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Abstract: Sufficient Dimension Reduction (SDR) becomes an important
tool for mitigating the curse of dimensionality in high dimensional regres-
sion analysis. Recently, Flexible SDR (FSDR) has been proposed to extend
SDR by finding lower dimensional projections of transformed explanatory
variables. The dimensions of the projections however cannot fully repre-
sent the extent of data reduction FSDR can achieve. As a consequence,
optimality and other theoretical properties of FSDR are currently not well
understood. In this article, we propose to use the σ-field associated with the
projections, together with their dimensions to fully characterize FSDR, and
refer to the σ-field as the FSDR σ-field. We further introduce the concept of
minimal FSDR σ-field and consider FSDR projections with the minimal σ-
field optimal. Under some mild conditions, we show that the minimal FSDR
σ-field exists, attaining the lowest dimensionality at the same time. To es-
timate the minimal FSDR σ-field, we propose a two-stage procedure called
the Generalized Kernel Dimension Reduction (GKDR) method and par-
tially establish its consistency property under weak conditions. Extensive
simulation experiments demonstrate that the GKDRmethod can effectively
find the minimal FSDR σ-field and outperform other existing methods. The
application of GKDR to a real life air pollution data set sheds new light on
the connections between atmospheric conditions and air quality.
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1. Introduction

Statistical analysis of high dimensional data is known to suffer from the curse of
dimensionality, and dimension reduction methods are usually used to reduce the
dimensionality so as to mitigate the curse. Li [17] proposed Sufficient Dimension
Reduction (SDR) as an effective approach for reducing dimensionality in high
dimensional regression analysis. Let Y be the response, X = (X1, . . . , Xp)

T the
p-dimensional vector of explanatory variables, and B ∈ Rp×d a matrix of p rows
and d columns. If given BTX, Y and X are independent with each other, that
is,

Y ⊥⊥ X|BTX, (1)

where ⊥⊥ denotes “independent”, then the column space of B, denoted by
span(B), is called an SDR subspace. SDR subspaces are not unique. Under
some mild conditions, the intersection of all SDR subspaces remains an SDR
subspace, which is called the central subspace and denoted by SY |X [4]. After
SY |X is obtained, subsequent analyses can be applied to PSY |XX, which is the
projection of X onto the central subspace SY |X .

Another approach to coping with the curse of dimensionality in high dimen-
sional regression analysis is to impose the assumption that the dependence of Y
on X admits a lower dimensional configuration. The ACE algorithm [2] and the
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generalized additive model [12] are two methods following this approach. Both
of the methods postulate the following additive regression model

h(Y ) = α+

p∑
i=1

φi(Xi) + ε,

where h, φ1, . . . , φp are unknown univariate functions, α is the intercept, and ε is
the error term. The additive regression model can be considered an extension of
covariate transformations commonly used in linear regression analysis. It does
not suffer from the curse of dimensionality and is more flexible in practice.

The idea of using transformed explanatory variables for linear regression can
also be employed for sufficient dimension reduction. Wang and Zhu [23] proposed
the flexible SDR model given below.

Y ⊥⊥ X|BTφ(X), (2)

where B is a p×dmatrix as before and φ(X) =
(
φ1(X1), · · · , φp(Xp)

)T
. Here we

refer to BTφ(X) satisfying (2) as a sufficient predictor vector. Compared with
the original SDR, the flexible SDR model can provide more flexibility in mod-
eling the relationship between Y and X, and lead to further dimensionality re-
duction. For example, consider the model Y = X2

1/
(
sin(X2)+X2

3+2
)
+ε, where

X = (X1, . . . , X10)
T , and ε ⊥⊥ X. Under the original SDR, it can be shown that

the central subspace is the three-dimensional subspace spanned by e1, e2 and
e3, where ei is the column vector with the i-th entry being 1 and the others
being 0 for i = 1, 2, 3. The projection of X onto the central subspace yields
a three-dimensional space, which is the sample space for (X1, X2, X3)

T ; Under

the flexible SDR, however, we can set φ(X) =
(
X1, sin(X2), X

2
3 , X4, . . . , X10

)T
and B = (e1, e2 + e3), and then Y ⊥⊥ X|BTφ(X). BTφ(X) can be considered
a two-dimensional sufficient predictor vector, and we can rely on BTφ(X) to
explore the relationship between Y and X instead of the original X. Therefore,
the dimensionality can be reduced to two after flexible SDR is performed.

For the example discussed above, we can find another set of transformations

φ̃(X) =
(
X2

1 , sin(X2), X
2
3 , X4, . . . , X10

)T
, which also satisfies Y ⊥⊥ X|BT φ̃(X).

Therefore, both BTφ(X) and BT φ̃(X) are sufficient predictor vectors. Wang
and Zhu [23] used the dimensions of B to characterize flexible SDR. In this
example, the dimensions of B cannot be used to discriminate between BTφ(X)
and BT φ̃(X) because they share exactly the same B. Notice the only difference
between BTφ(X) and BT φ̃(X) is that φ1(X1) = X1 whereas φ̃1(X1) = X2

1 .
From the model, Y depends on X1 only through X2

1 , and the sign of X1 is
not important. Therefore, BT φ̃(X) should be considered a further reduction
from BTφ(X). The reduction from BTφ(X) to BT φ̃(X) can in fact be best
characterized by their respective σ-fields. Let σB,φ and σB,φ̃ denote the σ-fields

associated with BTφ(X) and BT φ̃(X), respectively. It can be shown that σB,φ̃

is a proper sub-field of σB,φ, that is, σB,φ̃ ⊂ σB,φ. The size of a σ-field can reflect
the amount of information the σ-field contains, and the smaller the σ-field is,
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the more concentrated the information it contains [1]. From the perspective of
dimension reduction, therefore, BT φ̃(X) should be preferred over BTφ(X).

The use of σ-fields for facilitating SDR was first introduced by Lee et al. [16].
Let σ(X) denote the σ-field for X, and G any sub σ-field of σ(X). If

Y ⊥⊥ X|G, (3)

then G is called an SDR σ-field for the dependence of Y on X. Under some mild
conditions, the intersection of all SDR σ-fields still satisfies the conditional inde-
pendence assertion (3), and is called the central σ-field [16]. SDR σ-fields retain
sufficient information stored in X for predicting Y , and the central σ-field is
the smallest SDR σ-field. The central σ-field has the advantage of achieving the
largest possible data reduction. This advantage however comes with a trade-off,
which is that it no longer admits the concept of dimensionality. In the example
discussed above, it can be shown that the central σ-field is the σ-field associ-
ated with X2

1/
(
sin(X2)+X2

3 +2
)
, and it is not clear how to properly define the

dimensionality of this σ-field. Furthermore, finding the central σ-field is equiv-
alent to directly performing nonparametric regression, and it does not produce
a set of sufficient predictor variables as in the original SDR for subsequent data
exploration and analysis such as visualization and model construction.

In this article, instead of using the dimensions of B, we propose to use the
σ-field associated with BTφ(X) to characterize flexible SDR, which can be
equivalently redefined as follows.

Y ⊥⊥ X|σB,φ, (4)

where σB,φ is the σ-field associated with BTφ(X). We refer to σB,φ as the
Flexible SDR σ-field or FSDR σ-field, and call (B,φ) a generating pair of σB,φ.
An FSDR σ-field can be considered a compromise between the original SDR
[17] and the general SDR σ-field [16]. Unlike the general SDR σ-field, an FSDR
σ-field is equipped with a generating pair B and φ, and thus preserves the
concept of dimensionality and a set of sufficient predictor variables (i.e., BTφ).
For convenience, we refer to the column rank of B as the dimension of the FSDR
σ-field σB,φ.

FSDR σ-fields are not unique, neither are the generating pairs of a given
FSDR σ-field. Different FSDR σ-fields represent different degrees of data re-
duction. Intuitively, the smallest FSDR σ-field should be considered optimal,
because it achieves the largest data reduction under the framework of flexible
SDR. We refer to the smallest FSDR σ-field as the minimal FSDR σ-field. The
existence of the minimal FSDR σ-field is not obvious. In a properly defined class
of FSDR σ-fields, we will show that the minimal FSDR σ-field exists, and it also
has the smallest dimension; See Section 2. Therefore, the minimal FSDR σ-field
should be the inference target under the flexible SDR.

In the literature, a variety of methods have been proposed to perform esti-
mation for SDR, including sliced inverse regression (SIR; [17]), sliced average
variance estimation (SAVE; [5]), and many others. These methods mainly take
the inverse regression approach and only utilize the first couple of moments
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of the conditional distribution of X given Y . They can consistently estimate
the central space only under various conditions such as the linearity condition.
There are some other estimation methods for SDR, which do not follow the in-
verse regression. The Fourier method [29] and the Minimum Average Variance
Estimation (MAVE) method [27] are two such methods. Also, there are some
recent works that introduce kernel methods into sufficient dimension reduction,
such as the Kernel Sliced Inverse Regression (KSIR) method [26] and its ex-
tension called the Kernel Additive Sliced Inverse Regression (KASIR) method
[18], the Kernel Dimension Reduction (KDR) method [10], and the Gradient
Based Kernel Dimension Reduction method [11]. Specifically, the KDR method
characterizes the conditional independence assertion (1) through the conditional
covariance operators between the Reproducing Kernel Hilbert Spaces (RKHS)
of Y and X, respectively. The key advantage of the KDR method is that it
no longer requires the linearity condition, and theoretically it can fully recover
the central subspace when the dimension of the true central subspace is known.
Because of this advantage, we extend the KDR method to perform inference for
the minimal FSDR σ-field. However, it should be noted that the inference for
the minimal FSDR σ-field is not restricted to the KDR method and can be also
based on other methods.

In this article, we prove that under some mild conditions, the minimal FSDR
σ-field uniquely exists and has the smallest dimension. This result is placed in
Section 2. We propose the Generalized Kernel Dimension Regression (GKDR)
method, an extension of the KDRmethod, to estimate the minimal FSDR σ-field
in Section 3. The GKDR method is a two-stage approach. In the first stage, it
estimates multiple FSDR σ-fields with the same dimension as the minimal FSDR
σ-field through the minimization of conditional covariance operator between
RKHSs. To perform nonparametric estimation, B-spline functions are utilized.
We prove that under some conditions, the GKDR Stage I estimator has some
good consistency properties. In the second stage, the GKDR method estimates
the minimal FSDR σ-field through the maximization of conditional entropy
among all the FSDR σ-fields obtained in the first-stage. In Section 4, we discuss
some implementation details and provide numerical results for a number of
simulation studies and a real data application of the proposed method. We
conclude the article with some future research directions in Section 5. All the
technical proofs of the theorems and propositions are presented in the Appendix
A.

2. Existence of the minimal FSDR σ-field

Let X and Y be the supports of X and Y , and PX and PY the probability
distributions of X and Y , respectively. Let PXY be the joint probability dis-
tribution of X and Y . Suppose FX and FY are the Borel σ-fields over X and
Y , respectively. For x ∈ X and y ∈ Y , PY |X(·|x) and PX|Y (·|y) denote the
conditional probability distributions of Y given X = x and X given Y = y,
respectively. We first state two required assumptions for the existence of the
minimal FSDR σ-field.
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Assumption 1. The family of probability distributions
{
PX|Y (·|y) : y ∈ Y

}
is

dominated by a σ-finite measure.

Assumption 1 is adopted from Lee et al. [16]. Under this assumption, for any
two SDR σ-fields G1,G2 ⊆ σ(X), their intersection remains an SDR σ-field. Let
X(−i) denote the sub-vector of X excluding the i-th entry Xi, and φ(−i)(X(−i))
the sub-vector of φ(X) excluding the i-th entry φi(Xi). Let X(−i|xi) denote the
support of the conditional distribution of X(−i) given Xi = xi.

Assumption 2. If X(−i|xi) �= ∅ and X(−i|x̃i) �= ∅, then X(−i|xi)∩X(−i|x̃i) �= ∅.

If the support of a random vector is the whole Euclidean space Rp, sphere,
hemisphere, or cube, then this random vector satisfies Assumption 2. In the
following proposition, we state that if a random vector X satisfies Assumption
2, then the components of X are not nonlinearly confounded with each other,
that is, none of them is a function of some other components.

Proposition 1. Suppose Assumption 2 holds. For any i with 1 ≤ i ≤ p, if there
are two transformations ζi and ψi satisfying

E[ζi(Xi)] = 0, E[ψi(X(−i))] = 0, and ζi(Xi) + ψi(X(−i)) = 0 almost surely,

then both ζi and ψi are zero almost surely.

The proof of Proposition 1 can be found in Appendix A.1. Note that the
proofs of the remaining theorems throughout this article are also placed in the
Appendix A. Recall that σB,φ is the σ-field associated with BTφ(X). In the
rest of this article, we sometimes write it as σ

(
BTφ(X)

)
for convenience. The

matrix B plays an important role in the way that Xi’s affect σB,φ. We next
introduce a partition of the indices {1, 2, . . . , p} based on B. We define IB =
{i : ei ∈ span(B)} and KB = {k : BTek = 0}, and let JB = {1, 2, . . . , p}\(IB ∪
KB) = {j : BTej �= 0}\IB. It can be verified that the partition is unique with
respect to the column space of B, that is, for any two matrices B and B′, if
span(B) = span(B′), then IB = IB′ ,JB = JB′ , and KB = KB′ .

In general, the partition of IB , JB , and KB determines how the σ-fields
of φ(Xi)’s are related to σB,φ. Consider the example discussed in Section 1:
Y = X2

1/
(
sin(X2)+X2

3 +2
)
+ε. An FSDR σ-field is σB,φ = σ

(
φ1(X1), φ2(X2)+

φ3(X3)
)
, whereBT =

(
1, 0, 0, 0
0, 1, 1, 0

)
, φ1(X1) = X1, φ2(X2) = sin(X2), φ3(X3) =

X2
3 , and φ4(X4) = 0. For this FSDR σ-field, the partition is IB = {1}, JB =

{2, 3}, and KB = {4}. Correspondingly, X1, X2, X3, and X4 are partitioned
into {X1}, {X2, X3}, and {X4}. It can be shown that the σ-field of φ1(X1)
denoted as σ(φ1(X1)) is a sub-σ-field of σB,φ, that is, σ

(
φ1(X1)

)
⊆ σB,φ, and

σ
(
φ2(X2) + φ3(X3)

)
⊆ σB,φ; However, σ(φ2(X2)) � σB,φ, σ

(
φ3(X3)

)
� σB,φ,

and φ4(X4) is irrelevant to σB,φ. This property holds in general cases. The σ-
fields of φi(Xi)’s with i ∈ IB are contained in σB,φ; The σ-fields of the linear
combinations of φj(Xj) with j ∈ JB , but not the individual σ-fields of φj(Xj)’s,
are contained in σB,φ; And the σ-fields of φk(Xk)’s with k ∈ KB are irrelevant
to σB,φ.
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Suppose the cardinalities of IB , JB , and KB are p1, p2, and p3, respec-
tively. Without loss of generality, we assume that the indices in IB are smaller
than those in JB , and the indices in JB are smaller than those in KB. This
is equivalent to the assumption that B has the following standardized form⎛
⎝ Ip1 , 0

0, BJ
0, 0

⎞
⎠, where Ip1 is the p1×p1 identity matrix, BJ is a p2×(d−p1) ma-

trix, and for each column of BJ there exist at least two nonzero entries. LetXIB

denote the subvector of X indexed by IB , and φIB
(XIB

) the subvector of φ(X)
indexed by IB . The same notational rules apply to XJB

, XKB
, φJB

(XJB
), and

φKB
(XKB

). Then we have σB,φ = σ
(

∪
i∈IB

φi(Xi), B
T
JφJB

(XJB
)
)
. We next

define a proper class of FSDR σ-fields. Let

A =
{
σB,φ : Y ⊥⊥ X|σB,φ, and the support of φj(Xj) is an interval for j ∈ JB

}
.

The class A is rich enough to contain most FSDR σ-fields. For example, if
the transformations φ1(X1), . . . , φp(Xp) are continuous and the conditional in-
dependence assertion (2) is satisfied, then σB,φ belongs to A. The purpose of
requiring that the supports of φj(Xj)

′s are intervals is to exclude degenerate
cases involving both continuous and discrete transformations. Let’s consider a
counterexample. Suppose

Y = φ1(X1) + φ2(X2) + ε,

where φ1(X1) = eX1/(eX1 + 1), φ2(X2) = I(X2 > 0), and I(·) is the indicator
function. Here φ2(X2) only takes value in {0, 1}, so the support of φ2(X2) is
not an interval. Let B1 be the 2× 2 identity matrix I2, and BT

2 = (1, 1). It can
be verified that both σB1,φ and σB2,φ are FSDR σ-fields and they are identical.
Note that the column rank of B1 is two and the column rank of B2 is one.
Although the rank of B1 is higher than that of B2, the two FSDR σ-fields are
the same. In general, when discrete transformations are involved, the dimension
can be further reduced while the FSDR σ-field remains the same. In this article,
we require that the support of φj(Xj) should be an interval for j ∈ JB to
exclude the degenerate cases such as the example discussed above. We now
state the existence theorem of the minimal FSDR σ-field as follows.

Theorem 2. Under Assumptions 1 and 2, there exists a unique minimal FSDR
σ-field σB∗,φ∗ in A such that

σB∗,φ∗ ⊆ σB,φ, for any σB,φ ∈ A. (5)

Furthermore, suppose (B̃, φ̃) is another generating pair of the minimal FSDR σ-
field σB∗,φ∗ . Then span(B̃) = span(B∗), σ

(
φ̃i(Xi)

)
= σ

(
φ∗
i (Xi)

)
for i ∈ IB∗ ,

and there exist constant numbers uj and vj such that φ̃j = uj ∗ φ∗
j + vj for

j ∈ JB∗ .

Note that FSDR σ-fields in class A have a partial order instead of a linear
order, and Zorn’s Lemma is required in the proof of Theorem 2. Theorem 2
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implies that although the generating pair (B∗,φ∗)′s are not unique, the column
space span(B∗) is unique. Furthermore, the univariate transformation φ∗

i s can
be determined up to a one-to-one mapping for i ∈ IB∗ , and the univariate
transformation φ∗

js can be determined up to a linear transformation for j ∈ JB∗ .
σB∗,φ∗ in Theorem 2 is extraordinary since it achieves the smallest σB,φ. In
addition to σB∗,φ∗ , the FSDR σ-fields with the same dimension as σB∗,φ∗ are
also of interest and will play a critical role in estimating σB∗,φ∗ , as will be
shown in Section 3.4. The generating pairs of these FSDR σ-fields possess similar
properties as that of σB∗,φ∗ , which we state in the following theorem.

Theorem 3. Suppose (B̃, φ̃) is a generating pair of an FSDR σ-field with the
same dimension as σB∗,φ∗ . Then span(B̃) = span(B∗), σ

(
φ̃i(Xi)

)
⊇ σ(φ∗

i (Xi))

for i ∈ IB∗ , and there exist constant numbers uj and vj such that φ̃j = uj∗φ∗
j+vj

for j ∈ JB∗ .

Theorem 3 implies that for σB∗,φ∗ , not only the dimension is the smallest,
but also the univariate transformations are the coarsest, that is, the univariate
transformations of σB∗,φ∗ can be represented as functions of those of other
FSDR σ-fields. We will utilize this property for estimating σB∗,φ∗ , as will be
discussed in Sections 3.1 and 3.4.

3. Estimation scheme for σB∗,φ∗

Suppose the flexible dimension reduction model (2) holds, and Assumptions 1
and 2 are satisfied. In Section 2, we have proved that the minimal FSDR σ-
field σB∗,φ∗ exists and is unique, and hereafter we always assume that d0, the
dimension of σB∗,φ∗ , is already known. In this section, we present the GKDR
method for estimating σB∗,φ∗ , as discussed in Section 1.

The GKDR method uses a two-stage approach. In the first stage, it estimates
the generating pair (B,φ)′s of the FSDR σ-fields with the same dimension as
σB∗,φ∗ . We present this procedure at the population level in Section 3.1, and
then we present its sample version and consistency result in Sections 3.2 and 3.3,
respectively. In the second stage, the GKDR method incorporates conditional
entropy to estimate one representing generating pair (B∗,φ∗) of the minimal
FSDR σ-field, based on the generating pair (B,φ)′s obtained in the first stage.
This procedure is presented in Section 3.4.

3.1. Stage I of GKDR: Population level

For an integer d ≤ p, let Spd(R) be the Stiefel manifold defined as follows.

Spd(R) = {B ∈ Rp×d : BTB = Id}.

Let L̃2(PXi) and L̃2(PX) be the families of normalized L2 functions defined as
follows.

L̃2(PXi) =
{
φi : E

[
φi(Xi)

]
= 0, V ar

[
φi(Xi)

]
= 1

}
, for i = 1, . . . , p;
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L̃2(PX) =
{
(φ1, . . . , φp)

T : φi ∈ L̃2(PXi), for i = 1, . . . , p
}
.

Let Spd(R)× L̃2(PX) be the family of normalized generating pair (B,φ)′s. Sup-

pose (B∗,φ∗) ∈ Spd0
(R) × L̃2(PX) is a normalized generating pair of (B∗,φ∗).

We define Bp
d0
, which is a subset of Spd0

(R), and Φ0 and Φ1, which are two subsets

of L̃2(PX), as follows:

Bp
d0

=
{
B ∈ Sp

d0
(R) : span(B) = span(B∗)

}
;

Φ0 =
{
φ ∈ L̃2(PX) : σ

(
φi(Xi)

)
= σ

(
φ∗
i (Xi)

)
for i ∈ IB∗ , and φj = φ∗

j for j ∈ JB∗
}
;

Φ1 =
{
φ ∈ L̃2(PX) : σ

(
φi(Xi)

)
⊇ σ

(
φ∗
i (Xi)

)
for i ∈ IB∗ , and φj = φ∗

j for j ∈ JB∗
}
.

Let Θ0 = Bp
d0

×Φ0 and Θ1 = Bp
d0

×Φ1. Note that Φ0 ⊆ Φ1; Therefore we have
Θ0 ⊆ Θ1. From Theorem 2, we know that Θ0 is the family of the normalized
generating pairs of σB∗,φ∗ . And from Theorem 3, we know that Θ1 is the fam-
ily of normalized generating pairs of the FSDR σ-fields which have the same
dimension as σB∗,φ∗ .

In the rest of this section, we will focus on estimating Θ1, and the estimation
of Θ0 will be placed in Section 3.4. Let HX be the RKHS on X generated
by a positive definite kernel function kX , and HY the RKHS on Y generated
by another positive definite kernel function kY . The positive definite kernel
functions kX and kY are assumed to satisfy the following conditions.

EX

[
kX (X,X)

]
< ∞ and EY

[
kY(Y, Y )

]
< ∞. (6)

Following Fukumizu et al. [10], we define the cross-covariance operator ΣYX :
HX → HY as follows.

〈g,ΣYXf〉HY = EXY

[(
f(X)− EX

[
f(X)

])(
g(Y )− EY

[
g(Y )

])]
, (7)

for any f ∈ HX and g ∈ HY . The variance operators ΣXX : HX → HX and
ΣY Y : HY → HY can be similarly defined. Further we define the conditional
covariance operator ΣY Y |X : HY → HY as

ΣY Y |X = ΣY Y − ΣYXΣ−1
XXΣXY . (8)

Note that Σ−1
XX is an abuse of notation because in general Σ−1

XX may not exist.
The formal definition can be found in [10], and we omit it here for conciseness.

Let kd(·, ·) be a positive definite kernel function on Rd, such that for any
B ∈ Spd(R) and φ ∈ L̃2(PX), the following condition holds.

EX

[
kd
(
BTφ(X), BTφ(X)

)]
< ∞. (9)

Let Hkd
be the RKHS on Rd generated by the kernel function kd. For a given

normalized generating pair (B,φ) ∈ Spd(R) × L̃2(PX), we define kB,φ
X (x, x̃) =

kd
(
BTφ(x), BTφ(x̃)

)
. It can be verified that kB,φ

X is a positive definite kernel
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function on X . Let HB,φ
X be the RKHS on X generated by the kernel function

kB,φ
X . It can be shown that for any f ∈ HB,φ

X , one can always find a function
g ∈ Hkd

such that f(x) = g
(
BTφ(x)

)
for any x ∈ X . The cross-covariance

operator ΣB,φ
YX : HB,φ

X → HY and the variance operator ΣB,φ
XX : HB,φ

X → HB,φ
X

can be similarly defined as ΣYX and ΣXX , respectively. We further define the
conditional covariance operator ΣB,φ

Y Y |X : HY → HY as

ΣB,φ
Y Y |X = ΣY Y − ΣB,φ

YX [ΣB,φ
XX ]−1ΣB,φ

XY . (10)

The conditional covariance operator ΣB,φ
Y Y |X is defined for any normalized

generating pair (B,φ) ∈ Spd(R) × L̃2(PX). Recall that Θ1 is the family of nor-
malized generating pair (B,φ)′s of the FSDR σ-fields with dimension d0. In
fact, Θ1 can be characterized by the solution set of a minimization problem of
ΣB,φ

Y Y |X , which will be presented in Theorem 4 below. Before that, we require

an assumption that is equivalent to Assumption (A-2) proposed in [10]. This
assumption guarantees that the RKHS is rich enough to approximate any L2

function. Let H+R denote the direct sum of the RKHS H and the real number
space R, and PB,φ the probability distribution on X induced from the projection
BBTφ : X → X .

Assumption 3. HX+R is dense in L2(PX), and HB,φ
X +R is dense in L2(PB,φ)

for every B ∈ Spd(R) and φ ∈ L̃2(PX).

We need to introduce one more concept. Let (Ω,F) be a measurable space,
and H a RKHS on Ω generated by a bounded kernel function k. H is said to be
characteristic with respect to F , if it holds that

∫
fdP =

∫
fdQ for any f ∈ H

implies P = Q. Here P and Q are probability measures on (Ω,F).

Theorem 4. Under Assumption 3, there exists an order between two self-
adjoint conditional covariance operators ΣY Y |X and ΣB,φ

Y Y |X as follows.

ΣY Y |X ≤ ΣB,φ
Y Y |X . (11)

Furthermore, if HY is assumed to be characteristic with respect to FY , then

ΣY Y |X = ΣB,φ
Y Y |X if and only if Y ⊥⊥ X|σB,φ. (12)

Theorem 4 provides the theoretical underpinning for the GKDR method
which will be presented in the following section. Notably, the inequality (11)

in Theorem 4 indicates that the conditional covariance operator ΣB,φ
Y Y |X is lower

bounded. Therefore, the minimization problem of ΣB,φ
Y Y |X with respect to the

normalized generating pair (B,φ) is well-defined. Furthermore, (12) indicates

that ΣB,φ
Y Y |X is minimized only when the associated σ-field of BTφ(X) is an

FSDR σ-field. Therefore, we can obtain FSDR σ-fields with dimension d through
the minimization of ΣB,φ

Y Y |X for (B,φ) ∈ Spd(R)× L̃2(PX). In general, Theorem

4 holds for any FSDR σ-field with dimension d no smaller than d0. If d is greater
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than d0, Theorem 4 implies that minimizing ΣB,φ
Y Y |X over Spd(R)× L̃2(PX) leads

to the generating pairs of some larger FSDR σ-fields with dimension d. If d = d0,
Theorem 4 implies that minimizing ΣB,φ

Y Y |X over Spd0
(R)× L̃2(PX) leads to Θ1,

the generating pairs of FSDR σ-fields with the same dimension as σB∗,φ∗ . Since
the conditional covariance operator is positive self-adjoint, minimization of the
conditional covariance operator can be done by minimizing its trace. There-
fore, Θ1 can be characterized as the solution set of the following minimization
problem.

Θ1 = argmin
(B,φ):B∈S

p
d0

(R),φ∈L̃2(PX)

Tr[ΣB,φ
Y Y |X ]. (13)

Note that Θ1 contains infinite generating pairs, so the minimization problem
(13) also have infinitely many solutions. This property will be considered in the
next section when we construct the estimator for Θ1.

3.2. Stage I of GKDR: Sample level

In this subsection, we obtain the estimator of Θ1 using Theorem 4 and minimiza-
tion problem (13), which is further referred to as the GKDR Stage I estimator.

Suppose
{
(X(t), Y (t))

}n

t=1
is an independent and identically distributed (i.i.d.)

sample drawn from the joint distribution PXY . Let P̂XY = 1
n

∑n
t=1 δX(t)δY (t)

be the empirical distribution, where δa(·) is the Dirac delta function with point

mass at a. We define the empirical cross-covariance operator Σ̂
B,φ(n)
YX : HB,φ

X →
HY as follows.

〈g, Σ̂B,φ(n)
Y X f〉HY =

1

n

n∑
t=1

g(Y (t))f(X(t))−
[ 1
n

n∑
t=1

g(Y (t))
][ 1
n

n∑
t=1

f(X(t))
]
. (14)

Note that the right hand side of (14) is exactly the right hand side term of (7)
evaluated at the empirical distribution P̂XY . The empirical variance operator

Σ̂
B,φ(n)
XX : HB,φ

X → HB,φ
X and Σ̂

(n)
Y Y : HY → HY can be similarly defined.

The empirical variance operators and empirical cross-covariance operator
have matrix representations. Let ζB,φ

t ∈ HB,φ
X and ηt ∈ HY (1 ≤ t ≤ n) be

the functions defined as follows.

ζB,φ
t = kB,φ

X (X(t), ·)− 1

n

n∑
s=1

kB,φ
X (X(s), ·); (15)

ηt = kY(Y
(t), ·)− 1

n

n∑
s=1

kY(Y
(s), ·). (16)

Let KB,φ
X be the Gram matrix with respect to the kernel function kB,φ

X which

is defined as (KB,φ
X )ts = kB,φ

X (X(t),X(s)), and GB,φ
X the centered Gram matrix

defined as GB,φ
X = (In − 1

n11
T )KB,φ

X (In − 1
n11

T ), where 1 is the n-dimensional
vector with all of its entries equal to 1. The Gram matrix KY and the centered
Gram matrix GY with respect to the kernel function kY can be similarly de-

fined. It can be verified that the matrix representation of Σ̂
B,φ(n)
YX with respect
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to {ζB,φ
t }nt=1 and {ηt}nt=1 is n−1GB,φ

X . Similarly, the matrix representation of

Σ̂
B,φ(n)
XY with respect to {ηt}nt=1 and {ζB,φ

t }nt=1 is n−1GY , the matrix repre-

sentation of Σ̂
B,φ(n)
XX with respect to {ζB,φ

t }nt=1 is n−1GB,φ
X , and the matrix

representation of Σ̂
(n)
Y Y with respect to {ηt}nt=1 is n−1GY .

Following Fukumizu et al. [10], we define the empirical conditional covariance

operator Σ̂
B,φ(n)
Y Y |X , which is the empirical version of ΣB,φ

Y Y |X , as follows.

Σ̂
B,φ(n)
Y Y |X = Σ̂

(n)
Y Y − Σ̂

B,φ(n)
YX (Σ̂

B,φ(n)
XX + εnIn)

−1Σ̂
B,φ(n)
XY , (17)

where εnIn is the regularization term required for inverting the operator. Recall
that Θ1 is characterized by the solution set of the minimization problem (13).
We perform optimization at sample level by replacing the conditional covariance
operator in (13) with its empirical version as follows.

min
(B,φ):B∈S

p
d0

(R),φ∈L̃2(PX)
Tr[Σ̂

B,φ(n)
Y Y |X ] (18)

It can be verified that the matrix representation of Σ̂
B,φ(n)
Y Y |X with respect to

{ηt}nt=1 is 1
n

[
GY −GB,φ

X (GB,φ
X + nεnIn)

−1GY

]
and its trace is

Tr[Σ̂
B,φ(n)
Y Y |X ] =

1

n
Tr

[
GY −GB,φ

X (GB,φ
X + nεnIn)

−1GY

]
(19)

= εnTr
[
GY (G

B,φ
X + nεnIn)

−1
]
. (20)

Therefore, by replacing Σ̂
B,φ(n)
Y Y |X with its matrix representation, (18) reduces to

min
(B,φ):B∈S

p
d0

(R),φ∈L̃2(PX)
Tr

[
GY (G

B,φ
X + nεnIn)

−1
]
. (21)

Notice that the first εn is omitted since the multiplier constant does not af-
fect in the minimization problem. We denote the objective function in (21) as
GKDR(B,φ).

In the objective function GKDR(B,φ), φ is a vector of univariate trans-
formations φ1, . . . , φp, which need to be further parametrized. Here we adopt
B-splines to approximate the univariate transformations. Without loss of gen-
erality, we assume that Xi ∈ [0, 1] for i = 1, . . . , p. We consider natural cu-
bic splines of order 4. For 1 ≤ i ≤ p and the corresponding knots sequence
0 = ti,0 < ti,1 < · · · < ti,q = 1, we define Si,q =

{
φi ∈ C2[0, 1] : φi(xi) is a

polynomial of order 4 on each sub-interval [ti,k, ti,k+1], and φ
(2)
i (0) = φ

(2)
i (1) =

φ
(3)
i (0) = φ

(3)
i (1) = 0

}
, where C2[0, 1] denote twice continuously differentiable

functions on [0, 1]. Knots selection is an important issue whenever spline func-
tions are used. In this article, we do not investigate it for our proposed method,
instead we assume the knots are pre-specified using some conventional methods.
For practice, we use knots placed at the sample quantiles, while for theoreti-
cal development we use equally spaced knots. Si,q is a q-dimensional spline
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space, and we use it to approximate the univariate transformation φi. Suppose{
Bi,j(x)

}q

j=1
is a basis of Si,q. Denote Bi(xi) =

(
Bi,1(xi), . . . , Bi,q(xi)

)
and

Bi(Xi) =
(
Bi(X

(1)
i )T , . . . ,Bi(X

(n)
i )T

)T
. For convenience, the basis is chosen

such that 1
n

∑n
t=1 Bi(X

(t)
i ) = 0 and 1

nBi(Xi)
TBi(Xi) = Iq for i = 1, . . . , p.

Then for any φi ∈ Si,q, there exists a unique column vector α ∈ Rq such that
φi = Biα. By restricting φi ∈ Si,q and normalizing φi to have mean 0 and
variance 1 for i = 1, . . . , p, the minimization problem (21) is parametrized as
follows.

min
B∈S

p
d0

(R),α1∈Rq,...,αp∈Rq
GKDR

(
B, (B1α1, . . . ,Bpαp)

T
)
, (22)

subject to αT
i αi = 1, i = 1 . . . , p.

Let (B̃n, α̂n,1, . . . , α̂n,p) denote the solution to (22), and let φ̂n,i = Biα̂n,i

and φ̂n = (φ̂n,1, . . . , φ̂n,p)
T . For better visualization of the sufficient predic-

tor B̃T
n φ̂n(X), we impose an orthogonal transformation P onto B̃n, such that

the new sufficient predictor (B̃nP )T φ̂n(X) has a diagonal sample covariance
matrix. This does not change the associated FSDR σ-field, since span(B̃n) =

span(B̃nP ). Let B̂n = B̃nP , and we refer to (B̂n, φ̂n) as the GKDR Stage I
estimator.

Recall that Θ1 contains infinitely many generating pairs which can be char-
acterized as the solutions to the minimization problem (13). It is not possible
to estimate all the generating pairs in Θ1 based on a finite sample, and instead
only a finite number of them can be estimated. Further recall that Θ0, which is
a subset of Θ1, is our ultimate inference target. Therefore, we need to estimate
a sufficient number of generating pairs in Θ1 at this stage, with the hope that
those estimated generating pairs contain at least one pair, which can become
the estimator of a generating pair in Θ0. There is another issue we need to
address when solving (22). Note that the objective function in (22) is generally
nonconvex. Therefore, there may exist many local minima that are spurious in
that they do not lead to good estimators of some generating pairs.

In order to estimate a sufficient number of generating pairs in Θ1 and avoid
spurious local minima, we consider the idea of multiple initializations and pro-
pose the following estimation scheme. First we randomly choose N different
initializations for the minimization problem (22) to get N solutions and their
associated generating pairs. Then we select the N1 generating pairs that attain
the N1 smallest values of the GKDR objective function. The N1 selected gen-
erating pairs are retained as the GKDR Stage I estimators, whereas the others
are considered spurious solutions and discarded. In our simulation experiments
and real life data applications in Section 4, we set N and N1 to be 20 and 10,
respectively. Let Θ̂1 denote the collection of the N1 GKDR Stage I estimators.
Based on Θ̂1, we will use conditional entropy to select a generating pair as the
final estimated generating pair of the minimal σ-field σB∗,φ∗ . This is the task
that the second stage (i.e. Stage II) of the GKDR method will take on, which
will be presented in Section 3.4.
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3.3. Consistency for (B̂n, φ̂n)

In this subsection we prove that (B̂n, φ̂n) is consistent under some conditions.
The space Spd0

(R) in which B lies is naturally equipped with the geodesics dis-
tance, and we denote it as D. The formal definition of geodesics distance can
be found in [15], Chapter IV. The spaces L2(PXi) and L2(PX) in which φi and
φ lie respectively are equipped with the L2-type distances defined as follows.

L2
Xi

(φi, φ̃i) =
[
EXi |φi(Xi)− φ̃i(Xi)|2

]1/2
, for i = 1, . . . , p; (23)

L2
X(φ, φ̃) =

[
EX

∣∣(φ− φ̃)T (φ− φ̃)
∣∣]1/2. (24)

Before stating the main theorem, we need some technical assumptions.

Assumption 4. For any bounded continuous function g on Y, the bivariate

function (B,φ) �→ EX

[
EY |BTφ(X)

(
g(Y )|BTφ(X)

)2]
is continuous with respect

to B and φ equipped with the distances DB and L2
X , respectively.

Assumption 5. There exists a measurable function ξ : X → R such that

E|ξ(X)|2 < ∞ and the Lipschitz function
∥∥∥kd0

(
BTφ(x), ·

)
−kd0

(
B̃T φ̃(x), ·

)∥∥∥
Hd0

≤ ξ(X)
(
D(B, B̃)+L2

X(φ, φ̃)
)
holds for any (B,φ) ∈ Spd0

(R)×L2(PX), (B̃, φ̃) ∈
Spd0

(R)× L2(PX), and x ∈ X .

Assumption 6. The GKDR objective function at the population level Tr[ΣB,φ
Y Y |X ]

is locally convex with respect to Θ1, that is, for any (B̃, φ̃) ∈ Θ1 = Bp
d0

× Φ1

and ε > 0, there exists δ > 0, such that if
∣∣Tr[ΣB,φ

Y Y |X ]− Tr[ΣB̃,φ̃
Y Y |X ]

∣∣ < δ, then

D(B,Bp
d0
) < ε and L2

X(φ,Φ1) < ε.

Assumption 7. There exists a generating pair (B,φ) ∈ Θ1 such that φi is
twice continuously differentiable for i = 1, . . . , p.

Assumptions 4 and 5 are the generalizations of Assumptions (A-1) and (A-3)
in [10] for proving the consistency of kernel dimension reduction. Assumption
6 is similar to Assumption A1 in [22]. Assumption 7 is to ensure that the uni-
variate transformations φ1, . . . , φp can be approximated uniformly by the spline
functions with certain precision.

Theorem 5. Suppose Assumptions 3-7 hold, and the kernel function kd0 is
continuous and bounded. For any open set B̃1 ⊇ Bp

d0
and any open set Φ̃1 ⊇

Φ1, one can use spline functions with sufficiently high order q such that, if the
regularization parameter εn satisfies that

εn → 0 and n1/2εn → ∞ (n → ∞), (25)

then lim
n→∞

Pr(B̂n ∈ B̃1, φ̂n ∈ Φ̃1) = 1.
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Note that we cannot ensure that as n goes to infinity, (B̂n, φ̂n) converge to
a fixed generating pair (B0,φ0) ∈ Bp

d0
× Φ1 in probability, whereas, as n goes

to infinity, we can always find a generating pair (Bn,φn) ∈ Bp
d0

× Φ1 such that

(B̂n, φ̂n) is close enough to (Bn,φn) in probability.

3.4. Stage II of GKDR and conditional entropy

In this subsection, we will focus on estimating Θ0 and obtaining the GKDR
Stage II estimator. Recall that Θ0 = Bp

d0
×Φ0 and Θ1 = Bp

d0
×Φ1, and the φ∗′

i s

in Φ0 are coarser than the φ′
is in Φ1 for i ∈ IB∗ , that is, σ

(
φ∗
i (Xi)

)
⊆ σ

(
φi(Xi)

)
for i ∈ IB∗ . Here we will show that the conditional entropy of φ∗′

i s in Φ0 are
no smaller than that of φ′

is in Φ1, so we can obtain Θ0 by maximizing the
conditional entropy over Θ1. Following Cover and Thomas [6], for a univari-
ate random variable X and a univariate transformation φ(X), we define the
conditional entropy of X given φ(X), denoted as H

[
X|φ(X)

]
, as follows.

H
[
X|φ(X)

]
= −E

[
log p(X|φ(X))

]
= −Eφ(X)

[
EX|φ(X)

[
log p(X|φ(X))

]]
,

where p(X|φ(X)) denotes the conditional distribution of X given φ(X). It can
be shown that the conditional entropy H

[
X|φ(X)

]
≥ 0, and the equality holds

if and only if σ(X) = σ
(
φ(X)

)
. For a random vector X and a generating

pair (B,φ), the B-weighted conditional entropy of X given φ(X), denoted as
HB

[
X|φ(X)

]
, is defined as follows.

HB

[
X|φ(X)

]
=

p∑
i=1

wiH
[
Xi|φi(Xi)

]
,

where wi = ‖Bi,·‖2 is the L2 norm of the i-th row of matrix B. In fact, Θ0 can
be characterized as the solution set of a maximization problem of HB [X|φ(X)]
over Θ1, which will be presented in Theorem 6. Before that, we require an
assumption to ensure that the conditional entropy HB∗

[
X|φ∗(X)

]
is invariant

in Θ0, that is, for any two generating pairs (B∗,φ∗) and (B̃, φ̃) in Θ0, we have
HB∗

[
X|φ∗(X)

]
= HB̃

[
X|φ̃(X)

]
.

Assumption 8. There exists a generating pair (B∗,φ∗) ∈ Θ0 such that the
conditional distribution of X given φ∗(X), denoted as p

(
X|φ∗(X)

)
, is discrete.

Assumption 8 is satisfied if there exists a generating pair (B∗,φ∗) ∈ Θ0

such that for any real number c and 1 ≤ i ≤ p, the level set of φ∗
i , defined as

Lc(φ
∗
i ) = {x : φ∗

i (x) = c}, is countable.

Theorem 6. Suppose X is a univariate random variable and ψ and φ are two
univariate transformations. If σ(X) ⊇ σ

(
ψ(X)

)
⊇ σ

(
φ(X)

)
and the conditional
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distribution p
(
X|φ(X)

)
is discrete, then the conditional entropies satisfy the

following decomposition rule.

H
[
X|φ(X)

]
= H

[
X|ψ(X)

]
+H

[
ψ(X)|φ(X)

]
. (26)

Furthermore, suppose Assumption 8 holds and for any (B∗,φ∗) ∈ Θ0 and
(B̃, φ̃) ∈ Θ1, one has

HB∗
[
X|φ∗(X)

]
≥ HB̃

[
X|φ̃(X)

]
, (27)

and the equivalence holds if and only if (B̃, φ̃) ∈ Θ0.

A direct conclusion of Theorem 6 is that, among all the generating pairs in
Θ1, the conditional entropy HB

[
X|φ(X)

]
attains maximum at (B∗,φ∗) in Θ0,

that is,
Θ0 = argmax

(B,φ)∈Θ1

HB

[
X|φ(X)

]
. (28)

Therefore, we can obtain the generating pairs in Θ0 by selecting those in Θ1

such that HB

[
X|φ(X)

]
is maximized. This is referred to as Stage II of GKDR

at population level.
To obtain the estimator of Θ0, we choose the generating pair in Θ̂1 such

that the empirical conditional entropy is maximized. The empirical conditional
entropy is evaluated by slicing the data. Let Ĥ

[
Xi|φ̂i(Xi)

]
and ĤB̂

[
X|φ̂(X)

]
denote the empirical version of H

[
Xi|φi(Xi)

]
and HB

[
X|φ(X)

]
, respectively.

For component Xi, suppose we have n i.i.d samples X
(1)
i , . . . , X

(n)
i . We divide

the range of X
(t)
i into W equal-sized slices S1, . . . , SW , and the range of φ̂i(X

(t)
i )

into W equal-sized slices T1, . . . , TW . Let nuv be the number of data points such

that X
(t)
i falls into Su and φ̂i(X

(t)
i ) falls into Tv, and n·v the number of data

points such that φ̂i(X
(t)
i ) falls into Tv. The empirical conditional entropies are

given as

Ĥ
[
Xi|φ̂i(Xi)

]
=

W∑
v=1

n·j
n

W∑
u=1

nuv

n·v
log

nuv

n·v

=
1

n

W∑
v=1

W∑
u=1

nuv log
nuv

n·v
,

and ĤB̂

[
X|φ̂(X)

]
=

∑p
i=1 ŵiĤ

[
Xi|φ̂i(Xi)

]
, where ŵi = ‖B̂i,·‖2. Then the

solution that maximizes ĤB̂

[
X|φ̂(X)

]
over Θ̂1 is defined as the GKDR Stage II

estimator, and is considered as an approximation of one representing generating
pair in Θ0.

4. Implementation and numerical results

4.1. Low rank approximation

The GKDR method also suffers from the issue of computational inefficiency as
other kernel methods do. Various methods have been proposed to address this
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issue in the literature, among which low rank matrix approximation achieves
much success. In general, the Gram matrices in the kernel methods have fast
decreasing eigen values, henceforth they can be approximated by matrices with
much smaller rank of m << n. The Nystrom method [25] is one of the widely
used low rank matrix approximation approach, and we incorporate it into the
GKDR method to improve the computational efficiency. The Nystrom method
works as follows. First, it chooses m columns as the pivots of the centered
Gram matrix GB,φ

X . Denote Gn,m ∈ Rn×m as the submatrix of GB,φ
X whose

columns are in the pivot set, and Gm,m ∈ Rm×m as the submatrix of GB,φ
X

whose rows and columns are both in the pivot set. Then G̃ = Gn,mG−1
m,mGT

n,m is

the approximation of the original Gram matrix GB,φ
X , reducing the computation

complexity to O(m2n).
Furthermore, we use the incomplete Cholesky decomposition method [9] to

choose the pivot set in this article. Basically, the method operates by iteratively
choosing the columns until the difference between G̃ and GB,φ

X is small enough,

i.e. ‖GB,φ
X −G̃‖1 ≤ tol, where tol is a pre-specified small constant. After replacing

GB,φ
X with G̃, the inverse term (GB,φ

X +nεnIn)
−1 in the objective function in (21)

can be approximated by (Gn,mG−1
m,mGT

n,m + εIn)
−1. By the Sherman-Morrison-

Woodbury (SMW) formula, which is

(D + V V T )−1 = D−1 −D−1V (I + V TD−1V )−1V TD−1,

we transform (Gn,mG−1
m,mGT

n,m + εIn)
−1 to In −Gn,m(GT

n,mGn,m + εnGm,m)−1

GT
n,m. Henceforth, the objective function in (21) is reduced to

GKDR(B,φ) ≈ Tr
[
GY

(
In −Gn,m(GT

n,mGn,m + εnGm,m)−1GT
n,m

)]
. (29)

Because the term involving inversion in (29) is an m×m matrix, its computation
complexity is reduced from O(n3) to O(m3 + n2) for one evaluation of the
objective function.

4.2. Determination of dimension d0

As mentioned previously, we assume d0, the dimension of the minimal FSDR
σ-field is known a priori, while in practice we always need to determine one
operable d0. Note that if we misspecify d0 as a larger integer d, Theorem 4
guarantees that the generating pair (B,φ) estimated by minimizing ΣB,φ

Y Y |X , is

still associated with an FSDR σ-field, although this σ-field is larger than the
minimal FSDR σ-field. Leveraging this property, we propose a heuristic method
to determine the dimension d0. We first use the χ2 statistic method [17] to
estimate d1, the dimension of the central subspace under linear SDR, which is
no less than d0. Then for each d ≤ d1, we apply the GKDR method and obtain
the corresponding generating pair estimate (B̂d, φ̂d). For d ≥ d0, the σ-field

associated with (B̂d, φ̂d) is an FSDR σ-field and is sufficient in predicting Y ;

whereas for d < d0, the σ-field associated with (B̂d, φ̂d) is not. Therefore, d0
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is the smallest d such that the σ-field associated with (B̂d, φ̂d) is sufficient in
predicting Y . For each d ≤ d1, we fit a linear regression model between Y and
B̂T

d φ̂d(X), and denote the R-squared value of the regression by R2
d. If R

2
d−1 is

approximately equal to R2
d in the sense that

R2
d−R2

d−1

R2
d−1

≤ 0.05, we consider the

capabilities of B̂T
d φ̂d(X) and B̂T

d−1φ̂d−1(X) in predicting Y to be almost the
same, which indicates that d−1 is more preferable than d. By decreasing d from
d1 one at a time, we find the largest d such that R2

d is not approximately equal
to R2

d−1, and use this d as a reasonable estimator of d0.

4.3. Numerical implementation scheme

A scheme for deriving a representative generating pair of the minimal FSDR
σ-field is shown below.

1 For i = 1, . . . , p, take the sample quantiles as knots and obtain the nor-

malized natural cubic spline basis Bi,q(xi) =
(
Bi,1(xi), . . . , Bi,q(xi)

)T
for

estimating φi(xi).
2 Solve the following minimization problem via gradient descent method on

matrix manifolds [24]:

min
B∈S

p
d0

(R),α1∈Rq,...,αp∈Rq
Tr

[
GY

(
In −Gn,m(GT

n,mGn,m + εnGm,m)−1GT
n,m

)]

subject to αT
i αi = 1, i = 1 . . . , p,

where G is the centered kernel matrix GB,φ
X with φi(xi) = Bi,q(xi)αi, and

Gn,m is the submatrix of G whose columns are in the pivot set, Gm,m

is the submatrix of G whose rows and columns are in the pivot set. The
pivot set is determined by iteratively choosing the columns until ‖G −
Gn,mG−1

m,mGT
n,m‖1 ≤ tol. εn is fixed as 0.001 and tol is fixed as a relatively

small number, i.e. 10−8.
3 Repeat the last step for N times with random initialization and obtain N

generating pairs
{
(B̂(l), φ̂(l))

}N

l=1
. Choose top N1 with the smallest GKDR

objective function value in these N generating pairs, and let Θ̂1 denote
their collection. We determine N = 20 and N1 = 10 in practice.

4 Let (B̂0, φ̂) be the one that maximizes Ĥ
[
X|φ(X)

]
in Θ̂1.

5 Perform eigenvalue decomposition: B̂T
0 φ̂(X)φ̂(X)T B̂0 = PDPT , where P

is orthogonal matrix and D is diagonal matrix. Let B̂ = B̂0P , and the
output (B̂, φ̂) is called the GKDR Stage II estimator.

4.4. Simulation results

In this subsection we evaluate the performance of our proposed GKDR method
via simulation studies. We use the Gaussian radial basis function kernel k(x, y) =

exp(−‖x−y‖2
2

c ) with c = 10, and we fix the regularization parameter εn to be 10−4
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Table 1

Pearson correlation coefficients of the first three components in Models 1-4.

cor
(
φ1(X1), φ̂1(X1)

)
cor

(
φ2(X2), φ̂2(X2)

)
cor

(
φ3(X3), φ̂3(X3)

)
GKDR FDR GKDR FDR GKDR FDR

mean sd mean sd mean sd mean sd mean sd mean sd
Model 1 0.901 0.022 0.823 0.101 0.904 0.114 0.873 0.084 0.745 0.068 0.623 0.132
Model 2 0.949 0.022 0.926 0.014 0.910 0.024 0.943 0.021 — — — —
Model 3 0.898 0.022 0.588 0.277 0.894 0.037 0.893 0.027 — — — —
Model 4 0.901 0.033 0.745 0.047 — — — — — — — —

Table 2

Pearson correlation coefficients of the first ten components in Model 5.

GKDR FDR

mean sd mean sd

cor
(
φ1(X1), φ̂1(X1)

)
0.896 0.088 0.536 0.343

cor
(
φ2(X2), φ̂2(X2)

)
0.964 0.036 0.808 0.123

cor
(
φ3(X3), φ̂3(X3)

)
0.895 0.088 0.963 0.047

cor
(
φ4(X4), φ̂4(X4)

)
0.892 0.067 0.971 0.066

cor
(
φ5(X5), φ̂5(X5)

)
0.885 0.052 0.950 0.042

cor
(
φ6(X6), φ̂6(X6)

)
0.877 0.107 0.964 0.089

cor
(
φ7(X7), φ̂7(X7)

)
0.923 0.057 0.607 0.325

cor
(
φ8(X8), φ̂8(X8)

)
0.911 0.083 0.620 0.302

cor
(
φ9(X9), φ̂9(X9)

)
0.703 0.200 0.834 0.170

cor
(
φ10(X10), φ̂10(X10)

)
0.780 0.153 0.532 0.306

and the tolerance for low rank approximation tol to be 10−8. To estimate the
transformations, we choose the natural cubic splines with knots placed at the
corresponding sample quantiles. Six knots are used in the simulation studies.
We consider five different models in simulation studies. Model 1 is the example
discussed in Section 1, Model 2 has lower dimensionality under the FSDR frame-
work than the original SDR framework, Model 3 has multiple FSDR σ-fields
achieving the smallest dimensionality, and Model 4 considers a non-regression
setting. In Models 1-4, the dimensions of X are 10, while in Model 5, X is
30-dimensional.

We perform simulations to evaluate the performance of dimension reduction.
First, we use the Pearson correlation coefficient between the estimated trans-
formations and the true transformations to measure the partial performance of
dimension reduction. We compare the Pearson correlation coefficients of our pro-
posed GKDR method with FDR [23]. The means and standard deviations of the
Pearson correlation coefficients are shown in Tables 1-2. Further, we use the RV
coefficient [20] between the estimated sufficient predictors and the true sufficient
predictors under flexible SDR to measure the overall performance of dimension
reduction. RV coefficient is a multivariate generalization of squared Pearson cor-
relation coefficient and is able to measure the similarity between two random
vectors. We compare the RV coefficients of the GKDR method with FDR and
three other popular dimension reduction methods which are KDR [10], MAVE
[27] and KSIR [26]. The means and standard deviations of the RV coefficients
are shown in Table 3. For each model, we repeat the simulation study for 100
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Table 3

RV coefficients for five methods.

GKDR FDR KDR MAVE KSIR

mean sd mean sd mean sd mean sd mean sd
Model 1 0.451 0.079 0.380 0.069 0.025 0.013 0.020 0.009 0.012 0.013
Model 2 0.849 0.029 0.871 0.027 0.105 0.105 0.042 0.078 0.126 0.079
Model 3 0.763 0.039 0.589 0.138 0.149 0.052 0.169 0.034 0.139 0.042
Model 4 0.655 0.090 0.546 0.068 0.268 0.155 0.335 0.064 0.301 0.064
Model 5 0.571 0.155 0.295 0.070 0.048 0.040 0.295 0.075 0.105 0.056

times with 500 data points in each replicate.

• Model 1

Y = X2
1/(sin(X2) +X2

3 + 2) + ε, (30)

where p = 10,X ∼ 1
2N(−110,

1
4I10) +

1
2N(110,

1
4I10) is the ten-dimensional

Gaussian mixture explanatory vector, and ε follows N(0, 0.25) and is indepen-
dent with X. Under the FSDR framework, we can construct a representative
generating pair of the minimal FSDR σ-field as follows. φ∗

1(X1) = X2
1 , φ

∗
2(X2) =

sin(X2), φ
∗
3(X3) = X2

3 , φ
∗
i (Xi) = 0 for i = 4, . . . , 10, and B∗ = (e1, e2 + e3).

The sufficient predictor is (X2
1 , sin(X2) +X2

3 )
T , and the dimension of the min-

imal FSDR σ-field is 2. We also set the dimensionality to be 2 for the other
methods. Table 1 demonstrates that GKDR accurately recovers the univari-
ate transformations and achieves much better performance in the estimation
for the first and the third components. This echoes the statement mentioned
in Section 1 that the dimension of B is insufficient to characterize flexible
SDR. In this example, we can construct another generating pair as follows.
φ̃i(X1) = X1, φ̃2(X2) = sin(X2), φ̃3(X3) = X2

3 , φ̃i(Xi) = 0 for i = 4, . . . , 10,
and B̃ = (e1, e2 + e3). The only difference between (B∗,φ∗) and (B̃, φ̃) is the
transformation of the first component. The dimension of B̃ is still equal to 2, but
σB̃,φ̃ is larger than σB∗,φ∗ and FDR cannot discriminate between B∗Tφ∗(X)

and B̃T φ̃(X). Indeed, from Figure 1 we see that φ̂1 estimated by GKDR demon-

strates higher correlation with X2
1 , whereas φ̂1 estimated by FDR demonstrates

higher correlation with X1. Furthermore, we compare the RV coefficients of the
five methods. Table 3 shows that both GKDR and FDR work well, whereas
KDR, MAVE and KSIR fail to identify the true sufficient predictor. This is
expected, since KDR, MAVE and KSIR are methods under linear SDR model
and do not estimate the univariate transformations.

• Model 2

Y = sin(3X1) + 0.5 ∗ (X2 − 0.5)2 + ε, (31)

where p = 10,X ∼ N(0, I10) is the ten-dimensional independent Gaussian
explanatory vector, and ε follows N(0, 0.25) and is independent with X. Under
the FSDR framework, we can construct a representative generating pair of the
minimal FSDR σ-field as follows. φ∗

1(X1) = sin(3X1), φ
∗
2(X2) = 0.5∗(X2−0.5)2,

φ∗
i (Xi) = 0 for i = 3, . . . , 10, and B∗ = e1 + e2. In this example, the sufficient

predictor is sin(3X1)+0.5∗(X2−0.5)2, and the dimension of the minimal FSDR
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Fig 1. Correlations between φ̂1(X1) and X2
1 and between φ̂1(X1) and X1 for GKDR and

FDR. Each point represents a simulation replicate.

σ-field is 1. We set the dimensionality to be 1 for the other methods. From
Tables 1 and 3 we see that GKDR and FDR accurately recover the univariate
transformations and outperform the other three methods. Note that in this
example there does not exist other FSDR σ-fields with the same dimensions as
the minimal FSDR σ-field, so FDR achieves slightly larger RV coefficient than
GKDR.

• Model 3
Y = sin(3X1) ∗ (X2 + 0.5)2 + ε, (32)

where p = 10,X ∼ N(0, 0.6 ∗ I10 + 0.4 ∗ 1101
T
10) is the ten-dimensional Gaus-

sian explanatory vector, and ε follows N(0, 0.25) and is independent with X.
A representative generating pair of the minimal FSDR σ-field can be con-
structed as follows. φ∗

1(X1) = sin(3X1), φ
∗
2(X2) = (X2 + 0.5)2, φ∗

i (Xi) = 0
for i = 3, . . . , 10, and B∗ = (e1, e2). In this example, the sufficient predictor

is
(
sin(3X1), (X2 + 0.5)2

)T
, and the dimension of the minimal FSDR σ-field

is 2. We set the dimensionality to be 2 for the other methods. Again from Ta-
bles 1 and 3, we see that GKDR and FDR accurately recover the univariate
transformations and outperform the other three methods. In particular, GKDR
achieves higher correlation and smaller standard deviation when estimating the
first univariate transformation compared to FDR in this example. The reason
is the same as shown in Model 1 that the dimension of B is insufficient to char-
acterize flexible SDR. In this specific example, another generating pair of an
FSDR σ-field with the same dimension as σB∗,φ∗ can be constructed as follows.

φ̃i(Xi) = Xi for i = 1, 2, φ̃i(Xi) = 0 for i = 3, . . . , 10, and B̃ = (e1, e2). The
dimensions of B∗ and B̃ are both equal to 2, but σB̃,φ̃ is larger than σB∗,φ∗ and

FDR cannot discriminate between B∗Tφ∗(X) and B̃T φ̃(X).
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• Model 4
Y = (X1 − 0.5)2 ∗ ε, (33)

where p = 10,X ∼ N(0, I10) is the ten-dimensional Gaussian explanatory
vector, and ε follows N(0, 0.25) and is independent with X. A representative
generating pair of the minimal FSDR σ-field can be constructed as follows.
φ∗
1(X1) = (X1 − 0.5)2, φ∗

i (Xi) = 0 for i = 2, . . . , 10, and B∗ = e1. In this ex-
ample, the sufficient predictor is (X1 − 0.5)2, and the dimension of the minimal
FSDR σ-field is 1. We set the dimensionality to be 1 for the other methods. From
Tables 1 and 3, we see that GKDR accurately recovers the univariate transfor-
mation and outperforms the other methods. In particular, Table 1 demonstrates
that GKDR achieves better performance in the estimation of univariate trans-
formations than FDR. In this specific example, another generating pair of an
FSDR σ-field with the same dimension as σB∗,φ∗ can be constructed as follows.

φ̃1(X1) = X1, φ̃i(Xi) = 0 for i = 2, . . . , 10, and B̃ = e1. The dimensions of
B∗ and B̃ are both equal to 1, but σB̃,φ̃ is larger than σB∗,φ∗ and FDR cannot

discriminate between B∗Tφ∗(X) and B̃T φ̃(X).

• Model 5

Y =
[
− 2 +

2

1 + 25X2
1

+ sin(πX2) + exp(X3) +X4 + (X5 − 0.5)2
]
∗

[
− 3 +

4

1 + exp(X6)
+ cos(πX7) + log(1 + 9X2

8 ) +X3
9 + 2X4

10

]
+ ε,

(34)

where p = 30,X ∼ Unif [−1, 1]30, and ε follows N(0, 0.01) and is independent
with X. A representative generating pair of the minimal FSDR σ-field can be
constructed as follows. φ∗

1(X1) = 2/(1 + 25X2
1 ), φ

∗
2(X2) = sin(πX2), φ

∗
3(X3) =

exp(X3), φ
∗
4(X4) = X4, φ

∗
5(X5) = (X5 − 0.5)2, φ∗

6(X6) = 4/(1 + exp(X6)),
φ∗
7(X7) = cos(πX7), φ

∗
8(X8) = log(1 + 9X2

8 ), φ
∗
9(X9) = X3

9 , φ
∗
10(X10) = 2X4

10,

φ∗
i (Xi) = 0 for i = 11, . . . , 30, B∗ = (

∑5
i=1 ei,

∑10
i=6 ei). In this example, the suf-

ficient predictor is
(
2/(1+25X2

1 )+sin(πX2)+exp(X3)+X4+(X5−0.5)2, 4/(1+

exp(X6)) + cos(πX7) + log(1 + 9X2
8 ) +X3

9 + 2X4
10

)T
, and the dimension of the

minimal FSDR σ-field is 2. We set the dimensionality to be 2 for the other meth-
ods. From Table 2 we see that the correlation coefficients of all ten univariate
transformations are larger than 0.7 for GKDR, while the correlation coefficients
of the first, seventh, eighth and tenth univariate transformations are smaller
than 0.7 for FDR. Table 3 shows that GKDR works much better than FDR
under this sophisticated model, and the linear SDR methods including KDR,
MAVE and KSIR fail to identify the true sufficient predictors.

In the simulation study above, we have assumed that the true dimension d0
of each model’s minimal FSDR σ-fields is known. Recall that in Section 4.2,
we proposed a heuristic method for determining d0 in practice. We further con-
ducted a simulation study of the effectiveness of this heuristic method under
Models 1 – 5. For each model, we generated 100 samples, and then applied
the heuristic method to each sample with d1 set to be four. The proportions
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Table 4

Determination of the true dimensions (i.e., d0’s) of Models 1-5 using the heuristic method.
For each model, the proportions of the times that different dimensions were selected by the

heuristic method are shown, and the highest proportion is highlighted in bold.

d0
selected dimension

1 2 3 4
Model 1 2 27% 35% 15% 23%
Model 2 1 98% 0% 0% 2%
Model 3 2 15% 70% 6% 9%
Model 4 1 4% 73% 12% 11%
Model 5 2 11% 37% 28% 24%

of the times that the heuristic method selected the candidate dimensions are
presented in Table 4. From the table, the heuristic method selected the true
dimensions of Models 2 and 3 with proportions 98% and 70%, respectively. For
Models 4 and 5, the heuristic method tends to over-estimate the true dimen-
sion. The total proportions of correctly estimating d0 plus over estimating d0
by only one are 77% and 65% for Models 4 and 5, respectively. We argue that
slight over-estimation in those two models is still acceptable, because the dimen-
sions have been substantially reduced, and the sufficient directions have been
retained. The heuristic method under-estimated the true dimension of Model 1
with proportion 27%. This may not be acceptable in practice, because under-
estimation leads to loss of information. This model clearly presented challenges
for the heuristic method. The determination of the true dimension of the min-
imal FSDR σ-field is an important and challenging problem. More research on
this problem is needed in the future.

4.5. PM2.5 Data

We apply the GKDR method to the PM2.5 dataset originally analyzed in Liang
et al. [19]. This dataset is used to study the relationship between the PM2.5 con-
centration level and the meteorological conditions in five cities in China from
January 1, 2010 to December 31, 2015, and it contains 52584 hourly measured in-
stances during that period of time. In our study, we choose the dataset of PM2.5
in Beijing, where the air pollution is most severe, to perform statistical analysis.
In this dataset, each instance consists of five time-related attributes including
Y EAR,MONTH,DAY , SEASON , andHOUR, PM2.5 readings measured at
the US Embassy in Beijing, and eight other meteorological attributes, which are
dew point (DEWP ), relative humidity (HUMI), air pressure (PRES), tem-
perature (TEMP ), combined wind direction (CBWD), cumulated wind speed
(IWS), hourly precipitation (PREC), and cumulated precipitation (IPREC).
Here IPREC is redundant in that it can be derived from PREC, CBWD is
categorical with only five levels, and PREC is highly imbalanced with over 95%
zero values. Therefore, we remove these three attributes in the subsequent anal-
ysis. The PM2.5 reading is considered to be the response, and the remaining
five meteorological attributes are considered to be the explanatory variables.
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Fig 2. Estimated univariate transformations for PM 2.5 data.

Fig 3. Two-dimensional sufficient predictors for PM 2.5 data.

We apply our method to this dataset in a season-by-season fashion. We only
report the results for the winter seasons, when the average PM2.5 concentra-
tion was the highest across each year. We smooth the original time series data
using eight-hour moving windows. We randomly select two-thirds of samples
for training and the rest for testing. We standardize both the response and the
explanatory variables in the training set so that they have mean 0 and standard
deviation 1.

The dimension of the minimal FSDR σ-field is determined as two applying
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the heuristic method in Section 4.2. Four knots are used to estimate the transfor-
mations. After applying the GKDR method, we obtain two sufficient predictors
which are denoted as GKDR1 and GKDR2 respectively and given as follows.

GKDR1 =− 0.65φ̂1(DEWP ) + 0.54φ̂2(HUMI)− 0.24φ̂3(PRES)

− 0.03φ̂4(TEMP ) + 0.48φ̂5(IWS);

GKDR2 =0.56φ̂1(DEWP ) + 0.55φ̂2(HUMI) + 0.45φ̂3(PRES)

+ 0.19φ̂4(TEMP ) + 0.38φ̂5(IWS).

In the above, φ̂′
is are the estimated univariate transformations of the explanatory

variables for i = 1, . . . , 5. The estimated transformations are depicted in Figure
2. All five transformations are highly nonlinear and have absolute coefficients
larger than 0.1 in at least one of the sufficient predictors.

Figure 3(a) shows the scatter plot forGKDR2 versusGKDR1. The boundary
constraint observed in this plot can be largely explained by the imbalanced
distribution of the explanatory variables. Figures 3(b) and (c) show the marginal
scatter plots for Y versus GKDR1 and GKDR2, respectively. From Figure 3(b),
a decreasing trend in the mean response can be observed as GKDR1 increases.
From Figures 3(b) and (c), we also see a larger variation for Y when GKDR1

takes small values or GKDR2 takes medium values. To further investigate how
the sufficient predictors affect the response, we explore the 3-d plot for Y versus
GKDR1 and GKDR2; See Figure 4(a). We not only observe a complicated
nonlinear relationship between the mean response and the sufficient predictors,
but also a dependency of the variance of the response on the sufficient predictors,
the latter of which is called the heteroscedasticity phenomenon. We first use the
loess method to fit a nonparametric regression model between the response
and the two sufficient predictors. To model the heteroscedasticity phenomenon,
we use the residual-based estimator proposed by Fan and Yao [8] to estimate
the residual standard deviation. In particular, we use the loess method to fit
a nonparametric regression model between the squared residuals and the two
sufficient predictors, which gives a local smoothing estimator of the residual
variance. The estimator of residual standard deviation is derived by taking the
squared root of the estimator of residual variance. Figures 4(a) and (b) show the
3-d plot for the estimated regression surface and the estimated residual standard
deviation. These plots reveal highly nonlinear relationship for both the mean
response and the residual standard deviation versus the sufficient predictors.
Figure 4(c) shows the plot for the scaled residual which is defined as the original
residual divided by the estimated residual standard deviation, and indicates that
heteroscedasticity phenomenon has been removed. Figure 4(d) shows the scatter
plot for the observed response versus the fitted response, and their correlation is
calculated to be 0.758. We use this fitted model to predict PM2.5 concentration
level in the testing set, and the correlation between the observed response and
the predicted response is calculated to be 0.766. The above results reveal that
the sufficient predictors estimated by the GKDR method are informative and
shed new lights on the impacts of the meteorological attributes on the PM2.5
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Fig 4. Nonparametric regression using the sufficient predictors for PM 2.5 data. (a) shows
the 3-d plot for the estimated regression surface, where red and green points denote samples
lie above and below the surface, respectively. (b) shows the 3-d plot of the estimated residual
standard deviation. (c) shows the plot for the scaled residual, which is defined as the original
residual divided by the estimated residual standard deviation. (d) shows the scatter plot for
the observed response versus the fitted response.

concentration levels.

PM2.5 refers to the atmospheric particulate matter (PM) with aerodynamic
diameter of less than 2.5 micrometers, and is reported to cause respiratory and
cardiovascular diseases [13]. It was reported that humidity is highly relevant to
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PM2.5 pollution during winter in Beijing. In particular, high level of humidity
would lead to abundance in water-soluble components such as inorganic ions,
and further concentration of PM2.5 pollution episodes [3]. Our analysis also sup-
ports the impact of humidity on PM2.5 concentration. From Figure 2(b) we can
see that when humidity is high, the value of first sufficient predictor GKDR1

tends to be lower. This results in a higher expected value of PM2.5 concentra-
tion, as shown in Figure 3(b). We also observe some interesting patterns of other
meteorological attributes. When temperature is at relatively high or low value,
the value of second sufficient predictor GKDR2 tends to be higher or lower,
respectively. These result in a lower expected value of PM2.5 concentration, as
shown in Figure 3(c). Low PM2.5 concentration in extremely cold weather can
be attributed to the strong cold air from the north or northwest with high wind
speed [14]. When temperature is at relatively median value and demand for
heating supply is high, production intensity of coal-fired power plants is high,
which leads to high emission of atmospheric chemical such as SO2 and NO2 and
further high PM2.5 concentration [28]. Whereas when temperature is relatively
high in winter and demand for heating supply is reduced, production intensity
of coal-fired power plants decreases, which leads to low emission of atmospheric
chemical and further low PM2.5 concentration. This interesting pattern of how
the temperature affects the PM2.5 concentration has not been reported by pre-
vious studies.

5. Discussion

In this article, we propose to use FSDR σ-fields to characterize flexible SDR
and show that the minimal FSDR σ-field σB∗,φ∗ exists under some mild condi-
tions. To estimate σB∗,φ∗ , we develop the GKDR method and demonstrate its
effectiveness through extensive simulation experiments and two real life applica-
tions. We believe that the proposed GKDR method can become a useful tool for
sufficient dimension reduction in high dimension regression analysis. There are
three directions to further improve the current work. First, we have established
the consistency result for the GKDR Stage I estimator. However, the large sam-
ple properties of the GKDR Stage II estimator is left to be an open problem.
Second, in this article, we have proposed a heuristic method to determine the
dimension of the minimal FSDR σ-field. More systematic approaches with the-
oretical justifications will greatly enhance the GKDR method, and thus need
to be developed. Third, when the dimension of X increases, the computational
intensity of the current GKDR method can also quickly increase. Therefore,
more efficient algorithms need to be developed. One approach to mitigating the
computational complexity is to incorporate variable selection into the GKDR
method. We are currently working on these three directions and hope to report
results in the future.
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Appendix A: Proofs of the theorems and propositions

A.1. Proof of Proposition 1

Proof. By contradiction, if ζi(Xi) �≡ 0 or ψi(X(−i)) �≡ 0, then there exist xi and
x̃i such that X(−i|xi) �= ∅, X(−i|x̃i) �= ∅, and ζi(xi) �= ζi(x̃i). Under Assumption
2, we can find x, x̃ ∈ X whose i-th entry are xi, x̃i respectively and x(−i) = x̃(−i).
By conditions we have ζi(xi) = −ψi(x(−i)) = −ψi(x̃(−i)) = ζi(x̃i), which leads
to contradiction. This completes the proof of Proposition 1.

A.2. Proof of Theorem 2

Proof. We need two useful lemmas in the proof of Theorem 2. The proofs of
these two lemmas are provided in Appendix A.2.1 and A.2.2.

Lemma 1. Under Assumption 2, if σB(2),φ(2) ⊆ σB(1),φ(1) , then σ
(
φ
(2)
i (Xi)

)
⊆

σ
(
φ
(1)
i (Xi)

)
for i ∈ IB(2) ∪ JB(2) , IB(2) ⊆ IB(1) , JB(2) ⊆ IB(1) ∪ JB(1) , KB(2) ⊇

KB(1) , and rank(B(2)) ≤ rank(B(1)).

Lemma 2. Under Assumption 2, let σB(2),φ(2) and σB(1),φ(1) be two FSDR σ-
field in A satisfying σB(2),φ(2) ⊆ σB(1),φ(1) , then there exist constant numbers ui

and vi such that φ
(2)
i (Xi) = ui ∗ φ(1)

i (Xi) + vi for i ∈ JB(1) ∩ JB(2) .

Now we return to prove Theorem 2. The main idea is to use Zorn’s Lemma.
First, we will show that any decreasing FSDR σ-field chain in the set A is
close. In fact, suppose σB(1),φ(1) ⊇ σB(2),φ(2) ⊇ · · · ⊇ σB(k),φ(k) ⊇ . . . is a
decreasing FSDR σ-field chain in A, without loss of generality, we assume

σ
(
φ
(k+1)
i (Xi)

)
⊆ σ

(
φ
(k)
i (Xi)

)
using Lemma 1. Let Ik, Jk, and Kk be the

abbreviation for IB(k) , JB(k) , and KB(k) respectively. By Lemma 1 we have
I1 ⊇ I2 ⊇ . . . , since the cardinal of I1 is finite, there exists an integer t
such that Ik = It for all k ≥ t. Consider k ≥ t, by Lemma 1 again we
have Kt ⊆ Kt+1 ⊆ . . .Kk ⊆ . . . . Similarly, there exists an integer s such
that Kk = Ks for all k ≥ s. Therefore, for k ≥ s, we have Ik = Is = I,
Jk = Js = J , and Kk = Ks = K. Without loss of generality, we assume that

s = 1. For i in I, we have σ
(
φ
(k+1)
i (Xi)

)
⊆ σ

(
φ
(k)
i (Xi)

)
, so we can find one

φ∗
i such that σ

(
φ∗
i (Xi)

)
= limk→+∞σ

(
φ
(k)
i (Xi)

)
; And by Lemma 2, for j in

J , we have φ
(k+1)
j (Xj) = g

(k)
j (φ

(k)
j (Xj)), where g

(k)
j is a linear function. For

simplicity we can set φ
(k+1)
j (Xj) = φ

(k)
j (Xj) = φ∗

j (Xj), where var[φ∗
j (Xj)] = 1.

Note that σ
(⋃

i∈I φ
(k+1)
i (Xi), B

(k+1)T
J φJ (XJ )

)
= σ

(
B(k+1)Tφ(k+1)(X)

)
⊆

σ
(
B(k)Tφ(k)(X)

)
= σ

(⋃
i∈I φ

(k)
i (Xi), B

(k)T
J φJ (XJ )

)
, so we have σ

(
φ
(k+1)
i (Xi)

)
⊆ σ

(
φ
(k)
i (Xi)

)
for i ∈ I and σ

(
B

(k+1)T
J φJ (XJ )

)
⊆ σ

(
B

(k)T
J φJ (XJ )

)
. There-

fore, we can find oneB∗ such that span(B∗
J ) = limk→+∞span(B

(k)
J ), and further
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⋂+∞
k=1 σB(k),φ(k) = σ

(⋃
i∈I φ∗

i (Xi), B
∗T
J φ∗

J (XJ )
)
= σB∗,φ∗ . Since the intersec-

tion of any two SDR σ-fields is still an SDR σ-field, as stated in the proof of
Theorem 1 in [16], we have Y ⊥⊥ X|σB∗,φ∗ . Therefore, any decreasing σ-field
chain in the set A is close. Finally, applying Zorn’s Lemma, we can prove that
there exists a unique minimal σ-field in A.

Furthermore, suppose (B̃, φ̃) is another generating pair of σB∗,φ∗ . Then we
can construct two decreasing σ-field chains, which begin at σB̃,φ̃ and σB∗,φ∗ and
converge to σB∗,φ∗ and σB̃,φ̃, respectively. Using the properties of decreasing

σ-field chains shown previously, we have span(B̃) = span(B∗), σ
(
φ̃i(Xi)

)
=

σ
(
φ∗
i (Xi)

)
for all i ∈ IB∗ , and there exist constant numbers uj and vj such that

φ̃j = uj ∗ φ∗
j + vj for all j ∈ JB∗ . This completes the proof of Theorem 2.

A.2.1. Proof of Lemma 1

Proof. Without loss of generality, we assume both B(1) and B(2) are of full
column rank. For i ∈ IB(2) ∪ JB(2) , we can always find a p-dimensional column
vector λ = (λ1, · · · , λp)

T ∈ span(B(2)) such that λi �= 0. Since σ
(
λTφ(2)(X)

)
⊆

σB(2),φ(2) ⊆ σB(1),φ(1) ⊆ σ
(
φ(1)(X)

)
, we have

λ1φ
(2)
1 (X1) + · · ·+ λpφ

(2)
p (Xp) = f

(
φ
(1)
1 (X1), . . . , φ

(1)
p (Xp)

)
, (35)

where f is an unknown function. For xi �= x̃i, if φ
(1)
i (xi) = φ

(1)
i (x̃i), X(−i)|xi

�= ∅,
and X(−i)|x̃i

�= ∅, by Assumption 2 we can find x = (x1, . . . , xi, . . . , xp)
T ∈ X

and x̃ = (x1, . . . , x̃i, . . . , xp)
T ∈ X , then from (35) we have φ

(2)
i (xi) = φ

(2)
i (x̃i).

Therefore, σ
(
φ
(2)
i (Xi)

)
⊆ σ

(
φ
(1)
i (Xi)

)
.

Next, we will show that if i ∈ JB(2) , then i ∈ IB(1) ∪ JB(1) . By contra-
diction, if i ∈ KB(1) , then there exists β = (b1, . . . , bp)

T ∈ span(B(2)) such

that bi �= 0 and σ
(
βTφ(2)(X)

)
⊆ σB(2),φ(2) ⊆ σB(1),φ(1) ⊆ σ

(
φ

(1)
(−i)(X(−i))

)
,

so
∑p

k=1 bkφ
(2)
k (Xk) = g

(
φ

(1)
(−i)(X(−i))

)
, where g is an unknown function. Since

σ
(
φ
(2)
k (Xk)

)
⊆ σ

(
φ
(1)
k (Xk)

)
for k ∈ IB(2) ∪ JB(2) and bk = 0 for k ∈ KB(2) , so

biφ
(2)
i (Xi) = h

(
φ

(1)
(−i)(X(−i))

)
, where h is an unknown function. By Proposition

1, we have biφ
(2)
i (Xi) = h

(
φ

(1)
(−i)(X(−i))

)
= 0, which is a contradiction. There-

fore we have JB(2) ⊆ IB(1) ∪JB(1) . The proof of IB(2) ⊆ IB(1) is similar, and we
immediately have KB(2) ⊇ KB(1) after the property that IB(s) , JB(s) , and KB(s)

form a partition of indices {1, . . . , p} for s = 1, 2. Note that

σ
(
B(1)Tφ(1)(X)

)
= σ

(
∪

i∈I
B(2)

φ
(1)
i (Xi), ∪

i∈I
B(1)\IB(2)

φ
(1)
i (Xi), B

(1)T
J φ

(1)
J

B(1)
(XJ

B(1)
)
)
,

σ
(
B(2)Tφ(2)(X)

)
= σ

(
∪

i∈I
B(2)

φ
(2)
i (X2), B

(2)T
J φ

(2)
J

B(2)
(XJ

B(2)
)
)
.

Therefore we have rank(B(1)) ≥ rank(B(2)) immediately. This completes the
proof of Lemma 1.
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A.2.2. Proof of Lemma 2

Proof. Without loss of generality, we can assume σ
(
φ
(2)
i (Xi)

)
⊆ σ

(
φ
(1)
i (Xi)

)
for

all i by Lemma 1. This is because for i ∈ KB(2) , we can simply set φ
(2)
i (xi) =

φ
(1)
i (xi) which doesn’t change σB(2),φ(2) . In addition, we assume both B(1) and

B(2) are of full column rank. For convenience, we introduce the notation that

Z = φ(1)(X) = (Z1, . . . , Zp)
T and φ(2)(X) = g(Z) =

(
g1(Z1), . . . , gp(Zp)

)T
,

where g = (g1, . . . , gp)
T are unknown functions, so the condition becomes

σ
(
B(2)Tg(Z)

)
⊆ σ(B(1)TZ). Then for any column vector a = (a1, a2, . . . , ap)

T ∈
span(B(2)), we have

aTg(Z) = a1g1(Z1) + a2g2(Z2) + · · ·+ apgp(Zp) = h(βT
1 Z, βT

2 Z, . . . , βT
d Z),

where B(1) = (β1, β2, . . . , βd), d = rank(B(1)), and h is an unknown function.
If d = p, then IB(1) = {1, . . . , p} and JB(1) = ∅, the proof is done. Else, we have
d < p, and suppose z = (z1, . . . , zp)

T ∈ suppZ where suppZ denote the support
of Z. Let span(B(1))⊥ denote the orthogonal complement space of span(B(1)).
Then for any column vector λ = (λ1, . . . , λp)

T ∈ span(B(1))⊥ and t ∈ R where
|t| < δ and δ > 0 is sufficiently small, aTg(z + tλ) = h

(
βT
1 (z + tλ), βT

2 (z +

tλ), . . . , βT
d (z+tλ)

)
= h(βT

1 z, β
T
2 z, . . . , β

T
d z) is a constant function with respect

to t. That is,

a1g1(z1 + λ1t) + · · ·+ apgp(zp + λpt) = constant, for any |t| < δ.

Therefore, we have

a1[g1(z1 + λ1t)− g1(z1)] + · · ·+ ap[gp(zp + λpt)− gp(zp)] = 0. (36)

Note that (36) holds for all z ∈ suppZ , t sufficiently small such that z + tλ ∈
suppZ , a ∈ span(B(2)), and λ ∈ span(B(1))⊥. For any i ∈ JB(1) ∩ JB(2) , we
have i /∈ IB(1) and thus there exists λ ∈ span(B(1))⊥ such that λi �= 0, and
i /∈ KB(2) and thus there exists a ∈ span(B(2)) such that ai �= 0. Then by (36),
gi(zi + λit)− gi(zi) is constant function with respect to zi, which means gi is a
linear function. This completes the proof of Lemma 2.

A.3. Proof of Theorem 3

Proof. From the proof of Theorem 2 we have span(B∗) ⊆ span(B̃). Since
rank(B̃) = rank(B∗), so span(B∗) = span(B̃), and further we have IB∗ = IB̃
and JB∗ = JB̃ . Note that σ

(
B∗Tφ∗(X)

)
= σ

(⋃
i∈IB∗ φ

∗
i (Xi), B

∗T
J φ∗

J (XJ )
)
⊆

σ
(⋃

i∈IB̃
φ̃i(Xi), B̃

T
J φ̃J (XJ )

)
= σ

(
B̃T φ̃(X)

)
, so σ

(
φ∗
i (Xi)

)
⊆ σ

(
φ̃i(Xi)

)
for

i ∈ IB∗ . By Lemma 2, there exist constant numbers uj and vj such that

φ̃j = uj ∗ φ∗
j + vj for j ∈ JB∗ . This completes the proof of Theorem 3.
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A.4. Proof of Theorem 4

Proof. Following the well known Law of Total Variance, we have

V ar
[
g(Y )|BTφ(X)

]
=E

[
V ar

[
g(Y )|X

]
|BTφ(X)

]
+V ar

[
E
[
g(Y )|X

]
|BTφ(X)

]
.

By taking expectation over BTφ(X), we have

E
[
V ar

[
g(Y )|BTφ(X)

]]
= E

[
V ar

[
g(Y )|X

]]
+E

[
V ar

[
E
[
g(Y )|X

]
|BTφ(X)

]]
.

If Assumption 3 holds, by Proposition 3 in [10] we have

〈g,ΣY Y |Xg〉HY = E
[
V ar

[
g(Y )|X

]]
,

〈g,ΣB,φ
Y Y |Xg〉HY = E

[
V ar

[
g(Y )|BTφ(X)

]]
,

for all y ∈ HY . Combining these two equations, we have

〈
g, (ΣB,φ

Y Y |X − ΣY Y |X)g
〉
HY

= E

[
V ar

[
E
[
g(Y )|X

]
|BTφ(X)

]]
.

The term on the right hand side of the last equation is non-negative, therefore
ΣB,φ

Y Y |X ≥ ΣY Y |X , and we have

ΣY Y |X = ΣB,φ
Y Y |X ⇔

〈
g, (ΣB,φ

Y Y |X − ΣY Y |X)g
〉
HY

≡ 0

⇔ E

[
V ar

[
E
[
g(Y )|X

]
|BTφ(X)

]]
≡ 0

⇔ V ar
[
E
[
g(Y )|X

]
|BTφ(X)

]
≡ 0

⇔ E
[
g(Y )|X

]
= T

(
BTφ(X)

)
, a.s. PX

⇔ E
[
g(Y )|X

]
= E

[
g(Y )|BTφ(X)

]
, a.s. PX .

Since HY is characteristic, this implies that the conditional probability of Y
given X is reduced to that of Y given BTφ(X). This completes the proof of
Theorem 4.

A.5. Proof of Theorem 5

Proof. Let

Fi,q =
{
φi ∈ Si,q : EXi |φi|2 ≤ 2

}
; (37)

Fq =
{
(φ1, . . . , φp)

T : φi ∈ Fi,q, for i = 1, . . . , p
}
. (38)

It can be shown that Fi,q is a compact set with respect to distance L2
Xi

, and
Fq is a compact set with respect to distance L2

X . To prove Theorem 5, we will
need the following two lemmas. The proof of Lemma 3 is provided in Appendix
A.5.1. Lemma 4 comes from Theorem XII.1 in [7] and its proof is omitted here.
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Lemma 3. Under Assumptions 3-5, for a fixed integer q > 1, the functions

Tr[Σ̂
B,φ(n)
Y Y |X ] and Tr[ΣB,φ

Y Y |X ] are continuous on Spd(R)× Fq and

sup
B∈S

p
d(R),φ∈Fq

∣∣Tr[Σ̂B,φ(n)
Y Y |X ]− Tr[ΣB,φ

Y Y |X ]
∣∣ → 0 (n → ∞)

in probability.

Lemma 4. Let h be a function on [0, 1] which is p0 times differentiable and the
p0-th derivative satisfies

∣∣h(p0)(x1) − h(p0)(x2)
∣∣ ≤ c|x1 − x2|ν for some c > 0

and 0 < ν ≤ 1. Let Sq denote the function space of splines on [0, 1] with order
4 and equally spaced knots. If p0 + ν ≤ 3, then there exists a function h1 ∈ Sq

such that
sup

0≤x≤1
|h1(x)− h(x)| ≤ c0q

−p

for some c0 (c0 depends on h).

We come back to prove Theorem 5. We first establish the consistency result
in the spline function space. Let

Gi,q = Fi,q ∩ L̃2(PXi); (39)

Gq =
{
(φ1, . . . , φp)

T : φi ∈ Gi,q, for i = 1, . . . , p
}
. (40)

For any fixed integer q, Let Θ(q) denote the collection of normalized generat-
ing pairs defined as follows.

Θ(q) = argmin
(B,φ):B∈S

p
d0

(R),φ∈Gq

Tr[ΣB,φ
Y Y |X ].

We first assert that D(B(q),Bp
d0
) → 0 and L2

X(φ(q),Φ1) → 0 as q → ∞, where

(B(q),φ(q)) is any generating pair in Θ(q). Note that Tr[ΣB,φ
Y Y |X ] is continuous

with respect to B equipped with distance D and φ equipped with distance L2
X .

As q increase, Assumption 7 works for the sufficient condition of Lemma 4,
and it follows that the L2

Xi
distance between spline function space Si,q and φ̃i

decrease to 0. Therefore, for (B(q),φ(q)) ∈ Θ(q), Tr[ΣB(q),φ(q)

Y Y |X ] should decrease

to Tr[ΣB̃,φ̃
Y Y |X ]. From Assumption 6, we immediately have D(B(q),Bp

d0
) → 0 and

L2
X(φ(q),Φ1) → 0 as q → ∞. Henceforth, for any open set B̃1 ⊇ Bp

d0
and any

open set Φ̃1 ⊇ Φ1, we can find q sufficiently large such that B(q) ∈ B̃1 and
φ(q) ∈ Φ̃1 for any (B(q),φ(q)) ∈ Θ(q), and thus Θ(q) ⊆ B̃1 × Φ̃1.

Since φ̂n,i satisfies that
1
n

∑n
t=1 φ̂n,i(X

(t)
i ) = 0 and 1

n

∑n
t=1

[
φ̂n,i(X

(t)
i )

]2
= 1,

by Law of Large number, we have EXi

[
φ̂n,i(Xi)

]2 ≤ 2 as n goes to infinity, and

thus φ̂n,i ∈ Fi,q, i = 1, . . . , p in probability. By Lemma 3, following straight-
forwardly by standard arguments establishing the consistency of M-estimators
(see for example, Section 5.2 in [21]), one can show that the distance between

(B̂n, φ̂n) and Θ(q) converges to zero as n goes to infinity in probability. There-

fore lim
n→∞

Pr
(
B̂n ∈ B̃1, φ̂n ∈ Φ̃1

)
= 1. This completes the proof of Theorem

5.
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A.5.1. Proof of Lemma 3

Proof. The proof follows the proof of Proposition 7 in [10]. In particular, under

Assumptions 3 and 4, we have Tr[Σ̂
B,φ(n)
Y Y |X ] and Tr[ΣB,φ

Y Y |X ] are continuous on

Spd(R) × Fq after Lemmas 12-13 in [10]. To prove the uniform convergence of∣∣Tr[Σ̂B,φ(n)
Y Y |X ] − Tr[ΣB,φ

Y Y |X ]
∣∣, we first note that

∣∣Tr[Σ̂B,φ(n)
Y Y |X ] − Tr[ΣB,φ

Y Y |X ]
∣∣ ≤∣∣Tr[ΣB,φ

Y Y |X ]−Tr[ΣY Y −ΣB,φ
YX(ΣB,φ

XX+εnIn)
−1ΣB,φ

XY ]
∣∣+∣∣Tr[Σ̂B,φ(n)

Y Y |X ]−Tr[ΣY Y −
ΣB,φ

YX(ΣB,φ
XX + εnIn)

−1ΣB,φ
XY ]

∣∣. Under Assumptions 3 and 4, following Lemma 14
in [10], we have

sup
B∈S

p
d(R),φ∈Fq

∣∣Tr[ΣB,φ
Y Y |X ]−Tr[ΣY Y −ΣB,φ

YX(ΣB,φ
XX+εnIn)

−1ΣB,φ
XY ]

∣∣ → 0 (n → ∞).

Under Assumption 5, following Lemma 10 in [10], we have

sup
B∈S

p
d
(R),φ∈Fq

∣∣Tr[Σ̂B,φ(n)

Y Y |X ]− Tr[ΣY Y − ΣB,φ
Y X (ΣB,φ

XX + εnIn)
−1ΣB,φ

XY ]
∣∣ = Op(ε

−1
n n−1/2),

as n goes to infinity. Therefore, combining the above two results we immediately
prove the uniform convergence.

A.6. Proof of Theorem 6

Proof. The first part of Theorem 6 is a generalization of Theorem 2.2.1 in [6]. If
σ(X) ⊇ σ

(
ψ(X)

)
⊇ σ

(
φ(X)

)
and p

(
X|φ(X)

)
is discrete, then both p

(
X|ψ(X)

)
and p

(
ψ(X)|φ(X)

)
are discrete and p

(
X|φ(X)

)
= p

(
X|ψ(X)

)
∗ p

(
ψ(X)|φ(X)

)
.

Therefore,

EX|φ(X)

[
log p(X|φ(X))

]
= EX|φ(X)

[
log p(X|ψ(X)) + log p(ψ(X)|φ(X))

]
= EX|φ(X)

[
log p(X|ψ(X))

]
+ Eψ(X)|φ(X)

[
log p(ψ(X)|φ(X))

]
.

Therefore, we have

H
[
X|φ(X)

]
=− Eφ(X)

[
EX|φ(X)

[
log p(X|φ(X))

]]

=− Eφ(X)

[
EX|φ(X)

[
log p(X|ψ(X))

]]

− Eφ(X)

[
Eψ(X)|φ(X)

[
log p(ψ(X)|φ(X))

]]
=− E

[
log p(X|ψ(X))

]
− E

[
log p(ψ(X)|φ(X))

]
= H

[
X|ψ(X)

]
+H

[
ψ(X)|φ(X)

]
.

This completes the proof of the first part of Theorem 6. Furthermore, by defini-
tion of Θ0 and Θ1, we have σ(Xi) ⊇ σ

(
φ̃i(Xi)

)
⊇ σ

(
φ∗
i (Xi)

)
for i ∈ IB∗ ∪JB∗ .

Let w∗
i = ‖B∗

i,·‖2 and w̃i = ‖B̃i,·‖2. It can be verified that w∗
i = w̃i > 0 and

w∗
iH

[
Xi|φ∗

i (Xi)
]
≥ w̃iH

[
Xi|φ̃i(Xi)

]
for i ∈ IB∗ ∪ JB∗ , and w∗

i = w̃i = 0
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for i ∈ KB∗ . Therefore, HB∗
[
X|φ∗(X)

]
≥ HB̃

[
X|φ̃(X)

]
, and the equivalence

holds if and only if H
[
Xi|φ∗

i (Xi)
]
= H

[
Xi|φ̃i(Xi)

]
for all i ∈ IB∗ ∪JB∗ , which

means (B̃, φ̃) ∈ Θ0. This completes the proof of the second part of Theorem
6.
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