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Abstract: We explicitly quantify the empirically observed phenomenon
that estimation under a stochastic block model (SBM) is hard if the model
contains classes that are similar. More precisely, we consider estimation of
certain functionals of random graphs generated by a SBM. The SBM may
or may not be sparse, and the number of classes may be fixed or grow with
the number of vertices. Minimax lower and upper bounds of estimation
along specific submodels are derived. The results are nonasymptotic and
imply that uniform estimation of a single connectivity parameter is much
slower than the expected asymptotic pointwise rate. Specifically, the uni-
form quadratic rate does not scale as the number of edges, but only as the
number of vertices. The lower bounds are local around any possible SBM.
An analogous result is derived for functionals of a class of smooth graphons.
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1. Introduction

Network data occurs in a range of fields, and its analysis has become a highly
interdisciplinary effort [14, 18, 24, 28]. In statistical network analysis, two classes
of models have recently received particular attention: Graphon models [9, 21,
29], and the subclass of stochastic block models (SBMs) [1, 7, 17]. The results
of this paper show, informally speaking, that estimation under a SBM becomes
difficult if the parameters specifying two classes are close to each other.

SBM and graphon models parametrize a random graph by a symmetric mea-
surable function w, which can be interpreted as representing an adjacency ma-
trix in the limit of infinite graph size [9]. In a SBM, the function is in particular
piece-wise constant. Examples of statistical problems arising in this field include
estimation problems (see below), class label recovery [5, 25, 26, 31, 36], and sig-
nal detection, which refers to testing for the presence of a signal in settings
where observed data constitutes a network or array [3, 4, 10, 33].

We consider estimation problems. SBMs label each vertex in a graph with a
category (a “community”), and this labelling is typically not observed. There is a
substantial body of work on rates of estimation in such models [1, 2, 7, 8, 11, 12].
This literature considers asymptotic pointwise rates, and shows that, informally
speaking, estimators of finite-dimensional statistics can converge quickly even
if the labelling of vertices is not observed. Estimation of the entire function w
has also been studied [16, 23, 34]. In a case where this parameter has infinite
dimension and is estimated in a uniform way, Gao, Lu, and Zhou [16] show
that not observing labels slows the rate. Our results show that that is not
a consequence of the nonparametric setting: The best uniform (rather than
pointwise) rate for estimating a finite-dimensional statistic—even a very simple
one, and under a very simple parametric SBM—is slow. The same holds for a
simple, one-dimensional functional of a smooth, infinite-dimensional parameter
function w.

1.1. An informal overview

The remainder of this section provides an informal overview of our results. Rig-
orous definitions and statements follow in the next sections. A SBM is defined by
two parameters, a probability distribution π on k categories (which we regard as
a vector in [0, 1]k), and a matrix M ∈ [0, 1]k×k. The model generates undirected
random graphs Gn(π,M) of any size n ∈ N: Each vertex i ≤ n is assigned a cat-
egory ϕ(i) ∈ {1, . . . , k} drawn randomly from π, and an edge between vertices i
and j is then added with probability Mϕ(i)ϕ(j). (A proper definition follows in
Section 2.)



Uniform estimation in stochastic block models 2949

The main results. SBMs pose an estimation problem: Given an observed graph
Gn with n vertices, estimate π and M . The purpose of our work is to show
that, loosely speaking, the estimation problem can be harder than it appears,
or indeed than previous results may suggest at first glance. Our results are
phrased as minimax lower bounds: Suppose S is a set of parameter pairs (π,M).
A minimax bound specifies a decreasing function τ such that, informally,

inf
all estimators

sup
(π,M)∈S

Eπ,M [‖estimate of (π,M) computed from Gn(π,M)

− (π,M)‖]2 ≥ τ(n) .

That is, given an observed graph with n vertices, there exists no estimator
whose quadratic risk is smaller than τ(n) for all parameter values in S. Since
the supremum means that shrinking S will not increase the lower bound, it can
suffice to consider a subclass S ′ ⊂ S of parameters—any lower bound for S ′ is
also a lower bound for S. Indeed, we will see that one can obtain a meaningful
bound by choosing a very small subclass with one degree of freedom, where π
is fixed to the uniform distribution, and the matrix M is a function M(θ) of
a one-dimensional surrogate parameter θ ∈ [−1/2, 1/2]. The statement above
then takes the form

inf
all estimators

sup
θ∈[−1/2,1/2]

Eθ[estimate of θ computed from Gn(π,M(θ)) − θ]2

≥ τ(n) . (1)

Our main result shows that the relevant lower bound is

τ(n) =
constant · k

n
,

where k = k(n) is permitted to depend on n. This is Theorem 1 (for the simplest
case k = 2) and Theorem 2 (for k = k(n) ≥ 2). Indeed our proofs imply a
stronger statement:

• The results are completely non-asymptotic, and it is possible to explicitly
determine numerical values for all relevant constants. See Remark 2 for
an example.

• The minimax bound holds locally, not just globally: In principle, a slow
minimax rate may be caused by just a few “pathological” points in the
set S. One can ask whether the rate τ can be improved by removing
a small part of S. That is not the case here: Shrinking the set of all
SBM parameter pairs (π,M) to any open Euclidean neighborhood of any
specific pair still results in the same rate (see Section 3.3). Informally,
every region of parameter space contains parameters that prevent the rate
from improving.

SBMs are often used in “sparse” forms, and we verify in Appendix B that the
result also applies in the sparse case. Since sparsification reduces the amount
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of available data, it slows convergence. Theorems 8 and 9 show the rate in the
sparse setting also scales linearly in the expected number of edges.

Interpretation. If we were to simplify the estimation problem artificially by
assuming that the assignments variables ϕ(i) are observed, π could be estimated
at rate 1/

√
n and M at rate 1/n, both by computing sample averages. (The

rates differ since π is estimated from n vertices, whereas M is estimated from
edges, and the expected number of edges grows quadratically with n.) Since our
bounds are phrased in terms of a quadratic risk, both rates must be squared: in
the sequel, a bound τ(n) ≈ 1/n as above is referred to as slow rate; by contrast,
a fast rate corresponds to τ(n) ≈ 1/n2.

One must distinguish uniform rates (which hold uniformly over sets of param-
eters) and asymptotic pointwise rates (where asymptotics in n are considered
at just a given point). Previous work has established that estimation of M can
be fast even if the ϕ(i) are not observed. For example, a remarkable result of
[7] shows that, if π̂ and M̂ are chosen as certain profile maximum likelihood
estimators, then, as n → ∞,

√
n(π̂ − π) → Zπ and n(M̂ −M) → ZM in distribution. (2)

where Zπ and ZM are multivariate Gaussian variables. This holds up to label
switching (see Section 2), and requires that the columns of M are “not too
similar”. Related results can be found in [1, 11, 12]. Since this result does not
use a quadratic risk, it can be paraphrased informally as:

• Under suitable conditions on the model, the matrix M can be estimated,
at least asymptotically and pointwise, at a fast rate.

It has long been recognized in statistics that pointwise asymptotic rates can be
hard to interpret: As (π,M) runs through some set S, the constants implicit in
the rate may change locally around a given parameter as well as with n, and if
they do so quickly enough, that results in an effective change in the rate. The
Hodges phenomenon, for example, illustrates that highly pathological behavior
of an estimator may only be visible in its uniform rate, whereas the asymptotic
pointwise rate suggests good performance [see e.g. Section 8 and Figure 8.1 in
32]. Our result says:

• If measured uniformly over any given neighborhood in parameter space,
the best achievable rate for connectivity parameters (i.e. for M) is always
slow.

In other words, the change of constants is indeed an issue here, and makes the
rate drop from a fast to a slow one. Since the minimax bound is local, this
problem cannot be avoided by removing some (fixed) parameters (π,M).

Further results. Section 4 and the Appendix provide additional results on
achievability, i.e. upper bounds to complement the lower ones, and on graphon
models and sparse graphs.

Upper bounds. Like most lower bound results, Theorems 1 and 2 do not
show whether the bound τ is achievable—that is, the convergence rate of any
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actual estimator could be even slower than τ . To show that a rate is achievable
uniformly, one has to specify an estimator whose uniform risk matches the lower
bound up to constants. Estimators for SBMs and their convergence rates are
subject of a substantial literature, but these rates are, once again, generally
pointwise. Obtaining a tight uniform upper bound for arbitrary SBMs is beyond
the scope of this work, but we do consider the “hard” one-dimensional model
(1), and show the following:

• For estimation of θ in (1), the rate τ is achieved by a type of maximum
likelihood estimator. That is shown in Theorem 3 (for k = 2) and in
Theorem 4 (for general k), in Section 4.1.

However, this estimator is not generally computable in polynomial time, which
raises the additional question whether the problem exhibits a computational
gap—that is, whether this is a problem where a sample of size n contains
enough information to achieve a given rate τ(n), but this information cannot
be extracted in polynomial time, and every practically computable estimate
converges at a slower rate. In this context, we show:

• Under additional conditions, a spectral estimator (based on work of Lei
and Zhu [26]) achieves τ , and is computable in polynomial time. (See
Theorem 5 in Section 4.2 for k = 2 classes, and the appendix for the
general case k ≥ 2.)

Thus, in the submodel specified by the conditions, there is no computational
gap. We do not know at present whether the same holds for general SBMs.

Smooth graphons. SBMs are a special case of so-called graphon models, which
parametrize a random graph Gn(w) on n vertices by a function w of a certain
form. In SBMs, w is piece-wise constant. Section 4.4 instead considers a class S
of smooth graphons. It is known that uniform estimation of such a graphon w
from Gn(w) is only possible at a slow rate [16, 23]. Theorem 6 considers a simple,
real-valued statistic ϑ(w) that can be read as a form of standard deviation. It
shows that

inf
all estimators

sup
w∈S

Ew[estimate of ϑ(w) computed from Gn(w) − ϑ(w)]2

≥ constant · 1
n
.

In other words, even if the infinite-dimensional quantity w is substituted by the
much simpler, one-dimensional quantity ϑ, the rate is still slow. In this sense,
Theorem 6 can be seen as a semiparametric counterpart to the nonparametric
results of [16].

2. Preliminaries and notation

This section defines the models we consider, and briefly reviews some related
background.
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Notation. We abbreviate [k] := {1, . . . , k}, so that [k]n is the set of all mappings
{1, . . . , n} → {1, . . . , k}. For a subset A of the integers, |A| denotes cardinality.
If M is a square matrix, ‖M‖F is its Frobenius norm and ‖M‖Sp its spectral
norm. Let Be(p) be a shorthand for the Bernoulli(p) distribution. By ER(p), we
denote the law of an Erdös-Renyi random graph edge probability p over n nodes,
that is, ER(p) = ER(p, n) = ⊗i<j≤nBe(p), where ⊗ denotes a tensor product
of distributions.

Stochastic block models. Consider sampling at random an undirected, simple
graph G on the vertex set V = {1, . . . , n} as follows. Fix some k ∈ {1, . . . , n}.
Let π = (π1, . . . , πk) be a probability distribution on the set {1, . . . , k}, with π
identified as a line vector of size k. LetM := (Mlm) be a symmetric k × k matrix
with elements Mlm ∈ [0, 1]. To sample a graph G, we generate its adjacency
matrix X = (Xij)i,j∈V . Since G is undirected, it suffices to sample entries with
i < j,

1. For each vertex i ∈ V , independently generate a label ϕ(i) ∼ π.
2. For each pair i < j in V , independently sample from the distribution

Xij |ϕ(i), ϕ(j) ∼ Be(Mϕ(i)ϕ(j)).

In this notation, ϕ is a (random) mapping ϕ : {1, . . . , n} → {1, . . . , k} that
attributes a label to each node of the graph. It is random because labels are
by definition randomly sampled. The distribution Pπ,M so defined on the set
of undirected, simple graphs is called a stochastic blockmodel of order k with
parameters π and M . One can also write

(ϕ(1), . . . , ϕ(n)) ∼ π⊗n

(Xij)i<j | ϕ ∼
⊗
i<j

Be(Mϕ(i)ϕ(j)),
(3)

where π⊗n = π ⊗ · · · ⊗ π, and here and in the sequel i < j refers to all pairs of
indices (i, j) ∈ V2 with i < j. Any given ϕ partitions the vertex set {1, . . . , n}
into k distinct classes. We call π the proportions vector and M the matrix of
connectivity parameters.

Graphon models. SBMs can be regarded as a special case of a more general
class of random graphs, parametrized by the set of all measurable functions
w : [0, 1]2 → [0, 1] that are symmetric, i.e. w(x, y) = w(y, x). Any such w defines
a random graph G: denoting by Unif[0, 1] the uniform distribution on [0, 1], and
(Ui)i = (Ui)1≤i≤n, set

(Ui)i ∼ Unif[0, 1]⊗n

(Xij)i<j | (Ui)i ∼
⊗
i<j

Be(w(Ui, Uj)).
(4)

The law Pw of the graph G defined by the random matrix X in (4) is called a
graphon model [9]. SBMs are recovered by choosing w as a histogram: subdivide
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the unit interval into k intervals Is := [
∑

i<s πi,
∑

i≤s πi) of respective lengths
πs, and set

w(x, y) := Mij for x ∈ Ii, y ∈ Ij . (5)

Then Pw = Pπ,M . In a graphon model, the continuous vertex labels Ui are
almost surely distinct; in a stochastic block model, labels coincide whenever
two vertices belong to the same class. Thus, the SBM labels can be regarded as
discretization of graphon labels. Conversely, any graphon can be approximated
by a sequence of stochastic blockmodels of increasing order k; indeed, the set
of stochastic blockmodels—that is, of graphons of the form (5) for all k, π and
M—is dense in the set of functions w endowed with its natural topology [see
e.g. 22, for details]. This idea can be used to construct SBM-valued estimators
for graphons [16, 34]. SBMs and graphon models both generalize to directed
graphs, by dropping the symmetry constraints on π and w, and requiring only
i �= j rather than i < j; in the following, we consider only the undirected case.

Label switching and identifiability. The distribution (4) remains invariant
if w is replaced by w ◦ g, for any measure-preserving transformation g of [0, 1]:
Pw = Pw̃ for w̃(x, y) = w(g(x), g(y)). More generally, two graphons w and w′

are considered equivalent if Pw = Pw′ . The equivalence class 〈w〉 of w is called a
graph limit. Similarly in (3), if σ is a fixed arbitrary permutation of {1, . . . , k},
with permutation matrix Σ, then Pπ,M = PπΣ,ΣMΣT . The parameters of the
SBM can only be recovered up to label switching. We refer to [1] and [11] for
detailed identifiability statements.

Fixed and random design. In models (3)-(4), the latent variables, respec-
tively ϕ and U , are random. Sometimes, a slightly different version of the model
is considered, where ϕ and U are still unobserved, but fixed, non-random quan-
tities. For instance, under this setting (3) becomes

(Xij)i<j ∼
⊗
i<j

Be(Mϕ(i)ϕ(j)),

for a given, unknown, ϕ : {1, . . . , n} → {1, . . . , k}, and the data distribution is
denoted Pϕ,M . Such models will be referred to as fixed design SBM and random
design SBM respectively. The term SBM as used in the literature typically refers
to a random design. Some theoretical arguments simplify in the fixed design case,
for which the data distribution is a product measure, rather than a mixture of
products measures. Most results below are obtained for both cases.

Mixture interpretation. The n-tuple (Ui) in a graphon model, or, equiv-
alenly, the mapping ϕ in a SBM, are in general not observed, and can hence
be interpreted as latent variables. In other words, the distribution of the data
(Xij)i<j is a mixture. The mixture representation is useful to relate fixed and
random designs to each other. In the random design case, we have

Pπ,M =
∑

ϕ∈[k]n

μπ[ϕ]
⊗
i<j

Be(Mϕ(i)ϕ(j)), (6)
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where μπ[ϕ] =
∏k

l=1 π
Nl(ϕ)
l and Nj(ϕ) =

∑n
i=1 1lϕ(i)=j is the number of times

the label j is present. In the fixed design model, the labels given through ϕ are
also unobserved, but fixed, so that the distribution is Pϕ,M given by

Pϕ,M =
⊗
i<j

Be(Mϕ(i)ϕ(j)).

3. Main results: lower bounds

In this section, we first construct in Section 3.1 natural submodels of a SBM
with k = 2 along which the two classes become close, and derive an estimation
lower bound in terms of the quadratic risk for the submodel parameter. We
then consider in Section 3.2 the more general setting of a SBM with k classes
‘containing’ the previously constructed difficult submodel and derive a minimax
estimation lower bound in this setting, which is local around any possible SBM
of this type, as we discuss in more detail in Section 3.3.

3.1. The case k = 2

Consider the set of distributions

M =
{
Pθ := Pe,Qθ , θ ∈ [−1/2, 1/2]

}
, (7)

where e and Qθ are given by

e =

[
1

2
,
1

2

]
(8)

Qθ =

[
1
2 + θ 1

2 − θ
1
2 − θ 1

2 + θ

]
. (9)

The set M is a 1–dimensional submodel of the set of all SBMs with at most
two classes. For θ = 0 the matrix Q0 is degenerate and the model is simply an
Erdös-Reyni graph model with parameter 1/2, that is all edges are independent
and have a probability 1/2 of being present. SBMs with connectivity matrices
that—like Qθ above—specify only two, one for intra-group and one for between-
group connections, are known as affiliation models [e.g. 2, 3, 27].

Theorem 1. Consider a stochastic blockmodel (3) with k = 2 specified by M,
that is Pθ = Pe,Qθ with e,Qθ given by (8)-(9). There exists a constant c1 > 0
such that for all n ≥ 2,

inf
T

sup
θ∈[−1/2,1/2]

Eθ [T (X)− θ]
2 ≥ c1

n
,

where the infimum is taken over all estimators T of θ in the model M.

Proof. See Section 6.1.
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Theorem 1 states that, even in a very simple SBM with k = 2 classes and only
one unknown parameter in its connectivity matrix, the minimax estimation rate
is no faster than 1/n. This is no contradiction to the fast rate obtained by Bickel
et al. [7] (meaning a 1/n rate for the convergence in distribution but a 1/n2 rate
for the quadratic risk): the latter is a pointwise asymptotic result, and assumes
that no two lines of the connectivity matrix are the same, whereas Theorem 1 is
nonasymptotic and uniform. It shows that the rate in a two-class model changes
for distributions close to an Erdős-Renyi model (k = 1); informally, models close
to the ‘boundary’ are harder to estimate. We note the result does not require
the sub-model M to include the Erdős-Renyi model; see the remark below. The
phenomenon is reminiscent of effects familiar from community detection, where
matrices similar to (9) naturally arise as most difficult submodels. Community
detection is a testing problem, though, as opposed to the estimation problem
considered here. For a different but related result in the very sparse case, see
[27].

Remark 1 (different parameter choices). One can easily check that the result of
Theorem 1 remains unchanged if instead of 1/2 in the matrix Qθ in (9), another
number a0 ∈ (0, 1) is used. If a0 is bounded away from 0 and 1, assuming
min(a0, 1 − a0) ≥ ρ > 0, then the result is only modified by constants. Also,
if the proportions vector π is of the form [b , 1 − b] with b > 0, similar results
continue to hold, provided the matrix Qθ is replaced by

Qθ
b =

[
1
2 + cbθ

1
2 − dbθ

1
2 − dbθ

1
2 + cbθ

]
for suitable constants cb, db that depend on b (one can take e.g. cb = 1− b and
db = b).

Remark 2 (numerical constants). In Theorem 1, one can take c1 = 1/107; ad-
ditionally, the supremum can be restricted to (−θn, θn) for

θn =
c0√
n

and c0 =
1

3 · 23/4 ≈ 0.56.

Moreover, the proof implies that one can restrict the supremum to a set not
actually containing θ = 0, but rather two points close enough to θ = 0, namely
θ1 = c1/

√
n, θ2 = c2/

√
n for suitably chosen, fixed constants c1, c2 > 0.

Fixed design. A result similar to Theorem 1 holds for fixed designs. In this case,
the map ϕ is deterministic, and the model can be written as MF = {Pθ,ϕ :=
Pϕ,Qθ , θ ∈ [−1/2, 1/2], ϕ ∈ [2]n}. Expectations with respect to the measures
Pθ and Pθ,ϕ are denoted respectively Eθ and Eθ,ϕ. We then have

inf
Tf

sup
θ∈[−1/2,1/2], ϕ∈[2]n

Eθ,ϕ [Tf (X)− θ]
2 ≥ c1

n
,

where the infimum is taken over all estimators Tf of θ in the fixed design model.
The proof is the same as for Theorem 1, see Section 6.1.
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3.2. The general case

We now consider an arbitrary number k of classes. Above, we have perturbed
a SBM with k = 2 classes around an Erdös-Renyi model. We now similarly
perturb a k-class SBM around one with k − 1 classes. The connectivity matrix
of a SBM with at most k − 1 classes is of the form, for a0, ai, bij ∈ [0, 1] for
i, j ∈ [k − 2],

M =

⎡⎢⎢⎢⎣
a0 a1 · · · ak−2

a1 b11 · · · b1k−2

...
...

...
ak−2 b1k−2 · · · bk−2k−2

⎤⎥⎥⎥⎦ . (10)

For simplicity of notation and easy comparison with Section 3.1, we assume
a0 = 1/2 throughout. Results are easily adapted to the case a0 ∈ (0, 1), requiring
only that a0 be bounded away from 0 and 1. If needed, one can ensure the
number of classes is exactly k − 1 by requiring no two rows of M coincide,
which we require only in Theorems 7 and 8, which describe the behavior of
spectral estimators.

We consider 1-dimensional submodels in the parameter space of connectivity
matrices: Set

ek =

[
1

k
, · · · , 1

k

]
, (11)

and, for coefficients {ai}, {bij} as above, define

Mθ =

⎡⎢⎢⎢⎢⎢⎣
1
2 + θ 1

2 − θ a1 · · · ak−2

1
2 − θ 1

2 + θ a1 · · · ak−2

a1 a1 b11 · · · b1k−2

...
...

...
...

ak−2 ak−2 b1k−2 · · · bk−2k−2

⎤⎥⎥⎥⎥⎥⎦ =

[
Qθ A
AT B

]
, (12)

where

Qθ =

[
1
2 + θ 1

2 − θ
1
2 − θ 1

2 + θ

]
and

A =

[
a1 a2 . . . ak−2

a1 a2 . . . ak−2

]
, B =

⎡⎢⎣ b11 · · · b1k−2

...
...

b1k−2 · · · bk−2k−2

⎤⎥⎦ .

Thus, Mθ is a symmetric k×k matrix, obtained from M by replacing the scalar
coefficient a0 by the 2× 2 matrix Qθ, and repeating the vector (ai)1≤i≤k−2.

The number of nodes in a given class will be specified as follows. For sim-
plicity, we choose the proportions vector π in (3) equiproportional and equal
to ek in (11). (As in the case k = 2, analogous results can be obtained if the
proportions are of similar sizes.) Consider the model defined by

Mk =
{
Pθ := Pek,Mθ , θ ∈ [−1/2, 1/2]

}
, (13)
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for ek,M
θ as in (11)-(12). This is a 1–dimensional submodel of the set of all

SBMs with at most k classes. For θ = 0, the matrix M0 again has two identical
rows, and the model becomes a SBM with at most k−1 classes, with connectivity
matrix given by M defined in (10). By Eθ, we denote the expectation under Pθ

in the model Mk given by (13).

Theorem 2. Consider a stochastic blockmodel (3) with k ≥ 2 classes specified
by Mk in (13), that is Pθ = Pek,Mθ with ek,M

θ given by (11)-(12), for fixed
matrices A,B with arbitrary coefficients. There exists a constant c3 = c3(ρ) > 0,
independent of A,B, such that, for all n ≥ 12k,

inf
T

sup
θ∈[−1/2,1/2]

Eθ [T (X)− θ]
2 ≥ c3

k

n
,

where the infimum is taken over all estimators T of θ in the model Mk.

Proof. See Section 6.2.

Fixed design. A similar result holds for the fixed design case, assuming that
classes, given by the mapping ϕ, are balanced in the following sense. Let Σe

denote the set of maps ϕ ∈ [k]n such that, for some constants c1, c2, for any
1 ≤ j ≤ k,

c1
n

k
≤ |ϕ−1(j)| ≤ c2

n

k
.

The set Σe thus consists of those maps ϕ that produce k classes all of size of
order n/k. Then the conclusion of Theorem 2 still holds, provided Eθ is replaced
by Eθ,ϕ, and the supremum taken over θ ∈ [−1/2, 1/2] and ϕ ∈ Σe as defined
just above.

3.3. Some comments on the results

Theorem 2 establishes that the minimax estimation rate of θ in model (13) is at
best of the order k/n, uniformly over k and n. An intuitive explanation for this
particularly slow rate is as follows: the phenomenon observed for k = 2 is still
present but this time the part of the matrix Zθ containing information about θ
is smaller, as only of the order 2/k of the nodes will be assigned to classes 1 or
2, which are the elements of the connectivity matrix that depend on θ.

An important point is that this lower bound is minimax local (as opposed to
more commonly proved minimax global results) that is, not only does this slow
rate occur around one specific least-favorable point in the parameter space,
it does occur around any point. More precisely: If we start with any k ≥ 2,
any proportions vector, and any connectivity matrix M as in (10) with k −
1 classes, there exists at least one submodel around M , namely Mk in (13),
such that estimation of a connectivity parameter in M cannot be faster than
k/n. In Theorem 1, the model given by θ = 0 is an Erdös-Renyi graph, which
raises the question whether the slow rate in Theorem 1 is a consequence of the
distinguished properties of the Erdös-Renyi model. This is not the case. Proving
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such a local bound makes the proof of Theorem 2 more involved in the random
design case, as one has to quantify the L1-distance between two mixtures of
probability measures, instead of between one fixed measure and a mixture as is
often the case in proving minimax global bounds.

It is interesting to compare the rate in Theorem 2 to the one that would be
obtained if the labels were observed. If k is fixed, Lemma 2 in Bickel et al. [7]
gives a quadratic rate of order 1/n2 for connectivity parameters when labels are
observed. This result can be easily adapted to the case where k possibly grows
with n, say in an asymptotic setting with n → ∞ and k/n → 0, leading to a
quadratic rate of order (k/n)2. The uniform rate in Theorem 2 is the square-root
of this rate and thus much slower.

4. Further results: upper bounds and smooth graphons

In this Section, we complement our main results by upper bounds (under some
conditions when k ≥ 3) and results for certain smooth graphons, which can be
seen as a continuous analogue of the results for the SBM parameter θ.

We establish upper bounds that show that the lower bounds in the previous
section can be matched for certain subsets of connectivity matrices. In the case
of k ≥ 3 classes, the conditions are arguably somewhat restrictive and can
probably be improved. However, since the lower bounds are proved to be local
around any possible SBM containing two classes that are close, the rate, if not
matched, can only become worse. As we show below, some conditions are in
fact necessary. Indeed, we give an example in Section 4.3 where the rate drops
further, illustrating the difficulty of the estimation problem.

4.1. Upper bounds via maximum likelihood

Theorems 1 and 2 provide lower bounds. There are corresponding, matching
upper-bound, which we obtain next.

The case k = 2. We define an estimator of θ as follows. For any σ an element
of [2]n, i.e. for any mapping {1, . . . , n} → {1, 2}, define

2Zn(σ,X) := −
∑

i<j, σ(i)=σ(j)

(1− 2Xij) +
∑

i<j, σ(i) �=σ(j)

(1− 2Xij). (14)

Maximising (14) in σ leads to set

σ̂ = argmax
σ∈[2]n

|Zn(σ,X)|

which leads to the profile maximum likelihood estimate

θ̂ =
Zn(σ̂, X)

bn
and bn =

(
n

2

)
=

n(n− 1)

2
. (15)

This estimator can be seen as a (pseudo)-maximum likelihood estimate, see
Appendix C.
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Theorem 3. Consider a stochastic blockmodel (3) with k = 2 specified by M,
that is, Pθ = Pe,Qθ with e,Qθ given by (8)-(9). Let θ̂ be the estimator defined
by (15). There exists a constant C1 > 0 such that for all n ≥ 2,

sup
θ∈[−1/2,1/2]

Eθ

[
θ̂ − θ

]2
≤ C1

n
.

The same risk bound holds for θ̂ in the fixed design model, uniformly over θ and
ϕ ∈ [2]n.

Proof. See Appendix C.2.

The main takeaway from this result is that the uniform quadratic rate for
estimating the connectivity parameter along the submodel M is exactly of order
n−1, up to constants. That follows from combining Theorems 1 and 3. This ‘slow’
rate (as compared to the asymptotic pointwise quadratic rate n−2 of (2)) arises
even if all other parameters—here, the vector of proportions π—are assumed
known. The submodel built for k = 2 can be regarded as a local perturbation of
an Erdös-Renyi graph model with connection probability 1/2. The drop in the
rate is already noteworthy, as the rate of estimation of p for a ER(p) model is
of the order n−2.

The case k ≥ 2. For this case, we make additional (but fairly mild) assumptions
on the matrix M . These conditions are for simplicity of presentation and could,
in some cases, be improved. Our main purpose here is to show that, for ‘typical’
matrices A and B in (12), the rate of estimation of θ in (12) is indeed exactly
of the order k/n. In Section 4.3 below, we show that at least some conditions
on possible matrices A,B are necessary: for certain unfavourable matrices, the
rate drops below k/n. As was the case for Theorem 1, the result of Theorem 3
remains unchanged if the constant 1/2 in Qθ is replaced by any a0 ∈ (0, 1).

We modify the criterion function (14) by restricting it to a given subset
S ⊂ {1, 2, . . . , n} of indices,

2Zn(σ, S,X) = −
∑

i<j, i,j∈S, σ(i)=σ(j)

(1− 2Xij) +
∑

i<j, i,j∈S, σ(i) �=σ(j)

(1− 2Xij).

(16)
To avoid technicalities, we maximize over a grid, which constitutes no loss of
generality. To this end, define the regular grid Θn = {i/(2n2), i = −n2, . . . , n2}
in Θ = [−1/2, 1/2], and

(σ̃, θ̃) := argmin
σ∈Σe, θ∈Θn

∑
i<j

(Xij − Zθ
σ(i)σ(j))

2 (17)

S̃I := σ̃−1({1, 2}). (18)

Equation (17) defines a global maximum-likelihood type estimator, which is
then used to obtain an estimate S̃I of the set of nodes labelled 1 or 2. Given
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this estimate, one can apply the profile-type method already used in the case

k = 2: For S̃I as in (18), ñk =
(|S̃I |

2

)
, and Zn as in (16), set

σ̂I = argmax
σ∈Σe

|Zn(σ, S̃I , X)| (19)

θ̂ =
Zn(σ̂I , S̃I , X)

ñk
. (20)

We require the coefficient a0 of the matrix M in (10) to be sufficiently distinct
from the remaining entries: Let C = {ai, bij , 1 ≤ i, j ≤ k − 2} be the set of
coefficients of the matrices A and B in (12), with a0 = 1/2,

min
c∈C

{|c− a0|} ≥ 2κ > 0. (21)

Theorem 4. Consider a stochastic blockmodel (3) with k ≥ 2 classes specified
by Pθ = Pek,Mθ with ek and Mθ given by (11)-(12), for fixed matrices A and
B. Define θ̂ = θ̂(X) as in (20). Suppose (21) holds and that, for some small
enough d and κ as in (21),

k3 log k ≤ dκ4n. (22)

Then there exists a universal constant C1 > 0 such that for n ≥ 5,

sup
|θ|≤κ

Eθ

[
θ̂ − θ

]2
≤ C1

k

n
.

The same risk bound holds for θ̂ in the fixed design model, uniformly over |θ| ≤
κ, ϕ ∈ Σe.

Proof. See Appendix C.3.

Note κ in (22) may depend on k and n, and may go to zero in a framework
where k, n go to infinity. Below are two examples for the behaviour of κ. These
examples illustrate that our conditions are indeed met in commonly encountered
settings, in particular, with high probability, ifM is a random matrix and k does
not grow too rapidly with n.

Example 1 (well-separated block). If κ is a fixed positive constant e.g. 1/4, then
the submatrix Qθ is well separated from the other coefficients of the matrix M .
The procedure above then correctly picks up a sensible approximation of the
true set σ−1({1, 2}) via S̃I and the rate k/n is achieved, as long as k does not
grow faster than n1/3/ logn, an already fairly important number of classes.

Example 2 (randomly sampled matrix M). Suppose that the symmetric matrix
M =: (cij) in (10) is a random matrix whose upper triangular entries are drawn
i.i.d. with uniform distribution U [0, 1], except c11 = 1/2. The distribution of
|cij − 1/2| except for i = j = 1 is then U [0, 1/2], and it is a standard fact that
the first order statistic of a uniformly distributed sample of size N is Beta(1, N)
distributed. That implies the random variable 2mincij∈C |cij − 1/2| has law
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Beta(1, k(k − 1)/2− 1). Therefore, κ in (21) is of order no less than 1/k2 with
high probability. From (22) one deduces that for k of the form nδ with δ < 1/11
and n large enough, the rate k/n is achieved uniformly and locally, for typical
matrices M . Inspection of the proof of Theorem 4 reveals that k = o(nδ) with
δ < 1/7 in fact suffices for the rate k/n to be attained with high probability
when M is random: this is achieved by distinguishing cij of the types ai or bij
in the proof and noting that the minimum of |ai − 1/2| over i will be of larger
order k−1, instead of k−2 for the minimum over i, j of |bij − 1/2|.
Remark 3 (conditions |θ| ≤ κ and (21)). We slightly restrict the range of θ in
the upper bound of Theorem 4. Formally, the matching upper bound is obtained
for a somewhat smaller interval than [−1/2, 1/2] when k ≥ 3. (If k is fixed and
n → ∞, the restriction is only to [−δ, δ] for a small enough constant δ > 0.) The
condition is needed to ensure, in combination with (21), that the block Qθ in
the matrix (12) is separated sufficiently from the other submatrices A and B. If
this is not the case, the estimation problem can become more difficult, and the
rate hence slower. This is formally shown in Section 4.3, where the extreme case
of all coefficients of A,B being equal to 1/2 is discussed. This phenomenon can
also occur if only some parts of A and B are close to 1/2, or to either 1/2 + θ
or 1/2− θ for some θ ∈ (0, 1/2).

We do not claim that the restriction to [−κ, κ] and (21) are sharp conditions;
they can probably be improved. However, the argument above shows some con-
dition of this form is needed, although it may vary depending on the estimation
procedure considered: for spectral estimators as considered in Appendix A, for
example, we need a similar separation assumption, although it takes a slightly
different form (see Theorem 7 in Apprendix A and the comments below it). We
also note that small values of θ are conceptually the most interesting case, since
the 2× 2 subproblem becomes easier the larger θ becomes.

4.2. Upper bounds via spectral estimates

Since the maximum likelihood estimator (17) has to optimize over the set [k]n,
it need not be computable in polynomial time. It hence seems natural to ask
whether there is a “computational gap”, that is, whether the best estimator
computable in polynomial time converges at a slower rate than predicted by the
minimax bound. We do not have a complete answer to his question, but for a
somewhat restricted model class, no such gap exists: The estimator described
below for the case k = 2 uses a spectral method, see e.g. [25]. A generalization
to k ≥ 3 classes is discussed in Appendix A, which requires further conditions.
Within the remit of these conditions, however, the minimax rate is achievable in
polynomial time. An extension to sparse graphs is considered in Appendix B. A
small simulation study in Section A.2 illustrates the behaviour of the estimator.

With the convention that Xii = 1/2 and Xji = Xij , define the n× n matrix
Δ by

Δ := X − 1

2
J, where J :=

(
1
)
i,j≤n

.



2962 I. Castillo and P. Orbanz

Let λa
1(Δ) denote the largest eigenvalue in absolute value of Δ and set

θ̃ :=
λa
1(Δ)

n− 1
. (23)

We refer to this procedure as spectral algorithm for k = 2 and denote it S2. The
intuition behind this estimator in the fixed design setting is the following. For
i �= j, we have

E[Xij −
1

2
] = Mθ

ϕ(i)ϕ(j) −
1

2
= (−1)1lϕ(i) �=ϕ(j)θ.

Set v = ((−1)1{ϕ(i)=1})i≤n and V := vvt =
(
(−1)1{ϕ(i) �=ϕ(j)})

i,j≤n
. Then for

non-random ϕ,

E[Δ] = θ(V − In),

where In is the identity matrix of size n. As E[Δ] is a rank 1 matrix whose
non-zero eigenvalue equals (n− 1)θ (with v the corresponding eigenvector), this
leads us to introduce θ̃ as in (23).

Theorem 5. In the same setting as in Theorem 3, let θ̃ be the estimator defined
by (23). There exists a constant C > 0 such that for all n ≥ 2,

sup
θ∈[−1/2,1/2]

Eθ

[
θ̃ − θ

]2
≤ C

n
.

The same risk bound holds for θ̂ in the fixed design model, uniformly over θ and
ϕ ∈ [2]n.

Proof. This follows as a special case of Theorem 8, in Appendix B.

4.3. Necessity of conditions on M

What precedes shows that the rate k/n is achieved under conditions on M in
(10) and/or k. In general, we expect the rate to depend on the matrices M .
Although we do not investigate this point in full here, we discuss it briefly.

The estimation methods investigated in Section 4.1 (MLE) and Appendix A
(spectral method) require the upper-left 2× 2 block of Mθ to be sufficiently
separated from at least part of the other entries of Mθ. Among those matrices
Mθ whose upper-left corner equals Qθ, a worst case scenario should correspond
to a matrix whose coefficients in A and B all equal 1/2. This leads to the matrix

M̌θ =

⎡⎢⎢⎢⎢⎢⎣
1
2 + θ 1

2 − θ 1
2 · · · 1

2
1
2 − θ 1

2 + θ 1
2 · · · 1

2
1
2

1
2

1
2 · · · 1

2
...

...
...

...
1
2

1
2

1
2 · · · 1

2

⎤⎥⎥⎥⎥⎥⎦ , (24)
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which is of course heavily over-specified from the SBM perspective. Consider the
SBM in a fixed design case, where ϕ : {1, . . . , n} → {1, . . . , k} is unobserved.
Suppose all classes σ−1(i) are of cardinality of order n/k, and the connectivity
matrix is given by (24). This specific model can be regarded as a special case
of the setting considered from a testing perspective by Butucea and Ingster [10]
and Arias-Castro and Verzelen [3]. From Theorem 4.3 of [10], one can deduce
that the minimax rate for the quadratic risk when estimating θ is no better than

ρn = min

(
k2

n ,
√

k log k
n

)
, for k, n → ∞ and ρn = o(1). The rate is therefore no

better than k2/n for k ≤ n1/3, and remains much slower than k/n even for
k > n1/3.

4.4. Minimax rates for a class of functionals of smooth graphons

Stochastic block models can be identified with piecewise constant graphons;
we now consider the case where the graphon is a smooth function instead. Let
w : [0, 1]2 → [0, 1] a measurable function, let 〈w〉 be its graphon equivalence
class, and denote by P〈w〉 = Pw the distribution of data X generated by the
graphon model (4). Consider the problem of estimating the functional

ϑ(〈w〉) =
[∫

[0,1]2

(
w(x, y)−

∫
[0,1]2

w
)2

dxdy

]1/2
, (25)

for any representer w of 〈w〉. This is well defined in terms of the graphon, as
the integral is invariant under any simultaneous (Lebesgue-)measure-preserving
transformation of x and y.

The statistic (25) can be interpreted as a ‘graphon-standard deviation’. Its es-
timation under a smooth graphon model is, in a sense, analogous to the problem
of estimating the functional θ in the simple SBM with two classes discussed in
Section 3.1: Let hθ be the piece-wise constant graphon characterizing the SBM
defined by (8)–(9). Since ϑ(〈hθ〉) = |θ|, estimating θ is then indeed equivalent
(for positive values) to estimation of ϑ(〈hθ〉).

Under a 2-class SBM, the results of Section 3.1 show θ in (9) cannot be
estimated faster than c/n. It is natural to ask whether the same still holds if
one works with ‘smoother’ graphons instead of histograms (where we refer to
〈w〉 as smooth if at least one of its representers is a smooth function). The
following result addresses this question for a simple class of smooth graphons,
both for ϑ(·) and for a larger class of functionals containing ϑ(·).

Let PB be the collection of all graphons that admit a representer which is a
polynomial in x, y, with degree bounded by some integer D ≥ 2 and coefficients
bounded by an arbitrary constant M > 0 (this boundedness restriction is only
to ensure a –nearly, up to a log term– matching upper-bound in the next result).
For any 0 ≤ θ ≤ 1, let us denote by wθ the function from [0, 1]2 to [0, 1] given
by

wθ(x, y) =
1

2
− θ(x− 1

2
)(y − 1

2
) (26)
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and let w0 denote the constant function equal to 1/2. The function wθ can be
interpreted as a ‘smooth’ counterpart to the histogram graphon underlying the
SBM (9).

Theorem 6. Let X be data from the graphon model (4). Let ϑ(·) be defined as
in (25). There exist constants c1, c2 > 0 such that

c1
n

≤ inf
ϑ̂

sup
w∈PB

EPw

[
ϑ̂(X)− ϑ(〈w〉)

]2
≤ c2 logn

n
,

where the infimum is taken over all possible estimators of ϑ(〈w〉) in model (4).
Let ψ be an arbitrary functional defined on graphon equivalence classes satisfying

|ψ(〈wθ〉)− ψ(〈w0〉)| ≥ c|θ| (27)

for some c > 0, for any 0 ≤ θ ≤ 1, and for the function wθ in (26), Then for
some d > 0,

inf
ψ̂

sup
w∈PB

EPw

[
ψ̂(X)− ψ(〈w〉)

]2
≥ d

n
.

Proof. See Section 7.

The first part of Theorem 6 asserts that the quadratic minimax rate for
estimating (25) cannot be faster than c/n, even if one restricts the parameter
set to a small class of smooth graphons w, namely graphons with a polynomial
representer of bounded degree. This class can be seen as a smooth analogue of
the histogram graphon underlying model (7), or more generally the model with
k classes and connectivity (12). The degree of the polynomial can be seen as
the analog of k. The rate of order 1/n is obtained because the degree of the
polynomial is assumed bounded. Although we do not investigate this further
here, one may conjecture that the rate would slow even further for a larger class
(e.g. growing degree of polynomials, or a nonparametric class such as a Hölder
ball).

The second part of Theorem 6 indicates that the specific form of the func-
tional ϑ(·) in (25) is not essential for the lower bound to hold. A given functional
ψ(·) leads to a rate at least as slow of ϑ(·) over the considered class of graphons
as soon as (27) holds. This condition intuitively means that the functional ψ(·)
is at least as hard as to estimate as the functional ϑ(·), for which the difference
on the left hand-side of (27) indeed behaves like |θ|. By direct computation we
see that an example of such a graphon functional is

ψ(Pw) =

∫
[0,1]2

∣∣∣f(x, y)− ∫
[0,1]2

|f(x, y)|dxdy
∣∣∣dxdy.

Providing a unified theory with matching lower and upper bounds for graphon
functionals is an interesting topic for future research.
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5. Discussion

Gao et al. [16] show that, if one estimates the parameter function w of a graphon
model, not observing the vertex labels—in this case, the variables Ui in (4)—
does (in general) impact on the optimal rate. In the present paper, we have
considered uniform estimation of certain functionals of graphon models (in par-
ticular, the loss function is quite different from theirs). For estimation of certain
random graph functionals—including the connectivity parameters considered by
Bickel et al. [7]—we have shown that the uniform, minimax rate does depend on
whether the labels are observed, i.e. the phenomenon described by [16] persists
even if one does not try to recover the entire function w, but only a specific
1–dimensional aspect of w. The fast quadratic rate 1/n2 is not achievable uni-
formly. If the number k of classes is known and fixed, the quadratic rate becomes
1/n. If the number of classes k grows with n, the rate drops to k/n. We have
used some mild assumptions on the part of the connectivity matrix other than
the 2 × 2 submodel. If those assumptions are not satisfied, the rate may even
drop further. Similar results also hold for sparse graphs.

Interestingly, for the functionals considered here, the uniform rate is always,
regardless of the number of classes k, much below the rate in the case where
labels would be observed. This is in contrast with the problem of recovery of the
mean adjacency matrix considered in [16], where for k is larger than

√
n logn,

the (non–normalised) rate k2+n log k is dominated by the ‘parametric’ rate k2,
the rate if labels are observed.

We claim no novelty regarding the algorithms—the MLE and spectral
method—which we have adapted from existing work to the problem at hand.
Their purpose is to verify that the lower bound is tight (both algorithms achieve
it) under some mild conditions, and that there is no computational gap (the
spectral method does so in polynomial time). Yet, we are not aware of other
work providing uniform rates for SBM connectivity parameters for these or other
algorithms, which constitutes another novelty of the paper.

Aspects of our proofs reflect the fact that graphon models constitute a specific
type of mixture model, and estimation in mixtures can be difficult if mixture
components are hard to distinguish; although no general theory of these phe-
nomena seems to exist, we refer to the early work on estimation in finite mixture
models by [19] and [6], and e.g. to [20] and [15] for more recent results.

6. Proofs of the lower bounds in SBMs

The proofs of Theorems 1 and 2 rely on variations of Le Cam’s ‘two-points’
method, which bounds the minimax risk from below by a quantity involving
the L1 distance between a distribution and a finite mixture. (Specifically, this is
the ‘point versus mixture’ variant of the two points method, see e.g. [35].) This
and other relevant technical lemmas are recalled in Section 6.3 below; the two
points method is Lemma 3. For Theorem 2, for k ≥ 2 classes, one main idea is
to ‘isolate’ the part corresponding to the submatrix Qθ. More details comments
are given along the proof in Section 6.2 below.
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Notation. Recall that a SBM with k classes, proportions vector π and con-
nectivity matrix M has distribution Pπ,M as given in (6). For a n×n symmetric
matrix A with zero diagonal, we write

PA =
⊗
i<j

Be(Ai,j).

If A is only given by Ai,j for i < j, one extends it by symmetry and sets Ai,i = 0.
The distribution of a SBM in the fixed design case with given k,M and labelling
function ϕ is hence PAϕ , where Aϕ

i,j = Aϕ(M)i,j = Mϕ(i)ϕ(j). In the random

design case, if π is the vector with equal proportions ek = [k−1, . . . , k−1], then
from (6),

Pπ,M = Pek,M =
1

kn

∑
ϕ∈[k]n

PAϕ where Aϕ
i,j = Mϕ(i)ϕ(j).

We generically denote universal constants by C, where the value may change
from line to line.

6.1. Two classes

Proof of Theorem 1. Let N = 2n and let A1, . . . , AN be the collection of sym-
metric n × n matrices with general term aij(ϕ) = aij(θ, ϕ) = Qθ

ϕ(i)ϕ(j), i < j

and zero diagonal, for all possible ϕ ∈ [2]n and some θ ∈ Θ. Let A0 be the n×n
matrix with all elements equal to 1/2 on the off-diagonal, that is the matrix
with θ = 0. By Lemma 3, applied with ϑ = 0 and θ = θn small to be chosen
below, in order to get a lower bound for the minimax risk, it is enough to bound
the L1-distance ‖P−Q‖1 between

P = PA0 , Q =
1

N

N∑
k=1

PAk
.

If λ1 = Be(q), λ2 = Be(r), μ = Be(s), a simple computation leads to∫
(
dλ1

dμ
− 1)(

dλ2

dμ
− 1)dμ =

(q − s)(r − s)

s(1− s)
.

By Lemma 4 applied to P and Q, where ϑi,j(ϕ, ψ) = (2aij(ϕ)− 1)(2aij(ψ)− 1),

‖P−Q‖21 ≤ 1

4n

∑
ϕ,ψ∈[2]n

∏
i<j

(1 + ϑi,j(ϕ, ψ))− 1

≤

⎡⎣ 1

4n

∑
ϕ,ψ∈[2]n

e
∑

i<j ϑi,j(ϕ,ψ)

⎤⎦− 1,

Note that 2aij(ϕ)−1 = 2θ(−1)1lϕ(i) �=ϕ(j) for any ϕ ∈ [2]n. Denote ηi = 1lϕ(i)=1−
1lϕ(i)=2 and η′i = 1lψ(i)=1−1lψ(i)=2, for any index i. We have 2aij(ϕ)−1 = 2θηiηj ,



Uniform estimation in stochastic block models 2967

so that ϑi,j(ϕ, ψ) = 4θ2ηiηjη
′
iη

′
j . The term under brackets in the last display can

be interpreted as an expectation over ϕ, ψ, where both variables are sampled
uniformly from the set of all mappings from {1, . . . , n} to {1, 2}. Under this
distribution, the variables ηi for i = 1, . . . , n are independent Rademacher, as
well as the variables η′i, and both samples are independent. Further note that
the variables Ri := ηiη

′
i for i = 1, . . . n form again a sample of independent

Rademacher variables. It is thus enough to bound,

E
[
e4θ

2
n

∑
i<j RiRj

]
,

where E denotes expectation under the law of the Ri. The previous exponent is
an instance of Rademacher chaos; its Laplace transform can be bounded using
Lemma 1. If Zn :=

∑
i<j RiRj , we have that for any ε (say ε = 1/2), there

exists λ > 0 such that for all n ≥ 2,

E
[
e|Zn|/(λn)

]
≤ 1 + ε.

Choosing nθ2n := 1/(4λ) leads to ‖P−Q‖21 ≤ ε = 1/2, so that the minimax risk
is bounded below by (32nλ)−1.

To obtain the constants as in the remark below the Theorem, using Lemma
2 in the final step of the proof with θ2n = 1/(12sn), s

2
n = n(n − 1)/2, r(·) as in

Lemma 2, gives

RM ≥ θ2n
4

{
1− 1

2

√
r(4θ2nsn)

}
,

≥
√
2

48n

{
1− 1

2

√
r

(
1

3

)}
≥ 0.45

48n
≥ 1

107n
.

6.2. Lower bounds for k classes

Here the problem is more delicate compared to k = 2, as the typical number
of nodes per class now depends on k, and, in the random design case, the data
distribution for θ = 0, around which we build the lower bound, is itself a mixture.
As a first step, we start by establishing a result in a fixed design setting, that is

inf
T

sup
θ∈Θ, ϕ∈[k]n

Eθ,ϕ [T − θ]
2 ≥ c

k

n
for some c > 0 and k ≥ 3 . (28)

Proof of (28). Define m = mk = 2�n
k �. Set S1 = {1, . . . ,m} and S2 = {m +

1, . . . , n}. Let ϕ0 ∈ [k]n be a mapping such that

ϕ0(S1) ⊂ {1, 2} and ϕ0(S2) ⊂ {3, . . . , k}. (29)

Let ϕ ∈ [k]n be such that

ϕ(i) = ϕ0(i) whenever i ∈ S2 and ϕ(S1) ⊂ {1, 2}, (30)
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and denote by F = F(ϕ0, S1) the set of all such ϕ’s. Then the restriction
ϕ|S1

=: ϕ1 of ϕ ∈ F to S1 can be identified to an element of [2]m.

Let Mθ be the k × k matrix defined in (12). For ϕ ∈ F , let Rϕ denote the
matrix with general term rij = rij(ϕ) equal to Mθ

ϕ(i)ϕ(j). There are as many

such matrices as possible ϕ1s, that is |[2]m| = 2m. As ϕ and ϕ0 are identical by
construction on S2,

rij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Mθ

ϕ1(i)ϕ1(j)
if (i, j) ∈ S1 × S1

Mθ
ϕ1(i)ϕ0(j)

= aϕ0(j)−2 = M0
ϕ0(i)ϕ0(j)

if (i, j) ∈ S1 × S2

Mθ
ϕ0(i)ϕ1(j)

= aϕ0(i)−2 = M0
ϕ0(i)ϕ0(j)

if (i, j) ∈ S2 × S1

M0
ϕ0(i)ϕ0(j)

if (i, j) ∈ S2 × S2

where ϕ1 belongs to [2]m. Next set, with A0 the matrix with general term
mij(ϕ0) = M0

ϕ0(i)ϕ0(j)
,

P′ = PA0 and Q′ =
1

2m

∑
ϕ∈F

PRϕ .

Now we apply Lemma 4 to P′,Q′. Both PA0 and PRϕ are product measures over
all pairs of indices (i, j) with 1 ≤ i < j ≤ n. By construction, the individual
components of these products coincide as soon as either i or j does not belong
to S1. We write

PA0 =
⊗
i<j

PA0(i, j) and PRϕ =
⊗
i<j

PRϕ(i, j).

where, for any indices i, j with i < j,

PA0(i, j) = Be(M0
ϕ0(i)ϕ0(j)

) and PRϕ(i, j) = Be(Mθ
ϕ(i)ϕ(j)).

For ϕ, ψ ∈ [4]n, we set

τi,j(ϕ, ψ) = PA0(i, j)

[(
dPRϕ(i, j)

dPA0(i, j)
− 1

)(
dPRψ

(i, j)

dPA0(i, j)
− 1

)]
.

If i or j belongs to S2, then rij(ϕ) = M0
ϕ0(i)ϕ0(j)

= A0(i, j) = rij(ψ) by def-
inition, in which case the last display equals 0. In Lemma 4, where ϕ, ψ play
the role of the indices k, l. Identifying ψ|S1

with the corresponding mapping
ψ1 ∈ [2]m, we have ‖P′ −Q′‖21 ≤ χ2(Q′,P′) and

χ2(Q′,P′) ≤ 1

22m

∑
ϕ1,ψ1∈[2]m

∏
1≤i<j≤m

(1 + τi,j(ϕ1, ψ1))− 1. (31)

The last expression coincides with the bound obtained in the proof of Theorem
1, with n replaced by m = mk. As in that proof, there hence exist indepen-
dent Rademacher variables R1, . . . , Rm such that Zm = m−1

∑
1≤i<j≤m RiRj

satisfies
χ2(Q′,P′) ≤ E exp

[
4mθ2|Zm|

]
− 1.
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Provided θ is defined as, for a a small enough constant,

θ2 = a(4m)−1 ∼
(n
k

)−1

,

using Lemma 1 as in the proof of Theorem 1 leads to the bound ‖P′−Q′‖1 ≤ 1/2
if θ2 is a small enough multiple of k/n, which again leads to a lower bound for
the minimax risk of a positive constant times k/n, which proves (28).

Proof of Theorem 2. For e = ek and Mθ as in (11)-(12), let

Qθ =
1

kn

∑
ϕ∈[k]n

⊗
i<j

Be(Mθ
ϕ(i)ϕ(j)),

and set P = Q0 corresponding to θ = 0. Our aim is to show that Qθ and P are
close in the sense ‖Qθ − P‖1 ≤ 1/2 say, while θ is a fixed positive multiple of√

k/n. For a given ϕ ∈ [k]n, set

S1 := ϕ−1({1, 2}) and S2 := ϕ−1({3, 4, . . . , k}).

By definition we have S1 = Sc
2 := {1, . . . , n} \ S2 and |S1|+ |S2| = n.

The proof has two steps. First, one shows that with high probability one can
restrict to designs (i.e. specific mapping ϕ’s) such that there are around 2n/k
nodes that have label either 1 or 2. Second, we show that estimation with a
random design is ‘harder’ than in the (easiest) typical fixed design case. This
argument is reminiscent of ‘information processing inequalities’ encountered in
information theory, although here a maximisation also takes place for not know-
ing the class labels. It is then important to maximise only over designs obtained
from Step 1, in order for the lower bound rate to be k/n.

Step 1. One first shows that it is possible to restrict the sum in the definition of
Qθ and P to ϕ’s in the set

An =

{
ϕ ∈ [k]n,

∣∣∣∣ |ϕ−1({1, 2})| − 2n

k

∣∣∣∣ ≤ n

k

}
=

{
ϕ ∈ [k]n,

∣∣∣∣ |ϕ−1({3, . . . , k})| − (k − 2)n

k

∣∣∣∣ ≤ n

k

}
.

The reason is that the large majority of sets S1 have a cardinality of the order
close to n/k. The proportion of ϕ’s not in An among all possible ϕ’s is given by
the probability of a binomial Y ∼ Bin(n, 2/k) variable being farther than n/k
from its mean. By Bernstein’s inequality, as v := Var[Y ] = n(2/k)(1− 2/k), for
any t > 0,

P

[∣∣∣∣Y − 2n

k

∣∣∣∣ > t

]
≤ 2 exp

{
− t2

2v + t

}
.

Taking t = n/k and setting Rn := |An|, we have just shown that

0 ≤ 1− Rn

kn
≤ 2e−

n
k (5− 8

k )−1

.
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Now set

Q̃θ =
1

Rn

∑
ϕ∈An

⊗
i<j

Be(Mθ
ϕ(i)ϕ(j)) and P̃ = Q̃0.

By the triangle inequality,

‖Qθ − P‖1 ≤ ‖Qθ − Q̃θ‖1 + ‖Q̃θ − P̃‖1 + ‖P̃− P‖1.

By Lemma 5, ‖Qθ − Q̃θ‖1 + ‖P̃ − P‖1 is bounded above by 4(1 − Rn/k
n) ≤

8e−
n
k (5− 8

k )−1

.

Step 2. We now focus on bounding the middle term ‖Q̃θ − P̃‖1. Let Σn denote
the collection of subsets of {1, 2, . . . , n} with |S2 − (k − 2)n/k| ≤ n/k. For a
given S ∈ Σ, let ϕS = ϕ|S denote the restriction of ϕ to S. Below we use the
notation

∑
ϕS

with the meaning that each term of the sum corresponds to a

possible mapping ϕS , that is a given collection of values (ϕ(i))i∈S ∈ {1, . . . , k}S .
To do so, we rewrite Q̃θ and P̃ as ‘mixtures of mixtures’, by splitting the sum

over ϕ into a sum over S2, ϕS2 and ϕS1 given S2. Specifying ϕ is equivalent to
giving oneself S2 (then S1 = Sc

2), ϕS2 and ϕSc
2
= ϕS1 . Denote

P θ
ϕ(i, j) = Be(Mθ

ϕ(i)ϕ(j)) and P θ
ϕ =

⊗
i<j

P θ
ϕ(i, j).

For given S2 and ϕS2 , set

T θ
ϕ,S2

=
1

2n−|S2|

∑
ϕS1

|S2,ϕS2

P θ
ϕ,

where one sums over all possible mappings ϕS1 , while S2 and ϕS2 are fixed. We
have

Q̃θ =
∑

S2∈Σn, ϕS2

2n−|S2|

Rn
T θ
ϕ,S2

.

Note that the above measures are normalised to be probability measures. Indeed,
given S2 ∈ Σn, there are 2|S1| = 2n−|S2| possible choices for ϕS1 . As Q̃θ is of
total mass one, we have∑

S2∈Σn, ϕS2

λS2 = 1 for λS2 :=
2n−|S2|

Rn
.

Using the triangle inequality, one can bound

‖Q̃θ − P̃‖1 =

∥∥∥∥∥∥
∑

S2∈Σn, ϕS2

λS2T
θ
ϕ,S2

−
∑

S2∈Σn,ϕS2

λS2T
0
ϕ,S2

∥∥∥∥∥∥
1

≤
∑

S2∈Σn, ϕS2

λS2

∥∥T θ
ϕ,S2

− T 0
ϕ,S2

∥∥
1
≤ max

S2∈Σn, ϕS2

∥∥T θ
ϕ,S2

− T 0
ϕ,S2

∥∥
1
.
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It is now sufficient to bound uniformly the above L1-distance. For simplicity, we
denote

T θ
ϕ,S2

=
1

2n−|S2|

∑
ϕS1

|S2

P θ
ϕ :=

1

2n−|S2|

∑
ϕ1

P θ
ϕ1,ϕ2

,

where ϕ2 = ϕS2 and ϕ1 = ϕS1 , and ϕ is the pair (ϕ1, ϕ2). Set

λS1 = 2−(n−|S2|) = 2−|S1|.

Using the definition of T θ
ϕ,S2

above,

∥∥T θ
ϕ,S2

− T 0
ϕ,S2

∥∥
1
=

∥∥∥∥∥∑
ϕ1

λS1P
θ
ϕ1,ϕ2

−
∑
ϕ1

λS1P
0
ϕ1,ϕ2

∥∥∥∥∥
1

=

∥∥∥∥∥∥
∑
ϕ1

λS1{P θ
ϕ1,ϕ2

−
∑
ϕ′

1

λS1P
0
ϕ′

1,ϕ2
}

∥∥∥∥∥∥
1

≤
∑
ϕ1

λS1

∥∥∥∥∥∥
∑
ϕ′

1

λS1P
θ
ϕ′

1,ϕ2
− P 0

ϕ1,ϕ2

∥∥∥∥∥∥
1

≤ max
ϕ1

∥∥∥∥∥∥
∑
ϕ′

1

λS1P
θ
ϕ′

1,ϕ2
− P 0

ϕ1,ϕ2

∥∥∥∥∥∥
1

.

Combining this with the previous bounds one deduces that

‖Qθ − P‖1 ≤ ‖Q̃θ − P̃‖1 + 8e−
n
k (5− 8

k )−1

≤ max
S2∈Σn,ϕ(S2)

max
ϕ1

∥∥∥∥∥∥
∑
ϕ′

1

λS1P
θ
ϕ′

1,ϕ2
− P 0

ϕ1,ϕ2

∥∥∥∥∥∥
1

+ 8e−
n
k (5− 8

k )−1

.

To conclude the proof, observe that the structure of the bound in the maximum
in the last display is nearly identical to the quantities appearing in Equation
(31) for the fixed-design case.

In the present case, we have a fixed mapping ϕ : {1, . . . , n} → {1, . . . , k}, with
ϕ1 = ϕ |S1

and ϕ2 = ϕ |S2
, that plays the role of ϕ0 in the fixed-design case.

On the other hand, we have a collection of other mappings, say ϕ̄, that coincide
with ϕ on S2, that is ϕ̄2 = ϕ̄ |S2

= ϕ |S2
= ϕ2, and that cover all possible

cases for the image of S1, namely ϕ̄1 = ϕ̄ |S1
= ϕ′

1. The only difference to the
fixed-design case is that |S1| belongs to [n/k, 3n/k], instead of being exactly
2�n/k�, as specified in the definition of Σn above. That is, denoting as above
Zm = m−1

∑
1≤i<j≤m RiRj , with m1 = |S1|,∥∥∥∥∥∥
∑
ϕ′

1

λS1P
θ
ϕ′

1,ϕ2
− P 0

ϕ1,ϕ2

∥∥∥∥∥∥
1

≤ E exp
[
4m1θ

2|Zm1 |
]
− 1.

This bound is uniform over S2, ϕ2. Asm1 ≤ 3n/k, if one chooses θ2 ≤ 1/(12λn/k),
with λ = λ(1 + ε) the constant in Lemma 2, then this Lemma implies that for
any m1 between n/k and 3n/k, the L1-distance in the last display is bounded
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by ε. Crucially, the constant λ in Lemma 1 is independent of the number of
terms in the Rademacher chaos. Deduce

‖Qθ − P‖1 ≤ ε+ 8e−
n
k (5− 8

k )−1

.

Choosing n/k > 12 makes this bound smaller than ε+4/5 < 1 for ε < 1/5.

6.3. Useful lemmas

Let {Zi, i ≥ 1} be i.i.d. Rademacher variables. For reals xij and N ≥ 2, set

Y := YN =
∑

i<j≤N

yijZiZj ,

s(Y )2 =
∑

i<j≤N

y2ij .

Lemma 1 (Corollary 3.2.6 of de la Peña and Giné [13]). Let N ≥ 2, and Y = YN

and s(Y ) as above. For every c > 1, there exists λ = λ(c) > 0 independent of N
such that

E exp

[
|Y |

λs(Y )

]
≤ c.

We repeatedly use Lemma 1 in the case where all yij are equal to 1, for
various values of N . In such a setting, a reformulation is as follows. For any
c > 1 and N ≥ 2, one can find a constant a = a(c) independent of N such that

E exp

[
a
|YN |
N

]
≤ c. (32)

Lemma 2 (Rademacher chaos with explicit constant). Let N ≥ 2, and Y = YN

and s(Y ) as above. For any 0 ≤ δ ≤ 1,

E exp

[
δ
|Y |
s(Y )

]
− 1 ≤ r(δ), with r(δ) = δ +

δ2

2
+

8δ3

6
+

1

1− eδ

(eδ)4√
8π

.

The lemma applied with δ = 1/3 gives a bound 1.87 for the right hand side.

Proof. Theorem 3.2.2 in [13] gives, for any k ≥ 2,

E|Y |k ≤ (k − 1)ks(Y )k.

For k = 1 one has E[|Y |] ≤ E[Y 2]1/2 = s(Y ). From this one deduces that for
any 0 ≤ δ ≤ 1,

E exp

[
δ
|Y |
s(Y )

]
≤ 1 + δ +

δ2

2
+

8δ3

6
+
∑
k≥4

(k − 1)k

k!
δk,

and the result follows from an application of the nonasymptotic Stirling bound
k! ≥ e−kkk+

1
2

√
2π valid for k ≥ 1.
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Lemma 3 (Le Cam’s method ‘point versus mixture’). Let P = {PM , M ∈
M} be a collection of probability measures indexed by an arbitrary set M =
{M0,M1, . . . ,MN}, N > 1. Set

P = PM0 , Q =
1

N

N∑
k=1

PMk
.

If ψ is a real-valued functional such that ψ(PM0) = τ and ψ(PMi) = θ for any
i = 1, . . . , N , then

inf
θ̂

sup
M∈M

EPM
(ψ̂(X)− ψ(PM ))2 ≥ 1

4
(θ − ϑ)2(1− 1

2
‖P−Q‖1),

where the infimum is over all estimators ψ̂(X) of ψ(PM ) based on the observa-
tion of X ∼ PM .

Proof. This is a standard variation on the case where N = 1 stated in e.g.
[35].

Lemma 4 (Bound on total variation distance). For n ≥ 1, let P1, . . . , Pn and
Q1(k), . . . , Qn(k) for 1 ≤ k ≤ N , for some N ≥ 1, be probability measures. Set

P =

n⊗
i=1

Pi, Q(k) =

n⊗
i=1

Qi(k) P = P, Q =
1

N

N∑
k=1

Q(k).

Suppose that for any i, Qi(k) has density 1 + Δi(k) with respect to Pi. Denote
ϑi(k, l) = PiΔi(k)Δi(l). Then, for χ2(Q,P) =

∫
(dQ/dP− 1)2dP,

‖P−Q‖21 ≤ χ2(Q,P) =
1

N2

∑
k,l

n∏
i=1

{1 + ϑi(k, l)} − 1.

Proof. The first bound on distances is standard, while the second bound follows
from elementary calculations.

Lemma 5. Let N,R be two integers with N ≥ 2, 1 ≤ R ≤ N , and (Pi)i∈I be an
arbitrary collection of probability measures with |I| = N . If J ⊂ I and |J | = R,
we have ∥∥∥∥∥ 1

N

∑
i∈I

Pi −
1

R

∑
i∈J

Pi

∥∥∥∥∥
1

≤ 2

(
1− R

N

)
.

Proof. The result follows by splitting the sum over I in a sum over J and I \ J ,
applying the triangle inequality and using the fact that ‖

∑
j∈J Pj‖1 = |J |.
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7. Proofs for results on graphon functionals

To prove Theorem 6, we observe that polynomial graphons of bounded degree
include the graphon wθ in (26). The proof approximates this smooth graphon wθ

by a piecewise constant graphon, and then uses a lower-bound for such piecewise
constants. We prove this lower bound, Lemma 6, first. Similar to the SBM case,
this builds on Le Cam’s point versus mixture method. We then proceed to prove
Theorem 6.

7.1. Auxiliary lower bound

Assume the function w is piecewise constant, with different values taken along
blocks corresponding to a regular partition of [0, 1]2 in k × k = k2 blocks, and
k an even integer k = 2l, with l ≥ 1. That defines a law of the form

1

kn

∑
ϕ∈[k]n

⊗
i<j

Be(Qϕ(i)ϕ(j)) = Pek,Q,

where ϕ is an element of [k]n and Q = Qθ a given k × k matrix defined be-
low. In the next statement and proof, Eθ denotes the expectation under this
distribution. Denote by Ok the k × k matrix with only ones as coefficients,

Ok =

⎡⎢⎣1 · · · 1
...

...
...

1 · · · 1

⎤⎥⎦ ,

and, for a symmetric l × l matrix A with coefficients Aij ∈ [0, 1], define the
k × k = (2l)× (2l) matrix

B :=

[
A −A
−A A

]
.

We define Q = Qθ as the k × k = (2l)× (2l) matrix

Q = Qθ =
1

2
·Ok + θ ·B =

1

2
·Ok + θ

[
A −A
−A A

]
. (33)

Lemma 6. Let k = 2l be an even integer and A an arbitrary symmetric l × l
matrix. Let Q = Qθ be the matrix defined in (33). There exists a constant c3 > 0
such that

inf
θ̂

sup
θ∈(−1/2,1/2)

Eθ(θ̂(X)− θ)2 ≥ c3
n
,

where the infimum is over all estimators of θ valid under Eθ = EP
ek,Qθ

.
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Proof of Lemma 6. Let Q = Pek,Qθ be as above. That is,

Q =
1

kn

∑
ϕ∈[k]n

PZθ
ϕ
, PZθ

ϕ
=
⊗
i<j

Be(Qθ
ϕ(i)ϕ(j)),

with {Zθ
ϕ} the matrix of general term zij(ϕ, θ) = Qθ

ϕ(i)ϕ(j), for ϕ ranging over

the set [k]n. Let P denote the Erdös-Renyi ER(1/2) distribution over n nodes,
which also corresponds to Pek,Qθ for θ = 0. Consider the functional ψ defined
as,

ψ(Pek,Qθ ) = θ.

By definition, for any ϕ ∈ [k]n, we have ψ(P) = ψ(Pek,Q0) = 0 and ψ(Q) =
ψ(Pek,Qθ ) = θ. The same computation as in the proof of Theorem 1 now shows
that, for B given in the display below,

‖P−Q‖21 ≤ 1

k2n

∑
ϕ,ψ∈[k]n

exp
{
4θ2

∑
i<j

Bϕ(i)ϕ(j)Bψ(i)ψ(j)

}
− 1.

The last term in the bound can be interpreted as an expectation over ϕ, ψ,
where both variables are sampled uniformly from the set of all mappings from
{1, . . . , n} to {1, . . . , k}. Recall that l = k/2 and for any integer s, denote by [s]l
the integer in {1, . . . , l} that equals s modulo l, plus 1. The variable Bϕ(i)ϕ(j)

can be written

Bϕ(i)ϕ(j) = (−1)ϕ(i)>l(−1)ϕ(j)>lA[ϕ(i)]l[ϕ(j)]l .

When ϕ follows the uniform distribution over [k]n, the variables (ϕ(i))i are in-
dependent and are marginally uniform over [k]. Also, the variables ((−1)ϕ(i)>l)i
and ([ϕ(i)]l)i are independent under the uniform distribution for ϕ as we show
next. If Pr denotes the corresponding distribution, then for any i ≤ n and any
s ≤ l

Pr
[
ϕ(i) > l, [ϕ(i)]l = s

]
=

1

k
=

1

2
· 1
l
= Pr[ϕ(i) > l]Pr[ϕ(i)]l = s].

Note the identity holds both for k ≤ n and k > n. Set Ri := (−1)ϕ(i)>l and
aij := A[ϕ(i)]l[ϕ(j)]l . Deduce from the previous reasoning that the variables (Ri)i
and (aij)i<j are independent. Now, denoting by E the expectation under Pr,

‖P−Q‖21 ≤ E

[
exp

{
4θ2

∑
i<j

Bϕ(i)ϕ(j)Bψ(i)ψ(j)

}]
− 1

≤ E

[
E

[
exp

{
4θ2

∑
i<j

aijRiRj

}∣∣∣∣∣aij
]]

− 1.

As (Ri)i and (aij)i<j are independent, one can compute the inner expectation
in the last display under the distribution of (Ri)i, the aij ’s being fixed. The
(Ri)i form a sample of independent Rademacher variables, hence

Zn :=
∑
i<j

aijRiRj
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is a Rademacher chaos of order 2 with weights (aij). Suppose the matrix A is
not identically zero (otherwise the bound below holds trivially). By Lemma 1,
for any c > 1 one can find λ > 0 with

E exp
[ |Zn|
λ‖Zn‖2

∣∣∣ aij] ≤ c where ‖Zn‖22 = E[|Zn|2 | aij ] =
∑
i<j

a2ij .

Choose c = 3/2. By definition, all aijs are bounded by 1. There is hence a λ > 0
such that, if θ2 = 2/(λn),

E exp
[
4θ2|Zn|

∣∣ aij]− 1 ≤ 3/2− 1 = 1/2.

The result now follows from an application of Lemma 3 to the functional ψ.

7.2. Proof of the theorem

Proof of Theorem 6. Let us recall the definition, for any 0 ≤ θ ≤ 1, of the
function w = wθ in (26)

wθ(x, y) =
1

2
− θ(x− 1

2
)(y − 1

2
)

and let 〈wθ〉 be its graphon equivalence class. By definition, 〈wθ〉 belongs to P .
One has ∫

[0,1]2
wθ(x, y)

2dxdy =
1

4
+ c2θ2,

for some constant c > 0, so that ϑ(〈wθ〉) − ϑ(〈w0〉) = cθ. The function w0 is
the constant 1/2, and the density of the data distribution P〈w〉 with respect to

counting measure on {0, 1}n(n−1)/2 is

pw({xij}i<j) =

∫
· · ·
∫ ∏

i<j

Be(w(ui, uj))(xij)du1 · · · dun,

where, for any z in [0, 1] and xij in {0, 1}, we have set

Be(z)(xij) = zxij (1− z)1−xij .

Next one shows that P〈w〉 is close in the total variation sense to a discrete
mixture of the previous Bernoulli-probability distributions, provided the number
of points in the mixture is suitably large. To do so, we approximate the function
Pn defined by

Pn : (u1, . . . , un) �→
∏
i<j

Be(w(ui, uj))(xij),

by a piecewise constant function hN,θ = hN , where [0, 1]n is split into Nn

blocks, N ≥ 1, using a regular grid of [0, 1]n with points (i1/N, . . . , in/N) and
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0 ≤ ij ≤ N for all j. To do so, one just replaces w(ui, uj) by, say, the value of w
on the middle of the block the point (ui, uj) belongs to. This defines a function

Qn,N : (u1, . . . , un) �→
∏
i<j

Be(w̄(ui, uj))(xij),

where w̄ is constant on every block of the subdivision. Let QN
w denote the

corresponding measure, with density

qNw ({xij}i<j) =

∫
· · ·
∫ ∏

i<j

Be(w̄(ui, uj))(xij)du1 · · · dun.

Taking w = wθ as above, the function Pn is a polynomial in u1, . . . , un, and its
degree with respect to each variable ui is n−1. The partial derivatives of Pn can
be computed, and each of them can be seen to be bounded by n− 1: For each
variable, only n−1 non-zero terms appear when evaluating the partial derivative,
and each term is uniformly bounded by 1. Consequently, if (u1, . . . , un) and
(u′

1, . . . , u
′
n) belong to the same block,

|Pn(u1, . . . , un)− Pn(u
′
1, . . . , u

′
n)| ≤ (n− 1)

n∑
i=1

|ui − u′
i| ≤ n2/N.

For w = wθ as above, we can thus bound the total variation distance as

‖P〈w〉 −QN
w ‖1 ≤

∑
x∈{0,1}

n(n−1)
2

|pw − qNw |(x)

≤ n2 max
x∈{0,1}

n(n−1)
2

|pw − qNw |(x) ≤ n2(n2/N) = n4/N.

Each probability measure QN
w is a mixture of Nn distributions, each of which

in turn corresponds to a block in the subdivision of [0, 1]n. One can rewrite

QN
w =

1

Nn

∑
ϕ∈[N ]n

⊗
i<j

Be(Mϕ(i)ϕ(j)),

where the matrix M = (Mpq)1≤p,q≤N is the symmetric matrix with terms

Mpq = wθ

(
p− 1

2

N
,
q − 1

2

N

)
.

If N is even, which one can assume without loss of generality, the matrix M is
exactly of the same form as Q in (33), with elements in (0, 1), so one can use
the bound in ‖ · ‖1-distance between measures obtained in the proof of Lemma
6. Note that the argument remains valid even if the number of classes exceeds
the number of observations n, which will be of importance below. For a small
constant c and θ2 = κ/n, we obtain

‖QN
wθ

−QN
w0

‖1 ≤ c
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for κ sufficiently small. Choosing N = Cn4, for C > 0 large enough, leads to

‖P〈wθ〉 − P〈w0〉‖1 ≤ ‖P〈wθ〉 −QN
wθ

‖1 + ‖QN
wθ

−QN
w0

‖1 + ‖QN
w0

− P〈w0〉‖1
≤ n4/N + c+ 0 ≤ c′ < 1/2.

An application of Lemma 3 with the functional ψ(P〈w〉) := ψ(〈w〉) concludes
the proof of the lower bound in Theorem 6 in the case where ψ(·) = ϑ(·). The
lower bound for a general ψ follows by the same proof, noting that the specific
form of the functional only comes in through the difference ψ(〈wθ〉)− ψ(〈w0〉),
which behaves as for ϑ(·) by assumption.

For the upper-bound, we first link the squared distance to the truth for
the functional to the squared L2-distance of corresponding graphons. Let w,w1

be two fixed graphon functions, and suppose that at least one of these is non
constant (almost everywhere), which means that either ϑ(〈w〉) > 0 or ϑ(〈w1〉) >
0. Then, writing simply

∫
to denote the double integral on [0, 1]2,

ϑ(〈w1〉)− ϑ(〈w〉) =
{∫

(w1 −
∫

w1)
2

}1/2

−
{∫

(w −
∫

w)2
}1/2

=

∫
(w1 −

∫
w1)

2 −
∫
(w −

∫
w)2{∫

(w1 −
∫
w1)2

}1/2
+
{∫

(w −
∫
w)2

}1/2 ,
where the denominator is nonzero by assumption on w,w1; we henceforth denote
it c. Then

ϑ(〈w1〉)− ϑ(〈w〉) ≤ c−1

∫ {
w1 − w −

∫
(w1 − w)

}{
w1 + w −

∫
(w1 + w)

}

≤ c−1

[∫ {
w1 − w −

∫
(w1 − w)

}2
]1/2 [∫ {

w1 + w −
∫

(w1 + w)

}2
]1/2

.

The two factors in brackets are bounded as follows: For the second term, apply
the inequality (a+b)2 ≤ 2a2+2b2, followed by

√
u+ v ≤ √

u+
√
v, which yields[∫ {

w1 + w −
∫
(w1 + w)

}2
]1/2

≤
√
2

[∫
(w1 −

∫
w1)

2 +

∫
(w −

∫
w)2

]1/2
≤

√
2c.

For the first term, use 0 ≤
∫
(g −

∫
g)2 ≤

∫
g2 for a bounded measurable g, as

one integrates over [0, 1]2. That yields

{ϑ(〈w1〉)− ϑ(〈w〉)}2 ≤ 2

∫
(w1 − w)2,

and this inequality clearly still holds true in case ϑ(〈w〉) = ϑ(〈w1〉) = 0. One
concludes that

{ϑ(〈w1〉)− ϑ(〈w〉)}2
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≤ 2 inf
T∈T

∫ ∫
[0,1]2

|w1(T (x), T (y))− w(x, y)|2 dxdy =: δ2(w1, w),

where T is the set of all measure-preserving bijections of [0, 1]. Indeed, the
previous inequalities hold true for any choice of representer of the graphon w1,
so one can take the infimum over T in the previous bounds. By Corollary 3.6 of
[23], for data X generated from Pw, there exists an estimator ŵ = ŵ(X) that
satisfies EPw [δ

2(ŵ, w)] ≤ C(logn/n). Since 〈w〉 has a representer that belongs to
PB by assumption, it belongs in particular to the Hölder class Σ(1, L), provided

L is chosen large enough. For the plug-in estimator ϑ̂(X) := ϑ(ŵ), combining
the previous result with the last display implies

E
[
{ϑ̂(X)− ϑ(〈w〉)}2

]
≤ C

logn

n
,

for C large enough depending only on PB , which concludes the proof.

Appendix A: Upper bounds computable in polynomial-time

This section generalizes the polynomial-time estimate in Section 4.2 to k ≥ 2
classes, by combining the spectral clustering method of Lei and Rinaldo [25] with
a refinement due to Lei and Zhu [26]. The latter is based on a sample splitting,
and under appropriate conditions on the connectivity matrix recovers the labels
exactly , with high probability. Theorem 7 below shows that, under additional
conditions, this polynomial-time estimator achieves the minimax rate.

A.1. Spectral estimation for k ≥ 2 classes

Recall the assumed form of the connectivity matrix Mθ in (12). The conditions
of the next results are in terms of an ‘aggregated’ (k − 1) × (k − 1) matrix N
obtained from Mθ by merging the first and second row/columns when θ = 0,
that is

N =

⎡⎢⎢⎢⎣
1/2 a1 · · · ak−2

a1 b11 · · · b1k−2

...
...

...
ak−2 b1k−2 · · · bk−2k−2

⎤⎥⎥⎥⎦ .

Recall that ϕ denotes the true labelling map. Define a labelling ψ : [n] → [k−1]
by ψ(v) = 1 if ϕ(v) ∈ {1, 2} and ψ(v) = ϕ(v) − 1 if v ∈ {3, . . . , k}. That is, we
‘aggregate’ nodes of label 1 or 2 in one class and renumber the remaining labels
so that the label set is, now, [k − 1]. Following [26], we write gv = ψ(v) for the
true (aggregated) label of node v ∈ [n] and I(l) = {v ∈ [n] : gv = l}.

The algorithm Spec-θ specified in the frame below has three steps. First,
one runs the exact label recovery algorithm V-Clust of Lei and Zhu [26] for
K = k − 1 classes. Under some conditions on the matrix N , see (A1)–(A2)
below, this finds the ‘aggregate’ labels ψ above up to label permutation with high
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probability. Then the aim is to recover the aggregated class with original labels 1
and 2. Due to the label switching issue, this requires some extra condition on N .
For simplicity (see also comments below) we assume in (A3) that the diagonal
terms bii are separated from 1/2, which enables to estimate the aggregated class
label 1 by comparing diagonal empirical connectivities to 1/2. Finally, in a third
step one can run the spectral algorithm S2 from Section 3.1 on the nodes found
at the previous step.

We set K = k− 1 and assume that, for a large enough universal constant C:

(A1) N is full rank and any two rows of N are separated by at least γ = γ(K) >
0 in �2-norm.

(A2) For λ = λ(K) the smallest absolute eigenvalue of N ,

nλ(K)γ(K) ≥ CK4.5, nγ(K)2 ≥ CK3 logn, n ≥ CK3.

(A3) For all i ∈ {1, . . . , k − 2},

|bii − 1/2| ≥ κ,

where κ = κ(K) ≥ C
√
K(logn)/n.

Algorithm: Spectral method for estimation of θ (Spec-θ)

Input: adjacency matrix X (where we set Xii = 0), number of classes k

Subroutines: V-Clust (Lei-Zhu), Initial community recovery S (Lei-
Rinaldo), Spectral algorithm S2 for k = 2 (Section 3.1)

1. Apply V-Clust on adjacency matrix X using k− 1 classes, S and
V = 2

ĝ = V-Clust(X, k − 1, V,S).

2. Set Î(1) = {v ∈ [n] : ĝv = �̂ }, where

�̂ = argmin
l∈[k−1]

∣∣∣∣∣ 1(|ĝ−1(l)|
2

) ∑
i<j, i,j∈ĝ−1(l)

Xij − 1

2

∣∣∣∣∣
3. Run spectral algorithm S2 for k = 2 on corresponding nodes and

set
θ̂ = S2(X

Î(1)

),

where X Î(1)

is the induced adjacency matrix over nodes in Î(1).

Comments on (A1)–(A3) follow below. For a version for sparse graphs, see
Appendix B.

Theorem 7. In the fixed design SBM model with k classes, under the as-
sumptions (A1)–(A3), let us set, for c a small enough universal constant and
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K = k − 1,

TK := c
λ(K)γ(K)1/2

K5/4
∧ κ

4
. (34)

Then the obtained θ̂ from algorithm Spec-θ satisfies, for C3 a large enough
constant,

sup
|θ|≤TK , ϕ∈Σe

Eθ,ϕ

[
θ̂ − θ

]2
≤ C3

k

n
.

Proof. This is a special case of Theorem 9, in Appendix B below.

The algorithm Spec-θ, unlike the likelihood method considered below, only
uses the fact that the connectivity matrix is of the form Mθ, but does not use
specific knowledge of the vector a and matrix B to compute θ.

Comments on the assumptions. Conditions (A1) and (A2) are typical for
spectral methods; their specific form is that assumed by Lei and Zhu [26], with
the initial recovery algorithm being that of Lei and Rinaldo [25]. If K is fixed
independently of n, then (A2) follows from (A1) if n is large enough. Condition
(A3) is specific to our problem, and assumed in this form only for simplicity
of exposition: To identify the special cluster arising from the 1/2 coefficient
in the matrix N (step 2. in Spec-θ), some identifiability condition is needed,
because even the refined spectral clustering algorithm of [26] can only recover
the original labels up to a permutation. Condition (A3) is similar in spirit to
condition (21), but weaker. It can be replaced with any other condition that
ensures cluster 1 can be identified from a noisy, permuted version of N (with
noise amplitude going to zero fast, as k/n). Note that, if k is fixed and n large
enough, (A3) simply requires the diagonal terms of B to differ from 1/2.

Finally, a comment on TK in (34). The label recovery in Steps 1–2 is run
with k − 1 classes, and hence joins two of the k classes in the sample. The
restriction on the range of θ ensures the classes joined are the first two, with
high probability. Indeed, here we are interested in the situation where θ may
be small, which makes identification of labels difficult, and the rate slow; if θ is
large, the problem becomes easier. Again, note that if k is fixed, the condition
simply requires that |θ| is smaller than a given constant.

A.2. Simulation study

Those estimators described above that are computationally feasible—the spec-
tral and sample splitting estimators for k = 2, and the Spec-θ estimator for
k > 2—can be tested in simulation: Draw n vertices from a stochastic block
model as in (13) with a given value of θ, compute the respective estimate, and
report the empirical quadratic risk. Figure 1 shows how the risk develops as a
function of sample size for different values of θ, for the two-community model
(9). For k > 2 communities, the model is given by the connectivity matrix
(12). Simulation results for k = 5, with a1 = 1

12 , a2 = 11
12 and a3 = 1, are shown

in Figure 2. As is visible in Figures 1 and 2, smaller values of θ correspond
overall to a larger risk, and a much slower decay of the empirical risk curves.
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Fig 1. Estimation of θ in the two-class case, using (i) the spectral estimator (23) and (ii)
sample splitting. Graphs of size n = 50, 100, 500, 1000, 1500 are generated from the graphon
on the right, for θ = 0.01, 0.025, 0.05, 0.1. Shown is the empirical risk (computed over 1000
experiments) as a function of the sample size n.

Fig 2. Estimation of θ in the five-class case, using the Spec-θ algorithm. Graphs
of size n = 50, 100, 500, 1000, 1500 are generated from the graphon on the right, for
θ = 0.01, 0.025, 0.05, 0.1. Shown is the empirical risk (computed over 1000 experiments) as
a function of the sample size n. For small values of θ, convergence slows visibly.

This illustrates our theoretical finding that there exists a range of parameters
corresponding to two classes that become close where estimation is much slower.

Appendix B: Extension to sparse graphs

So far, we have for simplicity considered dense graphs, in the sense that at least
some elements of the connectivity matrix (e.g. 1/2 + θ or 1/2− θ) are bounded
away from zero.

B.1. Two classes

An αn–sparse SBM model is generally defined as one in which the connectivity
matrix M can be written, for αn a sequence going to 0 with n, as M = αnM0,
forM0 a nonnegative symmetric matrix with maximum entry 1 [e.g. 8, 25]. Here,
we assume that the connectivity matrix is Mθ(αn) with

Mθ(αn) = αnM
θ, (35)
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and Mθ as in (12). Then the largest coefficient of Mθ is between αn/2 and αn,
as the coefficients of the upper 2 × 2 block are αn(1/2 ± θ). We also set, for
θ ∈ [−1/2, 1/2],

Qθ(αn) = αnQ
θ, Qθ =

[
1
2 + θ 1

2 − θ
1
2 − θ 1

2 + θ

]
. (36)

In constructing upper bounds below, we assume that for Cs a large enough
constant,

(B0) αn ≥ Cs
logn

n
,

as up to a constant logn/n is the typical boundary between the moderately
sparse and very sparse situations, the later requiring different tools, see [25].
For simplicity we also assume that αn is known for the upper-bound results.

Theorem 8. Consider a stochastic blockmodel (3) with k = 2 specified by Pθ =
Pe,Qθ(αn) with e,Qθ(αn) given by (8)-(36). There exists a constant c1 > 0 such
that for all n ≥ 2,

inf
T

sup
θ∈[−1/2,1/2]

Eθ [T (X)− θ]
2 ≥ c1

(
1 ∧ 1

nαn

)
,

where the infimum is taken over all estimators T of θ in the model M. Further-
more, if Δn = X − αnJ/2, and λa

1(Δn) the largest absolute eigenvalue of Δn,
set θ̃ := λa

1(Δn)/{(n− 1)αn}. Then, under (B0), for some constant C > 0 and
n ≥ 2,

sup
θ∈[−1/2,1/2]

Eθ[(θ̃ − θ)2] ≤ C

nαn
.

B.2. k ≥ 2 classes

The case of k classes carries over to the sparse situation as follows. The lower
bound result is only modified by a scaling factor 1/αn. For upper bounds, consid-
ering the more easily computable spectral algorithm Spec-θ only, Assumption
(A2) is replaced by (B2) below, where N has the same definition as in Appendix
A.

(B2) For λ = λ(K) the smallest absolute eigenvalue of N , there exists C > 0
such that

nαnλ(K)γ(K) ≥ CK4.5, nαnγ(K)2 ≥ CK3 logn, n ≥ CK3.

Theorem 9. Consider a stochastic blockmodel (3) with k ≥ 2 classes specified
by Mk in (13), that is Pθ = Pek,Mθ with ek,M

θ given by (11)–(35), for fixed
matrices A,B with arbitrary coefficients. There exists a constant c3 = c3(ρ) > 0,
independent of A,B, such that, for all n ≥ 12k,

inf
T

sup
θ∈[−1/2,1/2]

Eθ [T (X)− θ]
2 ≥ c3

(
1 ∧ k

nαn

)
,
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where the infimum is taken over all estimators T of θ in the model Mk. Let
S2,αn be the algorithm for k = 2 classes in the sparse case described in Theo-
rem 8. Consider the fixed-design setting and suppose (B0), (B2), (A1) and (A3)
are satisfied. Then the algorithm Spec-θ used with subroutine S2,αn outputs an

estimator θ̂ that satisfies, for TK as in (34),

sup
|θ|≤TK , ϕ∈Σe

Eθ,ϕ

(
θ̂ − θ

)2
≤ C

k

nαn
.

Similar comments as for Theorems 2–7 can be made. Also, in the case that
k does not grow with n, then (B2) follows from (B0) for n larger than a fixed
constant. The proof of the lower bound in Theorem 9 is similar to that of
Theorem 2 using the normalisation as in the proof of Theorem 8 and is omitted.
The upper bound result includes that of Theorem 7 and is proved in Appendix
D.

Appendix C: Remaining proofs: likelihood-based upper bounds

The proof for k = 2 below analyzes the least-squares criterion directly. For k ≥ 2
classes, we ‘isolate’ the part corresponding to the 2×2 submodel, by controlling
the number of errors in recovering the labels of the corresponding 2 classes. We
then invoke the result for the case k = 2.

C.1. Interpretation as a pseudo-likelihood

We first justify the interpretation of the estimator θ̂ in (15) as a maximum
(pseudo-)likelihood estimate. In the fixed design model, suppose the data is
Gaussian N (θij , 1) instead of Bernoulli Be(θij). This suggests defining a
(pseudo-)log-likelihood �n(σ, θ) as follows, with cn =

(
n
2

)
log(2π),

−2�n(σ, θ) =
∑
i<j

(Xij −Qθ
σ(i)σ(j))

2 + cn

=
∑

i<j, σ(i)=σ(j)

(Xij − (
1

2
+ θ))2 +

∑
i<j, σ(i) �=σ(j)

(Xij − (
1

2
− θ))2 + cn

=

(
n

2

)
θ2 + θ

⎛⎝ ∑
i<j, σ(i)=σ(j)

(1− 2Xij)−
∑

i<j, σ(i) �=σ(j)

(1− 2Xij)

⎞⎠+ Cn(X),

for a constant Cn(X) depending only on n and X. Setting bn =
(
n
2

)
and

2Zn(σ,X) := −
∑

i<j, σ(i)=σ(j)

(1− 2Xij) +
∑

i<j, σ(i) �=σ(j)

(1− 2Xij),

it is enough to study the function gn(θ, σ) := bnθ
2− 2Zn(σ,X)θ, which satisfies

gn(θ, σ) = bn

(
θ − Zn(σ,X)

bn

)2

− Zn(σ,X)2

bn
≥ −Zn(σ,X)2

bn
.
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Consequently, the pseudo maximum likelihood estimator (θ̂, σ̂) is given by (15)
as claimed.

C.2. Upper bound result, two classes

Proof of Theorem 3. We first prove the result in the fixed design case. Let θ0, σ0

denote the true values of θ, ϕ. The aim is to show that Eθ0,σ0(θ̂ − θ0)
2 ≤ C/n

holds uniformly in θ0, σ0. For a given σ ∈ 2[n],

rij := Xij − 1/2 + (−1)1lσ0(i)=σ0(j)θ0 and Rn(σ) :=
∑

σ(i)=σ(j)

rij −
∑

σ(i) �=σ(j)

rij .

One can write, for any σ ∈ 2[n],

Zn(σ0, X) = bnθ0 +
∑
i<j

(−1)1lσ0(i) �=σ0(j)rij = bnθ0 +Rn(σ0),

Zn(σ,X) = θ0δ(σ, σ0) +Rn(σ),

where we have set

δ(σ, σ0) =
∑
i<j

(−1)1lσ0(i) �=σ0(j)(−1)1lσ(i) �=σ(j) . (37)

For any t > 0 and tn = M2/
√
n, and for a large enough M2 to be chosen below,

Pθ0 [
√
n|θ̂ − θ0| ≥ t]

= Pθ0 [
√
n|θ̂ − θ0| ≥ t]1l|θ0|≤tn + Pθ0 [

√
n|θ̂ − θ0| ≥ t]1l|θ0|>tn

=: P1(t) + P2(t).

By definition of θ̂, with δ(σ, σ0) defined in (37),

bnθ̂ = Zn(σ̂, X) = θ0δ(σ̂, σ0)+Rn(σ̂) and Zn(σ0, X) = θ0bn+Rn(σ0).

For any t ≥ 4M2, using that |δ(σ̂, σ0)| ≤ bn,

P1(t) ≤ Pθ0

[√
n|θ0|

∣∣∣∣δ(σ̂, σ0)

bn
− 1

∣∣∣∣+ √
n

bn
|Rn(σ̂)| ≥ t

]
1l|θ0|≤tn

≤ Pθ0

[√
n

bn
|Rn(σ̂)| ≥ t− 2M2

]
≤ Pθ0

[
sup

σ∈2[n]

|Rn(σ)| ≥
bn√
n

t

2

]
.

For P2(t), there are two cases, depending on the sign of θ0,

P2(t) ≤ Pθ0

[√
n|θ̂ − θ0| ≥ t

]
1lθ0>tn + Pθ0

[√
n|θ̂ − θ0| ≥ t

]
1lθ0<−tn
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≤
{
Pθ0

[√
n|θ̂ − θ0| ≥ t, Zn(σ̂, X) ≥ 0

]
+ Pθ0

[√
n|θ̂ − θ0| ≥ t, Zn(σ̂, X) < 0

]}
1lθ0>tn

+
{
Pθ0

[√
n|θ̂ − θ0| ≥ t, Zn(σ̂, X) ≥ 0

]
+ Pθ0

[√
n|θ̂ − θ0| ≥ t, Zn(σ̂, X) < 0

]}
1lθ0<−tn

Let us discuss the term θ0 > tn first and note that if Zn(σ̂, X) ≥ 0, then
Zn(σ̂, X) = |Zn(σ̂, X)| ≥ |Zn(σ0, X)| ≥ Zn(σ0, X) using the definition of σ̂ as
a maximum. First,

Pθ0

[√
n|θ̂ − θ0| ≥ t, Zn(σ̂, X) ≥ 0

]
1lθ0>tn

≤ Pθ0

[√
n

bn
|Zn(σ̂, X)− Zn(σ0, X) +Rn(σ0)| ≥ t, Zn(σ̂, X) ≥ 0

]
1lθ0>tn

≤ Pθ0

[√
n

bn
(Zn(σ̂, X)− Zn(σ0, X)) +

√
n

bn
|Rn(σ0)| ≥ t

]
1lθ0>tn

≤ Pθ0

[√
n

bn
θ0(δ(σ̂, σ0)− bn) +

√
n

bn
Rn(σ̂) + 2

√
n

bn
|Rn(σ0)| ≥ t

]
1lθ0>tn

≤ Pθ0

[
3

√
n

bn
sup

σ∈2[n]

|Rn(σ)| ≥ t

]
,

where the first three inequalities use identities obtained for Zn(σ̂, X), Zn(σ0, X)
above and the inequality obtained before the display, and the last inequality
uses δ(σ̂, σ0)− bn ≤ 0 and θ0 ≥ 0.

Second, as Zn(σ̂, X) < 0 implies Zn(σ̂, X) < −|Zn(σ0, X)| by definition of
the maximum,

Pθ0

[√
n|θ̂ − θ0| ≥ t, Zn(σ̂, X) < 0

]
1lθ0>tn

≤ Pθ0 [Zn(σ̂, X) < −|Zn(σ0, X)|] 1lθ0>tn

≤ Pθ0 [Zn(σ̂, X) < −|θ0|bn + |Rn(σ0)|] 1lθ0>tn

≤ Pθ0

[
θ0(δ(σ̂, σ0) + bn) < 2 sup

σ∈2[n]

|Rn(σ)|
]
1lθ0>tn

≤ Pθ0

[
2 sup
σ∈2[n]

|Rn(σ)| >
tnbn
8

]
,

where for the last inequality we have used the lower bound on δ obtained in
Lemma 7.

The case θ0 < −tn is treated in a symmetric way, by distinguishing the two
cases Zn(σ̂, X) < 0 and Zn(σ̂, X) ≥ 0 respectively. To obtain a deviation bound

for θ̂, it is enough to study the supremum of the process |Rn(σ)|. For any given
σ and y > 0, by Hoeffding’s inequality,

Pθ0 [|Rn(σ)| > y] ≤ 2 exp{−2y2/bn}.
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A union bound now leads to

P

[
sup

σ∈2[n]

|Rn(σ)| ≥ y

]
≤ 2n exp

{
−2y2/bn

}
for any y > 0.

This bound is smaller than exp{−2n} if one chooses y = n3/2. Combining the
bounds obtained previously, and choosing M2 above as M2 = 64, one deduces

P [
√
n|θ̂ − θ0| ≥ t] ≤ 6e−2n for any t ≥ 4.

The deviation bound in turn implies the bound in expectation

E[n(θ̂ − θ0)
2] = E[n(θ̂ − θ0)

21l√n|θ̂−θ0|≤4] + E[n(θ̂ − θ0)
21l√n|θ̂−θ0|>4],

≤ 16 + 6ne−2n,

where for the second term we have used |θ̂− θ0| ≤ 1, as Θ has diameter 1. This
concludes the proof of Theorem 3 in the fixed design case.

In the random design case, one slightly updates the definition of rij . Here,
the design is specified by ϕ, which is now random, but one can consider

r̃ij = Xij − E[Xij |ϕ].

By definition, E[r̃ij ] = E[E[r̃ij |ϕ]] = 0. Now one can follow the proof in the
fixed design case by writing all statements conditionally on ϕ. As conditionally
on ϕ the variables rij are independent and centered, the arguments leading to
the various upper bounds remain unchanged. As the upper-bounds themselves
do not depend on ϕ, the bounds also hold unconditionally.

What remains to be shown is the bound on δ used above:

Lemma 7. For any σ0, σ ∈ Σ, with δ(σ, σ0) defined in (37) and bn =
(
n
2

)
,

−7

8
bn ≤ δ(σ, σ0) ≤ bn for any n ≥ 5.

Proof. The upper bound corresponds to the number of terms in the sum. For
the lower bound, denote C1 = σ−1

0 ({1}) = {i, σ0(i) = 1}. By symmetry, one can
always assume |C1| ≥ n/2, otherwise one works with C2 = σ−1

0 ({2}). The number
Tσ(C1) of pairs (i, j) ∈ C1 × C1 for which σ(i) �= σ(j) is at most 2N1(σ)N2(σ),
if Ni(σ) = |σ−1({i}) ∩ C1|, i = 1, 2. This implies Tσ(C1) ≤ |C1|2/2, using the
inequality p(q − p) ≤ q2/4, for any 0 ≤ p ≤ q. Thus the number of positive
elements in the sum defining δ(σ, σ0) is at least (|C1|2 − |C1|2/2− |C1|)/2, where
|C1| corresponds to the diagonal terms and the division by 2 to the fact that the
sum is restricted to i < j only (note that the general term of the sum defining
δ is symmetric in i, j). This is at least |C1|2/8 if |C1| ≥ 3. Hence,

δ(σ, σ0) ≥ −bn + 2
|C1|2
8

,

which is the desired bound in view of |C1|2 ≥ bn/2.
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C.3. Upper bound result, k classes

Proof of Theorem 4. First consider the fixed design case: As in the proof of
Theorem 3, let θ0, σ0 denote the true values of θ, ϕ. The aim is to show that

sup
|θ0|≤κ, σ0∈Σe

Eθ0,σ0(θ̂ − θ)2 ≤ C
k

n
.

Let us denote by Z0 and Z̃ the matrices of general terms Z0
i,j := Mθ0

σ0(i)σ0(j)

and Z̃ij := M θ̃
σ̃(i)σ̃(j) respectively, with σ̃, θ̃ given by (17) and i �= j. One inter-

pretation of (17) if that the matrix Z̃ provides the best fit to the data Xij with
respect to the squared L2 loss, when optimising over Σe ×Θn.

As a first step, we show that Z̃ and Z0 are close with high probability, a result
in the spirit of Gao et al [16], Theorem 2.1. This follows from Lemma 8 below,
which states that ‖Z̃ − Z0‖2 ≤ Cn log k with probability at least 1 − e−n log k,
where ‖ · ‖ is the Frobenius norm.

In a second step, denoting S0
I := σ−1

0 ({1, 2}) and recalling from (18) that
S̃I = σ̃−1({1, 2}), we show that S̃I is close to S0

I . To do so, one separately
bounds from below some terms from the quantity ‖Z0−Z̃‖2 =

∑
i,j(Z

0
i,j−Z̃i,j)

2,
recalling that one extends the Z matrices by symmetry and sets the diagonal
to 0. First, using the definitions, (21), |θ| ≤ κ, and n ≥ 2,∑

i,j ∈S0
I \ S̃I

(Z0
ij − Z̃ij)

2 ≥ κ2

2
|S0

I \ S̃I |2,

if |S0
I \ S̃I | ≥ 2 (otherwise the inequality below holds trivially), as well as∑

i∈S0
I ∩ S̃I , j ∈S0

I \ S̃I

(Z0
ij − Z̃ij)

2 ≥ κ2

2
|S0

I ∩ S̃I | |S0
I \ S̃I |,

and, with a ∧ b = min(a, b), if |S0
I ∩ S̃I | ≥ 2,∑

i,j ∈S0
I ∩ S̃I

(Z0
ij − Z̃ij)

2 ≥ 1

2

[
(θ0 − θ̃)2 ∧ (θ0 + θ̃)2

]
|S0

I ∩ S̃I |2.

The previous bound on ‖Z̃ − Z0‖2 implies that

max
(
|S0

I \ S̃I |2 , |S0
I ∩ S̃I | |S0

I \ S̃I |
)
≤ Cκ−2n log k with high probability.

It now follows from (22) that for any δ > 0, one has Cκ−2n log k ≤ δn2/k2,
provided d in (22) is small enough. So for small d, as |S0

I | = |S0
I ∩ S̃I |+ |S0

I \ S̃I |,
and as by assumption σ0 ∈ Σe so that |S0

I | � n/k, one deduces |S0
I ∩ S̃I | � n/k.

From the bound on ‖Z̃ − Z0‖2, it follows that

(θ0 − θ̃)2 ∧ (θ0 + θ̃)2 � n log k

n2k−2
� k2 log k

n
with high probability.
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By (22) this shows that θ̃ is close to either θ0 or −θ0 up to k(log n/n)1/2 =: ρ ≤
κ/2. Now for any i, j in S̃I \ S0

I , if Z̃ij = 1
2 + θ̃ and θ̃ is close to θ0 (the cases

where Z̃ij = 1
2 − θ̃ or θ̃ is close to −θ0 are treated similarly), setting Z0

ij = cij
and using (22), with a0 = 1/2,

|Z0
ij − Z̃ij | = |cij − (a0 + θ̃)| = |cij − (a0 + θ0)− (θ̃ − θ0)|

≥ |cij − (a0 + θ0)| − |θ̃ − θ0| ≥ κ− ρ ≥ κ/2.

Therefore,

κ2|S̃I \ S0
I |2 �

∑
i,j ∈ S̃I\S0

I

(Z0
ij − Z̃ij)

2 � n log k with high probability

and

κ2|S0
I ∩ S̃I | |S̃I \ S0

I | �
∑

i∈S0
I ∩ S̃I

j∈ S̃I \S0
I

(Z0
ij−Z̃ij)

2 � n log k with high probability.

Combining the previous bounds on cardinalities and denoting A Δ B := (A \
B) ∪ (B \A) for two sets A and B, one obtains

|S̃I Δ S0
I |2 + |S̃I Δ S0

I ||S0
I ∩ S̃I | � κ−2n log k with high probability,

which in turn implies that

|{S̃I × S̃I} Δ {S0
I × S0

I }| � κ−2n log k with high probability. (38)

In a third and last step, we follow the proof of Theorem 3. Let σ̂ = σ̂I be the
mapping in (19). It is a map S̃I → {1, 2}. Let σ̄ be the mapping S0

I → {1, 2}
that coincides with σ̂ on S̃I ∩S0

I and with σ0 on S0
I \ S̃I . By definition we have,

with Δn := κ−2n log k,

Zn(σ̂, S̃I , X) =
∑

i<j,i,j∈S̃I

(−1)1lσ̂(i)=σ̂(j)

(
1

2
−Xij

)

=
∑

i<j,i,j∈S0
I

(−1)1lσ̄(i)=σ̄(j)

(
1

2
−Xij

)
+O(Δn)

= δ(σ̄, σ0)θ0 +Rn(σ̄) +O(Δn),

where for the second identity we have used that the Xijs are bounded by 1 and
(38), and Rn(σ) is defined as in the proof of Theorem 3. Similarly, denoting

nk =
(|S0

I |
2

)
and ñk =

(|S̃I |
2

)
, we have

Zn(σ0, S̃I , X) = nkθ0 +O(Δn) +Rn(σ0) = ñkθ0 +O(Δn) +Rn(σ0),
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with high probability, since (38) implies |ñk − nk| = O(Δn) using that ||A| −
|B|| ≤ |AΔB| for two sets A,B. Also, since θ̂ = Zn(σ̂, S̃I , X)/ñk and |θ̂| ≤ 1/2,
by the same argument we have

θ̂ =
Zn(σ̂, S̃I , X)

nk
+

O(Δn)

nk
. (39)

Let vk and tk be two sequences depending on n and k whose specific values
are determined below (see the last paragraph of the proof). If Zn(σ̂, S̃I , X) ≥ 0,
then Zn(σ̂, S̃I , X) ≥ |Zn(σ0, S̃I , X)| ≥ Zn(σ0, S̃I , X). Let Σ0 be the set of all
maps S0 → {1, 2}. In the following inequalities we repeatedly use the fact that

the normalisation ñk in the definition of θ̂ can be replaced by nk up to a factor
O(Δn)/nk, see (39),

Pθ0

[
vk|θ̂ − θ0| ≥ t, Zn(σ̂, S̃I , X) ≥ 0

]
1lθ0>tk

≤ Pθ0

[ vk
nk

|Zn(σ̂, S̃I , X)− Zn(σ0, S̃I , X) +O(Δn)−Rn(σ0)| ≥ t,

Zn(σ̂, S̃I , X) ≥ 0
]
1lθ0>tk

≤ Pθ0

[
vk
nk

[
Zn(σ̂, S̃I , X)− Zn(σ0, S̃I , X)

]
+

vk
nk

[|Rn(σ0)|+O(Δn)] ≥ t

]
1lθ0>tk

≤ Pθ0

[
vk
nk

θ0(δ(σ̄, σ0)− nk) +
vk
nk

[Rn(σ̂) + |Rn(σ0)|+O(Δn)] ≥ t

]
1lθ0>tk

≤ Pθ0

[
2
vk
nk

sup
σ∈Σ0

|Rn(σ)|+
vk
nk

O(Δn) ≥ t

]
,

where the last inequality uses δ(σ̄, σ0)− nk ≤ 0, see Lemma 7 with nk in place
of bn, and θ0 ≥ 0.

Second, as Zn(σ̂, S̃I , X) < 0 implies Zn(σ̂, S̃I , X) < −|Zn(σ0, S̃I , X)| by
definition of σ̂,

Pθ0

[
Zn(σ̂, S̃I , X) < 0

]
1lθ0>tk

≤ Pθ0

[
Zn(σ̂, S̃I , X) < −|Zn(σ0, S̃I , X)|

]
1lθ0>tk

≤ Pθ0

[
Zn(σ̂, S̃I , X) < −|θ0|nk +O(Δn) + |Rn(σ0)|

]
1lθ0>tk

≤ Pθ0

[
θ0(δ(σ̄, σ0) + nk)− 2O(Δn) < 2 sup

σ∈Σ
|Rn(σ)|

]
1lθ0>tk

≤ Pθ0

[
2 sup
σ∈Σ0

|Rn(σ)| >
tknk

8
−O(Δn)

]
,

where for the last inequality we have used the first inequality of Lemma 7. Also,

Pθ0

[
vk|θ̂ − θ0| ≥ t

]
1l|θ0|≤tk
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≤ Pθ0

[
vk
nk

|θ0||δ(σ̄, σ0)− nk|+
vk
nk

[O(Δn) + |Rn(σ̄)|+ |Rn(σ0)|] ≥ t

]
1l|θ0|≤tk

≤ Pθ0

[
2
vk
nk

sup
σ∈Σ0

|Rn(σ)|+
vk
nk

O(Δn) ≥ t− vktk

]
.

By the same argument as in the proof of Theorem 3, the supremum
supσ∈Σ0

|Rn(σ)| is of the order |Σ0|3/2 � (n/k)3/2, by definition of Σe. Recall

that nk � (n/k)2. Set vk =
√
n/k and tk = Dv−1

k , with D a large enough
constant. Assumption (22) ensures that Δn = κ−2n log k = O((n/k)3/2). Hence
by taking t a large enough constant, one obtains that the last three displays are
bounded above by e−Cn/k, which concludes the proof in the fixed design case,
proceeding as in the proof of Theorem 3 to get the final bound in expectation.

The proof in the random design case is obtained by first deriving the results
conditionally on ϕ and then integrating out ϕ, as we did in the proof of Theorem
3. The first part is almost identical to the fixed design case: one only needs to
note that one can restrict to mappings ϕ that belong to, essentially, Σe. Denote
by Σ′

e the subset of those σ ∈ Σe satisfying ||σ−1(j)| − n
k | <

n
2k . Then

Eθ0 [(θ̂ − θ0)
2] = Eθ0 [(θ̂ − θ0)

21l{ϕ ∈ Σ′
e}] + Eθ0 [(θ̂ − θ0)

21l{ϕ ∈ Σ′
e}]

= Eθ0

[
Eθ0 [(θ̂ − θ0)

2 |ϕ] 1l{ϕ ∈ Σ′
e}
]
+ Pθ0 [ϕ /∈ Σ′

e].

For the first term, one can apply the arguments above in fixed design, while for
the second an application of Bernstein’s inequality gives

Pθ0 [ϕ /∈ Σ′
e] ≤ kP

[
|Bin(n, k)− n

k
| > n

2k

]
≤ 2ke−

n
10k .

By (22), k3 ≤ Cn holds for C large enough—note that κ must be smaller than

1, as the entries of M are in [0, 1]. One deduces ke−
n

10k ≤ k
nne

−dn2/3 ≤ C k
n , for

d small enough and C large enough, so the quadratic risk is at most Ck/n in
this case as well.

Lemma 8. Let Z0
i,j := Mθ0

σ0(i)σ0(j)
and Z̃ij := M θ̃

σ̃(i)σ̃(j), with σ̃, θ̃ given by (17).

Let ‖·‖ denote the matrix Frobenius norm. With probability at least 1−e−cn log k,

‖Z̃ − Z0‖2 � Cn log k.

Proof of Lemma 8. Let θ1 denote the element of Θn closest to θ0, so that |θ0 −
θ1| ≤ n−2. Let Z1 be the matrix given by Z1

ij := Mθ1
σ0(i)σ0(j)

. By definition,

‖X − Z̃‖2 ≤ ‖X − Z1‖2 and hence ‖Z1 − Z̃‖2 + 2〈X − Z1, Z1 − Z̃〉 ≤ 0, so

‖Z1 − Z̃‖2 ≤ 2‖Z1 − Z̃‖ sup
θ∈Θn, σ∈Σe

|〈X − Z1,
Mθ

σ(i)σ(j) − Z1

‖Mθ
σ(i)σ(j) − Z1‖〉|

≤ 2‖Z1 − Z̃‖
[

sup
θ∈Θn, σ∈Σe

|Tn(σ, θ)|+ ‖Z0 − Z1‖
]
,
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where we denote Tn(σ, θ) := 〈X − Z0, (Mθ
σ(i)σ(j) − Z1)/‖Mθ

σ(i)σ(j) − Z1‖〉. As
elements of the matrix X−Z0 are between −1 and 1, we note that Tn(σ, θ) is of
the form

∑
l μlεl, where εl ∈ [−1, 1] are independent, and

∑
l μ

2
l = 1. So using

Hoeffding’s inequality, for any t > 0,

P [|Tn(σ, θ)| > t] ≤ 2 exp{−t2/2}.

The cardinality of the set Θn × Σe is bounded above by (2n2 + 1)kn � kCn. A
union bound then shows that, with probability at least 1− e−cn log k,

sup
θ∈Θ, σ∈Σe

|Tn(σ, θ)| ≤ C
√
n log k.

Inserting this back into the previous inequality on ‖Z1−Z̃‖2 leads to ‖Z1−Z̃‖ ≤
C
√
n log k+ ‖Z0−Z1‖ with probability at least 1− e−cn log k. As ‖Z0−Z1‖2 ≤

Cn2/n2 ≤ C, the triangle inequality leads to the result.

Appendix D: Remaining proofs: lower and upper bounds in the
sparse case

We begin with a brief overview of the proof techniques: For the lower bounds
in the sparse setting (Theorems 8 and 9), proofs are very similar to the dense
case, and it suffices to track the dependence on the sparsity parameter αn. To
upper-bound the convergence rate of spectral estimates (Theorems 5 and 8), we
use the fact that θ can be estimated from the largest absolute eigenvalue of the
(translated) adjacency matrix. The latter can in turn be estimated empirically.
For the proofs of the upper bounds for k classes, we show that with high prob-
ability it is possible to recover the true aggregated labels, where aggregation
means that classes 1 and 2, corresponding to the ‘hard submodel’ are merged
(this is the ‘g map’ introduced above in the second paragraph of Appendix A).
To do so, one adapt techniques introduced by Lei and Rinaldo [25], and Lei and
Zhu [26] and show that their results still hold ‘under small perturbations’, as
explained in more details below. Once the true aggregated labels of classes 1
and 2 are obtained, it suffices to apply the (already derived) result for the case
k = 2.

D.1. Proofs for the two-class case

Proof of the lower bound in Theorem 8. One proceeds in the same way as in the
proof of Theorem 1 with aij(ϕ) replaced by bij(ϕ) := Qθ

ϕ(i)ϕ(j)(αn), i < j. If

λ1 = Be(bij(ϕ)), λ2 = Be(bij(ψ)), μ = Be(αn/2), we now have

ϑij(ϕ, ψ) :=

∫
(
dλ1

dμ
− 1)(

dλ2

dμ
− 1)dμ =

(2bij(ϕ)− αn)(2bij(ψ)− αn)

αn(2− αn)
.

This leads to, with ηi = 1lϕ(i)=1 − 1lϕ(i)=2 and η′i = 1lψ(i)=1 − 1lψ(i)=2,

ϑi,j(ϕ, ψ) =
4αnθ

2ηiηjη
′
iη

′
j

2− αn
.
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By the same argument as in the proof of Theorem 1, it is enough to solve

nαnθ
2

2− αn
= C

for θ, where C is a universal positive small enough constant, under the constraint
that |θ| ≤ 1/2. This leads to take θ2 equal up to a constant to (nαn)

−1 ∧ 1 and
the proof is complete.

Proof of the upper bound in Theorem 8. We write the proof directly in the pos-
sibly sparse setting. Let us first consider the fixed design case, where ϕ is non-
random. Let ‖ . ‖Sp denote the spectral norm of a matrix (for a symmetric matrix
Δ, ‖ . ‖Sp = max(|λ1( . )|, |λn( . )|), so |λa

1(Δ)| = ‖Δ‖Sp). By [25, Theorem 5.2],
we have that for any r > 0, there exists a C = C(r, c0) > 0 such that

‖X − E[X]‖Sp ≤ C
√
nαn ,

with probability at least 1−n−r. From this one deduces that ‖Δn−E[Δn]‖Sp ≤
C
√
nαn. The eigenvalues of Δ and those of Δn − E[Δn] and E[Δn] can be

related to each other by a Weyl-type inequality as

|λi(Δn)− λi(EΔn)| ≤ ‖Δn − EΔn‖Sp ,

for any 1 ≤ i ≤ n, see e.g. [30, eq. (1.64)]. Suppose for now that θ ≥ 0. In this
case λ1(EΔn) = (n−1)αnθ and λn(EΔn) = 0, which by the previous inequality
implies, with high probability,∣∣∣∣ λ1(Δn)

αn(n− 1)
− θ

∣∣∣∣ ≤ C√
nαn

,

∣∣∣∣ λn(Δn)

αn(n− 1)

∣∣∣∣ ≤ C√
nαn

.

Now if θ > 2C/
√
nαn, using the first inequality we have λ1(Δn)/{αn(n− 1)} >

C/
√
nαn and λ̃1 = λ1(Δn) follows from the second inequality, which means

|θ̂n − θ| ≤ C/
√
nαn. If θ ≤ 2C/

√
nαn, the triangle inequality and the second

inequality imply |λn(Δn) − θ| ≤ 3C/
√
nαn, which combined with the first in-

equality gives |θ̂n−θ| ≤ 3C/
√
nαn. So, for θ ≥ 0, in all cases |θ̂n−θ| ≤ 3C/

√
nαn

with high probability. The case θ < 0 is treated similarly. In the random design
setting, one can argue conditionally on ϕ, and then note that both the obtained
bounds and the in-probability statements do not depend on ϕ, which gives the
result in this setting as well.

D.2. Proofs for the general case

Proof of the lower bound in Theorem 9. The proof is similar to that of Theorem
2, where one now uses the sparse lower bound for two classes of Theorem 8
instead of Theorem 1, and is thus omitted.
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Proof of the upper bound in Theorem 9. We show that the proof approach used
by [26] to establish their Theorem 2 can be adapted to our problem. More pre-
cisely, it is amenable to a perturbation of the true matrix M of connection
probabilities: We show that, for a graph generated by model (12) with a suffi-
ciently small value of θ, the V-Clust algorithm with K = k− 1 classes recovers
the aggregated labelling defined by g above with high probability. We do the
proof in the possibly sparse situation, thereby also proving the upper-bound in
Theorem 9.

There are three steps. First, we show that the initial label recovery algorithm
S of [25] recovers most of the labels correctly, and control the error. Second, we
show that the scheme of proof of [26] carries over to the problem of recovering the
aggregated clustering up to label permutation. Finally, using assumption (A3)
one can recover the aggregated class 1 with high probability, and restricting to
nodes with label in that class we can apply the spectral method S2 of the case
k = 2.

First step (Perturbed spectral method of Lei and Rinaldo).

Mθ = M0 + θR, with R =

⎡⎣ 1 −1 02,k−2

−1 1 02,k−2

0k−2,1 0k−2,1 0k−2,k−2

⎤⎦
The matrix M0 (i.e. Mθ with θ = 0) can be transformed into the matrix N
above by removing the first line and then the first column.

Let X be the matrix (Xij). Since the relevant design is fixed, there exists
a binary n × k matrix T , with a single 1 in each row, for which we have
E[X] = TMθ(αn)T

t +D, where D = −Diag(TMθ(αn)T
t) is a diagonal ma-

trix with entries bounded by αn. Lei and Rinaldo call T a membership matrix.
It can be rewritten in terms of N , using the relation between M0 and N noted
above: for a n×K membership matrix S and E[X] the expected value of X,

E[X] = αnSNSt + αnθTRT t +D.

Now we can follow Lei and Rinaldo’s analysis of simple spectral clustering with
K = k − 1 and the expectation matrix SNSt; one only needs to show that,
despite the perturbation θTRT t, the argument still holds. Intuitively, this is
guaranteed by the assumption that θ is small enough, which ensures that the
spectrum of the perturbation θTRT t does not interact much with that of SNSt.
More precisely, we decompose X as

X = P +W, with P := αnSNSt, W := αnθTRT t +D +X − E[X].

Following the proof of Theorem 3.1 of [25], the pair (S,N) parametrises a SBM
with K = k−1 classes and N is full rank. By their Lemma 2.1, the eigendecom-
position of P = S(αnN)St can be written P = UDU t, where U is the matrix
of the K leading eigenvectors of P , and one can write U = Sξ, for some matrix
ξ ∈ RK×K with orthogonal rows (and ‖ξk∗ − ξl∗‖2 = n−1

k +n−1
l ). It also follows

from the proof of that Lemma that if γn denotes the smallest absolute nonzero
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eigenvalue of P , we have γn = nminαnλ(K), with nmin the cardinality of the
smallest class, here of order n/k using that classes are balanced, and λ(K) the
smallest absolute eigenvalue of N .

By Lemma 5.1 of [25], one can control the distance between the leading
eigenspaces of X and P (for the first K non-zero eigenvalues) in terms of the
spectral norm of W . The assumptions of that Lemma are fulfilled with P here
of rank K = k − 1 and of smallest nonzero singular value γn. If Û ∈ Rn×K is
the matrix of the K leading eigenvectors of X (and U the one for P , as above),
there exists a K ×K orthogonal matrix Q such that, with ‖ · ‖K and ‖ · ‖Sp the
Frobenius and spectral norms respectively,

‖Û − UQ‖F ≤ 2
√
2K

γn
‖X − P‖Sp.

By the triangle inequality, the spectral norm ‖X − P‖Sp is in turn bounded by

‖X − P‖Sp ≤ ‖X − E[X]‖Sp + αn|θ|‖TRT t‖Sp.

The matrix R can be written R = uut, where ut is the row (1−1 0 . . . 0) of length
k. In particular, R is of rank 1, and ‖TRT t‖Sp = ‖Tu‖22 (a nonzero eigenvector
is Tu). By construction, ‖Tu‖22 = n1 + n2, the number of elements of classes
1 and 2, so that ‖TRT t‖Sp ≤ Cn/K. Also, ‖D‖Sp ≤ αn since D is diagonal
with terms bounded by αn. By Theorem 5.2 of [25], the norm ‖X − E[X]‖ is,
with probability at least 1 − 1/n2, no larger than C

√
nαn, for a sufficiently

large constant C. Gathering the last bounds and using αn � √
nαn, one obtains

‖X − P‖Sp ≤ C(
√
nαn + |θ|nαn/K).

On the other hand, following Lei and Rinaldo [25], one can perform an
(1 + ε)−approximate k-means clustering on the rows of Û : Application of their
Lemma 5.3 to the matrices Û and UQ shows the approximate k-means solution
is a pair (Ŝ, ξ̂), where Ŝ a membership matrix, ξ̂ a K × K matrix, and Ŝξ̂ is
an approximate least-squares fit to Û . Moreover, the estimated membership Ŝ
coincides with S up to label permutation, except on sets S1, . . . , SK that are
characterized as follows: Recall that ψ is the ‘true’ labelling obtained by merging
the original classes 1 and 2 of nodes. Each set Sj ⊂ ψ−1(j) satisfies

1

nmin

K∑
j=1

|Sj | ≤ 4(4 + 2ε)‖Û − UQ‖2F ,

whenever

(16 + 8ε)‖Û − UQ‖2F < 1 . (40)

This implies, using the previous bounds and γn = nminαnλ(K) � (n/K)αnλ(K),
that

1

n

K∑
j=1

|Sj | ≤ (16 + 8ε)π0
‖Û − UQ‖2F

K
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≤ (16 + 8ε)π0
8

γ2
n

2C2(nαn + θ2α2
n

n2

K2
)

≤ CK2

λ(K)2
(

1

nαn
+

θ2

K2
),

provided, for some suitably small constant c > 0, with λ = λ(K),

K3 1

nαnλ2
+K

θ2

λ2
< c.

The first summand coincides with the condition in [25]. The second term ac-
counts for the perturbation induced by αnθR. Provided that

K3

αnλ2
< cn/2 and θ2 <

cλ2

2K
, (41)

the simple spectral clustering algorithm has recovery error at most n/f(nαn,K),
with

f(nαn,K) = C(
nαnλ

2

K2
∧ λ2

θ2
). (42)

The conditions on n, αn, λ,K, θ permit this quantity to be chosen suitably large.
This means that, with high probability, Step 1 of the algorithm with K =
k − 1 recovers a sufficiently large proportions of the labels of N , up to label
permutation.

Second step (Lei and Zhu’s exact label recovery method via sample splitting).
We can now use the method introduced by Lei and Zhu [26]: using a first rough
estimate of the labels, one can refine it to an exact label recovery with high
probability, provided f(nαn,K) is large enough in terms of a certain function
of K. The recovered labels are those of the original classes 3, 4, . . . , k, and of the
aggregated class containing classes 1 and 2. To verify that the proof of Lei and
Zhu generalizes to the perturbed cased, it suffices to note that the distortion
of E[Xij ] for i, j ∈ ψ−1({1, 2}) from 1/2 to 1/2± θ does not interfere with the
bounds of the proof of Theorem 2 in [26]. The sample splitting algorithm of Lei
and Zhu involves two subroutines called CrossClust and Merge. The mean of
Xij enters in the proof of that result via two applications of Bernstein’s inequal-
ity, in the proofs of Lemma 6 (which implies the consistency of CrossClust via
Lemma 3) and Lemma 7 (consistency of Merge) of Lei and Zhu [26].

We impose the assumptions of Lei and Zhu [26], Theorem 2, on K and
f(αnn/2,K): one needs f(nαn/2,K)γ(K) ≥ CK2.5 and the inequalities αn ≥
CK3 log n/(γ2(K)n) and Cn ≥ K3. The last two conditions are implied by (B2)
(respectively (A2) in the dense case). By (42), the first one is satisfied if

C
nαnλ

2

K2
γ(K) ≥ CK2.5, and

λ2

θ2
γ(K) ≥ CK2.5.

Again, the first inequality holds by (B2). The second inequality asks for θ2 <
Cλ2γ(K)/K2.5, which is guaranteed by (34).
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The parameter θ affects the proof of Lemma 3 of Lei and Zhu [26] as follows.
The proof relies on bounding three terms T1, T2 and T3 via Lemma 6 in the
Appendix of their paper. To be able to apply Bernstein’s inequality on T1, one
needs

(n1 + n2)αn|θ| <
1

4
π0γ(K)

nαn

30K3/2
,

where π0 = nmin/(n/K) � 1 in the notation of [26], Definition 1. To bound T2,
one needs

(n1 + n2)αn|θ| <
1

4

π2
0γ(K)nαnf(nαn/2,K)

30K5/2
,

while, similarly, to bound T3 one needs

(n1 + n2)αn|θ| <
1

4
π0γ(K)

nαn

15K3/2
.

On the other hand, consistency of Merge with V = 2 requires

(n1 + n2)αn|θ| <
1

4

αnπ
2
0γ(K)n2

160K3
.

The condition required for T1 implies the remaining ones: The one required for
T2 is weaker, since f(nαn,K) > C ′K for some constant C ′ > 0, by (41)–(42).
The condition for Merge is also weaker up to constants, provided that n �
K3/2, which is satisfied under our conditions. To obtain the above Bernstein’s
inequalities, one thus needs

|θ| < c1
γ(K)√

K
.

It follows from the spectral decomposition of N that λ(K) ≤ γ(K)/
√
2. By

combining with (41), we see that it is enough that θ satisfies |θ| ≤ Cλ/
√
K,

which was already required above. Finally, to see that the last inequality is
satisfied, one notes that it is implied by (34), using that γ(K) ≤

√
K. We have

just proved that the exact recovery from [26] also holds here.

Third step (Finding true cluster 1 and conclusion). The second step provides a
labelling ĝ that coincides, up to permutation, with the aggregated labelling g
with high probability. The assumed separation from 1/2 allows us to identify
cluster 1: For l = 1, . . . , k − 1, compute

N̂ll :=
1(

ĝ−1(l)|
2

) ∑
i<j, i,j∈ĝ−1(l)

Xij .

Since class sizes are of order n/k, an application of Bernstein’s inequality gives

|N̂ll −Nσ(l)σ(l)| ≤ |θ|1lσ(l)=1 +O
(√k

n
logn

)
for some permutation σ, with high probability. By (A3), if l �= 1, we have
|Nll − 1/2| ≥ κ. So w.h.p. there is exactly one diagonal element N̂ll = N̂�̂�̂
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within κ/2 of 1/2, since the conditions of the theorem imply

|θ|+ C

√
k

n
logn ≤ κ

2
.

The index �̂ then identifies the first cluster of N—which is the aggregate clus-
ter corresponding to clusters 1 and 2 defined by Mθ—with high probability.
We can now apply the spectral algorithm for k = 2 to the induced submatrix
(Xij)i,j∈ĝ−1(�̂). Using the upper-bound part of Theorem 8 with a number of

nodes |ĝ−1(�̂)| � n/k leads to Eθ[(θ̂ − θ)2] ≤ Ck/(nαn), by observing that the
event with high probability arising from the previous arguments (that is, the
concentration result by [25] and Bernstein’s inequalities) holds with probability
at least 1− 1/n.
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