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Abstract: The stochastic blockmodel (SBM) models the connectivity within
and between disjoint subsets of nodes in networks. Prior work demonstrated
that the rows of an SBM’s adjacency spectral embedding (ASE) and Lapla-
cian spectral embedding (LSE) both converge in law to Gaussian mixtures
where the components are curved exponential families. Maximum likeli-
hood estimation via the Expectation-Maximization (EM) algorithm for a
full Gaussian mixture model (GMM) can then perform the task of cluster-
ing graph nodes, albeit without appealing to the components’ curvature.
Noting that EM is a special case of the Expectation-Solution (ES) algo-
rithm, we propose two ES algorithms that allow us to take full advantage
of these curved structures. After presenting the ES algorithm for the gen-
eral curved-Gaussian mixture, we develop those corresponding to the ASE
and LSE limiting distributions. Simulating from artificial SBMs and a brain
connectome SBM reveals that clustering graph nodes via our ES algorithms
can improve upon that of EM for a full GMM for a wide range of settings.
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1. Introduction

Statistical inference on graphs is a burgeoning field of study in statistics with
applications in neuroscience [14, 18] and social networks [12], among other areas
of research. Given a random graph G on n vertices generated by some model
F , a typical procedure is to embed its adjacency matrix A ∈ {0, 1}n×n into a
lower dimensional space R

d as a collection of n points. Commonly chosen em-
beddings include the adjacency spectral embedding (ASE) and Laplacian spectral
embedding (LSE), obtained via the truncated eigendecomposition of A and its
normalized Laplacian L(A). From here one may seek to perform the task of
clustering these points and — by extension — their corresponding vertices.
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The spectral graph clustering problem has been extensively studied for set-
tings in which the graph (or graphs) on hand are posited to have been generated
by a stochastic blockmodel (SBM) [10], with many results regarding consistent
recovery of the block assignments being known [8]. [2] and [23] showed that the
distribution of the points of the ASE and LSE both converge to curved nor-
mal mixture distributions. Moreover, they demonstrated that clustering via the
Expectation-Maximization (EM) algorithm [6] for a Gaussian mixture model
(GMM) performs better than doing so via the K-means algorithm. However,
their implementation of the EM algorithm failed to take into account the curved
structure of the mixture’s component distributions, and may have therefore re-
sulted in an increased number of clustering errors.

This paper seeks to improve upon their results by introducing an Expectation-
Solution (ES) algorithm [7] that makes full use of the ASE and LSE limiting
distributions’ curved-normal structure. We accomplish this by noting that the
complete-data likelihood equations from the EM algorithm may be reinterpreted
as complete-data estimating equations used by ES. Since each component of a
curved-Gaussian mixture model (C-GMM) encodes its variance as a function of
the component means and potentially the mixing proportions, the estimating
equations corresponding to the component variances are rendered superfluous.
This leads to an iterative scheme in which the component means and mixing
proportions are updated as in EM for a full GMM, but the component variances
are updated by simply plugging in the new means and proportions into the
variance functions.

To the best of our knowledge this paper represents the first time the ES
algorithm has been utilized for a C-GMM, and owing to its relative simplicity
we cannot help but recommend it as a novel tool for the practitioner’s toolbox,
one that is not only limited in its usefulness to the spectral clustering problem.
We structure the rest of the paper as follows: In Section 2 we review the setting
and background for random dot product graphs and SBMs. In Section 3 we
present the ES algorithm, first for a generic C-GMM, and then for both the
ASE and LSE limiting distributions. In Sections 4 and 5 we present and discuss
the results of our algorithm for simulated data from artificial SBMs, a brain
connectome SBM, and a rank-deficient SBM.

1.1. Notation

Except where otherwise specified we use emboldened capital letters such as
A,B,X, etc. to denote matrices, emboldened and italicized capital letters with
one indexed subscript to denote a row of the corresponding matrix as a column
vector, as in Ai, Bj , Xk. Emboldened lowercase Greek letters π, τ are vectors.

We take ΔK := {(π1, π2, . . . , πK) ∈ R
K
≥0 |

∑K
k=1 πk = 1} to be the unit simplex

in R
K , and δc to be the probability distribution assigning point mass to its

parameter c in Euclidean space. The vector of all ones and all zeros in R
n are

given by 1n and 0n, respectively. We omit subscripts where the dimension is
obvious.
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Given a real symmetric n× n matrix M we write its spectral decomposition
as

M = UMDMU�
M,

where UM is a unitary matrix and DM = diag(λ
(M)
1 , λ

(M)
2 , . . . , λ

(M)
n ) such that

λ
(M)
1 ≥ λ

(M)
2 ≥ · · · ≥ λ

(M)
n are the ordered eigenvalues of M. We define the

normalized Laplacian of M as L(M) = (diag(M1n)
− 1

2 )M(diag(M1n)
− 1

2 ), with

spectral decomposition ŨMD̃MŨ
�
M.

In Section 4 we use the shorthand

{K-means, EM,ES} ◦ {ASE,LSE} (1)

to refer to each clustering method; e.g., EM ◦ ASE is to be read as “EM for
the ASE.” Finally, in sections where we are explicitly concerned with GMMs,
any reference to the EM algorithm is understood to refer to the EM algorithm
for a full GMM as outlined in [9].

2. Background and setting

The K-block SBM encodes the probabilistic connectivity within and between
disjoint subsets of graph nodes. For K ≥ 2, π ∈ ΔK , and B ∈ (0, 1)K×K a
rank-d symmetric matrix with distinct rows, we write (A, τ ) ∼ SBM(n,B,π)
with sparsity factor ρn ∈ (0, 1] provided the following:

τ := (τ1, ..., τn)

τi
i.i.d.∼ Cate(π)

Aij | τ ind.∼ Bern(ρnBτiτj ), i < j

Aij = Aji

diag(A) = 0n.

Note τ denotes the vector of block memberships. If only A is observed, we write
A ∼ SBM(n,B,π).

The sparsity factor ρn indexes a sequence of models where the edge prob-
abilities change with n. We mention the sparsity factor purely for the sake
of completeness, but common assumptions include taking ρn ≡ 1 for all n or
ρn → 0 such that ρn > log4 n/n. The former assumption is equivalent to the
assumption that there exists c > 0 such that ρn → c; [23] used the latter as-
sumption to establish concentration in spectral norm of A and L(A) around
ρnP and L(P)(where P is discussed below). As we are primarily concerned with
spectral clustering of the nodes of a single graph at a time, the sparsity factor
is taken to be identically 1, and thus suppressed, throughout the remainder of
the paper.

The SBM is a special case of the random dot product graph (RDPG) [22],
which encodes the probability that two nodes in a random graph share an
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edge as defined by the n × n symmetric edge probability matrix P such that

Aij
ind.∼ Bern(Pij) for i < j [27]. In lieu of an edge probability matrix, one may

instead define a random graph model via X ∈ R
n×d such that the row magni-

tudes are bounded above by 1 and the dot product between any two rows falls
within the unit interval. In such case we permit the mathematical convenience of
allowing for self loops, leading us to formulate a random graph model with edge
probability matrix P = XX�. We refer to the rows of X as the latent positions
of the graph model. Note that the latent positions are inherently unidentifiable,
since for any d× d orthogonal matrix W we have that (XW)(XW)� = XX�.
One arrives at an analogous means of defining a rank-d, K-block SBM by defin-
ing ν1, . . . ,νK ∈ R

d such that ‖νk‖ ≤ 1 for all k and ν�
k νk′ ∈ (0, 1) for each

k, k′ pair. If we define x ∈ R
K×d such that the kth row is ν�

k , then xx� is the
block probability matrix of an SBM, with latent positions νk.

For d ≤ n, the d-dimensional adjacency spectral embedding (ASE) of A is

given by the n×d matrix X̂ := U
(d)
A (D

(d)
A )

1
2 , where the columns of U

(d)
A are the

first d columns of UA and D
(d)
A is the d × d principal minor of DA consisting

of the d largest ordered eigenvalues on the diagonal [13]. The n rows of X̂ can
thus be thought of as a collection of points in R

d that estimate the true latent
positions up to orthogonal transformation. We can, therefore, touch upon the
notion of how a random choice of an unobservable latent position Xi (say,
via some distribution F on R

d), informs the distribution of the corresponding
estimated latent position X̂i. For a K-block SBM we have that the distribution
F on the latent positions is a mixture of point masses, with mixture weights
πk. [2] obtained the following result as a corollary to a more general theorem
regarding RDPGs and SBMs with ρn → 0 such that ρn > log4 n/n.

Theorem 2.1. Let Xi
i.i.d.∼ F =

∑K
k=1 πkδνk

, where π ∈ ΔK . Define Λ =

E[X1X
�
1 ]. Also let Σ(x) = Λ−1

E[X1X
�
1 (x

�X1−x�X1X
�
1 x)]Λ

−1. If ρn ≡ 1,
there exists a sequence of orthogonal matrices Wn such that for any fixed index
i √

n(WnX̂i −Xi)|Xi = νk
d→ N (0,Σ(νk)).

That is to say that the optimally rotated rows X̂i of the ASE X̂ for a graph
generated by an SBM are approximately distributed as a mixture of curved
multivariate normal distributions, each centered at the corresponding true latent
positions Xi of P. As mentioned above, we reiterate that these true latent
positions are assumed to arise from a mixture of point masses on the scaled
eigenvectors of B. Owing to the method by which the ASE is computed, we
note that the rows are identically distributed but not independent.

The Laplacian spectral embedding (LSE) is to the normalized Laplacian L(A)
as the ASE is to A. That is, for d ≤ n the d-dimensional LSE is given by

X̌ = Ũ
(d)

A (D̃
(d)

A )
1
2 , where Ũ

(d)

A and D̃
(d)

A are analogous to U
(d)
A and D

(d)
A . Like

X̂, the n rows of X̌ can be thought of as a collection of points in R
d. The

LSE is preferred in settings where the adjacency matrix is sparse or the edge
probability matrix is believed to be of the form ρnPn for some positive sequence
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ρn → 0 as n → ∞, since the normalized Laplacian is the same for P as it is for
ρP; that is,

L(ρP) = (diag((ρP)1n)
− 1

2 )(ρP)(diag((ρP)1n)
− 1

2 )

= ρ−1ρ(diag(P1n)
− 1

2 )P(diag(P1n)
− 1

2 )

= L(P).

[23] obtained the following result for the LSE of an SBM, analogous to the
previous theorem.

Theorem 2.2. Let the setting be as in Theorem 2.1, and also let μ = E[X1]
and

Λ̃ = E

[
X1X

�
1

X�
1 μ

]
.

Define

Σ̃(x) = E

[(
Λ̃

−1
X1

X�
1 μ

− x

2x�μ

)(
X�

1 Λ̃
−1

X�
1 μ

− x�

x�μ

)(
x�X1 − x�X1X

�
1 x

x�μ

)]
.

If ρn ≡ 1 and nk = |{i ≤ n|Xi = νk}|, then there exists a sequence of orthogonal
matrices Wn such that for any fixed index i

n

(
WnX̌i −

νk√∑
l nlν�

k νl

)
|Xi = νk

d→ N (0, Σ̃(νk)).

The limiting distributions justify the fitting of full GMMs to cluster the rows
of either spectral embedding. Doing so improves upon the clustering perfor-
mance of K-means. Although K-means is invariant to orthogonal transforma-
tions of the data, the procedure imposes the assumption of equal, spherical
covariances on the clusters; however, the ASE and LSE clusters can be non-
spherical and of varying spread as demonstrated in Figures 12–13 below, as well
as in [19] and [18]. By contrast, clustering via the EM algorithm accounts for
the possibility of unequal covariances; however, the curvature of the components
remains unaddressed.

In practice, both rank(B) and K are unknown. A principled method of esti-
mating the former is to inspect the scree-plot of the singular values of A and
look for “elbows” defining the cut-off between singular values corresponding to
signal dimensions and those corresponding to noise dimensions [17]. One can es-
timate the latter by means of maximizing a fitness criterion penalized by model
complexity, à la the Akaike Information Criterion (AIC) [1] and the Bayesian
Information Criterion (BIC) [20]; however, recent work due to [26] has called
into question the validity and applicability of these classical criteria to SBM
settings.

For a comprehensive look at the proofs of Theorems 2.1 and 2.2, as well as
fuller details of the setting we describe, we refer the reader to [3].
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3. The expectation-solution algorithms

First introduced by [7], the Expectation-Solution (ES) algorithm arises as a gen-
eralization of the EM algorithm [6], where instead of updating the parameter
estimates according to a collection of complete-data likelihood equations, we up-
date the parameters as solutions to complete-data estimating equations. When
the complete-data estimating equations for a given model coincide exactly with
the complete-data likelihood equations for the same model, then the ES and EM
algorithms are equivalent. Thus, any comparisons drawn between EM and ES
for a particular setting are actually between two different ES algorithms, a fact
which allows us to use comparable convergence criteria. We will demonstrate
that implementation of ES in a curved-Gaussian mixture setting allows us to
make full use of the mixture components’ curved structure without sacrificing
the relative simplicity of EM. We review ES for the general incomplete-data
setting in Appendix I.

3.1. The ES algorithm for mixtures of curved gaussians

Let us ignore, for the moment, the content of Section 2 and consider a generic
K-component Gaussian mixture model (GMM) supported on R

d:

Xi
i.i.d.∼

K∑
k=1

πkN (μk,Σk), i = 1, ..., n;

such that π := (π1, ..., πK) ∈ ΔK and (μk,Σk) ∈ R
d ×Md for all k, where Md

is the space of d× d positive definite matrices. Maximum likelihood estimation
of the parameters upon observing x1, ...,xn can be handily accomplished by the
EM algorithm. Here, the component distributions are by themselves smooth
exponential family distributions, a fact that allows us to utilize various results
related to the computation of maximum likelihood estimates in the M-step.

Suppose instead that our model is

Xi
i.i.d.∼

K∑
k=1

πkN (μk,Σk(μk))

μk ∈ M ⊂ R
d

Σk : M → Md, ∀k

and each Σk is continuous and differentiable. Here each component distribution
is a curved exponential family distribution, where the component variances are
functions of the means [4]; hence we refer to such a setting as a curved-Gaussian
mixture model (C-GMM). If we attempt to derive complete-data likelihood
equations necessary to implement an EM algorithm, we may become swiftly
enmired in non-linear equations which we must solve to update the means at
each iteration, depending on the structure of each Σk.
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Here the ES algorithm circumvents the potential difficulty posed by the vari-
ance functions. We begin by considering the natural unobserved data extension
of X = (X1, ...,Xn), which should come as no surprise to those familiar with
the EM algorithm:

Zi = (Zi1, ..., ZiK)
i.i.d.∼ Multinomial(1,K,π)

Xi | Zik = 1 ∼ N (μk,Σk(μk)).

Let Ψ denote the parameter vector consisting of π1, . . . , πK−1 and the entries
of μ1, . . . ,μK . In the complete-data setting (X,Z) we immediately note the
following:

EΨ[Zik] = πk

EΨ[ZikXi] = πkμk,

which give rise to the natural estimating equations∑n
i=1 Zik

n
− πk = 0∑n

i=1 ZikXi

n
− πkμk = 0

solved by

π̂k =

∑n
i=1 Zik

n
;

μ̂k =

∑n
i=1 ZikXi∑n
i=1 Zik

.

The complete-data estimating equation Uc((X,Z),Ψ) = CΨS(X,Z)+bΨ(X) =
0 (Appendix I), then, is characterized by

CΨ = I(d+1)K−1

S(X,Z) =
1

n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑n
i=1 Zi1

...∑n
i=1 Zi(K−1)∑n
i=1 Zi1Xi

...∑n
i=1 ZiKXi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

bΨ(X) = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

π1

...
πK−1

π1μ1
...

(1−
∑K−1

k=1 πk)μK

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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In computing h(Ψ|Ψ∗) = EΨ∗ [S(X,Z)|X = x], we find that we must only
obtain

Z∗
ik := EΨ∗ [Zik|Xi = xi]

=
π∗
kφ(xi|μ∗

k,Σk(μ
∗
k))∑K

j=1 π
∗
jφ(xi|μ∗

j ,Σj(μ∗
j ))

.

Thus h(Ψ|Ψ∗) = S(x,Z∗) by linearity of expectation. The next iterate Ψ̂ is
then obtained by solving CΨS(x,Z∗) + bΨ(X) = 0, which yields

π̂k =

∑n
i=1 Z

∗
ik

n
;

μ̂k =

∑n
i=1 Z

∗
ikxi∑n

i=1 Z
∗
ik

.

We present this procedure written concisely as Algorithm 3.1.

Algorithm 3.1 The ES Algorithm for the Curved-Gaussian Mixture Setting
1. Initialize Ψ∗ = Ψ0.

2. E-Step: For each i and k compute

Z∗
ik =

π∗
kφ(xi|μ∗

k,Σk(μ
∗
k))∑K

j=1 π
∗
j φ(xi|μ∗

j ,Σj(μ∗
j ))

.

3. S-Step: Compute the entries of Ψ̂ as

π̂k =

∑n
i=1 Z

∗
ik

n

μ̂k =

∑n
i=1 Z

∗
ikxi∑n

i=1 Z
∗
ik

.

4. Take Ψ∗ = Ψ̂.
5. Repeat steps 2–4 until some convergence criterion is satisfied.

Note that the only difference between this ES algorithm and the usual EM
algorithm for GMMs is that we “update” the component variances by plugging
the usual updates for the component means into the respective Σk(·) instead of
computing

Σ̂k =

∑n
i=1 Z

∗
ik(xi − μ̂k)(xi − μ̂k)

�∑n
i=1 Z

∗
ik

for each k. As a result we estimate only (d+1)K−1 parameters, whereas in the
full GMM setting we estimate another K(d +

(
d
2

)
) parameters comprising the

component covariances. Since the model complexity penalties used to compute
both AIC and BIC increase in magnitude with the number of parameters, the
severe reduction in the number of parameters needed to be estimated in a C-
GMM can vastly decrease these penalties. That is, if we are deciding between a
GMM and C-GMM with approximately equal likelihoods for a given collection
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of data, then it is clear that the C-GMM will achieve the higher (and therefore
more desirable) AIC or BIC.

If we are interested in clustering the observations we perform the usual GMM
clustering procedure, which is to assign each observation to the cluster with the
highest posterior probability.

Remark 1. We note here the distinction between two classes of C-GMMs. We
call a C-GMM separable if each component variance is solely a function of its
respective mean and possibly its mixing proportion. Likewise, if one or more of
the variances take other components’ means or mixing proportions as arguments,
then that C-GMM is tied — as in the cases of both spectral embeddings’
limiting distributions.

3.2. ES algorithm for the ASE

Let us return to the content of Section 2, and assume the setting of Theorem
2.1 with B = xx�, where the kth row of x is νk, and that we have observed A
and computed its d-dimensional ASE X̂. Since F =

∑K
k=1 πkδνk

, we have that

Λ =
∑K

k=1 πkνkν
�
k and

Σ(νk) = Λ−1

( K∑
j=1

πjνjν
�
j (ν

�
k νj − ν�

k νjν
�
j νk)

)
Λ−1.

The variance function thus takes every latent position and mixture weight as
arguments, and our iterative scheme must reflect this. Therefore, let Σ(·|x,π)
denote the covariance function instead. The normal mixture model we thus
consider is

X̂i ∼
K∑

k=1

πkN
(
νk,

Σ(νk|x,π)
n

)
,

where each X̂i is identically distributed. Note that we have dropped the optimal
orthogonal transformation Wn in the statement of Theorem 2.1; hence the
algorithm (presented below as Algorithm 3.2) estimates the latent positions up
to this rotation, but this has no bearing on the task of clustering the graph
nodes or estimating the block probability matrix and membership probabilities.

Remark 2. We can construct a separable analogue of Algorithm 3.2 by updating
each variance with the newest iterate of the corresponding mean and proportion
while holding all other arguments as their previous iterates, only updating them
every ι iterations, or holding them constant. Such schemes (particularly the last)
greatly alter the model at hand, hence we would not recommend them for use;
rather, we only mention them to fill in the middle ground between Algorithms
3.1 and 3.2.
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Algorithm 3.2 The ES Algorithm for the ASE
1. Initialize Ψ∗ = Ψ0.
2. E-Step: Compute

Z∗
ik =

π∗
kφ(X̂i|ν∗

k,Σ(ν∗
k|x∗,π∗)/n)∑K

j=1 π
∗
j φ(X̂i|ν∗

j ,Σ(ν∗
j |x∗,π∗)/n)

3. S-Step: Compute

π̂k =

∑n
i=1 Z

∗
ik

n

ν̂k =

∑n
i=1 Z

∗
ikX̂i∑n

i=1 Z
∗
ik

.

4. Take Ψ∗ = Ψ̂.
5. Repeat steps 2-4 until some convergence criterion is satisfied.

3.3. ES algorithm for the LSE

Let us assume the setting of Theorem 2.2. We have

μ =
K∑

k=1

πkνk

Λ̃ =

K∑
k=1

πk
νkν

�
k

ν�
k μ

Σ̃(νk|x,π)=
K∑
j=1

πj

(
Λ̃

−1
νj

ν�
j μ

− νk

2ν�
k μ

)(
ν�
j Λ̃

−1

ν�
j μ

− ν�
k

ν�
k μ

)(
ν�
k νj − ν�

k νjν
�
j νk

ν�
k μ

)
.

The normal mixture model we consider here is

X̌i ∼
K∑

k=1

πkN
(

νk√∑
l nlν�

l νk

,
Σ̃(νk|x,π)

n2

)
,

where each X̌i is identically distributed. Owing to the presence of the unob-
served nk in the component means, the fact that the ASE and LSE are defined
by the 1-1 transformation

X̌ = (diag(A1n)
−1/2)X̂, (2)

and the fact that the LSE covariance function takes the ASE component means
as arguments, we cannot simply invoke an analogue of the above algorithm. We
propose expanding the parameter vector Ψ by treating the nk as parameters
that can be obtained by the K estimating equations

EΨ

[ n∑
i=1

Zik

]
− nk = 0,
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which would be solved by n̂k :=
∑n

i=1 Zik = nπ̂k if we observed the true cluster
labels of each row of X̌.

Upon observing A and computing both X̂ and X̌, we propose the following
algorithm:

Algorithm 3.3 The ES Algorithm for the LSE

1. Initialize Ψ∗ = Ψ0 and take Σk(·) = Σ̃(·|x,π)/n2.
2. E-Step: Compute

μ∗
k =

ν∗
k√∑

l n
∗
l ν

∗T
l ν∗

k

Z∗
ik =

π∗
kφ(X̌i|μ∗

k, Σ̃(ν∗
k|x∗,π∗)/n2)∑K

j=1 π
∗
j φ(X̌i|μ∗

j , Σ̃(ν∗
j |x∗,π∗)/n2)

.

3. S-Step: Compute

π̂k =

∑n
i=1 Z

∗
ik

n

ν̂k =

∑n
i=1 Z

∗
ikX̂i∑n

i=1 Z
∗
ik

n̂k = nπ̂k.

4. Take Ψ∗ = Ψ̂.
5. Repeat steps 2-4 until some convergence criterion is satisfied.

Note that this algorithm makes full use of both the LSE and ASE; the X̌i

are used in the E-Step, but the X̂i are used in the S-Step. Even so, clustering is
to be done based on the rows of X̌, as they correspond exactly to the posterior
probabilities computed while the algorithm runs its course. This is due to the
fact that in our implementation we specify that the conditional distribution of
the Zik depend purely on X̌i, meanwhile the estimating equations for the νk

remain as in the previous algorithm.

Remark 3. A major advantage of Algorithms 3.2 and 3.3 over the usual EM
algorithm for a GMM is lower computational complexity to update the compo-
nent variances at each iteration. Simple inspection of the M-step in the classical
method reveals that the number of operations needed to update each of the K
component variances is O(nd). In our ES algorithms the number of operations
to perform the same task is O(d3K) for the ASE and O(d4K) for the LSE; the
latter complexity may be shaved down to O(d3K) by preserving initial moment
estimates of μ and Λ̃ (and computing the latter’s inverse) as described in Sec-
tion 5. Since d � n these ES algorithms possess far less complexity than the
usual EM.

Remark 4. While Algorithms 3.2 and 3.3 do address the curvature of the spectral
embeddings’ limiting mixture distributions, the dependence of the estimated la-
tent positions remains unaddressed, a shortcoming shared by the EM algorithm
in these settings. Both ES and EM require the assumption of independence to
carry out the E-step, since the conditional expectation of each Zik is actually
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given all the observed data, not just the corresponding X̂i or X̌i.

4. Simulations

For each simulation setting we generated 100 graphs and compared the perfor-
mance of our ES algorithms with their respective EM analogues. The specific
EM algorithm we used was the function em from the R package Mclust [21].
All four procedures were initialized at the true parameter values. Since EM is a
maximum likelihood procedure, the default convergence criterion is to terminate
when updates to the log-likelihood are less than 1 × 10−5. By contrast, there
is no convenient objective function associated with the ES algorithm, since the
iterates arise as solutions to complete-data estimating equations; moreover, it
was observed anecdotally in a few of our settings that the log-likelihood may
decrease after an ES iteration. With that in mind, we noted that the EM algo-
rithm actually is an ES algorithm where the complete-data estimating equations
are the complete-data likelihood equations; and we altered the code of em to re-
flect this. Therefore convergence of EM and ES for the ASE was assumed when
the Euclidean distance between successive estimates of the parameter vector Ψ
consisting of the mixing proportions and the entries of x was less than 1×10−6,
and convergence of EM and ES for the LSE was assumed when the Euclidean
distance between successive estimates of the parameter vector Ψ̃ consisting of
the mixing proportions and the scaled latent positions was less than 1 × 10−7

for the LSE, or the number of iterations exceeded 10,000. The lower threshold
for ES ◦ LSE was based on the fact that in computing the LSE we effectively
scale the rows of the ASE towards the origin (see, e.g., Figures 12–13 below),
thereby decreasing the magnitude of the latent position iterates and the extent
to which they can change significantly between each pass of the algorithms.

To evaluate clustering performance we computed the adjusted Rand index
(ARI) [11] for the cluster assignments from each method with the true cluster
labels. For each clustering method m found in (1), we let ARIm denote the ARI
produced by that method. In the non-graph setting below (Subsection 4.1) for
	 = A,L we performed Wilcoxon rank-sum tests [15], with hypotheses

Ho : med(ARIEM◦�SE) = med(ARIES◦�SE)

Ha : med(ARIEM◦�SE) �= med(ARIES◦�SE).

We present these in the form of 95% confidence intervals for the median of each
Δ� := ARIEM◦�SE −ARIES◦�SE .

To evaluate accuracy of the parameter estimates, we computed the squared
error of each method’s terminating estimate from the true parameter vector Ψ.
As will be seen in Subsection 4.2 we circumvented the issue of the latent posi-
tions’ non-identifiability by rotating and centering our simulated data over the
“canonical” latent postions in the first orthant by way of a Procrustes transfor-
mation. We take ΨASE to consist of the entries of π and x, as well as those of

the covariance matrices Σ(νk|x,π)
n . As EM ◦LSE does not outright produce esti-

mates for the νk, we takeΨLSE to consist of the entries of π, μk := νk√∑
l nlν�

l νk

,
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Fig 1. Plots in the upper and lower rows correspond to models 1 and 2, respectively, in
Section 4.1. The left-hand plots depict 95% confidence bands based on WIlcoxon rank-sum
tests; median ARI differences below the dashed line (marking a difference of 0) indicate that
ES tended to cluster more accurately than EM. The right hand plots depict pA and pL, with
the dashed line representing α = 0.05.

and the covariance matrices Σ̃(νk|x,π)
n2 . We then performed Wilcoxon rank sum

tests for the paired collection of squared errors for {EM,ES} ◦ASE, as well as
{EM,ES} ◦ LSE. We let pA denote the p-value corresponding to the test

Ho : med(‖Ψ̂EM◦ASE −ΨASE‖) ≤ med(‖Ψ̂ES◦ASE −ΨASE‖)
Ha : med(‖Ψ̂EM◦ASE −ΨASE‖) > med(‖Ψ̂ES◦ASE −ΨASE‖),

and pL be that corresponding to the test

Ho : med(‖Ψ̂EM◦LSE −ΨLSE‖) ≤ med(‖Ψ̂ES◦LSE −ΨLSE‖)
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Fig 2. Plots in the upper and lower rows correspond to models 3 and 4, respectively, in Section
4.1. The plot may be interpreted analogously to Figure 1.

Ha : med(‖Ψ̂EM◦LSE −ΨLSE‖) > med(‖Ψ̂ES◦LSE −ΨLSE‖).

4.1. Non-graph setting

We first tested ES ◦ {ASE,LSE} on random data generated directly from the
mixture distributions given in Theorems 2.1 and 2.2. We considered the following
models:

x1 =

[
0.6210 0.3382
0.3382 0.6210

]
x2 =

[
0.4076 0.1840
0.1840 0.4076

]

x3 =

[
0.6024 0.3703
0.3703 0.5319

]
x4 =

[
0.3962 0.2074
0.2074 0.3721

]
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with π = ( 12 ,
1
2 ) in all cases. These particular choices of x correspond to, re-

spectively, balanced affinity models given by (a, b) = (0.5, 0.4) and (a, b) =
(0.2, 0.15), and balanced core-periphery models given by (a, b) = (0.5, 0.42) and
(a, b) = (0.2, 0.15) which are included in the simulations in the following two
subsections. Each randomly generated sample was taken to comprise X̂ and the

simulated LSE X̌ was computed via the 1–1 relationship (2), taking A = X̂X̂
�
.

For models 1 and 2 (Figure 1) the EM algorithms approximately match the
ES algorithms’ performance for large n. Due to the sample size n featuring
in the denominator of the component variances, the clusters of both mixtures
shrink around the component means as n increases, pulling the points into tight,
distinct clusters. EM tended to cluster more accurately than ES in models 3 and
4, and we credit this to the fact that in these settings the point clouds overlap
significantly for small to moderate n, and it is not until around n = 700 that
distinct clusters start to form.

In model 1 the ES algorithms tend to more accurately estimate the component
means, variances, and weights than do the EM algorithms. As n increases the
accuracy of the EM algorithms begins to match that of the ES algorithms; again,
we suspect that this is due to the emergence of distinct clusters. In model 2, the
EM algorithms perform more accurate estimation for small n, but are overtaken
by the ES algorithms as n increases. Owing to the fact that x2 arises as the latent
positions for a sparse SBM (relative to that corresponding to x1), we suspect
that as n increases beyond 900 parameter estimation by either algorithm will
be comparable as this model’s clusters further separate.

In models 3 and 4 (Figure 2) the ES algorithms tend to cluster the points
less accurately than their EM counterparts, particularly so when n is relatively
small. Moreover, in these settings the ES algorithms largely fail to estimate the
parameters more accurately than the EM algorithms, save for around n = 800 in
model 3. Due to the decreasing trend in the confidence bounds as n increases,
as well as the fact that x4 corresponds to a sparser SBM than does x3, we
suspect that this phenomenon is replicated at a range of n > 900 where the
ES algorithms outperform the EM algorithms in model 4 as indicated by the
downward trend of the p-values in the bottom-right plot.

4.2. Balanced affinity network structure

A K-block SBM is said to possess homogeneous balanced affinity structure if
Bii = a for all i, Bij = b for all i �= j, 0 < b < a < 1, and πk = 1

K for all k [5]. We
generated 100 graphs of size n = 200, 500 for each (a, b) ∈ {0.01, 0.02, . . . , 0.99}2
satisfying b < a and compared the ARI performance of each clustering method
via upper-tailed classical sign tests (α = 0.025) due to the presence of multiple
ties in several settings, with the null hypotheses:

Ho : P (ARIES◦ASE ≥ ARIEM◦ASE) = 0.5

Ho : P (ARIES◦LSE ≥ ARIEM◦LSE) = 0.5

Ho : P (ARIES◦ASE ≥ ARIES◦LSE) = 0.5
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Ho : P (ARIES◦LSE ≥ ARIES◦ASE) = 0.5.

The use of sharp inequalities in the proportions in question was motivated by the
fact that multiple choices of (a, b) result in mixtures in which perfect recovery
of the cluster labels is possible by both ES and EM algorithms; moreover, if an
ES algorithm manages the same ARI as its corresponding EM algorithm it does
so with lower computational complexity as noted in Remark 3.

Since the latent position matrix x is only identifiable up to orthogonal trans-
formation, for each choice of (a, b) we took the canonical latent position matrix
to be that centered in the first quadrant of R2 via the transformation

x = UBDB
1
2UB

�.

For each model we used the R package igraph to sample from the SBM with
the class assignments fixed, computed the ASE X̂ from its definition, then cen-
tered the rows over the canonical latent positions with the d × d orthogonal
transformation Ŵ that solved the Procrustes problem

minW‖X̂W −X‖F
subject to W�W = I

where

X =

⎡
⎢⎢⎢⎣
1n1 ⊗ ν�

1

1n2 ⊗ ν�
2

...
1nK

⊗ ν�
K

⎤
⎥⎥⎥⎦ , (3)

with nk := |{i ≤ n|τi = k}|. Following this the LSE X̌ was computed via the
1–1 relationship (2).

The results are displayed in Figures 3–4. Both here and in subsequent sim-
ulations, EM tends to dominate when (a, b) lies close to the identity line a = b
(i.e., when the simulated model is almost an Erdös-Rényi random graph [3]);
but ES tends to dominate as the model moves away from the identity line until
the true latent positions are so far apart that all methods tend to have equal
performance. The red “strictly dominant” regions shrink as n increases from
200 to 500 due to the clusters shrinking around the component means, leading
to larger black regions where the ES algorithms cluster at least as well as EM
but with the benefit of lower computational complexity at each iteration.

We also repeated the simulations on x1 and x2 from the previous subsec-
tion, this time generating the data from balanced affinity SBMs defined by
(a, b) = (0.5, 0.4) (model 1) and (a, b) = (0.2, 0.15) (model 2) on graphs of size
n = 200, 300, . . . , 900. Overall we observe in Figure 5 similar results to those pre-
sented in Figure 1; however, it’s clear that the degree to which ES out-clusters
EM has increased, particularly in model 2.
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Fig 3. Black regions denote settings in which the corresponding sharp sign test in Subsection
4.2 was significant, meanwhile red regions denote significance of sign tests in which the in-
equality is strict. The blue regions in the upper row of plots within each figure indicate where
EM strictly out-performed the corresponding ES algorithm as determined by analogous lower-
tailed sign tests. have been slightly enlarged for emphasis and ease of reading. All sign tests
were conducted at level α = 0.025. Figures 4, 6–7, and 9–10 may be interpreted similarly.

4.3. Core-periphery network structure

A 2-block SBM is said to possess core-periphery structure if B =
[
a b
b b

]
and

π = (π1, 1 − π1) [5]. We considered the 2-block balanced core-periphery SBMs
characterized by the same grid of (a, b) pairs in the balanced affinity simulations
and repeated the previous experiment. The results are displayed in Figures 6–
7. As in the balanced affinity results we observe that EM ◦ ASE tends to
outperform ES ◦ ASE near the identity line, but the latter tends dominate as
(a, b) moves further away from equal entries before the component means move
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Fig 4.

sufficiently far apart and ES ◦ASE performs at least as well as EM ◦ASE with
lower computational complexity. In this setting, ES ◦ LSE tends to dominate
EM ◦ LSE near the identity line except for exceptionally dense models. The
figures also illustrate the regions in which ES ◦ ASE and ES ◦ LSE strictly
dominate each other. We see that as n increases the regions of strict dominance
shrink, once again, due to the clusters shrinking around the component means.

We also repeated the simulations from Section 4.1 corresponding to x3 and
x4, which respectively arise as the latent position matrices of balanced core-
periphery models with (a, b) = (0.5, 0.42) and (a, b) = (0.2, 0.15). The results
displayed in Figure 8 indicate that, as in the mixture setting, ES largely fails
to outperform EM, except for small to moderate n in model 3. However, the
CIs in Figure 2 indicate that EM tended to strictly outperform ES for both
embeddings; but in Figure 8, ES ◦ LSE is approximately on par with EM ◦
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Fig 5. Plots in the upper and lower rows correspond to models 1 and 2, respectively, in Section
4.2, and may thus be interpreted analogously to Figures 1–2.

LSE. Both here and in the mixture setting, it was observed that ES tended to
vastly overestimate the entries of the covariance matrices, hence the algorithms’
seeming inability to more accurately estimate Ψ, except for ES ◦LSE in model
3 when 700 ≤ n ≤ 900.

4.4. Unbalanced core-periphery model

We have to this point only examined the performance of ES against that of
EM for balanced 2-block SBMs, in which the blocks have equal probability of
node membership. Since this case obviously fails to encapsulate a wide variety
of models, we also evaluated the performance of the clustering procedures for
unbalanced core-periphery model in which the more densely connected core pos-



3154 Z. M. Pisano et al.

Fig 6.

sesses a membership probability of either 0.25 (“Small Core”) and 0.75 (“Large
Core”) in graphs of size n = 200.

The results are presented in Figures 9–10. We see that the ES algorithms tend
to dominate EM in sparse settings when the core is small, but when the core is
large EM tends to dominate in a larger region near the diagonal than in balanced
settings. These plots along with Figure 6 also illustrate how regions in which the
ES algorithms strictly dominate each other shift as the core proportion changes.

4.5. Synthetic analysis of MRI connectome SBM

[18] investigated clustering via the EM algorithm for the ASE and LSE of a 4-
block SBM used to model neural connectivity in the human brain. They noted
that the 2-dimensional LSE captures left-hemisphere/right-hemisphere connec-
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Fig 7.

tivity and the 2-dimensional ASE captures gray-matter/white-matter connec-
tivity. That is, clustering according to either embedding resulted in one of “two
truths.”

To compare clustering performance for this setting, we generated data from
the 4-block connectome estimated by [18], i.e., the modelA ∼ SBM(B,π) where
π = (0.28, 0.22, 0.28, 0.22), B is the rank-4 matrix

B =

⎡
⎢⎢⎣
0.020 0.044 0.002 0.009
0.044 0.115 0.010 0.042
0.002 0.010 0.020 0.045
0.009 0.042 0.045 0.117

⎤
⎥⎥⎦ ,

and blocks 1–4 correspond to left/gray, left/white, right/gray, and right/white
neurons, respectively. The eigendecomposition B = UBDBU

�
B gives the latent
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Fig 8. Plots in the upper and lower rows correspond to models 3 and 4, respectively, in Section
4.3, and may thus be interpreted analogously to Figures 1–2, 5.

position matrix (after rotating properly to the first orthant in R
4) as

x = B = UBD
1
2

BU
�
B =

⎡
⎢⎢⎣
ν�
1

ν�
2

ν�
3

ν�
4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0.0915 0.1076 0.0057 0.0034
0.1076 0.3149 0.0056 0.0649
0.0057 0.0056 0.0886 0.1099
0.0034 0.0649 0.1099 0.3173

⎤
⎥⎥⎦ .

For each n = 500, 600, . . . , 1200 we generated 100 graphs, computed their
ASEs and LSEs, carried out the procedures as otherwise described, and output
the results to Figure 11. We opted not to compare accuracy of parameter es-
timation, since we observed that our algorithms tended to vastly overestimate
the covariances as described in the previous subsection. Here ES tended to more
successfully cluster than EM for all values of n.
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Fig 9.

4.6. Rank-deficient SBM

All of the settings in which we have conducted our simulations thus far share the
property of the true rank d being equal to the number of blocks K; of course,
one may quite naturally give an example of SBM in which d < K. To this end,
consider the 6-block SBM given by

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.4986 0.5982 0.5982 0.5271 0.5424 0.2109
0.5982 0.7684 0.7154 0.7272 0.6408 0.3928
0.5982 0.7154 0.7178 0.6281 0.6512 0.2467
0.5271 0.7272 0.6281 0.7345 0.5548 0.4843
0.5424 0.6408 0.6512 0.5548 0.5920 0.2020
0.2109 0.3982 0.2467 0.4843 0.2020 0.4745

⎤
⎥⎥⎥⎥⎥⎥⎦
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Fig 10.

and π = (0.19, 0.18, 0.14, 0.19, 0.12, 0.18). The block probability matrix is rank-
2, and may be exactly rewritten as B = xx�, where

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.69 0.15
0.78 0.40
0.83 0.17
0.64 0.57
0.76 0.12
0.16 0.67

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Unlike the above connectome SBM this particular setting was not motivated by
a particular application. In fact, we randomly generated this model by sampling
the six rows of x uniformly from the intersection of the 2-dimensional unit
disc and the positive quadrant in R

2 and then generating π from a flat Dirichlet
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Fig 11.

distribution (with everything rounded to two decimal places). We have provided
examples of the ASE and LSE of a graph generated from this setting (n = 600)
in Figures 12–13.

We repeated the experiment of the connectome SBM, this time electing to
generate 1000 graphs for each n, and output the results to Figure 14. One
can see that both ES algorithms dominate their corresponding EM for this
particular setting. We include the results of additional rank-deficient simulations
in Appendix III.

5. Discussion

We have described an algorithm that estimates the parameters of a curved-
normal mixture model and accounts for the components’ curvature. The al-
gorithm itself is an adaptation of the usual EM algorithm for smooth-normal
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Fig 12. The smaller points representing rows of the 2-dimensional ASE have been colored
according to block membership of the corresponding nodes in the original graph. The larger
orange points encircled with a black outline denote the true latent positions, i.e., the rows of
X.

mixture models, where instead of updating the component variance estimates in
the usual way we simply plug the usual updates to the component means into
the variance function(s). Even though we developed this algorithm purely for
the purpose of spectral clustering for SBMs, we suspect that we can easily adapt
it to mixtures of curved exponential families in which the component distribu-
tions are not normal. We hope to explore this, as well as sufficient conditions
for consistent and asymptotically normal estimates as outlined in the appendix
of [7], in a future paper.

The simulation results demonstrate that taking into account the curvature
of the spectral embeddings’ limiting distributions allows us to improve node
clustering for SBMs, and — in some settings — by a vast margin. In general
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Fig 13. The smaller points representing rows of the 2-dimensional LSE have been colored
according to block membership of the corresponding nodes in the original graph (as in the
previous figure). Here the larger orange points denote the scaled Laplacian latent positions,
i.e., the component means of the LSE’s limiting distribution.

our results indicate that EM dominates ES in settings close to Erdös-Rényi
models, but ES overtakes EM in models sufficiently different from such a simple
setting. In particular, the dominance our algorithms display in outperforming
EM for the brain connectome model lead us to highly recommend our method
for that application. Moreover, there existed at least one sample size for which
at least one of our proposed algorithms clustered significantly more accurately
than vanilla EM in all but one of the four SBMs which we singled out in our
Subsections 4.2 and 4.3. Since we initialized all simulations at the true param-
eter values, we have omitted any discussion of sufficient conditions for local or
global convergence of ES ◦ {ASE,LSE}. However, we observed anecdotally in
the brain connectome and rank-deficient settings that initializing ES far from
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Fig 14.

the canonical latent positions still resulted in accurate clusters. The default
implementation of mclust initializes EM at the terminating values of a hierar-
chical agglomerative clustering procedure [21], which may also prove practically
suitable for ES in future work.

Though the simulations are presented through the lens of evaluating ES
against EM, we also compared both methods to K-means (Appendix II). When
all three algorithms were compared to each other, we determined that their
clustering performance was approximately equal for the homogeneous balanced
affinity models, and that EM and ES performed vastly better than K-means
in the other settings. This corroborates the prior work done by [2] and [23];
since the canonical latent positions of a 2-dimensional full-rank homogeneous
balanced affinity model lie equally spaced in the first quadrant with equal covari-
ances, the K-means assumption of spherical covariances does not particularly
hinder the clustering problem. As the other settings are far more varied in the
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spacing of their latent positions and the shape and orientation of their covari-
ances, the flexibility afforded by EM and ES renders them far more effective
than K-means.

The major drawback of our algorithms in the SBM setting is their seeming
inability to accurately estimate the component variances. We noted that ES

occasionally yielded values of Λ−1 and Λ̃
−1

with diagonal entries far exceeding
1. A possible alteration to the algorithm that may reduce or eliminate this issue
entirely would be to replace Λ, μ, and Λ̃ with

Λ̂ =

∑n
i=1 X̂iX̂

�
i

n

μ̂ =

∑n
i=1 X̂i

n

ˆ̃Λ =

∑n
i=1

X̂iX̂
�
i

X̂
�
i μ̂

n
,

respectively, since doing so holds those terms constant and would prevent slight
perturbations to the component means from causing excessive inflation to the
entries of the component variances. Doing so also drastically reduces the com-
putational complexity of each iteration to those mentioned in Remark 3.

Nonetheless, the strong evidence that spectral clustering based on ES can
dominate that of EM opens up avenues for future research. During the writing
of this article, [25] developed one-step estimators for the latent position matri-
ces of both the ASE and LSE, the rows of which also asymptotically converge
to curved normal mixtures. These estimators make additional use of the like-
lihood structure of the underlying random graph model, and as a result the
ensuing C-GMM possesses component variances that are locally more efficient
than those of the mixtures we have considered thus far. Moreover, they find that
EM clustering based on these estimators can improve upon EM ◦{ASE,LSE}.
Further work due to [24] modified the limiting distributions to include the spar-
sity factor ρn in the covariance functions. Moreover, all of our simulations were
conducted under the assumption that the rank of the block probability matrix
d and number of blocks K are both known; hence, we have left untreated the
model selection problem of deciding upon these values from a collection of can-
didates. [26] developed an extended ASE, which also takes a limiting C-GMM,
to address this problem exactly. In future articles we hope to compare perfor-
mance of ES ◦ {ASE,LSE} with EM for these additional estimators, as well
as implement ES algorithms based on the latter.

Appendix I: The expectation-solution algorithm for the general
incomplete data setting

We model our treatment of the ES algorithm on that found in [16].
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Suppose X ∼ fΨ is observed with realization x, Ψ ∈ R
p, and there exists a

natural unobserved extension of the observed data Y = (X,Z). Let

Uc(Y,Ψ) = 0

be the p-dimensional complete-data estimating equation that could be solved
if Y were totally observable. To apply ES, we first re-express the complete-
data estimating equation in terms of a linear function of a q-dimensional vector
function S(Y), a (p× q)-dimensional matrix function CΨ, and a p-dimensional
vector function bΨ(X):

Uc(Y,Ψ) = U (1)(X, S(Y),Ψ)

=

q∑
j=1

cj(Ψ)Sj(Y) + bΨ(X)

= CΨS(Y) + bΨ(X)

= 0,

where cj(Ψ) is the jth column of CΨ. Here S(Y) is the complete data summary
statistic.

The algorithm is:

Algorithm I.4 The ES Algorithm for the General Incomplete Data Setting
1. Initialize Ψ∗ = Ψ0.
2. E-Step: Compute h(Ψ|Ψ∗) := EΨ∗ [S(Y)|X = x].

3. S-Step: Find Ψ̂ that solves AΨ̂h(Ψ̂|Ψ∗) + bΨ̂(x) = 0.

4. Take Ψ∗ = Ψ̂.
5. Repeat steps 2–4 until some convergence criterion is satisfied.

Appendix II: Comparison of EM and ES to K-means

In our simulations we also compared the clustering performance of EM and ES
against that of K-means in models 1–4 and the brain connectome. We present
the results in terms of 95% confidence intervals for the median difference in ARI,
but due to the presence of multiple ties in the homogeneous balanced affinity
settings we elected to use the sign test with a two-sided alternative. For 	 = A,L
as in section 4 and Z = M,S we define

ΔKZ
� := ARIKM◦�SE −ARIEZ◦�SE .

We embolden all entries indicating strict, significant improvement of our ES
algorithms over K-means.

Appendix III: Additional rank-deficient simulations

We include the results of additional simulations in two randomly generated
rank-deficient SBM settings analogous to those presented in Subsection 4.6.
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Table 1

Model 1 Mixture

n 95% CI for
med(ΔKM

A )
95% CI for
med(ΔKM

L )
95% CI for
med(ΔKS

A )
95% CI for
med(ΔKS

L )
200 (0.0167, 0.0493) (0,0.0220) (0,0.0048) (0, 0.015)
300 (0, 0.0122) (0, 0.0119) (0, 0) (0, 0)
400 (0, 0) (0, 0) (0, 0) (0, 0)
500 (0, 0) (0, 0) (0, 0) (0, 0)
600 (0, 0) (0, 0) (0, 0) (0, 0)
700 (0, 0) (0, 0) (0, 0) (0, 0)
800 (0, 0) (0, 0) (0, 0) (0, 0)
900 (0, 0) (0, 0) (0, 0) (0, 0)

Table 2

Model 2 Mixture

n 95% CI for
med(ΔKM

A )
95% CI for
med(ΔKM

L )
95% CI for
med(ΔKS

A )
95% CI for
med(ΔKS

L )
200 (0.0407, 0.0915) (0.0139, 0.0439) (0.0127, 0.0761) (0.0140, 0.0774)
300 (0.0098, 0.0313) (0.0061, 0.0197) (1e-7, −0.0190) (0, 0.0105)
400 (0.0131, 0.0168) (−2e-7, 0.0106) (−1e-7, 0.0023) (0, 0.0023)
500 (−0.0067, 0.0134) (−0.0066, 0.0068) (0, 2e-7) (0, 0.0066)
600 (−2e-8, 0.0059) (0, 0.0059) (0, 5e-9) (0, 0.0018)
700 (0, 0.0053) (0, 0.0051) (0, 0) (0, 0)
800 (0, 0.0046) (0, 0.0046) (0, 4e-8) (0, 0)
900 (−2e-9, 0.0041) (−7e-10, 0.0013) (0, 0) (0, 0)

Table 3

Model 3 Mixture

n 95% CI for
med(ΔKM

A )
95% CI for
med(ΔKM

L )
95% CI for
med(ΔKS

A )
95% CI for
med(ΔKS

L )
200 (−0.1070, −0.0537) (−0.1450, −0.0964) (−0.0256, −8e-5) (−0.026, −0.0080)
300 (−0.1756, −0.1317) (−0.2068, −0.1662) (−0.0998, −0.0318) (−0.1273, −0.0888)
400 (−0.2019, −0.1712) (−0.2215, −0.1966) (−0.1682, −0.1204) (−0.1762, −0.1242)
500 (−0.2306, −0.2002) (−0.2476, −0.2263) (−0.2288, −0.1986) (−0.2370, −0.2103)
600 (−0.2514, −0.2305) (−0.2671, −0.2437) (−0.2547, −0.2296) (−0.2656, −0.2434)
700 (−0.2573, −0.2380) (−0.2772, −0.2555) (−0.2657, −0.2386) (−0.2755, −0.2577)
800 (−0.2534, −0.2388) (−0.2716, −0.2562) (−0.2619, −0.2370) (−0.2760, −0.2574)
900 (−0.2495, −0.2370) (−0.2686, −0.2586) (−0.2528, −0.2426) (−0.2722, 0.2577)

Table 4

Model 4 Mixture

n 95% CI for
med(ΔKM

A )
95% CI for
med(ΔKM

L )
95% CI for
med(ΔKS

A )
95% CI for
med(ΔKS

L )
200 (−0.0543, 0.0101) (−0.0777, −0.0244) (−0.0066, 0.0428) (−0.0099, −0.0077)
300 (−0.1207, −0.0883) (−0.1306, −0.0908) (−0.0316, 0.1010) (−0.0606, −0.0346)
400 (−0.1704, −0.1367) (−0.1772, −0.1520) (−0.0887, −0.0466) (−0.1018, −0.0688)
500 (−0.2116, −0.1890) (−0.2191, −0.1912) (−0.1310, −0.943) (−0.1502, −0.0961)
600 (−0.2270, −0.1970) (−0.2412, −0.2150) (−0.1992, −0.1556) (−0.2252, −0.1858)
700 (−0.2436, −0.2149) (−0.2607, −0.2342) (−0.2345, −0.2051) (−0.2505, −0.2301)
800 (−0.2476, −0.2252) (−0.2678, −0.2462) (−0.2420, −0.2214) (−0.2625, −0.2399)
900 (−0.2512, −0.2372) (−0.2777, −0.2572) (−0.2540, −0.2363) (−0.2785, −0.2611)
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Table 5

Model 1 SBM

n 95% CI for
med(ΔKM

A )
95% CI for
med(ΔKM

L )
95% CI for
med(ΔKS

A )
95% CI for
med(ΔKS

L )
200 (0.0148, 0.0530) (7e-6, 0.0257) (1e-5, 0.0148) (0, 0.0026)
300 (0, 0.0227) (0, 0.0113) (0, 0) (0, 0)
400 (0, 0.0088) (0, 0.0086) (0, 0) (0, 0)
500 (0, 0) (0, 3e-9) (0, 0) (0, 0)
600 (0, 0) (0, 0.0020) (0, 0) (0, 0)
700 (0, 0) (0, 0) (0, 0) (0, 0)
800 (0, 0) (0, 0) (0, 0) (0, 0)
900 (0, 0) (0, 0) (0, 0) (0, 0)

Table 6

Model 2 SBM

n 95% CI for
med(ΔKM

A )
95% CI for
med(ΔKM

L )
95% CI for
med(ΔKS

A )
95% CI for
med(ΔKS

L )
200 (0.0033, 0.0135) (0.0010, 0.0109) (0.0094, 0.0265) (0, 0.0015)
300 (0.0235, 0.0510) (0.0073, 0.0216) (0.0131, 0.0830) (0, 0.0008)
400 (0.0137, 0.0430) (5e-6, 0.0186) (−8e-7, 0.0065) (0, 5e-6)
500 (0.0122, 0.0325) (0.0038, 0.0115) (0, 0.0054) (−0.0014, 9e-7)
600 (−6e-6, 0.0098) (1e-7, 0.0055) (−1e-6, 8e-8) (−0.0051, 7e-8)
700 (0, 0.0063) (0, 0.0047) (−4e-8, 2e-7) (−0.0014, 2e-7)
800 (0, 0.0087) (−1e-7, 0.0044) (0, 0) (−2e-9, 0)
900 (0, 0.0079) (0, 0.0040) (0,0) (0, 5e-9)

Table 7

Model 3 SBM

n 95% CI for
med(ΔKM

A )
95% CI for
med(ΔKM

L )
95% CI for
med(ΔKS

A )
95% CI for
med(ΔKS

L )
200 (−0.1061, −0.0559) (−0.1834, −0.1487) (−0.1552, −0.0954) (−0.1868, −0.1220)
300 (−0.2065, −0.1188) (−0.2767, −0.2429) (−0.2323, −0.1825) (−0.2796, −0.2473)
400 (−0.3298, −0.2676) (−0.3666, −0.3380) (−0.3401, −0.2991) (−0.3709, −0.3437)
500 (−0.3872, −0.3664) (−0.4409, −0.4039) (−0.3981, −0.3631) (−0.4373, −0.4038)
600 (−0.4284, −0.4022) (−0.4673, −0.4512) (−0.4409, −0.4151) (−0.4816, −0.4551)
700 (−0.4900, −0.4617) (−0.5192, −0.4958) (−0.4835, −0.4501) (−0.5214, −0.4889)
800 (−0.5236, −0.4878) (−0.5515, −0.5234) (−0.5133, −0.4663) (−0.5452, −0.5111)
900 (−0.5145, −0.4678) (−0.5365, −0.5034) (−0.4927, −0.4568) (−0.5307, −0.4972)

Table 8

Model 4 SBM

n 95% CI for
med(ΔKM

A )
95% CI for
med(ΔKM

L )
95% CI for
med(ΔKS

A )
95% CI for
med(ΔKS

L )
200 (−0.0781, −0.0312) (−0.1298, −0.0814) (−0.0050, −5e-5) (−0.1049, −0.0718)
300 (−0.1356, −0.0636) (−0.2158, −0.1760) (−0.0233, −0.0090) (−0.2061, −0.1693)
400 (−0.1975, −0.1219) (−0.2891, −0.2402) (−0.0916, −0.0621) (−0.2826, −0.2527)
500 (−0.2809, −0.2366) (−0.3505, −0.3271) (−0.2265, −0.1744) (−0.3466, −0.3235)
600 (−0.3477, −0.3134) (−0.4117, −0.3841) (−0.3084, −0.2622) (−0.4078, −0.3756)
700 (−0.4164, −0.3799) (−0.4611, −0.4339) (−0.3875, −0.3591) (−0.4630, −0.4344)
800 (−0.4417, −0.4144) (−0.4962, −0.4755) (−0.4413, −0.4067) (−0.5070, −0.4767)
900 (−0.4970, −0.4754) (−0.5504, −0.5230) (−0.4965, −0.4661) (−0.5469, −0.5286)
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Table 9

Brain Connectome SBM

n 95% CI for
med(ΔKM

A )
95% CI for
med(ΔKM

L )
95% CI for
med(ΔKS

A )
95% CI for
med(ΔKS

L )
500 (−0.5238, −0.5044) (−0.5679, −0.5493) (−0.5135, −0.4820) (−0.5643, −0.5336)
600 (−0.5514, −0.5200) (−0.5909, −0.5672) (−0.5322, −0.5055) (−0.5811, −0.5472)
700 (−0.5676, −0.5432) (−0.6148, −0.5929) (−0.5453, −0.5199) (−0.5953, −0.5665)
800 (−0.5430, −0.5032) (−0.5907, −0.5580) (−0.5229, −0.4929) (−0.5722, −0.5447)
900 (−0.5442, −0.4975) (−0.5824, −0.5468) (−0.5303, −0.4956) (−0.5744, −0.5439)
1000 (−0.5119, −0.4769) (−0.5498, −0.5247) (−0.5029, −0.4747) (−0.5461, −0.5212)
1100 (−0.4952, −0.4709) (−0.5363, −0.5170) (−0.4938, −0.4682) (−0.5362, −0.5093)
1200 (−0.4701, −0.4462) (−0.5155, −0.4904) (−0.4719, −0.4489) (−0.5123, −0.4914)

First consider the rank-2 g-block SBM with proportion vector

π = (.10, .27, .12, .22, .10, .19)

and canonical latent position matrix

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.85 0.47
0.72 0.66
0.12 0.26
0.32 0.12
0.49 0.08
0.21 0.64

⎤
⎥⎥⎥⎥⎥⎥⎦

which corresponds to the block probability matrix

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.9434 0.9222 0.2242 0.3284 0.4541 0.4793
0.9222 0.9540 0.2580 0.3096 0.4056 0.5736
0.2242 0.2580 0.0820 0.0696 0.0796 0.1916
0.3284 0.3096 0.0696 0.1168 0.1664 0.1440
0.4541 0.4056 0.0796 0.1664 0.2465 0.1541
0.4793 0.5736 0.1916 0.1440 0.1541 0.4537

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The ASE and LSE of one particular instance (n = 600) are presented in Figures
15–16. We present the results in Figure 17; ES ◦ASE maintains its dominance
over EM ◦ASE here, but ES ◦LSE appears to falter against EM ◦LSE as n
increases.

Now consider another rank-2 g-block SBM with proportion vector

π = (0.09, 0.08, 0.23, 0.20, 0.28, 0.12)

and canonical latent position matrix

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.90 0.29
0.69 0.47
0.45 0.06
0.48 0.11
0.16 0.48
0.04 0.65

⎤
⎥⎥⎥⎥⎥⎥⎦
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Fig 15. Example two-dimensional ASE of a random graph generated from the first rank-
deficient SBM in Appendix III. The smaller points have been colored according to block mem-
bership of the corresponding nodes in the original graph. The larger orange points encircled
with a black outline denote the true latent positions, i.e., the rows of X.

which corresponds to the block probability matrix

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.8941 0.7573 0.4224 0.4639 0.2832 0.2245
0.7573 0.6970 0.3387 0.3829 0.3360 0.3331
0.4224 0.3387 0.2061 0.2226 0.1008 0.0570
0.4639 0.3829 0.2226 0.2425 0.1296 0.0907
0.2832 0.3360 0.1008 0.1296 0.2560 0.3184
0.2245 0.3331 0.0570 0.0907 0.3184 0.4241

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The ASE and LSE of one particular instance (n = 600) are presented in Figures
18–19. We present the results in Figure 20, which are similar to those obtained
in the previous setting.



Spectral graph clustering via ES 3169

Fig 16. Example two-dimensional LSE of a random graph generated from the first rank-
deficient SBM in Appendix III. The smaller points have been colored according to block mem-
bership of the corresponding nodes in the original graph. The larger orange points encircled
with a black outline denote the scaled latent positions, i.e., the centers of the limiting C-GMM.
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Fig 17. Simulation results for the first rank-deficient SBM in Appendix III.



Spectral graph clustering via ES 3171

Fig 18. Example two-dimensional ASE of a random graph generated from the second rank-
deficient SBM in Appendix III. The smaller points have been colored according to block mem-
bership of the corresponding nodes in the original graph. The larger orange points encircled
with a black outline denote the true latent positions, i.e., the rows of X.
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Fig 19. Example two-dimensional LSE of a random graph generated from the second rank-
deficient SBM in Appendix III. The smaller points have been colored according to block mem-
bership of the corresponding nodes in the original graph. The larger orange points encircled
with a black outline denote the scaled latent positions, i.e., the centers of the limiting C-GMM.
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Fig 20. Simulation results for the second rank-deficient SBM in Appendix III.
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