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1. Introduction

The classification performance of a procedure is often evaluated by considering
the percentage of test samples that is assigned to the correct class. The corre-
sponding loss for this performance criterion is called the 0-1 loss. Theoretical
results for this loss are often related to the the margin condition [20, 27, 2],
which allows for fast convergence rates. Empirical risk minimization with re-
spect to the non-convex 0-1 loss is computationally hard and convex surrogate
losses are used instead, see for example [3, 25]. More recently, similar results
have been obtained for deep neural networks in the binary classification setting.
This includes results for standard deep neural networks in combination with
the hinge and logistic loss as surrogate losses [13], as well as results for deep
convolutional neural networks with the least squares loss [15] and logistic loss
[17] as surrogate losses. More details can be found in the discussion following
Theorem 3.3.

Trained neural networks provide more information than just a guess of the
class membership. For each class and each input, they return an estimate for
the probability that the true label is in this class. For an illustration, see for
example Figure 4 in the seminal work [18]. In applications it is often important
how certain a network is about class memberships, especially in safety-critical
systems where a wrong decision can have serious consequences such as auto-
mated driving [7] and AI based disease detection [19, 9]. In fact, the conditional
class probabilities provide us with a notion of confidence. If the probability of
the largest class is nearly one, it is likely that this class is indeed the true one.
On the other hand, if there is no clear largest class and the conditional class
probabilities of several classes are close to each other, it might be advisable to
let a human examine the case instead of basing the decision only on the outcome
of the algorithm.

To evaluate how fast the estimated conditional class probabilities of deep
ReLU networks approach the true conditional class probabilities, we consider in
this work convergence with respect to the cross-entropy (CE) loss. If the con-
ditional class probabilities are bounded away from zero or one, the problem is
related to regression and density estimation. Therefore, it seems that one could
simply modify the existing proofs on convergence rates for deep ReLU networks
in the regression context under the least squares loss [23, 4]. This does, however,
not work since the behaviour of the CE loss differs fundamentally from that of
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the least squares loss for small conditional class probabilities. The risk associ-
ated with the CE loss is the expectation with respect to the input distribution
of the Kullback-Leibler divergence of the conditional class probabilities. If an
estimator becomes zero for one of the conditional class probabilities while the
underlying conditional class probability is positive, the risk can even become
infinite, see Section 2. In many applications where deep learning is state-of-the-
art, the covariates contain nearly all information about the label and hence the
conditional class probabilities are close to zero or one. For example in image
classification it is often clear which object is shown on a picture. To deal with
the behaviour near zero, we introduce a truncation of the CE loss function. This
allows us to obtain convergence rates without bounding either the true under-
lying conditional class probabilities or the estimators away from zero. Instead
our rates depend on an index quantifying the behaviour of the conditional class
probabilities near zero. Convergence rates and the condition on the conditional
class probabilities can be found in Section 3.

Notation: We denote vectors and vector valued functions by bold letters.
For two vector valued functions f = (f1, . . . , fd) and g = (g1, . . . , gd) map-
ping D to R

d, we set ‖f − g‖D,∞ :=
∥∥maxj=1,...,d |fj(x) − gj(x)|

∥∥
L∞(D)

. If

it is clear to which domain D we refer to, we also simply write ‖f − g‖∞.
For a vector v = (v1, . . . , vm) and a matrix W = (Wi,j)i=1,...,n;j=1,...,m we
define the maximum entry norms as ‖v‖∞ := maxi=1,...,m |vi| and ‖W‖∞ :=
maxi=1,...,n maxj=1,...,m |Wi,j |. The counting ‘norm’ ‖v‖0, ‖W‖0 is the number
of nonzero entries in the vector v and matrix W , respectively. For a vector v =
(v1, . . . , vr)

� and g a univariate function, we write g(v) := (g(v1), . . . , g(vr))
�.

We often apply this to the activation function or the logarithm g(u) = log(u).
Similarly, we define for two vectors of the same length v,v′, log(v/v′) = log(v)−
log(v′). For any natural number γ, we set 0 logγ(0) := 0. For a real number
x ∈ R, �x� is the largest integer < x and �x� is the smallest integer ≥ x. A
K-dimensional standard basis vector is a vector of length K that can be written
as (0, . . . , 0, 1, 0, . . . , 0)�. We use SK to denote the (K− 1)-simplex in R

K , that

is, SK = {v ∈ R
K :

∑K
k=1 vk = 1, vk ≥ 0, k = 1, . . . ,K}. For two probabil-

ity measures P and Q, the Kullback-Leibler divergence KL(P,Q) is defined as
KL(P,Q) :=

∫
log(dP/dQ) dP if P is dominated by Q and as KL(P,Q) := ∞

otherwise.

2. The multiclass classification model

In multiclass classification with K ≥ 2 classes and design on [0, 1]d, we observe
a dataset Dn =

{
(Xi,Yi) : i = 1, . . . , n

}
of n i.i.d. copies of pairs (X,Y) with

design/input vector X taking values in [0, 1]d and the corresponding response
vector Y being one of the K-dimensional standard basis vectors. The response
decodes the label of the class: the output Y is the k-th standard basis vector if
the label of the k-th class is observed. As a special case, for binary classification
the output is decoded as (1, 0)T if the first class is observed and as (0, 1)T if
the second class is observed. We write P for the joint distribution of the ran-
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dom vector (X,Y) and PX for the marginal distribution of X. The conditional
probability PY|X exists since Y is supported on finitely many points.

An alternative model is to assume that each of the K classes is observed
roughly n/K times. To derive statistical risk bounds, there is hardly any differ-
ence and the fact that the i.i.d. model generates with small probability highly
unbalanced designs will not change the analysis.

The task is now to estimate/learn from the dataset Dn the probability that
a new input vector X is in class k. If Y = (Y1, . . . , YK)�, the true conditional
class probabilities are

p0k(x) := P(Yk = 1|X = x), k = 1, . . . ,K.

For any x this gives a probability vector, that is,
∑K

k=1 p
0
k(x) = 1. For notational

convenience, we also define the vector of conditional class probabilities p0(x) :=
(p01(x), · · · , p0K(x))�.

To learn the conditional class probabilities from data, the commonly em-
ployed strategy in deep learning is to minimize the log-likelihood over the free pa-
rameters of a deep neural network using (stochastic) gradient descent. The like-
lihood for the conditional class probability vector p(x) := (p1(x), · · · , pK(x))�

is given by

L(p|Dn) =

n∏
i=1

K∏
k=1

(pk(Xi))
Yik ,

with Yik the k-th entry of Yi. The negative log-likelihood or cross-entropy loss
is then

p �→ �
(
p,Dn

)
:= − 1

n

n∑
i=1

K∑
k=1

Yik log(pk(Xi)) = − 1

n

n∑
i=1

Y�
i log

(
p(Xi)

)
, (2.1)

where the logarithm in the last expression is taken component-wise as explained
in the notation section above and YT log(p(Xi)) is understood as the scalar
product of the vectors Y and log(p(Xi)). The response vectors Yi are standard
basis vectors and in particular have nonnegative entries. The cross-entropy loss
is thus always nonnegative and consequently defines indeed a proper statistical
loss function. The cross-entropy loss is also convex, but not strictly convex and
thus also not strongly convex, see [30], Chapter III-B for a proof. For binary
classification (K = 2), the cross-entropy loss coincides with the logistic loss.
Throughout the article, we consider estimators/learners p̂(X) with the prop-
erty that p̂(x) is a probability vector for all x, or equivalently, p̂(x) lies in the
simplex SK for all x. This is in particular true for neural networks with soft-
max activation function in the output layer. Recall that p0(x) is the vector of
true class probabilities. If (X,Y) has the same distribution as each of the ob-
servations and is independent of the dataset Dn, the statistical estimation risk
associated with the CE loss is

EDn,(X,Y)

[
Y� log

(p0(X)

p̂(X)

)]
= EDn,X

[
p0(X)� log

(p0(X)

p̂(X)

)]
= EDn,X

[
KL

(
p0(X), p̂(X)

)]
,



2728 T. Bos and J. Schmidt-Hieber

where the first equality follows from conditioning on the design vector X and
KL(p0(X), p̂(X)) is understood as the Kullback-Leibler divergence of the dis-
crete distributions with probability mass functions p0(X)|X and p̂(X)|(X,Dn).

(Stochastic) gradient descent methods aim to minimize the CE loss (2.1) over
a function class F induced by the method. In the context of neural networks, this
class is generated by all network functions with a pre-specified network architec-
ture. In particular, the class is parametrized through the network parameters.
The maximum likelihood estimator (MLE) is by definition any global minimizer
of (2.1). For some function classes the MLE can be given explicitly. In the ex-
treme case that x �→ p(x) is constraint to constant functions, the problem is
equivalent to estimation of the probability vector of a multinomial distribution
and the MLE is the average p̂MLE = 1

n

∑n
i=1 Yi. The other extreme is the case

of training error zero. If the observed design vectors are all different, training
error zero is achieved whenever there exists p ∈ F such that Yi = p(Xi) for
all i = 1, . . . , n. This follows from 0 log(0) = 1 log(1) = 0. To achieve training
error zero, we therefore need to interpolate all data points. Notice that mis-
classification error zero does not necessarily require interpolation of the data
points.

Already for small function classes, the MLE has infinite risk if the statistical
risk is as defined above. The next lemma makes this precise.

Lemma 2.1. Consider binary classification (K = 2) with uniform design X ∼
Unif([0, 1]d) and p0(x) := (1/2, 1/2)� for all x ∈ [0, 1]d. Suppose that the func-
tion class F contains an element p(x) = (p1(x), p2(x))

� such that p1(x) = 0
for all x ∈ [0, 1/3]d and p1(x) = 1 for all x ∈ [2/3, 1]d. Then, there exists a
MLE p̂ with

EDn,X

[
p0(X)� log

(p0(X)

p̂(X)

)]
= ∞.

The assumption on the function class F in the previous statement is quite
weak and is satisfied if F contains all piecewise constant conditional class prob-
abilities with at most two pieces or all piecewise linear conditional class prob-
abilities with at most three pieces. A large statistical risk occurs also in the
case of zero training error or if the estimator p̂ severely underestimates the true
probabilities.

To overcome the shortcomings of the Kullback-Leibler risk, one possibility is
to regularize the Kullback-Leibler divergence and to consider for some B > 0
the truncated Kullback-Leibler risk

RB(p0, p̂) := EDn,X

[
KLB

(
p0(X), p̂(X)

)]
,

where

KLB

(
p0(X), p̂(X)

)
:= p0(X)�

(
B ∧ log

(
p0(X)

p̂(X)

))
.

The loss can be shown to be nonnegative whenever B ≥ 2, see Lemma 3.4
below. The threshold B becomes void if the estimator p̂ is constrained to be
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in [e−B, 1]K . If the estimator underestimates one of the true conditional class
probabilities by a large factor, the logarithm becomes large and the threshold
B kicks in. For B = ∞, we recover the Kullback-Leibler risk.

The idea of truncation is not new. [32] truncates the log-likelihood ratio to
avoid problems with this ratio becoming infinite. Their risk rates, however, are
in terms of the Hellinger distance and the truncation does not appear in the
statement of their results. For the truncated Kullback-Leibler risk the truncation
plays a much more prominent role and appears as a multiplicative factor in
the risk bounds. Lemma 3.4 provides insight in this difference: it shows that
any upper bound for any B-truncated Kullback-Leibler divergence with B ≥ 2
provides an upper bound for the Hellinger distance.

As we are interested in the multiclass classification problem in the context of
neural networks, the function class F is not convex. Due to this non-convexity,
the training of neural networks does typically not yield a neural network achiev-
ing the global minimum. We therefore do not assume that the estimator is the
MLE and use a parameter to quantify the difference between the achieved em-
pirical risk and the global minimum: For any estimator p̂ taking values in a
function class F , we denote the difference between p̂ and the global minimum
of the empirical risk over that entire class by

Δn(p0, p̂) := EDn

[
− 1

n

n∑
i=1

Y�
i log(p̂(Xi))−min

p∈F
− 1

n

n∑
i=1

Y�
i log(p(Xi))

]
. (2.2)

2.1. Deep ReLU networks

In this work we study deep ReLU networks with softmax output layer. Recall
that the rectified linear unit (ReLU) activation function is σ(x) := max{x, 0}.
For any vectors v = (v1, · · · , vr)�,y = (y1, · · · , yr)� ∈ R

r, write σvy := (σ(y1−
v1), . . . , σ(yr − vr))

�. To ensure that the output of the network is a probability
vector over the K classes, it is standard to apply the softmax function

Φ =

(
ex1∑K
j=1 e

xj

, . . . ,
exK∑K
j=1 e

xj

)
: RK → SK

in the last layer. We use L to denote the number of hidden layers or depth of
the neural network, and m = (m0, · · · ,mL+1) ∈ N

L+2 to denote the widths,
that is, the number of nodes in each layer of the network. A (ReLU) network
architecture with output function ψ : RmL+1 → R

mL+1 is a pair (L,m)ψ and a
network with network architecture (L,m)ψ is any function of the form

f : Rm0 → R
mL+1 , x �→ f(x) = ψWLσvL

WL−1σvL−1
· · ·W1σv1W0x, (2.3)

where Wj is a mj×mj+1 weight matrix and vj ∈ R
mj is a shift vector. Through-

out this paper we use the convention that v0 := (0, . . . , 0)� ∈ R
m0 .

First we define neural network classes with the additional property that all
network parameters are bounded in absolute value by one via

Fψ(L,m) :=

{
f is of the form of (2.3) : max

j∈{0,··· ,L}
(‖Wj‖∞ ∨ ‖vj‖∞) ≤ 1

}
,
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with the maximum entry norm ‖ · ‖∞ as defined in the notation section above.
As in previous work, we study estimation over s-sparse ReLU networks. Those
are function classes of the form

Fψ(L,m, s) :=

{
f ∈ F(L,m) :

L∑
j=0

‖Wj‖0 + ‖vj‖0 ≤ s

}
,

where the counting norm ‖ · ‖0 denotes the number of nonzero vector/matrix
entries.

All neural network classes in this work have either softmax output activation
ψ = Φ or identity output activation ψ = id.

3. Main Results

Interesting phenomena occur if the conditional class probabilities are close to
zero or one. We now introduce a notion measuring the size of the set on which
the conditional class probabilities are small. The index α will later appear in
the convergence rate.

Definition 3.1. (Small Value Bound) Let α ≥ 0 and H be a function class.
We say that H is α-small value bounded (or α-SVB) if there exists a constant
C > 0, such that for all p = (p1, . . . , pK) ∈ H it holds that

PX(pk(X) ≤ t) ≤ Ctα, for all t ∈ (0, 1] and all k ∈ {1, . . . ,K}.

The condition always holds for α = 0 and C = 1. If PX(pk(X) = 0) > 0, the
condition does not hold for α > 0. If all functions in a class are lower bounded
by a constant B0, the class is α-SVB for any α with constant C = B−α

0 . More
generally, the index α is completely determined by the behaviour near zero: If
for some function class there exists some 0 < τ � 1, so that the bound holds for
α and for all t ∈ (0, τ ], then replacing C by C ′ = max{C, τ−α} guarantees that
C ′τα ≥ 1, which in turn implies that the function class is α-SVB. Moreover, if
a function class is α-SVB, then it is also α∗-SVB for all α∗ ≤ α. This follows
immediately by noticing that tα

∗ ≥ tα for all t ∈ (0, 1]. Increasing the index
makes the small value bound condition thus more restrictive.

To show that the definition of the small value bound makes sense, we have
to check that for any α > 0, there exist conditional class probabilities that are
α-SVB for that α, but are not α∗-SVB for any larger α∗ > α. To see this,
consider the case that X is uniformly distributed on [0, 1], and that there are
three classes K = 3. For given α > 0, define the function pα : [0, 1] → S3 as
p1(x) = min{x1/α, 1/3}, p2(x) = 1/3 and p3(x) = 1 − p1(x) − p2(x) = 2/3 −
min{x1/α, 1/3}. Since p2(x), p3(x) ≥ 1/3, we have for k = 2, 3 that PX(pk(X) ≤
t) ≤ (3t)α. When k = 1, it holds for t ≤ 1/3 that PX(p1(X) ≤ t) = PX(X1/α ≤
t) = PX(X ≤ tα) = tα. Hence PX(pk(X) ≤ t) ≤ (3t)α for k = 1, 2, 3, so pα is
α-SVB with constant 3α. Now we show that this function is not α∗-SVB for any
α∗ > α. Let α∗ > α, then for every constant C > 0, there exists a τC ∈ (0, 1/3)
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Fig 1. Plot of the conditional class probability p1(x) = (3|x1 + x2 − 1|8)/4 on the left and of
the density (x1, x2) �→ 3|x1 + x2 − 1| on the right.

such that C(τC)
α∗

< (τC)
α = PX(p1(X) ≤ τC). Since C is arbitrary, pα is not

α∗-SVB.

The following example provides some insights into the relation between the
conditional class probabilities and the distribution of X. Consider the binary
case K = 2, with input domain [0, 1]2, p1(x) = (3|x1 +x2 − 1|8)/4, and p2(x) =
1−p1(x), see Figure 1. Observe that 0 ≤ p1(x) ≤ 3/4 for all x ∈ [0, 1]2, so p1(x)
and p2(x) indeed define conditional class probabilities. Furthermore, p2(x) ≥
1/4, in other words, p2(x) is bounded away from zero. Thus, to determine the
SVB index α, it remains to consider p1(x). If X is the uniform distribution on
[0, 1]2, Proposition C.7 tells us that

PX (p1(X) ≤ t) = 2

(
4t

3

) 1
8

−
(
4t

3

) 1
4

and hence the small value bound is satisfied for α at most 1/8. Now suppose
that instead of the uniform design, the distribution of X is given by the density
(x1, x2) �→ 3|x1 + x2 − 1|, see Figure 1 for a plot. Thus, the design density is
zero if p1(x) is zero. In this case, Proposition C.7 gives

PX (p1(X) ≤ t) = 3

(
4t

3

) 1
4

− 2

(
4t

3

) 3
8

,

and the SVB index α is at most 1/4.

The following theorem shows the influence of the index α in the small value
bound on the approximation rates.

Theorem 3.2. If the function class is α-SVB with constant C, then, for any
approximating function p = (p1, . . . , pk) : [0, 1]

d → SK satisfying ‖p− p0‖∞ ≤
C1/M , and mink infx∈[0,1]d pk(x) ≥ 1/M , for some constant C1, it holds that
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EX

[
(p0(X))� log

(
p0(X)

p(X)

)]
≤ CK

(C1 + 1)2+(α∧1)

M1+(α∧1)

(
1 +

1{α<1}
1− α

+ log(M)
)
.

The proof for this result bounds the Kullback-Leibler divergence by the χ2-
divergence and then distinguishes the cases where the conditional class proba-
bilities are smaller and larger than 1/M . Both terms can be controlled via the
α-SVB condition. The convergence rate becomes faster in M up to α = 1 and
is log(M)/M2 for all α ≥ 1.

The small value bound provides a flexible framework that allows the condi-
tional class probabilities to be close to zero and therefore generalizes the stan-
dard assumption in the nonparametric classification literature that the condi-
tional class probabilities are bounded away from zero. Here, we argue that the
regime of small conditional class probabilities is of particular relevance for clas-
sification tasks where most of the information about the class label is contained
in the covariates. Indeed, if X contains all information about the class label Y ,
then Y |X is deterministic and the conditional class probability is either zero
or one. On the contrary, in situations where the covariates/input variable X
does not contain the full information about the class label, Y |X is random,
and the conditional class probabilities are bounded away from zero or one. The
case of small conditional class probabilities corresponds to a scenario where
the covariates contain most of the information about the class label. These
are classification tasks for which small misclassification errors can be achieved,
but perfect classification is impossible. This is also the regime for which the
SVB index α should be strictly larger than zero. For instance, for the widely
used Breast Cancer Wisconsin (Diagnostic) dataset and Heart Disease dataset
from the UCI machine learning repository [8] the covariates do not contain the
full relevant information about the disease but small misclassification can be
achieved. It is therefore conceivable that these are prototypical examples for the
case α > 0.

The small value bound has a similar flavor as Tsybakov’s margin condition,
which can be stated as PX(0 < |p0(X)−1/2| ≤ t) ≤ Ctγ for binary classification
[2]. The margin condition provides a control on the number of data points that
are close to the decision boundary {x : p0(x) = 1/2} and that are therefore
hard to classify correctly. Differently speaking, the problem becomes easier if the
conditional class probabilities are either close to zero or one. This is in contrast
with the small value bound, which will lead to faster convergence rates when the
true conditional class probabilities are mostly away from zero. This difference is
due to the loss: the 0-1 loss only cares about predicting the class membership,
while the CE loss measures how well the conditional class probabilities are
estimated and puts additional emphasis on small conditional class probabilities
by considering the ratio between prediction and truth.

To obtain estimation rates, we further assume that the underlying true con-
ditional class probability function p0 belongs to the class of Hölder-smooth
functions. For β > 0 and D ⊂ R

m, the ball of β-Hölder functions with radius Q
is defined as
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Cβ(D,Q) :=

{
f : D → R :

∑
γ:‖γ‖1<β

‖∂γf‖∞ +
∑

γ:‖γ‖1=	β

sup

x,y∈D,x �=y

|∂γf(x)− ∂γf(y)|
‖x− y‖β−	β


∞
≤ Q

}
,

where ∂γ = ∂γ1 . . . ∂γm , with γ = (γ1, . . . , γm) ∈ N
m. The function class G(β,Q)

of β-smooth conditional class probabilities is then defined as

G(β,Q) =
{
p = (p1, · · · , pK)� : [0, 1]d → SK :

pk ∈ Cβ([0, 1]d, Q), k = 1, . . . ,K
}
.

If Q < 1/K, then, ‖p‖∞ ≤ Q implies
∑K

k=1 pk ≤ KQ < 1, so we need Hölder
radius Q ≥ 1/K for this class to be non-empty. Combining the smoothness
and the small value bound, we write Gα(β,Q) = Gα(β,Q,C) for all functions
in G(β,Q) that satisfy the α-SVB condition with constant C. For large enough
radius Q and constant C, the class Gα(β,Q) is non-empty. For example, the
constant function p = (1/K, . . . , 1/K) is in Gα(β,Q) for any β > 0 and α > 0
when Q ≥ 1/K and C ≥ Kα.

For 0 ≤ α ≤ 1 the index from the SVB condition and β the smoothness
index, we introduce the rate

φn = K
(1+α)β+(3+α)d

(1+α)β+d n− (1+α)β
(1+α)β+d .

Theorem 3.3 (Main Risk Bound). Consider the multiclass classification model
with p0 ∈ Gα(β,Q), 0 ≤ α ≤ 1, and n > 1. Let p̂ be an estimator taking values
in the network class FΦ(L,m, s) satisfying
(i) A(d, β) log2(n) ≤ L � nφn,
(ii) mini=1,··· ,L mi � nφn,
(iii) s � nφn log(n)
for a suitable constant A(d, β). If n is sufficiently large, then, there exist con-
stants C ′, C ′′ only depending on α,C, β, d, such that whenever Δn(p̂,p0) ≤
C ′′BφnL log2(n) then

RB(p0, p̂) ≤ C ′BφnL log2(n).

An explicit expression for the constant A(d, β) can be derived from the proof.
The risk bound depends linearly on B. Choosing, for instance, B = O(log(n))
leads only to an additional logarithmic factor in the convergence rate. The risk

bound grows with K
(1+α)β+(3+α)d

(1+α)β+d in the number of classes. Thus for large β, we
obtain a near linear dependence on K. The worst behavior occurs for α = 1
and d large. Then the dependence on the number of classes is essentially of the
order K4.

When the estimator p̂ is guaranteed to have output in [e−B, 1]K , the trun-
cation parameter B in the risk has no effect. The proof of the approximation
properties is done by the construction of a softmax-network ĝ with the property
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that ĝ(x) � K
−(2+α)β
(1+α)β+dn− β

(1+α)β+d , for all x ∈ [0, 1]d. This means that we can pick
B � log(n) such that ĝ(x) ≥ e−B and restrict the class FΦ(L,m, s) to networks
that are guaranteed to have output in [e−B , 1]K . The proof of Theorem 3.3 can
be extended for this setting and implies a risk bound for the Kullback-Leibler
risk of the form

EDn,X

[
KL

(
p0(X), p̂(X)

)]
≤ C ′′′φnL log3(n),

for some constant C ′′′. Thus Theorem 3.3 provides us with rates for the Kullback-
Leibler risk when the networks outputs are guaranteed to be sufficiently large,
while still providing a bound for the truncated Kullback-Leibler risk when no
such guarantee can be given.

When the input dimension d is large, the obtained convergence rates become
slow. A possibility to circumvent this curse of dimensionality is to assume ad-
ditional structure on p0. For nonparametric regression, [12, 14, 4, 23, 16] show
that under a composition assumption on the regression function, neural networks
can exploit this structure to obtain fast convergence rates that are unaffected
by the curse of dimensionality. It is conceivable that for various classification
problems, such an underlying composition structure is present. For instance to
classify an email as spam, the hierarchical structure is important and decision
trees that are adapted to such structures work well, see Section 9.2.5 in [10]. In
image classification it is often assumed that an image can be constructed from
compositions of simpler features; for example a square is built from lines and
can itself be used as component of more complicated shapes.

It is possible to incorporate a composition assumption on the conditional
class probabilities within the considered framework. As our approximation result
already depends on Theorem 5 of [23] it is relatively straightforward to sketch
how the additional composition assumption can help to deal with the curse
of dimensionality. Consider the class of functions that satisfy the composition
assumption in [23]

Gcomp(r,d, t,β, Q) :={
f = gr ◦ · · · ◦ g0 : gi = (gij)j : [ai, bi]

di → [ai+1, bi+1]
di+1 ,

gij ∈ Cβi([ai, bi]
ti , Q) for some |ai|, |bi| ≤ Q

}
.

Here ti is the maximal number of variables on which each of the component func-
tions gij may depend on. For specific structural assumptions, such as generalized
additive models and sparse tensor decompositions, ti can be much smaller than
the input dimension d, [23].

In our setting the composition constraint can be incorporated by assum-
ing that each of the conditional class probabilities p1, . . . , pK lies in the class
Gcomp(r,d, t,β, Q). Define the effective smoothness indices as β∗

i := βi

∏r
�=i+1

(β� ∧ 1). By approximating these composition functions by neural networks as
in the proof of Theorem 1 of [23] in place of Theorem 5 of the same article, one
can then obtain the rate

φn = max
i=0,··· ,r

K
(1+α)β∗

i +(3+α)ti
(1+α)β∗

i
ti n

− (1+α)β∗
i

(1+α)β∗
i
+ti .
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Let us briefly summarize the related literature. Convergence rates for neural
networks in (binary) classification have recently been studied in [13, 15, 17, 24,
21] in various settings. [13] derives converge rates for the 0 − 1 loss based on
different surrogate losses and assumptions. For the hinge loss as surrogate loss,
the margin condition in combination with smoothness conditions on the decision
boundary as well as smoothness conditions on the conditional class probabili-
ties are studied. Moreover, the logistic loss is analyzed under a condition that
requires the conditional class probabilities to be near zero or one combined with
smoothness conditions on the decision boundary. Convergence rates for the 0−1
loss for convolutional neural networks are studied in [15, 17]. Both papers as-
sume smoothness conditions on the conditional class probabilities and impose
a max-pooling structure assumption for the conditional class probability that
is related to the structure of convolutional networks. In [15] the least squares
loss is used as a surrogate loss, while [17] uses the logistic loss as surrogate loss.
More recently, [24] studied the convergence rates for convex Lipschitz losses of
convolutional neural networks in binary classification under a submanifold con-
dition. The framework includes least squares loss, hinge loss, truncated logistic
loss and truncated exponential loss. In the truncated cases, the minimizers are
also truncated. Furthermore, [21] studies convergence rates for the 0 − 1 loss
with the hinge loss as surrogate loss, in the case that the model is deterministic
and that the decision boundary is Barron regular.

3.1. Relationship with Hellinger distance

The multiclass classification problem can be written as statistical model (Qp,p ∈
F), where F is the parameter space, p is the unknown vector of conditional
class probabilities and Qp denotes the data distribution if the data are gener-
ated from the conditional class probabilities p. The squared Hellinger distance
H(P,Q)2 = 1

2

∫
(
√
dP−

√
dQ)2, with P and Q probability measures on the same

probability space, induces in a natural way a loss function on such a statisti-
cal model by associating to the two parameters p and p′ the loss H(Qp, Qp′).
The Hellinger loss function has been widely studied in the context of nonpara-
metric variations of the maximum likelihood principle, mainly for the related
nonparametric density estimation problem, [32, 28, 29]. The log-likelihood is
closely related to the Kullback-Leibler divergence, which in turn is related to
the Hellinger distance by the inequality H(P,Q)2 ≤ KL(P,Q), see for example
[26]. The Kullback-Leibler divergence cannot be upper bounded by the squared
Hellinger distance in general, although there exists conditions under which such
a bound can be established, see for example Theorem 5 of [32] and Lemma 3.4
below.

In density estimation, the nonparametric MLE achieves in some regimes op-
timal rates with respect to the Hellinger distance for convex estimator classes or
if the densities (or sieve estimators) are uniformly bounded away from zero, see
[31, 32] and Chapters 7 and 10 in [28]. Neural network function classes are not
convex and, as argued before, there are many applications in the deep learning
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literature, where the conditional class probabilities are very small or even zero.
Thus, these general results are not applicable in our setting.

On the contrary, the convergence rates established above for the truncated
Kullback-Leibler divergence imply convergence with respect to the Hellinger
loss. This relationship is made precise in the next result.

Lemma 3.4. Let P and Q be two probability measures defined on the same
measurable space. For any B ≥ 2,

H2(P,Q) ≤ 1

2
KL2(P,Q) ≤ 1

2
KLB(P,Q) ≤ 2eB/2H2(P,Q).

For the proof see Appendix C. The upper bound on the truncated Kullback-
Leibler divergence is related to the inequalities that bound the Kullback-Leibler
divergence by the squared Hellinger distance under the assumption of a bounded
likelihood ratio, such as (7.6) in [6] or Lemma 4 in [11].

Combining the previous lemma and Theorem 3.3 with B = 2 gives

EDn

[ ∫
[0,1]d

K∑
j=1

(√
p0j (x)−

√
p̂j(x)

)2

dPX(x)
]
≤ 2C ′φnL log2(n), (3.1)

whenever Δn(p̂,p0) ≤ C ′′BφnL log2(n).
We can also use the relation with the Hellinger distance to show that for

α = 1, we obtain a near minimax optimal convergence rate. Indeed n− 2β
2β+d

is the optimal rate for the squared Hellinger distance. For references see for
instance Example 7.4.1 of [28] for univariate densities bounded away from zero;
the entropy bounds in Theorem 2.7.1. together with Proposition 1 of [33] for
densities bounded away from zero; or the entropy bounds in Theorem 2.7.1.
and Equation (3.4.5) of [29] together with Chapter 2.3. of [33] for densities p
for which

∫
1
p is bounded. Since the squared Hellinger distance can be upper

bounded by the Kullback-Leibler divergence, the rate n− 2β
2β+d is also a lower

bound for the Kullback-Leibler risk. Since this rate is achieved for α = 1, it is
clear that no further gain in the convergence rate can be expected for α > 1. For
α ≥ 1, the rate of convergence is up to log(n)-factors the same as in Theorem 5
of [32] and also the conditions are comparable.

It is instructive to relate the global convergence rates to pointwise conver-
gence. Recall that for real numbers a, b, we have (

√
a−

√
b)2 = (a− b)2/(

√
a+√

b)2. If PX has a Lebesgue density that is bounded on [0, 1]d from below and
above and if we choose L of the order O(log n), (3.1) indicates that on a large
subset of [0, 1]d, we can expect a pointwise distance∣∣∣p0j (x)− p̂j(x)

∣∣∣ �
∣∣∣√p0j (x) +

√
p̂j(x)

∣∣∣K (1+α/2)d
(1+α)β+dn− (1+α)β

2(1+α)β+2d log3/2(n).

The pointwise convergence rate gets therefore faster if the conditional class
probabilities are small. In the most extreme case, p0j (x) = 0, the previous bound
becomes ∣∣∣p0j (x)− p̂j(x)

∣∣∣ � K
(2+α)d

(1+α)β+dn− (1+α)β
(1+α)β+d log3(n).
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Since n−(1+α)β/((1+α)β+d) � n−β/(2β+d), this rate can be much faster than the
classical nonparametric rate for pointwise estimation n−β/(2β+d). The gain gets
accentuated as the index α increases. A large index α in the SVB bound can
be chosen if the conditional class probabilities are rarely small or zero. Hence
there is a trade-off and the regions on which a faster rate can be obtained are
thus smaller.

3.2. Oracle inequality

The risk bound of Theorem 3.3 relies on an oracle-type inequality. Before we can
state this inequality we first need some definitions. Given a function class of con-
ditional class probabilities F , we denote by log(F) the function class containing
all functions that can be obtained by applying the logarithm coefficient-wise to
functions from F , that is,

log(F) =
{
g = log(f) : f ∈ F

}
.

Next we define a family of pseudometrics. Recall that a pseudometric is a metric
without the condition that d(f, g) = 0 implies f = g. For a real number τ and
f ,g : D → R

K , set

dτ (f ,g) := sup
x∈D

max
k=1,··· ,K

|(τ ∨ fk(x))− (τ ∨ gk(x))|.

Lemma C.3 in the appendix verifies that this indeed defines a pseudometric.
For τ = −∞, dτ (f ,g) coincides with the L∞-norm as defined in the notation
section.

Denote by N (δ,F , d(·, ·)) the δ interior covering number of a function class
F with respect to a (pseudo)metric d(., .). For interior coverings, the centers of
the balls of any cover are required to be inside the function class F . Triangle
inequality shows that any (exterior) δ-cover can be used to construct an interior
cover with the same number of balls, but with radius 2δ instead of δ.

Theorem 3.5 (Oracle Inequality). Let F be a class of conditional class prob-
abilities and p̂ be any estimator taking values in F . If B ≥ 2 and Nn =
N (δ, log(F), dτ (·, ·)) ≥ 3 for τ = log(Cne

−B/n), then

RB(p0, p̂) ≤ (1 + ε)

(
inf
p∈F

R(p0,p) + Δn(p0, p̂) + 3δ

)
+

(1 + ε)2

ε
·
68B log(Nn) + 272B + (3/2)CnK

(
log

(
n
Cn

)
+B

)
n

,

for all δ, ε ∈ (0, 1], 0 < Cn ≤ ne−1 and Δn(p0, p̂) as defined in (2.2).

The proof of this oracle inequality is a non-trivial variation of the proof for the
oracle inequality in the regression model [23]. The statement seems to suggest to
pick a small Cn. Then, however, also τ will be small, and dτ becomes a stronger
metric possibly leading to an increase of the covering number Nn.

We can also replace the covering number of log(F) by the covering number
of F in the oracle inequality:
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Corollary 3.6. Denote Ñn := N (δCne
−B/n,F , dτ (·, ·)), with τ = Cne

−B/n.
Under the conditions of Theorem 3.5, it holds that

RB(p0, p̂) ≤ (1 + ε)

(
inf
p∈F

R(p0,p) + Δn(p0, p̂) + 3δ

)
+

(1 + ε)2

ε
· 68B log(Ñn) + 272B + (3/2)CnK(log(n/Cn) +B)

n
,

for all δ, ε ∈ (0, 1], 0 < Cn ≤ ne−1 and Δn(p0, p̂) as defined in (2.2).

Let us briefly discuss some ideas underlying the proof of the oracle inequal-
ity. For simplicity, assume that p̂ is the MLE over a class F and that p0 ∈ F .
By the definition of the MLE p̂, we have that − 1

n

∑n
i=1 Y

�
i log(p̂(Xi)) ≤

− 1
n

∑n
i=1 Y

�
i log(p0(Xi)). Taking expectation on both sides, one can then show

that for any B ≥ 0,

EDn

[ 1
n

n∑
i=1

p0(Xi)
�
(
B ∧ log

(p0(Xi)

p̂(Xi)

))]
≤ EDn

[ 1
n

n∑
i=1

(
p0(Xi)−Yi

)�(
B ∧ log

(p0(Xi)

p̂(Xi)

))]
.

Using standard empirical process arguments, the right hand side can be roughly
upper bounded by EDn [maxj

1
n

∑n
i=1(p0(Xi)−Yi)

�(B∧ log(p0(Xi)/pj(Xi)))],
where the maximum is over all centers of an ε-covering of F for a sufficiently
small ε. Since EDn [Yi|Xi] = p0(Xi), this is the maximum over a centered
process. Using empirical process theory a second time, the left hand side of the
previous display can be shown to converge to the statistical risk RB(p0, p̂) =
EDn,X[KLB(p0(X), p̂(X))].

To apply Bernstein’s inequality we need to bound the moments of the ran-
dom variables in the empirical process. For that we have derived the following
inequality that relates the m-th moment to the truncated Kullback-Leibler di-
vergence and also shows the effect of the truncation level B.

Lemma 3.7. If B > 1 and m = 2, 3, . . . , then, for any two probability vectors
(p1, . . . , pK) and (q1, . . . , qK), we have

K∑
k=1

pk

∣∣∣∣B ∧ log

(
pk
qk

)∣∣∣∣m ≤ max

{
m!,

Bm

B − 1

} K∑
k=1

pk

(
B ∧ log

(
pk
qk

))
.

In order to use the oracle inequality for deep ReLU networks with softmax
activation in the output layer, we now state a bound on the covering number of
these classes. The bound and its proof are a slight modification of Lemma 5 in
[23].

Lemma 3.8. If V :=
∏L+1

�=0 (m� + 1), then for every δ > 0,

N (δ, log(FΦ(L,m, s)), ‖ · ‖∞) ≤
(
4δ−1K(L+ 1)V 2

)s+1
,
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and

logN (δ, log(FΦ(L,m, s)), ‖ · ‖∞) ≤ (s+ 1) log(22L+6δ−1(L+ 1)K3d2sL).

The second bound follows from the first by removing inactive nodes, Propo-
sition A.1, and taking the logarithm. The full proof can be found in Appendix
C.

The proof of the main risk bound in Theorem 3.3 is based on the oracle
inequality derived above. To bound the individual error terms, we apply the
approximation theory developed in Theorem 3.2 and Lemma 4.3 as well as
the previous bound on the metric entropy. This shows that for any M > 1,
the truncated Kullback-Leibler risk for a network class with depth L, width
� KMd/β and sparsity s � KMd/β can be bounded by

RB(p0, p̂) � K3+α log(M)

M1+α
+KMd/βL

log2(n)

n
+Δn(p̂,p0).

Balancing the termsK3+α/M1+α andKMd/β leads toM � K
(2+α)β

(1+α)β+dn
β

(1+α)β+d

and for small Δn(p̂,p0), we get the rate

RB(p0, p̂) � K
(1+α)β+(3+α)d

(1+α)β+d n− (1+α)β
(1+α)β+dL log2(n)

in Theorem 3.3.

4. Proofs

Proof of Lemma 2.1. Consider the eventAn := {(Xi,Yi) ∈ ([0, 1/3]d×(1, 0)�)∪
([2/3, 1]d × (0, 1)�), for all i = 1, . . . , n}. Recall that 0 log(0) = 0. On the event
An, for any p(x) = (p1(x), p2(x))

� such that p1(x) = 0 for all x ∈ [0, 1/3]d and
p1(x) = 1 for all x ∈ [2/3, 1]d, we have that �(p,Dn) = 0, where �(p,Dn) is the
negative log-likelihood as defined in (2.1). Since the CE loss is nonnegative, any
such p in the class F is a MLE on this event. Since P(An) > 0, it follows that

EDn,X

[
p0(X)� log

(p0(X)

p̂(X)

)]
≥ EDn

[
1(An)

∫
[0,1]d

p0(u)
� log

(p0(u)

p̂(u)

)
du

]
= ∞ · P(An)

= ∞.

4.1. Approximation related results

This section is devoted to the proof of Theorem 3.3. First we construct a neural
network that approximates p0 in terms of the L∞-norm and is bounded away
from zero. Afterwards we prove Theorem 3.2 relating the previously derived
approximation theory to a bound on the approximation error in terms of the



2740 T. Bos and J. Schmidt-Hieber

expected Kullback-Leibler divergence. We finish the proof combining this net-
work with the new oracle inequality (Theorem 3.5) and an entropy bound for
classes of neural networks with a softmax function in the output layer, Lemma
3.8. Recall that Fid(L,m, s) denotes the neural network class with L hidden
layers, width vector m, network sparsity s and identity activation function in
the output layer.

Theorem 4.1. For all M ≥ 2 and β > 0 there exists a neural network G ∈
Fid(L,m, s), with
(i) L = �40(β + 2)2 log2(M)�,
(ii) m = (1, �48�β�32βM1/β�, · · · , �48�β�32βM1/β�, 1),
(iii) s ≤ 4284(β + 2)52βM1/β log2(M),
such that for any x ∈ [0, 1],∣∣eG(x) − x

∣∣ ≤ 4

M
and G(x) ≥ log

( 4

M

)
.

The proof of this theorem can be found in Appendix B. To approximate
Hölder functions we use Theorem 5 from [23] withm equal to �log2(M))(d/β+1)�.
We state here a variation of that theorem in our notation using weaker upper
bounds to simplify the expressions for the network size. These upper bounds
can be deduced directly from the depth-synchronization and network enlarging
properties of neural networks stated in Section A.1. Set

CQ,β,d := (2Q+ 1)(1 + d2 + β2)6d +Q3β .

Theorem 4.2. For every function f ∈ G(β,Q) and every M > (β+1)β ∨ (Q+
1)β/deβ, there exist neural networks Hk ∈ Fid(L,m, s) with
(i) L = 3�log2(M)(d/β + 1)�(1 + �log2(d ∨ β)�),
(ii) m = (d, 6(d+ �β�)�Md/β�, · · · , 6(d+ �β�)�Md/β�, 1),
(iii) s ≤ 423(d+ β + 1)3+dMd/β log2(M))(d/β + 1),
such that ∥∥Hk − f0

k

∥∥
∞ ≤ CQ,β,d

M
, ∀k ∈ {1, · · · ,K}.

Here the M is chosen such that Md/β � N , where N is as defined in Theorem
5 of [23].

Without loss of generality we can assume that the output of the Hk networks
lies in [0, 1]. Indeed if this would not be the case, then the projection-layer that
we use later on in our proof will guarantee that it is in this interval. This will
not increase the error since the functions f0

k only take values in [0, 1].
To obtain a neural network with softmax output, the next lemma combines

the neural network constructions from the previous two theorems and replaces
the output with a softmax function.

Lemma 4.3. For every function f ∈ G(β,Q) and every M > K(4 + CQ,β,d) ∨
(β + 1)β ∨ (Q+ 1)β/deβ, there exists a neural network q̃ ∈ FΦ(L,m, s), with
(i) L = 3�log2(M)(d/β + 1)�(1 + �log2(d+ β)�) + �40(β + 2)2 log2(M)�+ 2,

(ii) m =
(
d, �48K(d+ �β�3)2βMd/β�, · · · , �48K(d+ �β�3)2βMd/β�,K

)
,
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(iii) s ≤ 4707K(d+ β + 1)4+d2βMd/β log2(M))(d/β + 1),
such that,

‖q̃k − p0‖∞ ≤ 2K(4 + CQ,β,d)

M
,

and

q̃k(x) ≥
1

M
, ∀ k ∈ {1, · · · ,K}, ∀x ∈ [0, 1]d.

Proof. Composing the neural networks in Theorem 4.1 and Theorem 4.2 results
in a neural network G = (G(H1), · · · , G(HK)) such that for any k = 1, · · · ,K,∥∥eG(Hk) − p0k

∥∥
∞ ≤

∥∥eG(Hk) −Hk

∥∥
∞ +

∥∥Hk − p0k
∥∥
∞ ≤ 4 + CQ,β,d

M
.

Define now the vector valued function q̃ component-wise by

q̃k(x) =
eG(Hk(x))∑K
j=1 e

G(Hj(x))
, k = 1, · · · ,K.

Applying the composition (A.2), depth synchronization (A.3) and parallelization
rules (A.4) it follows that q̃ ∈ FΦ(L,m, s). To bound ‖q̃k − p0k‖∞, we use that
p0 = (p01, · · · , p0K) is a probability vector, eG(Hj) ≥ 0 for j = 1, · · · , k and
triangle inequality, to obtain

∥∥q̃k − p0k
∥∥
∞ ≤

∥∥∥∥∥eG(Hk)

(
1∑K

j=1 e
G(Hj)

− 1

)∥∥∥∥∥
∞

+
∥∥∥eG(Hk) − p0k

∥∥∥
∞

=

∥∥∥∥∥eG(Hk)

( ∑K
�=1 p

0
�∑K

j=1 e
G(Hj)

−
∑K

�=1 e
G(H�)∑K

j=1 e
G(Hj)

)∥∥∥∥∥
∞

+
∥∥∥eG(Hk) − p0k

∥∥∥
∞

≤
( K∑

�=1

∥∥∥p0� − eG(H�)
∥∥∥
∞

)∥∥∥∥∥ eG(Hk(·))∑K
j=1 e

G(Hj)

∥∥∥∥∥
∞

+
∥∥∥eG(Hk) − p0k

∥∥∥
∞

≤ (K + 1)(4 + CQ,β,d)

M
≤ 2K(4 + CQ,β,d)

M
.

For the second bound of the lemma, notice that from the first bound of the
lemma and the second bound of Theorem 4.1 it follows that

q̃k(x) ≥
4
M∑K

j=1 e
G(Hj(x))

≥
4
M

1 +K
(4+CQ,β,d)

M

=
4

M +K(4 + CQ,β,d)
≥ 1

M
,

where for the second inequality we used that pj(x) ≤ 1, so eG(Hj(x)) ≤ p0j (x) +
(4+CQ,β,d)/M and for the last inequality we used that M ≥ K(4+CQ,β,d).

The Kullback-Leibler divergence can be upper bounded by the χ2-divergence,
see for instance Lemma 2.7 in [26]. Thus,

EX

[
(p0(X))� log

(
p0(X)

q̃(X)

)]
≤ EX

[
K∑

k=1

(p0k(X)− q̃k(X))2

q̃k(X)

]
.
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To control the approximation error, we can combine this bound with the first
bound of Lemma 4.3 to conclude that if p0k(X) > 2K(4 + CQ,β,d)/M , then

(p0k(X)− q̃k(X))2

q̃k(X)
≤ 4K2(4 + CQ,β,d)

2

M2

(
p0k(X)− 2K(4 + CQ,β,d)

M

)−1

.

On the other hand, combining the bound with the second inequality from the
same lemma yields

(p0k(X)− q̃k(X))2

q̃k(X)

≤
K∑

k=1

4K2(4 + CQ,β,d)
2

M2

(
max

{
p0k(X)− 2K(4 + CQ,β,d)

M
,
1

M

})−1

,

which is valid for all possible values of p0(x) ∈ [0, 1]k. As M tends to infinity,
p0k(x) − 2K(4 + CQ,β,d)/M tends to p0k(x), while 1/M tends to zero. Without
any further conditions on p0k(X) this bound is thus of order M−1. The small
value bound, however, allows us to obtain an upper bound with better behaviour
in M . The following proposition employs the small value bound to control the
expectation of (p0k(x))

−1 on the set that p0k(x) exceeds some threshold value H.

Proposition 4.4. Assume there exists an α ≥ 0 and a finite constant C < ∞,
such that for p = (p1, . . . , pK) : D → SK we have PX(pk(X) ≤ t) ≤ Ctα for all
t ≥ 0 and k ∈ {1, . . . ,K}. Let H ∈ [0, 1]. Then it holds that∫

{pk(x)≥H}

1

pk(x)
dPX(x) ≤

{
CHα−1

1−α , if α ∈ [0, 1),

C(1− log(H)), if α ≥ 1.

Proof. Observe that pk(X) is a probability. Therefore, pk(X) ≤ 1 and conse-
quently C ≥ 1. For any nonnegative function h and random variable Z ∼ PZ ,
we have

∫
h(Z) dPZ = E[h(Z)] =

∫∞
0

PZ(h(Z) ≥ u) du. Hence∫
{pk(x)≥H}

1

pk(x)
dPX(x) =

∫ ∞

0

PX

(
1

pk(X)
1{pk(X)≥H} ≥ u

)
du

≤
∫ 1

H

0

PX

(
pk(X) ≤ 1

u

)
du,

where the inequality follows from observing that 1
pk(X)1{pk(X)≥H} ≥ u implies

H ≤ pk(X) ≤ 1
u and u ≤ 1/H.

If α = 0, we use the trivial bound PX(pk(x) ≤ t) ≤ 1, for all t ∈ [0, 1], and
obtain ∫ 1

H

0

PX

(
pk(X) ≤ 1

u

)
du ≤

∫ 1
H

0

1 du =
1

H
.

If 0 < α < 1, we can invoke the assumption of this proposition to obtain∫ 1
H

0

PX

(
pk(X) ≤ 1

u

)
du ≤ C

∫ 1
H

0

u−α du =
CHα−1

1− α
.
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For α ≥ 1, we have PX(pk(X) ≤ t) ≤ Ct for all 0 ≤ t ≤ 1. If moreover C ≤ H−1,
the inequality PX(pk(X) ≤ t) ≤ min{1, Ct} leads to∫ 1

H

0

PX

(
pk(X) ≤ 1

u

)
du ≤

∫ C

0

1 du+ C

∫ 1
H

C

1

u
du

= C + C(− log(H)− log(C)).

If α ≥ 1 and C ≥ H−1, we can upper bound the integral by
∫ C

0
1 du = C. The

result of the proposition now follows from simplifying the expressions using that
C ≥ 1.

We can now state and prove the main approximation bound.

Proof of Theorem 3.2. The condition ‖p−p0‖∞ ≤ C1/M implies that pk(x) ≥
p0k(x)− C1/M . Combined with pk(x) ≥ 1/M , this gives

pk(x) ≥
(
p0k(x)−

C1

M

)
∨ 1

M
≥ p0k(x)

C1 + 1
∨ 1

M
,

where we used that p0k(x) ≥ (C1 + 1)/M = ((C1 + 1)/C1) · (C1/M) implies

p0k(x)−
C1

M
≥ p0k(x)

(
1− C1

C1 + 1

)
=

p0k(x)

C1 + 1
.

This gives rise to the upper bound

(p0k(X)− pk(X))2

pk(X)
≤ C2

1

M
1{p0

k(x)≤
C1+1

M } +
C2

1

M2
· C1 + 1

p0k(x)
1{p0

k(x)≥
C1+1

M }.

Taking the expectation over the right hand side yields

C2
1

M
PX

(
p0k(x) ≤

C1 + 1

M

)
+

C2
1 (C1 + 1)

M2

∫
{p0

k(x)≥
C1+1

M }

1

p0k(x)
dPX(x)

By the α-SVB condition the first term is upper bounded by

C2
1

M
PX

(
p0k(x) ≤

C1 + 1

M

)
≤ C2

1C

M

(
C1 + 1

M

)α∧1

≤ C
(C1 + 1)2+(α∧1)

M1+(α∧1)
.

Applying Proposition 4.4 with H = (C1 + 1)/M to the second term yields the
result.

Now we have all the ingredients to complete the proof of the main theorem.

Proof of Theorem 3.3. Take δ = n−1 and ε = Cn = 1 in Theorem 3.5. Using
that dτ is upper bounded by the sup-norm distance together with Lemma 3.8
gives

RB(p0, p̂) ≤ 2

(
inf
p∈F

R(p0,p) + Δn(p0, p̂) +
3

n

)
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+ 4 · 68B(s+ 1) log(22L+6n(L+ 1)K3d2sL) + 272B + (3/2)K(log(n) +B)

n
.

(4.1)

Recall that 0 ≤ α ≤ 1 is the index from the SVB condition. We now choose

M = �cK
(2+α)β

(1+α)β+dn
β

(1+α)β+d � for a small constant c chosen below. To apply
Lemma 4.3, we need to show thatM � K. To see this, observe that RB(p0, p̂) ≤
B and therefore the convergence rate becomes trivial if φn ≥ 1. Using that

φn = K
(1+α)β+(3+α)d

(1+α)β+d n− (1+α)β
(1+α)β+d , this implies K ≤ n

(1+α)β
(1+α)β+(3+α)d ≤ n

β
β+2d ≤ n

β
2d .

Hence, Kd−β � nβ and thus also M � K.
For this choice of M , the network q̃ from Lemma 4.3 is in the network class

FΦ(L,m, s), where L = 3�log2(M)(d/β + 1)�(1 + �log2(d+ β)�) +
�40(β + 2)2 log2(M)�+2, the maximum width of the hidden layers is bounded by
� Kcd/βMd/β = cd/βnφn and similarly s � Kcd/βMd/β log2(M) =
cd/βnφn log2(M). In particular, by taking c sufficiently small and using the depth
synchronization property (A.3), q̃ ∈ FΦ(L,m, s), whenever A(d, β) log2(n) ≤
L � nφn, for a suitable constant A(d, β), the maximum width is � nφn and
s � nφn log(n). We now apply Theorem 3.2 with C1 = 2K(4 + CQ,β,d). Using
that C1 + 1 = 2K(4 + CQ,β,d) + 1 ≤ 2K(5 + CQ,β,d), we find

inf
p∈F

R(p0,p) ≤ 8CK3+α (5 + CQ,β,d)
3

M1+α

(
1 +

1{α<1}
1− α

+ log(M)
)

� φn log(n).

Together with (4.1) and s � nφn log(n), the statement of Theorem 3.3 follows.

4.2. Oracle inequality related results

In this section we prove Theorem 3.5. For B > 0, consider

RB,n(p0, p̂) := EDn

[ 1
n

n∑
i=1

Y�
i

(
B ∧ log

(p0(Xi)

p̂(Xi)

)]
.

The next proposition shows how this risk is related to the approximation error
and the quantity Δn(p0, p̂) defined in (2.2) that measures the empirical distance
between an arbitrary estimator and an empirical risk minimizer.

Proposition 4.5. For any estimator p̂ ∈ F ,

RB,n(p0, p̂) ≤ R∞,n(p0, p̂) ≤ inf
p∈F

R(p0,p) + Δn(p0, p̂).

Proof. The first inequality follows from a ≥ min(a, b), for all a, b ∈ R. To prove
the second inequality, fix a p∗ ∈ F . Using that Δn(p0,p

∗) ≥ 0 and

EDn

[
Y�

i log(p∗(Xi))
]
= EDn

[
EDn [Y

�
i |Xi] log(p

∗(Xi))
]

= EDn

[
p0(Xi)

� log(p∗(Xi))
]
,
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we get

EDn

[
− 1

n

n∑
i=1

Y�
i log(p̂(Xi))

]
≤ EDn

[
− 1

n

n∑
i=1

Y�
i log(p̂(Xi))

]
+Δn(p0,p

∗)

= EDn

[
− 1

n

n∑
i=1

Y�
i log(p∗(Xi))

]
+Δn(p0, p̂)

= EX

[
− p�

0 (X) log(p∗(X))
]
+Δn(p0, p̂).

As this holds for all p∗ ∈ F , we can take on the right hand side also the infimum
over all p∗ ∈ F . To complete the proof for the second inequality, we add to both
sides EDn [Y

�
i log(p0(Xi))] = EDn [p0(Xi)

� log(p0(Xi))].

The truncation level B allows us to split the statistical risk into multiple
parts that can be controlled separately. The following lemma provides a bound
on the event that p0k(X) is small.

Lemma 4.6. Let F be a class of conditional class probabilities, p̂ be any es-
timator taking values in F , (X,Y) be a random pair with the same distribu-
tion as (X1,Y1) and Cn ∈ (0, n/e]. Then, for any i ∈ {1, · · · , n}, and any
k ∈ {1, · · · ,K}, we have∣∣∣∣EDn,(X,Y)

[
Y k1{p0

k(X)≤Cn
n }

(
B ∧ log

(p0k(X)

p̂k(X)

))]∣∣∣∣ ≤ Cn

(
log

(
n
Cn

)
+B

)
n

.

Proof. Since p0, p̂ ∈ [0, 1]K , we have

log(p0k(X)) ≤ B ∧ log
(p0k(X)

p̂k(X)

)
≤ B. (4.2)

Using that a ≤ x ≤ b implies |x| ≤ max{|a|, |b|} ≤ |a|+ |b| and Yk ≥ 0, we can
get an upper bound that does not depend on p̂∣∣∣∣EDn,(X,Y)

[
Y k1{p0

k(X)≤Cn
n }

(
B ∧ log

(p0k(X)

p̂k(X)

))]∣∣∣∣
≤ E(X,Y)

[
Y k1{p0

k(X)≤Cn
n }

∣∣log(p0k(X))
∣∣]+ E(X,Y)

[
Y k1{p0

k(X)≤Cn
n }B

]
= EX

[
p0k(X)1{p0

k(X)≤Cn
n }

∣∣log(p0k(X))
∣∣]+ EX

[
p0k(X)1{p0

k(X)≤Cn
n }B

]
,

where the last equality follows from conditioning on X. Using that the function
u �→ u| log(u)| is monotone increasing on (0, e−1) and n ≥ eCn, yields∣∣∣∣EDn,(X,Y)

[
Y k1{p0

k(X)≤Cn
n }

(
B ∧ log

(p0k(X)

p̂k(X)

))]∣∣∣∣ ≤ Cn

(
log

(
n
Cn

)
+B

)
n

.

Corollary 4.7. Under the conditions of Lemma 4.6 it holds that

−Cn log(n/Cn)

n
≤ EDn,(X,Y)

[
Y k1{p0

k(X)≤Cn
n }

(
B ∧ log

(p0k(X)

p̂k(X)

))]
≤ CnB

n
.
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Proof. The lower and upper bound can be obtained from (4.2), Y k ≥ 0 and the
fact that u �→ u log(u) is monotone decreasing on (0, e−1).

Both Lemma 4.6 and Corollary 4.7 do not require that the random pair
(X,Y) is independent of the data. Specifically, they also hold in the case that
(X,Y) = (Xi,Yi) for some i ∈ {1, · · · , n}.
Proof of Theorem 3.5. For ease of notation set(

B ∧ log
(p0(Xi)

p̂(Xi)

))
≥Cn/n

to denote the vector with coefficients

1{p0
k(Xi)≥Cn

n }

(
B ∧ log

(p0k(Xi)

p̂k(Xi)

))
, k = 1, . . . ,K.

For i.i.d. random pairs (X̃i, Ỹi), i = 1, · · · , n with joint distribution P that are

generated independently of the data sample define D′
n := {(Xi,Yi)i, (X̃i, Ỹi)i}.

Then, for any Cn > 0,

|RB(p0, p̂)−RB,n(p0, p̂)|

=

∣∣∣∣∣ED′
n

[
1

n

n∑
i=1

K∑
k=1

Ỹi,k

(
B ∧ log

(p0k(X̃i)

p̂k(X̃i)

))

− 1

n

n∑
i=1

K∑
k=1

Yi,k

(
B ∧ log

(p0k(Xi)

p̂k(Xi)

))]∣∣∣∣∣
≤ (I) + (II) + (III),

(4.3)

where

(I) =

∣∣∣∣∣ED′
n

[
1

n

n∑
i=1

(
Ỹ�

i

(
B ∧ log

(p0(X̃i)

p̂(X̃i)

))
≥Cn/n

−Y�
i

(
B ∧ log

(p0(Xi)

p̂(Xi)

))
≥Cn/n

)]∣∣∣∣∣
(II) =

∣∣∣∣∣ED′
n

[
1

n

n∑
i=1

K∑
k=1

Ỹi,k1{p0
k(X̃i)≤Cn

n }

(
B ∧ log

(p0k(X̃i)

p̂k(X̃i)

))]∣∣∣∣∣
(III) =

∣∣∣∣∣ED′
n

[
1

n

n∑
i=1

K∑
k=1

Yi,k1{p0
k(Xi)≤Cn

n }

(
B ∧ log

(p0k(Xi)

p̂k(Xi)

))]∣∣∣∣∣ .
First we bound the terms (II) and (III). Applying Lemma 4.6 in total nK times

with (X,Y) = (X̃i, Ỹi), yields

(II) ≤ 1

n

n∑
i=1

K∑
k=1

Cn

(
log

(
n
Cn

)
+B

)
n

=
CnK

(
log

(
n
Cn

)
+B

)
n

, (4.4)
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while taking (X,Y) = (Xi,Yi) in Lemma 4.6 yields

(III) ≤ 1

n

n∑
i=1

K∑
k=1

Cn

(
log

(
n
Cn

)
+B

)
+B)

n
=

CnK
(
log

(
n
Cn

)
+B

)
n

. (4.5)

Now we deal with the term (I). Due to the bound B and the indicator function

1{p0
k(Xi)≥Cn

n }

(
B ∧ log

(p0k(Xi)

p̂k(Xi)

))
= 1{p0

k(Xi)≥Cn
n }

(
B ∧ log

( p0k(Xi)

(Cne−B/n) ∨ p̂k(Xi)

))
. (4.6)

Given a minimal (internal) δ-covering of log(F) with respect to the pseudometric
dτ , with τ = log(Cne

−B/n), denote the centers of the balls by p�. Then there
exists a random �∗ such that∥∥∥ log (Cne

−B

n

)
∨ log(p̂)− log

(Cne
−B

n

)
∨ log(p�∗)

∥∥∥
∞

≤ δ.

This together with (4.6) and using that Y is one of the K-dimensional standard
basis vectors yields

(I) ≤ ED′
n

[∣∣∣∣∣ 1n
n∑

i=1

G�∗(X̃i, Ỹi,Xi,Yi)

∣∣∣∣∣
]
+ 2δ, (4.7)

where

G�∗(X̃i, Ỹi,Xi,Yi) :=

Ỹ�
i

(
B ∧ log

( p0(X̃i)

p�∗(X̃i)

))
≥Cn/n

−Y�
i

(
B ∧ log

( p0(Xi)

p�∗(Xi)

))
≥Cn/n

. (4.8)

For all � ∈ {1, · · · ,Nn} define G� in the same way. Moreover, write

Zi := (X̃i, Ỹi,Xi,Yi).

In a next step, we apply Bernstein’s inequality (Proposition C.1) to (G�(Zi))
n
i=1.

Using that (Xi,Yi) and (X̃i, Ỹi) have the same distribution, we get for the
expectation of G� that

ED′
n
[G�(Zi)] = 0.

To verify the assumptions of Bernstein’s inequality, it remains to prove that

E|G�(Zi)|m ≤ m!(2B)m−2RB(p0,p�)32B2−1, ∀m ∈ N≥2, (4.9)

such that, in the notation of Proposition C.1, we have vi = RB(p0,p�)32B and
U = 2B. To show this moment bound, observe that any real numbers a, b satisfy
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|a+ b|m ≤ 2m(|a|m+ |b|m). Using moreover that (Xi,Yi) and (X̃i, Ỹi) have the
same distribution, the m-th absolute moment of G� is given by

ED′
n

[
|G�(Zi)|m

]
= ED′

n

[∣∣∣∣∣Ỹ�
i

(
B ∧ log

(
p0(X̃i)

p�(X̃i)

))
≥Cn/n

−Y�
i

(
B ∧ log

(
p0(Xi)

p�(Xi)

))
≥Cn/n

∣∣∣∣∣
m]

≤ 2m+1
EDn

[∣∣∣∣∣Y�
i

(
B ∧ log

(
p0(Xi)

p�(Xi)

))
≥Cn/n

∣∣∣∣∣
m]

.

Triangle inequality gives

EDn

[∣∣∣∣∣Y�
i

(
B ∧ log

(
p0(Xi)

p�(Xi)

))
≥Cn/n

∣∣∣∣∣
m]

≤ EDn

[(
Y�

i

∣∣∣∣∣
(
B ∧ log

(
p0(Xi)

p�(Xi)

))
≥Cn/n

∣∣∣∣∣
)m]

,

where for a vector v, |v| denotes the absolute value coefficient-wise. Since Y is
one of the standard basis vectors, it holds that Yk ∈ {0, 1}, and YkYj is equal
to 0 when j �= k and equal to Yk when k = j. Using this observation together
with conditioning on Xi yields

EDn

[(
Y�

i

∣∣∣∣∣
(
B ∧ log

(
p0(Xi)

p�(Xi)

))
≥Cn/n

∣∣∣∣∣
)m]

= EDn

[
Y�

i

∣∣∣∣∣
(
B ∧ log

(
p0(Xi)

p�(Xi)

))
≥Cn/n

∣∣∣∣∣
m]

= EXi

[
p�
0 (Xi)

∣∣∣∣∣
(
B ∧ log

(
p0(Xi)

p�(Xi)

))
≥Cn/n

∣∣∣∣∣
m]

≤ EXi

[
p�
0 (Xi)

∣∣∣∣B ∧ log

(
p0(Xi)

p�(Xi)

)∣∣∣∣m] ,
where we used for the last inequality that for every set Ω, each A ⊆ Ω, every
function θ : Ω → R and every m ∈ N≥2 it holds that |1Aθ|m = (1A)

m|θ|m =
1A|θ|m ≤ |θ|m. Combining the previous displays and applying Lemma 3.7, we
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get that

ED′
n
[|G�(Zi)|m]

≤ 2m+1
EXi

[
p�
0 (Xi)

∣∣∣∣B ∧ log

(
p0(Xi)

p�(Xi)

)∣∣∣∣m]
≤ 2m+1Cm,BEXi

[
p�
0 (Xi)

(
B ∧ log

(
p0(Xi)

p�(Xi)

))]
= 2m+1Cm,BRB(p0,p�),

(4.10)
where Cm,B is given by

Cm,B = max

{
m!,

Bm

B − 1

}
.

Since B ≥ 2, we get that B/(B − 1) ≤ 2 and Cm,B ≤ max
{
m!, 2Bm−1

}
≤

2m!Bm−1. Together with (4.10) this yields

ED′
n
[|G�(Zi)|m] ≤ 2m+1Cm,BRB(p0,p�) ≤ m!(2B)m−2RB(p0,p�)32B2−1,

completing the proof for the moment bound (4.9).

Now define z� :=
√

n−168B log(Nn)∨
√

E(X,Y)[Y�(B ∧ log(p0(X)/p�(X)))].

Since B ≥ 2, Lemma 3.4 guarantees that the truncated Kullback-Leibler risk is
always nonnegative, so z� is well defined. Define z∗ = z�∗ , that is,

z∗ =

√
68B log(Nn)

n
∨

√√√√EDN ,(X,Y)

[
Y�

(
B ∧ log

(
p0(X)

p�∗(X)

))∣∣∣∣∣Dn

]
,

where we also condition on the dataset Dn. To upper bound z∗, we split the
truncated empirical risk

EDN ,(X,Y)

[
Y�

(
B ∧ log

(
p0(X)

p�∗(X)

))∣∣∣∣∣Dn

]

= EDN ,(X,Y)

[
K∑

k=1

Yk1{p0
k(X)≤Cn

n }

(
B ∧ log

(
p0k(X)

p�∗,k(X)

))∣∣∣∣∣Dn

]

+ EDN ,(X,Y)

[
K∑

k=1

Yk1{p0
k(X)≥Cn

n }

(
B ∧ log

(
p0k(X)

p�∗,k(X)

))∣∣∣∣∣Dn

]
.

Using the property of the δ-cover, Equation (4.6) and the fact that Y is a
standard basis vector, it holds that

EDN ,(X,Y)

[
K∑

k=1

Yk1{p0
k(X)≥Cn

n }

(
B ∧ log

(
p0k(X)

p�∗,k(X)

))∣∣∣∣∣Dn

]

≤ EDN ,(X,Y)

[
K∑

k=1

Yk1{p0
k(X)≥Cn

n }

(
B ∧ log

(
p0k(X)

p̂k(X)

))∣∣∣∣∣Dn

]
+ δ.
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On the other hand, applying Corollary 4.7, with (X,Y) = (X,Y), K times for
p̂ and K times with p̂ replaced by p�∗ , yields

EDN ,(X,Y)

[
K∑

k=1

Yk1{p0
k(X)≤Cn

n }

(
B ∧ log

(
p0k(X)

p�∗,k(X)

))∣∣∣∣∣Dn

]

≤ EDN ,(X,Y)

[
K∑

k=1

Yk1{p0
k(X)≤Cn

n }

(
B ∧ log

(
p0k(X)

p̂k(X)

))∣∣∣∣∣Dn

]

+
CnK

(
log

(
n
Cn

)
+B

)
n

.

Define

V :=

√√√√EDN ,(X,Y)

[
Y�

(
B ∧ log

(
p0(X)

p̂(X)

))∣∣∣∣∣Dn

]
.

Combining the previous inequalities, we get that√√√√EDN ,(X,Y)

[
Y�(B ∧ log

(
p0(X)

p�∗(X)

))∣∣∣∣∣Dn

]
≤ V +

√
δ +

CnK
(
log

(
n
Cn

)
+B

)
n

,

where we also used the elementary inequality
√
a+ b ≤ √

a+
√
b for all a, b ≥ 0.

Hence,

z∗ ≤
√

68B log(Nn)

n
+ V +

√
δ +

CnK
(
log

(
n
Cn

)
+B

)
n

. (4.11)

The term
√
n−168B log(Nn) is chosen such that in (4.13) and (4.14) below the

equations balance out. Now define

T := max
�

∣∣∣∣∣
n∑

i=1

G�(Zi)

z�

∣∣∣∣∣ .
The Cauchy-Schwarz inequality gives us that ED′

n
[V T ] ≤

√
ED′

n
[V 2]ED′

n
[T 2].

Noticing that ED′
n
[V 2] = RB(p0, p̂), we get from (4.3), (4.4), (4.5), (4.7) and

(4.11) that

|RB(p0, p̂)−RB,n(p0, p̂)|

≤ 1

n

√
RB(p0, p̂)

√
ED′

n
[T 2]

+
1

n

(√
68B log(Nn)

n
+

√
δ +

CnK
(
log

(
n
Cn

)
+B

)
n

)
ED′

n
[T ]

+ 2δ +
2CnK

(
log

(
n
Cn

)
+B

)
n

.

(4.12)
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The next step in the proof derives bounds on ED′
n
[T ] and ED′

n
[T 2]. Using an

union bound it holds that

P (T ≥ t) = P

(
max

�

∣∣∣∣∣
n∑

i=1

G�(Zi)

z�

∣∣∣∣∣ ≥ t

)
= P

(Nn⋃
�=1

(∣∣∣∣∣
n∑

i=1

G�(Zi)

z�

∣∣∣∣∣ ≥ t

))

≤
Nn∑
�=1

P

(∣∣∣∣∣
n∑

i=1

G�(Zi)

∣∣∣∣∣ ≥ tz�

)
.

We already showed that G�(Zi) satisfies the conditions of Bernstein’s in-
equality (Proposition C.1) with vi = RB(p0,p�)32B and U = 2B. Bernstein’s
inequality applied to the last term gives

P (T ≥ t) ≤
Nn∑
�=1

P

(∣∣∣∣∣
n∑

i=1

G�(Zi)

∣∣∣∣∣ ≥ tz�

)

≤
Nn∑
�=1

2 exp

(
− (tz�)

2

2nRB(p0,p�)32B + 4Btz�

)

= 2Nn exp

⎛⎝− t2

2nRB(p0,p�)32B
z2
�

+ 4B t
z�

⎞⎠ .

Since z� ≥
√

RB(p0,p�) it holds that z2� ≥ RB(p0,p�). As probabilities are in
the interval [0, 1], this gives us that

P (T ≥ t) ≤ 1 ∧ 2Nn exp

(
− t2

64Bn+ 4B t
z�

)
.

If t ≥
√
68Bn log(Nn), then since z� ≥

√
n−168B log(Nn) it holds that

exp

(
− t2

64Bn+ 4B t
z�

)
≤ exp

(
− t

√
log(Nn)√
68Bn

)
.

For every nonnegative random variableX with finite expectation one has E[X] =∫∞
0

P(X ≥ t) dt. Therefore,

ED′
n
[T ] ≤

√
68Bn log(Nn) +

∫ ∞

√
68Bn log(Nn)

2Nn exp

(
− t

√
log(Nn)√
68Bn

)
dt

=
√

68Bn log(Nn) +

√
272Bn

log(Nn)
.

(4.13)
Since T is nonnegative, P(T 2 ≥ u) = P(T ≥ √

u), so using the same arguments
as before we get that

ED′
n
[T 2] ≤ 68Bn log(Nn) +

∫ ∞

68Bn log(Nn)

2Nn exp

(
−
√

u log(Nn)

68Bn

)
du.
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Substitution s =
√
u and integration by parts gives us that

∫∞
a

e−
√
ub du =

2
∫∞√

a
se−sb ds = 2(

√
ab+ 1)e−

√
ab/b2 and consequently

ED′
n
[T 2] ≤ 68Bn log(Nn) + 544Bn, (4.14)

where we also used that Nn ≥ e and thus (log(Nn) + 1)/ log(Nn) ≥ 2.
Combining (4.13), (4.14) with (4.12), using twice that 2xy ≤ x2 + y2 for all

real numbers x, y, and using that log(Nn) ≥ 1, we get that

|RB(p0, p̂)−RB,n(p0, p̂)| ≤
√
RB(p0, p̂)

√
68B log(Nn) + 544B

n
+ 3δ

+
102B log(Nn) + 272B

n
+

3CnK
(
log

(
n
Cn

)
+B

)
n

.

(4.15)
Setting a = RB(p0, p̂), b = RB,n(p0, p̂),

c =

√
17B log(Nn) + 134B

n
,

and

d =
102B log(Nn) + 272B + 3CnK

(
log

(
n
Cn

)
+B

)
n

+ 3δ,

we get from (4.15) that |a − b| ≤ 2
√
ac + d. Since the excess risk is always

nonnegative we can apply Proposition C.2. This gives us for any 0 < ε ≤ 1

RB(p0, p̂) ≤ (1 + ε) (RB,n(p0, p̂) + 3δ)

+ (1 + ε)

(
102B log(Nn) + 272B + 3CnK

(
log

(
n
Cn

)
+B

)
n

)

+
(1 + ε)2

ε
· 17B log(Nn) + 136B

n
.

Proposition 4.5 gives RB,n(p0, p̂) ≤ infp∈F R(p0,p) + Δn(p0, p̂). Substituting
this in the previous equation and observing that (1 + ε)/ε ≥ 2, 1/ε ≥ 1 and
0 < 1− ε ≤ 1 for ε ∈ (0, 1] yields the assertion of the theorem.

Appendix A: Basic network properties and operations

In this section we state elementary properties of network classes and intro-
duce small networks that are capable of approximating multiplication operations
based on similar results in [23].

A.1. Embedding properties of neural network function classes

This section extends the results in [23] to arbitrary output activation function.
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Enlarging: Let m and m′ be two width-vectors of the same length and let
s, s′ > 0. If m ≤ m′ component-wise, mL+1 = m′

L+1 and s ≤ s′, then

Fψ(L,m, s) ⊆ Fψ(L,m
′, s′). (A.1)

This rule allows us to simplify the neural network architectures. For example
we can simplify a network class by embedding it in a class for which all hidden
layers have the same width.

Composition: Let f ∈ Fid(L,m, s1) and let g be a network in Fψ(L
′,m′, s2),

with mL+1 = m′
0. For a vector v ∈ R

mL+1 , define the composed network g ◦
σv(f). Then

g◦σv(f) ∈ Fψ

(
L+L′+1, (m0, · · · ,mL+1,m

′
1, · · · ,m′

L′+1), s1+s2+|v|0
)
. (A.2)

The following rule allows us to synchronize the depths of neural networks.
Depth synchronization: For any positive integer a,

Fψ(L,m, s) ⊂ Fψ(L+ a, (m0, · · · ,m0︸ ︷︷ ︸
a times

,m), s+ am0). (A.3)

To identify simple neural network architectures, we can combine the depth-
synchronization and enlarging properties. When there exist c ≥ m0 and b > 0,
such that s = cL+ b, and L∗ is an upper bound on L, combining the previous
two properties yields

Fψ(L,m, s) ⊂ Fψ(L
∗,m′, cL+m0(L

∗ − L) + b) ⊂ Fψ(L
∗,m′, cL∗ + b),

where the width vector m′ has length L∗ + 2 and can be chosen as
(m0,m

′,m′, · · · ,m′,mL+1) with m′ equal to the largest coefficient of m.
Parallelization: Let m, m′ be two width vectors such that m0 = m′

0 and
let f ∈ Fid(L,m) and g ∈ Fid(L,m

′). Define the parallelized network h as
h := (f ,g). Then

h ∈ Fid(L, (m0,m1 +m′
1, · · · ,mL+1 +m′

L+1). (A.4)

Proposition A.1 (Removal of inactive nodes). It holds that

Fψ(L,m, s) = Fψ(L, (m0,m1 ∧ s, · · · ,mL ∧ s,mL+1), s).

For this property, the output function plays no role and the proof in [23]
carries over.

The following equation gives the number of parameters in a fully connected
network in Fψ(L,m):

L∑
j=0

(mj + 1)mj+1 −mL+1. (A.5)

This will be used further on as an upper bound on the number of active param-
eters in sub-networks.
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A.2. Scaling numbers

We constraint all neural network parameters to be bounded in absolute value
by one. To build neural networks with large output values we construct small
rescaling networks.

Proposition A.2. For any real number C there exists a network ScaleC ∈
Fid(�log2(|C|)�+(�log2(|C|)�−1), (1, 2, 1, 2, 1, · · · , 1, 2, 1), 4�log2(|C|)�) such that
ScaleC(x) = C(x)+.

Proof. Set

W0 =

(
1
1

)
, v1 =

(
0
0

)
, and W1 = (1, 1).

The network W1σv1W0x computes x �→ 2(x)+. This network has exactly one
hidden layer, one input node, one output node and two nodes in the hidden layer.
It uses four nonzero-parameters. Composing �log2(|C|)� of these networks, using
the composition rule (A.2), where we take the output layer of one network to
be the input layer of the next one with shift vector zero, yields a network in the
right network class computing x �→ 2�log2(|C|)�(x)+. Replacing the last weight
matrix by (C2−�log2(|C|)�, C2−�log2(|C|)�) yields the result.

A.3. Negative numbers

For negative input, the ReLU activation without shift returns zero. As a result,
many network constructions output zero for negative input. Using that x =
σ(x)−σ(−x), the next result shows existence of a neural network function that
extends the original network function as an even (or odd) function to negative
input values.

Proposition A.3. Assume f ∈ Fid(L, (m0,m1, · · · ,mL, 1), s) and f(x) = 0
whenever xj ≤ 0 for some index j ∈ {1, · · · ,m0}. Then there exist neural
networks

f± ∈ Fid(L, (m0, 2m2, · · · , 2mL, 1), 2s),

such that xj �→ f+(x) is an even function, xj �→ f−(x) is an odd function and
f±(x) = f(x) for all x with xj ≥ 0.

Proof. Take two neural networks in the class Fid(L, (m0,m1, · · · ,mL, 1), s) in
parallel: The original network f to deal with the positive part and the second
network to deal with the negative part. This second network can be build from
the first network f by multiplying the j-th column vector of W0 by −1 and
multiplying the output of the network by ±1. The parallelized network computes
then f±.

The extension to more than one output is straightforward. Following the same
construction as in the previous section, all that has to be done is multiplying
the corresponding rows of the weight matrix in the output layer of the neural
network by either −1, 1 of 0 depending on how we wish to extend the function.
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More precisely, if we have m−
0 ≤ m0 input coefficients xj for which xj ≤ 0

implies f(x) = 0, we can find neural networks

f± ∈ Fid(L, (m0, 2
m−

0 m2, · · · , 2m
−
0 mL,mL+1), 2

m−
0 s),

such that xj �→ f+(x) is an even function and xj �→ f−(x) is an odd function

for all of the m−
0 indices j. This network can be constructed using 2m

−
0 parallel

networks.

Appendix B: Neural networks approximating the logarithm

Theorem 4.1 assumes M ≥ 2. We use this throughout the proof without further
mentioning.

B.1. Taylor approximation

Set

Tκ
c (x) = log(c) +

κ∑
γ=0

xγ
κ∑

α=γ∨1

(
α

γ

)
c−γ(−1)1−γ

α
=

κ∑
γ=0

xγcγ .

Proposition B.1. For all κ = 0, 1, . . . and every c > 0, we have that

∣∣ log(x)− Tκ
c (x)

∣∣ ≤ 1

κ+ 1

∣∣∣∣x− c

x ∧ c

∣∣∣∣κ+1

,

where the sum in Tκ
c is defined as zero if κ = 0. Moreover, if 0 < x ≤ c, we also

have that Tκ
c (x) ≤ log(c).

Proof. We claim that Tκ
c is equal to the k-th order Taylor approximation of the

logarithm. First we show that from this claim the statements of the proposition
follow. The α-th derivative of the logarithm is log(α)(x) = (α− 1)!(−1)α+1x−α.
Thus, the k-th order Taylor approximation of the logarithm around the point c
is given by

log(c) +

κ∑
α=1

(x− c)α(−1)α+1

αcα
. (B.1)

By the mean value theorem, the remainder is bounded by

1

κ+ 1

∣∣∣∣x− c

s

∣∣∣∣κ+1

,

for some s between x and c. Now since the function 1/s on (0,∞) is decreasing,
its maximum is obtained at the left boundary, that is, x∧c, which yields the first
claim of the proposition. Now we show that Tκ

c ≤ log(c) whenever 0 < x ≤ c.
When κ = 0, the sum in (B.1) disappears and the result follows immediately.
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When κ ≥ 1, notice that (x − c) is always negative. Hence the product (x −
c)α(−1)α+1 is negative for all α, so together with the case κ = 0 this yields
Tκ
c (x) ≤ log(c), for 0 < x ≤ c.
It remains to prove that Tκ

c is the k-th order Taylor approximation of the
logarithm around the point c. Writing the Taylor approximation as a linear
combination of monomials gives

log(c) +

κ∑
α=1

(x− c)α(−1)α+1

αcα
=

κ∑
γ=0

xγ c̄γ ,

for suitable coefficients c̄γ . Using this expression we can obtain the coefficients
c̄γ for γ ≥ 1 by evaluating the derivatives at x = 0 :

dγ

dxγ
log(c) +

κ∑
α=1

(x− c)α(−1)α+1

αcα

∣∣∣∣∣
x=0

= γ!c̄γ .

This gives us that

c̄γ =

κ∑
α=γ

(α− 1)!(−c)α−γ(−1)α+1

γ!(α− γ)!cα
=

κ∑
α=γ

(
α

γ

)
c−γ(−1)1−γ

α
.

For c̄0 we get

c̄0 = log(c) +

κ∑
α=1

(α− 1)!(−c)α(−1)α+1

(α)!cα
= log(c) +

κ∑
α=1

(−1)

α
.

Hence
∑κ

γ x
γ c̄γ =

∑κ
γ x

γcγ = Tκ
c (x), proving the claim.

Next we establish a bound on the sum of the coefficients cγ of Tκ
c in the case

c ≤ e. For γ ≥ 1, we bound cγ by

|cγ | ≤
κ∑

α=γ

(
α

γ

)
(1 ∧ c)−γ

α
≤ (1 ∧ c)−κ

κ∑
α=γ

(
α

γ

)
.

Since also

|c0| ≤ | log(c)|+
κ∑

α=1

1

α
≤ | log(c)|+

κ∑
α=1

(
α

0

)
,

this shows that the sum of the coefficients is bounded by

κ∑
γ=0

|cγ | ≤ | log(c)|+(1∧ c)−κ
κ∑

γ=0

κ∑
α=1∧γ

(
α

γ

)
≤ | log(c)|+(1∧ c)−κ

κ∑
γ=0

κ∑
α=γ

(
α

γ

)
.

The double sum can be rewritten as the sum of all the entries in the rows 0, · · · , κ
of Pascal’s triangle. From the binomial theorem we know that summing over the
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α-th row of Pascal’s triangle gives 2α. Combined with | log(c)| ≤ (1 ∧ c)−1 for
0 < c ≤ e, this gives

κ∑
γ=0

|cγ | ≤ (κ+ 1)2κ+1(1∧ c)−(κ∨1) ≤ (κ+1)2κ+1(1∧ c)−κ−1, for all 0 < c ≤ e.

(B.2)
Applying the softmax function to an approximation g of the logarithm involves
the exponential function and requires a bound for |eg(x)−x| with x > 0. By the
mean value theorem |eg(x) − elog(x)| = es|g(x)− log(x)| for a suitable s between
log(x) and g(x). The next proposition provides such a bound.

Proposition B.2. For all λ ≥ 1, define

Dλ :=

[
λ�β�

2�β�2�β�	β
M ,
(λ+ 1)�β�

2�β�2�β�	β
M

]
.

If [a, b] ⊂ Dλ, then it holds for any x ∈ [a, b] and any ω ≤ log
(

(λ+1)�β�

2�β�2�β��β�M

)
,

that

eω|T 	β

b (x)− log(x)| ≤ 1

M
.

Proof. First notice that on (0,∞) the logarithm is strictly increasing and is
infinitely times continuously differentiable. For real numbers a, b and a positive
integer j, aj − bj = (a− b)

∑j
i=1 a

j−ibi−1. Applied to a = λ+ 1 and b = λ, this
gives (λ+ 1)j − λj ≤ j(λ+ 1)j−1 and thus for x ∈ [a, b] ⊆ Dλ, we get that

|x− b| ≤ b− a ≤ (λ+ 1)�β� − λ�β�

2�β�2�β�	β
M ≤ b
�β�
λ+ 1

.

Substituting this in the bound from Proposition B.1 and using that x ≥ a
gives

|T 	β

b (x)− log(x)| ≤ 1

�β�

∣∣∣∣ �β�(λ+ 1)	β


a2�β�2�β�	β
M

∣∣∣∣�β� .
Since a ∈ Dλ,

|T 	β

b (x)− log(x)| ≤ 1

�β�

∣∣∣∣∣ �β�(λ+ 1)	β


2�β�2�β�	β
M · 2
�β�2�β�	β
M

λ�β�

∣∣∣∣∣
�β�

= �β�	β

∣∣∣∣ (λ+ 1)	β
)

λ�β�

∣∣∣∣�β� .
Multiplying both sides with an exponential, noticing that the exponential

function is strictly increasing, and applying the upper bound on ω given in the
statement of the proposition yields

eω|T 	β

b (x)− log(x)| ≤ (λ+ 1)�β��β�	β


2�β�2�β�	β
M

∣∣∣∣ (λ+ 1)	β
)

λ�β�

∣∣∣∣�β�
=

1

2�β�2M

(
λ+ 1

λ

)�β�2

.
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Since (λ+ 1)λ−1 is positive and decreasing for λ ≥ 1, we can upper bound the
last display by 1/M .

B.2. Partition of unity

So far we have bounded the approximation error on subintervals. As we work
with ReLU functions, indicator functions of intervals are impractical to use,
because they are discontinuous. Instead we create a partition of unity consisting
of continuous piecewise linear functions for an interval that contains the interval
[M−1, 1−M−1].

Define R as the smallest integer sucht that

(R2 + 2�β��β�	β
/�β� − 3
4 )

�β�

2�β�2�β�	β
M ≥ 1− 1

M
.

Rewriting this equation yields

R = �2�β�+1�β�	β
/�β� (M − 1)
1

�β� − 2

(
2�β��β�	β
/�β� − 3

4

)
�

≤ 2�β�+1�β�	β
/�β�M
1

�β� .

Now we define sequences (ar)r=1,··· ,R and (br)r=1,··· ,R−1 as follows

ar :=
(2�β��β�	β
/�β� + r

2 − 3
4 )

�β�

2�β�2�β�	β
M ,

br :=
(2�β��β�	β
/�β� + r

2 − 1
2 )

�β�

2�β�2�β�	β
M ,

and for ease of notation define b0 = a1 and bR = aR. Notice that [M−1, 1 −
M−1] ⊆ [a1, aR] ⊆ [M−1, 1 +M−1].

Next we define a family of functions (Fr)r=2,3,··· ,R and (Hr)r=1,2,··· ,R on the
interval [a1, aR]. For r = 2, · · · , R define the function Fr to be zero outside of
the interval [ar−1, ar] and to be a linear interpolation between the value one
at the point br−1 and the value zero at the boundaries of this interval. In the
same way define for r = 2, · · · , R− 1 the function Hr, but with support on the
interval [br−1, br] and with interpolation point ar. Define H1 to be the linear
interpolation between the value one at the point a1 and the value zero at b1 and
let it be zero outside this interval. Finally define HR as the linear interpolation
between the value one at the point bR and the value zero at bR−1 and set it to
zero outside of this interval.

By construction it holds that

R∑
r=2

Fr(x) +

R∑
r=1

Hr(x) = 1, for all x ∈ [a1, aR].
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Fig 2. The first few functions Fr(x) and Hr(x) when β ∈ (1, 2]. The points ar are marked
with circles, while the points br are denoted by squares.

Figure 2 gives the first few functions Fr and Hr in the case that β ∈ (1, 2].
We can construct a ReLU network that exactly represents the functions Fr

and Hr. This construction is a modification of the construction of continuous
piecewise linear functions as used in [34]. This modification assures that the
parameters are bounded by one.

Proposition B.3. For each function Fr and Hr their exists a network UFr ,
UHr ∈ Fid(L,m, s), with L = 3((1+�β�)2+�log2(M�β�	β
)�), m = (1, 3, 3, · · · ,
3, 1) and s = 8((1 + �β�)2 + log2(M�β�	β
)), such that Fr(x) = UFr(x) and
Hr(x) = UHr (x) for all x ∈ [a1, aR].

Proof. The functions Fr and Hr, r = 2, · · · , R, are piecewise linear functions,
consisting of four pieces each. This means that these function can be perfectly
represented as a linear combination of three ReLU functions. The interpolation
points provide the values of the shift vectors. Writing this out for Fr gives

Fr(x) =
σ(x− ar−1)

br−1 − ar−1
+

(
1

br−1 − ar−1
+

1

ar − br−1

)
σ(x−ar−1)+

σ(x− ar−1)

ar − br−1
.

For Hr, r = 2, · · · , R this can be done in a similar way. For H1 and HR we
actually only need one ReLU function. The networks weights in this construction
are greater than one. The difference between two consecutive points ar and br
can be lower bounded by using that for x, y ≥ 0: (x + y)�β� − x�β� ≥ y�β�.
Because of

(2�β��β�	β
/�β�)�β�
2�β�2�β�	β
M −

(2�β��β�	β
/�β� − 1
4 )

�β�

2�β�2�β�	β
M ≥
( 14 )

�β�

2�β�2�β�	β
M ,

we can upper bound all the network weights by

21+2�β�+�β�2�β�	β
M, (B.3)

which is the inverse of the lower bound on the smallest difference between two
consecutive points multiplied by two. Dividing the multiplicative constants by
this bound and combining (A.2) the resulting network with the ScaleC(x) net-
work from Proposition A.2 with C equal to (B.3) yields a network with the
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required output and parameters bounded by one. The network class is simpli-
fied by using the depth-synchronization (A.3) followed by the enlarging property
of neural networks (A.1).

The previous partition yields an approximation T β : [a1, aR] → R of the
logarithm on the entire interval [a1, aR] via

T β(x) :=

R∑
r=2

Fr(x)T
	β

ar

(x) +

R∑
r=1

Hr(x)T
	β

br

(x). (B.4)

This function depends on M through the sequence of points ar and br.
We can now derive the same type of error bound as in Lemma B.2 for all

x ∈ [0, 1]. For this, define the projection π : [0, 1] → [a1, aR], that maps x ∈ [0, 1]
to itself, if it is already in the interval [a1, aR], and to the closest boundary point
otherwise.

Lemma B.4. For all x ∈ [0, 1], we have |eTβ(π(x)) − x| ≤ M−1.

Proof. First consider x ∈ (a1, aR]. By construction there exists a unique r∗ ∈
{2, 3, · · · , R} and a unique r̄ ∈ {1, · · · , R} such that x ∈ (ar∗−1, ar∗ ], and x ∈
(br̄−1, br̄]. By the mean value theorem and (B.4),∣∣∣eTβ(x) − x

∣∣∣ ≤ eξ
∣∣T β(x)− log(x)

∣∣
= eξ

∣∣∣∣∣
R∑

r=2

Fr(x)T
	β

ar

(x) +
R∑

r=1

Hr(x)T
	β

br

(x)− log(x)(Fr∗(x) +Hr̄(x))

∣∣∣∣∣
≤ Fr∗(x)e

ξ
∣∣∣T 	β


ar∗
(x)− log(x)

∣∣∣+Hr̄(x)e
ξ
∣∣∣T 	β


br̄
(x)− log(x)

∣∣∣ ,
where ξ is some number between T β(x) and log(x). We now want to apply
Proposition B.2. For this we need to find a λ ≥ 1 such that [ar∗−1, ar∗ ] ∪
[br̄−1, br̄] ∈ Dλ and ξ ≤ maxy∈Dλ

log(y), with Dλ as defined by that proposition.
Because of our choice of the sequences of points ar and br,

λ := max
{r∗

2
+ 2�β��β�	β
/�β� − 3

4
,
r̄

2
+ 2�β��β�	β
/�β� − 1

2

}
− 1

satisfies λ ≥ 1, since r∗ ≥ 2 and r̄ ≥ 1. Furthermore this choice of λ guar-
antees that [ar∗−1, ar∗ ] ∪ [br̄−1, br̄] ⊆ Dλ. For the bound on ξ, notice that

x ∈ [ar∗−1, ar∗ ] ∪ [br̄−1, br̄] and that T β(x) = Fr∗(x)T
	β

ar∗ (x) + Hr̄(x)T

	β

br̄

(x).
Combined with the second statement of Proposition B.1, that is Tκ

c ≤ log(c) for
0 < c ≤ x, and together with Fr∗(x) +Hr̄(x) = 1, this yields ξ ≤ max{log(ar∗),
log(br̄)}. Thus we can apply Proposition B.2 and obtain

Fr∗(x)e
ξ
∣∣∣T 	β


ar∗
(x)− log(x)

∣∣∣+Hr̄(x)e
ξ
∣∣∣T 	β


br̄
(x)− log(x)

∣∣∣
≤ Fr∗(x)

1

M
+Hr̄(x)

1

M
=

1

M
,
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completing the proof for x ∈ [a1, aR].

When x ∈ [0, a1], notice that 0 < a1 < M−1 and T β(π(x)) = T
	β

b1

(a1). Hence

by Proposition B.1 together with b1 = M−1, we get that T β(π(x)) ≤ log(M−1)

proving that both x and eT
β(π(x)) are in [0,M−1]. Thus the conclusion also holds

for x ∈ [0, a1].
For aR ≥ 1, the proof follows from [0, 1] ⊆ ([0, a1]∪ [a1, aR]). Thus it remains

to study aR < 1. Consider x ∈ [aR, 1]. Using that 1−M−1 ≤ aR < 1 and that

T β(π(x)) = T
	β

bR

(aR) = T
	β

aR (aR) yields T

β(π(x)) = log(aR). This gives us that

both x and eT
β(π(x)) are in [aR, 1] ⊂ [1−M−1, 1], which immediately yields the

required bound.

B.2.1. Network construction

The following result shows how to approximate multiplications with deep ReLU
networks. This is required later to construct neural networks mimicking the
Taylor-approximation T β considered in the previous section.

Lemma B.5 (Lemma A.3. of [23]). For every η ∈ N≥1 and D ∈ N≥1, there
exists a network MultDη ∈ Fid((η + 5)�log2(D)�, (D, 6D, 6D, · · · , 6D, 1)), such

that MultDη ∈ [0, 1] and∣∣∣∣∣MultDη (x1, · · · , xD)−
D∏
i=1

xi

∣∣∣∣∣ ≤ 3D2−η, for all (x1, · · · , xD) ∈ [0, 1]D.

Moreover MultDη (x) = 0 if one of the coefficients of x is zero.

Remark B.6. Using (A.5) the number of parameters in the neural network
MultDη is bounded by ((η + 5)�log2(D)�+ 1)42D2 ≤ (η + 5)126D2 log2(D).

We now have all the required ingredients to finish the proof of Theorem 4.1:

Proof of Theorem 4.1. Since a1 = σ(0 · x+ a1), the projection π can be written
in terms of ReLU functions as

π(x) = max
(
a1,min(x, aR)

)
= σ(0 · x+ a1) + σ(x− a1)− σ(x− aR).

For aR ≤ 1, all network parameters are bounded by one and this defines a
neural network in Fid(1, (1, 3, 1), 8). When aR > 1, we replace σ(x − aR) with
σ(x − 1) as we are only interested in input in the interval [0, 1]. Having thus
obtained a value in the interval [a1, aR], we can, for any r ∈ {1, · · · , R}, apply
the network UFr from Proposition B.3 to it. Using depth synchronization (A.3)
and parallelization (A.4), we can combine the network UFr with a parallel net-
work that forwards the input value to obtain a network in the network class
Fid(L,m, s), with L = 4

(
(1 + �β�)2 + log2(M�β�	β
)

)
, m = (1, 3, 1, 4, · · · , 4, 2)

and s = 13
(
(1+�β�)2+log2(M�β�	β
)

)
, that maps x ∈ [0, 1] to (Fr(π(x)), π(x)).

The next step is to construct a network that approximates Fr(x)T
β
ar
(x). Since



2762 T. Bos and J. Schmidt-Hieber

ar ∈ [M−1, 1 + M−1], (B.2) allows us, for γ = 1, · · · , �β�, to use the network
Multγ+1

η with input vector (Fr(π(x)), π(x), · · · , π(x)) to compute approximately

the function Fr(π(x))π(x)
γ , and multiply its output with cγ/�β�2	β
+1M�β�.

For each γ ∈ {1, · · · , �β�} we have a network that approximately computes the
function

x �→ Fr(π(x))π(x)
γcγ/�β�2	β
+1M�β�. We now consider the network that

computes these functions in parallel and combines this with a single shallow
hidden node network to approximately compute Fr(π(x))c0/�β�2	β
+1M�β�.
Making use of parallelization (A.4), depth synchronization (A.3) and Remark
B.6, this yields a network GFr ∈ Fid(L

∗, (1, 6(�β�)2, · · · , 6(�β�)2, 1), s∗), with

L∗ = 4((1 + �β�)2 + log2(M�β�	β
)) + 2(η + 5) log2(�β�)
s∗ = 13((1 + �β�)2 + log2(M�β�	β
)) + (η + 5) log2(�β�)126(�β�)3

such that ∣∣∣∣∣∣GFr (x)− Fr(π(x))

	β
∑
γ=0

cγ
�β�2	β
+1M�β�π(x)

γ

∣∣∣∣∣∣ ≤ 3�β�2−η.

Due to the normalization constant �β�2	β
+1M�β� it holds that GFr(x) ∈ [−1, 1]
when π(x) is in the support of Fr. If π(x) is outside the support of Fr, then
Lemma B.5 guarantees that GFr (x) = 0. Similarly for Fr replaced by Hr, we
can construct deep ReLU networks GHr with the same properties.

Using the R networks GHr and R− 1 networks GFr in parallel together with
the observation that each x can be in the support of at most one Fr and one
Hr, this yields a deep ReLU network with output

∑R
r=2 GFr(x)+

∑R
r=1 GHr (x),

such that ∣∣∣∣∣
R∑

r=2

GFr(x) +

R∑
r=1

GHr (x)−
T β(π(x))

�β�2	β
+1M�β�

∣∣∣∣∣ ≤ 3�β�2−η+1.

In the next step we compose the network construction with a scaling network.
For this we use the scaling network from Proposition A.2 with constant C =
�β�2	β
+1M�β�. Since the input can be negative we use two of those networks
in parallel as described in Proposition A.3. This gives us a network

G̃ ∈ Fid

(
L∗ + 4 log2

(
�β�2	β
+1M�β�

)
,m∗, 2Rs∗ + 16 log2

(
�β�2	β
+1M�β�

))
,

where m∗ = (1, 12R(�β�)2, · · · , 12R(�β�)2, 1), such that∣∣∣G̃(x)− T β(π(x))
∣∣∣ ≤ �β�2	β
+2M�β�3�β�2−η.

Setting η = �log2(�β�2	β
+2M�β�+13�β�)�, this is upper bounded by M−1. Ap-
plying the triangle inequality, the mean value theorem and Lemma B.4 yields∣∣∣eG̃(x) − x

∣∣∣ ≤ ∣∣∣eG̃(x) − eT
β log(π(x))

∣∣∣+ ∣∣∣eTβ log(π(x)) − x
∣∣∣ ≤ e2/M

M
+

1

M
≤ 4

M
,

(B.5)
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where the term e2/M comes from noticing that |G̃(x) − T β log(π(x))| ≤ M−1,
|T β log(π(x))− log(1)| ≤ M−1 and triangle inequality.

To derive the lower bound G(x) ≥ log(4/M), we construct a network that

computes the maximum between G̃(x) and log(4/M). Since M ≥ 1 implies
| log(4/M)|/�β�2	β
+1M�β� ≤ 1, we can achieve this by adding one additional
layer before the scaling. This layer can be written as

σ
(
x− log(4/M)

�β�2	β
+1M�β�

)
+

log(4/M)

�β�2	β
+1M�β�σ(1). (B.6)

Applying the scaling as before yields a network G(x) = max{G̃(x), log(4/M)}
that is in the same network class as G̃(x). For the upper bound notice that if

G(x) = G̃(x), then the bound follows from (B.5). When G(x) = log(4/M), then

G̃(x) ≤ log(4/M), so (B.5) implies that x ≤ 8/M . Hence∣∣∣eG(x) − x
∣∣∣ = ∣∣∣∣ 4M − x

∣∣∣∣ ≤ 4

M
.

The network size as given in the theorem is an upper bound on the network size
obtained here, which is allowed by the depth-synchronization followed by the
enlarging property, and is done in order to simplify the expressions.

Figure 3 shows the main substructures of the deep ReLU network construc-
tion in this proof.

Appendix C: Further technicalities

Proposition C.1 (Bernstein’s inequality). For independent random variables
(Zi)

n
i=1 with zero mean and moment bounds E|Zi|m ≤ 1

2m!Um−2vi for m =
2, 3, . . . and i = 1, . . . , n for some constants U and vi, we have

P

(∣∣∣∣∣
n∑

i=1

Zi

∣∣∣∣∣ > x

)
≤ 2e−

x2

2v+2Ux , for v ≥
n∑

i=1

vi.

This formulation of Bernstein’s inequality is based on the formulation in
Lemma 2.2.11 of [29]. The proof can be found in [5].

The next elementary inequality generalizes Lemma 10 of [23].

Lemma C.2. If a, b, c, d are real numbers, a ≥ 0, such that |a− b| ≤ 2
√
ac+ d,

then, for each ε ∈ (0, 1],

(1− ε)(b− d)− (1− ε)2

ε
c2 ≤ a ≤ (1 + ε)(b+ d) +

(1 + ε)2

ε
c2.

Proof. First notice that |a− b| ≤ 2
√
ac+ d if and only if −2

√
ac− d ≤ a− b ≤

2
√
ac+d. Using that 2xy ≤ x2+y2 for all x, y ∈ R, we get for x :=

√
a
√
ε/
√
1 + ε

and y := c
√
1 + ε/

√
ε, that

2
√
ac = 2xy ≤ x2 + y2 =

εa

1 + ε
+

(1 + ε)c2

ε
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Fig 3. The construction of the logarithm approximation network G of Theorem 4.1 from
subnetworks. The difference between the networks G and G̃ is the single layer which enforces
the lower bound, which is not present in the network G̃.

and therefore

a− b ≤ εa

1 + ε
+

(1 + ε)c2

ε
+ d.

Rearranging the terms yields the upper bound of the lemma. For the lower
bound notice that if ε = 1, then the lower bound is zero, and holds since a ≥ 0.
For ε ∈ (0, 1) using the same argument but now with x =

√
a
√
ε/
√
1− ε and

y = c
√
1− ε/

√
ε, gives

a− b ≥ − εa

1− ε
− (1− ε)c2

ε
− d.

Rearranging the terms yields the lower bound of the proposition.

The number a is required to be nonnegative as otherwise
√
a would not be

a real number. In the statement in [23] the constants a, b, c, d are all required
to be positive. However since the inequality 2xy ≤ x2 + y2 holds for all real
numbers x, y the positivity constraint is not necessary. However, when c and d
are negative the term 2

√
ac+ d is negative, and no pair a, b exists such that the

condition is satisfied.
Recall that dτ (f ,g) := supx∈D maxk=1,··· ,K |(τ∨fk(x))−(τ∨gk(x))|. Observe

that dτ (f ,g) = 0 does not imply f = g, which is why dτ is not a metric. The
next lemma shows that this, however, defines a pseudometric.

Lemma C.3. Let f ,g,h : D → R
K , then for every τ ∈ R:
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(i) dτ (f ,g) ≥ 0
(ii) dτ (f , f) = 0
(iii) dτ (f ,g) = dτ (g, f)
(iv) dτ (f ,g) ≤ dτ (f ,h) + dτ (h,g).

Proof. (i), (ii) and (iii) follow immediately. (iv) follows from applying triangle
inequality to the ‖ · ‖∞ norm,

dτ (f ,g) =
∥∥ max

k=1,··· ,K
|(τ ∨ fk(·))− (τ ∨ gk(·))|

∥∥
∞

≤
∥∥ max

k=1,··· ,K
|(τ ∨ fk(·))− (τ ∨ hk(·))|

∥∥
∞

+
∥∥ max

k=1,··· ,K
|(τ ∨ hk(·))− (τ ∨ gk(·))|

∥∥
∞

= dτ (f ,h) + dτ (h,g).

Lemma C.4. If G is a function class of functions from D to [0,∞)K , then for
all δ > 0 and τ > 0

N
(
δ, log(G), dlog(τ)(·, ·)

)
≤ N

(
δτ,G, dτ (·, ·)

)
.

Proof. Let δ > 0. Denote by (gj)
Nn
j=1 the centers of a minimal internal δτ -

covering of G with respect to dτ and let g ∈ G. By the cover property, there
exist a j ∈ {1, · · · ,Nn} such that dτ (g,gj) ≤ δτ .

The derivative of log(u) is 1/u, so the logarithm is Lipschitz on [τ,∞) with
Lipschitz constant τ−1. Applying this to dlog(τ)(log(g), log(gj)), noticing that
max{log(τ), log(x)} ∈ [log(τ),∞) for x ∈ [0,∞), yields

max
x∈D

max
k=1,··· ,K

|(log(τ) ∨ log(gk(x)))− (log(τ) ∨ log(gj,k(x)))|

≤ τ−1 max
x∈D

max
k=1,··· ,K

|(τ ∨ gk(x))− (τ ∨ gj,k)(x))|

≤ τ−1δτ = δ.

Since g ∈ G was arbitrary, this means that for all g ∈ G there exists a j ∈
{1, · · · ,Nn} such that dlog(τ)(log(g), log(gj)) ≤ δ. Hence (log(gj))

Nn

j=1 is a δ-
cover for log(G) with respect to dlog(τ). Since the gj are in G, the log(gj) are in
log(G), thus this cover is an internal cover. Since N (δ, log(G), dlog(τ)(·, ·)) is the
minimal number of balls with center in log(G) required to cover log(G). This
proves the assertion.

Proof of Lemma 3.7. Let p,q ∈ Sk. Thus,
∑K

k=1 pk = 1,
∑K

k=1 qk = 1 and

K∑
k=1

pk

(
B ∧ log

(
pk
qk

))
=

K∑
k=1

(
pk

(
B ∧ log

(
pk
qk

))
− pk + qk

)
. (C.1)

Suppose for the moment that for any k = 1, · · · ,K,

pk

(
B ∧ log

(
pk
qk

))
− pk + qk ≥ 1

Cm,B
pk

∣∣∣∣B ∧ log

(
pk
qk

)∣∣∣∣m , (C.2)
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with Cm,B := max{m!, Bm/(B − 1)}. Applying this inequality to each term on
the right hand side of (C.1) gives

K∑
k=1

pk

(
B ∧ log

(
pk
qk

))
≥

K∑
k=1

1

Cm,B
pk

∣∣∣∣B ∧ log

(
pk
qk

)∣∣∣∣m .

Since Cm,B > 0, multiplying both sides of the inequality with Cm,B yields the
claim.

It remains to proof (C.2). First we consider the case that pk = 0. By consid-
ering the limit we get that 0 logm(0) = 0, for m = 1, 2, · · · . Thus the right hand
side of (C.2) is equal to 0, while the left hand side is equal to qk. Since qk ≥ 0,
this proves (C.2) for this case.

Assume now that pk > 0. Dividing both sides by pk yields

B ∧ log

(
pk
qk

)
− 1 +

qk
pk

≥ 1

Cm,B

∣∣∣∣B ∧ log

(
pk
qk

)∣∣∣∣m .

If pk/qk ≥ eB the inequality follows immediately. It remains to study the
case that pk/qk < eB . In this case one can always replace B ∧ log(pk/qk) by
log(pk/qk). Introducing the new variable u = qk/pk and replacing Cm,B by
C > 0 gives rise to a function

HC,m(u) = u− 1− log(u)− | log(u)|m/C.

It remains to show that HCm,B ,m(u) ≥ 0 for all u ≥ e−B. Obviously, HC,m(1) =
0 for all C, so we only have to consider u �= 1. Consider first u > 1 and C = m!.
Using the substitution u = es gives

m!es −m!(s+ 1)− sm.

Substituting the power series for the exponential function leads to

m!

∞∑
n=0

sn

n!
−m!(1 + s)− sm = m!

m−1∑
n=2

sn

n!
+m!

∞∑
n=m+1

sn

n!
> 0,

where the last strict inequality holds because u > 1 and thus s > 0. Thus
Hm!,m(u) ≥ 0 for u > 1.

For u ∈ (e−b, 1), dividing by u− log(u)− 1 gives us the following constraint
on the constant C :

C ≥ sup
u∈(e−B ,1)

| log(u)|m
u− log(u)− 1

. (C.3)

This division can be done since u− log(u)− 1 > 0 when u > 0, u �= 1 and zero
if and only if u = 1, which for example can be shown by observing the sign of
the derivative.

Define C<1 as C<1 := Bm/(B−1). Since | log(u)|m/(u− log(u)−1) is strictly
decreasing on (0, 1), see Proposition C.5 (II), it follows for u ∈ [e−B , 1) that
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| log(u)|m/(u − log(u) − 1) ≤ Bm/(e−B + B − 1). Now since B > 1, it follows
that Bm/(u + B − 1) is also strictly decreasing on [0, 1]. Hence on [0, e−B] we
have Bm/(e−B +B − 1) ≤ Bm/(u+B − 1) ≤ C<1, thus C<1 satisfies (C.3).

Now notice that Cm,B = max{C<1,m!}. Consequently HCm,B ,m(u) ≥ 0, for
all u ≥ e−B, proving (C.2).

For all m = 2, 3, . . . define the function Fm : (0,∞) → [0,∞) as

Fm(u) :=
| logm(u)|

u− log(u)− 1
.

Since u − log(u) − 1 ≥ 0, this function indeed takes only positive values. Fur-
thermore since u − log(u) − 1 = 0 only when u = 1 this is the only possible
singularity/discontinuity of this function. The next result derives some proper-
ties of the function Fm(u).

Proposition C.5. If m = 2, 3, · · · , then
(i) limu→1 F2(u) = 2 and limu→1 Fm(u) = 0 for m > 2
(ii) Fm(u) is strictly decreasing on (0, 1).

Proof. (i): For u = 1, it holds that (u − log(u) − 1) = 0 and | logm(u)| = 0.
Applying L’Hopital’s rule twice yields the desired result.
(ii): The L’Hopital’s like rule for monotonicity, see [22] or Lemma 2.2 in [1],
states that a function f/g on an interval (a, b), satisfying g′ �= 0 and either
f(a) = 0 = g(a) or f(b) = 0 = g(b), is strictly increasing/decreasing if f ′/g′ is
strictly increasing/decreasing on (a, b). For f = | logm(u)| and g = u−log(u)−1,
we have

f ′/g′ =
m log(u)| logm−2(u)|

u− 1

and for f̄ = m log(u)| logm−2(u)| and ḡ = u− 1, we obtain

f̄ ′/ḡ′ =
(m− 1)m| logm−2(u)|

u
.

On u ∈ (0, 1), f̄ ′/ḡ′ is strictly decreasing. Applying the L’Hopital’s like rule for
monotonicity twice yields the statement.

Proof of Lemma 3.4. The inequality KL2(P,Q) ≤ KLB(P,Q) follows direct
from the definition of the truncated Kullback-Leibler divergence. Write P =
P a + P s for the Lebesgue decomposition of P with respect to Q such that
P a � Q. The Lebesgue decomposition ensures existence of a setA with P a(A) =
0 = P s(Ac). For x ∈ A, we define dP/dQ(x) := +∞. For the dominating
measure μ = (P + Q)/2, denote by p, pa, ps, q the μ-densities of P, P a, P s, Q,
respectively. Since psq = 0,

H2(P,Q) =

∫ (
pa + ps −

√
paq

)
≤
∫
0<pa/q≤e2

(
pa −

√
paq

)
+

∫
pa/q>e2

pa +

∫
ps.
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For every u ∈ R, we have 1 − u ≤ e−u and hence eu − 1 ≤ ueu. Substituting
u = log(

√
y) yields

√
y − 1 ≤ √

y log(
√
y) and therefore y − √

y ≤ y log(
√
y) =

y log(y)/2. With y = pa/q, we find,

H2(P,Q) ≤
∫
0<pa/q≤e2

pa

2q
log

(pa
q

)
q +

∫
pa/q>e2

pa +

∫
ps.

The other direction works similarly. Second order Taylor expansion around
one gives for y > 0, y log(y) ≤ y − 1 + 1

2 (y − 1)2/(y ∧ 1). For y =
√
x, we find

x log(x) = 2
√
x · √x log(

√
x) ≤ 2(x −√

x) + (1 ∨ √
x)(

√
x − 1)2. Consequently,

for each B ≥ 0,

KLB(P,Q) =

∫
pa/q≤eB

pa

q
log

(pa
q

)
q +B

∫
dP/dQ>eB

dP

≤ 2eB/2H2(P,Q) + 2

∫
pa/q≤eB

p−√
pq +B

∫
dP/dQ>eB

dP.

If
∫
pa/q≤eB

pa −√
paq ≤ 0, we can use that H2(P,Q) ≥ 1

2

∫
p/q≥eB

(
√
p−√

q)2 ≥
1
2

∫
p/q≥eB

p(1− e−B/2)2 and hence

KLB(P,Q) ≤ 2
(
eB/2 + (1− e−B/2)−2

)
H2(P,Q).

Otherwise, if
∫
pa/q≤eB

pa −√
paq > 0, we can upper bound

KLB(P,Q) ≤ 2eB/2H2(P,Q) +B(1− e−B/2)−1

∫
pa/q≤eB

p−√
pq

+B

∫
dP/dQ>eB

dP

≤ 2eB/2H2(P,Q) +B(1− e−B/2)−1

∫
p−√

pq

=
(
2eB/2 +B(1− e−B/2)−1

)
H2(P,Q).

The result now follows by observing that since B ≥ 2, both B(1−e−B/2)−1 and
2(1− e−B/2)−2 are less than 2eB/2.

Proposition C.6. Recall that Φ denotes the softmax function. The function
log(Φ(·)) : RK → R

K satisfies | log(Φ(x))− log(Φ(y))|∞ ≤ K‖x− y‖∞.

Proof. Consider the composition of the logarithm with the softmax function,
that is, (

log

(
ex1∑K
j=1 e

xj

)
, · · · , log

(
exK∑K
j=1 e

xj

))
.
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It holds for k, i ∈ {1, · · · ,K}, i �= k that

∂

∂xk
log

(
exk∑K
j=1 e

xj

)
= 1− exk∑K

j=1 e
xj

,

∂

∂xk
log

(
exi∑K
j=1 e

xj

)
= − exk∑K

j=1 e
xj

.

The partial derivatives are bounded in absolute value by one. The combined
log-softmax function is therefore Lipschitz continuous (w.r.t to ‖ · ‖∞ norm for
vectors) with Lipschitz constant bounded by K.

Proof of Lemma 3.8. We start proving the first bound. Notice that
g ∈ log(FΦ(L,m, s)) means that there exists a ReLU network fg ∈ Fid(L,m,

s) such that g(x) = log(Φ(fg(x))). By Lemma 5 of [23] it holds that
N (δ/(2K),Fid(L,m, s), ‖ · ‖∞) ≤ (4δ−1K(L + 1)V 2). Let δ > 0. Denote

by (fj)
Nn
j=1 the centers of a minimal δ/(2K)-covering of Fid(L,m, s) with re-

spect to ‖ · ‖∞. Triangle inequality gives that for each fj there exists a f̂j ∈
Fid(L,m, s) such that (f̂j)

Nn

j=1 is an interior δ/K-cover of Fid(L,m, s). Let
g ∈ log(FΦ(L,m, s)). By the cover property, there exists a j ∈ {1, · · · ,Nn}
such that ‖fg − f̂j‖ ≤ δ/K. Proposition C.6 yields:

‖g − log(Φ(f̂j))‖∞ = ‖ log(Φ(fg))− log(Φ(f̂j))‖∞ ≤ K‖fg − f̂j‖∞ ≤ δ.

Since g ∈ log(FΦ(L,m, s)) was arbitrary and f̂j ∈ Fid(L,m, s) for j = 1, · · · ,Nn,

this means that (log(Φ(f̂j)) is an internal δ-cover for log(FΦ(L,m, s)) with re-
spect to ‖ · ‖∞. Hence

N (δ, log(FΦ(L,m, s)), ‖ · ‖∞) ≤ N (δ/(2K),Fid(L,m, s), ‖ · ‖∞)

≤ (4δ−1K(L+ 1)V 2).

Now we consider the second bound of the lemma. Using that m0 = d, mL+1 =
K and by removing inactive nodes, Proposition A.1, we get that m� ≤ s for
s = 1, · · · , L, and thus

V ≤ dKsL2L+2.

Substituting this in the first bound and taking the logarithm yields the result.

Proposition C.7. Consider binary classification (K = 2) for the conditional
class probabilities p1(x) = (3|x1 + x2 − 1|8)/4 and p2(x) = 1 − p1(x). If X is
uniformly distributed on [0, 1]2, then

PX (p1(X) ≤ t) = 2

(
4t

3

) 1
8

−
(
4t

3

) 1
4

.

If the distribution of X is given by the density (x1, x2) �→ 3|x1 + x2 − 1|, then

PX (p1(X) ≤ t) = 3

(
4t

3

) 1
4

− 2

(
4t

3

) 3
8

.
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Proof. By rewriting the inequality p1(X) ≤ t, we get for both cases that

PX (p1(X) ≤ t) = PX

(
(3|x1 + x2 − 1|8)/4 ≤ t

)
= PX

(
1−

(
4t

3

) 1
8

≤ x1 + x2 ≤ 1 +

(
4t

3

) 1
8

)
.

First we consider the case of uniform design. In this case, we find

PX

(
1−

(
4t

3

) 1
8

≤ x1 + x2 ≤ 1 +

(
4t

3

) 1
8

)

=

∫ 1

0

∫ 1+( 4t
3 )

1
8 −x2

1−( 4t
3 )

1
8 −x2

1dx1dx2 −
∫ ( 4t

3 )
1
8

0

∫ 1+( 4t
3 )

1
8 −x2

1

1dx1dx2

−
∫ 1

1−( 4t
3 )

1
8

∫ 0

1−( 4t
3 )

1
8 −x2

1dx1dx2

= 2

(
4t

3

) 1
8

− 1

2

(
4t

3

) 1
4

− 1

2

(
4t

3

) 1
4

.

Here, the second and third double integral are correction terms that compensate
for the regions where the first double integral integrates over values outside
[0, 1]2.

To prove the second part of the statement, consider the case that the distri-
bution of X is given by the density (x1, x2) �→ 3|x1 + x2 − 1|. In this case we
have that

PX

(
1−

(
4t

3

) 1
8

≤ x1 + x2 ≤ 1 +

(
4t

3

) 1
8

)

=

∫ 1

0

∫ 1+( 4t
3 )

1
8 −x2

1−( 4t
3 )

1
8 −x2

3|x1 + x2 − 1|dx1dx2

−
∫ ( 4t

3 )
1
8

0

∫ 1+( 4t
3 )

1
8 −x2

1

3|x1 + x2 − 1|dx1dx2

−
∫ 1

1−( 4t
3 )

1
8

∫ 0

1−( 4t
3 )

1
8 −x2

3|x1 + x2 − 1|dx1dx2

=

∫ 1

0

∫ 1−x2

1−( 4t
3 )

1
8 −x2

3(−x1 − x2 + 1)dx1dx2

+

∫ 1

0

∫ 1+( 4t
3 )

1
8 −x2

1−x2

3(x1 + x2 − 1)dx1dx2

−
∫ ( 4t

3 )
1
8

0

∫ 1+( 4t
3 )

1
8 −x2

1

3(x1 + x2 − 1)dx1dx2
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−
∫ 1

1−( 4t
3 )

1
8

∫ 0

1−( 4t
3 )

1
8 −x2

3(−x1 − x2 + 1)dx1dx2

=
3

2

(
4t

3

) 1
4

+
3

2

(
4t

3

) 1
4

−
(
4t

3

) 3
8

−
(
4t

3

) 3
8

.

Again, the correction terms occur because we integrate over values outside
[0, 1]2.
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