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Abstract: In this paper, we consider a one-dimensional diffusion process
with jumps driven by a Hawkes process. We are interested in the esti-
mations of the volatility function and of the jump function from discrete
high-frequency observations in a long time horizon which remained an open
question until now. First, we propose to estimate the volatility coefficient.
For that, we introduce a truncation function in our estimation procedure
that allows us to take into account the jumps of the process and estimate
the volatility function on a linear subspace of L2(A) where A is a compact
interval of R. We obtain a bound for the empirical risk of the volatility
estimator, ensuring its consistency, and then we study an adaptive estima-
tor w.r.t. the regularity. Then, we define an estimator of a sum between
the volatility and the jump coefficient modified with the conditional ex-
pectation of the intensity of the jumps. We also establish a bound for the
empirical risk for the non-adaptive estimators of this sum, the convergence
rate up to the regularity of the true function, and an oracle inequality for
the final adaptive estimator.

Finally, we give a methodology to recover the jump function in some ap-
plications. We conduct a simulation study to measure our estimators’ accu-
racy in practice and discuss the possibility of recovering the jump function
from our estimation procedure.
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1. Introduction

The present work focuses on the jump-diffusion process introduced in [20]. It is
defined as the solution of the following equation

dXt = b(Xt)dt+ σ(Xt)dWt + a(Xt−)

M∑
j=1

dN
(j)
t , (1)

where Xt− denotes the process of left limits, N = (N (1), . . . , N (M)) is a M -
dimensional Hawkes process with intensity function λ and W is the standard
Brownian motion independent of N . Some probabilistic results have been estab-
lished for this model in [20], such as the ergodicity and the β−mixing. A second
work has then been conducted to estimate the drift function of the model using
a model selection procedure and upper bounds on the risk of this adaptive esti-
mator have been established in [19] in the high frequency observations context.

In this work, we are interested in estimating the volatility function σ2 and
the jump function a. The jumps in this process make estimating these two
functions difficult. We assume that discrete observations of a X are available at
high frequency and on a large time interval.

1.1. Motivation and state of the art

Let us notice first that this model has practical relevance thinking of continu-
ous phenomenon impacted by an exterior event, with auto-excitation structure.
For example, one can think of the interest rate model (see [26]) in insurance;
then, in neurosciences of the evolution of the membrane potential impacted by
the signals of the other neurons around it (see [19]). Indeed, it is common to
describe the spike train of a neuron through a Hawkes process which models
the auto-excitation of the phenomenon: for a specific type of neurons, when it
spikes once, the probability that it will spike again increases. Finally, referring
to [7] for a complete review on Hawkes process in finance, the reader can see
the considered model as a generalization of the so-called mutually-exciting-jump
diffusion proposed in [5] to study an asset price evolution. This process gener-
alizes Poisson jumps (or Lévy jumps, which have independent increments) with
auto-exciting jumps and is more tractable than jumps driven by Lévy process.

Nonparametric estimation of coefficients of stochastic differential equations
from the observation of a discrete path is a challenge studied a lot in literature.
From a frequentist point of view in the high-frequency context, one can cite [27,
12] and in bayesian, one recently in [1]. Nevertheless, the purpose of this article
falls more under the scope of statistics for stochastic processes with jumps. The
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literature for the diffusion with jumps from a pure centered Lévy process is
large. For example one can refer to [28], [34] and [36].

The first goal of this work is to estimate the volatility coefficient σ2. As it
is well known, in the presence of jumps, the approximate quadratic variation
based on the squared increments of X no longer converges to the integrated
volatility. As in [33], we base the approach on truncated quadratic variation to
estimate the coefficient σ2. The structure of the jumps here is very different from
the one induced by the pure-jump Lévy-process. Indeed, the increments are not
independent, and this implies the necessity to develop a proper methodology as
the one presented hereafter.

Secondly, we want to to find a way to approximate the coefficient a. It is
important to note that, as presented in [36], in the classical jump-diffusion
framework (where a Lévy process is used instead of the Hawkes process for M =
1), it is possible to obtain an estimator for the function σ2 + a2 by considering
the quadratic increments (without truncation) of the process. This is no longer
the case here due to the form of the intensity function of the Hawkes process.
Indeed, we recover a more complicated function to be estimated, as explained
in the following.

1.2. Main contribution

The estimations of the coefficients in Model (1) are challenging in the sense
that we have to take into account the jumps of the Hawkes process. Statistical
inference for the volatility and for the jump function in a jump-diffusion model
with jumps driven by a Hawkes process has never been studied before. As for
the estimation of the drift in [19], we assume that the coupled process (X,λ)
is ergodic, stationary, and exponentially β−mixing. Besides, in this article we
obtain that the projection on X of the invariant measure of the process has a
density which is lower and upper bounded on compact sets. This property is
useful to lead studies of convergence rates for nonparametric estimators since
it gives equivalence between empirical and continuous norms. To estimate the
volatility in a nonparametric way, as in [4] we consider a truncation of the
increments of the quadratic variation ofX that allows judging if a jump occurred
or not in a time interval. We estimate σ2 on a collection of subspaces of L2 by
minimizing a least-squares contrast over each model, and we establish for the
obtained estimators a bound on the risk. We give the convergence rates of these
estimators depending on the regularity of the true volatility function. Then,
we propose a selection model procedure through a penalized criteria, we obtain
non-asymptotic oracle-type inequality for the final estimator that guarantees its
theoretical performance.

In the second part of this work, we are interested in the estimation of the
jump function As it has been said before, it is not possible to recover directly
the jump function a from the quadratic increments of X, and what appears
naturally is the sum of the volatility and of the product of the square of the
jump function and the jump intensity. The jump intensity is hard to control
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properly, and it is unobserved. To overcome such a problem, we introduce the
conditional expectation of the intensity given the observation of X, which leads
us to estimate the sum of the volatility and of the product between a2 and the
conditional expectation of the jump intensity given X. We lead a penalized min-
imum contrast estimation procedure again, and we establish a non-asymptotic
oracle inequality for the adaptive estimator. The achieved rates of convergence
are similar to the ones obtained in the Lévy jump-diffusion context in [36]. Both
adaptive estimators are studied using Talagrand’s concentration inequalities.

We then discuss how we can recover a, as a quotient in which we plug the
estimators of σ2 and g := σ2 + a2 × f , where f is the conditional expectation
of the jump intensity that we do not know in practice. We propose to estimate
f using a Nadaraya-Watson estimator. We show that the risk of the estimator
of a cumulates the errors coming from the estimation of the three functions σ2,
g and the conditional expectation of the jump intensity, which shows how hard
it is to estimate a correctly.

Finally, we have conducted a simulation study to observe the behavior of our
estimators in practice. We compare the empirical risks of our estimators to the
risks of the oracle estimator to which we have access in a simulation study (they
correspond to the estimator in the collection of models, which minimizes the
empirical error). We show that we can recover rather well the volatility σ2 and
g from our procedure, but it is harder to recover the jump function a.

1.3. Plan of the paper

The model is described in Section 2, some assumptions on the model are dis-
cussed and we give properties on the process (Xt, λt). In Section 3 we present the
adaptive estimation procedure for the volatility σ2 and obtain the consistency
and the convergence rate. Section 4 is devoted to the estimation of σ2 + a2 × f ,
where f is the expectation of the jump intensity λ given X. In this section, we
return to the reason for estimating this function, we detail the estimation proce-
dure and establish bounds for the risks of the non-adaptive estimator and of the
adaptive estimator in the regularity. The estimation of the jump coefficient a is
discussed in Section 5. In Section 6 we have conducted a simulation study and
give a little conclusion and some perspective to this work in Section 7. Finally,
the proofs of the main results are detailed in Section 8 and the technical results
are proved in Appendix A.

2. Framework and assumptions

2.1. The Hawkes process

Let (Ω,F ,P) be a probability space. We define the Hawkes process for t ≥ 0
through stochastic intensity representation. We introduce the M -dimensional

point process Nt := (N
(1)
t , . . . , N

(M)
t ) and its intensity λ is a vector of non-

negative stochastic intensity functions given by a collection of baseline inten-
sities. It consists in positive constants ζj , for j ∈ {1, . . . ,M}, and in M × M
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interaction functions hi,j : R+ → R
+, which are measurable functions (i, j ∈

{1, . . . ,M}). For i ∈ {1, . . . ,M} we also introduce n(i), a discrete point measure
on R

− satisfying ∫
R−

hi,j(t− s)n(i)(ds) < ∞ for all t ≥ 0.

They can be interpreted as initial condition of the process. The linear Hawkes
process with initial condition n(i) and with parameters (ζi, hi,j)1≤i,j≤M is a mul-
tivariate counting process (Nt)t≥0. It is such that for all i �= j, P - almost surely,
N (i) and N (j) never jump simultaneously. Moreover, for any i ∈ {1, . . . ,M},
the compensator of N (i) is given by Λ

(i)
t :=

∫ t

0
λ
(i)
s ds, where λ is the intensity

process of the counting process N and satisfies the following equation:

λ
(i)
t = ζi +

M∑
j=1

∫ t−

0

hi,j(t− u)dN (j)
u +

M∑
j=1

∫ 0

−∞
hi,j(t− u)dn(j)

u .

We remark that N
(j)
t is the cumulative number of events in the j-th component

at time t while dN
(j)
t represents the number of points in the time increment

[t, t + dt]. We define Ñt := Nt − Λt and F̄t := σ(Ns, 0 ≤ s ≤ t) the history of
the counting process N (see Daley and Vere - Jones [16]). The intensity process
λ = (λ(1), . . . , λ(M)) of the counting process N is the F̄t-predictable process
that makes Ñt a F̄t-local martingale.

Requiring that the functions hi,j are locally integrable, it is possible to prove

with standard arguments the existence of a process (N
(j)
t )t≥0 (see for example

[17]). We denote as ζj the exogenous intensity of the process and as (T
(j)
k )k≥1

the non-decreasing jump times of the process N (j).
We interpret the interaction functions hi,j (also called kernel function or

transfer function) as the influence of the past activity of subject i on the subject
j, while the parameter ζj > 0 is the spontaneous rate and is used to take into
account all the unobserved signals. In the sequel we focus on the exponential
kernel functions defined by

hi,j : R
+ → R

+, hi,j(t) = cije
−αt, α > 0, cij > 0, 1 ≤ i, j ≤ M.

With this choice of hi,j the conditional intensity process (λt) is then Markovian.
In this case we can introduce the auxiliary Markov process Y = Y (ij):

Y
(ij)
t = ci,j

∫ t

0

e−α(t−s)dN (j)
s + ci,j

∫ 0

−∞
e−α(t−s)dn(j)

s , 1 ≤ i, j ≤ M.

The intensity can be expressed in terms of sums of these Markovian processes
that is, for all 1 ≤ i ≤ M

λ
(i)
t = fi

⎛⎝ M∑
j=1

Y
(ij)
t−

⎞⎠ , with fi(x) = ζi + x.
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We remark that all the point processes N (j) behave as homogeneous Poisson
processes with constant intensity ζj , before the first occurrence. Then, as soon
as the first occurrence appears for a particular N (i), it affects all the process
increasing the conditional intensity through the interaction functions hi,j .

Let us emphasized that from the work [20], it is possible to not assume
the positiveness of the coefficients ci,j , taking then fi(x) = (ζi + x)+. This is
particularly important for the neuronal applications where the neurons can have
excitatory or inhibitory behavior.

2.2. Model assumptions

In this work we consider the following jump-diffusion model. We write the pro-
cess as M + 1 stochastic differential equations:{

dλ
(i)
t = −α(λ

(i)
t − ζi)dt+

∑M
j=1 ci,jdN

(j)
t , i = 1, . . . ,M

dXt = b(Xt)dt+ σ(Xt)dWt + a(Xt−)
∑M

j=1 dN
(j)
t ,

(2)

with λ
(j)
0 and X0 random variables independent of the others. In particular,

(λ
(1)
t , . . . , λ

(M)
t , Xt) is a Markovian process for the general filtration

Ft := σ(Ws, N
(j)
s , j = 1, . . . ,M, 0 ≤ s ≤ t).

We remark that the process N
(j)
t has jumps of size 1. We aim at estimating,

in a non-parametric way, the volatility σ and the jump coefficient a starting
from a discrete observation of the process X. The process X is indeed ob-
served at high frequency on the time interval [0, Tn]. For 0 = t0 ≤ t1 ≤ . . . ≤
tn = Tn, the observations are denoted as Xti . We define Δn,i := ti+1 − ti and
Δn := supi=0,...,n Δn,i. We are here assuming that Δn → 0 and nΔn → ∞,
for n → ∞. We suppose that there exists c1, c2 such that, ∀i ∈ {0, . . . , n− 1},
c1Δmin ≤ Δn,i ≤ c2Δn. We remark we are considering a general case, where the
discretization step is not necessarily uniform. However, in case where the dis-
cretization step is uniform we clearly have Δn = Δn,i for any i ∈ {0, ..., n− 1}
(which implies that the condition here above is clearly respected with c1 = c2 =
1) and the time horizon becomes Tn = nΔn. Furthermore, we require that

logn = o(
√

nΔn). (3)

The size parameter M is fixed and finite all along, and asymptotic properties
are obtained when T → ∞.

Requiring that the size of the discretization step is always the same, as we
do asking that the maximal and minimal discretization steps differ only on a
constant, is a pretty classical assumption in our framework. On the other side,
the step conditions (3) is more technical. This condition is replaced with a
stronger one to obtain Theorem 2 (see Assumption 6 and the discussion below).

Assumption 1 (Assumptions on the coefficients of X). 1. The coefficients
b and σ are of class C2 and there exists a positive constants c such that,
for all x ∈ R, |b′(x)|+ |σ′(x)|+ |a′(x)| ≤ c.
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2. There exist positive constants a1 and σ1 such that |a(x)| < a1 and 0 <
σ2(x) < σ2

1 for all x ∈ R.
3. There exist positive constants c′, q such that, for all x ∈ R, |b′′(x)| +

|σ′′(x)| ≤ c′(1 + |x|q).
4. There exist d ≥ 0 and r > 0 such that, for all x satisfying |x| > r, we have

xb(x) ≤ −dx2.

We remark that, as a consequence of Assumption 1, item 1, the coefficients
b, σ and a are globally Lipschitz continuous.

The first three assumptions ensure the existence of a unique solution X (as
proven in [20] Proposition 2.3). The last assumption is introduced to study the
longtime behavior of X and to ensure its ergodicity (see [20]). Note that the
assumption on a can be relaxed (see [20]).

Assumption 2 (Assumptions on the kernels). 1. Let H be a matrix such
that
Hi,j :=

∫∞
0

hi,j(t)dt = cij/α, for 1 ≤ i, j ≤ M . The matrix H has a
spectral radius smaller than 1.

2. We suppose that
∑M

j=1 ζj > 0 and that the matrix H is invertible.

The first point of the Assumption 2 here above implies that the process
(Nt) admits a version with stationary increments (see [10]). In the sequel, we
always will consider such an assumption satisfied. The process (Nt) corresponds
to the asymptotic limit and (λt) is a stationary process. The second point of
A2 is needed to ensure the positive Harris recurrence of the couple (Xt, λt). A
discussion about it can be found in Section 2.3 of [19].

2.3. Ergodicity and moments

In the sequel, we repeatedly use the ergodic properties of the process Zt :=
(Xt, λt). From Theorem 3.6 in [20] we know that, under Assumptions 1 and 2,
the process (Xt, λt)t≥0 is positive Harris recurrent with unique invariant measure
π(dx). Moreover, in [20], the Foster-Lyapunov condition in the exponential frame
implies that, for all t ≥ 0, E[X4

t ] < ∞ (see Proposition 3.4). In the sequel we
need X to have arbitrarily big moments and, therefore, we propose a modified
Lyapunov function. In particular, following the ideas in [20], we take V : R ×
R

M×M → R+ such that

V (x, y) := |x|m + e
∑

i,j mij |y(ij)|, (4)

where m ≥ 2 is a constant arbitrarily big and mij := ki

α , being k ∈ R
M
+ a

left eigenvector of H, which exists and has non-negative components under our
Assumption 2 (see [20] below Assumption 3.3).

We now introduce the generator of the process Z̃t := (Xt, Yt), defined for
sufficiently smooth test function g by

AZ̃g(x, y) = −α

M∑
i,j=1

y(ij)∂y(ij)g(x, y) + ∂xg(x, y)b(x) +
1

2
σ2(x)∂2

xg(x, y) (5)
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+

M∑
j=1

fj

(
M∑
k=1

y(jk)

)
[g(x+ a(x), y +Δj)− g(x, y)],

with (Δj)
(il) = ci,j1j=l, for all 1 ≤ i, l ≤ M . Then, the following proposition

holds true.

Proposition 1. Suppose that Assumptions 1 and 2 hold true. Let V be as
in (4). Then, there exist positive constants d1 and d2 such that the following
Foster-Lyapunov type drift condition holds:

AZ̃V ≤ d1 − d2V.

Moreover, both X and λ have bounded moments of any order.

Proposition 1 is proven in the Appendix. Let us now add the third assump-
tion.

Assumption 3. (X0, λ0) has probability π.

Then, the process (Xt, λt)t≥0 is in its stationary regime.
We recall that the process Z is called β - mixing if βZ(t) = o(1) for t → ∞

and exponentially β - mixing if there exists a constant γ1 > 0 such that βZ(t) =
O(e−γ1t) for t → ∞, where βZ is the β - mixing coefficient of the process Z as
defined for a Markov process Z with transition semigroup (Pt)t∈R+ , by

βZ(t) :=

∫
R×RM

‖Pt(z, .)− π‖π(dz), (6)

where ‖λ‖ stands for the total variation norm of a signed measure λ.
Moreover, it is

βX(t) :=

∫
R×RM

∥∥P 1
t (z, .)− πX

∥∥π(dz),
where P 1

t (z, .) is the projection on X of Pt(z, .) such that P 1
t (z, dx) := Pt(z, dx×

R
M ) and πX(dx) := π(dx × R

M ) is the projection of π on the coordinate X
(which exists, see Theorem 2.3 in [19] and proof in [20]). Then, according to
Theorem 4.9 in [20], under A1-A3 the process Zt := (Xt, λt) is exponentially
β-mixing and there exist some constant K, γ > 0 such that

βX(t) ≤ βZ(t) ≤ Ke−γt.

Furthermore, from Proposition 3.7 in [20], we know that the measure πX(dx)
admits a Lebesgue density x �→ πX(x) and it is lower bounded on each compact
set of R. In the following lemma we additionally prove that this density is also
upper bounded on each compact set.

Lemma 1. Assume that Assumptions 1 and 2 hold true. Then, for any compact
set K of R, there exists a constant CK > 0 such that πX(x) ≤ CK for all x ∈ K.
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Finally, we know that for each compact set A ⊂ R there exist two positive
constants π0, π1 such that for x ∈ A we have

0 < π0 ≤ πX(x) ≤ π1. (7)

Let us define the norm with respect to πX :

‖t‖2πX :=

∫
A

t2(x)πX(dx).

According to Lemma 1 it yields that for a deterministic function t, π0‖t‖2 ≤
‖t‖πX ≤ π1‖t‖2.

3. Estimation procedure of the volatility function

With the background introduced in the previous sections, we are now ready to
estimate the volatility function to whom this section is dedicated. We remind
the reader that the procedure is based on the observations (Xti)i=1,...,n.

First of all, in Subsection 3.1, we propose a non-adaptive estimator based on
the squared increments of the process X. To do that, we decompose such incre-
ments in several terms, aimed to isolate the volatility function. Regarding the
other terms, we can recognize a bias term (which we will show being small), the
contribution of the Brownian part (which is centered), and the jumps’ contribu-
tion. To make the latter small as well, we introduce a truncation function (see
Lemma 3 below). Thus, we can define a contrast function based on the trun-
cated squared increments of X and the associated estimator of the volatility. In
Proposition 3, which is the main result of this subsection, we prove a bound for
the empirical risk of the volatility estimator we propose.

As the presented estimator depends on the model, in Subsection 3.2 we in-
troduce a fully data-driven procedure to select the best model automatically in
the sense of the empirical risk. We choose the model such that it minimizes the
sum between the contrast and a penalization function, as explained in (15). In
Theorem 1 we show that the estimator associated with the selected model real-
izes the best compromise between automatically the bias term and the penalty
term.

3.1. Non-adaptive estimator

Let us consider the increments of the process X as follows:

Xti+1 −Xti =

∫ ti+1

ti

b(Xs)ds+

∫ ti+1

ti

σ(Xs)dWs +

∫ ti+1

ti

a(Xs−)

M∑
j=1

dN (j)
s

=

∫ ti+1

ti

b(Xs)ds+ Zti + Jti (8)
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where Z, J are given in Equation (9):

Zti :=

∫ ti+1

ti

σ(Xs)dWs, Jti :=

∫ ti+1

ti

a(Xs−)

M∑
j=1

dN (j)
s . (9)

To estimate σ2 for a diffusion process (without jumps), the idea is to consider the
random variables Tti := 1

Δn
(Xti+1 − Xti)

2. Following this idea, we decompose
Tti , in order to isolate the contribution of the volatility computed in Xti . In
particular, Equation (8) yields

Tti =
1

Δn
(Xti+1 −Xti)

2 = σ2(Xti) + Āti +Bti + Eti , (10)

where A,B,E are functions of Z, J :

Āti :=
1

Δn

(∫ ti+1

ti

b(Xs)ds

)2

+
2

Δn
(Zti + Jti)

∫ ti+1

ti

(b(Xs)− b(Xti))ds

+
1

Δn

∫ ti+1

ti

(σ2(Xs)− σ2(Xti))ds+ 2b(Xti)Zti ,

Bti :=
1

Δn
[Z2

ti −
∫ ti+1

ti

σ2(Xs)ds]; (11)

Eti := 2b(Xti)Jti +
2

Δn
ZtiJti +

1

Δn
J2
ti .

The term Āti is small, whereas Bti is centered. In order to make Eti small as
well, we introduce the truncation function ϕΔβ

n,i
(Xti+1 −Xti), for β ∈ (0, 1

2 ). It

is a version of the indicator function, such that ϕ(ζ) = 0 for each ζ, with |ζ| ≥ 2
and ϕ(ζ) = 1 for each ζ, with |ζ| ≤ 1. Also, we define ϕz(.) := ϕ(./z), z > 0. The
idea is to use the size of the increment of the process ΔiX := Xti+1 − Xti in
order to judge if a jump occurred or not in the interval [ti, ti+1). As it is hard for

the increment of X with continuous transition to overcome the threshold Δβ
n,i

for β< 1
2 , we can assert the presence of a jump in [ti, ti+1) if |Xti+1−Xti | > Δβ

n,i.
Hence, we consider the random variables

TtiϕΔβ
n,i

(ΔiX) = σ2(Xti) + Ãti +Bti + EtiϕΔβ
n,i

(ΔiX),

with

Ãti := σ2(Xti)(ϕΔβ
n,i

(ΔiX)− 1) + ĀtiϕΔβ
n,i

(ΔiX) +Bti(ϕΔβ
n,i

(ΔiX)− 1).

Now, the just-introduced Ãti is once again a small term, because so Āti was
and because the truncation function does not differ a lot from the indicator
function, as better justified in Lemma 2 below.

In the sequel, the constant c may change the value from line to line.
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Lemma 2. Suppose that Assumptions 1,2,3 hold. Then, for β ∈ (0, 1
2 ) and for

any k ≥ 1,

E

[∣∣∣ϕΔβ
n,i

(ΔiX)− 1
∣∣∣k] ≤ cΔn,i.

The proof of Lemma 2 can be found in the Appendix. The same is for the
proof of Lemma 3 below, which illustrates the reason why we have introduced a
truncation function. Indeed, without the presence of ϕ, the same Lemma would
have held with just a cΔn,i on the right-hand side. Filtering the contribution

of the jumps, we can gain an extra Δβq
n,i which, as we will see in Proposition 2,

will make the contribution of Eti small.

Lemma 3. Suppose that Assumptions 1,2,3 hold. Then, for q ≥ 1, for β ∈ (0, 1
2 )

and for any k ≥ 1

E

[
|Jti |qϕk

Δβ
n,i

(ΔiX)

]
≤ cΔ1+βq

n,i .

From Lemmas 2 and 3 here above, it is possible to prove the following propo-
sition. Also, its proof can be found in the Appendix.

Proposition 2. Suppose that Assumptions 1,2,3 hold. Then, for β ∈ ( 14 ,
1
2 ),

1. ∀ε̃ > 0, E[Ã2
ti ] ≤ cΔ1−ε̃

n,i , E[Ã4
ti ] ≤ cΔ1−ε̃

n,i ;

2. E[Bti |Fti ] = 0, E[B2
ti |Fti ] ≤ cσ4

1 , E[B4
ti ] ≤ c;

3. E[|Eti |ϕΔβ
n,i

(ΔiX)] = cΔ2β
n,i, E[E2

tiϕΔβ
n,i

(ΔiX)] ≤ cΔ4β−1
n,i ,

E[E4
tiϕΔβ

n,i
(ΔiX)] ≤ cΔ8β−3

n,i .

In the Proposition here above, it is possible to see in detail in what terms the
contribution of Ãti and of the truncation of Eti are small. Moreover, an analysis
of the centered Brownian term Bti and its powers is proposed.

Based on these variables, we propose a nonparametric estimation procedure
for the function σ2(·) on a compact interval A of R. We consider Sm a linear
subspace of L2(A) such that Sm = span(ϕ1, . . . , ϕDm) of dimension Dm, where
(ϕi)i is an orthonormal basis of L2(A). We denote S̃n := ∪m∈MnSm, where Mn

Mn ⊂ N is a set of indexes for the model collection. The contrast function is
defined by

γn,M (t) :=
1

n

n−1∑
i=0

(t(Xti)− TtiϕΔβ
n,i

(ΔiX))21A(Xti) (12)

with the Tti given in Equation (10). The associated mean squares contrast esti-
mator is

σ̂2
m := arg min

t∈Sm

γn,M (t). (13)

We observe that as σ̂2
m achieves the minimum, it represents the projection of

our estimator on the space Sm. The indicator function in (12) suppresses the
contribution of the data falling outside the compact set A, on which we estimate
the unknown function σ2. However, this indicator function is introduced for
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convenience and could be removed without affecting the value of the argmin
in (13), as all elements of Sm are compactly supported on A. The approximation
spaces Sm have to satisfy the following properties.

Assumption 4 (Assumptions on the subspaces).

1. There exists φ1 such that, for any t ∈ Sm, ‖t‖2∞ ≤ φ1Dm ‖t‖2.
2. Nesting condition: (Sm)m∈Mn is a collection of models such that there

exists a space denoted by S̃n, belonging to the collection, with Sm ⊂ S̃n

for all m ∈ Mn. We denote by Nn the dimension of S̃n. It implies that,
∀m ∈ Mn, Dm ≤ Nn.

3. For any positive d there exists ε̃ > 0 such that, for any ε < ε̃,∑
m∈Mn

e−dD1−ε
m ≤ Σ(d), where Σ(d) denotes a finite constant depending

only on d.

Several possible collections of spaces are available: we can consider the col-
lection of dyadic regular piecewise polynomial spaces [DP], the trigonometric
spaces [T] or the dyadic wavelet-generated spaces [W] (see Sections 2.2 and 2.3
of [12] for details). As we will see, in the numerical part we will consider the
trigonometric spaces while all the results gathered in the theory hold true for
no matter which space. However, depending on the collection we consider, we
need to require a different condition on the dimension of the space, as stated in
the assumption below.

Assumption 5 (Assumptions on the dimension).

1. There exists a constant c > 0 such that Nn ≤ c
√
nΔn

logn and
N3

n

n ≤ 1 for the

collection [T].
2. There exists a constant c > 0 such that Nn ≤ c nΔn

log2 n
for collections [DP]

and [W].

We now introduce the empirical norm

‖t‖2n :=
1

n

n−1∑
i=0

t2(Xti)1A(Xti).

The main result of this section consists in a bound for E[
∥∥σ̂2

m − σ2
∥∥2

n
], which

is gathered in the following proposition. Its proof can be found in Section 8.1.

Proposition 3. Suppose that Assumptions 1,2,3,4,5 hold and that β ∈ ( 14 ,
1
2 ).

If Δn → 0, logn = o(
√
nΔn) for n → ∞, then the estimator σ̂2

m of σ2 on A
given by Equation (13) satisfies

E

[∥∥σ̂2
m − σ2

∥∥2

n

]
≤ 3 inf

t∈Sm

∥∥t− σ2
∥∥2

πX +
C1σ

4
1Dm

n
+ C2Δ

4β−1
n +

C3Δ
0∧(4β− 3

2 )
n

n2
,

(14)
with C1, C2 and C3 positive constants.

This result measures the accuracy of our estimator σ̂2
m for the empirical norm.

The right-hand side of the Equation (14) is decomposed into different types of
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Table 1

Rates of convergence for σ̂2
m

Hawkes-diffusion Diffusion

0 < γ ≤ 2α
2(2α+1)

≤ 1/2 Δn
2β−1/2 Δn

2α
2(2α+1)

≤ γ ≤
(

2α
(2α+1)(4β−1)

)
∧ 1 Δn

2β−1/2 n−α/(2α+1)(
2α

(2α+1)(4β−1)

)
∧ 1 ≤ γ < 1 n−α/(2α+1) n−α/(2α+1)

error. The first term corresponds to the bias term, which decreases with the
dimension Dm of the space of approximation Sm. The second term corresponds
to the variance term, i.e., the estimation error, and contrary to the bias, it
increases with Dm. The third term comes from the discretization error and the
controls obtained in Proposition 2, taking into account the jumps. Then, the
fourth term arise evaluating the norm ‖σ̂2

m−σ2‖2n when ‖.‖n and ‖.‖πX are not
equivalent. This inequality ensures that our estimator σ̂2

m does almost as well
as the best approximation of the true function by a function of Sm.

Finally, it should be noted that the variance term is the same as for a diffusion
without jumps. Nevertheless, the remaining terms are larger because of the
presence of the jumps.

Rates of convergence Let us remind that ‖t − σ2‖2πX ≤ π1‖t − σ2
|A‖2 ac-

cording to Lemma 1. Thus let us consider t = σ2
m the projection of σ2 on Sm

for the L2-norm which realizes the minimum. We assume now that the function
of interest σ2

|A is in a Besov space Bα
2,∞ with regularity α > 0 (see e.g. [18] for

a proper definition). Then it comes that ‖σ2
m − σ2

|A‖2 ≤ C(α)D−2α
m . Finally,

choosing Dmopt = n1/(2α+1), and Δn = n−γ with 0 < γ < 1, we obtain the rates
of convergences given in Table 1. This table allows to compare the actual rates
with the one obtained when a ≡ 1 and the process is a simple diffusion process.

Since β ∈ (1/4, 1/2), the best choice for β is to choose it close to 1/4. In
this case, the estimator reaches the classical nonparametric convergence rate
for high-frequency observations (nΔn

(1+2α)/2α = O(1)). Otherwise, most of the
time the remainder term will be predominant in the risk. This result is analogous
to the jump-diffusion case studied in [36].

We observe that, after having replaced the optimal choice for Dm, which
corresponds to Dmopt = n1/(2α+1), the conditions gathered in Assumption 5
become γ ≤ 2α−1

1+2α for collection [T] and γ ≤ 2α
1+2α for collections [DP] and [W].

It is important also to remark that in order to have negligible reminder terms,
we want γ to be such that γ ≥ 2α

(2α+1)(4β−1) . As β ∈ ( 14 ,
1
2 ), the best possible

case is to have β in the neighbourhood of 1/2, so that the right hand side of the
inequality here above becomes 2α

1+2α . It means that, considering the collections
[DP] and [W] are respected at the same time up to have a discretization step

Δn = ( 1n )
2α

1+2α while considering the collection [T] the two conditions can not be
respected at the same time and the only possibility is to take α big. Indeed, if the
function of interest is in a Besov space B∞

2,∞, then the condition in Assumption
5 is respected and the reminder terms are negligible for γ = 1, which means
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Δn = 1/n.
This implies that the term Δ4β−1

n always dominates the others. As it is easy
to see comparing it with the third point of Proposition 2, it comes from the
contribution of the jumps. However, the bound obtained in Proposition 2 on
the filtered jumps is optimal. Hence, in order to have negligible reminder terms,
the idea is to try to lighten the condition on Nn gathered in Assumption 5,
rather than trying to improve the bound on the contribution of the jumps.

3.2. Adaption procedure

We want to define a criterion in order to select automatically the best dimension
Dm (and so the best model) in the sense of the empirical risk. This procedure
should be adaptive, meaning independent of σ2 and dependent only on the
observations. The final chosen model minimizes the following criterion:

m̂σ := arg min
m∈Mn

{γn,M (σ̂2
m) + penσ(m)}, (15)

with penσ(·) the increasing function on Dm given by

penσ(m) := κ1
Dm

n
(16)

where κ1 > 0 is a constant which has to be calibrated. Next theorem is proven
in Section 8.1.

Theorem 1. Suppose that Assumptions 1,2,3,4 hold and that β ∈ ( 14 ,
1
2 ). If

Δn → 0 and logn = o(
√
nΔn) for n → ∞, then the estimator σ̂2

m̂σ
of σ2 on A

given by equations (13) and (15) satisfies

E

[∥∥σ̂2
m̂σ

− σ2
∥∥2

n

]
≤ C1 inf

m∈Mn

{
inf

t∈Sm

‖t− σ2‖2πX + penσ(m)

}
+ C2Δ

4β−1
n +

C3Δ
4β− 3

2
n

n2
+

C4

n

where C1 > 1 is a numerical constant and C2, C3, C4 are positive constants
depending on Δn, σ1 in particular.

This inequality ensures that the final estimator σ̂2
m̂σ

realizes the best compro-
mise between the bias term and the penalty term, which is of the same order as
the variance term. Indeed, it achieves the rates given in Table 1 automatically,
without the knowledge of the regularity of the function σ2.

The convergence of this adaptive estimator is studied in Section 6.

4. Estimation procedure for both coefficients

In addition to the volatility estimation, our goal is to propose a procedure to
recover in a non-parametric way the jump coefficient a. The idea is to study the
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sum between the volatility and the jump coefficient and to recover consequently
a way to approach the estimation of a (see Section 5 below). However, what turns
out naturally is the volatility plus the product between the jump coefficient and
the jump intensity, which leads to some difficulties as we will see in the sequel. To
overcome such difficulties, we must bring ourselves to consider the conditional
expectation of the intensity of the jumps with respect to Xti . In this way, we
analyze the squared increments of the process X differently to highlight the role
of the conditional expectation. In the following, we use for the decomposition
of the squared increments, the same notation as before: we denote the small
bias term as Ati , the Brownian contribution as Bti and the jump contribution
as Eti , even if the forms of such terms are no longer the same as in Section 3.
In particular, Ati and Eti are no longer the same as before, and their new
definition can be found below, while the Brownian contribution Bti remains
exactly the same. To these, as previously anticipated, a term Cti deriving from
the conditional expectation of the intensity is added.

Besides, as in the previous section, we show that Ati is small and Bti is
centered. Moreover, in this case, we also need the jump part to be centered.
Therefore, we consider the compensated measure dÑt instead of dNt, relocating
the difference in the drift.

Let us rewrite the process of interest as:{
dλ

(j)
t = −α(λ

(j)
t − ζt)dt+

∑M
i=1 cj,idN

(i)
t

dXt = (b(Xt) + a(Xt−)
∑M

i=1 λ
(i)
t )dt+ σ(Xt)dWt + a(Xt−)

∑M
i=1 dÑ

(i)
t .

(17)
We set now

Jti :=

∫ ti+1

ti

a(Xs−)

M∑
i=1

dÑ (i)
s . (18)

The increments of the process X are such that

Xti+1 −Xti =

∫ ti+1

ti

⎛⎝b(Xs) + a(Xs−)

M∑
j=1

λ(j)
s

⎞⎠ ds+ Zti + Jti (19)

where J is given in Equation (18) and Z has not changed and is given in Equa-
tion (9). Let us define this time:

Ati :=
1

Δn

⎛⎝∫ ti+1

ti

(b(Xs) + a(Xs−)

M∑
j=1

λ(j)
s )ds

⎞⎠2

+
1

Δn

∫ ti+1

ti

(σ2(Xs)− σ2(Xti))ds+
2

Δn
(Zti + Jti)

×

⎛⎝∫ ti+1

ti

(b(Xs)− b(Xti)) + (a(Xs−)

M∑
j=1

λ(j)
s − a(Xti)

M∑
j=1

λ
(j)
ti )ds

⎞⎠
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+
1

Δn

∫ ti+1

ti

(a2(Xs)− a2(Xti))

M∑
j=1

λ(j)
s ds

+
a2(Xti)

Δn

∫ ti+1

ti

M∑
j=1

(λ(j)
s − λ

(j)
ti )ds+ 2

⎛⎝b(Xti) + a(Xti)

M∑
j=1

λ
(j)
ti

⎞⎠Zti

+2

⎛⎝b(Xti) + a(Xti)

M∑
j=1

λ
(j)
ti

⎞⎠ Jti , (20)

Eti :=
2

Δn
ZtiJti +

1

Δn

⎛⎝J2
ti −

∫ ti+1

ti

a2(Xs)

M∑
j=1

λ(j)
s ds

⎞⎠ . (21)

The term Ati is small, whereas Bti (which is the same as in the previous section)
and Eti are centered. Moreover, let us introduce the quantity

M∑
j=1

E[λ
(j)
ti |Xti ] =

M∑
j=1

∫
RM zjπ(Xti , z1, . . . , zM )dz1, . . . , dzM∫
RM π(Xti , z1, . . . , zM )dz1, . . . , dzM

,

where π is the invariant density of the process (X,λ), whose existence has been
discussed in Section 2.3; and

Cti := a2(Xti)

M∑
j=1

(λ
(j)
ti − E[λ

(j)
ti |Xti ]). (22)

It comes the following decomposition:

Tti =
1

Δn
(Xti+1−Xti)

2 = σ2(Xti)+a2(Xti)

M∑
j=1

E[λ
(j)
ti |Xti ]+Ati+Bti+Cti+Eti .

(23)
In the last decomposition of the squared increments, we have isolated the sum
of the volatility plus the jump coefficient times the conditional expectation of
the intensity with respect to Xti , which is an object on which we can finally
use the same approach as before. Thus, as previously, the other terms need
to be evaluated. The term Ati is small and Bti and Eti are centered. More-
over, the just added term Cti is clearly centered, by construction, if conditioned
with respect to the random variable Xti and, as we will see in the sequel, it is
enough to get our main results. Here it is important to remark that the nat-
ural choice would have been to estimate directly σ2(Xti) + a2(Xti)

∑M
j=1 λti ,

rather than σ2(Xti) + a2(Xti)
∑M

j=1 E[λ
(j)
ti |Xti ]. The problem is that λti has its

own randomness and is not observed and so the method used before for the
estimation of the volatility coefficient can not work anymore. However, replac-

ing λ
(j)
ti with E[λ

(j)
ti |Xti ], our goal turns out being the estimation of g where
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g(Xti) := σ2(Xti) + a2(Xti)
∑M

j=1 E[λ
(j)
ti |Xti ], is now a function of the observa-

tion Xti and so its non-parametric estimation can be accomplished using the
same method as in previous section (see details below).

As explained above Assumption 3, the Foster-Lyapunov condition in the ex-
ponential frames implies the existence of bounded moments for λ and so we also

get E[λ
(j)
ti |Xti ] < ∞, for any j ∈ {1, . . . ,M}.

The properties here above listed are stated in Proposition 4 below, whose
proof can be found in the appendix.

Proposition 4. Suppose that Assumptions 1,2,3 hold. Then,

1. ∀ε̃ > 0, E[A2
ti ] ≤ cΔ1−ε̃

n,i , E[A4
ti ] ≤ cΔ1−ε̃

n,i ;

2. E[Bti |Fti ] = 0, E[B2
ti |Fti ] ≤ cσ4

1 , E[B4
ti ] ≤ c;

3. E[Eti |Fti ] = 0, E[E2
ti |Fti ] ≤

ca4
1

Δn,i

∑M
j=1 λ

(j)
ti , E[E4

ti ] ≤
c

Δ3
n,i

;

4. E[Cti |Xti ] = 0, E[C2
ti ] ≤ c, E[C4

ti ] ≤ c.

From Proposition 4 one can see in detail how small the bias term Ati is.
Moreover, it sheds light on the fact that the Brownian term and the jump term
are centered with respect to the filtration (Ft) while C is centered with respect
to the σ-algebra generated by the process X.

4.1. Non-adaptive estimator

Based on variables we have just introduced, we propose a nonparametric esti-
mation procedure for the function

g(x) := σ2(x) + a2(x)f(x) (24)

with

f(x) =

∑M
j=1

∫
RM zjπ(x, z1, . . . , zM )dz1, . . . , dzM∫

RM π(x, z1, . . . , zM )dz1, . . . , dzM
(25)

on a closed interval A. One can see that the estimation of g is a natural way
to approach the problem of the estimation of the jump coefficient. The same
idea can be found for example in [36], where a Lévy-driven stochastic differential
equation is considered. The reason why in the above mentioned work the density
does not play any role is that it is assumed to be one.

We consider Sm the linear subspace of L2(A) defined in the previous section
for m ∈ Mn and satisfying Assumption 4. The contrast function is defined
almost as before, since this time we no longer need to truncate the contribution
of the jumps. It is, for t ∈ S̃n,

γn,M (t) :=
1

n

n−1∑
i=0

(t(Xti)− Tti)
21A(Xti) (26)

and the Tti are given in Equation (23) this time. The associated mean squares
contrast estimator is

ĝm := arg min
t∈Sm

γn,M (t). (27)
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We want to bound the empirical risk E[‖ĝm − g‖2n] on the compact A. It is
the object of the next result, whose proof can be found in Section 8.2.

Proposition 5. Suppose that Assumptions 1,2,3,4,5 hold. If Δn → 0 and
logn = o(

√
nΔn), then the estimator ĝm of g on A satisfies, for any 0 < ε̃, ε < 1,

E

[
‖ĝm − g‖2n

]
≤ 3 inf

t∈Sm

‖t− g‖2πX +
C1(σ

4
1 + a41 + 1)D1+2ε

m

nΔn
+C2Δ

1−ε̃
n +

C3

n2Δ
3
2
n

,

(28)
with C1, C2 and C3 positive constants.

As in the previous section, this inequality measures the performance of our
estimator ĝm for the empirical norm and the comments given after Proposition 3
hold. The main difference between the proof of Proposition 3 and the proof of
Proposition 5 is that, in the first case, we deal with the jumps by introducing
the indicator function ϕ. In this way, the jump part is small and some rough
estimations are enough to get rid of them (see point 3 of Proposition 2). From
Proposition 4 we can see that for the estimation of both coefficients, instead, the
jump contribution (gathered in Cti and Eti) is no longer small. However, Cti and
Eti are both centered (even if with respect to different σ algebras) and we can
therefore apply on them the same reasoning as we did for Bti , which consists in
a more detailed analysis. Hence, proving Proposition 5 is more challenging than
proving Proposition 3. Evidence of this is for example the fact that, to estimate
g, a bound on the variance of Cti relying on mixing properties is required (see
Lemma 4).

Finally, let us compare this result with the bound (14) obtained for the esti-
mator σ̂2

m. The main difference is that, up to a term D2ε
m for ε arbitrarily small,

the second term is of order Dm/(nΔ) here, instead of Dm/n as it was previously.
Consequently, in practice, the risks will depend mainly on nΔ for the estimation
of g and n for the estimation of σ2.

It is worth remarking that the reason why this extra term D2ε
m appears relies

on the use of the β-mixing property of the process (see Lemma 4). However,
in the intensity is of the jump process is constant (Poisson process) or in the
case where the process satisfies some stronger mixing properties (such as the
ρ-mixing, for example for diffusion processes, see [23]), it is possible to improve
the result gathered in Proposition 5 and to lose the D2ε

m .

Rates of convergence Assume now that g|A ∈ B2
α,∞ with α ≥ 1, then,

taking t = g2m (the projection of g on Sm) produces ‖gm − g|A‖2 ≤ C(α)D−2α
m .

Choosing Dmopt = (nΔ)1/(2α+2ε+1), if nΔ2−ε̃ → 0 leads to

E

[∥∥ĝmopt − g
∥∥2

n

]
≤ (nΔ)−2α/(2α+2ε+1).

We obtain, up to an ε arbitrarily small, the same rate of convergence for the
regularity α as [36] for the estimation of σ2 + a2 in the case of a jump diffusion
with a Lévy process instead of the Hawkes process.

In practice the regularity of g is unknown and thus it is necessary to choose
the best model in a data driven way. This it the subject of the next paragraph.
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4.2. Adaption procedure

Also for the estimation of g we define a criterion in order to select the best
dimension Dm in the sense of the empirical risk. This procedure should be
adaptive, meaning independent of g and dependent only on the observations.
The final chosen model minimizes the following criterion:

m̂g := arg min
m∈Mn

{γn,M (ĝm) + peng(m)}, (29)

with peng(·) the increasing function on Dm given by

peng(m) := κ2
D1+2ε

m

nΔn
, (30)

where κ2 is a constant which has to be calibrated and ε is arbitrarily small.

To establish an oracle-type inequality for the adaptive estimator ĝm̂, the
following further assumption on the discretizion step is essential.

Assumption 6. There exists ε > 0 such that nε log(n) = o(
√
nΔ) for n → ∞.

One can be interested in the reason why this condition, stronger than (3)
we previously required, is needed. Note that (3) is also the condition required
in the discretization scheme proposed in [19] and used in [12] for the nonpara-
metric estimation of coefficients for diffusions. As already said, the proof of
the adaptive procedure involves the application of Talagrand inequality. To ap-
ply Talagrand, we need to get independent, bounded random variables through
Berbee’s coupling method and truncation. Intuitively the point is that, in gen-
eral, such variables are built starting from the Brownian part only (in particular
from Bti , as in (11)). For the adaptive estimation g, instead, also the jumps are
involved (Talagrand variables depend on Bti + Cti + Eti , with Cti and Eti as
in (21) and (22), respectively). Then, an extra term nε appears naturally look-
ing for a bound for the jump part (see Lemma 7 and its proof), which results
in the final stronger condition gathered in Assumption 6.

We analyse the quantity E[‖ĝm̂ − g‖2n] in the following theorem, whose proof
is relegated in Section 8.2.

Theorem 2. Suppose that Assumptions 1,2,3,4,5,6 hold. If Δn → 0, then the
estimator ĝm̂g

of g on A satisfies, for any 1 < ε̃ < 0,

E

[∥∥ĝm̂g
− g

∥∥2

n

]
≤ C1 inf

m∈Mn

{
inf

t∈Sm

‖t− g‖2πX + peng(m)

}
+ C2Δ

1−ε̃
n +

C3

n2Δ
3
2
n

+
C4

nΔn

where C1 > 1 is a numerical constants and C2, C3, C4 are positive constants
depending on Δn, a1, σ1 in particular.
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This result guarantees that our final data-driven estimator ĝm̂ realizes auto-
matically the best compromise between the bias term and the penalty term, and
thus reaches the same rate obtained when the regularity of the true function g
is known. Note that here since it is more difficult to estimate g because we have
to deal with the conditional expectation of the intensity f , the last two error
terms are larger than the ones obtained in Theorem 1 for the estimation of σ2.

5. A strategy to approach the jump coefficient

The challenge is to get an estimator of the coefficient a(·). Let us first remind

the reader of the notation f(x) :=
∑M

j=1 E[λ
(j)
ti |Xti = x] (see Equation (25))

and
g(x) = σ2(x) + a2(x)f(x).

Thus, a natural idea is to replace f in the previous equation by an estimator,

and then, to study an estimator of a(·) of the form ĝ(x)−σ̂2(x)

f̂(x)
. This is not a

simple issue and let us discuss the estimation of f later in the section.
Assuming that an estimator of f is known and denoted f̂h where h > 0

denotes a tunning parameter.
Then, we also assume that f > f0 on A. We then define:

â2z :=
ĝm2(x)− σ̂2

m1
(x)

f̂h(x)
1f̂h(x)>f0/2

with z = (m1,m2, h). Let us study this estimator, for the empirical norm. Due
to the disjoint support of the two terms and together with Cauchy-Schwarz
inequality, we obtain

‖â2z − a2‖2n =

∥∥∥∥∥
(
(ĝm2 − g)

f̂h
+

(σ2 − σ̂2
m1

)

f̂h
+

(g − σ2)

f

f − f̂h

f̂h

)
1f̂h>f0/2

∥∥∥∥∥
2

n

+

∥∥∥∥g − σ2

f
1f̂h<f0/2

∥∥∥∥2

n

≤ 12

f2
0

‖ĝm2 − g‖2n +
12

f2
0

‖σ2 − σ̂2
m1

‖2n + 3

∥∥∥∥∥a2
(
f − f̂h

f̂h

)
1f̂h>f0/2

∥∥∥∥∥
2

n

+
1

n

n−1∑
i=0

a4(Xti)1f̂h(Xti
)<f0/2

.

Besides, if f̂h ≤ f0/2 then |f̂h − f | > f0/2 and as a2(·) < a21 finally:

E[‖â2z − a2‖2n] ≤ 12
f2
0
E[‖ĝm2 − g‖2n] + 12

f2
0
E[‖σ2 − σ̂2

m1
‖2n] +

12a4
1

f2
0
E

[∥∥∥f − f̂h

∥∥∥2

n

]
+

a4
1

n

∑n−1
i=0 P(|f̂h(Xti)− f(Xti)| > f0/2).
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And by Markov’s inequality, we obtain:

E[‖â2z − a2‖2n]

≤ 12
f2
0

(
E[‖ĝm2 − g‖2n] + E[‖σ̂2

m1
− σ2‖2n] + 2a41E

[∥∥∥f − f̂h

∥∥∥2

n

])
. (31)

This equation teaches us that the empirical risk of the estimator âz is upper
bounded by the sum of the three empirical risks of the estimators of the functions
g, σ2, f . The first two are controlled in Theorem 1 and 2.

Finally, the triplet of parameters z = (m1,m2, h) must be chosen in a col-
lection. A first way to do it is to use the model selection proposed in the paper
for σ̂2

m1
, ĝm2 and then select h through cross-validation for example, obtaining

finally ẑ = (m̂σ, m̂g, ĥ). Another possible way would consist in defining a new se-
lection procedure for the triplet, for example a Goldenshluger-Lepski type, as it
is proposed in [14]. Nevertheless, the authors mention that it seems numerically
less performing than to use the one-bandwidth leave-one-out cross validation
method in the Nadaraya-watson estimator context.

Then, we choose to study the first methodology in the next Section, because
it is directly implementable using the built adaptive estimators of σ2 and g.
Besides, the risk bound obtained on âz in Equation (31) suggests that the better
the three functions σ2, g, f are estimated, the better the estimation of a will be.

Remark 1. Let us note here that f can be lower bounded by construction. In-

deed, its definition jointly with the fact that λ
(j)
ti > ζj because of the positiveness

of hi,j, provides us the wanted lower bound. For â2z to be an estimator, f0 must
be known or estimated.

Estimation of f For sake of simplicity let us assume that M = 1. We have
that f(xtk) = E[λtk |Xtk = xtk ] for all k. Thus, f depends on the conditional
intensity λ; thus, the estimator of f will also depend on the estimator of λ. In
addition, to estimate λ, we need more data: we already observe the process X
on discrete times, but we also need to observe the jump times (which are not
assumed to be known in the above).

Let us assume that we have at our disposal in addition to the (Xti)i’s the
sequence Tj ’s of jump times. Now, as the Hawkes process is assumed to have
exponential kernel, this estimation can simply be done using likelihood contrast
estimator for example, and we denote λ̂t the estimator of the intensity process at
time t (which do not depend on X). Then, function f can be estimated through
a Nadaraya-Watson type estimator defined as

f̂NW
h (x) =

n∑
k=1

Kh(x−Xtk)∑n
i=1 Kh(x−Xti)

λ̂tk .

The parameter, h can be chosen using cross-validation for simplicity. Under
strong assumptions, the risk of f̂NW

h is bounded by the risk of the numerator
and by the risk of the denominator. Nevertheless here, to get a bound for the
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risk of the estimator we need to get a bound for the numerator which does not
seem to be a direct computation. This is not solved in the present paper and
will be the object of further considerations.

6. Numerical experiments

In this section, we present our numerical study on synthetic data.

6.1. Simulated data

We simulate the Hawkes process N with M = 1 for simplicity, and here we
denote (Tk)k the sequence of jump times. In fact, the multidimensional structure
of the Hawkes process allows to consider a lot of kinds of data, but what is
impacting the dynamic of X is the cumulative Hawkes process, thus in that
sense we do not lose generality taking M = 1. In this case, the intensity process
is written as

λt = ξ + (λ0 − ξ)e−αt +
∑
Tk<t

ce−α(t−Tk).

The initial conditions X0, λ0 should be simulated according to the invariant
distribution (and λ0 should be larger than ξ > 0). This measure of probability
is not explicit. Thus we choose: λ0 = ξ and X0 = 2 in the examples. Also, the
exogenous intensities ξ is chosen equal to 0.5, the coefficient c is equal to 0.4
and α = 5.

Then we simulate (XΔ, . . . X(n+1)Δ) from an Euler scheme with a constant
time step Δi = Δ. Because of the additional jump term (when a �= 0), it is not
possible to use classical more sophisticated scheme to the best of our knowledge.
A simulation algorithm is also detailed in [20] Section 2.3.

To challenge the proposed methodology, we investigate different kinds of mod-
els. In this section, we present the results for four models, which are the following

(a) b(x) = −4x, σ(x) = 1, a(x) =
√

2 + 0.5 sin(x),

(b) b(x) = −2x+ sin(x), σ(x) =
√
(3 + x2)/(1 + x2), a(x) = 1,

(c) b(x) = −2x, σ(x) =
√
1 + x2, a(x) = 1,

(d) b(x) = −2x, σ(x) =
√
1 + x2, a(x) = x1[−5,5] + 51(−∞,−5) − 51(5,+∞).

The drift is chosen linear to satisfy the assumptions and as it is not of interest
to study the estimation of b here, keeping a simple drift coefficient, let us focus on
the differences observed due to the coefficients σ and a. For example, in models
c) and d), σ does not satisfy Assumption 1. Let us now detail the numerical
estimation strategy.

6.2. Computation of nonparametric estimators

It is important to remind the reader that the estimation procedures are only
based on the observations (XkΔ)k=0,...,n. Indeed, the estimators σ̂2

m̂σ
and ĝm̂g
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of σ2 and g respectively defined by (13) and (27), are based on the statistics:

TkΔ =
(X(k+1)Δ −XkΔ)

2

Δ
, k = 0, . . . , n− 1.

Estimation of σ2 To compute σ̂2
m we use a version of the truncated quadratic

variation through a function ϕ that vanishes when the increments of the data
are too large compared to the standard increments of a continuous diffusion
process. Precisely, we choose

Tϕ
kΔ := TkΔ × ϕ

(
X(k+1)Δ −XkΔ

Δβ

)
; ϕ(x) =

⎧⎪⎨⎪⎩
1 |x| < 1

e1/3+1/(|x|2−4)

0 |x| ≥ 2

. (32)

This choice for the smooth function ϕ is discussed in [4].

Estimation of g As far as the estimation of g := σ2 + a2 × f is concerned,
we do not know the true conditional expectations f(xtk) = E[λtk |Xtk = xtk ]
for all k. Thus we compare the estimations of g to the approximate function

g̃(x) = σ2(x) + a2(x)× f̂NW
ĥ

(x) where the function f(x) =

∫
zπ(x, z)dz

πX(x)
, which

corresponds to E[λ|X = x], is estimated with the classical Nadaraya-Watson

estimator f̂NW
h (x), where h is the bandwidth parameter. To do so, we use the

R-package ksmooth. Then, ĥ is chosen through a cross-validation leave-one-out
procedure.

Choice of the subspaces of L2(A) The spaces Sm are generated by the
trigonometric basis. The maximal dimension Nn is chosen equal to 20 for this
study. The theoretical dimension �

√
nΔ/nε log(n)� is often too small in practice

since we have to consider higher dimension to estimate non-regular functions.
In the theoretical part, the estimation is done on a fixed compact interval A.

Here it is slightly different. We consider for each model the random data range
as the estimation interval. This is more adapted to a real-life data set situation.

6.3. Details on the calibration of the constants

Let us remind the reader that the two penalty functions penσ are given in
Equation (16) and peng given in Equation (30). We consider here the limit
scenario where ε = 0 and the penalties are both linear in the dimension. They
depend on constants named κ1, κ2. These constants need to be chosen once for
all for each estimator in order to compute the final adaptive estimators σ̂2

m̂σ
and

ĝm̂g
. We explain now how these choices are made.

Choice for the universal constants In order to choose the universal con-
stants κ1 and κ2 we investigate models varying b, a, σ2 (different from those
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used to validate the procedure later on) for n ∈ {100, 1000, 10000} and Δ ∈
{0.1, 0.01}. We compute Monte-Carlo estimators of the risks E[‖σ̂2

m̂σ
− σ2‖2n]

and E[‖ĝ2m̂g
− g̃‖2n]. We choose to do Nrep = 1000 repetitions to estimate this

expectation by the average:

1

Nrep

Nrep∑
k=1

‖σ̂2,(k)
m̂σ

− σ2‖2n and
1

Nrep

Nrep∑
k=1

‖ĝ(k)m̂σ
− g̃‖2n.

Finally, comparing the risks as functions of κ1, κ2 leads to select values making a
good compromise overall experiences. Applying this procedure, we finally choose
κ1 = 100 and κ2 = 100.

Choice for the threshold β The parameter β appears in Equation (32). This
parameter helps the algorithm to decide if the process has jumped or not. The
theoretical range of values is (1/4, 1/2). We choose to work with β = 1/4+0.01.

Choice for the bandwidth h The bandwidth h in the Nadaraya-Watson
estimator of the conditional expectation is chosen through a leave-one-out cross-
validation procedure. Since the true conditional expectation is unknown, we
focus on the estimation of g̃, which depends on this estimator anyway. Indeed
it is the estimation procedure of g that is evaluated. Other choices for the best
bandwidth exist as the Goldenshluger and Lepski method [25] or a Penalized
Comparison to Overfitting [31].

6.4. Results: estimation of the empirical risk

As for the calibration phase, we compute Monte-Carlo estimators of the empir-
ical risks. We choose to do Nrep = 1000 repetitions to estimate this expectation
by the average on the simulations. In the risk tables 2 and 3, we present for the
three models and different values of (Δ, n): the average of the estimated risk
over 1000 simulations (MISE) and the standard deviation in the brackets.

Also, we print the result for the oracle function in both cases. Indeed, as
on simulations we know functions σ2, g̃, we can compute the estimator in the
collection Mn = {1, . . . , Nn} which minimises in m the errors ‖σ̂2

m − σ2‖2n and
‖ĝm− g̃‖2n. Let us denote the oracle estimators σ̂2

m∗ and ĝm∗ respectively. These
are not true estimators as they are not available in practice. Nevertheless, it is
the benchmark. The goal of this numerical study is thus to see how close the
risk results of σ̂2

m̂σ
, ĝ2m̂g

are to the risks of these two oracle functions.
Let us detail the result for each estimator.

Estimation of σ2 Figure 1 shows for models (a),(b),(c), three estimators
σ̂2
m̂σ

in green (light grey) and the true function σ2 in black (dotted line). We

can appreciate here the good reconstruction of the function σ2 by our estimator.
Table 2 sums up the results of the estimator σ̂2

m̂σ
for the different models and

different parameter choices. We present also the results for the oracle estimator
σ̂2
m∗ as it has been said previously.
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Fig 1. Models (a),(b),(c) with n = 10000, Δ = 0.01. Three final estimators are plain green
(plain line), true σ2 plain black (dotted line)

Table 2

Estimation on a compact interval. Average and standard deviation of the estimated risks
‖σ̂2

m̂σ
− σ2‖2n and ‖σ̂2

m∗ − σ2‖2n computed over 1000 repetitions.

Δ, n Estimator Model (a) Model (b) Model (c)

Δ = 0.1 n = 1000 σ̂m∗ 0.361 (0.285) 0.107 (0.989) 0.798 (0.208)
σ̂m̂σ 0.410 (0.280) 0.187 (1.678) 1.201 (0.216)

Δ = 0.1 n = 10000 σ̂m∗ 0.278 (0.088) 0.027 (1.014) 0.366 (0.042)
σ̂m̂σ 0.385 (0.122) 0.046 (1.162) 0.452 (0.062)

Δ = 0.01 n = 10000 σ̂m∗ 0.010 (0.023) 0.005 (0.008) 0.008 (0.07)
σ̂m̂σ 0.015 (0.028) 0.005 (0.015) 0.015 (0.012)

The estimations of the MISE and the standard deviation are really close to
the oracle ones. As it has been shown in the theoretical part, we can notice
that the MISE decreases when n increases. Besides, as the variance term is
proportional to 1/n when n is fixed and large enough, we can see the clear
influence of Δ from 0.1 to 0.01, the MISEs are divided at least by 10. Model (c)
seems to be the more challenging for the procedure.

Estimation of g̃ Figure 2 shows for each of the three models (a),(b),(c), three
estimators ĝm̂g

of g̃ in green (light gray) and function g̃ in black (dotted line).
The beams of the three realizations of the estimator are satisfying.
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Fig 2. Models (a),(b),(c) with n = 10000, Δ = 0.01. Three final estimators of g̃ are plain
green (plain line) and g̃ plain black (dotted line).

Table 3

Estimation on a compact interval. Average and standard deviation of the estimated risks
‖ĝm̂g

− g̃‖2n and ‖ĝm∗ − g̃‖2n computed over 1000 repetitions.

Δ, n Estimator Model (a) Model (b) Model (c)

Δ = 0.1 n = 1000 ĝm∗ 0.895 (0.060) 0.474 (0.393) 0.311 (0.320)
ĝm̂g 1.363 (0.715) 0.915 (0.520) 0.707 (0.964)

Δ = 0.1 n = 10000 ĝm∗ 0.735 (0.195) 0.198 (0.079) 0.099 (0.056)
ĝm̂g 0.948 (0.193) 0.313 (0.174) 0.236 (0.202)

Δ = 0.01 n = 10000 ĝm∗ 0.109 (0.120) 0.098 (0.072) 0.035 (0.035)
ĝm̂g 0.129 (0.141) 0.240 (0.100) 0.073 (0.130)

We observe that the procedure has difficulties in Model (a), and we confirm
that impression in Table 3 below with the estimation of the risk. But for the
two other models, the estimators seem closer to the true function. The estima-
tion appears to work better in Model (c) than in Model (b), and this is also
corroborated by the estimation of the risk given in Table 3.

Table 3 gives the Mean Integrated Squared Errors (MISEs) of the estimator
ĝm̂g

obtained from our procedure and of the oracle estimator ĝm∗ , which is the
best one in the collection for the three different models with different values of
Δ and n.

As expected, we observe that the MISEs are smaller when n increases and Δ
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decreases. The different Models (a), (b), (c) gives relatively good results even
if, as already said, it seems a little bit more difficult to estimate correctly g in
Model (a), probably because the volatility σ2 is constant in this case. For the
two other models, the estimators seem to be better. Compared with the results
on the estimation of σ2, the variance is proportional to 1/(nΔ), and thus, the
risks are greater in general.

6.5. Estimation of a2

As explained in Section 5, the challenge is to get an approximation of the co-
efficient a from the two previous estimators. A main numerical issue is that,
according to the theoretical and numerical results, the best setting for the es-
timation of σ2 and g are not the same. Indeed, the smallest Δ is, the best the
estimation of σ2 is, as only large n is important, and on the contrary, nΔ needs
to be large to estimate g properly.

To overcome this difficulty, we choose a thin discretization of the trajecto-
ries of X. We simulate here discrete path of the process X at first with Δ =
10−3, n = 105. Then, we first compute ĝm̂g

the estimator of g̃ on all the obser-
vations. Secondly, we compute σ̂2

m̂σ
the estimator of σ2 from a subsample of the

discretized observations (one over ten observations thus Δ = 0.01, n = 10000).
We finally compute the estimator

â2(x) =
ĝm̂g

(x)− σ̂2
m̂σ

(x)

f̂NW
ĥ

(x)
.

This procedure is presented in Section 5. We have plugged-in â2 the final esti-
mators of σ2, g.

We present on Figure 3 the results obtained on model (d) in which neither
σ2 nor a are constant. Indeed, for the three other models, our procedure has
difficulties estimating properly g, σ2 and a2, when one of the diffusion jump
process parameters is constant. We see that the final estimator â2ẑ is not so far
from the true function a2 even if there are some fluctuations around the true
function. This is understandable because we add the errors coming from the
estimations of σ2 and g as we can see on Inequality (31). Moreover, it should
not be forgotten that we do not know exactly g and that we already make an
error by estimating g̃ instead of g, this error is then reflected in the estimate of
a2.

7. Discussion

This paper investigates the jump-diffusion model with jumps driven by a Hawkes
process. This model is interesting to complete the collection of jump-diffusion
models and consider dependency in the jump process. The dynamic of the tra-
jectories obtained from this model is impacted by the Hawkes process, which
acts independently of the diffusion process.
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Fig 3. Model (d). Final estimators ĝm̂2
, σ̂2

m̂1
and â are plain green (plain line), and true

parameters g̃, σ2 and a2 in plain black (dotted line) from left to right respectively.

This work focuses on the estimation of the unknown coefficients σ2 and a. We
propose a classical adaptive estimator of σ2 based on the truncated increments of
the observed discrete trajectory. This allows estimating the diffusion coefficient
when no jump is detected.

Then, we estimate the sum g := σ2 + a2 × f . Indeed, it is this function and
not σ2 + a2 that can be estimated. The multiplicative term f is the sum of the
conditional expectations of the jump process. This function can be estimated
separately through a Nadaraya-Watson estimator. The proposed estimator of g
is built using all increments of the quadratic variation this time.

Furthermore, a main issue is to reach the jump coefficient a from the two
first estimators σ̂2

m̂σ
and ĝm̂g

for which the theoretical and numerical results are
convincing. The last section of this article answered this question partially. It is
simple to build an estimator of a from the two previous ones and the estimator
of the unknown conditional intensity function f .

Nevertheless, this is possible only if the jumps of the Hawkes process are
observed, which is the case of the simulation study. Then, when real-life data
arises, the jump times of the counting process must be known to be able to
reach a with our methodology. Otherwise, the issue remains an open question.

Then, the proposed estimator âz, with z = (m1,m2, h), is a quotient of
estimators and the denominator must be lower bounded to ensure the proper
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definition of the estimator. This could be theoretically and numerically carefully
studied and be the object for further works.

Finally, our analysis sheds light on the importance to further investigate the
conditional intensity function f , dependent on the invariant density π. A future
perspective would be to propose a kernel estimator for the invariant density π
and to study its behavior and its asymptotic properties deeply, following the
same approach as in [37] and [3]. A projection method is instead considered in
[30] to estimate the invariant density associated with a piecewise deterministic
Markov process. Consequently, it will be possible to discuss the properties of
the related estimator of f .

From the nonparametric estimation point of view, it should be interesting to
extend the present estimation work to estimation on the real line instead of on
a compact interval. [13] brings a solution to deal with the estimation of the drift
function on the all real line from repeated observations. The procedure may be
extended to the present framework in future works.

8. Proofs

This section is devoted to the proofs of the results stated in Sections 3 and 4.
One may observe that, concerning non-adaptive estimators, the proof of both

Propositions 3 and 5 relies on the same scheme. It consists in introducing the set
Ωn as in (35), on which the norms ‖·‖πX and ‖·‖n are equivalent, and to bound
the risk on Ωn and Ωc

n, respectively. On Ωc
n, a rough bound on the quantities we

are considering is enough, as the probability of Ωc
n is very small (see (40)). Hence,

the idea to bound the risk on Ωc
n in Proposition 3 and 5 is basically the same. On

Ωn, instead, there are main differences. Indeed, in Proposition 3, it is enough to
upper bound roughly both the bias and the jump terms, (to deal more in detail
only with the Brownian part), while in Proposition 5 a in-depth study is required
for Bti , Cti and Eti . Such difference between the proofs for the estimation of σ
and g is more highlighted in the analysis of the adaptive procedure. The proof
of both Theorems 1 and 2, indeed, heavily relies on Talagrand inequality and, as
for the non-adaptive procedure, for the estimation of σ what really matters is the
contribution of Bti , while for the estimation of g also Cti and Eti are involved. It
implies that, for the proof of Theorem 2, we are using Berbee’s coupling method
to get independent variables and truncation to make them bounded, starting
from some variables in which also the jumps contribute; which is challenging.

8.1. Proof of volatility estimation

Here we prove all the results stated in Section 3. We start proving Proposition 3.

8.1.1. Proof of Proposition 3

Proof. We want to obtain an upper bound for the empirical risk E[
∥∥σ̂2

m − σ2
∥∥2

n
].

First of all we remark that, if t is a deterministic function, then it is E[‖t‖2n] =
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‖t‖2πX .
By the definition of Tti we have that

γn,M (t) :=
1

n

n−1∑
i=0

(
t(Xti)− TtiϕΔβ

n,i
(ΔiX)

)2

1A(Xti)

=
1

n

n−1∑
i=0

(
t(Xti)− σ2(Xti)− (Ãti +Bti + EtiϕΔβ

n,i
(ΔiX))

)2

1A(Xti)

=
∥∥t− σ2

∥∥2

n
+

1

n

n−1∑
i=0

(Ãti +Bti + EtiϕΔβ
n,i

(ΔiX))21A(Xti)

− 2

n

n−1∑
i=0

(
Ãti +Bti + EtiϕΔβ

n,i
(ΔiX)

) (
t(Xti)− σ2(Xti)

)
1A(Xti).

As σ̂2
m minimizes γn,M (t), for any σ2

m ∈ Sm it is γn,M (σ̂2
m) ≤ γn,M (σ2

m) and
therefore ∥∥σ̂2

m − σ2
∥∥2

n
≤

∥∥σ2
m − σ2

∥∥2

n

+
2

n

n−1∑
i=0

(Ãti +Bti + EtiϕΔβ
n,i

(ΔiX))(σ̂2
m(Xti)− σ2

m(Xti)),

where in the last sum we can remove the indicator since σ̂m and σm are com-
pactly supported on A. Let us denote the contrast function

νn(t) :=
1

n

n−1∑
i=0

Btit(Xti). (33)

In the sequel, we will repeatedly use that, for d > 0, it is 2xy ≤ x2/d+ dy2. It
follows

∥∥σ̂2
m − σ2

∥∥2

n
≤

∥∥σ2
m − σ2

∥∥2

n
+

d

n

n−1∑
i=0

(
Ãti + EtiϕΔβ

n,i
(ΔiX)

)2

+
1

d

∥∥σ̂2
m − σ2

m

∥∥2

n
+ 2νn(σ

2
m − σ̂2

m).

The linearity of the function νn in t implies that

|2νn(σ̂2
m − σ2

m)| = 2‖σ̂2
m − σ2

m‖πX |νn((σ̂2
m − σ2

m)/‖σ̂2
m − σ2

m‖πX )|
≤ 2‖σ̂2

m − σ2
m‖πX sup

t∈Bm

|νn(t)|,

then, using again that 2xy ≤ x2

d + dy2, we obtain the upper bound

2|νn(σ̂2
m − σ2

m)| ≤ 1

d
‖σ̂2

m − σ2
m‖2πX + d sup

t∈Bm

ν2n(t)
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where Bm =
{
t ∈ Sm : ‖t‖2πX ≤ 1

}
. Finally, using Cauchy-Schwarz’s inequality

leads to

∥∥σ̂2
m − σ2

∥∥2

n
≤

∥∥σ2
m − σ2

∥∥2

n
+

2d

n

n−1∑
i=0

Ã2
ti +

2d

n

n−1∑
i=0

E2
tiϕ

2
Δβ

n,i

(ΔiX)

+
1

d

∥∥σ̂2
m − σ2

m

∥∥2

n
+ d sup

Bm

ν2n(t) +
1

d

∥∥σ̂2
m − σ2

m

∥∥2

πX . (34)

Let us set

Ωn :=

{
ω, ∀t ∈ S̃n\{0},

∣∣∣∣∣ ‖t‖2n
‖t‖2πX

− 1

∣∣∣∣∣ ≤ 1

2

}
, (35)

on which the norms ‖·‖πX and ‖·‖n are equivalent. We now act differently to
bound the risk on Ωn and Ωc

n.

Bound of the risk on Ωn On Ωn, it is∥∥σ̂2
m − σ2

m

∥∥2

πX ≤ 2
∥∥σ̂2

m − σ2
m

∥∥2

n
≤ 4

∥∥σ̂2
m − σ2

∥∥2

n
+ 4

∥∥σ2 − σ2
m

∥∥2

n
,

where in the last estimation we have used triangular inequality. In the same way
we get ∥∥σ̂2

m − σ2
m

∥∥2

n
≤ 2

∥∥σ̂2
m − σ2

∥∥2

n
+ 2

∥∥σ2 − σ2
m

∥∥2

n
.

Replacing them in (34) we obtain

∥∥σ̂2
m − σ2

∥∥2

n
≤

∥∥σ2
m − σ2

∥∥2

n
+

2d

n

n−1∑
i=0

Ã2
ti +

2d

n

n−1∑
i=0

(EtiϕΔβ
n,i

(ΔiX))2

+d sup
t∈Bm

ν2n(t) +
6

d

∥∥σ̂2
m − σ2

∥∥2

n
+

6

d

∥∥σ2 − σ2
m

∥∥2

n
.

We need d to be more than 6. We take the optimal choice for d, which
corresponds to d = 12, obtaining

∥∥σ̂2
m − σ2

∥∥2

n
≤ 3

∥∥σ2
m − σ2

∥∥2

n
+

48

n

n−1∑
i=0

Ã2
ti

+
48

n

n−1∑
i=0

(EtiϕΔβ
n,i

(ΔiX))2 + 24 sup
t∈Bm

ν2n(t). (36)

We denote as (ψl)l an orthonormal basis of Sm for the L2
πX norm (thus∫

R
ψ2
l (x)π

X(x)dx = 1). Each t ∈ Bm can be written

t =

Dm∑
l=1

αlψl, with

Dm∑
l=1

α2
l ≤ 1.



Nonparametric inference of Hawkes coefficients 3243

Then,

sup
t∈Bm

ν2n(t) = sup∑Dm
l=1 α2

l≤1

ν2n

(
Dm∑
l=1

αlψl

)

≤ sup∑Dm
l=1 α2

l ≤1

(
Dm∑
l=1

α2
l

)(
Dm∑
l=1

ν2n(ψl)

)
=

Dm∑
l=1

ν2n(ψl). (37)

To study the risk we need to evaluate the expected value. From (36), (37) and
using the first and the third points of Proposition 2, we get

E

[∥∥σ̂2
m − σ2

∥∥2

n
1Ωn

]
≤ 3E

[∥∥σ2
m − σ2

∥∥2

n

]
+ cΔ1−ε̃

n + cΔ4β−1
n + 24

Dm∑
l=1

E[ν2n(ψl)].

(38)
By the definition (33) of νn it is

νn(ψl) =
1

n

n−1∑
i=0

Btiψl(Xti).

As Bti is conditionally centered, using the second point of Proposition 2, it is

Dm∑
l=1

E[ν2n(ψl)] ≤
c

n2

n−1∑
i=0

Dm∑
l=1

E[ψ2
l (Xti)E[B

2
ti |Fti ]]

≤ c

n2

n−1∑
i=0

Dm∑
l=1

σ4
1E[ψ

2
l (Xti)] ≤

cσ4
1Dm

n
.

Replacing the inequality here above in (38) it yields

E

[∥∥σ̂2
m − σ2

∥∥2

n
1Ωn

]
≤ 3E

[∥∥σ2
m − σ2

∥∥2

n

]
+ cΔ4β−1

n +
cσ4

1Dm

n
.

As for any deterministic t it is E[‖t‖n] = ‖t‖πX , it follows

E[
∥∥σ̂2

m − σ2
∥∥2

n
1Ωn ] ≤ 3 inf

t∈Sm

∥∥t− σ2
∥∥2

πX + cΔ4β−1
n +

cσ4
1Dm

n
. (39)

Bound of the risk on Ωc
n The complementary space Ωc

n of Ωn given in
Equation (35) is defined as:

Ωc
n =

{
ω ∈ Ω, ∃t∗ ∈ S̃n\{0},

∣∣∣∣ ‖t∗‖2n
‖t∗‖2

πX

− 1

∣∣∣∣ > 1/2

}
.

Let us set e = (et0 , . . . , etn−1), where eti := TtiϕΔβ
n,i

(ΔiX) − σ2(Xti) =

Ãti +Bti + EtiϕΔβ
n,i

(ΔiX). Moreover

ΠmTϕ = Πm(Tt0ϕΔβ
n,0

(Δ0X), . . . , Ttn−1ϕΔβ
n,n−1

(Δn−1X))
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= (σ̂2
m(Xt0), . . . , σ̂

2
m(Xtn−1)),

where Πm is the Euclidean orthogonal projection over Sm. Then, according to
the projection definition,∥∥σ̂2

m − σ2
∥∥2

n
=

∥∥ΠmTϕ− σ2
∥∥2

n
=

∥∥ΠmTϕ−Πmσ2
∥∥2

n
+

∥∥Πmσ2 − σ2
∥∥2

n

≤
∥∥Tϕ− σ2

∥∥2

n
+

∥∥σ2
∥∥2

n
= ‖e‖2n +

∥∥σ2
∥∥2

n
.

Therefore, from Cauchy -Schwarz inequality and the boundless of σ2(x),

E

[∥∥σ̂2
m − σ2

∥∥2

n
1Ωc

n

]
≤ E

[
‖e‖2n 1Ωc

n

]
+ E

[∥∥σ2
∥∥2

n
1Ωc

n

]
=

1

n

n−1∑
i=0

E[e2ti1Ωc
n
] +

1

n

n−1∑
i=0

E[σ4(Xti)1Ωc
n
]

≤ 1

n

n−1∑
i=0

E[e4ti ]
1
2P(Ωc

n)
1
2 + σ4

1P(Ω
c
n).

From Lemma 6.4 in [19], if nΔn

(logn)2 → ∞ and Nn ≤ nΔn

(logn)2 for [DP] and [W] and

N2
n ≤ nΔn

(logn)2 for the collection [T], then

P(Ωc
n) ≤

c0
n4

. (40)

In the hypothesis of our proposition we have requested that logn = o(
√
nΔn).

As for n going to ∞ we have (logn)2

nΔn
< logn√

nΔn
→ 0, the first condition in Lemma

6.4 in [19] hold true. Regarding the bound on Nn, we have required Assumption
5 and so we can apply the here above mentioned lemma, which yields (40).

We are left to evaluate E[e4ti ]. From Proposition 2 it follows

E
[
e4ti

]
≤ E

[
Ã4

ti +B4
ti + E4

tiϕ
4
Δβ

n,i

(ΔiX)

]
≤ cΔ1−ε̃

n + c+ cΔ8β−3
n ≤ cΔ0∧8β−3

n .

Putting the pieces together it yields

E

[∥∥σ̂2
m − σ2

∥∥2

n
1Ωc

n

]
≤ cΔ

0∧4β− 3
2

n

n2
+

c

n4
≤ cΔ

0∧4β− 3
2

n

n2
. (41)

From (39) and (41) it follows

E

[∥∥σ̂2
m − σ2

∥∥2

n

]
≤ 6 inf

t∈Sm

∥∥t− σ2
∥∥2

πX +
C1σ

4
1Dm

n
+C2Δ

4β−1
n +

C3Δ
0∧4β− 3

2
n

n2
.

8.1.2. Proof of Theorem 1

Proof. For simplicity in notation we denote m̂σ = m̂ in the proof. We analyse

the quantity E[
∥∥σ̂2

m̂ − σ2
∥∥2

n
], acting again in different way depending on whether
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or not we are on Ωn. On Ωc
n the proof can be led as before, getting

E

[∥∥σ̂2
m̂ − σ2

∥∥2

n
1Ωc

n

]
≤ cΔ

0∧4β− 3
2

n

n2
. (42)

Now we investigate what happens on Ωn. By the definition of m̂ it is

γn,M (σ̂m̂) + pen(m̂) ≤ γn,M (σ̂m) + pen(m) ≤ γn,M (σm) + pen(m)

and so, acting as before (36), we get

E

[∥∥σ2
m̂ − σ2

∥∥2

n
1Ωn

]
≤ 3E[

∥∥σ2
m − σ2

∥∥2

n
] +

48

n

n−1∑
i=0

E[Ã2
ti ]

+
48

n

n−1∑
i=0

E[(EtiϕΔβ
n,i

(ΔiX))2] + 24E

[
sup

t∈Bm,m̂

ν2n(t)

]
(43)

+ 12pen(m)− 12E[pen(m̂)], (44)

where νn has been defined in (33) and

Bm,m′ := {h ∈ Sm + Sm′ : ‖h‖πX ≤ 1} .

We want to control the term E[supt∈Bm,m̂
(νn(t))

2] and, to do that, we introduce

the function p(m,m′) which is such that

p(m,m′) =
1

24
(pen(m) + pen(m′)). (45)

It is

E

[
sup

t∈Bm,m̂

νn(t)
2

]
≤ E [p(m, m̂)] +

∑
m′∈Mn

E

[(
sup

t∈Bm,m′
(νn(t))

2 − p(m,m′)

)
+

]
.

In order to bound the second term in the right hand side here above we want to
use Lemma 7 in [35]. We can remark that, for any p ≥ 2, E[|Bti |p] ≤ c

Δp
n
E[Z2p

ti ]+

cσ2p
1 . According to Proposition 4.2 in Barlow and Yor [8] there exists a constant

c such that, for any p > 0,

E

[
Z2p
ti

]
≤ cΔp

nσ
2p
1 .

It follows
E[|Bti |p] ≤ cσ2p

1 .

By Lemma 7 in [35] there exists a constant k such that, for any m,m′ ∈ Mn,

E

[(
sup

t∈Bm,m′
ν2n(t)− kcσ1p(m,m′)

)
+

]
≤ c

e−(Dm+Dm′ )

n
. (46)
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We have said, in the definition of the penalization function penσ given in
Subsection 3.2, that the constant κ1 has to be calibrated. In particular, we need
it to be such that κ1

24 ≥ kcσ1, where σ1 is the upper bound for the volatility
provided in the second point of Assumption 1 and k and c are as in Lemma 7 of
[35]. We underline that Lemma 7 in [35] has been proved for a noisy diffusion.
However, the same reasoning applies for a jump diffusion (see the proof of The-
orem 13 in [36]) and for our framework as well, as it is based on a projection
argument and on algebraic computations which still hold true.

We remark that Assumption (iii) of Section 2.2 of [35], on the cardinality
of the support of the basis, holds true only for the collections [DP] and [W].
However, Lemma 7 of [35] still holds true for the collection [T], up to add the

condition
N3

n

n ≤ 1 as in the first point of Assumption 5. Indeed Lemma 8 of
[35] (on which the proof of Lemma 7 relies) does not change considering the
collection [T]. Then r̄m,m′ , as introduced in the proof of Lemma 7 in [35], is
now bounded by an extra D = max(Dm, D′

m), which implies an extra D in the
definition of both η0 and ηk. In particular now we have, using the notation in
Lemma 7 of [35], ηk := 2−k(

√
c3xk + c4Dxk). It follows, after having replaced

xk,

η2 = (

∞∑
k=0

ηk)
2 ≤ cγ2(

D

n
+

τ

n
+

D4

n2
+

D2τ2

n2
).

Now, D4

n2 ≤ D
n as we have assumed

N3
n

n ≤ 1 in Assumption 5. Then, following
again the proof of Lemma 7 in [35] but substituting the variable τ with y such

that τ = cγ2( yn +D2 y2

n2 ), we get

E = Cγ2e−D(
1

n

∫ ∞

0

e−ydy +
2

n2

∫ ∞

0

D2ye−ydy)

≤ c
γ2

n
e−D(1 +

D2

n
).

However, Assumption 5 implies D2

n ≤ 1 and so we get that the extra part due

to the choice of the collection [T] is negligible. We recover E ≤ cγ
2

n e−D, as in
Lemma 7 of [35] and as we wanted.

From (46) and the fourth point of Assumption 4 we get

∑
m′∈Mn

E

[(
sup

t∈Bm,m′
ν2n(t)− p(m,m′)

)
+

]
≤ c

n

∑
m′∈Mn

e−(Dm+Dm′ ) ≤ c

n
.

It provides us, using also (41) and Proposition 2,

E

[∥∥σ̂2
m̂ − σ2

∥∥2

n

]
≤ 3E

[∥∥σ2
m − σ2

∥∥2

n

]
+ cΔ4β−1

n +
c

n4
+ cpen(m)

+
cΔ

0∧(4β− 3
2 )

n

n2
+

c

n
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≤ C1 inf
m∈Mn

{
inf

t∈Sm

‖t− σ2‖2πX + pen(m)

}
+C2Δ

4β−1
n +

C3Δ
4β− 3

2
n

n2
+

C4

n
.

8.2. Proof of results on estimation of g

In this section we prove the results stated in Section 4.

8.2.1. Proof of Proposition 5

Proof. The proof follows the same scheme than the proof of Proposition 3. We
want to upper bound the empirical risk E[‖ĝm − g‖2n]. By the definition of Tti

we have that

γn,M (t) =
1

n

n−1∑
i=0

(t(Xti)− Tti)
21A(Xti)

=
1

n

n−1∑
i=0

(t(Xti)− g(Xti)− (Ati +Bti + Cti + Eti))
21A(Xti)

= ‖t− g‖2n +
1

n

n−1∑
i=0

(Ati +Bti + Cti + Eti)
21A(Xti)

− 2

n

n−1∑
i=0

(Ati +Bti + Cti + Eti)(t(Xti)− g(Xti))1A(Xti).

As ĝm minimizes γn,M (t), for any gm ∈ Sm it is γn,M (ĝm) ≤ γn,M (gm) and
therefore

‖ĝm − g‖2n ≤ ‖gm − g‖2n +
2

n

n−1∑
i=0

(Ati +Bti + Cti + Eti)(ĝm(Xti)− gm(Xti)).

Using Cauchy-Schwarz inequality and the fact that, for d > 0, 2xy ≤ x2

d + dy2,
we get

‖ĝm − g‖2n ≤ ‖gm − g‖2n +
2d

n

n−1∑
i=0

A2
ti +

1

d
‖ĝm − gm‖2n + 2d sup

Bm

ν2n,1(t)

+
1

d
‖ĝm − gm‖2πX + 2d sup

Bm

ν2n,2(t), (47)

where Bm =
{
t ∈ Sm : ‖t‖2πX ≤ 1

}
and

νn,1(t) :=
1

n

n−1∑
i=0

(Bti + Eti)t(Xti), νn,2(t) :=
1

n

n−1∑
i=0

Ctit(Xti). (48)
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We still denote Ωn the space on which the norms ‖·‖πX and ‖·‖n are equivalent
given by Equation (35). We now act differently to bound the risk on Ωn and
Ωc

n.

Bound of the risk on Ωn On Ωn, it is

‖ĝm − gm‖2πX ≤ 2 ‖ĝm − gm‖2n ≤ 4 ‖ĝm − g‖2n + 4 ‖g − gm‖2n ,

where in the last estimation we have used triangular inequality. Replacing it
in (47) we get

‖ĝm − g‖2n ≤ ‖gm − g‖2n +
2d

n

n−1∑
i=0

A2
ti + 2d sup

Bm

ν2n,1(t) + 2d sup
Bm

ν2n,2(t)

+
6

d
‖ĝm − g‖2n +

6

d
‖g − gm‖2n .

As before, we take d = 12. It yields

‖ĝm − g‖2n ≤ 3 ‖gm − g‖2n +
48

n

n−1∑
i=0

A2
ti +48 sup

t∈Bm

ν2n,1(t) + 48 sup
t∈Bm

ν2n,2(t). (49)

We now need introduce a orthonormal basis of Sm. Hence, we consider (ψ̃k)k,
an orthonormal basis of Sm for the L2

πX norm, as before. Each t ∈ Bm can be
written

t =

Dm∑
l=1

αlψ̃l, with

Dm∑
l=1

α2
l ≤ 1.

Then, for j = 1 and j = 2,

sup
t∈Bm

ν2n,j(t) = sup∑Dm
l=1 α2

l ≤1

ν2n,j

(
Dm∑
l=1

αlψ̃l

)
(50)

≤ sup∑Dm
l=1 α2

l ≤1

(
Dm∑
l=1

α2
l

)(
Dm∑
l=1

ν2n,j(ψ̃l)

)
=

Dm∑
l=1

ν2n,j(ψ̃l), (51)

where we have also used Cauchy-Schwartz inequality. To study the risk we need
to evaluate the expected value. From (49), (51) and using the first point of
Proposition 4, we get

E

[
‖ĝm − g‖2n 1Ωn

]
≤ 3E

[
‖gm − g‖2n

]
+ cΔ1−ε̃

n + 48

Dm∑
l=1

E[ν2n,1(ψ̃l)] + 48

Dm∑
l=1

E

[
ν2n,2(ψ̃l)

]
. (52)

By the definition (48) of νn,1 and the points 2 and 3 of Proposition 4, it is

Dm∑
l=1

E[ν2n,1(ψ̃l)] ≤ c

n2

n−1∑
i=0

Dm∑
l=1

E

[
ψ̃2
l (Xti)E[B

2
ti + E2

ti |Fti ]
]
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≤ c

n2

n−1∑
i=0

Dm∑
l=1

E

⎡⎣ψ̃2
l (Xti)(cσ

4
1 +

ca41
Δn,i

M∑
j=1

|λ(j)
ti |)

⎤⎦
We observe that the first term in the right hand side here above is

cσ4
1

n2

n−1∑
i=0

Dm∑
l=1

E[ψ̃2
l (Xti ] ≤

cDm

n
.

Regarding the second term, we remark that, as
∥∥∥ψ̃l

∥∥∥
∞

≤ Dm and its norm 2 is

bounded by 1, it is

E

⎡⎣ψ̃2
l (Xti)

ca41
Δn,i

M∑
j=1

|λ(j)
ti |

⎤⎦ ≤ ca41
Δn,i

M∑
j=1

E[ψ̃2p
l (Xti)]

1
pE[|λ(j)

ti |q] 1q

≤ ca41
Δn,i

M∑
j=1

D2ε
mE[ψ̃2

l (Xti)]
1
2E[|λ(j)

ti | 1+ε
ε ]

ε
1+ε

≤ ca41
Δn,i

D2ε
m ,

where we have used Holder inequality with p = 1+ ε, for ε > 0 arbitrarily small,
and the boundedness of the moments of λ. It follows

c

n2

n−1∑
i=0

Dm∑
l=1

E[ψ̃2
l (Xti)

ca41
Δn,i

M∑
j=1

|λ(j)
ti |] ≤ cD1+2ε

m a41
nΔn,i

.

Hence,
Dm∑
l=1

E

[
ν2n,1(ψ̃l)

]
≤ c(σ4

1 + a41)D
1+2ε
m

nΔn,i
. (53)

In order to evaluate E[ν2n,2(ψ̃l)], the following lemma will be useful:

Lemma 4. Suppose that A1-A3 hold true. Then, for any ε > 0 arbitrarily
small,

Var

(
1

n

n−1∑
i=0

Cti ψ̃l(Xti)

)
≤ cD2ε

m

nΔn
.

The proof of Lemma 4 is in the appendix. Lemma 4 yields

Dm∑
l=1

E

[
ν2n,2(ψ̃l)

]
≤ cD1+2ε

m

nΔn
. (54)

Replacing the inequality here above and (53) in (52) we get, using also that
Δn,i ≥ cΔmin and the fact that there exist c1 and c2 for which c1 ≤ Δn

Δmin
≤ c2,

E

[
‖ĝm − g‖2n 1Ωn

]
≤ 3E

[
‖gm − g‖2n

]
+ cΔ1−ε̃

n +
c(σ4

1 + a41 + 1)D1+2ε
m

nΔn
.
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As the choice gm ∈ Sm is arbitrary, we obtain

E

[
‖ĝm − g‖2n 1Ωn

]
≤ 3 inf

t∈Sm

‖t− g‖2πX + cΔ1−ε̃
n +

c(σ4
1 + a41 + 1)D1+2ε

m

nΔn
. (55)

Bound of the risk on Ωc
n Let us set e = (et0 , . . . , etn−1), where eti :=

Tti − g(Xti) = Ati +Bti + Cti + Eti . Moreover

ΠmT = Πm(Tt0 , . . . , Ttn−1) = (ĝm(Xt0), . . . , ĝm(Xtn−1)),

where Πm is the Euclidean orthogonal projection over Sm. Then, according to
the projection definition,

‖ĝm − g‖2n = ‖ΠmT − g‖2n = ‖ΠmT −Πmg‖2n + ‖Πmg − g‖2n
≤ ‖T − g‖2n + ‖g‖2n = ‖e‖2n + ‖g‖2n .

Therefore, from Cauchy -Schwarz inequality,

E[‖ĝm − g‖2n 1Ωc
n
] ≤ E[‖e‖2n 1Ωc

n
] + E[‖g‖2n 1Ωc

n
]

=
1

n

n−1∑
i=0

E[e2ti1Ωc
n
] +

1

n

n−1∑
i=0

E[g(Xti)
21Ωc

n
]

≤ 1

n

n−1∑
i=0

E[e4ti ]
1
2P(Ωc

n)
1
2 +

1

n

n−1∑
i=0

E[g(Xti)
4]

1
2P(Ωc

n)
1
2

Moreover, using the boundedness of both a and σ and the fact that E[|λti |4] <
∞, we obtain E[g(Xti)

4] < ∞. We are left to evaluate E[e4ti ]. From Proposition 4
it follows

E[e4ti ] ≤ E[A4
ti +B4

ti + C4
ti + E4

ti ] ≤ cΔ1−ε̃
n + c+ c+

c

Δ3
ni

≤ c

Δ3
n

.

Putting the pieces together it yields

E[‖ĝm − g‖2n 1Ωc
n
] ≤ c

Δ
3
2
n

1

n2
+

c

n2
≤ c

n2Δ
3
2
n

. (56)

From (55) and (56) it follows

E[‖ĝm − g‖2n] ≤ 3E[‖gm − g‖2n]+
C1(σ

4
1 + a41 + 1)D1+2ε

m

nΔn
+C2Δ

1−ε̃
n +

C3

n2Δ
3
2
n

.

8.2.2. Proof of Theorem 2

Proof. For simplicity in notation we denote m̂g = m̂ in the proof.
We act again in different way depending on whether or not we are on Ωn. On

Ωc
n the proof can be led as before, getting

E

[
‖ĝm̂ − g‖2n 1Ωc

n

]
≤ c

n2Δ
3
2
n

. (57)
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Now we investigate what happens on Ωn. In particular, we analyse what happens
on O ⊂ Ωn, a set which will be defined later (see (65)). By the definition of m̂
we have

γn,M (ĝm̂) + pen(m̂) ≤ γn,M (ĝm) + pen(m) ≤ γn,M (gm) + pen(m)

and so, acting as to obtain Equation (49), we get

E

[
‖ĝm̂ − g‖2n 1O

]
≤ 3E[‖gm − g‖2n] +

48

n

n−1∑
i=0

E[A2
ti ] + 48E

[
sup

t∈Bm,m̂

ν2n(t)1O

]
+12pen(m)− 12E[pen(m̂)],

where

νn(t) :=
1

n

n−1∑
i=0

(Bti + Cti + Eti)t(Xti),

and
Bm,m′ := {h ∈ Sm + Sm′ : ‖h‖πX ≤ 1} .

In order to control the term E[supt∈Bm,m̂
ν2n(t)1O], we introduce the function

p(m,m′):

p(m,m′) ≤ 1

48
(pen(m) + pen(m′)).

It is

E

[
sup

t∈Bm,m̂

ν2n(t)1O
]
≤ E[p(m, m̂)]+

∑
m′∈Mn

E

[(
sup

t∈Bm,m′
ν2n(t)− p(m,m′)

)
+

1O

]
.

Replacing it in (43) and using the first point of Proposition 4 we get

E

[
‖ĝm̂ − g‖2n 1O

]
≤ 3E

[
‖gm − g‖2n

]
+ cΔ1−ε̃

n

+48E[p(m, m̂)] + 12pen(m)− 12E[pen(m̂)]

+48
∑

m′∈Mn

E

[(
sup

t∈Bm,m̂

ν2n(t)− p(m,m′)

)
+

1O

]
.(58)

We have introduced the function p(m,m′) with the purpose to use Talagrand
inequality on the last term in the right hand side of the equation here above. We
recall the following version of the Talagrand inequality, which has been stated in
[36] and proved by Birgé and Massart (1998) [9] (corollary 2 p.354) and Comte
and Merlevède (2002) [15] (p.222-223).

Lemma 5. Let T1, . . . , Tp be independent random variables with values in some
Polish space X and vp : Bm,m′ → R such that

vp(r) :=
1

p

p∑
j=1

[r(Tj)− E[r(Tj)]].



3252 C. Amorino et al.

Then,

E

[(
sup

r∈Bm,m′
|vp(r)|2 − 2H2

)
+

]
≤ c

(
v

p
e−c pH2

v +
M2

p2
e−c pH

M

)
, (59)

with c a universal constant and where

sup
r∈Bm,m′

‖r‖∞ ≤ M, E[ sup
r∈Bm,m′

|vp(r)|] ≤ H, sup
r∈Bm,m′

1

p

p∑
j=1

Var(r(Tj)) ≤ v.

We observe that in Talagrand lemma here above the random variables T1,. . . ,
Tp are supposed to be independent. Starting from our variables we can get
independent variables through Berbee’s coupling method. We recall it below, it
is proved by Viennet in Proposition 5.1 of [38] while an analogous statement in
continuous time can be found in [3].

Lemma 6. Let (Mt)t≥0 be a stationary and exponentially β mixing process
observed at discrete times 0 = t0 ≤ t1 ≤ . . . ≤ tn = T . Let pn and qn be two
integers such that n = 2pnqn. For any j ∈ {0, 1} and 1 ≤ k ≤ pn we consider
the random variables

Uk,j := (Mt(2(k−1)+j)qn+1
, . . . ,Mt(2k−1+j)qn

).

There exist random variables M∗
t0 , . . . ,M

∗
tn such that

U∗
k,j := (M∗

t(2(k−1)+j)qn+1
, . . . ,M∗

t(2k−1+j)qn
)

satisfy the following properties.

• For any j ∈ {0, 1}, the random vectors U∗
1,j , . . . , U

∗
pn,j

are independent.
• For any (j, k) ∈ {0, 1} × {1, . . . , pn}, Uk,j and U∗

k,j have the same distri-
bution.

• For any (j, k) ∈ {0, 1}×{1, . . . , pn}, P(Uk,j �= U∗
k,j) ≤ βM (qnΔmin), where

βM is the β-mixing coefficient of the process (Mt).

We want to apply Berbee’s coupling lemma to the random vectors Mti =
(Bti , Cti , Eti , Xti), that we write as a function of (Xt, λt), which is stationary
and exponentially β- mixing, as discussed in Section 2.3. We define the σ algebra

F̃ti := σ(Xs, λs, s ∈ (ti, ti+1]), (60)

completed with the null sets. Because of the exponentially β-mixing of (Xt, λt)
we know it is

β(F̃ti , F̃tj ) ≤ ce−γ|tj−ti|.

Writing the dynamic of λ = (λ(1), . . . , λ(d)) in the matrix form, dλt = −α(λt −
ζ)dt + cdNt, and since c is invertible, we can get dNt as a function of dλt and
λt. Then, using the invertibility of σ with the second line of (2), we can write
dWt as a function of dXt, Xt, dλt, and λt. Now, by the definition of Bti , Cti
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and Eti it follows that (Bti , Cti , Eti) is measurable with respect to F̃ti . We can
therefore use Berbee’s coupling on Mti = (Bti , Cti , Eti , Xti). Let qn be the size
of the blocks, which we will specify later. As it may happen that 2qn does not
divide n, we set pn = �n/(2qn)� and remove from the definition of the contrast
function (26) the data corresponding to the indexes i ∈ {2pnqn, . . . , n − 1}.
This modification avoids dealing with a last block having a different size, and
we can apply Berbee’s lemma to (Mti)i=0,...,2pnqn . It yields to the construction
of variables (U∗

k,j)k∈{1,...,pn};j=0,1 such that U∗
k,j has the same law as Uk,j =

(Bt(2(k−1)+j)qn+l
, Ct(2(k−1)+j)qn+l

, Et(2(k−1)+j)qn+l
, Xt(2(k−1)+j)qn+l

)l∈{1,...,qn}, and for
j ∈ {0, 1}, the random variables (U∗

k,j)1≤k≤pn are independent. Let us set

Ω∗ :=
{
ω, ∀j, ∀k, Uk,j = U∗

k,j

}
,

by Berbee’s coupling lemma it comes that

P(Ω∗,c) ≤ 2pnβZ(qnΔmin) ≤ c
n

qn
e−γqnΔmin .

It is enough to take qn := � 5
γΔmin

logn� in (61) to get

P(Ω∗,c) ≤ c

n4 logn
. (61)

For t ∈ Bm,m′ , and (j, k) ∈ {0, 1} × {1, . . . , pn} we define both

t(U∗
k,j) =

1

qn

qn∑
l=1

(B∗
t(2(k−1)+j)qn+l

+ C∗
t(2(k−1)+j)qn+l

+ E∗
t(2(k−1)+j)qn+l

)

× t(X∗
t(2(k−1)+j)qn+l

), (62)

and t(Uk,j) the analogous quantity based on Uk,j .
We want to apply Talagrand inequality on v∗n(t) := v0,∗pn

(t) + v1,∗pn
(t), where

v0,∗p (t) =
1

p

p∑
k=1

t(U∗
k,0), v1,∗p (t) =

1

p

p∑
k=1

t(U∗
k,1). (63)

With these definitions, we have on the set Ω∗, v∗n(t) = νn(t) for all t ∈ Bm,m′ .
Now we want to compute the constants M , v and H as defined in Lemma 5. The
random variables t(U∗

k,j) are not bounded, hence, to compute M , we introduce
the following set

ΩB :=
{
ω : ∀j, ∀k, ∀t ∈ Bm,m′ , |t(U∗

k,j)| ≤ c̃nε0D
1
2

}
, (64)

with D := Dm +Dm′ and some ε0 > 0. The following lemma is proven in the
appendix.

Lemma 7. Suppose that A1-A3 hold. Then there exists c > 0 such that

P(Ωc
B) ≤

c

n4
.
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We introduce bounded version of the random variables t(U∗
k,j) by setting for

M > 0,
t(M)(U∗

k,j) = t(U∗
k,j) ∨ −M ∧M.

With the choice M := c̃nε0D
1
2 , we have on the event ΩB that t(M)(U∗

k,j) =
t(U∗

k,j), ∀j, ∀k, , ∀t ∈ Bm,m′ . We set

O := Ωn ∩ ΩB ∩ Ω∗. (65)

From (40), (61) and Lemma 7 it follows

P(Oc) ≤ c

n4
.

We act on Oc as we did on Ωc
n, getting

E[‖ĝm̂ − g‖2n 1Oc ] ≤ c

n2Δ
3
2
n

. (66)

On the other side, on O we are really going to use Talagrand’s inequality to
control ∑

m′∈Mn

E

[(
sup

t∈Bm,m′
νn(t)

2 − p(m,m′)

)
+

1O

]
. (67)

On O, we have νn(t) = v0,∗pn
(t) + v1,∗pn

(t) and

vj,∗p (t) =
1

p

p∑
k=1

t(M)(U∗
k,j) =

1

p

p∑
k=1

(
t(M)(U∗

k,j)− E[t(M)(U∗
k,j)]

)
+ E[t(M)(U∗

0,0)]

= vj,∗p (t(M)) + E[t(M)(U∗
0,0)],

where vj,∗p has been defined in (63).
Using E[t(U∗

0,0)] = 0, we deduce

|E[t(M)(U∗
0,0)]| ≤ E

[
|(t− t(M))(U∗

0,0)|1Ωc
B

]
≤ E

[
t(U∗

0,0)
2
]1/2

P(Ωc
B)

1/2.

We need the following Lemma whose proof is postponed to the Appendix.

Lemma 8. We have supt∈Bm,m′ E
[
t(U∗

0,0)
2
]
≤ c Dδ

qnΔn
, for δ arbitrarily small

and some constant c.

Using Lemma 7 and Lemma 8, we deduce

supt∈Bm,m′ |E[t(M)(U∗
0,0)]| ≤ c Dδ/2

(qnΔn)1/2n2 ≤ c Dδ/2

(ln(n))1/2n2 ≤ cp(m,m′)
n . Hence

to control the term (67) it is sufficient to get an upper bound, for n large enough
on ∑

m′∈Mn

E

[(
sup

t∈Bm,m′
vj,∗p (t(M))2 − 1

4
p(m,m′)

)
+

]
,

for j = 0, 1. We can apply Lemma 5 to this term. To this purpose, we need to
compute the constants M , v and H appearing therein. By construction, we can
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use M = cnε0D
1
2 , and by Lemma 8 and stationarity we can take v = c Dδ

qnΔn
. In

order to compute H2 we observe it is

E[ sup
t∈Bm,m′

|vj,∗p (t(M))|] ≤ E[ sup
t∈Bm,m′

|vj,∗p (t(M))|1O] + E[ sup
t∈Bm,m′

|vj,∗p (tM )|1Oc ],

≤ E[ sup
t∈Bm,m′

|vj,∗p (t)|1O] + sup
t∈Bm,m′

|E[t(M)(U∗
0,0)]|+MP(Oc),

≤ E[ sup
t∈Bm,m′

|vj,∗p (t)|]+c
Dδ/2

qnΔnn2
+c

D1/2nε0

n4
≤

√
E[ sup

t∈Bm,m′
(v∗p)

2(t)]+c
D1/2

n2
,

where we have used |tM (Uj,k)| ≤ M . To find an upper bound for the right
hand side here above we act similarly to how we did before (51): we introduce
the orthonormal basis (ψ̄k)k, such that each t ∈ Bm,m′ can be written as the
following

t =

D∑
l=1

ᾱlψ̄l, with

D∑
l=1

ᾱ2
l ≤ 1.

Similarly to (51), we have

sup
t∈Bm,m′

(v∗p)
2(t) = sup∑D

l=1 ᾱ2
l ≤1

(v∗p)
2

(
D∑
l=1

ᾱlψ̄l

)

≤ sup∑D
l=1 ᾱ2

l ≤1

(
D∑
l=1

ᾱ2
l

)(
D∑
l=1

(v∗p)
2(ψ̄l)

)

=

D∑
l=1

(vj,∗p )2(ψ̄l).

Acting exactly as we did in order to get (53) and Lemma 4 on v2n,1 and v2n,2 (as
for Equation (54)) we obtain

√
E[ sup

t∈Bm,m′
(vj,∗p )2(t)] ≤ c

√
D1+2ε

nΔn
.

In turn we have E[supt∈Bm,m′ |vj,∗p (t(M))|] ≤ c
√

D1+2ε

nΔn
=: H.

We now use Talagrand inequality as in Lemma 5. It follows

E

[(
sup

t∈Bm,m̂

ν∗n(t)
2 − 2H2

)
+

1O

]

≤ Dδ

pnqnΔn
exp

(
−c

D1+2εpnqnΔn

nΔnDδ

)
+

cn2ε0D

p2n
exp

(
−c

pnD
1
2+ε

√
nΔnnε0D

1
2

)

≤ cDδ

nΔn
exp(− c

2
D1+2ε−δ) +

cn2ε0D

p2n
exp

(
− c

√
nDε

2qn
√
Δnnε

0

)
,
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where we used 2pnqn
n

n→∞−−−−→ 1. We recall that qn = �c logn
Δmin

�. We observe that,

as Δmin and Δn differs only from a constant, c
√
n√

Δnqnnε0
≥ c

√
nΔn

lognnε0
. Moreover, it

goes to ∞ for n going to infinity as we have assumed that (log n)nε = o(
√
nΔn)

for some ε and the constant ε0 can be arbitrarily small. Therefore, the second
term here above is negligible compared to the first one. It follows, using also the

definition of p(m, m̂), the fact that for D > 1 it is Dδe−
c
2D

1+2ε−δ

<Dδe−
c
2D

1−δ

<

c′′e−c′D1− δ
2 and the fourth point of Assumption 4,

∑
m′∈Mn

E

[(
sup

t∈Bm,m̂

ν∗n(t)
2 − p(m,m′)

)
+

]
≤ c′′

nΔn

∑
m′∈Mn

Dδe−c′D1−δ ≤ c′′ Σ(c′)

nΔn
.

Replacing it in the equivalent of (58), considering that we are now on O, it
follows

E

[
‖ĝm̂ − g‖2n 1O

]
≤ 3E[‖gm − g‖2n] + cΔ1−ε̃

n + 48E[p(m, m̂)]

+12pen(m)− 12E[pen(m̂)] +
c

nΔn
.

It provides us, using also (66),

E[‖ĝm̂ − g‖2n] ≤ 3E[‖ĝm − g‖2n] + cΔ1−ε̃
n +

c

n2Δ
3
2
n

+ cpen(m) +
c

nΔn

≤ c1 inf
m∈Mn

{
inf

t∈Sm

‖t− g‖2πX + pen(m)

}
+ C2Δ

1−ε̃
n

+
C3

n2Δ
3
2
n

+
C4

nΔn
.

Supplementary material

Appendix A

For the following proofs, the lemma stated and proved below is a very helpful
tool. It provides the size of the increments of both X and λ.

Lemma 9. Suppose that A1-A3 hold. Then, there exist c1 and c2 positive con-
stants such that, for all t > s, |t− s| < 1 the following hold true

1. For all p ≥ 2, E[|Xt −Xs|p] ≤ c1|t− s|.
2. For all p ≥ 2 and for any j ∈ {1, . . . ,M}, E[|λ(j)

t − λ
(j)
s |p] ≤ c2|t− s|.

3. E[|λt − λs||Fs] ≤ c3|t − s|(1 + |λs|), where λ = (λ(1), . . . , λ(M)) and | · |
stands for the euclidean norm.

4. For any j ∈ {1, . . . ,M}, suph∈[0,1] E[|λ
(j)
s+h||Fs] ≤ |λ(j)

s |+ c|h|(1 + |λs|).
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Proof. We start proving the first point. From the dynamic (2) of the process X
we have

|Xt −Xs|p ≤ c

∣∣∣∣∫ t

s

b(Xu)du

∣∣∣∣p + c

∣∣∣∣∫ t

s

σ(Xu)dWu

∣∣∣∣p + c

∣∣∣∣∣∣
∫ t

s

a(Xu−)

M∑
j=1

dN (j)
u

∣∣∣∣∣∣
p

= I1 + I2 + I3.

From Jensen inequality, the polynomial growth of b and the fact that X has
bounded moments it follows

E[I1] ≤ c|t− s|p−1

∫ t

s

E[|b(Xu)|p]du ≤ c|t− s|p. (68)

Using Burkholder-Davis-Gundy inequality, Jensen inequality and Assumption
1.2. on σ it is

E[I2] ≤ cE

[(∫ t

s

σ2(Xu)du

) p
2

]
≤ c|t− s|

p
2−1

∫ t

s

E[|σ(Xu)|p]du ≤ cσp
1 |t− s|

p
2 .

(69)
To evaluate I3, Kunita inequality will be useful. We refer to the Appendix of [29]
for its proof in a general form, while below (A7) on page 52 of [2] can be found
an example of its application in a form closer to the one we are going to use.
For a compensated Poisson random measure μ̃ = μ − μ̄ and a jump coefficient
l(x, z), indeed, Kunita inequality provides the following:

E

[∣∣∣∣∫ t

0

∫
R

l(Xs− , z)μ̃(ds, dz)

∣∣∣∣p
]

≤ cE

[∫ t

0

∫
R

|l(Xs− , z)|pμ̄(ds, dz)
]

+cE

[∣∣∣∣∫ t

0

∫
R

l2(Xs− , z)μ̄(ds, dz)

∣∣∣∣
p
2

]
.

We remark that, up to change the constant c in the right hand side, the equa-
tion here above holds with the measure μ instead of the compensated one μ̃.

In the sequel we will apply Kunita inequality on the measure dN
(j)
u and the

compensated one dÑ
(j)
u , for j ∈ {1, ...,M}. The compensator is in this case

λ(j)(u)du.
Using on I3 Kunita inequality together with Jensen inequality and the bound-

edness of a we get

E[I3]

≤c

M∑
j=1

E

[∫ t

s

|a(Xu−)|pλ(j)
u du+

(∫ t

s

a2(Xu−)λ(j)
u du

) p
2

+

(∫ t

s

a(Xu−)λ(j)
u du

)p
]

≤
M∑
j=1

c|a1|p
∫ t

s

E[λ(j)
u ]du+c|a1|p|t− s|

p
2−1

∫ t

s

E[|λ(j)
u |

p
2 ]du
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+c|a1|p|t− s|p−1

∫ t

s

E[|λ(j)
u |p]du

≤ c|a1|p(|t− s|+|t− s|
p
2 ) ≤ c|a1|p|t− s|, (70)

where we have used that λ has the moment of any order because of Proposition 1.
From (68), (69) and (70), as |t− s| < 1, it follows E[|Xt −Xs|p] ≤ c1|t− s|.

Point 2
Concerning the second point, for any j ∈ {1, . . . ,M} it is

|λ(j)
t − λ(j)

s |p ≤ c

∣∣∣∣α ∫ t

s

(λ(j)(u)− ζj)du

∣∣∣∣p + c

∣∣∣∣∣
∫ t

s

M∑
i=1

cj,idN
(i)
u

∣∣∣∣∣
p

.

Acting as in the proof of the first point, using as main arguments Jensen in-
equality, Kunita inequality and the boundedness of the moments of λ, we easily
get the wanted estimation.

Point 3
We consider the dynamic of λ gathered in (2) in matrix form and so we have

λt − λs = α

∫ t

s

(λu − ζ)du+

∫ t

s

cdNu =: Ds +Gs,

where λt = (λ
(1)
t , . . . , λ

(M)
t ), c ∈ R

M × R
M . We start evaluating Ds. By adding

and subtracting λs we easily get, denoting as Es[·] the quantity E[·|Fs],

Es[|Ds|] ≤ c|t− s|(1 + |λs|) + c

∫ t

s

Es[|λu − λs|]ds.

On Gs we use compensation formula and we apply the same reasoning as before,
getting

Es[|Gs|] ≤ Es

[∫ t

s

c|λu|du
]
≤ c|t− s||λs|+ c

∫ t

s

Es[|λu − λs|]ds.

Putting the pieces together it follows

Es[|λt − λs|] ≤ c|t− s|(1 + |λs|) + c

∫ t

s

Es[|λu − λs|]ds.

Finally, Gronwall lemma yields

Es[|λt − λs|] ≤ c|t− s|(1 + |λs|)ec.

Point 4 We observe that, for any h ∈ [0, 1],

Es[|λ(j)
s+h|] ≤ |λ(j)

s |+ Es[|λ(j)
s+h − λ(j)

s |] ≤ |λ(j)
s |+ c|h|(1 + |λs|),

where we have used the just showed third point of this lemma.
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A.1. Proof of Proposition 1

Proof. We write V (x, y) = V1(x) + V2(y), where V1(x) = |x|m for m arbitrarily

big and V2(y) = e
∑

i,j mij |y(ij)|. From the definition (5) of Az̃ we have

AZ̃V = AZ̃
1 V +AZ̃

2 V,

where

AZ̃
1 V (x, y) := ∂xV (x, y)b(x) +

1

2
σ2(x)∂2

xV (x, y)

+

M∑
j=1

fj

(
M∑
k=1

y(jk)

)
[V1(x+ a(x))− V1(x)]

= m|x|m−1b(x) +
1

2
σ2(x)m(m− 1)|x|m−2

+
M∑
j=1

fj

(
M∑
k=1

y(jk)

)
[|x+ a(x)|m − |x|m]

is the jump-diffusion part and

AZ̃
2 V (x, y) := AZ̃V (x, y)−AZ̃

1 V (x, y)

= −α
∑M

i,j=1 y
(ij)∂y(ij)V (x, y) +

∑M
j=1 fj(

∑M
k=1 y

(jk))[V2(y +Δj)− V2(y)],

is the Hawkes part of the generator. The arguments of the proof of Proposition
4.5 in [11] imply that

AZ̃
2 V (x, y) = AZ̃

2 V2(y) ≤ −c1V2(y) + c21K1(y), (71)

with c1 and c2 some positive constants and K1 some compact of RM×M . More-
over, denoting f̄(y) :=

∑M
j=1 fj(

∑M
k=1 y

(jk)) the total jump rate, it is

AZ̃
1 V (x, y) = m|x|m−1b(x)+

1

2
σ2(x)m(m− 1)|x|m−2 + f̄(y)[|x+ a(x)|m − |x|m].

From the drift condition on b gathered in the fourth point of Assumption 1 and
the boundedness of both σ2 and a it follows

AZ̃
1 V (x, y) ≤ −dm|x|m + c|x|m−2 + f̄(y)(c1|x|m−1 + . . .+ cm). (72)

We observe that, for any x such that |x| > r, |x|m−2 is negligible compared to
|x|m = V1(x). To study the last term in the right hand side of (72), we choose
1 < p < 2 and q > 2 such that p(m− 1) < m (i e p < 1 + 1

m−1 ) and
1
p + 1

q = 1.
Then,

f̄(y)(c1|x|m−1 + . . .+ cm) ≤ c

p
(c1|x|m−1 + . . .+ cm)p +

c

q
f̄(y)q.
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The first term is again negligible compared to |x|m = V1(x), being p(m−1) < m.
To estimate the second one we observe that, for each y ∈ R

M the total jump
rate f̄(y) can be seen as

∑M
i=1(ζi +

∑
j y

(ij)) (see page 12 in [20]). Therefore, it
is

f̄(y) ≤ c̄+ c̃

M∑
i,j=1

|y(ij)| ≤ c̄+ c̃2 log(V2(y)),

which is negligible with respect to the negative term of (71) −c1V2(y). The same
reasoning applies for c

q f̄(y)
q. It follows that

Az̃
1V (x, y) ≤ −dm|x|m + o(V1(x)) + o(V2(y))

which, together with (71), conclude the proof of the first part. Regarding the
boundedness of the moments, we use that the Lyapunov function V admits a
finite integral with respect to the stationary probability of Z̃ = (X,Y ). As the
process λ can be recovered as a linear function of Y , the ergodicity Z̃ of implies
the ergodicity of Z = (X,λ) as well, and we have existence of bounded moments
of any order for both X and λ under the stationary law.

A.2. Proof of Lemma 1

Proof. We first recall the representation of πX(x) given in the proof of Propo-

sition 3.7 in [20]. For t > 0, let Lt = sup{s ≤ t | ∃j, ΔN
(j)
s = 1} be the time of

the last jump before t, with Lt = 0 if there is no such jump. Then, we have for
all x ∈ R

πX(x) =

∫
R×RM×M

π(dz)Ez [pt−Lt(XLt , x)] ,

where (ps)s>0 is the family of transition densities associated to the stochastic
differential equation dXt = b(Xt)dt + σ(Xt)dWt. From Proposition 1.2 of [24],
we know that there exist constants c, C such that for all s > 0, (u, x) ∈ R

2,

ps(u, x) ≤ cs−1/2e−
(x−u)2

Cs eCsu2

.

We deduce that

ps(u, x) ≤ cs−1/2e−
(x−u)2

Cs e2Cs(x−u)2+2Csx2 ≤ cs−1/2e−
(x−u)2

2Cs e2Csx2

, if s is
smaller than 1/(2C). Choosing t < 1/(2C), it yields

πX(x) ≤ c

∫
R×RM×M

π(dz)Ez

[
1√

t− Lt

]
e2Ctx2

. (73)

We now give an upper bound for Ez

[
1√

t−Lt

]
. Writing

(t− Lt)
−1/2 = 1

2

∫ t

0

1{s≤Lt}ds

(t−s)3/2
+ t−1/2, we have

Ez

[
1√

t− Lt

]
≤ 1

2

∫ t

0

Pz(Lt ≥ s)

(t− s)3/2
ds+

1

t1/2
. (74)
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From the definition of Lt, it is Pz(Lt ≥ s) = Pz(∃u ∈ [s, t], ∃j : ΔN
(j)
u = 1)

which implies

Pz(Lt ≥ s) ≤ Pz

⎛⎝ M∑
j=1

∫
[s,t]

dN (j)
u ≥ 1

⎞⎠ ≤ Ez

⎡⎣ M∑
j=1

∫
[s,t]

dN (j)
u

⎤⎦
≤ Ez

⎡⎣ M∑
j=1

∫ t

s

λ(j)
u du

⎤⎦ =
M∑
j=1

∫ t

s

Ez[λ
(j)
u ]du.

Using Lemma 9 we get that if u ≤ 1, Ez[λ
(j)
u ] ≤ c(1 + |λ0(z)|), where λj

0(z) =

fj(
∑M

i=1 y
i) for z = (x, y). Thus, if t is chosen smaller than 1, we have Pz(Lt ≥

s) ≤ c(1 + |λ0(z)|)(t− s). Using this control with (74) we deduce,

Ez

[
1√

t− Lt

]
≤ c

2

∫ t

0

(1 + |λ0(z)|)
(t− s)1/2

ds+
1

t1/2
≤ c√

t
(1 + |λ0(z)|).

From (73), we obtain πX(x) ≤ ce2Ctx2

√
t

∫
R×RM×M π(dz)(1+ |λ0(z)|). By Proposi-

tion 1, we know that the intensity λ has finite moments of any order under the
stationary measure, and thus

∫
R×RM×M π(dz)(1 + |λ0(z)|) ≤ c < ∞. This gives

πX(x) ≤ ce2Ctx2

√
t

for any sufficiently small t, and the lemma follows.

Remark 2. The proof of Lemma 1 heavily relies on the integrability near zero
of the supremum of the heat kernel and is thus limited to the dimension 1. We
do not know if it is possible to extend this result to higher dimension for the
process X. However, it is certainly possible to extend this proof to more general
situations, as for instance the case where the jump intensity depends on X.

A.3. Proof of Lemma 2

Proof. By the definition of ϕ, for any k ≥ 1 |ϕΔβ
n,i

(ΔiX)− 1|k is different from

zero only if |ΔiX| > Δβ
n,i. Therefore,

E[|ϕΔβ
n,i

(ΔiX)− 1|k] ≤ cE[1{|ΔiX|>Δβ
n,i}]

= cE

⎡⎢⎣1{
|ΔiX|>Δβ

n,i,|Jti
|≤

Δ
β
n,i
2

}
⎤⎥⎦+ cE

⎡⎢⎣1{
|ΔiX|>Δβ

n,i,|Jti
|>

Δ
β
n,i
2

}
⎤⎥⎦ . (75)

We denote as ΔiX
c the increment of the continuous part of X, which is

ΔiX
c := Xc

ti+1
−Xc

ti =

∫ ti+1

ti

b(Xs)ds+ Zti .
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The first term in the right hand side of (75) is

cE

⎡⎢⎣1{
|ΔiXc|>

Δ
β
n,i
2

}
⎤⎥⎦ = cP(|ΔiX

c| >
Δβ

n,i

2
) ≤ cE [|ΔiX

c|r]
Δβr

n,i

≤ cΔ
r( 1

2−β)
n,i ,

(76)
where we have used Markov inequality and a classical estimation for the con-
tinuous increments of X (see for example point 6 of Lemma 1 in [4]). In order
to evaluate the second term in the right hand side of (75), instead, we have to
introduce the set

Ni,n :=

⎧⎨⎩
M∑
j=1

|ΔiN
(j)| :=

M∑
j=1

|N (j)
ti+1

−N
(j)
ti | ≤

4Δβ
n,i

a1

⎫⎬⎭ .

We observe that, on N c
i,n, there exists j ∈ {1, . . . ,M} such that |ΔiN

(j)| �= 0.
Therefore,

P(N c
i,n) ≤

M∑
j=1

P(|ΔiN
(j)| ≥ 1) ≤

M∑
j=1

E[|ΔiN
(j)|] ≤ cMΔn,i. (77)

On Ni,n, instead, ∀j |ΔiN
(j)| = 0 and so (Ni,n)∩

{
|Jti | >

Δβ
n,i

2

}
= ∅. It follows

that the second term in the right hand side of (75) is

cE

⎡⎢⎣1{
|ΔiX|>Δβ

n,i,|Jti
|>

Δ
β
n,i
2 ,Ni,n

}
⎤⎥⎦+ cE[1{

|ΔiX|>Δβ
n,i,|Jti

|>
Δ

β
n,i
2 ,Nc

i,n

} ]
≤ cP(N c

i,n) ≤ cΔn,i.

Putting the pieces together, as r is arbitrary, it follows

E

[
|ϕΔβ

n,i
(ΔiX)− 1|k

]
≤ cΔn,i.

A.4. Proof of Lemma 3

Proof. Again, we act differently depending on whether the jumps are big or not:

E[|Jti |qϕk
Δβ

n,i

(ΔiX)]

= E

[
|Jti |qϕk

Δβ
n,i

(ΔiX)1{|Jti
|>3Δβ

n,i}

]
+ E

[
|Jti |qϕk

Δβ
n,i

(ΔiX)1{|Jti
|≤3Δβ

n,i}

]
.

(78)
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By the definition of ϕ it is different from 0 only if |ΔiX| ≤ 2Δβ
n,i. As ΔiX =

ΔiX
c + Jti , it is

E

[
|Jti |qϕk

Δβ
n,i

(ΔiX)1{|Jti
|>3Δβ

n,i}

]
≤ E

[
|Jti |q1{|ΔiXc|>Δβ

n,i}
]

≤ E[|Jti |qp1 ]
1
p1 E

[
1{|ΔiXc|>Δβ

n,i}
] 1

p2 ≤ cΔ
1
p1
n,i Δ

r
p2

( 1
2−β)

n,i ≤ cΔ
r( 1

2−β)−ε
n,i ,

where we have used first of all Holder inequality and then Kunita inequality
and (76). We remark it is possible to use Kunita inequality only for qp1 ≥ 2.
However, as in the estimation here above the power of Δ is arbitrarily large, we
can always choose p1 such that, for any q ≥ 1, qp1 is bigger than 2. In order to
evaluate the second term of (78), we introduce again the set Ni,n defined in the
proof of Lemma 2. On Ni,n the increments ΔiN

(j) are null and so |Jti | = 0. On
N c

i,n instead, using also (77), we have

E

[
|Jti |qϕk

Δβ
n,i

(ΔiX)1{|Jti
|≤3Δβ

n,i,N
c
i,n}

]
≤ cΔβq

n,iP(N
c
i,n) ≤ cΔ1+βq

n,i .

By the arbitrariness of r it follows

E[|Jti |qϕk
Δβ

n,i

(ΔiX)] ≤ cΔ1+βq
n,i ,

as we wanted.

A.5. Proof of Proposition 2

Proof. As the second point is useful in order to prove the first one, we start
proving point 2.

Point 2 By definition we know that Bti is centered. In the sequel we denote
as Ei[·] the conditional expected value E[·|Fti ]. Regarding the second moment,
it is

Ei[B
2
ti ] ≤

1

Δ2
n,i

Ei

[
Z4
ti + (

∫ ti+1

ti

σ2(Xs)ds)
2

]
≤ c

Δ2
n,i

Ei

[(∫ ti+1

ti

σ2(Xs)ds

)2
]
≤ cσ4

1

where we have used, sequentially, BDG inequality, Jensen inequality and the
boundedness of σ. Using the same arguments we show the following:

Ei[B
4
ti ] ≤

1

Δ4
n,i

Ei

[
Z8
ti +

(∫ ti+1

ti

σ2(Xs)ds

)4
]

≤ c

Δ4
n,i

Ei

[(∫ ti+1

ti

σ2(Xs)ds

)4
]
≤ cσ8

1 .
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Point 1 We analyse the behaviour of

Ãti = σ2(Xti)(ϕΔβ
n,i

(ΔiX)− 1) +AtiϕΔβ
n,i

(ΔiX) +Bti(ϕΔβ
n,i

(ΔiX)− 1).

From Holder inequality, the boundedness of σ and a repeated use of Lemma 2
we get

E[Ã2
ti ] ≤ cσ4

1Δn,i + E[A2
tiϕ

2
Δβ

n,i

(ΔiX)] + E[B2p
ti ]

1
p cΔ

1
q

n,i.

We evaluate the moments of Bti acting as in the proof of the first point and we
choose p big and q next to 1, getting

E[Ã2
ti ] ≤ cσ4

1Δn,i + E[A2
tiϕ

2
Δβ

n,i

(ΔiX)] + cσ2
1Δ

1−ε̃
n,i , (79)

for ε̃ > 0 arbitrarily small. We are left to study A2
tiϕ

2
Δβ

n,i

. From its definition,

recalling that ϕ is a bounded function, we obtain

E[A2
tiϕ

2
Δβ

n,i

(ΔiX)] ≤ c

Δ2
n,i

E

[(∫ ti+1

ti

b(Xs)ds

)4
]

+
c

Δ2
n,i

E

[
(Zti + Jti)

2

(∫ ti+1

ti

b(Xs)− b(Xti)ds

)2
]

+
c

Δ2
n,i

E

[(∫ ti+1

ti

σ2(Xs)− σ2(Xti)ds

)2
]

+4E[b2(Xti)Z
2
ti ]

=:

4∑
j=1

Ij .

Using Jensen inequality, the polynomial growth of b and the existence of bounded
moments of X we get

I1 ≤ c

Δ2
n,i

Δ3
n,i

∫ ti+1

ti

E[b4(Xs)]ds ≤ cΔ2
n,i. (80)

On I2 we use first of all Holder inequality. Then, on the first we use B.D.G. and
Kunita inequalities, as in (69) and (70), while on the second the finite increments
theorem, the boundedness of b′ and the first point of Lemma 9:

I2 ≤ c

Δ2
n,i

E[(Zti + Jti)
8]

1
2E

[(∫ ti+1

ti

b(Xs)− b(Xti)ds

)4
] 1

2

≤ c

Δ2
n,i

Δ
1
2
n,iΔ

3
2
n,iE

[∫ ti+1

ti

c|Xs −Xti |4ds
] 1

2

≤ cΔn,i. (81)
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In order to study the behaviour of I3, Jensen inequality, the finite increment
theorem, the boundedness of the derivative of σ2 and the first point of Lemma 9
will be once again useful.

I3 ≤ c

Δ2
n,i

Δn,iE

[∫ ti+1

ti

c|Xs −Xti |2ds
]
≤ cΔn,i. (82)

From Holder inequality, the polynomial growth of b, the boundedness of the
moments of X and BDG inequality we obtain

I4 ≤ cE[b(Xti)
4]

1
2E[Z4

ti ]
1
2 ≤ cΔn,i. (83)

Putting the pieces together it follows that, for any ε̃ > 0,

E[Ã2
ti ] ≤ cΔ1−ε̃

n,i .

We now evaluate E[Ã4
ti ]. Acting as above (79) it easily follows

E[Ã4
ti ] ≤ cΔ1−ε̃

n,i + E[A4
tiϕΔβ

n,i
(ΔiX)].

Replacing the definition of Ati we get that E[A4
tiϕ

4
Δβ

n,i

(ΔiX)] is again the sum

of 4 terms, that we now denote as Ĩ1, . . . , Ĩ4. Using exactly the same arguments
as in the study of E[A4

tiϕ
4
Δβ

n,i

(ΔiX)] we easily get

Ĩ1 ≤ c

Δ4
n,i

Δ7
n,i

∫ ti+1

ti

E[b8(Xs)]ds ≤ cΔ4
n,i,

Ĩ2 ≤ c

Δ4
n,i

E[(Zti + Jti)
4]

1
2E

[(∫ ti+1

ti

b(Xs)− b(Xti)ds

)8
] 1

2

≤ c

Δ4
n,i

(Δn,i +Δ
1
2
n,i)Δ

7
2
n,iE

[∫ ti+1

ti

c|Xs −Xti |8ds
] 1

2

≤ cΔn,i,

Ĩ3 ≤ c

Δ4
n,i

Δ3
n,iE

[∫ ti+1

ti

c|Xs −Xti |4ds
]
≤ cΔn,i,

Ĩ4 ≤ E[b(Xti)
8]

1
2E[Z8

ti ]
1
2 ≤ cΔ2

n,i.

The four equations here above provide the wanted result.
Point 3 To prove the estimations on the jumps gathered in the third point

of Proposition 3 we repeatedly use Lemma 3. Using also Holder inequality with
p big and q next to 1, BDG inequality, the polynomial growth of b and the
boundedness of the moments of X it is

E[|Eti |ϕΔβ
n,i

(ΔiX)] ≤ cE[|b(Xti)||Jti |ϕΔβ
n,i

(ΔiX)]
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+
c

Δn,i
E[|Zti ||Jti |ϕΔβ

n,i
(ΔiX)]

+
c

Δn,i
E

[
|Jti |2ϕΔβ

n,i
(ΔiX)

]
≤ cE[|b(Xti)|p]

1
pE[|Jti |qϕ

q

Δβ
n,i

(ΔiX)]
1
q

+
c

Δn,i
E[|Zti |p]

1
pE[|Jti |qϕ

q

Δβ
n,i

(ΔiX)]
1
q +

c

Δn,i
Δ1+2β

n,i

thus, because, as β ∈ (0, 1
2 ), we can always find an ε > 0 such that 1

2+β−ε > 2β.
Hence, we set 1/q = 1− ε. It comes

E[|Eti |ϕΔβ
n,i

(ΔiX)] ≤ cΔ
1
q+β

n,i +
c

Δn,i
Δ

1
2
n,iΔ

1
q+β

n,i + cΔ2β
n,i

= cΔ1+β−ε
n,i + cΔ

1
2+β−ε
n,i + cΔ2β

n,i = cΔ2β
n,i.

In analogous way we obtain

E[|Eti |2ϕΔβ
n,i

(ΔiX)] ≤ cE[|b(Xti)|2p]
1
pE[|Jti |2qϕ

q

Δβ
n,i

(ΔiX)]
1
q

+
c

Δ2
n,i

E[|Zti |2p]
1
pE[|Jti |2qϕ

q

Δβ
n,i

(ΔiX)]
1
q

+
c

Δ2
n,i

E[|Jti |4ϕΔβ
n,i

(ΔiX)]

≤ cΔ
1
q+2β

n,i +
c

Δ2
n,i

Δn,iΔ
1
q+2β

n,i +
c

Δ2
n,i

Δ1+4β
n,i

= cΔ1+2β−ε
n,i + cΔ2β−ε

n,i + cΔ4β−1
n,i = cΔ4β−1

n,i ,

where the last inequality is, again, consequence of the fact that we can always
find ε > 0 for which 2β − ε > 4β − 1. Finally, acting as before,

E[|Eti |4ϕΔβ
n,i

(ΔiX)] ≤ cΔ1+4β−ε
n,i +

c

Δ4
n,i

Δ2
n,iΔ

1+4β−ε
n,i +

c

Δ4
n,i

Δ1+8β
n,i = cΔ8β−3

n,i .

A.6. Proof of Proposition 4

Proof. Point 1
Regarding the first point, we first introduce b̃(Xs) := b(Xs) + a(Xs−)

∑M
j=1

λ
(j)
s ds. We observe that, as b has polynomial growth, a is bounded and both λ

and X have bounded moments of any order, then b̃ has bounded moments of
any order as well. Recalling that Ati is given as in (20) we can denote

Ati =:

7∑
j=1

Īj .
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Replacing b̃ with b, we already know from (80), (81), (82) and (83) that

E[Ī21 + Ī22 + Ī23 + Ī26 ] ≤ cΔn,i. (84)

We now consider Ī4. From Assumption 1 we know the function a is Lipschitz and
with bounded derivative. Therefore, we use the finite increments theorem fol-
lowed by the first point of Lemma 9. It provides us, using also Jensen inequality
and Holder inequality with q big and p next to 1,

E[Ī24 ] ≤ c

Δ2
n,i

Δn,i

∫ ti+1

ti

E

⎡⎢⎣(a2(Xs)− a2(Xti))
2

⎛⎝ M∑
j=1

λ(j)
s

⎞⎠2
⎤⎥⎦ ds

≤ c

Δn,i

∫ ti+1

ti

E[(a2(Xs)− a2(Xti))
2p]

1
pE

⎡⎢⎣
⎛⎝ M∑

j=1

λ(j)
s

⎞⎠2q
⎤⎥⎦

1
q

ds

≤ c

Δn,i

∫ ti+1

ti

Δ
1
p

n,ids ≤ cΔ1−ε̃
n,i , (85)

where we have also used the boundedness of the moments of λ and set 1/p =
1− ε̃. On Ī5 we use that a(x) ≤ a1 and the second point of Lemma 9, getting

E[Ī25 ] ≤
c

Δ2
n,i

Δn,i

∫ ti+1

ti

M∑
j=1

E[(λ(j)
s − λ

(j)
ti )2]ds ≤ cΔn,i. (86)

To conclude the proof of the bound on E[A2
ti ] we are left to evaluate Ī7. We do

that through Holder and Kunita inequalities. It yields

E[Ī27 ] ≤ cE[b̃(Xti)
2J2

ti ] ≤ E[b̃(Xti)
2p]

1
pE[J2q

ti ]
1
q ≤ cΔ1−ε̃

n,i , (87)

where in the last inequality we have chosen p big and q next to 1. In particular,
we have taken 1/q = 1− ε̃. From (84), (85), (86) and (87) it follows

E[A2
ti ] ≤ cΔ1−ε̃

n,i .

Concerning the fourth moment of Ati , as before we know from Proposition 2
that

E[Ī41 + Ī42 + Ī43 + Ī46 ] ≤ cΔn,i. (88)

Acting as in (85) we get

E[Ī44 ] ≤
c

Δ4
n,i

Δ3
n,i

∫ ti+1

ti

E

⎡⎢⎣(a2(Xs)− a2(Xti))
4

⎛⎝ M∑
j=1

λ(j)
s

⎞⎠4
⎤⎥⎦ ds (89)

≤ c

Δn,i

∫ ti+1

ti

E[(a2(Xs)− a2(Xti))
4p]

1
pE

⎡⎢⎣
⎛⎝ M∑

j=1

λ(j)
s

⎞⎠4q
⎤⎥⎦

1
q

ds ≤ cΔ1−ε̃
n,i ,
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where we have chosen 1/p = 1− ε̃. In the same way, acting as in (86) we obtain

E[Ī45 ] ≤
c

Δ4
n,i

Δ3
n,i

∫ ti+1

ti

M∑
j=1

E[(λ(j)
s − λ

(j)
ti )4]ds ≤ cΔn,i. (90)

We conclude the proof of the point 2 by observing that

E[Ī47 ] ≤ cE[b̃(Xti)
4p]

1
pE[J4q

ti ]
1
q ≤ cΔ1−ε̃

n,i , (91)

by the boundedness of the moments of b̃ and Kunita inequality.

Point 2
We observe that Bti is defined in the same way in Section 3 and Section 4.

Therefore, the second point has already been showed in point 2 of Proposition 2.

Point 3
By the definition of Eti it clearly follows Ei[Eti ] = 0. We now analyse

Ei[E
2
ti ] ≤

c

Δ2
n,i

Ei[Z
2
tiJ

2
ti ] +

c

Δ2
n,i

Ei[J
4
ti +

⎛⎝∫ ti+1

ti

a2(Xs−)

M∑
j=1

λ(j)
s ds

⎞⎠2

]. (92)

We show that the first term in the right hand side of the equation (92) is
negligible if compared to the second one. By a conditional version of Holder,
BDG and Kunita inequalities we get

c

Δ2
n,i

Ei[Z
2
tiJ

2
ti ] ≤

c

Δ2
n,i

Ei[Z
2p
ti ]

1
pEi[J

2q
ti ]

1
q ≤ c

Δ2
n,i

Δn,iΔ
1
q

n,i ≤ cΔ−ε
n,i, (93)

for any ε > 0, setting 1/q = 1− ε. To study the last term in the right hand side

of (92) we recall it is Jti =
∫ ti+1

ti
a(Xs−)

∑M
j=1 dÑ

(j)
s . Therefore, from conditional

Kunita inequality, we have

c

Δ2
n,i

Ei

⎡⎢⎣J4
ti +

⎛⎝∫ ti+1

ti

a2(Xs−)

M∑
j=1

λ(j)
s ds

⎞⎠2
⎤⎥⎦

≤ c

Δ2
n,i

Ei

⎡⎢⎣∫ ti+1

ti

a4(Xs−)

M∑
j=1

λ(j)
s ds+ 2

⎛⎝∫ ti+1

ti

a2(Xs−)

M∑
j=1

λ(j)
s ds

⎞⎠2
⎤⎥⎦

≤ ca41
Δ2

n,i

(1 + Δn,i)

∫ ti+1

ti

Ei

⎡⎣ M∑
j=1

λ(j)
s

⎤⎦ ds,

where we have also used Jensen inequality on the last term here above, which
is the reason why we get an extra Δn,i. From the fourth point of Lemma 9 it
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follows that the equation here above is upper bounded by
ca4

1

Δn,i

∑M
j=1 λ

(j)
ti , plus

a negligible term. Replacing it and (93) in (92) it follows

Ei[E
2
ti ] ≤

ca41
Δn,i

M∑
j=1

λ
(j)
ti + cΔ−ε

n,i ≤
ca41
Δn,i

M∑
j=1

λ
(j)
ti ,

where the last inequality is a consequence of the fact that λ is always strictly
more than zero. Regarding the fourth moment of Eti , from Kunita, Holder and
Jensen inequality we have

E[E4
ti ] ≤

c

Δ4
n,i

E[Z4p
ti ]

1
pE[J4q

ti ]
1
q +

c

Δ4
n,i

Ei

⎡⎢⎣J8
ti +

⎛⎝∫ ti+1

ti

a2(Xs−)

M∑
j=1

λ(j)
s ds

⎞⎠4
⎤⎥⎦

≤ c

Δ4
n,i

(Δ2
n,iΔ

1−ε
n,i +Δn,i +Δ3

n,iΔn,i) ≤
c

Δ3
n,i

.

Point 4

The result follows directly from the definition of Cti and the boundedness of
a and of the moments of λ.

A.7. Proof of Lemma 4

Proof. It is

Cti ψ̃l(Xti) = a2(Xti)

M∑
j=1

(λ
(j)
ti − E[λ

(j)
ti |Xti ])ψ̃l(Xti) =: f(Xti , λti).

Since

Var

(
1

n

n−1∑
i=0

f(Xti , λti)

)
≤ 1

n2

n−1∑
i=0

n−1∑
j=0

Cov(f(Xti , λti), f(Xtj , λtj )),

we need to estimate the covariance.
As explained in Section 2.3 we know that, under our assumptions, the process

Z := (X,λ) is β- mixing with exponential decay. It means that there exists γ > 0
such that

βX(t) ≤ βZ(t) ≤ Ce−γt.

If the process Y is β- mixing, then it is also α-mixing and so the following
estimation holds (see Theorem 3 in Section 1.2.2 of [21])

|Cov(Yti , Ytj )| ≤ c ‖Yti‖p
∥∥Ytj

∥∥
q
α

1
r (Yti , Ytj )
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with α the coefficient of α-mixing and p, q and r such that 1
p +

1
q +

1
r = 1. Using

that

α(Zti , Ztj ) ≤ βZ(|ti − tj |) ≤ ce−γ|ti−tj |,

in our case the inequality here above becomes

|Cov(f(Xti , λti), f(Xtj , λtj ))| ≤ c‖f(Xti , λti)‖p
∥∥f(Xtj , λtj )

∥∥
q
e−

1
r γ|ti−tj |.

From the definition of f and the boundedness of a and the existence of moments
of λ we have

‖f(Xti , λti)‖p ≤ c

M∑
j=1

∥∥∥(λ(j)
ti − E[λ

(j)
ti |Xti ])

∥∥∥
pp1

∥∥∥ψ̃l(Xti)
∥∥∥
pp2

≤ c

M∑
j=1

∥∥∥ψ̃l(Xti)
∥∥∥
pp2

,

with p1 and p2 such that 1
p1

+ 1
p2

= 1. We remark that, as we are going to bound

both the Lp and the Lq norm of f(Xti , λti), it seems natural to chose p = q,
in order to repeat twice the same estimation. Then, as 1

p + 1
q + 1

r = 1 and we
need r > 0, we obtain p = q > 2. We can then chose, for ε > 0 arbitrarily small,
pp2 = 2+ε. It implies p1 = 2+ε

2+ε−p , which leads us to chose 2 < p = 2+ ε̃ < 2+ε,

for some ε̃ < ε. Then, using that the L2 norm of ψ̃l is smaller than 1 and that
we can bound ψ̃l(x) by Dm, we obtain∥∥∥ψ̃l(Xti)

∥∥∥
2+ε

≤ c
∥∥∥ψ̃l(Xti)

∥∥∥ε

∞

∥∥∥ψ̃l(Xti)
∥∥∥
2
≤ cDε

m,

which provides

‖f(Xti , λti)‖p ≤ cMDε
m.

In a similar way, it is easy to see that

‖f(Xti , λti)‖q ≤ cMDε
m.

We now introduce a partition of (0, Tn] (where Tn is the time horizon) based
on the sets Ak := (k Tn

n , (k+1)Tn

n ], for which (0, Tn] = ∪n−1
k=0Ak. Now each point

ti in (0, Tn] can be seen as tk,h, where k identifies the particular set Ak to which
the point belongs while, defining Mk as |Ak|, h is a number in {1, . . . ,Mk} which
enumerates the points in each set. It follows

c

n2

n−1∑
i=0

n−1∑
j=0

e−
1
r γ|ti−tj | ≤ c

n2

n−1∑
k1=0

n−1∑
k2=0

Mk1∑
h1=1

Mk2∑
h2=1

e−
1
r γ|tk1,h1

−tk2,h2
|

≤ ce
2γ
r

Tn
n

n2

n−1∑
k1=0

n−1∑
k2=0

Mk1∑
h1=1

Mk2∑
h2=1

e−
1
r γ|k1−k2|Tn

n ,
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where the last inequality is a consequence of the following estimation: for each
k1, k2 ∈ {0, . . . , n− 1} it is |tk1,h1 − tk2,h2 | ≥ |k1 − k2|Tn

n − 2Tn

n .
We remark here that, as we are considering the general case where the dis-

cretization step is not necessarily uniform, we can not replace Tn

n with simply
Δn: we have to keep it like this and compare it with Δmin and Δmax, which is
equal to Δn by definition.

Now we observe that the exponent does not depend on h anymore, hence the
last term here above can be upper bounded by

ce
2γ
r

Tn
n

n2

∑n−1
k1=0

∑n−1
k2=0 Mk1Mk2e

− 1
r γ|k1−k2|Tn

n .

Moreover, remarking that the length of each interval Ak is Tn

n , it is easy to see

that we can always upper bound Mk with Tn

n
1

Δmin
, with Tn =

∑n−1
i=0 Δn,i ≤ nΔn

and so Mk ≤ Δn

Δmin
, that we have assumed bounded by a constant c1.

Furthermore, still using that Tn ≤ nΔn, we have e
2γ
r

Tn
n ≤ e

2γ
r Δn ≤ c.

To conclude, we have to evaluate c
n2

∑n−1
k1=0

∑n−1
k2=0 e

− 1
r γ|k1−k2|Tn

n . We define
j := k1 − k2 and we apply a change of variable, getting

c

n2

n−1∑
k1=0

n−1∑
k2=0

e−
1
r γ|k1−k2|Tn

n ≤ c

n2

n−1∑
j=−(n−1)

e−
1
r γ|j|

Tn
n |n− j|

≤ c

n

n−1∑
j=−(n−1)

e−
1
r γ|j|Δmin ≤ c

n(1− e−
1
r γΔmin)

≤ c

Tn
,

as we wanted.

A.8. Proof of Lemma 7

Proof. In order to estimate the probability of the complementary of the set ΩB,
as defined in (64), we first of all observe that

Ωc
B ⊂ ∪j,k

{
supt∈Bm,m′ |t(U∗

k,j)| ≥ c̃nε0D
1
2

}
. Now we find an upper bound for

the probability of Ωc
B focusing on what happens for j = 1 and k = 0. Recalling

the definition of U∗
j,k in (62) and using that, as t ∈ Bm,m′ whose dimension is

D, ‖t‖∞ ≤ cD
1
2 , we can write, for any ε > 0 arbitrarily small,

P( sup
t∈Bm,m′

|t(U∗
0,1)| ≥ c̃nε0D

1
2 ) ≤ P

(
1

qn

qn∑
k=1

|B∗
tk

+ C∗
tk

+ E∗
tk
| ≥ c̃nε0

)

≤ P

(
1

qn

qn∑
k=1

|B∗
tk
| ≥ c̃

3
nε0

)
+ P

(
1

qn

qn∑
k=1

|C∗
tk
| ≥ c̃

3
nε0

)
(94)

+ P

(
1

qn

qn∑
k=1

|E∗
tk
| ≥ c̃

3
nε0

)
.
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From the definition of B it is

1

qn

qn∑
k=1

|B∗
tk
| ≤ c

qnΔn

qn∑
k=1

Z2
tk

+ c. (95)

Moreover, using Markov inequality and the boundedness of σ,

P

(
|Ztk | ≥ cσ1Δ

1
2
n log n

)
= P

(
e

|Ztk
|

σ1
√

Δn ≥ nc

)
≤ 1

nc
E

[
e

|Ztk
|

σ1
√

Δn

]
≤ 1

nc
E

[
e

c′
Δnσ2

1

∫ tk+1
tk

σ2(Xs)ds
]
≤ c′

nc
. (96)

Therefore, as the constant c in (95) can be moved in the other side of the
inequality in the first probability of (94) and so it turns out not being influential,
the first probability of (94) is upper bounded by qn

nc , which is arbitrarily small.
Concerning the second term of (94), we use Markov inequality and the fact that
C has bounded moments. We get, ∀r ≥ 1,

P

(
1

qn

qn∑
k=1

|C∗
tk
| ≥ c̃

3
nε0

)
≤

qn∑
k=1

P

(
|C∗

tk
| ≥ c̃

3
nε0

)
≤ c

qn∑
k=1

E[|C∗
tk
|r]

nrε0
≤ cqn

nrε0
.

Regarding the third term of (94) we observe that, replacing the value of qn we
get

P

(
1

qn

qn∑
k=1

|E∗
tk
| ≥ c̃

3
nε0

)
= P

(
qn∑
k=1

|E∗
tk
| ≥ c̃

3
nε0

logn

Δn

)
. (97)

We now recall that, from the definition of Etk it is

qn∑
k=1

|E∗
tk
| ≤

∣∣∣∣∣ 2

Δn

qn∑
k=1

ZtkJtk

∣∣∣∣∣+
∣∣∣∣∣ 1

Δn

qn∑
k=1

J2
tk

∣∣∣∣∣+
∣∣∣∣∣∣ 1

Δn

∫ tqn

0

a(Xs−)

M∑
j=1

λ(j)(s)ds

∣∣∣∣∣∣
=: I1 + I2 + I3.

The right hand side of (97) is upper bounded by

P

(
I1 ≥ c̃

9
nε0

logn

Δn

)
+ P

(
I2 ≥ c̃

9
nε0

logn

Δn

)
+ P

(
I3 ≥ c̃

9
nε0

logn

Δn

)
.

Concerning the first one, we observe it is

I1 ≤ 1

Δn

qn∑
k=1

(Z2
tk

+ J2
tk
) = I1,1 + I1,2.

The probability that I1,1 is bigger than c̃
9n

ε0 logn
Δn

is arbitrarily small as a con-
sequence of (96). I1,2 is instead equal to I2 and so it is enough to study such a
term. From Markov, Holder, BDG and Kunita inequalities we have

P

(
I3 ≥ c̃

9
nε0

logn

Δn

)
≤ E[(I3)

r]

(nε0 lognΔ−1
n )r

≤
cΔ−r

n trqn
(nε0 lognΔ−1

n )r
≤ c

nε0r
,
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where we underline that the order of tqn is cqnΔn = c logn
Δmin

Δn ≤ c logn. It is ar-

bitrarily small. Concerning I2, we want to estimate P(
∑qn−1

k=0 J2
tk

≥ c
9n

ε0 logn).
We now consider two different possibilities, starting from the definition of the
following set

A :=
{
∃k̃ ∈ {0, . . . , qn − 1} such that J2

tk̃
≥ n

ε0
2

}
.

Then

P

(
qn−1∑
k=0

J2
tk

≥ c

9
nε0 logn

)

= P

(
qn−1∑
k=0

J2
tk

≥ c

9
nε0 logn,A

)
+ P

(
qn−1∑
k=0

J2
tk

≥ c

9
nε0 log n,Ac

)
.

We observe that Markov inequality and Kunita inequality yield

P

(
qn−1∑
k=0

J2
tk

≥ c

9
nε0 logn,A

)
≤ P(A) ≤

qn−1∑
k=0

E[(Jtk̃)
2r]

n
ε0r
2

≤ Δnqn

n
ε0r
2

=
c logn

n
ε0r
2

,

which is arbitrarily small by the arbitrariness of r. We remark that on Ac, for
every k ∈ {0, . . . , qn − 1}, it is J2

tk
< n

ε
2 . Therefore, to have the sum of them

bigger than c
9n

ε logn we should have at least c
9 log nn

ε
2 jumps. Hence, denoting

as ΔNq the number of jumps in [0, tqn ], we have

P

(
qn−1∑
k=0

J2
tk

≥ c

9
nε0 log n,Ac

)
≤ P

(
ΔNq >

c

9
n

ε0
2 logn

)
≤ c

E[(ΔNq)
r]

(n
ε0
2 log n)r

≤
c
(
trqn + tqn

)
(n

ε0
2 logn)r

≤ c((logn)r + logn)

(n
ε0
2 logn)r

≤ c

n
ε0r
2

,

where again we have used Markov inequality and we got a quantity arbitrarily
small choosing r ≥ 1 large enough. We put all the pieces together and we observe
we can choose in particular r for which

P

(
1

qn

qn∑
k=1

|E∗
tk
| ≥ c̃

3
nε0

)
≤ c

n5
.

In the same way it is possible to choose r and c̃ such that

P(Ωc
B) ≤

∑
j=0,1;k∈{1,...,pn}

P

(
sup

t∈Bm,m′
|t(U∗

k,j)| ≥ c̃nε0D
1
2

)
≤ cpn

n5
≤ c

n4
.
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A.9. Proof of Lemma 8

Proof. We observe that for any t ∈ Bm,m′ , by (62) and Proposition 4, it is

E[t(U∗
0,0)

2] = Var(U∗
0,0)

≤ 4

q2n

qn∑
l=1

E

[
t2(X∗

tl
)El[B

∗,2
tl

+ E∗,2
tl

]
]

+ 4Var

(
1

qn

qn∑
l=1

t(X∗
tl
)C∗

tl

)
=: V1 + V2.

By the second and the third points of Proposition 4, we can upper bound V1 as

V1 ≤ c

q2n

qn∑
l=1

E

⎡⎣t2(X∗
tl
)(σ2

1 +
a41
Δn

M∑
j=1

λ
(j)
tl

)

⎤⎦
≤ c

q2n

qn∑
l=1

E
[
t2p(X∗

tl
)
] 1

p
E

⎡⎣⎛⎝σ2
1 +

a41
Δn

M∑
j=1

λ
(j)
ti

⎞⎠q⎤⎦
1
q

,

where we have used Hölder inequality with q big and p next to 1. We can see
t2p(X∗

tl
) as

t2+(2p−2)(X∗
tl
) = t2(X∗

tl
)t(2p−2)(X∗

tl
) ≤ ‖t‖2p−2

∞ t2(X∗
tl
).

From Assumption 4, ‖t‖
2p−2

p
∞ ≤ cD

2p−2
2p

m ≤ cDδ
m, for any δ arbitrarily small, as p

has been chosen next to 1. Using also the boundedness of the moments of λ it
follows that

V1 ≤ Dδ
m

q2n

c

Δn
qn =

cDδ
m

qnΔn
.

Using the same arguments as in the proof of Lemma 4, remarking that the sum
over n is now replaced by the sum over qn and that t now plays the same role
as ψ̃, being such that its L2 norm is smaller than 1 and it is bounded by Dm,
we can show

V2 ≤ c

qnΔn
‖t‖2δ∞ ≤ c

qnΔn
D2δ

m ,

for any δ > 0. It concludes the proof of the lemma.
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tions. Ann. Inst. H. Poincaré Probab. Statist., 38(5), 711–737. MR1931584

[25] Goldenshluger, A. & Lepski., O. (2011). Bandwidth selection in kernel den-
sity estimation: oracle inequalities and adaptive minimax optimality. The
Annals of Statistics, 39(3) 1608–1632. MR2850214

[26] Gomez-Valle, L. and Martinez-Rodriguez, J. (2016). Estimation of risk-
neutral processes in single-factor jump-diffusion interest rate models. Jour-
nal of Computational and Applied Mathematics. 291, 48–57 MR3383817

[27] Hoffmann, M. (1999). Adaptive estimation in diffusion processes. Stochastic
processes and their Applications, 79(1), 135–163. MR1670522

[28] Jacod, J., Todorov, V. (2009). Testing for common arrivals of jumps for
discretely observed multidimensional processes. The Annals of Statistics,
37(4), 1792–1838. MR2533472

[29] Jacod, J., Protter, P. (2011). Discretization of processes (Vol. 67). Springer
Science and Business Media. MR2859096

[30] Krell, N., Schmisser, E. (2019). Nonparametric estimation of jump rates for
a specific class of Piecewise Deterministic Markov Processes. arXiv preprint
arXiv:1901.10166. MR4303887

[31] Lacour, C., Massart, P. and Rivoirard, V. (2017). Estimator Selection: a
New Method with Applications to Kernel Density Estimation. Sankhya A
79, 298–335. MR3707423

[32] Le Gall, J. (2010). Calcul stochastique et processus de markov. Notes de
cours.

[33] Mancini, C., and Reno, R. (2011). Threshold estimation of Markov models
with jumps and interest rate modeling. Journal of Econometrics, 160(1),
77–92. MR2745869

https://www.ams.org/mathscinet-getitem?mr=2371524
https://www.ams.org/mathscinet-getitem?mr=3449317
https://www.ams.org/mathscinet-getitem?mr=1261635
https://www.ams.org/mathscinet-getitem?mr=4136702
https://arxiv.org/abs/1904.06051
https://www.ams.org/mathscinet-getitem?mr=4136702
https://www.ams.org/mathscinet-getitem?mr=1312160
https://www.ams.org/mathscinet-getitem?mr=2865638
https://www.ams.org/mathscinet-getitem?mr=1809735
https://www.ams.org/mathscinet-getitem?mr=1931584
https://www.ams.org/mathscinet-getitem?mr=2850214
https://www.ams.org/mathscinet-getitem?mr=3383817
https://www.ams.org/mathscinet-getitem?mr=1670522
https://www.ams.org/mathscinet-getitem?mr=2533472
https://www.ams.org/mathscinet-getitem?mr=2859096
https://arxiv.org/abs/1901.10166
https://www.ams.org/mathscinet-getitem?mr=4303887
https://www.ams.org/mathscinet-getitem?mr=3707423
https://www.ams.org/mathscinet-getitem?mr=2745869


Nonparametric inference of Hawkes coefficients 3277

[34] Neumann, M. H. and Reiß, M. (2009). Nonparametric estimation for
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