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Abstract: Inferring the heterogeneous treatment effect is a fundamental
problem in many applications. In this paper, we focus on estimating the
Conditional Average Treatment Effect (CATE), that is, the difference in
the conditional mean outcome between treatments given covariates. Tra-
ditionally, Q-Learning based approaches estimate each conditional mean
outcome. However, they are subject to model misspecification. Recently,
flexible one-step methods to directly learn (D-Learning) the CATE without
outcome model specifications have been proposed. However, they require
a specification of the propensity score. We propose robust direct learning
(RD-Learning), to augment D-learning, leading to doubly robust estima-
tors of the treatment effect. The consistency for our CATE estimator is
guaranteed if either the main effect model or the propensity score model
is correctly specified. The framework can be used in both the binary and
the multi-arm settings and is general enough to allow different function
spaces and incorporate different generic learning algorithms. We conduct a
thorough theoretical analysis of the prediction error of our CATE estimator
using statistical learning theory under both linear and non-linear settings.
The effectiveness of our proposed method is demonstrated by simulation
studies and a real data example about an AIDS Clinical Trials study.
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1. Introduction

Inferring the heterogeneous treatment effect is a fundamental problem in the
sciences and commercial applications. Examples include studies on the effect
of certain advertising or marketing efforts on consumer behavior [5], research
on the effectiveness of public policies [47], and “A/B tests” in the context of
tech companies for product development [44]. In particular, it can be useful in
personalized medicine: based on many biomarkers, how can we determine which
patients can potentially benefit from a treatment [36]?

Under the potential outcome framework [37, 18], we are interested in the
comparison between the observed outcome and the counterfactual outcome we
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would have observed under a different regime or treatment. Assuming that there
are two treatment arms ({+1,−1}), we want to estimate the difference in the
conditional mean outcome between the two treatments, given the individual’s
pre-treatment covariates. This problem is typically known as Conditional Aver-
age Treatment Effect (CATE) estimation. CATE is also closely associated with
the optimal individualized treatment rule (ITR). The latter maximizes the mean
of a (clinical) outcome in a population of interest.

Traditional approaches for estimating CATE and the optimal ITR include Q-
Learning (“Q” denoting “quality”) [54, 31, 24] and A-Learning (“A” denoting
“advantage”) [25, 32]. Q-Learning estimates CATE through modeling the con-
ditional mean outcome and taking their differences, and A-Learning estimates
CATE by modeling the interaction between treatment and predictors based on
a pre-estimated propensity score. A-Learning is known to be robust against the
misspecification of the baseline mean function, given the propensity score model
is correctly specified.

Recently, there is a growing literature on using machine learning for CATE or
ITR estimation, including regression trees [1, 43], random forests [49], boosting
[28], neural nets [19], Bayesian machine learning [9, 16, 44, 14], and combina-
tions of the above [23]. Besides those under the Q-Learning framework, many of
these methods can be categorized to modified outcome methods and modified co-
variate methods, following the categorization of [21]. Modified outcome methods
were proposed in the Ph.D. thesis of James Signorovitch, Harvard University
[41] in the randomized experimental setting. In the observational data setting,
the inverse probability weighted (IPW) estimator can be used to modify the
outcome. Similar modified outcome approaches have been proposed which al-
lows directly using off-the-shelf machine learning algorithms for CATE or ITR
estimation [3, 11, 55]. A drawback of the IPW estimator is that its performance
hinges upon accurate estimation of the propensity score. The doubly robust
(DR) augmented inverse probability weighted (AIPW) approach [33, 2] was for-
mulated by [56]. It requires an estimation of the treatment propensity score
and the conditional mean outcome given treatment and covariates. The double
robustness of this method is well studied: as long as the model for either the
conditional mean outcome or the propensity score is correctly specified, the esti-
mator is consistent. See more work on double robustness in [20, 6, 57, 63, 13, 62].
Many of these methods focus on estimating optimal ITRs instead of CATE.

The modified covariate method was introduced by [45] for the experimental
setting and was later generalized to the observational setting by [8]. [30] pro-
posed a variant of the modified covariate method for estimating the optimal
ITR. Modified covariate methods do not require to specify any model of the
main effect or the conditional mean outcome function and they directly esti-
mate the CATE. We refer to them as the D-Learning (“D” for “direct”). While
D-Learning models the treatment effect directly, it relies on an accurate estimate
of the propensity score in the observational setting. [45] and [8] both described
the possibility to increase the efficiency of their estimators. This efficiency aug-
mentation variant replaces the outcome by the residual of the outcome less the
conditional mean outcome function. Though such efficiency augmentation has
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been shown to work well in certain scenarios, a double robustness property has
not yet been discovered among modified covariate methods. We are not aware of
any further theoretical analyses of the statistical properties of this approach.

The first contribution of this paper is to propose an augmented form of the
modified-covariate (D-Learning) method with a double robustness property for
CATE estimation. Specifically, the consistency for our CATE estimation is guar-
anteed if either the main effect model or the propensity score model is correctly
specified. In contrast, to achieve the double robustness in the AIPW literature,
the outcome model for each of the k arms and the propensity score model need
to be pre-estimated. The second goal of this paper is to generalize our method
to the multi-arm case. [30, 29] discussed the D-Learning in the multi-arm set-
ting, but their method mainly focused on ITR estimation (instead of CATE)
and did not have a double robustness property. Thirdly, we provide a theoret-
ical analysis of the convergence rate for the prediction error under the general
augmented D-Learning framework (including D-learning as a special case), and
justify the benefit of the augmentation under the two misspecification scenarios.
As a byproduct, we propose an efficient estimator for the main effect under a
special setting with known propensity score. Since our method can be viewed
as the robustified version of the D-Learning, we call it RD-Learning.

One related result to our work can be found in [27] and [40], which we refer to
as the R-Learning, and offer an optimization problem in the form of A-Learning
(“R” refers to Robinson’s transformation in [34], “residual”, and “robust”).
They modify both the outcome and the covariates, and offer some robustness
protection. However, neither enjoys the double robustness property. When this
paper was being written, we noticed a similar work done parallelly by [39] which
generalized [51] to continuous treatments. These methods were motivated by
[32] which was doubly robust against the treatment-free outcome model (not
the main effect model) and the propensity score model. However, as noted in
[51], their estimation equations were similar, but not identical, to those in [32].

The rest of the paper is organized as follows. In Section 2, we introduce some
notations and preliminaries. We present the RD-Learning method in Section 3.
Theoretical properties are studied in Section 4. In Section 5, we conduct simu-
lation studies to validate the proposed method, followed by a real data example
about an AIDS clinical trial in Section 6. Section 7 concludes the paper. All
technical proofs are provided in the Appendix.

2. Notations and preliminaries

In the two-treatment arm setting, a patient, with pre-treatment covariates X ∈
X ⊆ R

p, is assigned to treatment A ∈ A = {1,−1}. Let Y ∗(j) ∈ R be the
potential outcome the patient would have got by receiving treatment j ∈ A. The
observed outcome is denoted by Y = Y ∗(A). Let pj(x) = P(A = j | X = x)
be the propensity score for treatment j. We assume the unconfoundedness [35]
and common support.
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Assumption 1. For all j ∈ A, Y ∗(j) ⊥ A | X and pj(x) ≥ c for some
c ∈ (0, 1).

Let P be the distribution of the triplet (X, A, Y ). The goal is to estimate the
Conditional Average Treatment Effect (CATE), defined as

E(Y ∗(1)− Y ∗(−1) | X = x),

based on an i.i.d. training sample {(xi, ai, yi)}ni=1 randomly drawn from P . Let
the conditional mean outcome for treatment j be μj(x) � E(Y | X = x, A =
j). For continuous outcomes, a common model to characterize the interaction
between the treatment and covariates is

Y = m(X) +Aδ(X) + ε, where E(ε) = 0, Var(ε) = σ2 < ∞, (1)

in which the main effect function m(x) � [μ1(x)+μ−1(x)]/2, and the treatment
effect δ(x) � [μ1(x) − μ−1(x)]/2. Thus, to estimate CATE is equivalent to
estimate δ(x). In this paper, we simply refer to δ(x) as the treatment effect.

The Q-Learning [31] approach to estimating δ(x) is to conduct regressions
for μj(x) for each j. Q-Learning may be vulnerable to model misspecification
of m(x) and δ(x), especially when the function space is small.

[45] proposed a method without specifying the model for m(x) under the
experimental setting with p1(x) = 1/2. Based on the observation that

E(AY | X = x) = δ(x),

one can estimate δ(x) directly by regressing the modified outcome AY on X
using least square, or equivalently by regressing Y on the modified covariate AX
(by noting that A2 ≡ 1). This method was later generalized to observational

studies [8, 30]. Specifically, using a linear model, δ(x) can be estimated by xβ̂
where

β̂ = argmin
β∈Rp+1

1

n

n∑
i=1

1

pai(xi)
(aiyi − xT

i β)
2. (2)

One advantage of this approach is that it avoids misspecification of the main
effect m(x) by estimating δ(x) directly. Hence, it is named D-Learning [30].
However, existing consistency results for D-Learning assume that the propensity
score pj(x) is known or at least correctly specified, which may be challenging
in observational studies.

The AIPW estimator is a well-studied approach that can address the mis-
specification issue of the propensity score. It was first proposed to estimate
the (unconditional) average treatment effect, Δ � E(Y ∗(1) − Y ∗(0)) using

Δ̂ � ψ̂1 − ψ̂−1, where

ψ̂j =
1

n

n∑
i=1

yi1[ai = j]

p̂j(xi)
− 1[ai = j]− p̂j(xi)

p̂j(xi)
μ̂j(xi) for j ∈ {1,−1},
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where p̂j(x) is an estimator for pj(x) and μ̂j(x) is an estimator for μj(x). The

AIPW estimator has a double robustness property in that Δ̂ is consistent if
either pj(x) or μj(x) is correctly specified for each j. The main product of
this paper is a D-Learning method for CATE estimation with a similar doubly
robust property.

3. RD-learning

We first introduce our proposed doubly robust D-Learning (RD-Learning) ap-
proach in the binary case. We then generalize it to the multi-arm setting. Lastly,
we propose a direct method to estimate the main effect model.

3.1. RD-learning in the binary case

Given a training sample {xi, ai, yi}ni=1, the RD-Learning method is based on an
estimator for the propensity score p1(x), denoted by p̂1(x), and an estimator
for the main effect m(x), denoted by m̂(x). If we consider linear modeling for
the treatment effect, i.e., δ(x) = xTβ with xi � (1,xT

i )
T , then RD-Learning

estimator for β is obtained by solving

β̂ = argmin
β∈Rp+1

1

n

n∑
i=1

1

p̂ai(xi)
(yi − m̂(xi)− aix

T
i β)

2, (3)

The RD-Learning CATE estimator is then δ̂(x) = xT β̂.
Comparing (3) with (2), the RD-Learning is an augmented version of D-

Learning by replacing the outcome yi in (2) with the residual yi − m̂(x). In
the literature, similar procedures in which the outcome is replaced by a certain
residual have been proposed to improve the efficiency of the estimation. For
example, R-Learning methods [40, 27] replaced the outcome yi in the A-Learning
framework [25, 32] by the residual yi − Φ̂(xi), where Φ̂(x) is an estimator for
the conditional mean outcome function Φ(x) � E(Y | X = x). In the ITR
literature, residual weighted learning [64, RWL] replaced the outcome yi in the
outcome weighted learning [61, OWL] by residual yi−m̂(xi) with respect to the
main effect estimator m̂(xi). In general, these procedures reduce the variance of
the estimator. Moreover, it has been shown that in these works [40, 27, 64], the
CATE estimators are still consistent even when Φ̂(x) or m̂(x) is mis-specified,
so long as the propensity score p1(x) is known or can be consistently estimated.
In other words, they are robust against misspecification for Φ(x) or m(x).

Although residual based approaches have been studied in the aforementioned
work, it has not been thoroughly studied for modified-covariate (D-Learning)
methods. Specifically, while it is commonly recognized that replacing the out-
come by the residual can improve efficiency [45], it was unclear which residual
should be used. In RD-Learning (3), we propose to use the residual with respect
to the main effect instead of the conditional mean outcome m(x). As will be
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shown below, the proposed RD-Learning estimator is not only robust to mis-
specification for m(x), but also has an “double robustness” property similar to
that of the AIPW estimator [56]. This is described in the following theorem.

Theorem 1. Assume that Assumption 1 holds under model (1). Let p̃1(x) be a
working model for the propensity score p1(x) with 0 < p̃1(x) < 1 and m̃(x) be
a working model for the main effect m(x). Then we have

δ ∈ argmin
f∈{X→R}

E

[
1

p̃A(X)
(Y − m̃(X)−Af(X))2

]

if either p̃1(x) = p1(x) or m̃(x) = m(x) for x ∈ X almost surely.

Theorem 1 also holds when, the functions p̃1(x) and m̃(x) are replaced by the
limiting functions of estimators p̂(x) and m̂(x). This suggests that the empirical

version of the above minimizer δ̂(x) (whose definitions are given in (3) and in
Section 3.2) will be consistent with δ(x) if either p̂1(x) or m̂(x) is consistent.
Compared to the sole robustness against the misspecification of m(x), this es-
timator is robust against two types of model misspecification, with respect to
both p1(x) and m(x). We defer more discussions on theoretical properties of
this “double robustness” property to Section 4.

Remark 1. The double robust property of our method is different from previous
work. The traditional AIPW-based approaches [33, 2] require the estimation for
each outcome model (e.g. μ1(x) and μ−1(x) in the binary case), while a recent
work by [39] requires the specification of the treatment-free model, namely,
μ−1(x) only. The double robustness of our proposed method is with respect to
the estimation of the main effect model, i.e., m(x).

Because RD-Learning is essentially a weighted least square, it is well posited
to be generalized for high-dimensional data using sparsity. For example, we may
solve a LASSO problem,

min
β∈R

p

β0∈R

1

n

n∑
i=1

1

p̂ai(xi)

(
yi − m̂(xi)− ai(x

T
i β + β0)

)2
+ λ‖β‖1 (4)

with the tuning parameter λ > 0. To adopt a richer model space, we could also
consider a non-linear function form for δ(x). For example, we may solve a kernel
ridge regression

min
β∈R

n

β0∈R

1

n

n∑
i=1

1

p̂ai(xi)

(
yi − m̂(xi)− ai(K

T
i β + β0)

)2
+ λβTKβ,

where Ki is the ith column of the gram matrix K = (K(xi,xj))n×n, with
K(·, ·) a kernel function. Other non-linear regression models such as generalized
additive model and gradient boosting can be also applied to the RD-Learning
framework.
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Figure 1 compares Q-Learning, D-Learning, and RD-Learning using two toy
examples. In each example, the subpopulation treatment effect pattern plots
(STEPP), a typical visualization method for exploring the heterogeneity of
treatment effects [4], shows the relationship between the estimated CATEs and
predictor x1. Case I has a non-linear main effect and a linear treatment effect,
while both the main effect and the treatment effect in Case II have a linear form.
The true CATE is μ1(x)−μ−1(x) = −x1 in both cases. From Figure 1, it is clear
that RD-Learning is a robust method. In particular, compared to Q-Learning,
RD-Learning reduces bias in estimating CATE when the main effect tends to be
mis-specified (Case I). Compared to D-Learning, RD-Learning reduces variance
in both examples.

Fig 1. Subpopulation treatment effect pattern plots (STEPP) by different methods on two sim-
ulated data with X ⊆ R

20. Blue regions are 95% confidence region based on 200 replications,
and the black line is the true CATE. Case I: μj(x) = 2 cos(x1+π/4)+(3− j)x1/2− tanh(x1)
for j ∈ {1,−1} and p1(x) = 0.2 + 0.61[x1 < 0]; Case II: μj(x) = (3 − j)x1/2 + x2 for
j ∈ {1,−1} and p1(x) = 1/2. In both cases RD-Learning has a good performance.

3.2. RD-learning in the multi-arm case

We now generalize RD-Learning to the multi-arm case with A = {1, . . . , k}.
Consider

Y = m(X) + δA(X) + ε, (5)
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where

k∑
j=1

δj(x) = 0, E(ε) = 0, Var(ε|X) = σ2(X) < ∞.

Similar to the binary case, m(x) �
∑k

j=1 μj(x)/k is the main effect. The jth
treatment effect δj(·) measures the difference between the conditional mean out-
come of treatment j and the main effect, i.e., δj(x) = μj(x)−m(x). The sum-to-
zero constraint guarantees the model is identifiable. We allow heteroskedasticity
in the error term ε to make the model more general. To estimate the treatment
effect δj(x), we consider the following angle-based approach.

The angle-based approach [59] is a method used in multicategory classifica-
tion problem and recently it has been used to solve a multi-arm ITR problem
[58, 29]. In the angle-based framework, we represent k arms by k vertices of a
(k − 1)-dimensional simplex, denoted by W1, . . . ,Wk: W1 = (k − 1)−1/21k−1

and Wj = −(1 + k1/2)(k − 1)−3/21k−1 + [k/(k − 1)]
1/2

ej−1 for 2 ≤ j ≤ k,
where 1k−1 is a (k − 1)-dimensional vector with all elements equal to 1 and
ej−1 ∈ R

k−1 is a vector with the (j − 1)th element 1 and 0 elsewhere. It is
easy to check that ‖Wj‖ = 1 and the angle ∠(Wi,Wj) is the same for all
i 
= j. The angle-based approach uses a (k− 1)-dimensional vector-valued func-
tion f(x) = (f1(x), . . . , fk−1(x))

T as the decision function. Moreover, for any

f ∈ R
k−1,

∑k
j=1〈Wj ,f〉 = 0; so the common sum-of-zero constraint in the mul-

ticategory classification problem is automatically satisfied. This will reduce the
computational cost in the optimization problem. In an ITR problem, by com-
puting the angles between f(x) and these vertices Wj ’s, the optimal treatment
for x is chosen to be argminj∈A ∠(Wj ,f(x)).

In a multi-arm CATE problem with model (5), there is also a sum-to-zero

constraint for treatment effects {δj(x)}kj=1, i.e.,
∑k

j=1 δj(x) = 0. Then we

may replace δj(x) in model (5) by 〈Wj ,f(x)〉, where f(x) ∈ R
k−1 such that

〈Wj ,f(x)〉 = δj(x) for all j ∈ A. By design of the angle-based approach, the
sum-to-zero constraint is implicitly satisfied. This allows us to estimate the
treatment effect δj(x) = 〈Wj ,f(x)〉 as follows.
Theorem 2. Let p̃j(x) > 0 be a working model for pj(x) and m̃(x) for m(x).
Define

f∗ ∈ argmin
f∈{X→Rk−1}

E

[
1

p̃A(X)
(Y − m̃(X)− 〈WA,f(X)〉)2

]
.

Under Assumption 1 and model (5), if either p̃j(x) = pj(x) or m̃(x) = m(x)
holds for x ∈ X almost surely and all j ∈ A, then δj(x) = 〈Wj ,f

∗(x)〉 almost
surely.

In light of Theorem 2, the angle-based RD-Learning1 is obtained by solving

min
f∈F

1

n

n∑
i=1

1

p̂ai(xi)
(yi − m̂(xi)− 〈Wai ,f(xi)〉)2, (6)

1Angle-based D-Learning has been studied in [29] with a different formulation.
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where F is a function space of interest. We may consider a linear space, F =
{f = (f1, . . . , fk−1)

T ; fj(x) = xTβj , j = 1, . . . , k − 1}; or we may consider
Reproducing Kernel Hilbert Space (RKHS) with kernel function K(·, ·), F =
{f = (f1, . . . , fk−1)

T ; fj(x) =
∑n

i=1 K(xi,x)βij + β0j , j = 1, . . . , k − 1}. A
regularization term on f can be also added to prevent overfitting. Denote the
solution to (6) by f̂ . Then the angle-based RD-Learning estimator for the jth
treatment effect is given by

δ̂j(x) = 〈Wj , f̂(x)〉. (7)

The binary RD-Learning in Section 3.1 is a special case of the angle-based
RD-Learning. This is because W1 = 1 and W2 = −1 when k = 2; hence
〈Wa, f(x)〉 = f(x) for a = 1 and 〈Wa, f(x)〉 = −f(x) for a = 2, and (6)
reduces to (3) for the linear function space.

3.3. A direct method in estimating the main effect

The RD-Learning framework we proposed is a two-step procedure. The discus-
sion so far focuses on the second step, i.e., estimating the treatment effect δj(x)
provided that the main effect and the propensity score have been estimated in
the first step. In practice how to estimate the main effect m(x) is also impor-
tant. As will be shown in Section 4, an accurate m̂(x) estimation can reduces

the variance of δ̂j(x). Moreover, the problem of main effect estimation has its
own interest in many applications. For example, in biomedical studies, it can
help researchers to identify prognostic biomarkers [22].

Here we propose a direct method to estimate the main effect given the propen-
sity score,

m̂ = argmin
g∈G

n∑
i=1

1

pai(xi)
(yi − g(xi))

2, (8)

where G is an appropriate function space. This estimator is motivated by the
important observation that under model (5),

E

[
(Y − g(x))2

pA(x)

∣∣∣X = x

]
= E

⎡
⎣ k∑
j=1

(Y ∗(j)− g(x))2
∣∣∣X = x

⎤
⎦

=

k∑
j=1

(μj(x)− g(x))2 + kσ2(x),

and the fact thatm(x) = k−1
∑k

j=1 μj(x) = argming(x)∈R

∑k
j=1(μj(x)−g(x))2.

Theorem 3. Under Assumption 1, we have

m ∈ argmin
g∈{X→R}

E

[
1

pA(X)
(Y − g(X))2

]
.
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Theorem 3 implies that this estimator is consistent if m ∈ G. Compared to
the naive approach of estimating each μj(x) separately then taking the average
to estimate m(·), (8) uses all the data units all at once to estimate the main
effect. Due to its weighted least square form, it can be easily generalized to
other regression methods, such as LASSO, kernel ridge regression, generalized
additive model, gradient boosting, and so on.

A limitation of the proposed method to estimate the main effect is worth men-
tioning. Similar to D-Learning, this method is sensitive to the weight p−1

ai
(xi).

The variance of the estimator will be large if the propensity score pai(xi) is
close to zero. Furthermore, in an observational study where we have to estimate
pai(xi), the accuracy will be low if there is a large bias to the estimation of
pai(xi). While we find our direct method to be promising (see our simulation
in Section 5), in practice, we suggest the user to try several different methods
and compare when estimating the main effect.

4. Theoretical analysis of RD-learning

In this section, we study the theoretical property of δ̂j(x) in (7). Note that it suf-
fices to study the angle-based RD-Learning only since the binary RD-Learning
is a special case of the angle-based RD-Learning. Denote δ̂ = (δ̂1, . . . , δ̂k)

T . The
goal of our theoretical study is to obtain the convergence rate for the prediction
error (PE) of δ̂, defined by

PE(δ̂) = ‖δ̂ − δ‖22 = E

k∑
j=1

(
δ̂j(X)− δj(X)

)2
,

where the expectation is with respect to X. Note that since δ̂ depends on
the training data, PE(δ̂) is a random quantity. We consider linear models and
non-linear models separately. Before we present the main results, we make two
additional assumptions for the two estimators p̂j(x) and m̂(x).

Assumption 2. ‖p̂−1
j (x)− p−1

j (x)‖∞ ≤ rp with constant rp > 0.

Assumption 3. ‖m̂(x) −m(x)‖∞ ≤ rm and |Y − m̂(X)| ≤ Cm with rm > 0
and Cm > 0.

Assumptions 2 and 3 state that the estimation error for p̂−1
j (x) and m̂(x) are

bounded with rp and rm characterizing the accuracy for both estimators. Recall
that p̃j(x) and m̃(x) are the limiting functions of p̂j(x) and m̂(x) in Theorem 2.
The case of p̃j(x) = pj(x) corresponds to rp  rm; the case of m̃(x) = m(x)
corresponds to rm  rp.

Remark 2. In the literature, many L2 type error bounds of machine learning
and statistical nonparametric methods have been established. The L∞ error
bound in Assumption 2 and 3 can be relaxed to L2 error bounds (though in
Assumption 2 we will need an additional L∞ bound on p̂−1

j (x)). Along with As-

sumption 1, one can show that ‖p̂−1
j (x)−p−1

j (x)‖∞ < ∞ which is denoted as rp
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in the subsequent theorems. The inequality |Y − m̂(X)| ≤ Cm in Assumption 3
is a hard bound that is assumed to hold everywhere. It may be weakened to be
(1) E|Y − m̂(X)|2 ≤ Cm and (2) |yi − m̂(xi)| ≤ Cm for i = 1, . . . , n. We have
chosen the current form for brevity of the presentation.

4.1. Linear function space

We consider a linear function space F with a bounded L1 norm:

F = F(p, s) � {f = (f1, . . . , fk−1)
T ; fj(x) = xTβj + β0j ,

j = 1, . . . , k − 1,
k−1∑
j=1

‖βj‖1 ≤ s}.

We bound each covariate in [−1, 1] for simplicity.

Assumption 4. X ∈ X = [−1, 1]p.

The result still holds if we bound each covariate in [−B,B] for any large
number B > 0.

Theorem 4. Denote pn be the data dimension. Let F = F(pn, sn) and τn =
(n−1 log pn)

1/2 → 0 as n → ∞. Under Assumptions 1 to 4, we have

PE(δ̂) ≤ O
(
max

{
(Cm + sn)

2τn log τ
−1
n ,min{r1, r2}, dn

})
,

almost surely, given estimators p̂j(·) and m̂(·), where r1 = (Cm + sn)
2rp, r2 =

(1 + rp)r
2
m, and dn = inff∈F(pn,sn) ‖f − f∗‖22.

Remark 3. Theorem 4 claims that PE(δ̂) is determined by three terms. The
first term is the estimation error similar to the excess risk in the classification
literature. As n grows, the term will vanish for fixed sn, while for fixed n and
pn, it increases as sn → ∞ indicating a more complicated function space. The
second term is determined by the accuracy of the two preliminary estimators
p̂j(·) and m̂(·). Specifically, r1 describes the error from p̂j(x) while r2 describes
the error from m̂(x). This term is small as long as either rp or rm is small. Hence,
this term reflects the “double robustness” property of the proposed estimator.
The third term dn is the approximation error of the function space F(pn, sn),
and it will decrease as sn increases in general. The choice of sn represents a
trade-off between the three terms.

Remark 4. By Theorem 4, RD-Learning improves D-Learning in the following
two aspects. Firstly, the second term in the upper bound of PE(δ̂) offers an
additional way to decrease the error. Note that D-Learning is a special case of
RD-Learning with m̂ ≡ 0, which means r2 is a large number. Therefore, for D-
Learning to work well, r1 must be small. In contrast, RD-Learning offers a good
CATE as long as either r1 or r2 is small. Secondly, the estimator of RD-Learning
has a smaller variance than that of D-Learning. This is because by replacing
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yi in D-Learning with yi − m̂(xi), the upper bound Cm for |Y − m̂(X)| in
Assumption 3 also becomes smaller in general, which further reduces the first
term in PE(δ̂). This explains the narrower confidence bands of RD-Learning
shown in Figure 1.

Theorem 4 is a general statement for the convergence rate of PE(δ̂). It nei-
ther makes assumptions on the magnitude of rp and rm, nor assumes the true
treatment effect falls in a particular function space F . If we assume one of rp and
rm is zero, the second term can be ignored. For example, in clinical trial pj(x)
is known so p̂j(x) = pj(x) and rp = 0. If we further assume δj(x) to be a linear
function that only depends on finitely many covariates for each j, the third term
can be also eliminated. This is because in that case, there exists a finite p∗ and
s∗ such that the true population minimizer f∗ belongs to the F(pn, sn) as long
as the function space we consider is large enough so that pn ≥ p∗ and sn ≥ s∗.
In this case, the third term dn = 0 for sufficient large n. The result is given in
Corollary 1.

Corollary 1. Let F = F(pn, sn) and τn = (n−1 log pn)
1/2 → 0 as n → ∞.

Suppose δj(·) depends on finitely many covariates for each j ∈ A. Under As-

sumptions 1 to 4, if either rp = 0 or rm = 0 holds, then PE(δ̂) ≤ O(τn log τ
−1
n )

almost surely.

From Corollary 1, we first observe that the convergence of PE(δ̂) requires that
pn increases with the order at most exp(n). Secondly, since O(log x) < O(xt) for

all t > 0, PE(δ̂) ≤ O(τ1−t
n ) for any small positive t. This implies that the upper

bound of PE(δ̂) is almost O(τn) = O
(
(n−1 log pn)

1/2
)
. Furthermore, when pn

is a fixed number, i.e., pn = O(1), the rate is almost O(n−1/2). These results
are coincident with most of the classical LASSO theory.

4.2. Reproducing kernel Hilbert space

We consider F to be a Reproducing Kernel Hilbert Space (RKHS) to demon-
strate the results for non-linear learning. There is a vast literature on RKHS. See
[42] and [17] for more details. LetHK be a RKHS with kernel functionK(·, ·). By
the Mercer’s theorem, K has an eigen-expansion K(x,x′) =

∑∞
i=1 γiφi(x)φi(x

′)
with γi ≥ 0 and

∑∞
i=1 γ

2
i < ∞. Any function in HK can be written as f(x) =∑∞

i=1 ciφi(x) under the constraint that ‖f‖2HK
=
∑∞

i=1 c
2
i /γi < ∞. Define the

function space F as

F = F(s) � {f = (f1, . . . , fk−1)
T ; fj = f ′

j + bj ,

j = 1, . . . , k − 1,

k−1∑
j=1

‖f ′
j‖2HK

≤ s2}.

Note that as in the linear case, the penalty term does not include the inter-
cept term bj . Rewrite the solution to (6) under such F as f̂ = f̂ ′ + b̂ where

f̂ ′ = (f̂ ′
1, . . . , f̂

′
k)

T with f ′
j ∈ HK . By the representer theorem [50], f̂ ′

j can be
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represented by f̂ ′
j(x) =

∑n
i=1 K(xi,x)β̂ij , and the penalty term is written as

‖f̂ ′
j‖2HK

=
∑n

i=1

∑n
l=1 K(xi,xl)β̂ij β̂lj .

The separability of the RKHS is commonly assumed in many papers con-
cerning RKHS.

Assumption 5. The RKHS HK is separable and supx K(x,x) = B < ∞.

A bounded kernel ensures that PE(δ̂) does not explode. It naturally holds for
popular kernels like the Gaussian radial basis kernel, where B = 1. In general, it
requires X to be covered by a compact set and the dimension of X to be finite.

Theorem 5. Let F = F(sn). Under Assumptions 1, 2, 3, and 5, we have

PE(δ̂) ≤ O
(
max

{
(Cm +Bsn)

2n−1/2 logn,min{r1, r2}, dn
})

,

almost surely, given estimators p̂j(·) and m̂(·), where r1 = (Cm + Bsn)
2rp,

r2 = (1 + rp)r
2
m, and dn = inff∈F(sn) ‖f − f∗‖22.

Remark 5. Similar to Theorem 4, there is a trade-off between the estimation
error, the approximation error, and the error from p̂j and m̂ for kernel learning.
sn is the tuning parameter to balance these three terms. The result also shows
that compared to D-Learning, RD-Learning still enjoys a better convergence
rate through a smaller rm and Cm.

Theorem 5 can be simplified in some special cases. Firstly, the second term
can be ignored when rp or rm is negligible. Secondly, by assuming the approx-
imation error dn ≤ O(s−q

n ) for some q > 0, which is standard in the RKHS
literature, we have a neat convergence rate by appropriately choosing sn, shown
in Corollary 2.

Corollary 2. Let F = F(sn). Suppose dn = inff∈F(sn) ‖f − f∗‖22 ≤ O(s−q
n )

for some q > 0. Under Assumption 1, 2, 3, and 5, if either rp = 0 or rm = 0

holds, then by choosing sn = O
(
(n1/2 log−1 n)

1
q+2

)
, we have

PE(δ̂) ≤ O
(
n− q

2q+5

)
almost surely.

Given Corollary 2, the convergence rate of PE(δ̂) approaches to O
(
n−1/2

)
for sufficiently large q, corresponding to the case that f∗ is well approximated
by a function in F(sn).

5. Simulation studies

We compare the proposed RD-Learning method with four popular competing
methods, Q-Learning [31], R-Learning [40, 27, R-Learning], causal forests [49],
and D-Learning [8, 30]. Except for Q-Learning and D-Learning, all methods are
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preceded by first estimating either the main effect function m(x) or the condi-
tional mean outcome function Φ(x). We fix the dimension to be 100, where X1,
X2 and X3 are i.i.d. from N(0, 3), and X4, . . . , X100 are i.i.d. from Uniform(0, 1).
For each setting, we let the number of observations to be n = 50, 100, 150, and
200. The parameters in each case are tuned through cross validation. The pre-
diction error is reported based on a testing set of size 400.

Case I: It is a two-arm design, with μ1(x) = 2 cos(x1+π/4)+x1− tanh(x2)
and μ−1(x) = 2 cos(x1 + π/4) + 2x1 − tanh(x2). The treatment assignment
depends on x. Specifically, p1(x) = 0.2 + 0.61[x1 < 0]. Since μ1(·), μ−1(·) and
m(·) are non-linear functions of x, we consider kernel machines in estimating
μj(x) in Q-Learning, and in estimating pj(x), μj(x), or Φ(x) in the preliminary
step of causal forests, R-Learning, and RD-Learning. On the other hand, because
the treatment effect is linear, we use linear models with an L1 penalty in D-
Learning as well as in the main procedure of R-Learning and RD-Learning.2

Case II: This is an example to test the robustness against misspecification
of the main effect. In this case, we have μ1(x) = tanh(x1) − 4/(1 + exp(x2 −
x1)) + 3 and μ−1(x) = tanh(x1) + 4/(1 + exp(x2 − x1)). It is a randomized
design with p1(x) = 1/5. Both the main effect and the treatment effect are
non-linear. Hence we are supposed to use non-linear function spaces for all the
methods. However, to test the robustness of the proposed RD-Learning method,
we deliberately use the (wrong) linear model with an L1 penalty to estimate
the main effect in the first step and use kernel ridge regression in the second
step. For comparison purposes, we adopt the same function spaces (linear and
kernel) in all the other two-step procedures, and use kernel ridge regression in
Q-Learning and D-Learning.

Case III: This is an example to test the robustness against misspecification
of the propensity score. In this example, μ1(x) = x1 − x2 + x3 and μ−1(x) =
2x1 − x2. The propensity score is defined as p1(x) = 2/(2 + exp(x1)). In this
case, we use linear models with an L1 penalty in all methods and both steps.
To test the robustness of RD-Learning, we deliberately use a wrong propensity
score p̂1(x) = 1/2. For comparison, we let p̂1(x) = 1/2 in other methods.

Case IV: This is a three-arm case, with μ1(x) = (x2
1 +x2

2 +x2
3)/3+x1 −x2,

μ2(x) = (x2
1 + x2

2 + x2
3)/3 + x2 − x3, and μ3(x) = (x2

1 + x2
2 + x2

3)/3 + x3 −
x1. The propensity scores are (p1(x), p2(x), p3(x)) = (1/2, 1/4, 1/4) for x1 ≥
x2 and x1 ≥ x3, (1/4, 1/2, 1/4), for x2 > x1 and x2 ≥ x3, and (1/4, 1/4, 1/2),
for x3 > x2 and x3 > x1. This setting is similar to Case I in the sense that
it has a non-linear main effect and a linear treatment effect. We use the same
function space as in Case I. We do not report the results by causal forests and
R-Learning because their current implementations for the multi-arm case report
the estimators for the contrasts μj(x)− μ1(x) instead of δj(x).

Estimation of the treatment effect

From Figure 2, we first see that the RD-Learning method has the small-
est prediction error in most scenarios. Secondly, Q-Learning and D-Learning

2By default, the second step of causal forests uses a regression tree which is by nature
non-linear.
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typically have a larger variance than those two-step procedures. This is con-
sistent with the well known intuition (see also Theorems 4 and 5) that by re-
placing yi with yi − m̂(xi) (or yi − Φ̂(xi)), the variance of estimators can be
reduced. Thirdly, we see that RD-Learning is indeed “doubly robust” against
misspecification of the main effect (in Case II) and the propensity score (in
Case III).

Recall that Case II is an example where we deliberately use a wrong function
space for the main effect. Since R-Learning is robust against this kind of mis-
specification, it has a better performance than Q-Learning. However, in Case
III where we deliberately use a wrong propensity score, R-Learning has a much
worse performance than Q-Learning since it relies on a correctly-specified pj(·).
But RD-Learning is as good as, and in many cases much better, than these two
in both settings.

Fig 2. The average prediction error of δ̂1 based on 200 replications with standard error by
different methods. In all cases RD-Learning has the best performance.
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Estimation of the main effect
We also report the performance for the main effect estimation using the pro-

posed direct method in Section 3.3 and the Q-Learning method which estimates
each μj(·) and takes the average. Figure 3 shows the result based on the same
simulation data in Case I and Case IV. We observe that by using all the data
at once with propensity score as the weight, the proposed method has a better
performance compared to the Q-Learning method.

Fig 3. Boxplots for the prediction error of m̂ based on 200 replications in Case I (left) and
Case IV (right). The proposed method has a smaller error than Q-Learning in estimating the
main effect.

6. Real data analysis

We apply RD-Learning on a real dataset from the AIDS Clinical Trials Group
Study 175 [15, ACTG175]. The dataset includes 2,139 HIV-1 infected sub-
jects. They were randomly assigned with equal probabilities to one of the four
treatments: zidovudine (ZDV) only, ZDV with didanosine (ddI), ZDV with zal-
citabine (ddC), and ddI only. The endpoint (outcome) we consider is the change
of the CD4 cell count (per cubic millimeter) at 20± 5 weeks from the baseline.
Note that a decrease in the number of CD4 cell count usually implies a progres-
sion to AIDS. In other words, a larger value indicates a better outcome.

To apply the RD-Learning method, we first estimate the main effect using
the direct estimator proposed in Section 3.3 based on the 18 variables that were
measured prior to the initiation of the study. Specifically, we use the generalized
additive model (GAM) to solve the weighted least square problem (8). The best
GAM model is selected using stepwise AIC.

For the main procedure, we follow the analysis of [12] and [29] and consider
only 12 variables measured at baseline as the covariates for each subject. Five of
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the 12 covariates are continuous: age (years), weight (kilogram), Karnofsky score
(on a scale of 0-100), CD4 cell counts (per cubic millimeter), and CD8 cell counts
(per cubic millimeter). The rest seven are binary: hemophilia (0=no, 1=yes), ho-
mosexual activity (0=no, 1=yes), history of intravenous drug use (0=no, 1=yes),
race (0=white, 1=non-white), gender (0=female, 1=male), antiretroviral his-
tory (0=naive, 1=experienced), and symptomatic indicator (0=asymptomatic,
1=symptomatic). We use RD-Learning with linear f (6) to estimate the coeffi-
cients.

We compare the performance of RD-Learning with that of Q-Learning and
D-Learning through 5-fold cross validation. However, since it is a real dataset
in which the true treatment effect is not observed, instead of evaluating the
prediction error, we first derive the estimated optimal ITR of each method by
d̂(xi) = argmaxj δ̂j(xi). Then we calculate the empirical expected outcome

under the obtained ITR d̂, defined as

V (d̂) =

∑n
i=1

(
yi1
[
ai = d̂(xi)

]
/pai(xi)

)
∑n

i=1

(
1
[
ai = d̂(xi)

]
/pai(xi)

)

[26, 61]. Note that in this application V (d̂) measures the average increase in
CD4 cell counts (per cubic millimeter) by taking the recommended treatment.

Larger value V (d̂) is preferred. Finally, we replicate the procedure for 400 times.

Fig 4. 5-fold cross validation scores of V (d̂) based on 400 replications by different methods
for the ACTG175 data. RD-Learning has the highest empirical value on average.

The boxplot of V (d̂) is shown in Figure 4. We see that RD-Learning yields the

largest value, and V (d̂) of D-Learning is slightly higher than that of Q-Learning.
This implies that patients would benefit more by following the recommended
treatment that is based on the treatment effect estimated by RD-Learning.



3540 H. Meng and X. Qiao

To visualize the heterogeneity in treatment effects, in Figure 5, we project
the data on two important biomarkers “age” and “CD4 baseline” and mark each
point according to its optimal treatment assignment estimated by RD-Learning.
We see that the treatment ZDV is inferior to the other three treatments. This
result is consistent with previous findings [15, 12, 29]. Furthermore, for the
majority of the patients, ZDV with ddI is the best treatment. ZDV with ddC
is most effective on young patients (age < 25), and ddI alone is better than
the others for patients who have more CD4 cells (CD4 counts > 500 per cubic
millimeter) at baseline.

Fig 5. ACTG175 data projected on “age” and “CD4 baseline”, with the best treatment based
on the estimated treatment effect by the RD-Learning marked by different colors and symbols.

7. Conclusion

In this work, we propose RD-Learning to estimate CATE under both two-arm
and multi-arm settings. The estimator is consistent if either the model for the
main effect or the model for the propensity score is correctly specified. The
proposed framework is flexible enough to incorporate existing generic procedures
such as LASSO, kernel ridge regression, and generalized additive model. We also
propose a direct estimation approach for the main effect when the propensity
scores are known.

There are a few possible future research directions based on this work. Firstly,
by modifying the quadratic loss function, the framework can be extended to
other types of outcome, such as binary outcome and survival outcome. Sec-
ondly, one may want to improve our two-step procedure to a one-step method
based on (6), i.e., estimating pj(x),m(x), and δj(x) simultaneously. Such CATE
estimator would still enjoy a doubly-robust property while the convergence rate
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of PE(δ̂) may be different from the proposed method in this paper. Thirdly,
statistical inference based on RD-Learning can be investigated, so that in ad-
dition to doubly robust estimators, we may also have doubly robust confident
regions. Finally the method can applied to dynamic treatment regime so that
a sequence of treatment effects and treatment rules can be estimated robustly
and sequentially.

Appendix A: Preliminaries on angle-based approach

In this section, we provide some basics for angle-based approach. One can refer
to [59] for more details.

Recall that for a (k − 1)-dimension simplex, we denote the vertex set as
{W1, . . . ,Wk}. Specifically,

Wj =

{
(k − 1)−1/21k−1, j = 1

−(1 + k1/2)(k − 1)−3/21k−1 + [k/(k − 1)]
1/2

ej−1, 2 ≤ j ≤ k,

where 1k−1 is a (k − 1)-dimensional vector with all 1 and ej−1 ∈ R
k−1 is a

vector with the (j − 1)th element 1 and 0 elsewhere. By definition, it enjoys
some nice properties.

Lemma 1. A (k−1)-dimension simplex (k ≥ 2) with vertex set {W1, . . . ,Wk}
has the following properties:

1) ‖Wj‖ = 1 for any j = 1, . . . , k.
2) 〈Wi,Wj〉 = 〈Wi′ ,Wj′〉 for any i 
= j and i′ 
= j′.

3) For any f ∈ R
k−1,

∑k
j=1〈Wj ,f〉 = 0.

4) For any f ∈ R
k−1,

∑k
j=1〈Wj ,f〉2 = k

k−1‖f‖2.
5) Any f ∈ R

k−1 can be uniquely represented by 〈Wj ,f〉 for j = 1, . . . , k.
Specifically,

f =
k − 1

k

k∑
j=1

〈Wj ,f〉Wj .

Lemma 1 can be proved from the definition of Wj directly. From the last

property in Lemma 1, for any δ = (δ1, . . . , δk)
T ∈ R

k with
∑k

j=1 δj = 0, we

can construct a function f ∈ R
k−1 by letting f = k−1(k − 1)

∑k
j=1 δjWj . On

the other hand, for any f ∈ R
k−1, we can map it to a δ ∈ R

k by letting
δ = (〈W1,f〉, . . . , 〈Wk,f〉)T and

∑k
j=1〈Wj ,f〉 = 0. So there is a one-to-one

map from R
k−1 to the hyperplane {δ = (δ1, . . . , δk)

T ;
∑k

j=1 δj = 0} in R
k.

This implies that one can use the (k − 1)-dimension function f to represent
any k-dimension treatment effect δ, which is also the intuition to generalize
RD-Learning from the binary case (3) to the multi-arm case (6).
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Appendix B: Fisher consistency

In this section, we prove Theorem 1, Theorem 2, and Theorem 3.

Proof of Theorem 1. Let �(X,f) = E

[
1

p̃A(X) (Y − m̃(X)−Af(X))2
∣∣X] and

L(f) = E�(X, f). Denote f∗ ∈ argminf∈R
L(f) and f+ ∈ argminf∈R

�(X, f).
From the definition of f∗,

L(f∗) ≤ L(f+) = E�(X, f+).

On the other hand, from the definition of f+,

L(f∗) = E�(X, f∗) ≥ E�(X, f+) = L(f+).

The two equations imply f∗ ∈ argminf∈R
�(X, f) and f+ ∈ argminf∈R

L(f). So
it suffices to show f+ = δ.

Under model (1),

�(x, f) = E

[
1

p̃A(x)
(m− m̃(x) +Aδ(x)−Af(x) + ε)2

∣∣∣X = x

]

=
p1(x)

p̃1(x)

[
(m(x)− m̃(x) + δ(x)− f(x))2 + σ2

]
+

1− p1(x)

1− p̃1(x)

[
(m(x)− m̃(x)− δ(x) + f(x))2 + σ2

]
.

Note that �(x, f) is convex in f . So it is sufficient to consider f such that
∂�(x, f)/∂f = 0. There are two situations.

Case I: When p̃1(x) = p1(x) for almost all x ∈ X ,

∂�(x, f)

∂f
= 2(f(x)− δ(x)).

Let ∂�(x, f)/∂f = 0 then the conclusion holds.
Case II: When m̃(x) = m(x) for almost all x ∈ X ,

∂�(x, f)

∂f
= 2

(
p1(x)

p̃1(x)
+

1− p1(x)

1− p̃1(x)

)(
f(x)− δ(x)

)
.

Check that p1(x)/p̃1(x) + (1 − p1(x))/(1 − p̃1(x)) > 0. So the conclusion still
holds by letting ∂�(x, f)/∂f = 0.

Proof of Theorem 2. Denote L(f) = E�(X,f) where

�(X,f) = E

[
1

p̃A(X)
(Y − m̃(X)− 〈WA,f(X)〉)2

∣∣X] .
By the similar argument in the proof of Theorem 1, it suffices to consider f∗

such that f∗(x) ∈ argminf∈Rk−1 �(x,f). The minimizer of L(f) only differs
from such f∗ on a set of measure zero.
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By the last property in Lemma 1, there is a one-to-one map between the hy-
perplane {(u1, . . . , uk);

∑k
j=1 uj = 0} and R

k−1. So minf∈Rk−1 �(x,f) is equiv-
alent to

min
{uj}

E

[
1

p̃A(x)
(Y − m̃(x)− uA)

2
∣∣∣X = x

]
, s.t.

k∑
j=1

uj = 0. (9)

Denote the solution of (9) by {u∗
j}. From the last property of Lemma 1, we may

assign f∗(x) with value k−1
k

∑k
j=1 u

∗
jWj . Check that 〈Wj ,f

∗(x)〉 = u∗
j for each

j. So it remains to show u∗
j = δj(x).

We solve (9) by the method of Lagrange multipliers. Let

L = E

[
1

p̃A(x)
(Y − m̃(x)− uA)

2
∣∣∣X = x

]
+ λ

k∑
j=1

uj .

Under model (5), we have

∂L
∂uj

= −2
pj(x)

p̃j(x)
(m(x)− m̃(x) + δj(x)− uj) + λ = 0, for j = 1, . . . , k.

There are two cases.
Case I: When p̃j(x) = pj(x) almost everywhere for each j ∈ A, λ = 2(m(x)−

m̃(x) + δj(x)− uj). By summing over j and multiplying k−1 on both sides, we
can solve

λ =
2

k

k∑
j=1

(m(x)− m̃(x) + δj(x)− uj(x)) = 2(m(x)− m̃(x)).

By plugging it back to the first order condition we have u∗
j = δj(x).

Case II: When m̃(x) = m(x) almost everywhere, λ = 2
pj(x)
p̂j(x)

(δj(x)− uj). By

rearranging the term and summing over j, we have

λ

2

k∑
j=1

p̃j(x)

pj(x)
=

k∑
j=1

(δj(x)− uj) = 0.

Since p̃j(x) > 0 and pj(x) > 0,
∑k

j=1 p̃j(x)/pj(x) > 0 implying λ = 0. By
plugging it back to the first order condition we still have u∗

j = δj(x).

Proof of Theorem 3. Denote �(X, g) = E

[
1

pA(X) (Y − g(X))2
∣∣X]. It suffices

to show m(x) ∈ argming∈R
�(x, g).

Under model (5), check that

�(x, g) = E

⎡
⎣ k∑
j=1

(m(x) + δj(x)− g(x) + ε)2
∣∣∣X = x

⎤
⎦
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=

k∑
j=1

(m(x) + δj(x)− g(x))2 + kσ2(x).

Let ∂�(x, g)/∂g = 0, we have

∂�(x, g)

∂g
= −2

k∑
j=1

(m(x) + δj(x)− g(x)) = 2k(g(x)−m(x)) = 0

implying that m(x) is the solution.

Appendix C: Upper bounds for prediction error

In this section we provide the proofs for Theorem 4 and Theorem 5, where the
goal is to find an upper bound for the prediction error of δ̂, PE(δ̂), in both linear

and kernel settings. To avoid confusion, we use ‖f(x)‖2 =
∑k−1

j=1 f
2
j (x) denote

the squared �2 norm of f(x) = (f1(x), . . . , fk−1(x))
T . Note that ‖f(x)‖ is a

one-dimension function of x. We let ‖f‖22 = E‖f(X)‖2 denote the squared L2

norm of ‖f(x)‖, and ‖f‖∞ denote the L∞ norm of ‖f(x)‖. From the definition,
PE(f) = ‖f − f∗‖22.

To begin with, we denote

L1(f) = E

[
1

pA(X)
(Y − m̂(X)− 〈WA,f(X)〉)2

]
, and

L2(f) = E

[
1

p̂A(X)
(Y −m(X)− 〈WA,f(X)〉)2

]
.

By Theorem 2, it can be checked that f∗ = argminf L1(f) = argminf L2(f).

Given any function f0 ∈ R
k−1, we are interested in L1(f

0) − L1(f
∗) and

L2(f
0)−L2(f

∗). In statistical learning theory, they are called the excess risks of
f0. The following lemma gives the relationship between PE(f0) and the excess
risk of f0.

Lemma 2. Suppose the model (5) holds. Under Assumption 1 and 2, for any
f0 ∈ R

k−1 we have

PE(δ0) =
k − 1

k
‖f0 − f∗‖22 = L1(f

0)− L1(f
∗) = O

(
L2(f

0)− L2(f
∗)
)
,

where δ0 = (δ01 , . . . , δ
0
k)

T = (〈W1,f
0〉, . . . , 〈Wk,f

0〉)T .

Proof of Lemma 2. Firstly, for the excess risk L1(f
0)− L1(f

∗), check that

L1(f
0)− L1(f

∗)

= E

[
1

pA(X)

(
2(Y − m̂(X))− 〈WA,f

0(X) + f∗(X)〉
)
〈WA,f

∗(X)− f0(X)〉
]
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= E

⎡
⎣ k∑
j=1

(
2(r(X) + δj(X))− (δ0j (X) + δj(X))

) (
δj(X)− δ0j (X)

)⎤⎦

= E

⎡
⎣2r(X)

k∑
j=1

(
δj(X)− δ0j (X)

)
+

k∑
j=1

(
δj(X)− δ0j (X)

)2⎤⎦
= PE(δ0),

where r(X) = m(X)− m̂(X).
Secondly, for the excess risk L2(f

0)− L2(f
∗), check that

L2(f
0)− L2(f

∗)

= E

[
1

p̂A(X)

(
2(Y −m(X))− 〈WA,f

0(X) + f∗(X)〉
)
〈WA,f

∗(X)− f0(X)〉
]

= E

⎡
⎣ k∑
j=1

pj(X)

p̂j(X)

(
2δj(X)− (δ0j (X) + δj(X))

) (
δj(X)− δ0j (X)

)⎤⎦

= E

⎡
⎣ k∑
j=1

pj(X)

p̂j(X)

(
δ0j (X)− δj(X)

)2⎤⎦ .
From Assumption 1, pj(X) ≥ c implies that c ≤ pj(X) ≤ 1 − c. For Assump-
tion 2 to be true, there exists a c0 > 1 such that p̂−1

j (X) ≤ c0, which implies

that (c0 − 1)−1c0 ≤ p̂−1
j (X) ≤ c0. So for each j ∈ A, we have (c0 − 1)−1cc0 ≤

pj(X)/p̂j(X) ≤ (1− c)c0. Therefore,

cc0
c0 − 1

PE(δ0) ≤ L2(f
0)− L2(f

∗) ≤ (1− c)c0PE(δ
0) (10)

indicating that PE(δ0) = O
(
L2(f

0)− L2(f
∗)
)
.

Finally, by the property 4 of Lemma 1, we have

k

k − 1
‖f0 − f∗‖22 = E

k∑
j=1

〈Wj ,f
0(X)− f∗(X)〉2

= E

k∑
j=1

(
δ0j (X)− δj(X)

)2
= PE(δ0)

and the proof is complete.

Lemma 2 implies that the order of PE(δ̂) is the same as the excess risk

L1(f̂)−L1(f
∗) and L2(f̂)−L2(f

∗). This provides us an innovate way to derive

the upper bound for PE(δ̂). That is, we derive the upper bounds for L1(f̂) −
L1(f

∗) and L2(f̂)− L2(f
∗) respectively, and take the smaller one.

Let

L(f) = E

[
1

p̂A(X)
(Y − m̂(X)− 〈WA,f(X)〉)2

]
.
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Lemma 3 is a general statement for the upper bound of PE(δ̂) when one con-
siders the optimization problem (6) under a certain function space F .

Lemma 3. Let F be a function space with bounded L2 norm in R
k−1. Under

Assumption 1 to 3,

PE(δ̂) ≤ O
(
max

{
L(f̂)− inf

f∈F
L(f),min{r1, r2}, inf

f∈F
‖f − f∗‖22

})
,

almost surely under P , where r1 =
(
Cm + supf∈F ‖f‖∞

)2
rp, r2 = k(1+ rp)r

2
m.

Proof of Lemma 3. Let f̃1 ∈ argminf∈F L1(f). By Lemma 2, we have

PE(δ̂) = L1(f̂)− L1(f
∗) =

(
L1(f̂)− L1(f̃1)

)
+
(
L1(f̃1)− L1(f

∗)
)
.

Check that

inf
f∈F

L(f)− L(f̂) +
(
L(f̂)− L1(f̂)

)
+
(
L1(f̂)− L1(f̃1)

)
+
(
L1(f̃1)− L(f̃1)

)
= inf

f∈F
L(f)− L(f̃1) ≤ 0.

So one can bound the first term of PE(δ̂) by

L1(f̂)− L1(f̃1) ≤ L(f̂)− inf
f∈F

L(f) +
(
L(f̃1)− L1(f̃1)

)
−
(
L(f̂)− L1(f̂)

)
≤ L(f̂)− inf

f∈F
L(f) + 2 sup

f∈F
|L(f)− L1(f)|.

This implies that

PE(δ̂) ≤ O
(
max

{
L(f̂)− inf

f∈F
L(f), sup

f∈F
|L(f)− L1(f)|, L1(f̃1)− L1(f

∗)

})
.

Similarly, by denoting f̃2 ∈ argminf∈F L2(f) and applying Lemma 2 on L2, we
have

PE(δ̂) ≤ O
(
max

{
L(f̂)− inf

f∈F
L(f), sup

f∈F
|L(f)− L2(f)|, L2(f̃2)− L2(f

∗)

})
.

The rest of the proof is split into two parts. In part I, we derive an upper bound
for the second term in each scenario. In part II, we show that the third term is
of the same order of inff∈F ‖f − f∗‖22.

Part I: For any f ∈ F , check that

L(f)− L1(f) = E

[(
1

p̂A(X)
− 1

pA(X)

)
(Y − m̂(X)− 〈WA,f(X)〉)2

]
≤ rp (Cm + ‖f‖∞)

2
.
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So supf∈F |L(f)− L2(f)| ≤
(
Cm + supf∈F ‖f‖∞

)2
rp � r1.

On the other hand, by letting r(x) = m(x)− m̂(x),

L(f)− L2(f)

= E

[
1

p̂A(X)

(
(Y − m̂(X)− 〈WA,f(X)〉)2 − (Y −m(X)− 〈WA,f(X)〉)2

)]

= E

[
pA(X)

p̂A(X)

1

pA(X)
(r(X) + 2δA(X)− 2〈WA,f(X)〉)r(X)

]

≤
∥∥∥∥pj(x)p̂j(x)

∥∥∥∥
∞

E

⎡
⎣ k∑
j=1

r2(X) + 2r(X)

k∑
j=1

(δj(X)− 〈Wj ,f(X)〉)

⎤
⎦

≤ kr2m‖pj(x)/p̂j(x)‖∞,

where the last equality follows from the property 3 of Lemma 1 and the fact that∑k
j=1 δj(x) = 0. By Assumption 1, c ≤ pj(x) ≤ 1− c. Hence by Assumption 2

we have

(1− c)−1‖pj(x)/p̂j(x)− 1‖∞ ≤ ‖(pj(x)/p̂j(x)− 1)p−1
j (x)‖∞

= ‖p̂−1
j (x)− p−1

j (x)‖∞ ≤ rp

implying ‖pj(x)/p̂j(x)‖∞ ≤ 1+ (1− c)rp ≤ 1+ rp. So supf∈F |L(f)−L2(f)| ≤
k(1 + rp)r

2
m � r2.

Part II: By Lemma 2 one can check that

L1(f̃1)− L1(f
∗) = inf

f∈F
L1(f)− L1(f

∗) = inf
f∈F

(L1(f)− L1(f
∗))

= inf
f∈F

k − 1

k
‖f − f∗‖22.

This implies that (1) f̃1 ∈ argminf∈F ‖f −f∗‖22; (2) L1(f̃1)−L1(f
∗) has the

same order of inff∈F ‖f − f∗‖22.
On the other hand, by Lemma 2 and the inequality (10),

L2(f̃2)− L2(f
∗) ≤ L2(f̃1)− L2(f

∗) ≤ (1− k)(1− c)c0
k

‖f̃1 − f∗‖22, and

L2(f̃2)− L2(f
∗) ≥ (1− k)cc0

k(c0 − 1)
‖f̃2 − f∗‖22 ≥ (1− k)cc0

k(c0 − 1)
‖f̃1 − f∗‖22,

where c0 > 1 is a constant such that p̂−1
j (x) ≤ c0. Since ‖f̃1−f∗‖22 = inff∈F ‖f−

f∗‖22, we conclude that L2(f̃1)−L2(f
∗) also has the same order of inff∈F ‖f −

f∗‖22.
Finally, by collecting the two inequalities for PE(δ̂) derived under L1 and L2,

we have the desired result by picking the smaller bound.

Note that the upper bound for PE(δ̂) in Lemma 3 involves a supreme for
‖f‖∞ for f ∈ F . However, unlike in most of the classical learning theories
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where the constant term is omitted [7, 10, 42, 52], we include an unpenalized
constant term in the function space when developing the theory. This makes our
conclusion more general while bringing additional challenges to bound ‖f‖∞.
The following Lemma is useful to address this issue by providing a bound for
the constant term.

Lemma 4. Let

F = {f ∈ R
k−1;f = f ′ + b,f ′ ∈ F ′, b ∈ R

k−1},

where F ′ is a collection of functions with bounded L2 norm in R
k−1. Write f̂

as f̂ = f̂ ′ + b̂ where b̂ is the constant term, under Assumption 2 and 3 we have

‖b̂‖ ≤
√

2k(k − 1)

(
c0 − 1

)(
Cm + sup

f ′∈F ′
‖f ′‖∞

)
.

Proof of Lemma 4. By the definition of f̂ , b̂ is also the solution to

min
b∈Rk−1

1

n

n∑
i=1

1

p̂ai(xi)

(
yi − m̂(xi)− 〈Wai , f̂

′(xi) + b〉
)2

.

If we let uj = 〈Wj , b〉, the optimization problem above is equivalent to

k∑
j=1

∑
i∈Ij

1

p̂j(xi)
(ri − uj)

2, s.t.
k∑

j=1

uj = 0, (11)

where Ij = {i; ai = j} and ri = yi − m̂(xi) − 〈Wai , f̂
′(xi)〉. By Assumption 3,

we have |ri| ≤ Cm + ‖f ′‖∞ ≤ Cm + supf ′∈F ′ ‖f ′‖∞ for all i.
By solving (11) by the method of Lagrange multipliers, the estimator ûj can

be written as
ûj = θj −

νj
ν̄
θ̄,

where νj =
(∑

i∈Ij
p̂−1
j (xi)

)−1

, θj = νj
∑

i∈Ij
rip̂

−1
j (xi), and ν̄ and θ̄ are the

averages of the sequence {νj} and {θj}. According to the property 4 of Lemma 1,

finding an upper bound for ‖b̂‖2 is equivalent to finding an upper bound for∑k
j=1〈Wj , b̂〉2 =

∑k
j=1 û

2
j .

By rearranging the terms in μ̂j , we have

k∑
j=1

û2
j =

k∑
j=1

(
θj − θ̄ −

(νj
ν̄

− 1
)
θ̄
)2

≤ 2

k∑
j=1

(θj − θ̄)2 + 2θ̄2
k∑

j=1

(νj
ν̄

− 1
)2

.

Notice that the last term
∑k

j=1 (νj/ν̄ − 1)
2
is the variance of the sequence

{νj/ν̄} multiplying by k. Since for any nonnegative sequence of length k with
mean 1, the maximum variance is achieved when one of them equals to k and
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others equal to 0. This implies that
∑k

j=1 (νj/ν̄ − 1)
2 ≤ (k−1)2+(k−1)(0−1)2 =

k(k − 1). So

k∑
j=1

û2
j ≤ 2

k∑
j=1

(θj − θ̄)2+2k(k−1)θ̄2 ≤ 2

k∑
j=1

θ2j +2k(k−1) · 1
k

k∑
j=1

θ2j = 2k

k∑
j=1

θ2j .

Let c0 > 1 such that p̂j(x) ≥ c−1
0 , we have (c0 − 1)−1c0 ≤ p̂−1

j (x) ≤ c0.

So we have |θj | ≤ νj
∑

i∈Ij
c0|rj | ≤ (c0 − 1)

(
Cm + supf ′∈F ′ ‖f ′‖∞

)
and ν−1

j ≥
|Ij |(c0− 1)−1c0, where |Ij | denotes the cardinality of Ij . By applying Lemma 1,
finally we have

‖b̂‖2 =
k − 1

k

k∑
j=1

û2
j ≤ 2(k − 1)

k∑
j=1

θ2j

≤ 2k

(
k − 1

)(
c0 − 1

)2(
Cm + sup

f ′∈F ′
‖f ′‖∞

)2

and the proof is complete.

C.1. Prediction error for linear learning

The goal of this section is to prove Theorem 4. From Lemma 2, it suffices to
bound the excess risk L(f̂)− L(f (p,s)), where f (p,s) ∈ argminf∈F(p,s) L(f).

Before the proof, we introduce some additional notations. For each f ∈
F(p, s), we write it as f = f ′ + b, where b is the constant term. By Assump-
tion 4, since each covariate is bounded in [−1, 1], we have ‖f ′(x)‖ ≤ ‖f ′(x)‖1 =∑k−1

j=1 |xTβj | ≤
∑k−1

j=1

∑p
l=1 |βjlxl| ≤ s for all x and any f ′, which implies

sup ‖f ′‖∞ ≤ s. Then by applying Lemma 4, ‖b̂‖ ≤
√
2k(k − 1)(c0−1)(Cm+s),

where c0 is an upper bound for p̂−1
j (x). If we let

Fb(p, s) = F(p, s) ∩ {f ; ‖b‖ ≤
√
2k(k − 1)(c0 − 1)(Cm + s)},

then f̂ ∈ Fb(p, s). Hence it suffices to consider the new function space Fb(p, s).
Check that for any f ∈ Fb(p, s), ‖f(x)‖ ≤ ‖f ′(x)‖+‖b‖ ≤ s+

√
2k(k − 1)(c0−

1)(Cm + s) for all x ∈ X . So

sup
f∈Fb(p,s)

‖f‖∞ ≤ s+
√

2k(k − 1)(c0 − 1)(Cm + s).

Next, we let gf (Z) = 1
p̂A(X) (Y − m̂(X)− 〈WA,f(X)〉)2, where the random

vector Z = (X, A, Y ). From Assumption 3, for any f ∈ Fb(p, s) we have

|gf (Z)| ≤ c0(Cm + ‖f‖∞)2 ≤ c0

(
(c0 − 1)

√
2k(k − 1) + 1

)2 (
Cm + s

)2
� c0s

2
0.
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Notice that here we use s0 =
(
(c0 − 1)

√
2k(k − 1) + 1

)(
Cm + s

)
to denote an

upper bound for |Y − m̂(X) − 〈WA,f(X)〉|. Then we consider the following
function space

H = {
(
2c0s

2
0

)−1 (
gf − gf (p,s)

)
;f ∈ Fb(p, s)}.

Check that f (p,s) ∈ Fb(p, s). And for any hf ∈ H, we have |hf | =
(
2c0s

2
0

)−1 |gf−
gf (p,s) | ≤ 1.

Finally, for hf ∈ H, we define the empirical process hf → Pnhf − Phf ,
where Phf =

∫
hfdP and Pnhf = n−1

∑n
i=1 hf (Zi) with Z1, . . . ,Zn i.i.d. from

distribution P . Denote the entropy of H under distribution Q as H(ε,H, L2(Q))
and let H(ε,H) = supQ H(ε,H, L2(Q)).

The following Lemma gives the tail probability of the excess risk L(f̂) −
L(f (p,s)), from which we can derive its convergence rate.

Lemma 5. Let 0 ≤ θ ≤ 1. Assume there exists an M > 0 such that

ε0 log2
16

√
6ε0

θM
+ ε0 ≤ θ

32
√
2
, (12)

where ε0 > 0 is such that the entropy of H

H (ε0,H) ≤ θ

2
nM2. (13)

Then for arbitrary f0 ∈ F ,

P
(
L(f̂)− L(f0) ≥ 16c0s

2
0M
)
≤ 6

(
1− 1

4nM2

)−1

exp
(
−2(1− θ)nM2

)
.

Proof of Lemma 5. Firstly, by the definition of H, we observe that

Phf̂ − Phf0 =
(
2c0s

2
0

)−1
(
L(f̂)− L(f0)

)
.

Secondly, from the definition of f̂ , Pnhf̂ − Pnhf0 ≤ 0, so(
Pnhf̂ − Phf̂

)
+
(
Phf̂ − Phf0

)
+
(
Phf0 − Pnhf0

)
= Pnhf̂ − Pnhf0 ≤ 0.

By rearranging the terms of the left hand side, we have

Phf̂ − Phf0 ≤
(
Pnhf0 − Phf0

)
−
(
Pnhf̂ − Phf̂

)
≤ 2 sup

h∈H
|Pnh− Ph|.

Therefore,

P
(
L(f̂)− L(f0) ≥ 16c0s

2
0M
)
= P

(
Phf̂ − Phf0 ≥ 8M

)
≤ P ∗

(
sup
h∈H

|Pnh− Ph| ≥ 4M

)
,
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where P ∗ is the outer probability.
Finally, check that for any h ∈ H,

P (h− Ph)2 = Ph2 − (Ph)2 ≤ Ph2 ≤ 1.

Then the result follows from Lemma 6 by taking σ2 = 1.

Lemma 6 (53). Let H be a collection of functions such that P (h− Ph)2 ≤ σ2

holds for all h ∈ H. Given n and 0 < θ < 1, assume M > 0 and ε0 satisfy (12)
and (13). Then

P ∗
(
sup
h∈H

|Pnh− Ph| ≥ 4M

)
≤ 6

(
1− σ2

4nM2

)−1

exp
(
−2(1− θ)nM2

)
,

where P ∗ denotes the outer probability.

Note that Lemma 6 is essentially the same as Lemma 4 in [53], while we
rewrite its condition to make it more general. For the detailed proof, one can
refer to Lemma 4 from [53] and Lemma 2.14.18 from [48].

With the help of Lemma 5, we can prove Theorem 4 by choosing an appro-
priate M . However, from condition (13), we notice that M is closely related to
the entropy of the function space H. So before the final step, we still need to
find an upper bound for H(ε,H).

Lemma 7. For any ε > 0, H(ε,H) ≤ 8(k−1)2

ε2 log
(
e+ e p+1

2(k−1)ε
2
)
.

Proof of Lemma 7. Take f1,f2 ∈ Fb(p, s). For any distribution Q, check that

‖hf1 − hf2‖2Q,2

=
(
2c0s

2
0

)−2 ‖gf1 − gf2‖2Q,2

=
1

4c20s
4
0

E

( 1

pA(X)
(2(Y − m̂(X))− 〈WA,f1(X) + f2(X)〉)

× 〈WA,f1(X)− f2(X)〉
)2

≤ c20
4c20s

4
0

E (|2(Y − m̂(X))− 〈WA,f1(X) + f2(X)〉| · ‖f1(X)− f2(X)‖)2

≤ s−2
0 ‖f1 − f2‖2Q,2.

This implies that an s0ε-net on Fb(p, s) introduces an ε-net on H and the re-
maining work is to find the entropy number for Fb(p, s). However, since Fb(p, s)
is a collection of (k − 1)-dimensional functions while most of the learning theo-
ries only give the entropy number for a one-dimensional function space, we use
the following “measure changing trick” to address this problem.

Let Q̃ be the distribution of X̃ = (X̃1, . . . , X̃k−1) = (δ1X1, . . . , δk−1Xk−1),
where Xj = (1,XT

j )
T ∈ R

p+1 with Xj i.i.d. from distribution Q, and the

random vector (δ1, . . . , δk−1) has a joint distribution P
(
(δ1, . . . , δk−1)

T = ej
)
=

(k − 1)−1 for j = 1, . . . , k − 1. For any f = (f1, . . . , fk−1)
T ∈ Fb(p, s) with
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fj(x) = xT β̃j , where β̃j = (β0j ,β
T
j )

T , we check that the one-dimensional

function f̃(x̃) =
∑k−1

j=1 fj(x̃j) =
∑k−1

j=1 x̃
T
j β̃j is Q̃-measurable and ‖f̃‖2

Q̃,2
=

(k − 1)−1‖f‖2Q,2. This implies that for any f1,f2 ∈ Fb(p, s),

‖hf1 − hf2‖Q,2 ≤ s−1
0 ‖f1 − f2‖Q,2 = s−1

0

√
k − 1‖f̃1 − f̃2‖Q̃,2 (14)

On the other hand, by Cauchy—Schwarz inequality,

k−1∑
j=1

‖β̃j‖1 =

k−1∑
j=1

‖βj‖1 + ‖b‖1 ≤ s+
√
k − 1‖b‖

≤ s+ 2
√
k(k − 1)(c0 + 1)(Cm + s) ≤

√
k − 1s0.

Thus it suffices to consider the entropy for the one-dimensional function space

F̃ = {f̃ ; f̃(x̃) =
k−1∑
j=1

p∑
l=0

βlj x̃jl,
∑
l,j

|βlj | ≤
√
k − 1s0},

where x̃jl is the lth element of x̃j . By Assumption 4, it can be verified that
|x̃jl| ≤ 1.

Observe that for any f̃ ∈ F̃ , f̃(x̃) =
∑k−1

j=1

∑p
l=0

βlj√
k−1s0

(
sign(βlj)f̃jl(x̃)

)
,

where f̃jl(x̃) =
√
k − 1s0x̃jl. In fact, J = {±f̃jl} forms a bisis for F̃ with

diamJ ≤ 2
√
k − 1s0. Check that

∑k−1
j=1

∑p
l=0

|βlj |√
k−1s0

≤ 1. So F̃ is a convex hull

of J , i.e., F̃ = convJ . By applying Lemma 2.6.11 of [48], the covering number

of convJ , N
(
εdiamJ , convJ , L2(Q̃)

)
≤
(
e+ 2(k − 1)(p+ 1)ε2e

)2/ε2
.

Finally, by (14), we have

N
(
2(k − 1)ε,H, L2(Q)

)
≤ N

(
2
√
k − 1s0ε, F̃ , L2(Q̃)

)
≤
(
e+ 2(k − 1)(p+ 1)ε2e

)2/ε2
.

Since it is true for any Q, we conclude that N(ε,H) ≤
(
e+ e p+1

2(k−1)ε
2
)8(k−1)2/ε2

and the result follows by taking the logarithm.

By combining the results from Lemma 5 and 7, we can prove Theorem 4.

Proof of Theorem 4. We start from Lemma 5 to find an upper bound for the
estimation error (the first quantity). Take M in Lemma 5 as M = 4τn log τ

−1
n ,

where τn = (n−1 log pn)
1/2 → 0 as n → ∞. Check that nM2 → ∞ so the tail

probability goes to 0. Thus we only need to check condition (12) and (13) before

we draw the conclusion that L(f̂)− L(f (pn,sn)) ≤ Op(16c0s
2
0M).

We first check condition (13). Let ε0 = O
(
log−1 τ−1

n

)
. By Lemma 7, we have

H(ε0,H) ≤ 8(k−1)2

ε20
log
(
e+ e p+1

2(k−1)ε
2
0

)
. So by choosing such ε0, for the left hand
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side of (13),

H(ε0,H) ≤ O
(
log2 τ−1

n log
(
pnε

2
0

))
≤ O

(
log pn log

2 τ−1
n

)
.

For the right hand side of (13), check that nM2 = 4 log pn log
2 τ−1

n . Therefore
condition (13) holds.

Next we check condition (12). Notice that

O
(
log2

ε0
M

)
≤ O(logM−1) ≤ O(log τ−1

n ) = O(ε−1
0 ).

Thus the left hand side of (12) is smaller than O(1) so condition (12) also holds.
With condition (12) and (13) verified, we let θ = 1/2 and check that

nM2 = 4 log pn log
2 τ−1

n ≥ 4 log pn log τ
−1
n = 2 log pn log

n

log pn
≥ 2 logn

for sufficiently large n. This implies that exp(−nM2) ≤ exp(−2 log n) = n−2.
So we can apply Borel-Cantelli Lemma and have an even stronger statement
that L(f̂)− L(f (pn,sn)) ≤ O(16c0s

2
0M) = O((Cm + sn)

2τn log τ
−1
n ).

Finally, check that r1 =
(
Cm + supf∈Fb(pn,sn) ‖f‖∞

)2
rp ≤ s0rp = O((Cm+

sn)
2rp) and the result follows by applying Lemma 3.

Proof of Corollary 1. If either rp = 0 or rp = 0, the second term in PE(δ̂)
vanishes. Since the true treatment effect δj(·) depends on finite many covariates,
there exists a finite p∗ and s∗ such that f∗ ∈ F(p, s) when p ≥ p∗ and s ≥ s∗.
Then by taking sn = s∗ we have dn = 0 and the result follows from Theorem 4.

C.2. Prediction error for RKHS learning

The goal of this section is to prove Theorem 5, where the function space is
F = F(s). The schema for the proof of kernel learning is similar to that of
linear learning. That is, we first find an upper bound for the estimation error
of f̂ given by L(f̂) − L(f (s)), where f (s) ∈ argminf∈F(s) L(f), then apply
Lemma 3 to finish the proof.

Take any f = (f1, . . . , fk−1)
T ∈ F(s) where fj = f ′

j + bj with f ′
j ∈ HK and

bj ∈ R. From RKHS theory [50, 38, 46], 〈K(x, ·), f ′
j〉HK

= f ′
j(x) for any x ∈ X .

So

‖f ′(x)‖2 =

k−1∑
j=1

f ′2
j (x) =

k−1∑
j=1

〈K(x, ·), f ′
j(x)〉2HK

≤
k−1∑
j=1

|K(x, ·)|2·‖f ′
j‖2HK

≤ B2s2

implying sup ‖f ′‖∞ ≤ Bs. On the other hand, by Lemma 4 and denoting b̂ as

the intercept term of f̂ , we have ‖b̂‖ ≤
√
2k(k − 1)(c0 − 1)(Cm + Bs), where
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c0 is an upper bound for p̂−1
j (x). So instead of F(s), it suffices to consider the

following function space:

Fb(s) = F(s) ∩ {f ; ‖b‖ ≤
√

2k(k − 1)(c0 − 1)(Cm +Bs)}.

Next, as in linear learning, let gf (Z) = 1
p̂A(X) (Y − m̂(X)− 〈WA,f(X)〉)2.

It can be checked that |gf | ≤ c0s
2
0 holds for any f ∈ Fb(s), where

s0 =
(
(c0 − 1)

√
2k(k − 1) + 1

)(
Cm +Bs

)
is an upper bound for |Y − m̂(X)− 〈WA,f(X)〉|. Let

H = {
(
2c0s

2
0

)−1 (
gf − gf (s)

)
;f ∈ Fb(s)}.

It can be checked that f (s) ∈ Fb(s) so |hf | ≤ 1 for any hf ∈ H.
Finally, let TZ be the empirical distribution of the training set (z1, . . . , zn).

Denote the entropy of H under TZ as H(ε,H, L2(TZ)) and let H(ε,H) =
supTZ

H(ε,H, L2(TZ)).
Lemma 8 gives an upper bound for H(ε,H).

Lemma 8. For sufficient small ε > 0, there is a constant C0 > 0, such that
H(ε,H) ≤ C0ε

−2.

Proof of Lemma 8. By following the similar argument in the proof of Lemma 7,
we observe that for any f1,f2 ∈ Fb(s),

‖hf1 − hf2‖2TZ ,2 ≤ s−2
0 ‖f1 − f2‖2TZ ,2. (15)

So the rest of the work is to find the entropy number for Fb(s). Since Fb(s) is
a (k− 1)-dimensional function, it is difficult to compute its entropy directly. To
address this issue, we start with the entropy of one-dimensional RKHS.

Let F1 = · · · = Fk−1 = {f ; f = f ′ + b, f ′ ∈ HK , |f ′|+ |b| ≤ s0}. Notice that
this is a function space with penalized constant term. The covering number of
such function space is given in [60], i.e.,

sup
TZ

N(2s0ε,F1, L2(TZ)) ≤
5 exp(C ′ε−2)

ε

for sufficient small ε > 0 and some C ′ > 0. One can verify that Fb(s) ⊆
F1 × · · · × Fk−1 � Fk−1. Next we will cover Fk−1 by constructing a coverage
for each Fj .

Let Gj be a minimal (k − 1)−1/2ε-net for Fj . That is, for any fj ∈ Fj , there
exists a gj ∈ Gj , such that ‖fj − gj‖TZ ,2 ≤ (k − 1)−1/2ε. Take an arbitrary
f = (f1, . . . , fk−1)

T ∈ Fk−1. Then there is a g = (g1, . . . , gk−1)
T where gj ∈ Gj ,

such that

‖g − f‖2TZ ,2 =

k−1∑
j=1

‖fj − gj‖2TZ ,2 ≤ ε2.
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By construction we have g ∈ Fk−1. So we can cover Fk−1 by these ε-nets
centered at such g. This implies that

N
(
ε,Fk−1, L2(TZ)

)
≤ N

(
(k − 1)−1/2ε,F1, L2(TZ)

)k−1

.

Combining the results with (15), we have

N
(
2(k − 1)1/2ε,H, L2(TZ)

)
≤ N

(
2s0(k − 1)1/2ε,Fb(s), L2(TZ)

)
≤ N (2s0ε,F1, L2(TZ))

k−1
.

Note that the inequality holds for any TZ . Therefore

sup
TZ

N
(
2(k − 1)1/2ε,H, L2(TZ)

)
≤
(
5

ε

)k−1

exp

(
(k − 1)C ′

ε2

)
.

By taking the logarithm,

H(ε,H) ≤ k − 1

2
log

100(k − 1)

ε2
+

4(k − 1)2C ′

ε2
.

Because O(log ε−2) < O(ε−2), there is a constant C0 > 0, such that H(ε,H) ≤
C0ε

−2 holds for sufficient small ε > 0.

Now we can prove Theorem 5 using Lemma 3, Lemma 5, and Lemma 8.
Note that though we state Lemma 5 in linear learning, after replacing each
counterpart, the proof is the same and the conclusion is still valid.

Proof of Theorem 5. We start with the upper bound of the estimation error
given by L(f̂)−L(f (s)). By Lemma 5, L(f̂)−L(f (s)) = Op(16c0s

2
0M). Then it

remains to choose an appropriate M that satisfies condition (12) and condition
(13).

Let M = 2n−1/2 logn and take ε0 = O(log−1 n). By Lemma 8, H(ε0,H) ≤
O(log2 n). Since nM2 = 2 log2 n, condition (13) holds. For condition (12), check
that

O
(
log2

ε0
M

)
≤ O(logM−1) ≤ O(log n) = O(ε−1

0 ).

So the left hand side of (12) is smaller than O(1) thus condition (12) holds.
With condition (12) and (12) verified, let θ = 1/2 and check that nM2 =

2 log2 n ≥ 2 logn for sufficient large n. So exp(−nM2) ≤ exp(−2 log n) = n−2.
By applying Borel-Cantelli Lemma we state that

L(f̂)− L(f (sn)) ≤ O
(
(Cm +Bsn)

2
n−1/2 logn

)
.

Finally, check that r1 =
(
Cm + supf∈Fb(sn) ‖f‖∞

)2
rp ≤ s0rp = O((Cm +

Bsn)
2rp) and the result follows by applying Lemma 3.
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Proof of Corollary 2. If either rp = 0 or rm = 0, the second term in PE(δ̂)
vanishes. If we further assume dn ≤ O(s−q

n ) for some q > 0, we have

PE(δ̂) ≤ O
(
max

{
s2nn

−1/2 logn, s−q
n

})
.

Note that sn is the tuning parameter to balance the estimation error and the
approximation error, and the optimal sn is chosen such that these two are the
same. In this case, we let

sn = O
(
(n1/2 log−1 n)

1
q+2

)
.

Then PE(δ̂) ≤ O
(
(n−1/2 logn)

q
q+2

)
. Notice that O(logn) < O(nt) for any

t > 0. For better displaying the result we may let t = (4q + 10)−1. Check that

PE(δ̂) ≤ O
(
n− q

2(q+2)
+ q

q+2 t
)
= O

(
n− q

2q+5

)
and the proof is complete.
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