr=0451479


Poisson mean vector estimation 3835

pound statistical decision problems. In Proceedings of the second Berkeley
symposium on mathematical statistics and probability. The Regents of the
University of California. MR0044803

[26] Saha, S. and Guntuboyina, A. (2020). On the nonparametric maxi-
mum likelihood estimator for Gaussian location mixture densities with
application to Gaussian denoising. The Annals of Statistics 48 738–762.
MR4102674

[27] van de Geer, S. (2003). Asymptotic theory for maximum likelihood in
nonparametric mixture models. Computational Statistics & Data Analysis
41 453–464. MR1973724

[28] van der Vaart, A. W. and Wellner, J. (1996). Weak convergence
and empirical processes: with applications to statistics. Springer Science &
Business Media. MR1385671

[29] Weinstein, A.,Ma, Z.,Brown, L. D. and Zhang, C.-H. (2018). Group-
Linear Empirical Bayes Estimates for a Heteroscedastic Normal Mean.
Journal of the American Statistical Association 113 698–710. MR3832220

[30] Wong, W. H. and Shen, X. (1995). Probability Inequalities for Likelihood
Ratios and Convergence Rates of Sieve MLES. The Annals of Statistics 23
339–362. MR1332570

[31] Xie, X., Kou, S. C. and Brown, L. D. (2012). SURE Estimates for
a Heteroscedastic Hierarchical Model. Journal of the American Statistical
Association 107 1465–1479. MR3036408

[32] Zhang, C.-H. (1997). EMPIRICAL BAYES AND COMPOUND ESTI-
MATION OF NORMALMEANS. Statistica Sinica 7 181–193. MR1441153

[33] Zhang, C.-H. (2003). Compound decision theory and empirical Bayes
methods: invited paper. The Annals of Statistics 31 379–390. MR1983534

[34] Zhang, C.-H. (2009). GENERALIZED MAXIMUM LIKELIHOOD ES-
TIMATION OF NORMAL MIXTURE DENSITIES. Statistica Sinica 19
1297–1318. MR2536157

https://www.ams.org/mathscinet-getitem?mr=0044803
https://www.ams.org/mathscinet-getitem?mr=4102674
https://www.ams.org/mathscinet-getitem?mr=1973724
https://www.ams.org/mathscinet-getitem?mr=1385671
https://www.ams.org/mathscinet-getitem?mr=3832220
https://www.ams.org/mathscinet-getitem?mr=1332570
https://www.ams.org/mathscinet-getitem?mr=3036408
https://www.ams.org/mathscinet-getitem?mr=1441153
https://www.ams.org/mathscinet-getitem?mr=1983534
https://www.ams.org/mathscinet-getitem?mr=2536157

	Introduction
	Simultaneous Poisson mean vector estimation
	Main results 
	Proof of Theorem 3.1
	Relationship between g-NPEB and regularized version ofg-NPEB
	Properties of the regularized Bayes rule
	Upper bound of a regularized Bayes estimator discrepancy with a misspecified prior
	Hellinger consistency of the NPMLE
	Entropy bound of the regularized Bayes rule

	Simulation studies
	Real data examples
	Concluding remarks
	Proofs
	Proof of Theorem 3.1
	Proof of Lemma 4.1 
	Proof of Lemma 4.2 
	Proof of Lemma 4.3
	Proof of Lemma 4.4
	Proof of Lemma 4.5
	Proof of Theorem 4.1
	Proof of Lemma 4.6
	Proof of Lemma 4.7
	Proof of Lemma 4.8
	Proof of Theorem 4.2
	Proof of Theorem 4.3

	Acknowledgments
	References

