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Abstract: We propose a nonparametric estimator of the expected dis-
counted penalty function in the compound Poisson risk model. We use
a projection estimator on the Laguerre basis and we compute the co-
efficients using Plancherel theorem. We provide an upper bound on the
MISE of our estimator, and we show it achieves parametric rates of conver-
gence on Sobolev–Laguerre spaces without needing a bias-variance compro-
mise. Moreover, we compare our estimator with the Laguerre deconvolution
method. We compute an upper bound of the MISE of the Laguerre decon-
volution estimator and we compare it on Sobolev–Laguerre spaces with our
estimator. Finally, we compare these estimators on simulated data.
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1. Introduction

1.1. The statistical problem

We consider the classical risk model (compound Poisson model) for the risk
reserve process (Ut)t≥0 of an insurance company:

Ut = u+ ct−
Nt∑
i=1

Xi, t ≥ 0 (1)

where u ≥ 0 is the initial capital; c > 0 is the premium rate; the claim number
process (Nt) is a homogeneous Poisson process with intensity λ; the claim sizes
(Xi) are positive and i.i.d. with density f and mean μ, independent of (Nt). We
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denote by τ(u) the ruin time:

τ(u) := inf

{
t ≥ 0 |

Nt∑
i=1

Xi − ct > u

}
∈ R+ ∪ {+∞}

and we make the following assumption to ensure that τ(u) is not almost surely
finite.

Assumption 1 (safety loading condition). Let θ := λμ
c , we assume that θ < 1.

To study simultaneously the ruin time, the deficit at ruin, and the surplus
level before the ruin, Gerber and Shiu (1998) introduced the function:

φ(u) := E

[
e−δτ(u)w

(
Uτ(u)−, |Uτ(u)|

)
1τ(u)<+∞

]
, (2)

where δ ≥ 0, and w is a non-negative function of the surplus before the ruin
and the deficit at ruin. This function is called the expected discounted penalty
function, but it will also be referred to as the Gerber–Shiu function in the
following. For more information concerning the compound Poisson model and
the Gerber–Shiu function, see Asmussen and Albrecher (2010).

Example 1.1. Several quantities of interest can be put in the form (2),

1. if δ = 0 and w(x, y) = 1, then φ(u) is the probability of ruin;
2. if δ > 0 and w(x, y) = 1, then φ(u) is the Laplace transform of τ(u);
3. if δ = 0 and w(x, y) = x+ y, then φ(u) is the expected jump size causing

the ruin.

Observations and goal In all this article, we suppose that the premium
rate c is known, but the parameters of the aggregate claims process are not,
that is (λ, μ, f) is unknown. We suppose we have observed the process (Ut)t≥0

during the interval [0, T ], with T > 0 fixed, so we have access to the number of
claims and their size. Our goal is to recover the Gerber–Shiu function from the
observations (NT ;X1, . . . , XNT

).
Several authors have considered the problem of estimating the Gerber–Shiu

function using nonparametric methods. The first articles had an asymptotic
approach: Frees (1986), Croux and Veraverbeke (1990), Pitts (1994), Politis
(2003), and Masiello (2014) constructed nonparametric estimators of the ruin
probability, and established their consistency and their asymptotic normality.

Concerning non-asymptotic approaches, a method using regularized Laplace
inversion was introduced by Mnatsakanov, Ruymgaart and Ruymgaart (2008)
to estimate the ruin probability in the compound Poisson model. Shimizu (2011,
2012) then extended this method to the estimation of the Gerber–Shiu function
in more general risk models. However, this method suffers from poor rates of
convergence, and numerical difficulties to compute the estimator.

In their paper, Zhang and Su (2018) introduced a projection estimator on
the Laguerre basis to overcome these drawbacks. The choice of this basis is
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motivated by the work of Comte et al. (2017), where the properties of the La-
guerre functions relative to the convolution product are used to solve a Laplace
deconvolution problem. The same method was then used in more general risk
models: Zhang and Su (2019) estimate the Gerber–Shiu function in a Lévy
risk model, where the aggregate claims is a pure-jump Lévy process; Su, Yong
and Zhang (2019) estimate the Gerber–Shiu function in the compound Poisson
model perturbed by a Brownian motion; and Su, Shi and Wang (2019) study the
model where both the income and the aggregate claims are compound Poisson
processes. Recently, Su and Yu (2020) showed the Laguerre projection estima-
tor of the Gerber–Shiu function in the compound Poisson model is pointwise
asymptotically normal in the case δ = 0.

In this paper, we construct an estimator of the Gerber–Shiu function (2) in
the compound Poisson model (1). As Zhang and Su (2018), our estimator is
a projection estimator on the Laguerre basis, but we compute the coefficients
using Plancherel theorem instead of using a Laguerre deconvolution method.
We emphasize that our estimator achieves parametric rates of convergence on
Sobolev–Laguerre spaces regardless of the regularity of the Gerber–Shiu func-
tion, and without needing to find a compromise between the bias and the vari-
ance.

We also improve the previous results concerning the Laguerre deconvolution
method. Previous rates were given in OP, and we propose a non-asymptotic
bound on the MISE (Mean Integrated Squared Error) of the estimator. To
achieve this goal, we introduce two modified versions of the Laguerre deconvo-
lution estimator: the first one depends on a truncation parameter, whereas the
second one does not, but it is only defined in the case δ = 0.

To control the MISE of the second version of the Laguerre deconvolution
estimator, we had to prove that the primitives of the Laguerre functions were
uniformly bounded (see Lemma 3.4). This result is interesting in itself, the
proof relies on the study of the properties of the ODE’s satisfied by Laguerre
polynomials. The interested reader can find all the details in Appendix B.

Outline of the paper In the remaining part of this section, we introduce
the notations and we give preliminary results on the Gerber–Shiu function. In
Section 2, we construct our estimator and we study its MISE. In Section 3, we
introduce two modified versions of the Laguerre deconvolution estimator and we
study their MISE. In Section 4, we compute convergence rates of the different
estimators considered on Sobolev–Laguerre spaces and also in the case where the
claim sizes are exponentially distributed. In Section 5, we compare numerically
the estimators on simulated data. We gathered all the proofs in Section 7.

1.2. Notations and preliminaries on the Gerber–Shiu function

We use the following notations in the paper:

• N := {0, 1, 2, 3, . . .}, N∗ := N \ {0}, R+ := [0,+∞), T := {z ∈ C | |z| = 1}.
• “x � y” means x ≤ Cy for an absolute constant C > 0.
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• x ∧ y := min(x, y) and x ∨ y := max(x, y).

• Lf(s) :=
∫ +∞
0

e−sxf(x) dx is the Laplace transform of f .
• Fψ(ω) :=

∫
R
eiωxψ(x) dx is the Fourier transform of ψ.

• Leb(A) is the Lebesgue measure of the set A.

• ‖Am‖op := supx∈Rm\{0}
‖Amx‖�2

‖x‖�2
is the 	2-operator norm of the matrix

Am ∈ Rm×m.

The key result to estimate the Gerber–Shiu function is the following theorem.

Theorem 1.2 (Gerber and Shiu (1998)). Under Assumption 1, the Gerber–Shiu
function satisfies the equation:

φ = φ ∗ g + h. (3)

where g and h are given by:

g(x) :=
λ

c

∫ +∞

x

e−ρδ(y−x)f(y) dy, (4)

h(u) :=
λ

c

∫ +∞

u

e−ρδ(x−u)

(∫ +∞

x

w(x, y − x)f(y) dy

)
dx,

and where ρδ is the (unique) non-negative solution of the so-called Lundberg
equation:

cs− λ
(
1− Lf(s)

)
= δ. (5)

Remark 1.3. Since Lf(s) ∈ [0, 1], it is easy to see that ρδ ∈
[
δ
c ,

δ+λ
c

]
. Moreover,

we know that ρδ = 0 when δ = 0.

We need to ensure that φ, g and h belong to L2(R+) in order to use a
projection estimator. We see that supx g(x) ≤ supx

λ
c P[X > x] ≤ λ

c and∫∞
0

g(x) dx ≤ λ
c

∫∞
0

P[X > x] dx = θ, hence g ∈ L1(R+) ∩ L∞(R+), therefore
g ∈ L2(R+). To ensure that h ∈ L2(R+) we make the following assumption.

Assumption 2. We assume that
∫∞
0

(1+x)
(∫∞

x
w(x, y − x)f(y) dy

)
dx is finite.

Under this assumption, we have:

sup
u>0

h(u) ≤ λ

c

∫ ∞

0

(∫ ∞

x

w(x, y − x)f(y) dy

)
dx < +∞,∫ ∞

0

h(u) du ≤ λ

c

∫ ∞

0

x

(∫ ∞

x

w(x, y − x)f(y) dy

)
dx < +∞.

Hence, h belongs to L1(R+) ∩ L∞(R+), so h ∈ L2(R+). Integrating Equation
(3) yields:

‖φ‖L1 =

∫ ∞

0

φ(u) du =

∫∞
0

h(u) du

1−
∫∞
0

g(x) dx
,

which is finite under Assumption 1 since
∫∞
0

g(x) dx ≤ θ < 1. Since φ belongs to
L1(R+) and g belongs to L2(R+), their convolution product belongs to L2(R+),
hence φ = φ ∗ g + h belongs to L2(R+) as well.
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Remark 1.4. Assumption 2 has already been considered by Shimizu and Zhang
(2017), and Zhang and Su (2018). Actually, the quantity:

ω(x) :=

∫ +∞

x

w(x, y − x)f(y) dy = E
[
w(x,X − x)1X≥x

]
,

can be found on several occasion in the study of the Gerber–Shiu function. The
assumption that

∫∞
0

ω(x) dx is finite ensures that φ(u) is finite for all u (As-
mussen and Albrecher, 2010, Chapter X, Section 1). The additional requirement
that

∫∞
0

xω(x) dx is finite serves to prove that φ belongs to L1(R+), so that its
Fourier transform is well defined. As we have seen, it also ensures that φ belongs
to L2(R+).

2. The Laguerre–Fourier estimator

We use the Laguerre functions (ψk)k∈N as an orthonormal basis of L2(R+):

∀x ∈ R+, ψk(x) :=
√
2Lk(2x) e

−x, Lk(x) :=
k∑

j=0

(
k

j

)
(−x)j

j!
. (6)

We choose this basis for several reasons. First, the support of the Laguerre
functions is R+, which is well suited since the functions we want to estimate are
defined on R+. Moreover, exponential functions (and more broadly mixtures
of gamma functions, see the proof of Lemma 3.9 in Mabon (2017)) have an
exponentially small bias in this basis, which is interesting because when the
claim sizes distribution is exponential and w is a polynomial, then g and h
will be given by products of polynomials with exponentials. Finally, the Fourier
transform of the Laguerre function is known explicitly:

∀ω ∈ R, Fψk(ω) = (−1)k
√
2

(1 + iω)k

(1− iω)k+1
, (7)

which is helpful for the computation of the estimated coefficients (8).
We denote by (ak)k≥0 the Laguerre coefficients of φ. If m ∈ N∗, we denote

by φm the projection of φ on the subspace of L2(R+) spanned by the first m
Laguerre functions ψ0, . . . , ψm−1, that is:

φm :=

m−1∑
k=0

ak ψk, with ak = 〈φ, ψk〉.

The Laguerre coefficients of φ can be computed using Plancherel theorem:

ak =
〈
φ, ψk

〉
=

1

2π

〈
Fφ,Fψk

〉
.

Taking the Fourier transform in equation (3), we see that Fφ = Fh
1−Fg . Let

ĝ, ĥ ∈ L2(R+) be some estimators of g and h (we provide these estimators later
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in equation (14)), we estimate the coefficients of φ by:

âk :=
1

2π

〈
F ĥ

1− F̂g
,Fψk

〉
, (8)

where F̂g := (F ĝ)1|F ĝ|≤θ0 for some truncation parameter θ0 < 1. The estimator
of φ is then:

φ̂m1
:=

m1−1∑
k=0

âk ψk,

where m1 is the dimension of the projection space.

Proposition 2.1. Under Assumptions 1 and 2, if θ < θ0, we have:

‖φ− φ̂m1‖
2
L2 ≤ ‖φ− φm1‖

2
L2 +

2

(1− θ0)2
‖h− ĥ‖2L2

+
2 ‖h‖2L1

(1− θ0)2(1− θ)2

(
1 +

‖g‖2L1

(θ0 − θ)2

)
‖g − ĝ‖2L2 .

Remark 2.2. We emphasize the fact that this result is proven using only two
properties: the function φ satisfies the equation (3) and θ0 > θ > ‖g‖L1 . Hence, it
can be applied to other problems where the target function satisfies an equation
of the form (3). For example, it is the case in Zhang and Su (2019), Su, Shi and
Wang (2019) and Su, Yong and Zhang (2019).

We now need to provide good estimators of g and h. We choose to estimate
them by projection on the Laguerre basis too. Let (bk)k≥0 and (ck)k≥0 be the
coefficients of g and h, that is:

g =

+∞∑
k=0

bkψk, with bk := 〈g, ψk〉, (9)

h =

+∞∑
k=0

ckψk, with ck := 〈h, ψk〉. (10)

By Fubini’s theorem and using equation (4):

bk =

∫ +∞

0

g(x)ψk(x) dx

=
λ

c

∫ +∞

0

(∫ +∞

x

e−ρδ(y−x)f(y) dy

)
ψk(x) dx

=
λ

c

∫ +∞

0

(∫ y

0

e−ρδ(y−x)ψk(x) dx

)
f(y) dy

=
λ

c
E

[∫ X

0

e−ρδ(X−x)ψk(x) dx

]
.
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The same calculation for ck yields:

ck =
λ

c
E

[∫ X

0

(∫ X

u

e−ρδ(x−u)w(x,X − x) dx

)
ψk(u) du

]
.

We estimate these coefficients by empirical means. However, we first need to
estimate ρδ. Since ρδ is the non-negative solution of the Lundberg equation
(5), we estimate it by ρ̂δ the non-negative solution of the empirical Lundberg
equation:

cs− λ̂(1− L̂f(s)) = δ, (11)

where λ̂ := NT

T and L̂f(s) := 1
NT

∑NT

i=1 e
−sXi . When δ = 0 we know that ρδ = 0

so we do not need to estimate it, thus we set ρ̂0 = 0. The estimated coefficients
of g and h are:

b̂k =
1

cT

NT∑
i=1

∫ Xi

0

e−ρ̂δ(Xi−x)ψk(x) dx, (12)

ĉk =
1

cT

NT∑
i=1

∫ Xi

0

(∫ Xi

u

e−ρ̂δ(x−u)w(x,Xi − x) dx

)
ψk(u) du, (13)

and the estimators of g and h are:

ĝm2
:=

m2−1∑
k=0

b̂k ψk, ĥm3
:=

m3−1∑
k=0

ĉk ψk, (14)

where m2 and m3 are the dimensions of the projection spaces. As we did for
φ, we denote by gm2 and hm3 the projections of g and h on the subspaces
Span(ψ0, . . . , ψm2−1) and Span(ψ0, . . . , ψm3−1).

Remark 2.3. The dimensions m1,m2,m3 do not have to be the same for the
estimation of φ, g and h. In practice, we will choose different dimensions.

In order to give a bound on the mean integrated squared error of our estima-
tors ĝm2 and ĥm3 , we need to make an additional assumption.

Assumption 3. Let W (X) :=
∫X

0

(∫X

u
w(x,X − x) dx

)2
du. If δ = 0, we as-

sume that E[W (X)] is finite, and if δ > 0, we assume that E[W (X)2] is finite.

Remark 2.4 (Applicability of Assumptions 2 and 3). Assumptions 2 and 3 can
be thought as moment conditions on the claim sizes distribution, with respect
to w. In the special case where w is given by w(x, y) = xk(x+ y)� for k, 	 ≥ 0,
we have:∫ +∞

0

(1 + x)

(∫ +∞

x

w(x, y − x)f(y) dy

)
dx = E

[
Xk+�+1

k + 1

]
+ E

[
Xk+�+2

k + 2

]
,

W (X) =
X2k+2�+3

(k + 1)2(2k + 3)
,
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so Assumptions 2 and 3 reduce to the moment condition E
[
X2k+2�+3

]
< +∞ (if

δ = 0). Notice that the functions of Example 1.1 correspond to the cases (k, 	) =
(0, 0) or (0, 1), so that the corresponding moment condition is E[X3] < ∞ or
E[X5] < ∞. Hence, heavy-tailed distributions can fit into these assumptions,
provided they admit sufficiently large moments. On the other hand, if w grows
with an exponential rate, for example if w(x, y − x) := exp(γ(x + y)), then we
also need an exponential moment for X, so that we are restricted to light tailed
distributions.

Theorem 2.5. Under Assumptions 1, 2 and 3, if δ = 0 then it holds:

E‖g − ĝm2‖
2
L2 ≤ ‖g − gm2‖

2
L2 +

λ

c2T
E[X],

E‖h− ĥm3‖
2
L2 ≤ ‖h− hm3‖

2
L2 +

λ

c2T
E[W (X)],

and if δ > 0 then it holds:

E‖g − ĝm2‖
2
L2 ≤ ‖g − gm2‖

2
L2 +

C(λ)

c2T

⎛⎝E[X] +
E
[
X2
] 1

2

(1− θ)2δ2

⎞⎠ ,

E‖h− ĥm3‖
2
L2 ≤ ‖h− hm3‖

2
L2 +

C(λ)

c2T

⎛⎝E[W (X)] +
E
[
W (X)2

] 1
2

(1− θ)2δ2

⎞⎠ ,

where C(λ) is a O(λ2).

Remark 2.6. The variance terms do not depend on m2 nor m3, so no compro-
mise between the bias and the variance is needed: we just have to take m2 and
m3 as large as possible such that the bias is smaller than 1/T . See Section 4 for
a discussion concerning the choice of m2 and m3 when the functions g and h
belong to a Sobolev–Laguerre space.

Let m1,m2,m3 ∈ N∗, we estimate g by ĝm2 and h by ĥm3 . We plug these
estimators in (8) and we estimate φ by:

φ̂m1,m2,m3
:=

m1−1∑
k=0

〈 F ĥm3

1− F̂gm2

,Fψk

〉
ψk,

with F̂gm2
:= F ĝm21|F ĝm2 |≤θ0 . Combining Proposition 2.1 with Theorem 2.5,

we obtain:

Corollary 2.7. Under Assumptions 1, 2 and 3, if θ < θ0 then it holds:

E‖φ− φ̂m1,m2,m3‖
2
L2 ≤ ‖φ− φm1‖

2
L2

+
C

(1− θ0)2

(
‖g − gm2‖

2
L2 + ‖h− hm3‖

2
L2 +

1

cT

)
,

where C is a constant depending on λ, c, θ, ‖g‖L1 , ‖h‖L1 , E[X], E[W (X)] and
θ0 − θ; and also δ, E[X2], E[W (X)2] if δ > 0.
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We want to compare our estimator with the Laguerre deconvolution method.
However, there is no result on the MISE of this method for estimating the
Gerber–Shiu function, so we study it in the next section.

3. The Laguerre deconvolution estimator

For the Laguerre deconvolution method, we need an additional assumption on
the coefficients of g.

Assumption 4. The coefficients (bk)k≥0, defined by (9), are such that (bk+1 −
bk)k≥0 ∈ 	1(N).

Remark 3.1. If g belongs to a Sobolev–Laguerre space Ws(R+) with regu-
larity s > 1, then Assumption 4 holds automatically. The spaces Ws(R+) are
regularity spaces associated with the Laguerre basis, see Definition 4.1 below.
Indeed, by the Cauchy–Schwarz inequality, we have:

+∞∑
k=0

|bk| =
+∞∑
k=0

|bk|(1 + k)
s
2 (1 + k)−

s
2 ≤

(
+∞∑
k=0

|bk|2(1 + k)s

) 1
2
(

+∞∑
k=0

(1 + k)−s

) 1
2

,

which is finite if g ∈ Ws(R+) and s > 1. Hence, (bk)k≥0 is in 	1(N) and so is
(bk+1 − bk)k≥0.

The reason why the Laguerre basis is well suited for deconvolution on R+ is
the following relation satisfied by the Laguerre functions:

∀k, j ∈ N, ψk ∗ ψj =
1√
2
(ψk+j − ψk+j+1),

see formula 22.13.14 in Abramowitz and Stegun (1972). The reader interested
in the use of the Laguerre basis for deconvolution problems is referred to Mabon
(2017). Expanding the renewal equation (3) on the Laguerre basis, one easily
obtains the following relation between the coefficients of φ, g and h:

∀k ∈ N, ak = (β ∗ a)k + ck,

where the sequence (βk)k≥0 is defined by β0 := b0√
2
and βk :=

bk−bk−1√
2

for k ≥ 1.

This relation can be written in a matrix form: if am := (a0, . . . , am−1)
T and

cm := (c0, . . . , cm−1)
T are the vectors of the m first coefficients of φ and h, then

it holds:
Am × am = cm ⇐⇒ am = A−1

m × cm, (15)

where Am is the lower triangular Toeplitz matrix:

∀i, j ∈ {0, . . . ,m− 1}, (Am)i,j :=

⎧⎪⎨⎪⎩
1− 1√

2
b0 if i = j,

1√
2
(bi−j−1 − bi−j) if i > j,

0 else.

(16)

This matrix is invertible if and only if 1 − b0√
2
�= 1, which is the case because

b0√
2
≤ θ < 1 under Assumption 1.
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Lemma 3.2. Under Assumption 4, we have ‖A−1
m ‖op ≤ 2

1−θ for all m ∈ N∗.

This lemma is borrowed from Zhang and Su (2018) (Lemma 4.3 in their
article). There were missing elements in their proof, so we give a new proof of
this lemma, for the sake of completeness.

The naive Laguerre deconvolution estimator consists in estimating the matrix
Am and the coefficients cm in (15), to obtain an estimation of the coefficients of

φ. More precisely, the matrix Am is estimated by plugging b̂k, defined by (12),
in (16):

∀i, j ∈ {0, . . . ,m− 1}, (Âm)i,j :=

⎧⎪⎨⎪⎩
1− 1√

2
b̂0 if i = j,

1√
2
(b̂i−j−1 − b̂i−j) if i > j,

0 else.

(17)

This matrix is invertible if and only if b̂0√
2
�= 1, which is almost surely the case

since b̂0√
2
= 1

cT

∑NT

i=1(1−e−Xi) is a continuous random variable. The coefficients

of φ are estimated by:
âLag0
m := Â−1

m × ĉm, (18)

where ĉm := (ĉ0, . . . , ĉm−1)
T . Under Assumptions 1, 2, 3, and 4, Zhang and

Su (2018) show that if E[X2] is finite and if m = o(T ), then ‖φ − φ̂
Lag0
m ‖2L2 ≤

‖φ− φm‖2L2 +OP

(
m
T

)
.

In the following, we propose two ways inspired by Comte and Mabon (2017) to
estimate the Gerber–Shiu function, using the Laguerre deconvolution method.
To obtain a non asymptotic result on the MISE of the estimator, a cutoff is
required when inverting the matrix Âm. Let θ0 < 1 be a truncation parameter,
we estimate A−1

m by:

Ã−1
m,1 := Â−1

m 1Δ1
m

where Δ1
m :=

{
‖Â−1

m ‖op ≤ 2

1− θ0

}
,

and we estimate the coefficients am by â
Lag1
m := Ã−1

m,1 × ĉm.

Theorem 3.3. Under Assumptions 1, 2, 3, and 4, if θ < θ0 then it holds:

∀m ∈ N∗, E‖φ− φ̂Lag1
m ‖2L2 ≤ ‖φ− φm‖2L2 + C

m

T
,

where C is a constant depending on λ, c, θ, E[X], E[W (X)] and θ0 − θ; and
also δ, E[X2], E[W (X)2] if δ > 0.

We propose a second way to estimate φ using the Laguerre deconvolution
method, in the case δ = 0. It avoids the use of a truncation parameter θ0,
but at the expense of an extra log(m) factor in the upper bound of the MISE,
and it uses an additional independence assumption. We estimate the Laguerre
coefficients of g by (12), that is in this case:

b̂k :=
1

cT

NT∑
i=1

Ψk(Xi),
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where Ψk(x) :=
∫ x

0
ψk(t) dt. The matrix Am is still estimated by (17).

Lemma 3.4. The functions Ψk(x) :=
∫ x

0
ψk(t) dt are uniformly bounded.

This lemma is a technical result interesting in itself and we prove it in Ap-
pendix B. Using this lemma, we can control the risk of Âm in operator norm.

Proposition 3.5. If δ = 0, p ≥ 1 and logm ≥ p, then it holds:

E

[
‖Âm −Am‖2pop

]
≤ C(p, λ)μp

(
m logm

cT

)p

+ C(p)

(
m logm

cT

)2p

,

where C(p, λ) is a O(λp), and C(p) is a constant depending on p.

This time, we estimate the inverse of the matrix Am by:

Ã−1
m,2 := Â−1

m 1Δ2
m
, where Δ2

m :=

{
‖Â−1

m ‖2op ≤ cT

m logm

}
,

we estimate the coefficients of φ by â
Lag2
m := Ã−1

m,2 × ĉm, and we estimate φ by:

φ̂Lag2
m :=

m−1∑
k=0

â
Lag2

k ψk.

To provide an upper bound on the MISE of φ̂
Lag2
m , we need Ã−1

m,2 and ĉm to be
independent. For this reason, we assume that we have a second observation set
{N ′

T ;X
′
1, . . . , X

′
N ′

T
} identical in law but independent from the main one1. We

use this second set to estimate Ã−1
m,2.

Theorem 3.6. We assume that δ = 0. Under Assumptions 1, 2, 3 and 4, if
m logm ≤ cT then it holds:

E‖φ− φ̂Lag2
m ‖2L2 ≤ ‖φ− φm‖2L2

+
C(λ)

cT (1− θ)2

(
E[W (X)]

c
+ ‖φ‖2L2(μ+ μ2)m logm

)
+O

(
1

T 2

)
,

with C(λ) = O(λ ∨ λ2).

Remark 3.7. Contrary to the Laguerre–Fourier method, there is only one bias
term with the Laguerre deconvolution method. However, the variance term is
more complicated and a bias-variance compromise is needed. It leads to non-
parametric rates of convergence, which are slower than the parametric rate 1

T .

1alternatively, we could split the data {X1, . . . , XNT
} in two parts: we use half of the data

to estimate Ã−1
m,2, and the other half to estimate ĉm.
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4. Convergence rates of the Laguerre estimators

4.1. Sobolev–Laguerre spaces

To study the bias of a function in the Laguerre basis, we consider the Sobolev–
Laguerre spaces. These functional spaces have been introduced by Bongioanni
and Torrea (2009) to study the Laguerre operator. The connection with the
Laguerre coefficients was established later by Comte and Genon-Catalot (2015).

Definition 4.1. For s > 0, we define the Sobolev–Laguerre ball of radius L > 0
and regularity s as:

Ws(R+, L) :=

{
v ∈ L2(R+)

∣∣ +∞∑
k=0

〈v, ψk〉2 ks ≤ L

}
,

and we define the Sobolev–Laguerre space as Ws(R+) :=
⋃

L>0 W
s(R+, L).

By Proposition 7.2 in Comte and Genon-Catalot (2015), when s is a natural
number, v ∈ Ws(R+) if and only if v is (s − 1) times differentiable, v(s−1) is

absolutely continuous, and for all 0 ≤ k ≤ s− 1 we have x
k+1
2

∑k+1
j=0

(
k+1
j

)
v(j) ∈

L2(R+). In particular, a function v belongs to W1(R+) if and only if it is abso-
lutely continuous and

√
x(v + v′) ∈ L2(R+).

We are interested in the Sobolev–Laguerre spaces because of the following
observation. If v belongs to a Sobolev–Laguerre ball Ws(R+, L), then its bias is
controlled by:

‖v − vm‖2L2 =

+∞∑
k=m

〈v, ψk〉2 =

+∞∑
k=m

〈v, ψk〉2 ksk−s ≤ Lm−s.

Combining this upper bound on the bias term with Corollary 2.7, and Theorems
3.3 and 3.6, we obtain convergence rates for the Laguerre–Fourier estimator and
the Laguerre deconvolution estimators, on Sobolev–Laguerre spaces.

Theorem 4.2. Under Assumptions 1, 2 and 3, if θ < θ0 and if φ ∈ Ws1(R+),

g ∈ Ws2(R+) and h ∈ Ws3(R+), then choosing mi > (cT )
1
si for all i ∈ {1, 2, 3}

yields:

E‖φ− φ̂m1,m2,m3‖
2
L2 = O

(
1

cT

)
.

Remark 4.3. If φ, g and h belong to some Sobolev–Laguerre spaces with a
regularity index greater than 1, we can just choose m1 = m2 = m3 = �cT � and
obtain the parametric rate O( 1

cT ) for the Laguerre–Fourier estimator.

Theorem 4.4. We make Assumptions 1, 2, 3 and 4, and we assume that φ ∈
Ws(R+).

1. If θ < θ0, then choosing mopt ∝ (cT )
1

1+s yields:

E‖φ− φ̂Lag1
mopt

‖2L2 = O
(
(cT )−

s
1+s
)
.



2136 F. Dussap

2. If δ = 0, then choosing mopt ∝ (cT )
1

1+s yields:

E‖φ− φ̂Lag2
mopt

‖2L2 = O
(
(cT )−

s
1+s log(cT )

)
.

Remark 4.5. The Fourier–Laguerre estimator and the Laguerre deconvolution

estimator φ̂
Lag1
m both depend on a truncation parameter θ0 that needs to be

chosen such that θ < θ0. We see two ways to ensure that.

1. We can assume that we know some θ0 < 1 such that θ < θ0. Then our
convergence rates are those of Theorems 4.2 and 4.4.

2. We can choose θ0 = 1−(log T )1/2. Then for T large enough (more precisely

T > e(1−θ)2), the convergence rates of the Laguerre–Fourier estimator and

φ̂
Lag1
m are those of Theorems 4.2 and 4.4 multiplied by log(T ).

In our simulations, we chose the first way.

4.2. The exponential case

In this section, we want to compute the convergence rate of the estimators, in
the exponential case: X ∼ Exp(1/μ). This distribution is often considered in
risk theory and closed forms of the Gerber–Shiu function are available in this
case. Indeed, the Gerber–Shiu functions of Example 1.1 are given by:

φ(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

θ exp

(
−1− θ

μ
u

)
(ruin probability),

θ

1 + μρδ
exp

(
−
[
1− θ

μ
+ ρδ −

δ

c

]
u

)
(Lap. transform of τ),

μ(1 + 2θ) exp

(
−1− θ

μ
u

)
− μ exp

(
−u

μ

)
(jump size).

(19)
These formulas are obtained by Laplace inversion, see Asmussen and Albrecher
(2010), chapter XII. We use the following lemma to compute the bias terms of
the functions φ, g and h.

Lemma 4.6. Let C, γ be positive numbers and let F (x) = C exp(−γx)1R+(x).
The Laguerre coefficients of F are given by:

〈F, ψk〉 =
C
√
2

γ + 1

(
γ − 1

γ + 1

)k

.

Hence if m ≥ 0 we have:

+∞∑
k=m

〈F, ψk〉2 =
C2

2γ

(
γ − 1

γ + 1

)2m

.

Proposition 4.7. If the density of X is f(x) = 1
μe

− x
μ , then the bias term of φ

is given by:
‖φ− φm‖2L2 ≤ Le−rm

with L and r given by:
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1. Ruin probability: L = θ2

2γ , r = 2 log
∣∣∣γ+1
γ−1

∣∣∣ and γ = 1−θ
μ .

2. Laplace transform of the ruin time: L = θ2

2γ(1+μρδ)2
, r = 2 log

∣∣∣γ+1
γ−1

∣∣∣ and
γ = 1−θ

μ + ρδ − δ
c .

3. Jump size causing the ruin: L = μ3 (1+2θ)2

1−θ , r = 2 log
(∣∣∣ 1−θ+μ

1−θ−μ

∣∣∣ ∧ ∣∣∣ 1+μ
1−μ

∣∣∣).
Combining this Proposition with Theorems 3.3 and 3.6, we easily obtain

convergence rates for the Gerber–Shiu functions we are interested in.

Theorem 4.8. We assume that the density of X is f(x) = 1
μe

− x
μ , we make

Assumptions 1, 2, 3 and 4, and we assume that the bias term of φ decreases as:

‖φ− φm‖2L2 ≤ Le−rm.

1. If θ < θ0, then choosing mopt = � 1
r log(cT )� yields:

E‖φ− φ̂Lag1
mopt

‖2 = O
(
log(cT )

cT

)
.

2. If δ = 0, then choosing mopt = � 1
r log(cT )� yields:

E‖φ− φ̂Lag2
mopt

‖2L2 = O
(
log(cT ) log log(cT )

cT

)
.

For the Laguerre–Fourier estimator, we also need to know the decreasing rate
of the bias term of g and h. For the ruin probability, the Laplace transform of
τ , and the jump size causing the ruin, direct calculations show that g and h are
given by a positive multiple of e−x/μ. Thus, Lemma 4.6 yields that their bias
term is less than exp(−r′m), with r′ := 2 log| 1+μ

1−μ |. Together with Corollary 2.7,
we obtain the convergence rates of the Laguerre–Fourier estimator.

Theorem 4.9. If the density of X is f(x) = 1
μe

− x
μ , under Assumptions 1, 2

and 3, if θ < θ0 and if the bias term of φ decreases as:

‖φ− φm‖2L2 ≤ Le−rm,

then choosing m1 > � 1
r log(cT )� and m2,m3 > � 1

r′ log(cT )� with r′ := 2 log| 1+μ
1−μ |

yields:

E‖φ− φ̂m1,m2,m3‖
2
L2 = O

(
1

cT

)
.

5. Numerical comparison

In this section, we compare the performance on simulated data of the Laguerre–
Fourier estimator (see Section 2) and the Laguerre deconvolution estimators
(see Section 3). We consider the three Gerber–Shiu functions of Example 1.1:

1. φ(1)(u) = P[τ(u) < ∞] the ruin probability;
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2. φ(2)(u) = E[(Uτ(u)−+ |Uτ(u)|)1τ(u)<∞] the expected claim size causing the
ruin;

3. φ(3)(u) = E[e−δτ(u)1τ(u)<∞] the Laplace transform of the ruin time, for
δ = 0.1.

We also consider three sets of parameters:

1. X follows an exponential distribution, λ = 1, μ = 1, c = 1.5. In this
setting, θ ≈ 0.67.

2. X follows an exponential distribution, λ = 1.25, μ = 2, c = 3. In this
setting, θ ≈ 0.83

3. X follows a Γ(2, μ
2 ) distribution, λ = 1.25, μ = 2, c = 3. In this setting,

θ ≈ 0.83.

Using Laplace inversion techniques, we have access to explicit formulas for these
Gerber–Shiu functions, see Chapter XII of Asmussen and Albrecher (2010) for
more details. In all cases, they are given by a sum of products of polynomials
and exponentials, hence they belong to Ws(R+) for all s > 0.

Computation of the estimators Let us start on how we compute the La-
guerre functions. The Laguerre polynomials, defined by (6), satisfy the relations:

(k + 1)Lk+1(x) = (2k + 1− x)Lk(x)− kLk−1(x), (20)

xL′
k(x) = k

(
Lk(x)− Lk−1(x)

)
,

see formulas 22.7.12 and 22.8.6 in Abramowitz and Stegun (1972). From this
formulas, one can prove:

(xψk)
′ =

k + 1

2
ψk+1(x) +

1

2
ψk(x)−

k

2
ψk−1(x). (21)

Let Ψk(x) :=
∫ x

0
ψk(t) dt be the primitive of the Laguerre function ψk; these

functions ares used to compute the coefficients b̂k and ĉk below. From (20), and
by integrating (21), we see that the Laguerre functions and their primitives can
be computed recursively:

(k + 1)ψk+1(x) = (2k + 1− x)ψk(x)− kψk−1(x),

(k + 1)Ψk(x) = 2xψk(x)−Ψk(x) + kΨk−1(x).

The expression of b̂k and ĉk depends on the value of δ and the form of w:

1. Ruin probability. The estimators of the coefficients bk and ck are in this
case:

b̂k =
1

cT

NT∑
i=1

Ψk(Xi), ĉk =
1

cT

NT∑
i=1

∫ Xi

0

Ψk(x) dx.

We compute the integrals in ĉk using Romberg’s method with 210 + 1
points.
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2. Expected claim size causing the ruin. The estimators of the coefficients bk
and ck are in this case:

b̂k =
1

cT

NT∑
i=1

Ψk(Xi), ĉk =
1

cT

NT∑
i=1

Xi

∫ Xi

0

Ψk(x) dx.

We compute the integrals in ĉk using Romberg’s method with 210 + 1
points.

3. Laplace transform. The estimators of the coefficients bk and ck are in this
case:

b̂k =
1

cT

NT∑
i=1

∫ Xi

0

e−ρ̂δ(Xi−x)ψk(x) dx, ĉk =
1

ρ̂δ

(
1

cT

NT∑
i=1

Ψk(Xi)− b̂k

)
,

where we used integration by parts to obtain this expression of ĉk. We
compute the integrals in b̂k using Romberg’s method with 210 + 1 points.
We compute ρ̂δ, the solution of Equation (11), with Newton’s method

using the initial condition δ+λ̂/2
c .

For the Laguerre–Fourier estimator, once we have computed (b̂k)0≤k<m2 and
(ĉk)0≤k<m3 , we can compute the coefficients âk defined by (8):

âk =
1

2π

∫
R

F ĥ(ω)

1− F̂g(ω)
Fψk(ω) dω,

F̂g(ω) =

{
F ĝ(ω) if |F ĝ(ω)| ≤ θ0

0 if |F ĝ(ω)| > θ0
, F ĝ =

m2−1∑
k=0

b̂k Fψk, F ĥ =

m3−1∑
k=0

ĉk Fψk,

where Fψk is given by (7), and where the integral in âk is computed with
Romberg’s method on a discretization of [−103, 103] with 215 + 1 points.

For the Laguerre deconvolution estimators, once (b̂k)0≤k<m and (ĉk)0≤k<m

have been computed, we can compute the matrix Âm defined by (17) and then

compute the coefficients â
Lagi
m as described in Section 3.

Remark 5.1. While the Gerber–Shiu function is always positive, this is not
necessarily the case of the estimators. However, we can always take their positive
part, since it does not increase their risk:

E‖φ− (φ̂)+‖2 ≤ E‖φ− φ̂‖2.

In Figures 1 and 2, we observe that the estimators stay positive where φ is
positive, and that they can take small negative values when φ becomes small
(as u tends to +∞). Hence, it is reasonable to use the estimators without taking
their positive part. We choose to do so, in the simulations.
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Fig 1. Estimation of the ruin probability when the parameters of the model are λ = 1.25,
μ = 2, c = 3, X ∼ Exp(1/μ) and T = 800 (so that E[NT ] = 1000). For each estimation
procedure, we plot the estimation of φ from 50 independent samples. The true function is
in bold red and the estimated functions are in dotted blue. Top left: Laguerre–Fourier. Top
right: estimator of Zhang and Su (2018). Bottom left: Laguerre deconvolution 1. Bottom
right: Laguerre deconvolution 2.

Fig 2. Estimation of the expected claim size causing the ruin when the parameters of the
model are λ = 1.25, μ = 2, c = 3, X ∼ Exp(1/μ) and T = 800 (so that E[NT ] = 1000).
For each estimation procedure, we plot the estimation of φ from 50 independent samples.
The true function is in bold red and the estimated functions are in dotted blue. Top left:
Laguerre–Fourier. Top right: estimator of Zhang and Su (2018). Bottom left: Laguerre
deconvolution 1. Bottom right: Laguerre deconvolution 2.
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Model selection Each estimator we consider depends on one or several pa-
rameters that need to be chosen. The Laguerre–Fourier estimator and the La-

guerre deconvolution estimator φ̂
Lag1
m depend on a truncation parameter θ0,

which needs to be chosen such that θ < θ0. We choose θ0 = 0.95 in our simula-
tions.

• The Laguerre–Fourier estimator depends on four parameters: m1, m2 and
m3, the dimensions of the projection spaces for the functions φ, g and
h, and θ0 the truncation parameter in the estimation of F̂g. As said in
Remark 4.3, we can choose m1 = m2 = m3 = �cT �, no selection procedure
is required. Still, we propose a model reduction procedure for the choice of
m2 and m3, that we describe in Appendix A.

• The naive Laguerre deconvolution estimator φ̂
Lag0
m , defined by (18), de-

pends on one parameter: m, the dimension of the projection space for φ.
However, there is no model selection procedure for m. In their numeri-
cal section, Zhang and Su (2018) only consider (as we do) Gerber–Shiu
functions with exponential decay; hence the bias term also decays with
exponential rate. Using this fact, they chose m = �5T 1/10�. We make the

same choice in our simulations and we write φ̂ZS this estimator.

• The Laguerre deconvolution estimators φ̂
Lag1
m and φ̂

Lag2
m also depend on m.

For i ∈ {1, 2}, we choose m̂Lagi as the minimizer of a penalized criterion:

m̂Lagi ∈ argmin
m∈Mi

{
−‖φ̂Lagi

m ‖2L2 + κi peni(m)
}

(22)

where the model collections are:

M1 :=

{
1 ≤ m ≤ M | ‖Â−1

m ‖op ≤ 1

1− θ0

}
M2 :=

{
1 ≤ m ≤ M | ‖Â−1

m ‖2op ≤ cT

m log(m)

}
with M = �cT � ∧ 500 (we do not compute more than 500 coefficients,
because of computation time).

In the following, if F is a function, we write F (X) := 1
NT

∑NT

i=1 F (Xi) its
empirical mean from the sample {X1, . . . , XNT

}. For the penalty terms,
we choose empirical versions of the variance terms in Theorems 3.3 and
3.6:

pen1(m) :=
1

(1− θ0)2

(
‖φ̂Lag1

m ‖2L2mV̂g + V̂h

)
pen2(m) := (λ̂ ∨ λ̂2)

(
W (X)

c
+ ‖φ̂Lag1

m ‖2L2

(
X ∨X

2)
m log(m)

)
,

with:

V̂g :=

⎧⎪⎪⎨⎪⎪⎩
λ̂

c2T X if δ = 0,

λ̂2

c2T

(
X +

(
X2
)1/2

δ(1−θ0)2

)
if δ > 0,
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V̂h :=

⎧⎪⎪⎨⎪⎪⎩
λ̂

c2T W (X) if δ = 0,

λ̂2

c2T

(
W (X) +

(
W (X)2

)1/2
δ(1−θ0)2

)
if δ > 0.

The constants κ1 and κ2 are calibrated following the “minimum penalty
heuristic” (Arlot and Massart, 2009). On several preliminary simulations,
we compute the selected dimension m̂ as a function of κ, and we find κmin

such that for κ < κmin the dimension is too high and for κ > κmin it is
acceptable. Then, the selected constant is 2κmin. In our cases, we choose:

– κ1 = 0.01, κ2 = 0.01 for the ruin probability;

– κ1 = 0.1, κ2 = 1 for the expected claim size causing the ruin;

– κ1 = 10−8 for the Laplace transform of the ruin time, δ = 0.1.

There is no constant κ2 in the last case because the Laguerre deconvolution

estimator φ̂
Lag2
m is defined only if δ = 0.

We write φ̂Lag1 := φ̂
Lag1

m̂Lag1
and φ̂Lag2 := φ̂

Lag2

m̂Lag2
in the following.

MISE calculation We compare the estimators by looking at their MISE:
E‖φ − φ̂‖2L2 . We compute the norm ‖·‖L2 with Romberg’s method using a dis-
cretization of [0, umax] with 211 + 1 points. The value of umax varies from 12 to
50, depending on the parameters set. We compute the expectation by an em-
pirical mean over n = 200 paths of the process (Ut)t∈[0,T ]. We also compute a
95% confidence interval for the MISE, using the asymptotic confidence interval
for a mean (CLT approximation):

CI =

[
ISEn ± q1−α

2

Sn√
n

]
, α = 5%,

where ISEn is the empirical mean of the ISEs, q1−α
2
is the (1 − α

2 )-quantile of

the normal distribution, and S2
n is the empirical variance of the ISEs. We have

two goals in this section:

1. To compare the performance of our Laguerre–Fourier estimator with the
Laguerre deconvolution estimators.

2. To see if the model selection procedures (22) for the Laguerre decon-
volution estimators lead to the same performance than the naive choice
m = �5T 1/10�.

The code that performed the simulations can be obtained on request.

Results We display our results in Tables 1, 2 and 3. Concerning the estimation
of the ruin probability (Table 1), we see that all the estimators perform well
with the first set of parameter (exponential distribution, θ = 0.67). However,
with the two other sets of parameters (exponential distribution and Gamma(2)
distribution, θ = 0.83), the difference is clear: the Laguerre–Fourier estimator
has the smallest risk, followed by the estimator of Zhang and Su (2018), and
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Table 1

Ruin Probability. For two sets of parameters, we compare the three estimators of the ruin
probability: the Laguerre–Fourier estimator (LagFou), the estimator of Zhang and Su (2018)
(ZS), and the Laguerre deconvolution estimators (LagDec1 and LagDec2). In each case, we
display the estimation of the MISE over 200 samples with a 95% confidence interval and the

model used (m̂ is the mean selected model in the case of the Laguerre deconvolution
estimators).

Parameters Estimator E[NT ] = 100 E[NT ] = 200 E[NT ] = 400

LagFou
0.14 0.053 0.022

[0.07, 0.21] [0.039, 0.067] [0.017, 0.027]
m1 = 150 m1 = 300 m1 = 500

ZS
0.23 0.053 0.022

X ∼ Exp(1) [0.02, 0.44] [0.039, 0.068] [0.017, 0.028]
λ = 1 m = 8 m = 9 m = 10
c = 1.5

LagDec1
0.25 0.055 0.024

θ = 0.67 [0.01, 0.48] [0.042, 0.069] [0.019, 0.029]

m̂ = 3.3 m̂ = 3.8 m̂ = 4.2

LagDec2
0.23 0.053 0.023

[0.02, 0.45] [0.039, 0.068] [0.017, 0.028]

m̂ = 6.0 m̂ = 6.5 m̂ = 7.0

LagFou
0.95 0.67 0.43

[0.80, 1.09] [0.53, 0.80] [0.31, 0.55]
m1 = 240 m1 = 480 m1 = 500

ZS
1.57 1.02 0.54

X ∼ Exp(1/2) [1.26, 1.89] [0.74, 1.30] [0.46, 0.61]
λ = 1.25 m = 8 m = 9 m = 9
c = 3

LagDec1
8.51 3.82 0.72

θ = 0.83 [5.07, 11.95] [1.57, 6.07] [0.36, 1.07]

m̂ = 11.0 m̂ = 12.8 m̂ = 14.4

LagDec2
2.96 1.94 0.64

[2.11, 3.82] [1.08, 2.80] [0.36, 0.92]

m̂ = 14.2 m̂ = 18.1 m̂ = 21.8

LagFou
0.64 0.46 0.30

[0.52, 0.77] [0.37, 0.56] [0.22, 0.38]
m1 = 240 m1 = 480 m1 = 500

ZS
1.77 0.62 0.30

X ∼ Γ(2, 1/4) [1.07, 2.47] [0.45, 0.78] [0.23, 0.36]
λ = 1.25 m = 8 m = 9 m = 9
c = 3

LagDec1
7.22 1.71 0.45

θ = 0.83 [4.25, 10.19] [0.87, 2.56] [0.21, 0.70]

m̂ = 9.3 m̂ = 10.6 m̂ = 11.6

LagDec2
2.71 1.07 0.41

[1.80, 3.62] [0.66, 1.47] [0.22, 0.60]

m̂ = 12.1 m̂ = 15.7 m̂ = 18.0

the Laguerre deconvolution estimators come last. We notice that φ̂Lag2 seems
to be better than φ̂Lag1 in this case.

Concerning the estimation of the expected jump size causing the ruin (Table
2), the difference is even clearer. With the first set of parameters, we see that the
Laguerre–Fourier is better for small sample size (E[NT ] = 100), but equivalent
to the other estimators for larger sample sizes. We also notice that the estimator
φ̂ZS and φ̂Lag2 have the same risk. With the two other sets of parameters, we
find again that the Laguerre–Fourier estimator is better than the estimator φ̂ZS,
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Table 2

Expected claim size causing the ruin. For two sets of parameters, we compare the three
estimators of the expected jump size causing the ruin: the Laguerre–Fourier estimator
(LagFou), the estimator of Zhang and Su (2018) (ZS), and the Laguerre deconvolution
estimators (LagDec1 and LagDec2). In each case, we display the estimation of the MISE

over 200 samples with a 95% confidence interval and the model used (m̂ is the mean selected
model in the case of the Laguerre deconvolution estimators).

Parameters Estimator E[NT ] = 100 E[NT ] = 200 E[NT ] = 400

LagFou
1.71 0.60 0.34

[1.09, 2.32] [0.46, 0.73] [0.27, 0.40]
m1 = 150 m1 = 300 m1 = 500

ZS
1.80 0.62 0.34

X ∼ Exp(1) [1.07, 2.53] [0.47, 0.77] [0.27, 0.41]
λ = 1 m = 8 m = 9 m = 10
c = 1.5

LagDec1
1.41 0.84 0.44

θ = 0.67 [1.19, 1.64] [0.74, 0.93] [0.39, 0.50]

m̂ = 1.9 m̂ = 2.2 m̂ = 2.8

LagDec2
1.86 0.64 0.35

[1.11, 2.61] [0.49, 0.78] [0.28, 0.42]

m̂ = 3.7 m̂ = 4.1 m̂ = 4.6

LagFou
46.2 28.1 20.5

[30.0, 62.3] [21.7, 34.5] [15.1, 25.8]
m1 = 240 m1 = 480 m1 = 500

ZS
96.3 48.0 27.9

X ∼ Exp(1/2) [62.4, 130.2] [31.3, 64.6] [23.0, 32.7]
λ = 1.25 m = 8 m = 9 m = 9
c = 3

LagDec1
77.5 56.3 38.9

θ = 0.83 [71.6, 83.5] [45.1, 67.4] [29.7, 48.1]

m̂ = 3.0 m̂ = 4.9 m̂ = 7.1

LagDec2
197.7 96.7 48.5

[115.1, 280.3] [47.4, 146.0] [27.5, 69.6]

m̂ = 9.7 m̂ = 12.5 m̂ = 14.6

LagFou
11.7 9.2 6.2

[9.4, 14.0] [7.5, 10.9] [4.1, 8.3]
m1 = 240 m1 = 480 m1 = 500

ZS
18.5 13.6 5.9

X ∼ Γ(2, 1/4) [12.0, 25.0] [10.1, 17.1] [4.6, 7.2]
λ = 1.25 m = 8 m = 9 m = 9
c = 3

LagDec1
19.2 15.0 8.4

θ = 0.83 [18.2, 20.2] [13.1, 17.0] [7.1, 9.7]

m̂ = 2.8 m̂ = 4.3 m̂ = 5.9

LagDec2
28.2 24.6 8.3

[19.4, 37.1] [16.5, 32.7] [5.6, 11.1]

m̂ = 7.8 m̂ = 10.0 m̂ = 11.3

which is better than the Laguerre deconvolution estimators. This time, we see
that φ̂Lag1 has better performances than φ̂Lag2 .

Concerning the estimation of Laplace transform of the ruin time (Table 3),
we see no difference between the MISE of the Laguerre–Fourier estimator and
the Laguerre deconvolution estimators.

For illustration purposes, on Figures 1 and 2, we show the estimations of the
ruin probability and the expected claim size causing the ruin, on 50 independent
samples, with the second set of parameters (exponential distribution, θ = 0.83).
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Table 3

Laplace transform, δ = 0.1. For two sets of parameters, we compare three estimators of the
Laplace transform of the ruin time: the Laguerre–Fourier estimator (LagFou), the estimator
of Zhang and Su (2018) (ZS) and the Laguerre deconvolution estimator (LagDec1). In each

case, we display the estimation of the MISE (multiplied by 102 in this table) over 200
samples with a 95% confidence interval and the model used (m̂ is the mean selected model

in the case of the Laguerre deconvolution estimator).

Parameters Estimator E[NT ] = 100 E[NT ] = 200 E[NT ] = 400

LagFou
2.50 1.09 0.64

[1.91, 3.09] [0.87, 1.31] [0.52, 0.77]
X ∼ Exp(1) m1 = 150 m1 = 300 m1 = 500

λ = 1
ZS

2.50 1.10 0.66
c = 1.5 [1.93, 3.07] [0.88, 1.33] [0.53, 0.79]
θ = 0.67 m = 8 m = 9 m = 10

LagDec1
2.52 1.11 0.67

[1.95, 3.08] [0.89, 1.34] [0.54, 0.80]

m̂ = 4.2 m̂ = 4.6 m̂ = 4.9

LagFou
11.81 5.60 2.51

[9.26, 14.36] [4.49, 6.72] [2.04, 2.98]
X ∼ Exp(1/2) m1 = 240 m1 = 480 m1 = 500

λ = 1.25
ZS

12.47 6.13 3.30
c = 3 [10.53, 14.41] [5.07, 7.19] [2.86, 3.75]

θ = 0.83 m = 8 m = 9 m = 9

LagDec1
13.22 5.82 2.65

[10.61, 15.84] [4.57, 7.06] [2.15, 3.14]

m̂ = 10.2 m̂ = 11.2 m̂ = 12.4

LagFou
10.26 4.09 2.01

[8.08, 12.45] [3.28, 4.91] [1.57, 2.46]
X ∼ Γ(2, 1/4) m1 = 240 m1 = 480 m1 = 500

λ = 1.25
ZS

9.76 4.16 2.20
c = 3 [8.07, 11.45] [3.36, 4.96] [1.77, 2.63]

θ = 0.83 m = 8 m = 9 m = 9

LagDec1
10.39 4.15 2.05

[8.39, 12.38] [3.29, 5.00] [1.59, 2.52]

m̂ = 8.8 m̂ = 9.5 m̂ = 10.3

Qualitatively, we see that the Laguerre–Fourier estimator is better than the
others. In contrast, the non data-driven choice of m for estimator of Zhang and
Su (2018) seems not appropriate in this setting.

To conclude, we can say that our Laguerre–Fourier estimator has better per-
formances than the Laguerre deconvolution estimators on simulated data, even
in the exponential case where they have theoretically the same MISE (up to a
log factor). Furthermore, the Laguerre deconvolution estimators with the model
selection procedure (22) fail to match the performance of the estimator of Zhang
and Su (2018), for which we choose the parameter m knowing the bias decay
rate of φ, in most cases.

Remark 5.2. In Tables 1, 2 and 3, the MISEs of the estimators are not nor-
malized by ‖φ‖2L2 , the size of the estimated function. Hence, it is normal that
the order of magnitude of the results varies from one function to another. For
example, in Table 2, ‖φ‖2L2 equals respectively 5, 100 and 50, for each set of
parameters.
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6. Conclusion

Using a projection estimator on the Laguerre basis, and computing the coeffi-
cients with Fourier transforms, we constructed an estimator of the Gerber–Shiu
function that achieves parametric rates of convergence, without needing a model
selection procedure. It is worth noticing that our results are non-asymptotic and
concern the MISE of the estimator. In comparison, the Laguerre deconvolution
estimators have slower rates of convergence and necessitate a model selection
procedure in practice. The better performances of our procedure are confirmed
by a numerical study, on simulated data.

Knowing that the Laguerre deconvolution method does not achieve the best
rate of convergence in the compound Poisson model is important. Indeed, this
method is used to estimate the Gerber–Shiu function in more general models,
see Zhang and Su (2019), Su, Shi and Wang (2019) and Su, Yong and Zhang
(2019). These papers have one thing in common: they all want to estimate a
function φ that satisfies an equation of the form φ = φ ∗ g + h, with g and
h functions that depend on the specificity of each problem. If we applied the
procedure described in the beginning of Section 2, we could obtain an estimator
that would achieve the same rate of convergence as the estimators of g and h (see
Remark 2.2). Hence the Laguerre deconvolution method used in these papers is
not optimal since a factor m appears in the variance term in the construction
step of φ̂m from ĝm and ĥm.

7. Proofs

Proof of Proposition 2.1. By Pythagoras theorem, ‖φ− φ̂m‖2L2 = ‖φ−φm‖2L2 +

‖φm−φ̂m‖2L2 . Let Πm be the projector on Span(Fψ0, . . . ,Fψm−1). Since it holds

that ‖Fψk‖2 = 2π, we get:

‖φm − φ̂m‖2L2 =

m−1∑
k=0

(âk − ak)
2

=
1

(2π)2

m−1∑
k=0

〈
F ĥ

1− F̂g
− Fh

1−Fg
,Fψk

〉2

=
1

2π

∥∥∥∥∥Πm

(
F ĥ

1− F̂g
− Fh

1−Fg

)∥∥∥∥∥
2

L2

≤ 1

2π

∥∥∥∥∥ F ĥ

1− F̂g
− Fh

1−Fg

∥∥∥∥∥
2

L2

. (23)

Then since |F̂g| ≤ θ0 by definition, and |Fg| ≤ ‖g‖L1 ≤ θ, we obtain:∥∥∥∥∥ F ĥ

1− F̂g
− Fh

1−Fg

∥∥∥∥∥
2

L2

≤ 2

∥∥∥∥∥ F ĥ

1− F̂g
− Fh

1− F̂g

∥∥∥∥∥
2

L2

+ 2

∥∥∥∥∥ Fh

1− F̂g
− Fh

1−Fg

∥∥∥∥∥
2

L2
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≤ 2

(1− θ0)2

(
‖F ĥ−Fh‖2L2 +

‖h‖2L1

(1− θ)2
‖F̂g −Fg‖2L2

)
.

(24)

To control the last term, we decompose according to the set {|F ĝ| ≤ θ0} and
its complement:

‖F̂g −Fg‖2L2 ≤ ‖F ĝ −Fg‖2L2 + ‖g‖2L1 Leb({|F ĝ| > θ0}).

Thus if θ < θ0, then {|F ĝ| > θ0} ⊆ {|F ĝ − Fg| ≥ θ0 − θ}, therefore Markov
inequality yields:

‖F̂g −Fg‖2L2 ≤ ‖F ĝ −Fg‖2L2 +
‖g‖2L1

(θ0 − θ)2
‖F ĝ −Fg‖2L2 . (25)

Finally, gathering (23), (24) and (25), and using Plancherel theorem yield the
desired result.

7.1. Proof of Theorem 2.5

We start with some preliminary lemmas.

Lemma 7.1. Let Y1, . . . , Yn be i.i.d non-negative random variables. We de-
note by L(s) := E[e−sY1 ] their Laplace transform and we denote by L̂(s) :=
1
n

∑n
i=1 e

−sYi the empirical Laplace transform. Then for p ≥ 1, we have:

E

[
sup
s>0

∣∣∣L̂(s)− L(s)
∣∣∣2p] ≤ p!

2p−1np
.

Proof. Let F̂ (x) := 1
n

∑n
i=1 1{Yi≤x} be the empirical c.d.f. of the Yi’s, and let

F (x) := P[Y ≤ x] be their c.d.f. We notice that for s > 0:∫ +∞

0

se−sxF̂ (x) dx =
1

n

n∑
i=1

∫ +∞

0

se−sx1{Yi≤x} dx =
1

n

n∑
i=1

e−sXi =: L̂(s),

and by the same argument, L(s) =
∫ +∞
0

se−sxF (x) dx. Thus:

sup
s>0

∣∣∣L̂(s)− L(s)
∣∣∣ ≤ sup

s>0

∫ +∞

0

se−sx
∣∣∣F̂ (x)− F (x)

∣∣∣ dx ≤ ‖F̂ − F‖∞.

We take the expectation and we get:

E

[
sup
s>0

∣∣∣L̂(s)− L(s)
∣∣∣2p] ≤ E

[
‖F̂ − F‖2p∞

]
= 2p

∫ +∞

0

t2p−1 P

[
‖F̂ − F‖∞ ≥ t

]
dt.

(26)
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By Massart (1990), P
[√

n‖F̂ − F‖∞ ≥ x
]
≤ 2e−2x2

, so by setting t = x/
√
n in

(26), we obtain:

E

[
sup
s>0

∣∣∣L̂(s)− L(s)
∣∣∣2p] ≤ 2p

np

∫ +∞

0

x2p−12e−2x2

dx

=
2p

np

∫ +∞

0

up−1e2u du =
p!

np 2p−1
.

Lemma 7.2. Let Z ∼ P(λ) and mj(λ) := E[(Z−λ)j ] be the j-th central moment
of Z. Then, for all r ≥ 2 we have:

mr(λ) = λ

r−2∑
j=0

(
r − 1

j

)
mj(λ).

Proof. Let L(λ, t) := eλ(e
t−t−1) = E[et(Z−λ)] and ϕ(t) := et − t − 1. Then

mr(λ) =
∂rL
∂tr (λ, 0). By Leibniz’s rule:

∂rL
∂tr

(λ, t) =
∂r−1

∂tr−1

(
λϕ′(t)L(λ, t)

)
= λ

r−1∑
j=0

(
r − 1

j

)
∂j L
∂tj

(λ, t)ϕ(r−j)(t).

Taking t = 0 gives the result since ϕ′(0) = 0 and ϕ(k)(0) = 1 if k ≥ 2.

Corollary 7.3. The central moments m2r(λ) and m2r+1(λ) are polynomials of
degree r in λ.

The next proposition provides an upper bound on the Lp-risk of ρ̂δ.

Proposition 7.4. Under Assumption 1, for p ≥ 1, we have:

E
[
(ρ̂δ − ρδ)

2p
]
≤ C(p, λ)

c2p(1− θ)2pT p
,

where C(p, λ) is a O(λp).

Proof. By definition, ρδ is a solution of the Lundberg equation, so it is a zero
of the function:

	δ(s) := cs− (λ+ δ) + λLf(s).
The estimator ρ̂δ is then a zero of the function:

	̂δ(s) := cs− (λ̂+ δ) + λ̂ L̂f(s).

We use a Taylor–Lagrange expansion:

	̂δ(ρ̂δ) = 0 = 	δ(ρδ) = 	δ(ρ̂δ) + 	′δ(z)(ρδ − ρ̂δ),

where z is between ρδ and ρ̂δ.

|	′δ(z)| =
∣∣∣∣c− λ

∫ +∞

0

xe−zxf(x) dx

∣∣∣∣ ≥ c− λ

∫ +∞

0

xf(x) dx = c− λμ > 0,



Nonparametric estimation of the EDPF in the compound Poisson model 2149

under the safety loading condition. Thus:

|ρδ − ρ̂δ| ≤
1

c− λμ

∣∣∣	̂δ(ρ̂δ)− 	δ(ρ̂δ)
∣∣∣

=
1

c(1− θ)

∣∣∣λ̂(L̂f(ρ̂δ)− Lf(ρ̂δ)
)
+
(
λ̂− λ

)(
1− Lf(ρ̂δ)

)∣∣∣
≤ 1

c(1− θ)

(∣∣λ̂∣∣∥∥L̂f − Lf
∥∥
∞ + 2

∣∣λ̂− λ
∣∣)

E
[
(ρ̂δ − ρδ)

2p
]
≤ 22p−1

c2p(1− θ)2p

(
E

[
λ̂2p‖L̂f − Lf‖2p∞

]
+ 22pE

[∣∣λ̂− λ
∣∣2p]) .

For the second term, we use Corollary 7.3: E|λ̂ − λ|2p = E|NT−λT |2p
T 2p = O(λp)

Tp .
For the first term, we apply Lemma 7.1 conditional to NT :

E

[
λ̂2p‖L̂f − Lf‖2p∞

]
≤ E

[
C(p)

λ̂2p

Np
T

]
=

C(p)

T p
E

[
λ̂p
]
=

O(λp)

T p
.

Finally:

E
[
(ρ̂δ − ρδ)

2p
]
≤ C(p, λ)

c2p(1− θ)2pT p
,

with C(p, λ) = O(λp).

Now, we can prove Theorem 2.5.

Proof of Theorem 2.5. By Pythagoras theorem:

E‖g − ĝm2‖
2
L2 = ‖g − gm2‖

2
L2 + E‖gm2 − ĝm2‖

2
L2

= ‖g − gm2‖
2
L2 +

m2−1∑
k=0

E

[
(b̂k − bk)

2
]
,

E‖h− ĥm3‖
2
L2 = ‖h− hm3‖

2
L2 + E‖hm3 − ĥm3‖

2
L2

= ‖h− hm3‖
2
L2 +

m3−1∑
k=0

E
[
(ĉk − ck)

2
]
,

hence we need to control the variance terms:

m2−1∑
k=0

E[(b̂k − bk)
2] and

m3−1∑
k=0

E[(ĉk − ck)
2].

Using equations (4.17) to (4.21) and (4.10) to (4.14) in Zhang and Su (2018),
we can obtain equations (32) and (33) below. Still, we give the proofs of these
equations for the sake of completeness.

We notice that b̂k and ĉk (defined by (12) and (13)) can be written as:

1

cT

NT∑
i=1

∫ +∞

0

F (u,Xi, ρ̂δ)ψk(u) du,
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and that the coefficients bk and ck (defined by (9) and (10)) can be written as:

E

[
1

cT

NT∑
i=1

∫ +∞

0

F (u,Xi, ρδ)ψk(u) du

]
,

where F is given by:

F (u,X, ρ) :=

{
e−ρ(X−u)1X>u for the coefficients of g,∫X

u
e−ρ(X−x)w(x,X − x) dx1X>u for the coefficients of h.

(27)
Thus, we need to give an upper bound on quantities of the form:

Vm :=

m−1∑
k=0

E
[
I2k
]
, (28)

with:

Ik :=
1

cT

NT∑
i=1

∫ +∞

0

F (u,Xi, ρ̂δ)ψk(u) du

− E

[
1

cT

NT∑
i=1

∫ +∞

0

F (u,Xi, ρδ)ψk(u) du

]
.

The bound on Vm is based on the following decomposition:

Ik = Zk +Δk (29)

where:

Zk :=
1

cT

NT∑
i=1

∫ +∞

0

F (u,Xi, ρ̂δ)ψk(u) du

− E

[
1

cT

NT∑
i=1

∫ +∞

0

F (u,Xi, ρ̂δ)ψk(u) du

]
,

Δk :=
1

cT

NT∑
i=1

∫ +∞

0

[
F (u,Xi, ρ̂δ)− F (u,Xi, ρδ)

]
ψk(u) du.

Let us notice that if δ = 0, then ρ̂δ = ρδ = 0, so Δk = 0 and the decomposition
reduces to Zk.

• Bound on
∑m−1

k=0 E
[
Z2
k

]
. This bound is obtained by a projection argument:

m−1∑
k=0

E
[
Z2
k

]
=

m−1∑
k=0

Var

(
1

cT

NT∑
i=1

∫ +∞

0

F (u,Xi, ρδ)ψk(u) du

)

=

m−1∑
k=0

λ

c2T
E

[(∫ +∞

0

F (u,X, ρδ)ψk(u) du

)2
]
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≤ λ

c2T
E

[∫ +∞

0

F (u,X, ρδ)
2 du

]
,

where the last inequality comes from the fact that (ψk)k≥0 is an orthonormal
basis of L2(R+). From (27), we see that:

λ

c2T
E

[∫ +∞

0

F (u,X, ρδ)
2 du

]
≤
{

λ
c2T E[X] for the coefficients of g,
λ

c2T E[W (X)] for the coefficients of h.

(30)
where W (X) is defined in Assumption 3. In the δ = 0 case, this gives the desired
results.

• Bound on
∑m−1

k=0 Δ2
k. We use a projection argument again:

m−1∑
k=0

Δ2
k ≤

m−1∑
k=0

NT

c2T 2

NT∑
i=1

(∫ +∞

0

[
F (u,Xi, ρ̂δ)− F (u,Xi, ρδ)

]
ψk(u) du

)2

≤ λ̂

c2T

NT∑
i=1

∫ +∞

0

∣∣F (u,Xi, ρ̂δ)− F (u,Xi, ρδ)
∣∣2 du,

where λ̂ := NT

T . By Remark 1.3, we know that ρδ ∈ [ δc ,
δ+λ
c ] and ρ̂δ ∈ [ δc ,

δ+λ̂
c ],

so by the mean value theorem:

∣∣F (u,Xi, ρ̂δ)− F (u,Xi, ρδ)
∣∣ ≤ ∣∣ρ̂δ − ρδ

∣∣ sup
ρ≥ δ

c

∣∣∣∣∂F∂ρ (u,Xi, ρ)

∣∣∣∣.
Since the function te−ρt1t>0 achieves its maximum at t = 1

ρ , we see that:

sup
ρ≥ δ

c

∣∣∣∣∂F∂ρ (u,Xi, ρ)

∣∣∣∣ ≤
{

c
eδ1Xi>u for the coefficients of g,

c
eδ

∫Xi

u
w(x,Xi − x) dx1Xi>u for the coefficients of h.

Thus,

m−1∑
k=0

Δ2
k ≤ λ̂|ρ̂δ − ρδ|2

e2δ2
×
{

1
T

∑NT

i=1 Xi for the coefficients of g,

1
T

∑NT

i=1 W (Xi) for the coefficients of h.
(31)

Using the decomposition (29) in (28), we obtain Vm ≤ 2
∑m−1

k=0 E[Z2
k ] +

2
∑m−1

k=0 E[Δ2
k]. Combining (30) and (31) yields:

E‖ĝm2 − gm2‖
2
L2 ≤ 2

λ

c2T
E[X] + 2E

[
λ̂|ρ̂δ − ρδ|2

e2δ2
1

T

NT∑
i=1

Xi

]
, (32)

E‖ĥm3 − hm3‖
2
L2 ≤ 2

λ

c2T
E[W (X)] + 2E

[
λ̂|ρ̂δ − ρδ|2

e2δ2
1

T

NT∑
i=1

W (Xi)

]
. (33)
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We apply Hölder’s inequality on the second term in (32) and we use Proposi-
tion 7.4:

E

[
λ̂|ρ̂δ − ρδ|2

1

T

NT∑
i=1

Xi

]
≤ E[λ̂4]1/4 E

[
|ρ̂δ − ρδ|8

]1/4
E

⎡⎣( 1

T

NT∑
i=1

Xi

)2
⎤⎦1/2

≤ C(λ)

c2(1− θ)2T
E

⎡⎣( 1

T

NT∑
i=1

Xi)

)2
⎤⎦1/2

,

with C(λ) = O(λ2). We need to evaluate this last expectation:

E

⎡⎣( 1

T

NT∑
i=1

Xi

)2
⎤⎦ ≤ E

[
NT

T 2

NT∑
i=1

X2
i

]
= E

[
N2

T

T 2

]
E[X2] =

(
λ

T
+ λ2

)
E[X2].

Thus, we obtain:

E‖ĝm − gm‖2L2 ≤ 2
λ

c2T
E[X] + 2

C(λ)

c2T (1− θ)2δ2
E[X2]1/2

with C(λ) = O(λ2). We make the same reasoning for h, replacing Xi by W (Xi).

7.2. Proofs of Section 3

Let us recall some facts about Toeplitz matrices; the interested reader can find
more details in the book of Böttcher and Grudsky (2000). Given (αn)n∈Z a
sequence of complex numbers, a Toeplitz matrix is an infinite matrix of the
form: ⎛⎜⎜⎝

α0 α−1 α−2 · · ·
α1 α0 α−1 · · ·
α2 α1 α0 · · ·
· · · · · · · · · · · ·

⎞⎟⎟⎠ . (34)

The classical result from O. Toeplitz says that this matrix induces a bounded
operator on 	2(N) if and only if (αn)n∈Z are the Fourier coefficients of some
function α ∈ L∞(T), where T denotes the complex unit circle. We denote both
the matrix (34) and its induced operator on 	2(N) by T(α), the function α being
called the symbol of the Toeplitz matrix. Finally, if m ∈ N∗ and if T(α) is a
Toeplitz matrix, we denote by Tm(α) the m×m matrix:

Tm(α) :=

⎛⎜⎝ α0 · · · α−(m−1)

...
. . .

...
αm−1 · · · α0

⎞⎟⎠ . (35)

The operator norm of T(α) depends on the properties of its symbol. In the case
where αk = 0 for all k < 0, we have the following lemma.
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Lemma 7.5. Let (αk)k≥0 ∈ 	1(N) be a sequence of complex numbers. Then the
Toeplitz matrix T(α) is lower triangular and we have:

∀x ∈ 	2(N), T(α)× x = α ∗ x.

In particular, ‖T(α)‖op ≤ ‖α‖�1 .
Proof. The fact that T(α) is lower triangular and that T(α) × x = α ∗ x is
clear from the definition of a Toeplitz matrix. Then, Young’s inequality for
convolution yields ‖α ∗ x‖�2 ≤ ‖α‖�1‖x‖�2 .

Concerning the inverse of a Toeplitz matrix, its norm depends on the position
of zero relatively to the range of the symbol. More precisely, we use the following
result.

Lemma 7.6 (Lemma 3.8 in Böttcher and Grudsky (2000)). Let α ∈ L∞(T) and
let E(α) be the convex hull of the essential range of α. If d := dist(0, E(α)) > 0,
then Tm(α) is invertible for all m ≥ 1, and we have ‖T−1

m (α)‖op < 2
d .

The matrix Am defined by (16) is a Toeplitz matrix and its symbol is given
by:

α(t) :=

+∞∑
k=0

αk t
k, with αk :=

⎧⎨⎩1− b0√
2

if k = 0,

bk−1−bk√
2

if k ≥ 1.

Let us notice that under Assumption 4, we have (αk)k≥0 ∈ 	1(N) so the symbol
α is continuous on T, and thus α ∈ L∞(T).

Proof of Lemma 3.2. We apply Lemma C.12 in Comte et al. (2017) to the co-

efficients of g: the sequence (βk)k≥0, defined by β0 := b0√
2
and βk :=

bk−bk−1√
2

for

k ≥ 1, are the Fourier coefficients of the function t ∈ T �→ Lg( 1+t
1−t ) ∈ C. Thus,

we have:

∀t ∈ T, Lg
(
1 + t

1− t

)
=

+∞∑
k=0

βk t
k,

with the convention Lg(∞) = 0. Since α(t) = 1−
∑

k≥0 βkt
k, we get:

∀t ∈ T, α(t) = 1− Lg
(
1 + t

1− t

)
,

We notice that if t ∈ T \ {1}, then there exists ω ∈ R such that 1+t
1−t = iω. Thus:

∀t ∈ T \ {1}, Reα(t) = 1−Re

[
Lg
(
1 + t

1− t

)]
= 1−Re

[
Lg(iω)

]
= 1−Re

[∫ +∞

0

e−iωxg(x) dx

]
2this lemma is stated for the generalized Laguerre basis, which depends on a parameter a.

This parameter is equal to 1 in our case.
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= 1−
∫ +∞

0

cos(ωx) g(x) dx

≥ 1−
∫ +∞

0

g(x) dx ≥ 1− θ.

This inequality holds for t = 1 as well, hence α(T) is included in the half-plane
{z ∈ C | Re(z) ≥ 1− θ}, and so is its convex hull. By Lemma 7.6:

‖A−1
m ‖op ≤ 2

1− θ
.

Remark 7.7. In their article, Zhang and Su (2018) show that inf |z|=1|α(z)| ≥
1− θ > 0, that is dist(0, α(T)) > 0, which is not sufficient to apply Lemma 7.6.

7.2.1. Proof of Theorem 3.3

Proposition 7.8. Under Assumption 4, if θ < θ0 then it holds:

∀m ∈ N∗, E‖(Ã−1
m,1 −A−1

m )cm‖2�2 ≤ C(θ, θ0)

(1− θ0)2
‖φm‖2L2 E‖Âm −Am‖2op,

where C(θ, θ0) is a constant satisfying C(θ, θ0) � (1−θ0)
2

(θ0−θ)2 .

Proof of Proposition 7.8. We decompose the expectation according to the event
Δm := {‖Â−1

m ‖op ≤ 2
1−θ0

}:

E‖(Ã−1
m,1 −A−1

m )cm‖2�2

= ‖A−1
m cm‖2�2P[Δc

m] + E

[
‖Ã−1

m,1(Am − Âm)A−1
m cm‖2�21Δm

]
≤ ‖A−1

m cm‖2�2
(
P[Δc

m] +
4

(1− θ0)2
E‖Âm −Am‖2op

)
= ‖am‖2�2

(
P[Δc

m] +
4

(1− θ0)2
E‖Âm −Am‖2op

)
.

Since θ < θ0 and ‖A−1
m ‖op ≤ 2

1−θ (see Lemma 3.2), we get:

P[Δc
m]

≤ P

[
‖Â−1

m −A−1
m ‖op >

2

1− θ0
− 2

1− θ

]
= P

[{
‖Â−1

m −A−1
m ‖op >

2

1− θ0
− 2

1− θ

}
∩
{
‖A−1

m (Âm −Am)‖op <
1

2

}]
+ P

[{
‖Â−1

m −A−1
m ‖op >

2

1− θ0
− 2

1− θ

}
∩
{
‖A−1

m (Âm −Am)‖op ≥ 1

2

}]
.
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• First term. Let x := 2
1−θ0

− 2
1−θ . We apply Theorem C.1 and we conclude

using Markov’s inequality:

P

[{
‖Â−1

m −A−1
m ‖op > x

}
∩
{
‖A−1

m (Âm −Am)‖op <
1

2

}]
≤ P

[{
‖A−1

m ‖2op‖Âm −Am‖op
1− ‖A−1

m (Âm −Am)‖op
> x

}
∩
{
‖A−1

m (Âm −Am)‖op <
1

2

}]
≤ P

[
‖A−1

m ‖2op‖Âm −Am‖op >
x

2

]
≤ (1− θ)2(1− θ0)

2

(θ0 − θ)2
‖A−1

m ‖4op E‖Âm −Am‖2op

≤ 16(1− θ0)
2

(θ0 − θ)2(1− θ)2
E‖Âm −Am‖2op.

• Second term. We use Markov’s inequality:

P

[{
‖Â−1

m −A−1
m ‖op >

2

1− θ0
− 2

1− θ

}
∩
{
‖A−1

m (Âm −Am)‖op ≥ 1

2

}]
≤ P

[
‖A−1

m (Âm −Am)‖op ≥ 1

2

]
≤ 4‖A−1

m ‖2op E‖Âm −Am‖2op ≤ 16

(1− θ)2
E‖Âm −Am‖2op.

Thus, we obtain:

E‖(Ã−1
m,1 −A−1

m )cm‖2�2 ≤‖φm‖2L2

(
16

(1− θ)2

(
1 +

(1− θ0)
2

(θ0 − θ)2

)
+

4

(1− θ0)2

)
× E‖Âm −Am‖2op.

We can now prove Theorem 3.3.

Proof of Theorem 3.3. By Pythagoras Theorem, ‖φ− φ̂
Lag1
m ‖2L2 = ‖φ−φm‖2L2 +

‖φm − φ̂Lag
m ‖2L2 .

E‖φm − φ̂Lag1
m ‖2L2 = E‖âLag1

m − am‖2�2 = E‖Ã−1
m,1ĉm −A−1

m cm‖2�2
≤ 3E‖(Ã−1

m,1 −A−1
m )cm‖2�2 + 3E‖(A−1

m − Ã−1
m,1)(cm − ĉm)‖2�2

+ 3E‖A−1
m (cm − ĉm)‖2�2 .

• First term. We apply Proposition 7.8 with Lemma 7.5:

E‖(Ã−1
m,1 −A−1

m )cm‖2�2 ≤ C(θ, θ0) ‖φm‖2L2 E‖Âm −Am‖2L2

≤ C(θ, θ0) ‖φm‖2L2 E‖b̂m − bm‖2�1
≤ C(θ, θ0) ‖φm‖2L2 mE‖b̂m − bm‖2�2
= C(θ, θ0) ‖φ‖2L2 mE‖ĝm − gm‖2L2 .
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• Second term.

E‖(A−1
m − Ã−1

m,1)(cm − ĉm)‖2�2 ≤ E

[
‖A−1

m − Ã−1
m,1‖

2
op‖cm − ĉm‖2�2

]
≤
(

8

(1− θ)2
+

8

(1− θ0)2

)
E‖ĥm − hm‖2L2 .

• Third term.

E‖A−1
m (cm − ĉm)‖2�2 ≤ ‖A−1

m ‖2op E‖cm − ĉm‖2�2

≤ 4

(1− θ)2
E‖ĥm − hm‖2L2 .

Hence we have:

E‖φm − φ̂Lag1
m ‖2L2 ≤3× C(θ, θ0)

(1− θ0)2
‖φ‖2L2 mE‖ĝm − gm‖2L2

+
60

(1− θ0)2
E‖ĥm − hm‖2L2 ,

with C(θ, θ0) � (1−θ0)
2

(1−θ)2 . To conclude, we use the upper bounds established in

the proof of Theorem 2.5. If δ = 0, we have:

E‖ĝm − gm‖2L2 ≤ λ

c2T
E[X], E‖ĥm − hm‖2L2 ≤ λ

c2T
E[W (X)],

and if δ > 0, we have:

E‖ĝm − gm‖2L2 ≤ C(λ)

c2T

⎛⎝E[X] +
E
[
X2
] 1

2

(1− θ)2δ2

⎞⎠ ,

E‖ĥm − hm‖2L2 ≤ C(λ)

c2T

⎛⎝E[W (X)] +
E
[
W (X)2

] 1
2

(1− θ)2δ2

⎞⎠ ,

with C(λ) = O(λ2).

7.2.2. Proof of Proposition 3.5

Let us introduce the sequence of functions (Dk)k≥0 as:

Dk(x) :=

⎧⎨⎩
Ψ0(x)√

2
if k = 0,

Ψk(x)−Ψk−1(x)√
2

if k ≥ 1.

so we can rewrite:

Am = Im − λ

c
Tm(E[D(X)]), Âm = Im − 1

cT

NT∑
i=1

Tm(D(Xi)),



Nonparametric estimation of the EDPF in the compound Poisson model 2157

with Tm(•) defined by (35). Now, the difference between Âm and Am can be
decomposed as:

Âm −Am =
1

cT

NT∑
i=1

{
Tm(D(Xi))− E

[
Tm(D(Xi))

]}
+

NT

cT
Tm

(
E[D(X)]

)
− λ

c
Tm(E[D(X)]).

(36)

The next lemma gives a control on the first term in the decomposition (36).

Lemma 7.9. Let Sn :=
∑n

i=1 Zi, with Zi := Tm(D(Xi)) − E
[
Tm(D(Xi))

]
.

Then for p ≥ 1 and logm ≥ p, we have:

E‖Sn‖2pop ≤ C(p)

[
(nμm logm)p + (m logm)2p

]
,

with C(p) a constant depending on p.

Proof. We want to apply Theorem C.2. First, we need upper bounds on ‖Zi‖op
and λmax(E[S



nSn]).

• Bound on ‖Zi‖op:

‖Zi‖op = sup
‖x‖�2≤1

‖
(
Tm(D(Xi))− E[Tm(D(Xi))]

)
x‖�2

= sup
‖x‖�2≤1

‖(D(Xi)− E[D(Xi)]) ∗ x‖�2

≤ ‖D(Xi)− E[D(Xi)]‖�1

≤
√
2

m−1∑
k=0

|Ψk(Xi)− E[Ψk(Xi)]|

≤ 2
√
2

m−1∑
k=0

‖Ψk‖∞

By Lemma 3.4, there exists an absolute constant C > 0 such that ‖Ψk‖∞ ≤ C,

hence ‖Zi‖op ≤ C2
√
2m.

• Bound on λmax

(
E[S


nSn]
)
:

λmax

(
E[S


nSn]
)
= sup

‖x‖�2=1

x
E[S

nSn]x

= n sup
‖x‖�2=1

x
E[Z

1 Z1]x

= n sup
‖x‖�2=1

E

[
‖Z1x‖2�2

]
= n sup

‖x‖�2=1

E

[
‖(D(X1)− E[D(X1)]) ∗ x‖2�2

]
.
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If x ∈ Rm, we have:

E

[
‖(D(X1)− E[D(X1)]) ∗ x‖2�2

]
=

m−1∑
j=0

E
[
({D(X1)− E[D(X1)]} ∗ x)2j

]
=

m−1∑
j=0

Var[(D(X1) ∗ x)j ]

≤
m−1∑
j=0

E
[
(D(X1) ∗ x)2j

]
,

and by Cauchy–Schwarz inequality:

(D(X1) ∗ x)2j ≤
(

j∑
k=0

Dk(X1)
2

)(
j∑

k=0

x2
k

)

≤ ‖x‖2�2
j∑

k=0

Ψk(X1)
2 ≤ ‖x‖2�2‖1X1>•‖2L2 = ‖x‖2�2X1,

because Ψk(X1) = 〈1X1>•, ψk〉 and (ψk) is an orthonormal basis of L2(R+).
Hence, we obtain λmax

(
E[S
S]

)
≤ nmμ.

We want apply Theorem C.2 to our matrix Sn, which is not Hermitian.
We use the following trick, called the Paulsen dialtation. For M a rectangular
matrix, we define:

M �→ H(M) =

(
0 M

M† 0

)
,

where M† denotes the conjugate transpose of M. Now, H(M) is an Hermitian
matrix, and:

H(M)2 =

(
MM† 0

0 M†M

)
,

hence λmax

(
H(M)2

)
= ‖M‖2op and λmax (H(M)) = ‖M‖op. We can now apply

Theorem C.2: for M = Sn, we have:

H(Sn) =

(
0

∑
i Zi∑

i Z


i 0

)
=
∑
i

(
0 Zi

Z

i 0

)
=
∑
i

H(Zi),

thus for p ≥ 1 and r ≥ max(2p, 2 logm), we get that:

(
E‖Sn‖2pop

)1/2p
=

⎛⎝Eλmax

(
H
(∑

i

Zi

))2p
⎞⎠1/2p

≤
√
erλ1/2

max

(∑
i

EH(Zi)
2

)
+ 2er

(
Emax

i
λmax (H(Zi))

2p
)1/2p
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≤
√

erλmax (ES

nSn) + 2er

(
Emax

i
‖Zi‖2pop

)1/2p
≤ √

ernmμ+ C4
√
2erm.

If logm ≥ p, then r = 2 logm and we get E‖Sn‖2pop � 22p−1(nμm logm)p +

26p−1(m logm)2p.

Now we can prove Proposition 3.5.

Proof of Proposition 3.5. From the decomposition (36), we get:

E‖Âm −Am‖2pop ≤ 22p−1 1

(cT )2p
E‖SNT

‖2pop

+ 22p−1E|NT − λT |2p

(cT )2p
‖Tm(E[D(X)])‖2pop.

For the first term, we apply Lemma 7.9 conditional on NT :

1

(cT )2p
E‖SNT

‖2pop ≤ C(p)

[
E[Np

T ]μ
p(m logm)p

(cT )2p
+

(
m logm

cT

)2p
]

= C(p)

[
μpE

[(
NT

cT

)p](
m logm

cT

)p

+

(
m logm

cT

)2p
]
,

with E

[(
NT

cT

)p]
= O(λp). For the second term, we know from Corollary 7.3 that

E[(NT − λT )2p] = O(λpT p), and:

‖Tm(E[D(X)])‖op ≤
m−1∑
k=0

|E[Dk(X)]| ≤
√
2

m−1∑
k=0

|E[Ψk(X)]|

≤
√
2m

(
m−1∑
k=0

E
[
Ψk(X)2

])1/2

=
√
2m

(
E

[
m−1∑
k=0

〈1X>•, ψk〉2
])1/2

≤
√

2mμ,

thus:
E|NT − λT |2p

(cT )2p
‖Tm(E[D(X)])‖2pop ≤ O(λp)

T p
μpmp.

7.2.3. Proof of Theorem 3.6

The following results are based on the proofs of Lemma 3.1 and Corollary 3.2
in Comte and Mabon (2017).
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Proposition 7.10. If m logm ≤ cT , then it holds:

E‖Ã−1
m,2 −A−1

m ‖2pop

≤ C(p, λ)
(
μp‖A−1

m ‖2pop
)
∧
(
(μp + μ2p)‖A−1

m ‖4pop
(
m logm

cT

)p)
,

with C(p, λ) = O(λp ∨ λ2p).

Proof of Proposition 7.10. We decompose according to Δm := {‖Â−1
m ‖1op ≤

cT
m logm}:

E

[
‖A−1

m − Ã−1
m,2‖

2p
op

]
= E

[
‖A−1

m ‖2pop1Δc
m
+ ‖Â−1

m (Am − Âm)A−1
m ‖2pop1Δm

]
= ‖A−1

m ‖2pop P[Δc
m] + E

[
‖Â−1

m (Am − Âm)A−1
m ‖2pop1Δm

]
.

(37)

We now give two bounds on (37), depending on the value of ‖A−1
m ‖op.

• First case: ‖A−1
m ‖op > 1

2

√
cT

m logm .

Starting from Equation (37) and using the set Δ2
m, we have that:

E

[
‖A−1

m − Ã−1
m,2‖

2p
op

]
≤ ‖A−1

m ‖2pop + ‖A−1
m ‖2popE

[
‖Â−1

m ‖2pop‖Am − Âm‖2pop1Δm

]
≤ ‖A−1

m ‖2pop + ‖A−1
m ‖2pop

(
cT

m logm

)p

E

[
‖Am − Âm‖2pop

]
.

We apply Proposition 3.5 and get:

E

[
‖A−1

m − Ã−1
m,2‖

2p
op

]
≤ ‖A−1

m ‖2pop + ‖A−1
m ‖2pop

(
cT

m logm

)p

C(p, λ)μp

(
m logm

cT

)p

≤ (1 + C(p, λ)μp)‖A−1
m ‖2pop,

with C(p, λ) = O(λp).

• Second case: ‖A−1
m ‖op < 1

2

√
cT

m logm .

Starting from (37) again, we get:

E

[
‖A−1

m − Ã−1
m,2‖

2p
op

]
≤ ‖A−1

m ‖2pop P[Δc
m]

+ ‖A−1
m ‖2pop E

[
‖Am − Âm‖2pop‖Â−1

m ‖2pop1Δm

]
.

1. Upper bound on E

[
‖Am − Âm‖2pop‖Â−1

m ‖2pop1Δm

]
.

First let us notice that

‖Â−1
m ‖2pop ≤ 22p−1‖Â−1

m −A−1
m ‖2pop + 22p−1‖A−1

m ‖2pop.
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Applying Proposition 3.5, we get:

E

[
‖Am − Âm‖2pop‖Â−1

m ‖2pop1Δm

]
≤ 22p−1‖A−1

m ‖2popE
[
‖Am − Âm‖2pop1Δm

]
+ 22p−1E

[
‖Am − Âm‖2pop‖Â−1

m −A−1
m ‖2pop1Δm

]
≤ 22p−1‖A−1

m ‖2popE
[
‖Am − Âm‖2pop1Δm

]
+ 22p−1‖A−1

m ‖2popE
[
‖Am − Âm‖4pop‖Â−1

m ‖2pop1Δm

]
≤ C(p, λ)μp‖A−1

m ‖2pop
(
m logm

cT

)p

+ ‖A−1
m ‖2pop

(
cT

m logm

)p

C(2p, λ)μ2p

(
m logm

cT

)2p

≤ C ′(p, λ)(μp + μ2p)‖A−1
m ‖2pop

(
m logm

cT

)p

, (38)

with C ′(p, λ) = O(λp ∨ λ2p).

2. Upper bound on P[Δc
m] = P

[
‖Â−1

m ‖op >
√

cT
m logm

]
.

From the triangular inequality:

‖Â−1
m ‖op ≤ ‖Â−1

m −A−1
m ‖op + ‖A−1

m ‖op
we obtain:

P

[
‖Â−1

m ‖op >

√
cT

m logm

]

≤ P

[
‖Â−1

m −A−1
m ‖op >

√
cT

m logm
− ‖A−1

m ‖op

]
.

Moreover we have assumed that ‖A−1
m ‖op < 1

2

√
cT

m logm , so:

P

[
‖Â−1

m ‖op >

√
cT

m logm

]
≤ P

[
‖Â−1

m −A−1
m ‖op > ‖A−1

m ‖op
]
.

Now let us rewrite this probability, as:

P

[
‖Â−1

m −A−1
m ‖op > ‖A−1

m ‖op
]

= P

[{
‖Â−1

m −A−1
m ‖op > ‖A−1

m ‖op
}
∩
{
‖A−1

m (Âm −Am)‖op <
1

2

}]
+ P

[{
‖Â−1

m −A−1
m ‖op > ‖A−1

m ‖op
}
∩
{
‖A−1

m (Âm −Am)‖op ≥ 1

2

}]
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≤ P

[{
‖Â−1

m −A−1
m ‖op > ‖A−1

m ‖op
}
∩
{
‖A−1

m (Âm −Am)‖op <
1

2

}]
+ P

[
‖A−1

m (Âm −Am)‖op ≥ 1

2

]
. (39)

To control the second term, we apply Markov inequality and Proposition
3.5:

P

[
‖A−1

m (Âm −Am)‖op ≥ 1

2

]
≤ P

[
‖A−1

m ‖op‖Âm −Am‖op ≥ 1

2

]
≤ C(p, λ)μp

(
m logm

cT

)p

‖A−1
m ‖2pop. (40)

Next, to control the first term on the right hand side of Equation (39), we
apply Theorem C.1:

P

[{
‖Â−1

m −A−1
m ‖op > ‖A−1

m ‖op
}
∩
{
‖A−1

m (Âm −Am)‖op <
1

2

}]
≤ P

[{
‖Âm −Am‖op‖A−1

m ‖2op
1− ‖A−1

m (Âm −Am)‖op
> ‖A−1

m ‖op

}

∩
{
‖A−1

m (Âm −Am)‖op <
1

2

}]

≤ P

[
‖Âm −Am‖op >

1

2
‖A−1

m ‖−1
op

]
. (41)

We apply Markov inequality again, along with Proposition 3.5:

P

[{
‖Â−1

m −A−1
m ‖op > ‖A−1

m ‖op
}
∩
{
‖A−1

m (Âm −Am)‖op <
1

2

}]
≤ C(p, λ)μp

(
m logm

cT

)p

‖A−1
m ‖2pop.

So starting from Equation (39) and gathering Equations (40) and (41)
gives:

P

[
‖Â−1

m ‖op >

√
cT

m logm

]
≤ C(p, λ)μp

(
m logm

cT

)p

‖A−1
m ‖2pop, (42)

with C(p, λ) = O(λp).

Finally gathering Equations (38) with (42), we get that

E

[
‖A−1

m − Ã−1
m,2‖

2p
op

]
≤ C(p, λ)(μp + μ2p)

(
‖A−1

m ‖4op
m logm

cT

)p

.

with C(p, λ) = O(λp ∨ λ2p).
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The next proposition is a variant of the last one. It gives a better bound than

applying directly Proposition 7.10 to E

[
‖Ã−1

m,2 −A−1
m ‖2op‖cm‖2�2

]
.

Proposition 7.11. If m logm ≤ cT , then it holds:

E‖(Ã−1
m,2 −A−1

m )cm‖2�2 ≤ C(λ)‖φm‖2L2

(
μ ∧
{
(μ+ μ2)‖A−1

m ‖2op
m logm

cT

})
,

with C(λ) = O(λ ∨ λ2).

Proof of Proposition 7.11. The proof follows the lines of the proof of of Propo-
sition 7.10, but starting from the following decomposition:

E‖(A−1
m − Ã−1

m,2)cm‖2�2

= ‖A−1
m cm‖2�2P[Δc

m] + E

[
‖Â−1

m (Am − Âm)A−1
m cm‖2�21Δm

]
= ‖am‖2�2P[Δc

m] + E

[
‖Â−1

m (Am − Âm)A−1
m cm‖2�21Δm

]
,

It yields the following upper bound:

E

[
‖(A−1

m − Ã−1
m,2)cm‖2�2

]
≤ ‖am‖2�2P[Δc

m] + ‖am‖2�2E
[
‖Â−1

m ‖2op‖Am − Âm‖2op1Δm

]
.

Following the proof of Proposition 7.10, we get:

E

[
‖(A−1

m − Ã−1
m,2)cm‖2�2

]
≤ C(λ)‖am‖2L2

(
μ ∧
{
(μ+ μ2)‖A−1

m ‖2op
m logm

cT

})
,

with C(λ) = O(λ ∨ λ2).

Now we can prove Theorem 3.6.

Proof of Theorem 3.6. By Pythagoras Theorem, ‖φ− φ̂
Lag2
m ‖2L2 = ‖φ−φm‖2L2 +

‖φm − φ̂
Lag2
m ‖2L2 . In the proof of Theorem 2.5, we saw that:

E‖ĉm − cm‖2�2 = E‖ĥm − hm‖2L2 ≤ λ

c2T
E[W (X)].

We decompose the variance term in three terms:

E‖φm−φ̂Lag2
m ‖2L2 = E‖âLag2

m − am‖2�2 = E‖Ã−1
m,2ĉm −A−1

m cm‖2�2
≤ 3E‖(Ã−1

m,2 −A−1
m )cm‖2�2 + 3E‖(A−1

m − Ã−1
m,2)(cm − ĉm)‖2�2

+ 3E‖A−1
m (cm − ĉm)‖2�2 .

For the first term, we apply Proposition 7.10. For the second term, we use the
fact that Ã−1

m,2 and ĉm are independent, and we apply Proposition 7.11:

E‖(A−1
m −Ã−1

m,2)(cm− ĉm)‖2�2 ≤ E‖A−1
m −Ã−1

m,2‖
2
op×E‖cm− ĉm‖2�2 = O

(
1

T 2

)
.
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For the third term:

E‖A−1
m (cm − ĉm)‖2�2 ≤ ‖A−1

m ‖2op E‖ĉm − cm‖2�2 ≤ ‖A−1
m ‖2op

λ

c2T
E[W (X)].

We apply Lemma 3.2 and we obtain the following bound, with C(λ) = O(λ∨λ2):

E‖φm − φ̂Lag2
m ‖2L2

≤ 3 ‖A−1
m ‖2op

C(λ)

cT

(
‖φm‖2L2(μ+ μ2)m log(m) +

E[W (X)]

c

)
+O

(
1

T 2

)
≤ 12

C(λ)

cT (1− θ)2

(
‖φm‖2L2(μ+ μ2)m log(m) +

E[W (X)]

c

)
+O

(
1

T 2

)
.

7.3. Proofs of Section 4

Proof of Lemma 4.6. It follows from direct calculation using (6):

〈F, ψk〉 =
∫ +∞

0

C exp(−γx)ψk(x) dx

= C
√
2

k∑
j=0

(
k

j

)
(−2)j

j!

∫ +∞

0

xje−(1+γ)x dx

= C
√
2

k∑
j=0

(
k

j

)
(−2)j

(1 + γ)j+1

=
C
√
2

γ + 1

(
1− 2

γ + 1

)k

=
C
√
2

γ + 1

(
γ − 1

γ + 1

)k

.

Since γ is positive, we have
∣∣∣γ−1
γ+1

∣∣∣ < 1 and we can compute the geometric series:

+∞∑
k=m

〈F, ψk〉2 =
2C

(γ + 1)2

(
γ−1
γ+1

)2m
1−
(

γ−1
γ+1

)2 =
C2

2γ

(
γ − 1

γ + 1

)2m

.

Proof of Proposition 4.7. For the ruin probability and the Laplace transform of
the ruin time, we start from (19) and we apply Lemma 4.6. For the expected
jump size causing the ruin, we also start from (19) and we write φ = F1 + F2

with:
F1(u) := μ(1 + 2θ)e−

1−θ
μ u1u>0, F2(u) := μe−u/μ1u>0.

Hence, ‖φ − φm‖2L2 ≤ 2
∑+∞

k=m〈F1, ψk〉2 + 2
∑+∞

k=m〈F2, ψk〉2. We apply Lemma
4.6:

‖φ− φm1‖
2
L2 ≤ μ2(1 + 2θ)2

1−θ
μ

(
1−θ
μ − 1

1−θ
μ + 1

)2m

+ μ3

(
1
μ − 1
1
μ + 1

)2m
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=
μ3(1 + 2θ)2

1− θ

(
1− θ − μ

1− θ + μ

)2m

+ μ3

(
1− μ

1 + μ

)2m

≤ μ3(1 + 2θ)2

1− θ

(∣∣∣∣1− θ − μ

1− θ + μ

∣∣∣∣ ∨ ∣∣∣∣1− μ

1 + μ

∣∣∣∣)2m

.

Appendix A: Model reduction procedure

We propose a model reduction procedure to choose the dimensions m2 and m3,
defined by (14). We explain the method for the choice of m2 in the case δ = 0.

Let us assume we have estimated the M first coefficients of g, for a large M .
By Remark 2.6, we know that the best estimator is ĝM . Our goal is to choose
m̂2 smaller than M that achieves a similar MISE. This provides a parsimonious
version of the estimator without degrading its MISE. By Theorem 2.5, the MISE
of ĝm is given by:

E‖g − ĝm‖2L2 ≤ ‖g − gm‖2L2 +
λ

c2T
E[X].

Ideally, we would like to choose the first m such that the bias term ‖g − gm‖2L2

is smaller than the variance term λ
c2T E[X]. Since these terms are unknown, we

estimate them by
∑M−1

k=m b̂2k and 1
(cT )2

∑NT

i=1 Xi respectively. We choose m̂2 as:

m̂2 = min

{
1 ≤ m ≤ M − 1 |

M−1∑
k=m

b̂2k ≤ κ2

(cT )2

NT∑
i=1

Xi

}
, (43)

with κ2 an adjustment constant. The next proposition shows that the MISE of
ĝm̂2 does not exceed the MISE of ĝM by more than κ2 × (variance term).

Proposition A.1. Let κ2 > 0, if m̂2 is chosen as (43) then the MISE of ĝm̂2

is:

E‖g − ĝm̂2‖
2
L2 ≤ ‖g − gM‖2L2 + (1 + κ2)

λ

c2T
E[X].

Proof. By Pythagoras Theorem:

‖g − ĝm̂2‖
2
L2 = ‖g − ĝM‖2L2 + ‖ĝM − ĝm̂2‖

2
L2

= ‖g − ĝM‖2L2 +

M−1∑
k=m̂2

b̂2k

≤ ‖g − ĝM‖2L2 +
κ2

(cT )2

NT∑
i=1

Xi.

We take the expectation, and we apply Theorem 2.5:

E‖g − ĝm̂2‖
2
L2 ≤ ‖g − gM‖2L2 + (1 + κ2)

λ

c2T
E[X].
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The same goes for m̂3: we estimate the bias term by
∑M−1

k=m ĉ2k and the vari-

ance term by 1
(cT )2

∑NT

i=1 W (Xi); we choose m̂3 as:

m̂3 = min

{
1 ≤ m ≤ M − 1 |

M−1∑
k=m

ĉ2k ≤ κ3

(cT )2

NT∑
i=1

W (Xi)

}
.

By the same arguments, the MISE of ĥm3 is given by:

E‖h− ĥm̂3‖
2
L2 ≤ ‖h− hM‖2L2 + (1 + κ3)

λ

c2T
E[W (X)].

In the case δ > 0, we choose the same m̂2 and m̂3 as in the case δ = 0. By
the same arguments, we obtain:

E‖g − ĝm̂2‖
2
L2 ≤ ‖g − gM‖2L2 +

C(λ)

c2T

(
E[X] +

E[X2]
1
2

(1− θ)2δ2

)
+ κ2

λ

c2T
E[X]

≤ ‖g − gM‖2L2 + (1 + κ2)
C(λ)

c2T

(
E[X] +

E[X2]
1
2

(1− θ)2δ2

)
,

and:

E‖h− ĥm̂3‖
2
L2

≤ ‖h− hM‖2L2 +
C(λ)

c2T

(
E[W (X)] +

E[W (X)2]
1
2

(1− θ)2δ2

)
+ κ3

λ

c2T
E[W (X)]

≤ ‖h− hM‖2L2 + (1 + κ3)
C(λ)

c2T

(
E[W (X)] +

E[W (X)2]
1
2

(1− θ)2δ2

)
.

Numerically, we compared the MISE’s of the Laguerre–Fourier estimator with
and without the model reduction procedure for m̂2 and m̂3, with the choice
κ2 = κ3 = 0.3. We show the results in Table 4. We see that the model reduction

Table 4

Comparison between the MISE of the Laguerre–Fourier estimator with and without model
reduction. In each case, we chose the following parameters: X ∼ Exp(1/2), λ = 1.25, c = 3,
T = 80. With this set of parameters, E[NT ] = 100. Each cell displays an estimation of the
MISE over 200 samples with a 95% confidence interval, and the mean selected models m̂2

and m̂3. In every case, m1 is equal to NT .

With Model Reduction Without Model Reduction

Ruin Probability
1.06 1.06

[0.86, 1.26] [0.86, 1.25]

m̂2 = 4.2, m̂3 = 4.1 m2 = m3 = NT

Jump size causing the ruin
40.1 41.6

[33.7, 46.9] [34.7, 48.4]

m̂2 = 4.1, m̂3 = 4.3 m2 = m3 = NT

Laplace transform, δ = 0.1
0.092 0.098

[0.075, 0.110] [0.079, 0.117]

m̂2 = 3.9, m̂3 = 4.0 m2 = m3 = NT
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procedure does not affect the MISE of the estimator and we emphasize that the
selected dimensions are far lower than the maximum dimension (m̂’s are less
than 10 whereas the maximum dimension is 100).

Appendix B: Uniform bound on the primitives of the Laguerre
functions

In this section, we prove that the primitives of the Laguerre function are uni-
formly bounded. The sketch of the proof comes from fedja (2021).

Proof of Lemma 3.4. Let uk(x) := Lk(x)e
−x/2. We first notice that the com-

plete integral of uk is uniformly bounded:∫ +∞

0

uk(x) dx = 2

∫ +∞

0

Lk(2x)e
−x dx

= 2

k∑
j=0

(
k

j

)
(−2)j

j!

∫ +∞

0

xje−x dx

= 2

k∑
j=0

(
k

j

)
(−2)j = 2(−1)k.

We will show that |
∫ x

0
uk| ≤ C|

∫∞
0

uk| = 2C for an absolute constant C > 0.
The k-th Laguerre polynomial satisfies the ODE:

xL′′
k + (1− x)L′

k + kLk = 0,

thus, the function uk satisfies:

xu′′
k + u′

k +

(
k +

1

2
− 1

4
x

)
uk = 0 (44)

To kill the first derivative, we consider vk(x) := uk(x
3/2)x1/2. The functions uk

and vk have the same partial integrals (up to the constant 2/3):

∀x ≥ 0,

∫ x

0

vk(t) dt =
2

3

∫ x2/3

0

uk(t) dt.

The first two derivatives of vk are:

v′k(x) =
3

2
xu′

k(x
3/2) +

1

2
x−1/2u(x3/2)

v′′k (x) =
9

4
x3/2u′′(x3/2) +

9

4
u′(x3/2)− 1

4
x−3/2u(x3/2)

so using the ODE (44) for u yields the following ODE for v:

v′′k +Φkvk = 0
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Fig 3. Graph of v4. We see that the area of the excursions is increasing.

where Φk is given by:

Φk(x) :=
9

4

(
k + 1

2

x1/2
− 1

4
x

)
+

1

4x2
.

The important properties of this function are that it is convex and decreasing.
Since the Laguerre polynomials have simple zeros, the function vk has (k+1)

simple zeros (the zeros of the k-th Laguerre polynomial, and 0) so the integral
of vk can be decomposed as an alternating sum

∫∞
0

vk =: Ik = A0 − A1 +

A2 − · · ·+ (−1)kAk, where the Ai’s are the unsigned areas of the excursions of
vk (see Figure 3). Based on the following lemma (proven later), we claim that
A0 < A1 < · · · < Ak.

Lemma B.1. Let F1, F2 be two C1 functions defined on an open interval I
containing 0, and let y1, y2 be the solutions of the following ODE:⎧⎪⎪⎨⎪⎪⎩

y′′1 + F1(x)y1 = 0
y′′2 + F2(x)y2 = 0
y1(0) = y2(0) = 0
y′2(0) ≥ y′1(0) > 0.

Let M > 0 such that y1 and y2 are positive on J := (0,M) ⊆ I. If F1 > F2 on
J , then we have y1 ≤ y2 on J .

Indeed, let z > 0 be a zero of vk and assume w.l.o.g. that vk is positive after
z and negative before. Let y1(x) := −vk(z− x) and y2(x) := vk(z+ x) (i.e. y1 is
the central inversion of vk with respect to z). Thus, y1 and y2 satisfy the ODE:{

y′′1 +Φk(z − x)y1 = 0
y′′2 +Φk(z + x)y2 = 0

with the initial conditions y1(0) = y2(0) = vk(z) = 0 and y′1(0) = y′2(0) =
v′k(z) > 0. Since Φk is decreasing, we have Φk(z − x) > Φk(z + x), so Lemma
B.1 yields that y1(x) ≤ y2(x) for x > 0 as long as y1(x) and y2(x) are positive.
Hence, the area of the excursion preceding z is smaller than the area of the
excursion following z.
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Now let z be the last zero of vk, and let us assume w.l.o.g. that vk is positive
after z (otherwise we consider −vk, it satisfies the same ODE than vk). In this
case, Ik = A0 − A1 + . . . − Ak−1 + Ak with A0 < . . . < Ak−1 < Ak. Thus the
maximum value of |

∫ x

0
vk| is attained either by taking the complete integral (it

is the maximum of
∫ x

0
vk), either by leaving out the last excursion (it is the

minimum of
∫ x

0
vk). We show that the second option is dominated by the first

one: there exists an absolute constant C > 0 such that Ak − Ik ≤ CIk. To do
that it suffices to show that Ak−1 ≤ cAk for absolute constant c ∈ (0, 1), hence
Ak − Ik ≤ c

1−cIk.
The strategy is to compare the function vk to the Airy function of the first

kind. This function is solution of the ODE:{
y′′ − xy = 0
lim

x→+∞
y(x) = 0. (45)

Let z∗� and z∗p be respectively the last and the penultimate zeros of Ai. We recall
that z∗� is negative (all the zeros of Ai are negative), and that Ai is negative on
(z∗p , z

∗
� ) and positive on (z∗� ,+∞).

Lemma B.2. Let Ai be the Airy function of the first kind, and let z be the
last zero of vk. There exists a decreasing linear function Υk satisfying Υk(z) =
Φk(z), and there exists a > 0 and b ∈ R, such that the function Ai(ax + b)
satisfies: {

y′′ +Υk(x) y = 0
y(z) = 0

and such that it stays positive on (z,+∞) and tends to 0 at +∞.

Let wk(x) := εAi(ax+ b) where a and b are given by Lemma B.2, and ε > 0
is small enough such that 0 < w′

k(z) < v′k(z). Let z� and zp be respectively the
last and the penultimate zeros of wk. By definition of wk, its last zero is the
same than vk’s, that is z� = z. Moreover, the zeros of wk and Ai are linked by
the linear transformation x �→ ax+ b: we have z∗� = az� + b and z∗p = azp + b.

Let us consider:

W := det

(
vk wk

v′k w′
k

)
= vkw

′
k − v′kwk,

the Wronskian of vk and wk. Since W vanishes at z and +∞, we have:

0 =

∫ +∞

z

W ′(x) dx =

∫ +∞

z

(
Φk(x)−Υk(x)

)
vk(x)wk(x)︸ ︷︷ ︸

>0

dx,

so the sign of Φk − Υk must change on (z,+∞). Since Φk − Υk is convex and
(Φk −Υk)(z) = 0, this is possible only if it is negative and then positive. Hence,
W is first decreasing and then increasing on (z,+∞). Since it starts from zero
at z and tends to zero at +∞, we conclude that W is negative on (z,+∞).



2170 F. Dussap

It follows that wk < vk on (z,+∞). Indeed, by contradiction if:

x0 := inf{x ∈ (z,+∞) |wk(x) ≥ vk(x)},

existed and was finite, we would have vk(x0) = wk(x0) > 0 and v′k(x0) ≤ w′
k(x0).

Thus, we would have W(x0) = vk(x0)w
′
k(x0)−v′k(x0)wk(x0) ≥ 0; contradiction.

We conclude that the area of the last excursion of wk is less than vk’s:
∫∞
z�

wk ≤
Ak.

We have seen that Φk −Υk was negative then positive on (z,+∞). By con-
vexity, it has to be positive on (0, z), i.e. Φk > Υk on the left of z. We apply
Lemma B.1 to −vk(z − x) and −wk(z − x), and we conclude that the area of
the penultimate excursion of vk is less than wk’s: Ak−1 ≤ |

∫ z�
zp

wk|.
We conclude that Ak−1/Ak is bounded above by the ratio of the areas of the

penultimate excursion to the last excursion of wk. By a linear change of variable,
this ratio is equal to the ratio of the areas of the penultimate excursion to the
last excursion of the Airy function:

Ak−1

Ak
≤

∣∣∣∫ z�
zp

wk(x) dx
∣∣∣∫ +∞

z�
wk(x) dx

=

∣∣∣∫ z∗
�

z∗
p
Ai(x) dx

∣∣∣∫ +∞
z∗
�

Ai(x) dx
=: c.

This is an absolute constant, we just need to prove it is smaller than 1 to end
the proof. The function Ai satisfies an ODE of the form y′′ + F (x)y = 0 with
F (x) = −x a decreasing function, thus by considering the functions y1(x) =
−Ai(z∗� − x) and y2 := Ai(z∗� + x), we can apply again Lemma B.1 (as we did
with vk), to conclude that y1(x) ≤ y2(x) for x > 0 as long as y1(x) is positive

(y2 being positive for every x > 0). This proves that |
∫ z∗

�

z∗
p
Ai| <

∫∞
z∗
�
Ai, that is

c < 1.

Proof of Lemma B.1. First, let us consider the case y′2(0) > y′1(0). Let W :=
y1y

′
2−y′1y2 be the Wronskian of y1 and y2. Then W ′ = (F1−F2)y1y2 is positive

on J and W(0) = 0, so W > 0 on J .

By contradiction, suppose there exists x ∈ J such that y1(x) ≥ y2(x) > 0
and consider x0 := inf{x ∈ J | y1(x) ≥ y2(x) > 0}. Since y′2(0) > y′1(0), we
know that y1 is below y2 on a right neighborhood of 0, so x0 > 0. By continuity,
we have y1(x0) = y2(x0) > 0, so we must have y′1(x0) ≥ y′2(x0); otherwise, we
would have y1(x) ≥ y2(x) > 0 on a left neighborhood of x0, which is impossible
if x0 > 0. Thus W(x0) = y1(x0)[y

′
2(x0)−y′1(x0)] ≤ 0 with x0 ∈ J ; contradiction.

Now consider the case y′2(0) = y′1(0). For ε > 0 small enough, we consider yε
the solution of: ⎧⎨⎩ y′′ε + F1(x)yε = 0

yε(0) = 0
y′ε(0) = y′2(0)− ε > 0.

Applying the first case, we have yε ≤ y2 while yε and y2 are positive. Taking
ε → 0, we obtain y1 ≤ y2.
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Proof of Lemma B.2. The Airy function is solution of (45), so Ai(ax+ b) (with
a > 0) satisfies: {

y′′ − a2(ax+ b)y = 0
lim

x→+∞
y(x) = 0.

We need to determine (a, b) such that the two following conditions hold:

1. Let Υk(x) := −a2(ax+b), we need to choose a, b such that Υk(z) = Φk(z).
2. Let z∗� be the last zero of Ai. We know that z∗� < 0 and that Ai is positive

on (z∗� ,+∞), thus we need to choose a, b such that az+b = z∗� so Ai(ax+b)
stays positive on (z,+∞) and vanishes at z.

Thus, (a, b) ∈ R∗
+ × R must be solution of:{

−a2(az + b) = Φk(z)
az + b = z∗�

⇐⇒
{

a2 = −Φk(z)
z∗
�

az + b = z∗�
(46)

Since z∗� < 0, this system has a solution iff Φk(z) > 0. By contradiction, if we
had Φk(z) ≤ 0, then Φk would be negative on (z,+∞). Since the function vk
is positive after z and satisfies v′′k (x) = −Φk(x)vk(x), then vk would be strictly
convex on (z,+∞). But the function vk starts from zero at z with a positive
derivative, stays positive, and tends to 0 at +∞, so it cannot be strictly convex
on (z,+∞); contradiction. Thus, the system (46) has a solution.

Appendix C: Miscellaneous results

Theorem C.1. Let A and B be m × m matrices. If A is invertible and if
‖A−1B‖op < 1, then A+B is invertible and it holds:

∥∥(A+B)−1 −A−1
∥∥
op

≤
‖A−1‖2op‖B‖op
1− ‖A−1B‖op

.

Proof. Since ‖A−1B‖op < 1, its Neumann series is normally convergent and we
have:

+∞∑
k=0

(−1)k(A−1B)k = (Im +A−1B)−1.

Hence:∥∥(A+B)−1 −A−1
∥∥
op

≤
∥∥A−1

∥∥
op

∥∥(Im +A−1B)−1 − Im
∥∥
op

≤
∥∥A−1

∥∥
op

+∞∑
k=1

∥∥A−1B
∥∥k
op

=
∥∥A−1

∥∥
op

‖A−1B‖op
1− ‖A−1B‖op

≤
‖A−1‖2op‖B‖op
1− ‖A−1B‖op

.
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Theorem C.2 (Theorem A.1 in Chen, Gittens and Tropp (2012)). Suppose
that q ≥ 2 and fix r ≥ max(q, 2 log p). Consider a finite sequence {Yi} of
independent, symmetric, random, self-adjoint matrices with dimension p × p.
Then:[

Eλmax

(∑
i

Yi

)q]1/q
≤

√√√√erλmax

(∑
i

EY2
i

)
+ 2er

[
Emax

i
λq
max (Yi)

]1/q
.
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