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Laboratoire Modal’X, Université Paris Nanterre, Nanterre, France
e-mail: nmarie@parisnanterre.fr

and
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1. Introduction

Low-rank matrix completion methods were studied in depth in the past 10
years. This was partly motivated by the popularity of the Netflix prize [9] in the
machine learning community. The first theoretical papers on the topic covered
matrix recovery from a few entries observed exactly [13, 14, 26]. The same
problem was studied with noisy observations in [11, 12, 27, 23]. The minimax
rate of estimation was derived by [30]. Since then, many estimators and many
variants of this problem were studied in the statistical literature, see [42, 28, 32,
29, 38, 46, 18, 16, 4, 36, 37] for instance.

High-dimensional time series often have strong correlation, and it is thus nat-
ural to assume that the matrix that contains such a series is low-rank (exactly, or
approximately). Many econometrics models are designed to generate series with
such a structure. For example, the factor model studied in [31, 33, 34, 22, 17, 24]
can be interpreted as a high-dimensional autoregressive (AR) process with a
low-rank transition matrix. This model (and variants) was used and studied in
signal processing [8] and statistics [42, 1]. Other papers focused on a simpler
model where the series is represented by a deterministic low-rank trend matrix
plus some possibly correlated noise. This model was used by [51] to perform
prediction, and studied in [3].

It is thus tempting to use low-rank matrix completion algorithms to recover
partially observed high-dimensional time series, and this was indeed done in
many applications: [50, 48, 20] used low-rank matrix completion to reconstruct
data from multiple sensors. Similar techniques were used by [40, 39] to recover
the electricity consumption of many households from partial observations, by [5]
on panel data in economics, and by [43, 7] for policy evaluation. Some algorithms
were proposed to take into account the temporal updates of the observations
(see [45]). However, it is important to note that 1) all the aforementioned the-
ory on matrix completion, for example [30], was only developed for independent
observations, and 2) most papers using these techniques on time series did not
provide any theoretical justification that it can be used on dependent obser-
vations. One must however mention that [21] obtained theoretical results for
univariate time series prediction by embedding the time series into a Hankel
matrix and using low-rank matrix completion.
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In this paper, we study low-rank matrix completion for partially observed
high-dimensional time series that indeed exhibit a temporal dependence. We
provide a risk bound for the reconstruction of a rank-k matrix, and a model se-
lection procedure for the case where the rank k is unknown. Under the assump-
tion that the univariate series are φ-mixing, we prove that we can reconstruct
the matrix with a similar error than in the i.i.d case in [30]. If, moreover, the
time series has some additional properties, as the ones studied in [3] (periodic-
ity or smoothness), the error can even be smaller than in the i.i.d case. This is
confirmed by a short simulation study.

From a technical point of view, we start by a reduction of the matrix comple-
tion problem to a structured regression problem as in [38]. But on the contrary
to [38], we have here dependent observations. We thus follow the technique of [2]
to obtain risk bounds for dependent observations. In [2], it is shown that one
can obtain risk bounds for dependent observations that are similar to the risk
bounds for independent observations under a φ-mixing assumption, using Sam-
son’s version of Bernstein inequality [44]. For model selection, we follow the
guidelines of [41]: we introduce a penalty proportional to the rank. Using the
previous risk bounds, we show that this leads to an optimal rank selection.

The paper is organized as follows. In Section 2, we introduce our model,
and the notations used throughout the paper. In Section 3, we provide the
risk analysis when the rank k is known. We then describe our rank selection
procedure in Section 4 and show that it satisfies a sharp oracle inequality. The
numerical experiments are in Section 5. All the proofs are gathered in Section 6.

Notations and basic definitions. Throughout the paper, Md,T (R) is
equipped with the Fröbénius scalar product

〈., .〉F : (A,B) ∈ Md,T (R)
2 �−→ trace(A∗B) =

∑
j,t

Aj,tBj,t

or with the spectral norm

‖.‖op : A ∈ Md,T (R) �−→ sup
‖x‖=1

‖Ax‖ = σ1(A).

Let us finally remind the definition of the φ-mixing condition on stochastic
processes. Given two σ-algebras A and B, we define the φ-mixing coefficient
between A and B by

φ(A,B) := sup {|P(B)− P(B|A)| ; (A,B) ∈ A× B, P(A) 	= 0} .

When A and B are independent, φ(A,B) = 0, more generally, this coefficient
measure how dependent A and B are. Given a process (Zt)t∈N, we define its
φ-mixing coefficients by

φZ(i) := sup {φ(A,B) ; t ∈ Z, A ∈ σ(Xh, h � t), B ∈ σ(X�, � � t+ i)} .

Some properties and examples of applications of φ-mixing coefficients can be
found in [19].
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2. Setting of the problem and notations

Consider d, T ∈ N
∗ and a d × T random matrix M. Assume that the rows

M1,., . . . ,Md,. are time series and that Y1, . . . , Yn are n ∈ {1, . . . , d× T} noisy
entries of the matrix M:

Yi = trace(X∗
iM) + ξi ; i ∈ {1, . . . , n}, (1)

where X1, . . . ,Xn are i.i.d random matrices distributed on

X := {eRd(j)eRT (t)∗ ; 1 � j � d and 1 � t � T},

and ξ1, . . . , ξn are i.i.d. centered random variables, with standard deviation σξ >
0, such that Xi and ξi are independent for every i ∈ {1, . . . , n}. Note that, as
X1, . . . ,Xn are independent, we do not exclude multiple observations of the
same entry. That is, our model of matrix completion is the one studied in [30,
42, 38] rather than the model in [11, 12] where this is not possible.

Let us now describe the time series structure of each M1,., . . . ,Md,.. We as-
sume that each series Mj,. can be decomposed as a deterministic component
Θ0

j,. plus some random noise εj,.. The noise can exhibit some temporal depen-
dence: εj,t will not be independent from εj,t′ in general. Moreover, as discussed
in [3], Θ0

j,. can have some more structure: Θ0
j,. = T0

j,.Λ for some known matrix
Λ. Examples of such structures (smoothness or periodicity) are discussed below.
This gives {

M = Θ0 + ε
Θ0 = T0Λ

, (2)

where ε is a d×T random matrix having i.i.d. and centered rows, Λ ∈ Mτ,T (C)
(τ � T ) is known and T0 is an unknown element of Md,τ (R) such that

sup
j,t

|T0
j,t| �

m0

mΛ(τ)
with m0 > 0

and 1 ∨ sup
T∈Md,τ (R)

{
supj,t |(TΛ)j,t|
supj,� |Tj,�|

}
� mΛ(τ) < ∞. (3)

Note that this leads to

sup
j,t

|Θ0
j,t| � sup

j,�
|T0

j,�| ·
supj,t |(T0Λ)j,t|
supj,� |T0

j,�|
� m0

and

mΛ := sup
j,t

|Λj,t| < ∞.

We now make the additional assumption that the deterministic component is
low-rank, reflecting the strong correlation between the different series. Precisely,
we assume thatT0 is of rank k ∈ {1, . . . , d∧T}:T0 = U0V0 withU0 ∈ Md,k(R)
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and V0 ∈ Mk,τ (R). The rows of the matrix V0 may be understood as latent
factors. By Equations (1) and (2), for any i ∈ {1, . . . , n},

Yi = trace(X∗
iΘ

0) + ξi (4)

with ξi := trace(X∗
i ε) + ξi. It is reasonable to assume that Xi and ξi, which

are random terms related to the observation instrument, are independent to ε,
which is the stochastic component of the observed process. Then, since ξi is a
centered random variable and ε is a centered random matrix,

E(ξi) = E(〈Xi, ε〉F ) + E(ξi) =

d∑
j=1

T∑
t=1

E((Xi)j,t)E(εj,t) = 0.

This legitimates to consider the following least-square estimator of the matrix
Θ0: {

Θ̂k,τ = T̂k,τΛ

T̂k,τ ∈ arg min
T∈Sk,τ

rn(TΛ) , (5)

where Sk,τ is a subset of

Md,k,τ :=

{
UV ; (U,V) ∈ Md,k(R)×Mk,τ (R) s.t.

sup
j,�

|Uj,�| �
√

m0

kmΛ(τ)
and sup

�,t
|V�,t| �

√
m0

kmΛ(τ)

}
,

and

rn(A) :=
1

n

n∑
i=1

(Yi − 〈Xi,A〉F )2 ; ∀A ∈ Md,T (R).

Remark 2.1. In many cases, we will simply take Sk,τ = Md,k,τ . However, in
many applications, it is natural to impose stronger constraints on the estimators.
For example, in nonnegative matrix factorization, we would have

Sk,τ = {UV ; (U,V) ∈ Md,k,τ s.t. ∀j, �, t, Uj,� � 0 and V�,t � 0}

(see e.g. [40]). So for now, we only assume that Sk,τ ⊂ Md,k,τ . Later, we will
specify some sets Sk,τ .

Let us conclude this section with two examples of matrices Λ corresponding
to usual time series structures. On the one hand, if the trend of the multivalued
time series M is τ -periodic, with T ∈ τN∗, one can take Λ = (Iτ | · · · |Iτ ), and
then mΛ = 1 and mΛ(τ) := 1 works. So, in this case, note that the usual
matrix completion model of [30] is part of our framework by taking T = τ .
On the other hand, assume that for any j ∈ {1, . . . , d}, the trend of Mj,. is
a sample on {0, 1/T, 2/T, . . . , 1} of a function fj : [0, 1] → R belonging to a
Hilbert space H. In this case, if (en)n∈Z is a Hilbert basis of H, one can take
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Λ = (en(t/T ))|n|�N,1�t�T . For instance, if fj ∈ L
2([0, 1];R), a natural choice is

the Fourier basis en(t) = e2iπnt/T , and then mΛ = 1 and

supj,t |(TΛ)j,t|
supj,� |Tj,�|

� 1

supj,� |Tj,�|
· sup

j,t

τ∑
�=1

|Tj,�e
2iπnt/T | � τ =: mΛ(τ).

Here, the usual matrix completion model of [30] is not part of our framework
because T is possibly huge and to take τ = T implies that the coefficients of the
matrix T0 are all unrealistically small by Condition (3). However, wathever the
time series structure taken into account via Λ, our model is designed for small
values of τ . Else, the model of [30] is appropriate. So, when Λ is the previous
Fourier matrix , and in general when mΛ(τ) is a non constant increasing function
of τ , we assume that τ ∈ �1, τ0� with τ0 � T .

3. Risk bound on T̂k,τ

3.1. Upper bound

First of all, since X1, . . . ,Xn are i.i.d X -valued random matrices, there exists a
probability measure Π on X such that

PXi = Π ; ∀i ∈ {1, . . . , n}.

In addition to the two norms on Md,T (R) introduced above, let us consider the
scalar product 〈., .〉F,Π defined on Md,T (R) by

〈A,B〉F,Π :=

∫
Md,T (R)

〈X,A〉F 〈X,B〉FΠ(dX) ; ∀A,B ∈ Md,T (R).

Remarks:

1. For any deterministic d× T matrices A and B,

〈A,B〉F,Π = E(〈A,B〉n)

where 〈., .〉n is the empirical scalar product on Md,T (R) defined by

〈A,B〉n :=
1

n

n∑
i=1

〈Xi,A〉F 〈Xi,B〉F .

However, note that this relationship between 〈., .〉F,Π and 〈., .〉n doesn’t
hold anymore when A and B are random matrices.

2. If the sampling distribution Π is uniform, then ‖.‖2F,Π = (dT )−1‖.‖2F .
Notation. For every i ∈ {1, . . . , n}, let χi be the couple of coordinates of
the nonzero element of Xi, which is a E-valued random variable with E =
{1, . . . , d} × {1, . . . , T}.

In the sequel, ε, ξ1, . . . , ξn and X1, . . . ,Xn fulfill the following additional
conditions.
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Assumption 3.1. The rows of ε are independent and identically distributed.
There is a process (εt)t∈Z such that each εj,. has the same distribution than
(ε1, . . . , εT ), and such that

Φε := 1 +

n∑
i=1

φε(i)
1/2 < ∞.

Assumption 3.2. There exists a deterministic constant mε > 0 such that

sup
j,t

|εj,t| � mε.

Moreover, there exist two deterministic constants cξ, vξ > 0 such that

sup
i∈{1,...,n}

E(ξ2i ) � vξ

and, for every q � 3,

sup
i∈{1,...,n}

E(|ξi|q) �
vξc

q−2
ξ q!

2
.

This assumption means that the εj,t’s are bounded, and that the ξi’s are
sub-exponential random variables. Sub-exponential variables include bounded
and Gaussian variables as special cases. Note that this is the assumption made
on the noise for the matrix completion in the i.i.d. framework in the papers
mentioned above [38, 30]. The boundedness of the εj,t’s can be seen as quite
restrictive. However, we are not aware of any way to avoid this assumption in
this setting. Indeed, it allows to apply Samson’s concentration inequality for
φ-mixing processes (see Samson [44]). In [2], the authors prove sharp sparsity
inequalities under a similar assumption, using Samson’s inequality. They also
show that the other concentration inequalities known for time series lead to slow
rates of convergence.

Assumption 3.3. There is a constant cΠ > 0 such that

Π({eRd(j)eRT (t)∗}) � cΠ

dT
; ∀(j, t) ∈ E .

Note that when the sampling distribution Π is uniform, Assumption 3.3 is
trivially satisfied with cΠ = 1.

Theorem 3.4. Let α ∈ (0, 1). Under Assumptions 3.1, 3.2 and 3.3, if n �
max(d, τ), then

‖Θ̂k,τ−Θ0‖2F,Π � 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π+c3.4

[
k(d+ τ)

log(n)

n
+

1

n
log

(
4

α

)]
with probability larger than 1 − α, where c3.4 is a constant depending only on
m0, vξ, cξ, mε, mΛ, Φε and cΠ.



3008 P. Alquier et al.

Actually, from the proof of the theorem, we know c3.4 explicitly. Indeed,

c3.4 = 72m0mΛcξ + 5c6.4,1 + 9m0c6.4,2

where c6.4,1 and c6.4,2 are constants (explicitly given in Theorem 6.4 in Sec-
tion 6) depending themselves only on m0, vξ, cξ, mε, mΛ, Φε and cΠ.

Remarks:

1. Note that another classic way to formulate the risk bound in Theorem 3.4
is that for every s > 0, with probability larger than 1− e−s,

‖Θ̂k,τ −Θ0‖2F,Π � 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π+ c3.4

[
k(d+ τ)

log(n)

n
+

s

n

]
.

2. The φ-mixing assumption (Assumption 3.1) is known to be restrictive, we
refer the reader to [19] where it is compared to other mixing conditions.
Some examples are provided in Examples 7, 8 and 9 in [2], including
stationary AR processes with a noise that has a density with respect to the
Lebesgue measure on a compact interval. Interestingly, [2] also discusses
weaker notions of dependence. Under these conditions, we could here apply
the inequalities used in [2], but it is important to note that this would
prevent us from taking λ of the order of n in the proof of Proposition 6.1.
In other words, this would deteriorate the rates of convergence. A complete
study of all the possible dependence conditions on ε goes beyond the scope
of this paper.

3.2. Lower bound

In the case where T = τ and Λ = IT , the model in [30] is included in our model,
and corresponds to the case where the temporally dependent noise ε is null:
ε = 0. This means that the lower bound provided by Theorem 5 in [30] holds
in our setting. That is, when the ξi’s are N (0, 1) and the Xi’s are uniform (so
cΠ = 1), there are absolute constants cinf , β > 0 such that for any k � n

d∨T ,

inf
Â

sup
Θ0∈Md,k,T

P

(
‖Â−Θ0‖2F,Π � cinf

k(d+ T )

n

)
� 1− β.

In other words, the bound in Theorem 3.4 is tight, maybe up to the log(n) term
(there is also a log term in the upper bounds of [30]). We now extend this result
to the case τ � T , in the special case where the deterministic component of the
series is τ -periodic: Λ = (Iτ | . . . |Iτ ).
Theorem 3.5. Assume the ξi’s are N (0, 1), the Xi’s are uniform (so cΠ =
1) and the temporally dependent noise ε = 0. There are absolute constants
cinf , β > 0 such that for any τ ∈ {1, . . . , T}, in the case Λ = (Iτ | . . . |Iτ ), for
any k � (256m2

0n/(d ∨ τ))1/3,

inf
Â

sup
Θ0∈Md,k,τ

P

(
‖Â−Θ0Λ‖2F,Π � cinf

k(d+ τ)

n

)
� 1− β.
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For τ = T , we recover Theorem 5 in [30], but our result also guarantees that
the bound in Theorem 3.4 is tight (up to log terms) even when τ < T .

4. Model selection

The purpose of this section is to provide a selection method of the parameter k.
First, for the sake of readability, Sk,τ and T̂k,τ are respectively denoted by Sk

and T̂k in the sequel. The adaptive estimator studied here is Θ̂ := T̂Λ, where
T̂ := T̂k̂,

k̂ ∈ argmin
k∈K

{rn(T̂kΛ) + pen(k)} with K = {1, . . . , k∗} ⊂ N
∗,

and

pen(k) := 16cpen
log(n)

n
k(d+ τ) with cpen = 2

(
1

c6.1
∧ λ∗

)−1

.

Note that the value of the constant cpen could be deduced from the proofs. It
would however depend on quantities that are unknown in practice, such as cΠ

or Φε. Moreover, the value of cpen provided by the proofs would probably be
too large for practical purposes. In practice, we recommend to use the slope
heuristics to estimate this constant. The slope heuristic is defined as follows: for
each C > 0, let us define

k(C) ∈ argmin
k∈K

{rn(T̂kΛ) + C · k}.

Then, let us define C̃ as the location of the largest jump of the function

C �−→ rn(T̂k(C)Λ)

and choose the rank k̃ = k(2C). This popular procedure leads to good practical
results in most situations. Its theoretical properties are available only in limited
situations (see [6]), though, so we will focus our theoretical result to k̂.

Theorem 4.1. Under Assumptions 3.1, 3.2 and 3.3, if n � max(d, τ), then

‖Θ̂−Θ0‖2F,Π � 4min
k∈K

{
3 min
T∈Sk

‖(T−T0)Λ‖2F,Π + c4.1,1k(d+ τ)
log(n)

n

}
+
c4.1,1

n
log

(
4k∗

α

)
+

c4.1,2

n

with probability larger than 1− α, where

c4.1,1 = 4c3.4 + 16cpen + 72m0cξ and c4.1,2 = 9c6.4,2m0.
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5. Numerical experiments

This section describes an experimental study of the estimator of the matrix T0

introduced at Section 2. In particular, we compare on simulated periodic data
the completion procedure using the periodicity information, to the standard
procedure, and we observe a clear improvement. We also illustrate our results
on real data from Paris sharing bike system.

In the case where no particular temporal structure is used, that is, Λ = IT ,
standard packages such as softImpute [25] could be used. However, this is not
necessarily the case for a general Λ, thus we implemented a standard alternate
least square (ALS) procedure. That is, we iterate U := argminU rn(UVΛ) and
V := argminV rn(UVΛ) until convergence. Each step is a linear regression and
has an explicit solution. Despite its extreme simplicity, this type of alternate
optimization is known to lead to very good results in practice [35], and such
a method is actually used by softImpute [25]. The code of all the experiments
can be found on the third author webpage https://amelierosier8.wixsite.com
/website

5.1. Experiments on simulated datas

The experiments in this subsection are done on datas simulated the following
way:

1. We generate a matrix T0 = U0V0 with U0 ∈ Md,k(R) and V0 ∈
Mk,τ (R). Each entries of U0 and V0 are generated independently by
simulating i.i.d. N (0, 1) random variables.

2. We multiply T0 by a known matrix Λ ∈ Mτ,T (R). This matrix depends
on the time series structure assumed on M. Here, we consider the periodic
case: T = pτ , p ∈ N

∗ and Λ = (Iτ | . . . |Iτ ).
3. The matrixM is then obtained by adding a matrix ε such that ε1,., . . . , εd,.

are generated independently by simulating i.i.d. AR(1) processes with
compactly supported error in order to meet the φ-mixing condition. We
multiply ε by the coefficient σε which value will vary according to the
experiments. The goal is to evaluate the impact of adding more noise in
the estimation.
Only 30% of the entries of M, taken randomly, are observed. These entries
are then corrupted by i.i.d. observation errors ξ1, . . . , ξn � N (0, 0.012).
To meet Assumption 3.2, we also consider uniform errors ξ1, . . . , ξn �
U([−a, a]), where a =

√
3/100 ≈ 0.017 to keep the same variance than

previously. The first experiments will show that the estimation remains
quite good even if the ξi’s are not bounded.

Given the observed entries, our goal is to complete the missing values of the
matrix and check if they correspond to the simulated data in two different cases:

1. Our first model doesn’t take into account the time series structure in
the matrix M. Thus, we simply apply our fonction als to the dataframe

https://amelierosier8.wixsite.com/website
https://amelierosier8.wixsite.com/website
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Table 1

MSE for both models, k = 2.

MSE ξi � N (0, 0.012) ξi � U([−0.017, 0.017])
Model w/o time series struct. 0.00012 0.00014
Model with time series struct. 0.00009 0.00010

Table 2

MSE for both models, k = 5.

MSE ξi � N (0, 0.012) ξi � U([−0.017, 0.017])
Model w/o time series struct. 0.00018 0.00022
Model with time series struct. 0.00012 0.00013

Table 3

MSE for both models, k = 8.

MSE ξi � N (0, 0.012) ξi � U([−0.017, 0.017])
Model w/o time series struct. 0.00026 0.00045
Model with time series struct. 0.00013 0.00017

containing the values of the noisy entries in addition to their position in
the matrix M (number of the line j and number of the column t with
1 � j � d, 1 � t � T ). The output of the function gives directly an
estimator of the matrix Θ0.

2. Our second model takes into account the time series structure in M and
more precisely the periodicity of the time series datas. In order to have
an estimator of the matrix Θ0, some transformation are required on the
data: the fonction als is now applied to the dataframe in which all the
observed entries at the position (j, t) (1 � j � d, 1 � t � T ) are now
moved to the position (j, t[mod]τ). The output of this function needs to
be remultiplied by Λ to have an estimator of Θ0.

We will evaluate the MSE of the estimator with respect to several parameters
and show that there is a gain to take into account the time series structure in
the model. As expected, the more Θ0 is perturbed, either with ε or ξ1, . . . , ξn,
the more difficult it is to reconstruct the matrix. In the same way, increasing
the value of the rank k will lead to a worse estimation. Finally, we study the
effect of replacing the uniform error in each AR(1) by a Gaussian one.

The first experiments are done with d = 1000, T = 100 and τ = 25 to be in
concordance with the experiments on real data (see subsection 5.3). Here are the
MSE obtained for both models, 3 values of the rank k and for two kinds of ob-
servation errors ξ1, . . . , ξn: Gaussian N (0, 0.012) v.s. uniform U([−0.017, 0.017]).
The errors in the AR(1) processes generating the rows of ε remain uniform
U([−1, 1]).
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Fig 1. Models (time series (dotted line) v.s. classic (solid line)) MSEs with respect to the
rank k.

Thus, both of the rank k and the nature of the error considered for the ξi’s
seem to play a key role on the reduction of the MSE. Regarding the rank k (d, T
and τ being fixed) being fixed), our numerical results are consistent with respect
to the theoretical rate of convergence of order O(k(d+ τ) log(n)/n) obtained at
Theorem 3.4 when we consider the time series structure of the data (see Tables
1, 2 and 3). Indeed, for both models, the MSE is increasing when the value of the
rank k is higher but this increase is always more significant in the model without
time series structure, which is also consistent with the rate of convergence of
order O(k(d+T ) log(n)/n) obtained in this case. Note that when we look at one
model at a time, for each tested values of k, whatever the distribution of the
errors ξ1, . . . , ξn (Gaussian or uniform), the MSE remains of same order with a
slight improvement when we considered Gaussian errors. This justifies to take
ξ1, . . . , ξn � N (0, 0.012) in the following experiments.

This study can be summarized in the following experiment which shows the
evolution of the MSE with respect to the rank k (k = 1, . . . , 10) for both models.
Once again, we take d = 1000, T = 100, τ = 25 but the ξi’s remain i.i.d.
N (0, 0.012) random variables, and ε1,., . . . , εd,. are i.i.d. AR(1) processes with
Gaussian errors.

As expected (see Figure 1), the MSE is much better with the model taking
into account the time series structure. The MSE in both cases degrades when
the value of the rank is increasing, the maximum being reached for k = 10 with
the value 0.0173 for the time series model compared to 0.0206 in the classic
case, which still remains very low.

As we said, the estimation seems to be more precise with Gaussian errors
in ε, and the more Θ0 is perturbed via ε or ξ1, . . . , ξn, the more the comple-
tion process is complicated and the MSE degrades. So, we now evaluate the
consequence on the MSE of changing the value of σε. For both models (with
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Fig 2. Models (time series (dotted line) v.s. classic (solid line)) MSEs with respect to σε,
Gaussian errors.

Table 4

Min. and max. values reached by the MSE with Gaussian errors in ε.

Min. MSE Max. MSE
Model w/o time series struct. 0.0023 0.3040
Model with time series struct. 0.0021 0.2241

or without taking into account the time series structure), the following figure
shows the evolution of the MSE with respect to σε when the errors in ε are
N (0, 1/3) random variables and all the other parameters remain the same than
previously, we are still considering 30% of observed entries.

Once again, as expected (see Figure 2), the MSE with time series model is
smaller than the one with the classic model for each values of σε. The fact that
the MSE increases with respect to σε with both models illustrates that more
noise always complicates the completion process. In our experiments, the values
of σε range from 0.02 to 2. We can notice that, the more we add noise with σε,
the more significant the gap between the MSE of both models is. With σε equal
to 2, the MSE reaches the value 0.2241 for the time series model and 0.3040
for the classic one. Our method has increasing difficulty in reconstructing the
matrix when we add too much noise to the model. See also Table 4.

Let us do the same experiment but with uniform U([−1, 1]) errors in the
AR(1) processes generating the rows of ε.

The curves shape on Figure 3 is pretty much the same as in the previous
graph: the MSE for the model taking into account the time series structure
is still smaller than for the classic model and this difference between the two
models is even greater when we increase the value of σε. However, this time,
the MSE for both models reaches higher values, leading to a huge misestimation
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Fig 3. Models (time series (dotted line) v.s. classic (solid line)) MSEs with respect to σε,
uniform errors.

Table 5

Min. and max. values reached by the MSE with uniform errors in ε.

Min. MSE Max. MSE
Model w/o time series struct. 0.0082 1.4088
Model with time series struct. 0.0076 0.9027

when σε = 2 (see Table 5).

Finally, as mentioned, the previous numerical experiments were done by as-
suming that k is known, which is mostly uncommon in practice. So, our purpose
in the last part of this section is to implement the model selection method in-
troduced at Section 4. Let us recall the criterion to minimize:

{
crit(k) = rn(T̂kΛ) + pen(k)
pen(k) = ccalk(d+ τ) log(n)/n

; k ∈ {1, . . . , 20}.

In the sequel, ξ1, . . . , ξn � N (0, 0.5), ε1,., . . . , εd,. are i.i.d. AR(1) processes with
N (0, 1/3) errors, and σε = 0.2. Percentage of observed entries is still 30%. The
penalty term in crit(.) depends on the constant ccal > 0 which is calibrated here
by using the slope heuristic presented at Section 4.

On 20 independent experiments, Table 6 gives the mean MSE obtained for
the estimator computed with the true rank k = 5 and the associated adapta-
tive estimator computed with k̂ selected by minimizing the criterion studied in
Section 4. Table 7 gives the frequence of the different values of k selected. Our
method select the true k 8 times over 20.
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Table 6

Mean MSE over 20 simulations for T̂kΛ and T̂
k̂
Λ.

Mean MSE for T̂kΛ 0.10712

Mean MSE for T̂
k̂
Λ 0.17601

Table 7

Frequence of k-values selected.

k selected 4 5 6 7 8 9
Frequence 0.05 0.4 0.1 0.15 0.2 0.1

5.2. Experiments on real datas

Modern transportation data are often high-dimensional and have strong pat-
terns including periodicity. For this reason, matrix factorization methods are
very popular in this field [15, 47]. The data used in this section comes from
the funFEM package (the real time data are available at https://developer.
jcdecaux.com/). We used the Velib data set which contains data from the bike
sharing system of Paris. These data provide the occupancy (number of available
bikes/number of bike docks) of 1189 bike stations over one week. The data were
collected every hour during the following period: Sunday 1st Sept. - Sunday 7th
Sept., 2014. We removed the time points collected during the week-end (50 time
points in total) insofar as the week-end occupancy of the bike stations differs
from the week. Loading profiles of 6 different stations (week-end excluded) are
represented on Figure 4.

We clearly notice the daily periodic behaviour of our time series. Thus, the
experiments of this section are done with the real time data in the matrix M
of dimensions d = 1189, τ = 25 (which corresponds to one day) and T = 125
(four days, from Monday to Thursday). Once again, we evaluate the MSE of
the estimator with and without taking into account the time series structure,
that is the periodicity in this case. Different percentages of the entries observed
are tested. As for the simulated data, for the model without considering the
temporal structure of our series, we apply directly our function als on the
dataframe containing the observed entries with their position in the matrix,
without any additional transformation on the data. The output gives directly
an estimator of M. As regards the model considering the periodic behaviour of
the Velib time series in M, the ALS optimization procedure is applied on the
dataframe which has received the same transformation than the one explained at
point (2) in the previous section. Once again, the output needs to be multiplied
by Λ to have an estimator of M at the end. The MSEs obtained for both
models are gathered in Table 8. We study how the MSEs vary according to the
percentage of observed entries.

Of course, the real data is not exactly periodic (as can bee seen in some
of the series in Figure 4. This means that the bias term of in Theorem 3.4,

https://developer.jcdecaux.com/
https://developer.jcdecaux.com/
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Fig 4. Occupancy of six Velib stations over one week (week-end excluded).

Table 8

MSE according to the number of observed entries (%).

15% 30%
Model w/o time series struct. 0.0609 0.0315
Model with time series struct. 0.0436 0.0381

is larger for the method imposing periodicity than for the standard method:
minT∈Sk,τ

‖(T−T0)Λ‖F,Π ≥ minT∈Sk,T
‖T−T0‖F,Π. On the other hand, the

variance term of the method using periodicity is much smaller: k(d + τ)/n ≤
k(d + T )/n. Thus, it is expected that when the sample size n is small, using
periodicity can improve on the standard method, but that this is not the case for
larger values of n. This is perfectly illustrated by our experiments: Table 8 show
that when we observe 15% of the original data, exploiting periodicity improves
on the reconstruction of the data by the standard method by more than 25%.
On the other hand, when we the sample size doubles, the standard method
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already performs slightly better.

6. Proofs

This section is organized as follows. We first state an exponential inequality
that will serve as a basis for all the proofs. From this inequality, we prove
Theorem 6.4, a prototype of Theorem 3.4 that holds when the set Sk,τ is finite
or infinite but compact by using ε-nets (ε > 0). In the proof of Theorem 3.4,
we provide an explicit risk-bound by using the ε-net Sε

k,τ of Sk,τ constructed in
Candès and Plan [12], Lemma 3.1.

6.1. Exponential inequality

This sections deals with the proof of the following exponential inequality, the
cornerstone of the paper, which is derived from the usual Bernstein inequality
and its extension to φ-mixing processes due to Samson [44].

Proposition 6.1. Let T ∈ Sk,τ . Under Assumptions 3.1, 3.2 and 3.3,

E

[
exp

(
λ

4

((
1 + c6.1

λ

n

)
(R(T0Λ)−R(TΛ)) + rn(TΛ)− rn(T

0Λ)

))]
� 1

(6)
and

E

[
exp

(
λ

4

((
1− c6.1

λ

n

)
(R(TΛ)−R(T0Λ)) + rn(T

0Λ)− rn(TΛ)

))]
� 1

(7)
for every T ∈ Sk,τ and λ ∈ (0, nλ∗), where

R(A) := E(|Y1 − 〈X1,A〉F |2) ; ∀A ∈ Md,T (R),

c6.1 = 4max{4m2
0, 4vξ, 4m

2
ε, 2m

2
εΦ

2
εcΠ} and λ∗ = (16m0 max{m0,mε, cξ})−1.

Proof of Proposition 6.1. The proof relies on Bernstein’s inequality as stated in
[10], that we remind in the following lemma.

Lemma 6.2. Let T1, . . . , Tn be some independent and real-valued random vari-
ables. Assume that there are v > 0 and c > 0 such that

n∑
i=1

E(T 2
i ) � v

and, for any q � 3,
n∑

i=1

E(T q
i ) �

vcq−2q!

2
.

Then, for every λ ∈ (0, 1/c),

E

[
exp

[
λ

n∑
i=1

(Ti − E(Ti))

]]
� exp

(
vλ2

2(1− cλ)

)
.
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We will also use a variant of this inequality for time series due to Samson,
stated in the proof of Theorem 3 in [44].

Lemma 6.3. Consider m ∈ N∗, M > 0, a stationary sequence of Rm-valued
random variables Z = (Zt)t∈Z, and

ΦZ := 1 +

T∑
t=1

φZ(t)
1/2,

where φZ(t), t ∈ Z, are the φ-mixing coefficients of Z. For every smooth and
convex function f : [0,M ]T → R such that ‖∇f‖ � L a.e, for any λ > 0,

E(exp(λ(f(Z1, . . . , ZT )− E[f(Z1, . . . , ZT )]))) � exp

(
λ2L2Φ2

ZM
2

2

)
.

Let T ∈ Sk,τ be arbitrarily chosen. Consider the deterministic map X : E →
Md,T (R) such that

Xi = X(χi) ; ∀i ∈ {1, . . . , n},

Ξi := (ξi, χi) for any i ∈ {1, . . . , n}, and h : R× E → R the map defined by

h(x, y) :=
1

n
(2x〈X(y), (T0 −T)Λ〉F + 〈X(y), (T0 −T)Λ〉2F ) ; ∀(x, y) ∈ R× E .

Note that

h(Ξi) =
1

n
(2ξi〈Xi, (T

0 −T)Λ〉F + 〈Xi, (T
0 −T)Λ〉2F )

=
1

n
((ξi + 〈Xi, (T

0 −T)Λ〉F )2 − ξ
2

i )

=
1

n
((Yi − 〈Xi,TΛ〉F )2 − (Yi − 〈Xi,T

0Λ〉F )2)

and

n∑
i=1

(h(Ξi)− E(h(Ξi))) = rn(TΛ)− rn(T
0Λ) +R(T0Λ)−R(TΛ).

Now, replacing ξi by its expression in terms of Xi, ξi and ε,

n∑
i=1

(h(Ξi)− E(h(Ξi))) =

n∑
i=1

(
2

n
ξi〈Xi, (T

0 −T)Λ〉F
)

+

n∑
i=1

(
2

n
〈Xi, ε〉F 〈Xi, (T

0 −T)Λ〉F
)

+
n∑

i=1

(
1

n
〈Xi, (T

0 −T)Λ〉2F − E(h(Ξi))

)
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=:

n∑
i=1

Ai +

n∑
i=1

Bi +

n∑
i=1

(Ci − E(h(Ξi))).

In order to conclude, by using Lemmas 6.2 and 6.3, let us provide suitable bounds
for the exponentiel moments of each terms of the previous decomposition:

• Bounds for the Ai’s and the Ci’s. First, note that since X1, ξ1 and ε
are independent,

R(TΛ)−R(T0Λ) = E((Y1 − 〈X1,TΛ〉F )2 − (Y1 − 〈X1,T
0Λ〉F )2)

= 2E(ξ1〈X1, (T
0 −T)Λ〉F ) + E(〈X1, (T

0 −T)Λ〉2F )
= 2〈E(〈X1, (T

0 −T)Λ〉FX1),E(ε)〉F
+2E(ξ1)E(〈X1, (T

0 −T)Λ〉F ) + ‖(T0 −T)Λ‖2F,Π

= ‖(T0 −T)Λ‖2F,Π. (8)

On the one hand,

E(A2
i ) �

4

n2
E(ξ2i )E(〈Xi, (T

0 −T)Λ〉2F ) �
4

n2
vξ(R(T0Λ)−R(TΛ))

thanks to Equality (8). Moreover,

E(|Ai|q) � 2q

nq
E(|ξi|q)E(〈Xi, (T

0 −T)Λ〉qF )

�
(
4cξm0

n

)q−2
q!

2
· 4vξ
n2

(R(T0Λ)−R(TΛ)).

So, we can use Lemma 6.2 with

v =
4

n
vξ(R(T0Λ)−R(TΛ)) and c =

4cξm0

n

to obtain:

E

[
exp

(
λ

n∑
i=1

Ai

)]
� exp

[
2vξ(R(T0Λ)−R(TΛ))λ2

n− 4cξm0λ

]
for any λ ∈ (0, n/(4cξm0)). On the other hand, |Ci| � 4m2

0/n and

E(C2
i ) =

1

n2
E(〈Xi, (T

0 −T)Λ〉4F )

� 4m2
0

n2
‖(T0 −T)Λ‖2F,Π =

4

n2
m2

0(R(T0Λ)−R(TΛ)) (9)

thanks to Equality (8). So, we can use Lemma 6.2 with

v =
4

n
m2

0(R(T0Λ)−R(TΛ)) and c =
4m2

0

n
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to obtain:

E

[
exp

(
λ

n∑
i=1

(Ci − E(h(Ξi)))

)]
� exp

[
2m2

0(R(T0Λ)−R(TΛ))λ2

n− 4m2
0λ

]
for any λ ∈ (0, n/(4m2

0)).
• Bounds for the Bi’s. First, write

n∑
i=1

Bi =

n∑
i=1

(Bi − E(Bi|ε)) +
n∑

i=1

E(Bi|ε) =:

n∑
i=1

Di +

n∑
i=1

Ei,

and note that

E(Bi|ε) =
2

n
E(〈Xi, ε〉F 〈Xi, (T

0 −T)Λ〉F |ε)

=
2

n

∑
j,t

E(1χi=(j,t)[(T
0 −T)Λ]χi)εj,t

=
2

n

∑
j,t

pj,t[(T
0 −T)Λ]j,tεj,t (10)

and

‖(T0 −T)Λ‖2F,Π = E(〈Xi, (T
0 −T)Λ〉2F )

= E([(T0 −T)Λ]2χi
)

=
∑
j,t

pj,t[(T
0 −T)Λ]2j,t, (11)

where
pj,t := P(χ1 = (j, t)) = Π({eRd(j)eRT (t)∗})

for every (j, t) ∈ E . On the one hand, given ε, the Di’s are i.i.d, |Di| �
8mεm0/n and

E(B2
i |ε) =

4

n2
E(〈Xi, ε〉2F 〈Xi, (T

0 −T)Λ〉2F |ε)

� 4

n2
m2

εE(〈Xi, (T
0 −T)Λ〉2F |ε)

=
4

n2
m2

εE(〈Xi, (T
0 −T)Λ〉2F ) =

4

n2
m2

ε(R(T0Λ)−R(TΛ))

thanks to Equality (8). So, conditionnally on ε, we can apply Lemma 6.2
with

v =
4

n
m2

ε(R(T0Λ)−R(TΛ)) and c =
8mεm0

n

to obtain:

E

[
exp

(
λ

n∑
i=1

Di

)∣∣∣∣∣ ε
]
� exp

[
2m2

ε(R(T0Λ)−R(TΛ))λ2

n− 8mεm0λ

]
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for any λ ∈ (0, n/(8mεm0)). Taking the expectation of both sides gives:

E

[
exp

(
λ

n∑
i=1

Di

)]
� exp

[
2m2

ε(R(T0Λ)−R(TΛ))λ2

n− 8mεm0λ

]
.

On the other hand, let us focus on the Ei’s. Thanks to Equality (10) and
since the rows of ε are independent,

E

[
exp

(
λ

n∑
i=1

Ei

)]
= E

⎡⎣exp
⎡⎣2λ∑

j,t

pj,t[(T
0 −T)Λ]j,tεj,t

⎤⎦⎤⎦
=

d∏
j=1

E

[
exp

(
2λ

T∑
t=1

pj,t[(T
0 −T)Λ]j,tεj,t

)]
.

Now, for any j ∈ {1, . . . , d}, let us apply Lemma 6.3 to (εj,1, . . . , εj,T ),
which is a sample of a φ-mixing sequence, and to the function fj : [0,mε]

T →
R defined by

fj(u1, . . . , uT ) := 2

T∑
t=1

pj,t[(T
0 −T)Λ]j,tut ; ∀u ∈ [0,mε]

T .

Since

‖∇fj(u1, . . . , uT )‖2 = 4

T∑
t=1

p2j,t[(T
0 −T)Λ]2j,t ; ∀u ∈ [0,mε]

T ,

by Lemma 6.3:

E

[
exp

(
2λ

T∑
t=1

pj,t[(T
0 −T)Λ]j,tεj,t

)]
= E(exp(λ(fj(εj,1, . . . , εj,T )− E[fj(εj,1, . . . , εj,T )])))

� exp

(
2m2

ελ
2Φ2

ε

T∑
t=1

p2j,t[(T
0 −T)Λ]2j,t

)
.

Thus, for any λ > 0, by Equalities (8) and (11) together with n � dT ,

E

[
exp

(
λ

n∑
i=1

Ei

)]
=

d∏
j=1

E

[
exp

(
2λ

T∑
t=1

pj,t[(T
0 −T)Λ]j,tεj,t

)]

�
d∏

j=1

exp

(
2m2

ελ
2Φ2

ε

T∑
t=1

p2j,t[(T
0 −T)Λ]2j,t

)

� exp

⎡⎣2m2
ελ

2Φ2
εcΠ

dT

∑
j,t

pj,t[(T
0 −T)Λ]2j,t

⎤⎦
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� exp

[
2m2

ελ
2Φ2

εcΠ

n
(R(T0Λ)−R(TΛ))

]
.

Therefore, these bounds together with Jensen’s inequality give:

E exp

(
λ

4
[rn(TΛ)− rn(T

0Λ) +R(T0Λ)−R(TΛ)]

)
= E

[
exp

(
λ

4

n∑
i=1

(h(Ξi)− E(h(Ξi)))

)]

= E

[
exp

(
λ

4

n∑
i=1

Ai +
λ

4

n∑
i=1

(Ci − E(h(Ξi))) +
λ

4

n∑
i=1

Di +
λ

4

n∑
i=1

Ei

)]

� 1

4

[
E

[
exp

(
λ

n∑
i=1

Ai

)]
+ E

[
exp

(
λ

n∑
i=1

(Ci − E(h(Ξi)))

)]

+ E

[
exp

(
λ

n∑
i=1

Di

)]
+ E

[
exp

(
λ

n∑
i=1

Ei

)]]

� exp

[
2vξ

1− 4cξm0λ/n
· λ

2

n
(R(T0Λ)−R(TΛ))

]
+ exp

[
2m2

0

1− 4m2
0λ/n

· λ
2

n
(R(T0Λ)−R(TΛ))

]
+ exp

[
2m2

ε

1− 8mεm0λ/n
· λ

2

n
(R(T0Λ)−R(TΛ))

]
+ exp

[
2m2

εΦ
2
εcΠ

λ2

n
(R(T0Λ)−R(TΛ))

]
� exp

[
cλ

λ2

n
(R(T0Λ)−R(TΛ))

]
with

cλ = max

{
2vξ

1− 4cξm0λ/n
,

2m2
0

1− 4m2
0λ/n

,
2m2

ε

1− 8mεm0λ/n
, 2m2

εΦ
2
εcΠ

}
and

0 < λ < nmin

{
1

4cξm0
,

1

4m2
0

,
1

8mεm0

}
.

In particular, for

λ <
n

16m0 max{m0,mε, cξ}
,

we have

cλ � max{4m2
0, 4vξ, 4m

2
ε, 2m

2
εΦ

2
εcΠ}.

This ends the proof of the first inequality.
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6.2. A preliminary non-explicit risk bound

We now provide a simpler version of Theorem 3.4, that holds in the case where
Sk,τ is finite: (1) in the following theorem. When this is not the case, we provide
a similar bound using a general ε-net, that is (2) in the theorem.

Theorem 6.4. Consider α ∈]0, 1[.
1. Under Assumptions 3.1, 3.2 and 3.3, if |Sk,τ | < ∞, then

‖Θ̂k,τ −Θ0‖2F,Π � 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π +
c6.4,1

n
log

(
2

α
|Sk,τ |

)
with probability larger than 1− α, where c6.4,1 = 32(c−1

6.1 ∧ λ∗)−1.
2. Under Assumptions 3.1, 3.2 and 3.3, for every ε > 0, there exists a finite

subset Sε
k,τ of Sk,τ such that

‖Θ̂k,τ −Θ0‖2F,Π � 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π +
c6.4,1

n
log

(
2

α
|Sε

k,τ |
)

+

[
c6.4,2 + 8mΛcξ log

(
1

α

)]
ε (12)

with probability larger than 1 − α, where c6.4,2 = 4mΛ(v
1/2
ξ + vξ/(2cξ) +

mε + 3m0).

Proof of Theorem 6.4. 1. Assume that |Sk,τ | < ∞. For any x > 0, λ ∈
(0, nλ∗) and S ⊂ Md,τ (R), consider the events

Ω−
x,λ,S(T) :=

{(
1−c6.1

λ

n

)
‖(T−T0)Λ‖2F,Π−(rn(TΛ)− rn(T

0Λ))>4x

}
for T ∈ S and

Ω−
x,λ,S :=

⋃
T∈S

Ω−
x,λ,S(T).

By Markov’s inequality together with Proposition 6.1, Inequality (7),

P(Ω−
x,λ,Sk,τ

) �
∑

T∈Sk,τ

P

{
exp

[
λ

4

(
1− c6.1λ

n

)

×
(
R(TΛ)−R(T0Λ))− (rn(TΛ)− rn(T

0Λ)
)]

> eλx

}
� |Sk,τ |e−λx.

In the same way, with

Ω+
x,λ,S(T) :=

{
−
(
1+c6.1

λ

n

)
‖(T−T0)Λ‖2F,Π+rn(TΛ)−rn(T

0Λ)>4x

}
,
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T ∈ S and
Ω+

x,λ,S :=
⋃
T∈S

Ω+
x,λ,S(T),

by Markov’s inequality together with Proposition 6.1, Inequality (6),
P(Ω+

x,λ,Sk,τ
) � |Sk,τ |e−λx. Then,

P(Ωx,λ,Sk,τ
) � 1− 2|Sk,τ |e−λx

with

Ωx,λ,S := (Ω−
x,λ,S)

c ∩ (Ω+
x,λ,S)

c ⊂ Ω−
x,λ,S(T̂k,τ )

c ∩ Ω+
x,λ,S(T̂k,τ )

c

=: Ωx,λ,Sk,τ
(T̂k,τ ).

Moreover, on the event Ωx,λ,Sk,τ
, by the definition of T̂k,τ ,

‖Θ̂k,τ −Θ0‖2F,Π �
(
1− c6.1

λ

n

)−1

(rn(T̂k,τΛ)− rn(T
0Λ) + 4x)

=

(
1− c6.1

λ

n

)−1(
min

T∈Sk,τ

{rn(TΛ)− rn(T
0Λ)}+ 4x

)
� 1 + c6.1λn

−1

1− c6.1λn
−1

min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π+
8x

1− c6.1λn
−1

.

So, for any α ∈]0, 1[, with probability larger than 1− α,

‖Θ̂k,τ −Θ0‖2F,Π � 1 + c6.1λn
−1

1− c6.1λn
−1

min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π

+
8λ−1 log(2α−1|Sk,τ |)

1− c6.1λn
−1

.

Now, let us take

λ =
n

2

(
1

c6.1
∧ λ∗

)
∈ (0, nλ∗) and x =

1

λ
log

(
2

α
|Sk,τ |

)
.

In particular, c6.1λn
−1 � 1/2, and then

1 + c6.1λn
−1

1− c6.1λn
−1

� 3 and
8λ−1

1− c6.1λn
−1

� 32

(
1

c6.1
∧ λ∗

)−1
1

n
.

Therefore, with probability larger than 1− α,

‖Θ̂k,τ −Θ0‖2F,Π � 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π

+ 32

(
1

c6.1
∧ λ∗

)−1
1

n
log

(
2

α
|Sk,τ |

)
.
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2. Now, assume that |Sk,τ | = ∞. Since dim(Md,τ (R)) < ∞ and Sk,τ is a
bounded subset of Md,τ (R) (equipped with T �→ supj,t |Tj,t|), Sk,τ is
compact in (Md,τ (R), ‖.‖F ). Then, for any ε > 0, there exists a finite
subset Sε

k,τ of Sk,τ such that

∀T ∈ Sk,τ , ∃Tε ∈ Sε
k,τ : ‖T−Tε‖F � ε. (13)

On the one hand, for any T ∈ Sk,τ and Tε ∈ Sε
k,τ satisfying (13), since

〈Xi, (T−Tε)Λ〉F = 〈XiΛ
∗,T−Tε〉F for every i ∈ {1, . . . , n},

|rn(TΛ) − rn(T
εΛ)|

� 1

n

n∑
i=1

|〈Xi, (T−Tε)Λ〉F (2Yi − 〈Xi, (T+Tε)Λ〉F )|

� ε

n

n∑
i=1

‖XiΛ
∗‖F

(
2|Yi|+ sup

j,t

∣∣∣∣∣
τ∑

�=1

(T+Tε)j,�Λ�,t

∣∣∣∣∣
)

� εmΛ

(
2

n

n∑
i=1

|Yi|+ 2m0

)
� c1(ξ1, . . . , ξn)ε (14)

with

c1(ξ1, . . . , ξn) := 2mΛ

(
1

n

n∑
i=1

|ξi|+mε + 2m0

)
,

and thanks to Equality (8),

|R(TΛ)−R(TεΛ)| = |R(TΛ)−R(T0Λ)− (R(TεΛ)−R(T0Λ))|
= |‖(T−T0)Λ‖2F,Π − ‖(Tε −T0)Λ‖2F,Π|
� E(|〈Xi, (T−Tε)Λ〉F 〈Xi, (T+Tε − 2T0)Λ〉F |)
� c2ε (15)

with c2 = 4m0mΛ. On the other hand, consider

T̂ε
k,τ = arg min

T∈Sε
k,τ

‖T− T̂k,τ‖F . (16)

On the event Ωx,λ,Sε
k,τ

with x > 0 and λ ∈ (0, nλ∗), by the definitions of

T̂ε
k,τ and T̂k,τ , and thanks to Inequalities (14) and (15),

‖Θ̂k,τ − Θ0‖2F,Π

� ‖(T̂ε
k,τ −T0)Λ‖2F,Π + c2ε

�
(
1− c6.1

λ

n

)−1

(rn(T̂
ε
k,τΛ)− rn(T

0Λ) + 4x) + c2ε

�
(
1− c6.1

λ

n

)−1 [
rn(T̂k,τΛ)− rn(T

0Λ)
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+c1(ξ1, . . . , ξn)ε+ 4x
]
+ c2ε

=

(
1− c6.1

λ

n

)−1
[

min
T∈Sk,τ

{rn(TΛ)− rn(T
0Λ)}

+c1(ξ1, . . . , ξn)ε+ 4x

]
+ c2ε

� 1 + c6.1λn
−1

1− c6.1λn
−1

min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π +
8x

1− c6.1λn
−1

+

[
c1(ξ1, . . . , ξn)

1− c6.1λn
−1

+ c2

]
ε.

So, by taking

λ =
n

2

(
1

c6.1
∧ λ∗

)
and x =

1

λ
log

(
2

α
|Sε

k,τ |
)
,

as in the proof of Theorem 6.4.(1), with probability larger than 1− α,

‖Θ̂k,τ −Θ0‖2F,Π � 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π

+32

(
1

c6.1
∧ λ∗

)−1
1

n
log

(
2

α
|Sε

k,τ |
)

+

[
4mΛ

(
1

n

n∑
i=1

|ξi|+mε + 2m0

)
+ c2

]
ε. (17)

Thanks to Markov’s inequality together with Lemma 6.2, for λ0 = 1/(2ncξ),

P

(
n∑

i=1

|ξi| >
n∑

i=1

E(|ξi|) + s

)
� exp

[
nvξλ

2
0

2(1− ncξλ0)
− λ0s

]

= exp

(
vξ

4nc2ξ
− s

2ncξ

)
= α

with

s =
vξ

2cξ
+ 2ncξ log

(
1

α

)
.

Then, since E(|ξi|) � E(ξ2i )
1/2 � v

1/2
ξ for every i ∈ {1, . . . , n},

P

[
1

n

n∑
i=1

|ξi| > v
1/2
ξ +

vξ

2ncξ
+ 2cξ log

(
1

α

)]
� α. (18)

Finally, note that if P(U > V + c) � α and P(V > v) � α with c, v ∈ R+

and (U, V ) a R2-valued random variable, then

P(U > v + c) = P(U > v + c, V > v) + P(U > v + c, V � v)
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� P(V > v) + P(U > V + c, V � v) � 2α. (19)

Therefore, by (17) and (18), with probability larger than 1− 2α,

‖Θ̂k,τ − Θ0‖2F,Π

� 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π

+32

(
1

c6.1
∧ λ∗

)−1
1

n
log

(
2

α
|Sε

k,τ |
)

+

[
4mΛ

(
2cξ log

(
1

α

)
+ v

1/2
ξ +

vξ

2cξ
+mε + 2m0

)
+ c2

]
ε.

6.3. Proof of Theorem 3.4

The proof is dissected in two steps:
Step 1. Consider

Md,τ,k(R) := {T ∈ Md,τ (R) : rank(T) = k}.

For every T ∈ Md,τ,k(R) and ρ > 0, let us denote the closed ball (resp. the
sphere) of center T and of radius ρ of Md,τ,k(R) by Bk(T, ρ) (resp. Sk(T, ρ)).
For any ε > 0, thanks to Candès and Plan [12], Lemma 3.1, there exists an ε-net
S
ε
k(0, 1) covering Sk(0, 1) and such that

|Sεk(0, 1)| �
(
9

ε

)k(d+τ+1)

.

Then, for every ρ > 0, there exists an ε-net Sεk(0, ρ) covering Sk(0, ρ) and such
that

|Sεk(0, ρ)| �
(
9ρ

ε

)k(d+τ+1)

.

Moreover, for any ρ∗ > 0,

Bk(0, ρ
∗) =

⋃
ρ∈[0,ρ∗]

Sk(0, ρ).

So,

B
ε
k(0, ρ

∗) :=

[ρ∗/ε]+1⋃
j=0

S
ε
k(0, jε)

is an ε-net covering Bk(0, ρ
∗) and such that

|Bε
k(0, ρ

∗)| �
[ρ∗/ε]+1∑

j=0

|Sεk(0, jε)| �
([

ρ∗

ε

]
+ 2

)(
9ρ∗

ε

)k(d+τ+1)

.
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If in addition ρ∗ � ε, then

|Bε
k(0, ρ

∗)| � 3ρ∗

ε

(
9ρ∗

ε

)k(d+τ+1)

�
(
9ρ∗

ε

)2k(d+τ)

.

Step 2. For any T ∈ Sk,τ ,

sup
j,t

|Tj,t| �
m0

mΛ(τ)
.

Then,

‖T‖F =

⎛⎝ d∑
j=1

τ∑
t=1

T2
j,t

⎞⎠1/2

� ρ∗d,τ := m0
d1/2τ1/2

mΛ(τ)
.

So, Sk,τ ⊂ Bk(0, ρ
∗
d,τ ), and by the first step of the proof, there exists an ε-net

Sε
k,τ covering Sk,τ and such that

|Sε
k,τ | �

(
9ρ∗d,τ
ε

)2k(d+τ)

=

(
9m0

d1/2τ1/2

mΛ(τ)ε

)2k(d+τ)

.

By taking ε = 9m0d
1/2τ1/2mΛ(τ)

−1n−2, thanks to Theorem 6.4.(2), with prob-
ability larger than 1− α,

‖Θ̂k,τ −Θ0‖2F,Π � 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π

+
c6.4,1
n

[
log

(
2

α

)
+ 2k(d+ τ) log

(
9m0

d1/2τ1/2

mΛ(τ)ε

)]
+

[
c6.4,2 + 8mΛcξ log

(
1

α

)]
ε

= 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π

+
c6.4,1
n

[
log

(
2

α

)
+ 4k(d+ τ) log(n)

]
+9m0

d1/2τ1/2

mΛ(τ)n2

[
c6.4,2 + 8mΛcξ log

(
1

α

)]
.

Therefore, since n � max(d, τ) and mΛ(τ) � 1, with probability larger than
1− 2α,

‖Θ̂k,τ −Θ0‖2F,Π � 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π

+(4c6.4,1 + 9m0c6.4,2)k(d+ τ)
log(n)

n

+
c6.4,1 + 72m0mΛcξ

n
log

(
2

α

)
.

Let us replace α by α/2 to end the proof.
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6.4. Proof of Theorem 3.5

Put k = 2�log2(k)�, and note that k/2 � k � k. Fix a > 0 and define the set of
matrices

A =
{
A = (Ai,j)1�i�d∨τ,1�j�k : Ai,j ∈ {0, a}

}
.

By Varshamov-Gilbert bound, there is a finite subset B ⊂ A with card(B) �
2

k(d∨τ)
8 + 1, 0 ∈ B, and each pair A 	= A′ in B differ by at least k(d ∨ τ)

coordinates. This implies

‖A−A′‖2F � k(d ∨ τ)

8
a2 � k(d ∨ τ)

16
a2.

For any A, define by block A = (A|0) of dimension (d ∨ τ) × k (so the 0 has

k − k columns). We then define Ã of dimension d× τ . The construction differs
depending on d and τ :

• If d � τ ,
Ã = (A| . . . |A|0).

• If d < τ ,
Ã = (A| . . . |A|0)∗.

Note that this is clearly inspired by the construction in the proof of Theorem
5 in [30], however, here, we have to take care that, for a small enough, each

Ã ∈ A is also in Md,k,τ . In order to do so, we introduce the vectors in R
k:

v[1] =

√
1

k
( 1 . . . 1︸ ︷︷ ︸

k

)∗,

v[2] =

√
1

k
( 1 . . . 1︸ ︷︷ ︸

k/2

| −1 . . . −1︸ ︷︷ ︸
k/2

)∗,

...

v[k] =

√
1

k
( 1 −1 . . . 1 −1︸ ︷︷ ︸

k

)∗.

Now, remark that for A ∈ A we have

A =
√
ak

⎛⎜⎝ v[1]∗

...

v[k]∗

⎞⎟⎠
︸ ︷︷ ︸

B

(
n∑

i=1

v[i]1Ai,1 	=0

∣∣∣∣∣ . . .
∣∣∣∣∣

n∑
i=1

v[i]1Ai,k 	=0

)√
a

k︸ ︷︷ ︸
C

and under this decomposition, it is clear that the entries of B and C are in
[0,

√
a]. Playing with blocks, this gives trivially to a decomposition Ã = UV
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where U is d × k, V is k × τ and the entries of U and V are also in [0,
√
a].

In other words, Ã ∈ Md,k,τ holds as soon as a � m0/k. Now, let PA be the

data-generating distribution when Θ0 = Ã for A ∈ B, and KL be the Kullback-
Leibler divergence. We have

KL(P0,PA) =
n

2
‖ÃΛ‖2F,Π � n

2
a2.

Thus, we look for a such that the condition

n

2
a2 � α log(card(B)− 1) =

αk(d ∨ τ)

8

is satisfied for a given 0 < α < 1/8. Fix α = 1/16. As k � k/2, it’s easy to check
that

a =
1

8

√
k(d ∨ τ)

2n

satisfies the condition. Also, remember that Ã ∈ Md,k,τ if a � m0/k, which
adds the condition

k �
(
256m2

0n

d ∨ τ

)1/3

.

Theorem 2.5 in [49] then tells us that the rate is given by the minimal distance,
for A 	= A′ in B:

‖ÃΛ− Ã′Λ‖2F,Π =
1

dτ
‖Ã− Ã′‖2F =

1

dτ

⌊
d ∧ τ

k

⌋
‖Ã− Ã′‖2F

� 1

dτ

⌊
d ∧ τ

k

⌋
k(d ∨ τ)

16
a2

� a2

32
=

k(d ∨ τ)

4096n
.

6.5. Proof of Theorem 4.1

For any k ∈ K, let Sε
k := Sε

k,τ be the ε-net introduced in the proof of Theorem

3.4, and recall that for ε = 9m0d
1/2τ1/2mΛ(τ)

−1n−2,

|Sε
k| �

(
9m0

d1/2τ1/2

mΛ(τ)ε

)2k(d+τ)

= n4k(d+τ).

Then, for α ∈ (0, 1) and xk,ε := λ−1 log(2α−1|K|·|Sε
k|) with λ = nc−1

pen ∈ (0, nλ∗),

4xk,ε − pen(k) =
4cpen
n

log

(
2

α
|K| · |Sε

k|
)
− 16cpen

log(n)

n
k(d+ τ)

� 4cpen
n

[
4k(d+ τ) log(n) + log

(
2

α
|K|
)]



High dimensional time series completion 3031

−16cpen
log(n)

n
k(d+ τ)

� 4cpen
n

log

(
2

α
|K|
)

=: mn. (20)

Now, consider the event Ωλ,ε := (Ω−
λ,ε)

c ∩ (Ω+
λ,ε)

c with

Ω−
λ,ε :=

⋃
k∈K

⋃
T∈Sε

k

Ω−
xk,ε,λ,Sε

k
(T) and Ω+

λ,ε :=
⋃
k∈K

⋃
T∈Sε

k

Ω+
xk,ε,λ,Sε

k
(T).

So,

P(Ωc
λ,ε) �

∑
k∈K

∑
T∈Sε

k

[P(Ω−
xk,ε,λ,Sε

k
(T)) + P(Ω+

xk,ε,λ,Sε
k
(T))]

� 2
∑
k∈K

|Sε
k|e−λxk,ε = α (21)

and Ωx
k̂,ε

,λ,Sε

k̂
(T̂ε

k̂
) ⊂ Ωλ,ε, where T̂ε

k is a solution of the minimization problem

(16) for every k ∈ K.

On the event Ωλ,ε, by the definition of k̂, and thanks to Inequalities (14),
(15) and (16),

‖Θ̂−Θ0‖2F,Π � ‖(T̂ε
k̂
−T0)Λ‖2F,Π + c2ε

�
(
1− c6.1

λ

n

)−1

(rn(T̂
ε
k̂
Λ)− rn(T

0Λ) + 4xk̂,ε) + c2ε

�
(
1− c6.1

λ

n

)−1 (
rn(T̂k̂Λ)− rn(T

0Λ)

+c1(ξ1, . . . , ξn)ε+ 4xk̂,ε

)
+ c2ε

=

(
1− c6.1

λ

n

)−1
(
min
k∈K

{rn(T̂kΛ)− rn(T
0Λ) + pen(k)}

+c1(ξ1, . . . , ξn)ε+ 4xk̂,ε − pen(k̂)

)
+ c2ε

� 1

1− c6.1λn
−1

min
k∈K

{
(1 + c6.1λn

−1)‖(T̂k −T0)Λ‖2F,Π

+4xk,ε + pen(k)
}
+

mn + c1(ξ1, . . . , ξn)ε

1− c6.1λn
−1

+ c2ε

� 2min
k∈K

{3/2‖(T̂k −T0)Λ‖2F,Π + 2pen(k)}

+4mn + (2c1(ξ1, . . . , ξn) + c2)ε (22)

with

c1(ξ1, . . . , ξn) := 2mΛ

(
1

n

n∑
i=1

|ξi|+mε + 2m0

)
and c2 = 4m0mΛ.
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Moreover, by following the proof of Theorem 6.4 and Theorem 3.4 on the same
event Ωλ,ε,

‖(T̂k −T0)Λ‖2F,Π

� 3 min
T∈Sk

‖(T−T0)Λ‖2F,Π + c3.4

[
k(d+ τ)

log(n)

n
+

1

n
log

(
2

α
|K|
)]

for every k ∈ K. Therefore, thanks to (18), (19) and (22), with probability larger
than 1− 2α,

‖Θ̂−Θ0‖2F,Π

� 4min
k∈K

{
3 min
T∈Sk

‖(T−T0)Λ‖2F,Π + (c3.4 + 16cpen)k(d+ τ)
log(n)

n

}
+

4c3.4 + 16cpen
n

log

(
2

α
|K|
)
+ 9m0

d1/2τ1/2

mΛ(τ)n2

[
c6.4,2 + 8mΛcξ log

(
1

α

)]
.

To end the proof, let us replace α by α/2 and note that d1/2τ1/2/(mΛ(τ)n
2) �

1/n because n � max(d, τ) and mΛ(τ) � 1.
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Factorization for Time Series Recovery from a Few Temporal Aggregates.
Proceedings of the 34th International Conference on Machine Learning,
PMLR 70:2382–2390, 2017.

[41] Massart, P. Concentration Inequalities and Model Selection. Volume 1896
of Lecture Notes in Mathematics, Springer, Berlin, 2007. Lectures from the
33rd Summer School on Probability Theory held in Saint-Flour, Edited by
Jean Picard. MR2319879

[42] Negahban, S. and Wainwright, M. J. Restricted Strong Convexity and
Weighted Matrix Completion: Optimal Bounds with Noise. The Journal
of Machine Learning Research 13, 1, 1665–1697, 2012. MR2930649

[43] Poulos, J. State-Building through Public Land Disposal? An Applica-

https://www.ams.org/mathscinet-getitem?mr=2678022
https://www.ams.org/mathscinet-getitem?mr=3160583
https://www.ams.org/mathscinet-getitem?mr=3704775
https://www.ams.org/mathscinet-getitem?mr=2906869
https://www.ams.org/mathscinet-getitem?mr=2103792
https://www.ams.org/mathscinet-getitem?mr=2933663
https://www.ams.org/mathscinet-getitem?mr=2860332
https://arxiv.org/abs/2104.08191
https://arxiv.org/abs/2103.11749
https://www.ams.org/mathscinet-getitem?mr=3331862
https://www.ams.org/mathscinet-getitem?mr=2319879
https://www.ams.org/mathscinet-getitem?mr=2930649


High dimensional time series completion 3035

tion of Matrix Completion for Counterfactual Prediction. ArXiv preprint
arXiv:1903.08028.

[44] Samson, P.-M. Concentration of Measure Inequalities for Markov Chains
and φ-Mixing Processes. The Annals of Probability 28, 1, 416–461, 2000.
MR1756011

[45] Shi, W., Zhu, Y., Philip, S. Y., Huang, T., Wang, C., Mao, Y. and Chen,
Y. Temporal Dynamic Matrix Factorization for Missing Data Prediction in
Large Scale Coevolving Time Series. IEEE Access 4, 6719–6732, 2016.

[46] Suzuki, T. Convergence Rate of Bayesian Tensor Estimator and its Mini-
max Optimality. The 32nd International Conference on Machine Learning
(ICML2015), JMLR Workshop and Conference Proceedings 37, 1273–1282,
2015.

[47] Tonnelier, E., Baskiotis, N., Guigue, V. and Gallinari, P. Anomaly detection
in smart card logs and distant evaluation with Twitter: a robust framework.
Neurocomputing, 298, 109–121, 2018.

[48] Tsagkatakis, G., Beferull-Lozano, B. and Tsakalides, P. Singular Spectrum-
Based Matrix Completion for Time Series Recovery and Prediction.
EURASIP Journal on Advances in Signal Processing 1, 66, 2016.

[49] Tsybakov, A. Introduction to Nonparametric Estimation. Springer, 2009.
MR2724359

[50] Xie, K., Ning, X., Wang, X., Xie, D., Cao, J., Xie, G. and Wen, J. Recover
Corrupted Data in Sensor Networks: A Matrix Completion Solution. IEEE
Transactions on Mobile Computing 16, 5, 1434–1448, 2016.

[51] Yu, H. F., Rao, N. and Dhillon, I. S. Temporal Regularized Matrix Factor-
ization for High-Dimensional Time Series Prediction. Advances in Neural
Information Processing Systems 29, 847–855, 2016.

https://arxiv.org/abs/1903.08028
https://www.ams.org/mathscinet-getitem?mr=1756011
https://www.ams.org/mathscinet-getitem?mr=2724359

	Introduction
	Setting of the problem and notations
	Risk bound on T"0362Tk,
	Upper bound
	Lower bound

	Model selection
	Numerical experiments
	Experiments on simulated datas
	Experiments on real datas

	Proofs
	Exponential inequality
	A preliminary non-explicit risk bound
	Proof of Theorem 3.4
	Proof of Theorem 3.5
	Proof of Theorem 4.1

	References

