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Abstract: We revisit the problem of designing an efficient binary classifier
in a challenging high-dimensional framework. The model under study as-
sumes some local dependence structure among feature variables represented
by a block-diagonal covariance matrix with a growing number of blocks of
an arbitrary, but fixed size. The blocks correspond to non-overlapping inde-
pendent groups of strongly correlated features. To assess the relevance of a
particular block in predicting the response, we introduce a measure of “sig-
nal strength” pertaining to each feature block. This measure is then used to
specify a sparse model of our interest. We further propose a threshold-based
feature selector which operates as a screen-and-clean scheme integrated into
a linear classifier: the data is subject to screening and hard threshold clean-
ing to filter out the blocks that contain no signals. Asymptotic properties of
the proposed classifiers are studied when the sample size n depends on the
number of feature blocks b, and the sample size goes to infinity with b at a
slower rate than b. The new classifiers, which are fully adaptive to unknown
parameters of the model, are shown to perform asymptotically optimally
in a large part of the classification region. The numerical study confirms
good analytical properties of the new classifiers that compare favorably to
the existing threshold-based procedure used in a similar context.
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1. Introduction

Statistical methodology for high-dimensional data is a rapidly growing area
where inferential and algorithmic procedures for models with the number of fea-
tures exceeding the number of observations are of great interest. High-dimensional
statistical problems emerge in a variety of applied fields such as genomics and
proteomics, cosmology, information technology, finance and banking. Classifica-
tion is one of the key techniques of high-dimensional statistics where the goal is
to predict the categorical class labels of new instances based on past observa-
tions.

Despite the abundance of off-the-shelf classifiers with excellent performance
in the classical large-sample scenario (examples include support vector machines,
AdaBoost, CART, and Artificial Neural Networks classifiers), a straightforward
extension of these procedures to high-dimensional settings encounters serious
challenges for the following reasons. First, these classifiers fail to explore the
sparsity patterns of the high-dimensional data. With a variety of modern ex-
perimental techniques that make it possible to automatically measure a high
number of features on each subject, the number of individually relevant fea-
tures, or groups (blocks) of such features, is often a small part of the entire set
and is hidden in that set. Incorporating too many noise feature variables with
little or no relevance to the classification problem at hand can severely deteri-
orate the performance accuracy. Second, many classification problems in high
dimensions stem from applications where identifying useful features, or groups
of features that are jointly informative for the class label, is of primary impor-
tance. Examples of applications include, among others, the problems of cancer
classification with genomics data and disease classification with medical imag-
ing data, where the goal is to design a parsimonious classifier that would not
only control the total number of features in the model without noticeable loss of
quality but also allow for effective training procedures and good interpretation.
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Such type of applications may require the use of feature selection techniques
that would effectively operate in high-dimensional settings under various spar-
sity and weakness assumptions.

These thoughts have motivated us to look at the classification problem in a
sparse setup, where only a small fraction of a large number of feature blocks
(which are unknown to us) are “useful”, and each useful block of feature vari-
ables contributes weakly to distinguishing between classes. Aiming at modelling
the phenomena of growing dimensions, we use the asymptotic framework that
operates over a sequence of classification problems with increasingly many fea-
ture blocks and relatively fewer observations.

In general, the classical theory of supervised classification is not designed to
work in a sparse framework. Therefore, over the last decades, substantial efforts
have been made to develop appropriate alternatives for standard classification
procedures, such as linear and quadratic classifiers (see, for example, Ahmad and
Pavlenko [1], Aoshima and Yata [2], Chan and Hall [6], Fan et al. [11], Ingster
et al. [16]). Several effective classifiers that are suitable for situations where the
class-covariance matrices are diagonal have been recently proposed and studied
(see, for example, Ingster et al. [16] and Donoho and Jin [10]). Some of these
procedures suggest, prior to the classification step, a feature selection step by
thresholding. The most recent classification studies pertaining to sparse models
have shown that, even under the relatively strong assumption of independence
of feature variables, many statistical challenges are yet preserved.

In this paper, we examine a new sparse block-diagonal model reflecting the
situation where only a small fraction of feature blocks are useful for classification.
Statistical properties of the proposed classifiers depend crucially on the accu-
racy of a cleaning step that identifies relevant feature blocks. Cleaning is done
by means of hard thresholding, with carefully chosen data-driven thresholds,
that filter out the blocks containing no signals. The choice of threshold depends
on the level of signal separation strength: the weaker the signal, the harder the
problem of removing useless feature blocks from the subsequent classification
analysis. Where possible, we adopt our newly proposed variable selection tech-
niques to set up an appropriate threshold that would retain all useful feature
blocks and perhaps a few useless ones. When the signal strength of useful blocks
are too weak to allow feature selection, we propose to use hard thresholding,
which is obtained by employing weighted Kolmogorov-Smirnov test statistics
with suitably chosen weight functions. These statistics are known to distinguish
between the pure noise and the sparse mixtures of noise and signal.

By construction, the proposed classifiers contain a random number of terms,
representing classification functions for useful feature blocks, which makes the
study of their efficiency properties highly nontrivial. In a large part of the clas-
sification region, the proposed classifiers are shown to have the maximum clas-
sification error and the Bayes classification error tending to zero as the number
of feature blocks increases; for the rest of the classification region, numerical
results with simulated data are reported.

In Section 2 we introduce a high-dimensional model of our interest and indi-
cate the fundamental limits of sparse classification. In Section 3 we study the
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classification problem at hand when the covariance matrix Σ of the data is
known. The more difficult case of unknown Σ is treated in Section 4. Results
of the numerical study are summarized in Section 5. Concluding remarks are
given in Section 6. Proofs of Lemmas 1–3, which are essential ingredients for
the proofs of Theorems 1 and 2, the main results of this work, are deferred to
Section 7.

Throughout the paper, the symbol χ2
νpλq is used for a chi-square random

variable with ν degrees of freedom and noncentrality parameter λ. The sym-
bol Fν1,ν2pλq is used for an F distributed random variable with ν1 numera-
tor and ν2 denominator degrees of freedom and noncentrality parameter λ. Φ
denotes the cumulative distribution function (cdf) of a normal Np0, 1q distri-
bution. The notation Ab „ Bb means that lim supbÑ8 Ab{Bb “ 1. We write
Ab “ opBbq and Ab “ OpBbq for b Ñ 8 when lim supbÑ8 |Ab{Bb| “ 0 and
0 ă lim infbÑ8 |Ab{Bb| ď lim supbÑ8 |Ab{Bb| ă 8, respectively. We use the
symbol log a for the natural (base e) logarithm of the number a. For an event
A, IpAq is the indicator of A. We denote by vnw the set t1, . . . , nu for some n P N.
The Euclidean norm of a vector x P R

k, k ě 1, is denoted by }x}. The stochastic
symbols oPΠl

p1q and OPΠl
p1q are short for a sequence of random variables that

converge to zero in probability and for a sequence that is bounded in probability,
respectively, reflecting the fact that the sequence of random variables involves
an observation generated by distribution Πl, l P v2w.

2. Model and problem

Let Xp1q “ pX
p1q

j qjPvnw and Xp2q “ pX
p2q

j qjPvnw be random samples drawn from

the populations Π1 ” Npp0,Σq and Π2 ” Nppμ,Σq, respectively, where X
plq
j “

pX
plq
1j , . . . , X

plq
pj qJ for j P vnw and l P v2w. The mean vector μ ‰ 0 and the

common covariance matrix Σ “ CovpX
plq
j q, l P v2w, are generally unknown.

Assume further we observe a random vector X0 P R
p, which is independent of

Xplq, l P v2w, and the distribution ofX0 is known to be either Π1 (the pure noise)
or Π2 (the signal). The goal is to design a classifier ψ “ ψ

`

X0;X
p1q,Xp2q

˘

that
would assign X0 to either Π1 or Π2 and would have small classification error
when the dimension p is much larger than the sample size n. The problem of
allocating X0 to either Π1 or Π2 is difficult only when Π1 and Π2 are “close”
to each other. A particular type of closeness for large p is described by the
sparsity assumption, which is stated rigorously in Section 2.1 below. Under this
assumption, the data is grouped in a large number of blocks, and only a small
fraction of the blocks are relevant for classification.

Let EΠi denote the expectation with respect to the joint distribution of Xp1q,
Xp2q and X0 when X0 „ Πi for i P v2w. In the present situation of equally-sized
random samples, it is natural to measure the accuracy of ψ by the Bayes risk
πEΠ2pψq ` p1 ´ πqEΠ1p1 ´ ψq with π “ 1{2, that is, by

RBpψq “ p1{2qEΠ2pψq ` p1{2qEΠ1p1 ´ ψq, (2.1)
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and also by the maximum risk

RM pψq “ max pEΠ2pψq,EΠ1p1 ´ ψqq . (2.2)

Here, EΠ2pψq is the probability of misclassifying X0 as Π1 when X0 P Π2.
Likewise, EΠ1p1´ψq is the probability of misclassifyingX0 as Π2 whenX0 P Π1.
In what follows, Rpψq will be either the Bayes risk RBpψq or the maximum risk
RM pψq.

Assume thatΣ is a block-diagonal matrix of the formΣ“Diag
`

Σr1s, . . . ,Σrbs

˘

with each block Σrks being symmetric and positive definite. Then, the new ob-
servation and each element of the training samples can be split into b feature
blocks: for j P vnw, l P v2w

X0 “

´

XJ
0,r1s, . . . ,X

J
0,rbs

¯J

, X
plq
j “

´

pX
plq
j,r1s

q
J, . . . , pX

plq
j,rbs

q
J
¯J

.

For k P vbw and b “ 2, 3, . . ., we define μ̂rks “ μ̂rks,b and pΣrks “ pΣrks,b by

μ̂rks “
1

n

n
ÿ

j“1

X
p2q

j,rks
,

pΣrks “
1

2n ´ 1

#

n
ÿ

j“1

´

X
p1q

j,rks

¯´

X
p1q

j,rks

¯J

`

n
ÿ

j“1

´

X
p2q

j,rks
´ μ̂rks

¯´

X
p2q

j,rks
´ μ̂rks

¯J

+

,

and take μ̂ “ pμ̂J
r1s, . . . , μ̂

J
rbsq

J as an estimator of μ “ pμJ
r1s

, . . . ,μJ
rbs

qJ and

pΣ “ DiagppΣr1s, . . . , pΣrbsq as an estimator of Σ “ DiagpΣr1s, . . . ,Σrbsq.

In the case of known Σ, we propose to use the classifier ψ̃b “ ψ̃bpX0;X
p2qq

given by

ψ̃b “ I

#

b
ÿ

k“1 : ω̃k“1

pX0,rks ´ μ̂rks{2q
JΣ´1

rks
μ̂rks ď 0

+

, (2.3)

where ω̃k is one if the kth feature block of the data is “useful” and zero other-
wise. The new observation X0 is allocated to Π1 when ψ̃bpX0q “ 1 and to Π2

otherwise. As seen from Theorem 1 in Section 3.2, the risk Rpψ̃bq of ψ̃b with
suitably chosen ω̃k, k P vbw, tends to zero when b tends to infinity in a large
part of the classification region. Similarly, in the case of unknown Σ, we may
consider the classifier ψ̂b “ ψ̂bpX0;X

p1q,Xp2qq defined as

ψ̂b “ I

#

b
ÿ

k“1 : ω̂k“1

pX0,rks ´ μ̂rks{2q
J
pΣ

´1

rksμ̂rks ď 0

+

, (2.4)

where ω̂k is one if the kth feature block of the data is “useful” and zero otherwise,
which allocates X0 to to Π1 when ψ̂bpX0q “ 1 and to Π2 otherwise. As follows

from Theorem 2 in Section 4.1, the risk Rpψ̂bq of ψ̂b with suitably chosen ω̂k,
k P vbw, converges to zero as b tends to infinity in a large part of the classification
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region. The behavior of ψ̃b and ψ̂b in the remaining part of the classification
region, where the selection of useful feature blocks is impossible, is examined in
Sections 3.3 and 4.2, and the related numerical results are presented in Section
5. The random functions ω̃k and ω̂k are some good estimators of ωk “ IpΔ2

k,b ‰

0q, k P vbw, that attempt to remove most of the useless blocks of the data for
which ωk “ 0 from further consideration. Due to the technical issues presented
by the case of unknown Σ, the cases of known and unknown Σ will be treated
separately.

2.1. Asymptotic regime and sparsity assumption

We shall design a classifier ψ “ ψ
`

X0;X
p1q,Xp2q

˘

in a high-dimensional frame-
work when (i) the sample size n and the dimension p go to infinity together in
such a way that n “ np Ñ 8 and n “ oppq as p Ñ 8, (ii) the covariance matrix
Σ is a sparse block-diagonal matrix of the formΣ “ Diag

`

Σr1s, . . . ,Σrbs

˘

, where
each blockΣrks is symmetric and positive definite, and (iii) feature variables that
are deemed useful for classification appear in groups (or blocks), according to
the structure of Σ; the useful feature blocks are rare and each block contributes
weakly to the classification decision.

We first treat the case of equally-sized p0 ˆ p0 blocks so that bp0 “ p, and
then comment on the case of unequally-sized blocks. In modern settings, it is
often the case that the dimension p exceeds the number of observations n. In
this work, we consider a sequence of classification problems in which p0 (p0 ă n)
is a fixed known integer, the number of blocks b is the driving parameter, and
n relates to b through

n “ bθp1 ` op1qq as b Ñ 8 (2.5)

for some known θ P p0, 1q, implying n “ oppq as p Ñ 8. (Below, we may think
that n “ rbθs.) This assumption yields logn „ θ log p as p Ñ 8, which corre-
sponds to scenario (C) in Ingster et al. [16] and refers to as the regular growth of
dimensionality. This asymptotic approach is also similar to the triangular array
setup studied in Greenshtein and Ritov [13]. The number of blocks b of Σ is
assumed to be al least 2 because the parametrization used for the model of our
interest requires from log b to be nonzero (see relation (2.8) below).

In an ideal setup, when μ and Σ are known, the optimal (using the Bayes
risk with equal prior probabilities) classifier ψ0 “ ψ0pX0q, which is obtained by
employing the likelihood ratio approach, has the risk

RBpψ0q “ Φ p´Δ{2q ,

where Δ2 “ μJΣ´1μ is the squared Mahalanobis distance between Π1 and Π2.
For the block-diagonal matrix Σ “ Diag

`

Σr1s, . . . ,Σrbs

˘

, the squared Maha-
lanobis distance Δ2 depends on b and can be expressed as

Δ2
“

b
ÿ

k“1

Δ2
k,b, Δ2

k,b “ μJ
rksΣ

´1
rks

μrks, k P vbw, (2.6)
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where μ “ pμJ
r1s

, . . . ,μJ
rbs

qJ. The quantity Δ2
k,b is the signal strength of the kth

block of the data; it measures the contribution of the kth block towards the total
strength of separation Δ2 between the populations Π1 and Π2. “Large” values of
Δ2

k,b suggest that the kth block is useful for classification, and therefore the data

pX
plq
j,rks

qjPvnw, l P v2w, should be used for constructing a suitable classification

rule; at the same time, “small” values of Δ2
k,b mean that the kth block of the data

is useless for classification and should be removed from further consideration.
In this work, we demonstrate how accurate classification can be achieved by
means of a classifier that includes an effective screen-and-clean threshold-based
feature selector as its integrated part.

To set up a sparse model of our interest, we take two numbers s and a such
that s P vbw and a ą 0, and consider the set of vectors v “ pvkqkPvbw given by

Γbps, aq “ tv P R
b : there exists a set S Ă vbw with s elements

such that vk ě a for all k P S, and vk “ 0 for all k R Su. (2.7)

The statistical model that consists of observing two independent random sam-
ples Xp1q and Xp2q of size n from the respective p-dimensional populations Π1

and Π2, where p “ p0b, is said to have an ps, aq-sparse block-diagonal structure if
a vector pnΔ2

k,bqkPvbw, where Δ2
k,b is defined in (2.6), belongs to the set Γbps, aq.

In what follows, both parameters s and a will depend on the driving param-
eter b. Namely, we assume that the parameter s satisfies as b Ñ 8

s “ sb “ b1´β
p1 ` op1qq for some 0 ă β ă 1,

implying s “ opbq. This type of parametrization for s is quite common in the
literature on high-dimensional statistical inference. We speak of β as the sparsity
parameter. The parameter a cannot be too small (see, for example, Remark 1 in
Ingster et al. [16]). A suitable range for a that makes the classification problem
at hand interesting is

a “ ab “ 2r log b for some 0 ă r ă 4, (2.8)

that is, the parameter a is onlymoderately large. Indeed, in this case, the squared
Mahalanobis distance for the kth block satisfies

Δ2
k,b “ O

`

b´θ log b
˘

“ op1q, b Ñ 8. (2.9)

This brings us to a nontrivial problem of classification which is closely related
to the classification problem for the diagonal matrix Σ “ σ2Ipˆp, as studied in
Ingster et al. [16] and Donoho and Jin [10].

The restriction on the range of r in (2.8) being the interval p0, 4q is due to a
related feature selection problem; the assumption of r ě 4, which corresponds
to relation (2.3) in Ingster et al. [16], makes selecting useful blocks obvious and
hence the problem of classifying X0 easy.

We shall now introduce the collection of parameters μ “ μpˆ1 and Σ “ Σpˆp

of our interest. For 0 ă β ă 1 and 0 ă r ă 4, define the set Mb,β,r as follows:

Mb,β,r “tpμ,Σq :μ “ pμJ
r1s, . . . ,μ

J
rbsq

J
‰0, Σ “ DiagpΣr1s, . . . ,Σrbsq is



Adaptive threshold-based classification 1959

positive definite and symmetric, and vector pnΔk,bqkPvbw belongs

to the set Γbprb1´β
s, 2r log bqu,

where n relates to b through (2.5) and Γbps, aq is as in (2.7). Then, our sparsity
assumption on the model, which is characterized by numbers β P p0, 1q and
r P p0, 4q, says that the pair of parameters pμ,Σq is an element of Mb,β,r. We
say that the kth block of the data is useful (for classification) if nΔ2

k,b ě 2r log b,

and it is useless if nΔ2
k,b “ 0. The value b´β may be viewed as the ‘probability’

of occurrence of useful feature blocks among the b blocks available. Thus, very
few blocks of features are useful for classification, and the information carried
by each of these blocks contributes weakly to the classification decision. This
type of sparse model is sometimes referred to in the literature as the rare and
weak feature model (see, for example, Donoho and Jin [10]).

The classifier proposed in (2.3) depends on pμ and Σ´1 only through their
block-wise products; a similar comment applies to the classifier in (2.4). There-
fore, the idea of imposing the sparsity assumption directly on the signal sepa-
ration strength vector pnΔk,bqkPvbw is a natural one. This type of sparsity as-
sumption is somewhat weaker and more flexible as compared to some commonly
used assumptions that require the sparsity of μ and Σ (or Σ´1) separately. For
instance, Shao et al. [21] proposed some thresholding procedures in which μ and
Σ are first estimated separately and then plugged into classification rules. In
general, in the context of classification, the idea of imposing sparsity assump-
tions separately on μ and Σ (or Σ´1) may be inappropriate as there are cases
where neither μ nor Σ´1 are sparse but μJΣ´1μ is (see, for example, Cai and
Liu [5]).

Below, we consider the regions inside the parameter space tpβ, rq P R2 : 0 ă

β ă 1, 0 ă r ă 4u where successful classification is possible in the sense that

lim
bÑ8

inf
ψ

sup
pμ,ΣqPMb,β,r

Rpψq “ 0, (2.10)

where Rpψq is either RBpψq or RM pψq and the infimum is over all measurable
functions of X0 and the training data Xplq, l P v2w, with values on r0, 1s, and
construct classifiers that would provide successful classification in part of these
regions. Following Ingster et al. [16], we say that a classifier ψ “ ψb is asymp-
totically optimal if for all β and r such that successful classification is possible,
we have

lim
bÑ8

sup
pμ,ΣqPMb,β,r

Rpψq “ 0.

2.2. Classification regions

Given the sparse model in question, we shall restrict our attention to the
most interesting case of high β-sparsity with values of β between p1 ´ θq{2
and 1 ´ θ. The reason for this is that a classification problem for “moder-
ately β-sparse” vectors with β P p0, p1 ´ θq{2q is easy and not of much in-
terest, whereas successful classification of “very highly β-sparse” vectors with
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β P p1 ´ θ, 1q is impossible (see Remark 1 in Ingster et al. [16]). In the case
of moderate β-sparsity, successful classification is possible without preliminary
selecting useful feature blocks and is provided, for example, by the classification

rule ψ˚
b “ I

!

řb
k“1pX0,rks ´ μ̂rks{2qJ

pΣ
´1

rksμ̂rks ď 0
)

. Another parameter of the

model at hand is r; it may be viewed as the signal strength parameter. Depend-
ing on the values of r (as a function of β), we will suggest different classification
procedures. In general, the larger the value of r, the easier the classification
problem.

To be more precise, consider the following function of β P p0, 1q (see, for
example, Ingster [15] and Donoho and Jin [9]):

ρpβq “

$

&

%

0, 0 ă β ď 1{2,
β ´ 1{2, 1{2 ă β ď 3{4,
p1 ´

?
1 ´ βq2, 3{4 ă β ă 1.

(2.11)

The curve r “ ρpβq is often called the detection boundary. The classification
boundary is known to be a rescaled detection boundary of the form (see Ingster
et al. [16] and Fan et al. [11])

r “ ρ˚
pβq, ρ˚

pβq “ p1 ´ θq ρ

ˆ

β

1 ´ θ

˙

for p1 ´ θq{2 ă β ă 1 ´ θ. (2.12)

That is, for all large enough b, successful classification is possible if r ą ρ˚pβq

and it is impossible if r ă ρ˚pβq. The impossibility of classification means that

lim inf
bÑ8

inf
ψ

sup
pμ,ΣqPMb,β,r

Rpψq “ 1{2,

that is, no classification rule (or classifier) is better than a simple random guess.
Along with the detection boundary ρpβq defined by (2.11), consider the se-

lection boundaries r “ ρ1pβq and r “ ρ2pβq, where (see, for example, Genovese
et al. [12] and Ingster and Stepanova [17])

ρ1pβq “ β and ρ2pβq “

´

1 `
a

1 ´ β
¯2

, 0 ă β ă 1.

For all p1 ´ θq{2 ă β ă 1 ´ θ one has ρpβq ă ρ˚pβq ă ρ1pβq ă ρ2pβq.
Given a parameter θ P p0, 1q which relates n and b through (2.5), we shall

consider the following two regions of the parameter space tpβ, rq P R2 : 0 ă

β ă 1, 0 ă r ă 4u where classification is possible:

D1pθq “ tpβ, rq P R
2 : p1 ´ θq{2 ă β ă 1 ´ θ, ρ1pβq ă r ă 4u,

D2pθq “ tpβ, rq P R
2 : p1 ´ θq{2 ă β ă 1 ´ θ, ρ˚

pβq ă r ď ρ1pβqu.

Figure 1 displays the two regions: the regionD1pθqYD2pθq where classification
is possible and its complement in pp1 ´ θq{2, 1 ´ θq ˆ p0, 4q where classification
is impossible, along with the detection boundary r “ ρpβq and the selection
boundaries r “ ρ1pβq and r “ ρ2pβq.
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Fig 1. The curve r “ ρ˚pβq divides the rectangle p1 ´ θq{2, 1 ´ θq ˆ p0, 4q into classification
and no classification regions. In case of known covariance matrix, the classification region
further splits into two subregions D1pθq and D2pθq.

In the region D1pθq, we construct an asymptotically optimal classifier that
is fully data-driven and does not require the knowledge of β to be applied (for
details, see Section 3.2). In the region D2pθq, where the classification problem
is much harder, based on certain heuristic arguments, we propose a classifier
that works well and improves the idea of Donoho and Jin [10] (for details, see
Section 3.3). The properties of this classifier are studied numerically in Section
5.

In case of unknown covariance matrix Σ, the division of the classification
region into two subregions, denoted below by D0

1pθq and D0
2pθq, is slightly dif-

ferent (see Figure 7 in Section 4.1); this is due to the impact of estimating the

true Σ´1 by pΣ
´1

on the classification error. Similar to the case of known Σ,
in the region D0

1pθq the problem of classification is easier, whereas in the region
D0

2pθq it is more difficult. We first consider in detail the case of known covariance
matrix Σ and then extend the obtained results to the case of unknown Σ (see
Section 4).
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3. Classification when Σ is known

In the present setup, we distinguish between the regions D1pθq and D2pθq. In
the region D1pθq one can identify useful feature blocks in a precise enough way.
In the region D2pθq, where the parameter r (signal strength) is relatively small,
the problem of identifying useful blocks is much more difficult.

3.1. Some useful statistics

For b“2, 3, . . ., let μ̂“pμ̂J
r1s, . . . , μ̂

J
rbsq

J be the estimator of μ “ pμJ
r1s

, . . . ,μJ
rbs

qJ

and let pΣ “ DiagppΣr1s, . . . , pΣrbsq be the estimator ofΣ “ DiagpΣr1s, . . . ,Σrbsq as

above. The random matrix p2n´1qpΣrks has a (central) WishartWp0pΣrks, 2n´1q

distribution. The distribution of pΣ
´1

rks{p2n ´ 1q is called the inverted Wishart

distribution, and E
´

pΣ
´1

rks{p2n ´ 1q

¯

“ p2n ´ p0 ´ 2q´1Σ´1
rks

. For k P vbw and

b “ 2, 3, . . ., we further define

Δ̃2
k,b “ μ̂J

rksΣ
´1
rks

μ̂rks, Δ̂2
k,b “ μ̂J

rks
pΣ

´1

rksμ̂rks.

Then, if Σ is known, we may consider a triangular array of statistics

tT̃k,b; k P vbw, b “ 2, 3, . . . u, T̃k,b “ nΔ̃2
k,b. (3.1)

The statistics T̃k,b are independent within each series and

T̃k,b „ χ2
p0

pnΔ2
k,bq, k P vbw, b “ 2, 3, . . . .

The difficulty of identifying useful blocks of the data in the region D2pθq as
compared to the region D1pθq is seen from Figures 2 and 3. Figure 2 shows a
histogram for the chi-square data tT̃k,b : k P vbwu, in the region D1pθq, where

variable selection is possible. Figure 3 shows a histogram for the data tT̃k,b : k P

vbwu, in the regionD2pθq, where variable selection is impossible (but classification
is still possible). On Figures 2 and 3, the central and noncentral chi-square
density curves are seen as red and blue lines, respectively.

The failure to classify a new observation X0 as belonging to either Π1 or Π2

outside of the region D1pθq Y D2pθq in the rectangle pp1 ´ θq{2, 1 ´ θq ˆ p0, 4q is
illustrated by Figure 4, which shows a histogram for the data tT̃k,b : k P vbwu,
in the region where classification is impossible. In this case, rb1´βs noncentral
chi-square statistics T̃k,b get too close to the remaining b ´ rb1´βs central chi-

square statistics T̃k,b to allow successful classification in the sparse regime of our
interest.

In a more realistic scenario when Σ is unknown, we shall make use of the
statistics

tT̂k,b; k P vbw, b “ 2, 3, . . . u, T̂k,b “
p2n ´ p0qn

p2n ´ 1qp0
Δ̂2

k,b. (3.2)
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Fig 2. Histogram for the chi-square data tT̃k,b : k P vbwu when pβ, rq P D1pθq.

Fig 3. Histogram for the chi-square data tT̃k,b : k P vbwu when pβ, rq P D2pθq.

Fig 4. Histogram for the chi-square data tT̃k,b : k P vbwu when pβ, rq falls in the complement
of D1pθq Y D2pθq in the rectangle pp1 ´ θq{2, 1 ´ θq ˆ p0, 4q.
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The statistics T̂k,b are independent within each series and satisfy (see Section 8b
of Rao [20])

T̂k,b „ Fp0,2n´p0pnΔ2
k,bq, k P vbw, b “ 2, 3, . . . .

Note in passing that as b Ñ 8

sup
pμ,ΣqPMb,β,r

b
ÿ

k“1 :ωk“1

´

Δ̂2
k,b ´ Δ̃2

k,b

¯

“ oPpb1´β´θ log bq. (3.3)

“In distribution” closeness of T̃k,b and p0T̂k,b for large b (for details, see

Section 4.1) and the consistency of pΣ
´1

rks as an estimator of Σ´1
rks

allow us to
extend the results obtained for the case of known Σ to the case of unknown Σ.

By the sparsity assumption on the model, only s “ rb1´βs “ opbq statistics
among tT̂k,b : k P vbwu have a noncentral chi-square distribution, and the remain-
ing pb´sq “ b`opbq ones follow a central chi-square distribution. Similarly, only
s “ rb1´βs “ opbq statistics among tT̂k,b : k P vbwu have a noncentral F distribu-
tion, and the remaining pb ´ sq “ b ` opbq ones follow a central F distribution.
The noncentrally distributed statistics tend to take larger values as compared
to the corresponding centrally distributed statistics. Therefore, “large” values of
T̃k,b and T̂k,b would suggest that the kth block of the data is useful and should
be used for classification. These observations lead us to the estimators ω̃k and
ω̂k of ωk, k P vbw, as given below by (3.4) and (4.1).

3.2. Classification rule in the region D1pθq

Let T̃k,b, k P vbw, be the statistics as in (3.1). Consider a classifier ψ̃b defined by
(2.3) for which

ω̃k “ ω̃k,b “ I

´

T̃k,b ą t̃
¯

, k P vbw, (3.4)

called here a selector, is an estimator of ωk “ IpΔ2
k,b ‰ 0q, k P vbw, with the

threshold level t̃ “ t̃
`

Xp2q
˘

ą 0 chosen as follows.
Pick a large number M “ Mb such that

M Ñ 8, b{M Ñ 8, plog bq{M Ñ 0, (3.5)

and consider an equidistant grid of points p1 ´ θq{2 ă β1 ă . . . ă βM ă 1 ´ θ,
where

βm “ mδ, δ „
1 ´ θ

2M
, m P vMw. (3.6)

In view of the above assumptions on M ,

δ Ñ 0, δ log b Ñ 0, b Ñ 8, (3.7)
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yielding for all large enough b

bδ ď const. (3.8)

Next, for all k P vbw and m P vMw, put

ω̃kpβmq “ ω̃k,bpβmq “ I

´

T̃k,b ą p2βm ` εq log b
¯

, (3.9)

where ε “ εb ą 0 satisfies

ε Ñ 0 and ε log b{ log log b Ñ 8 as b Ñ 8. (3.10)

We define an adaptive selector by the formula

ω̃pβm̃q “ pω̃1pβm̃q, . . . , ω̃bpβm̃qq, (3.11)

where m̃ “ m̃b is chosen by Lepski’s method (see Section 2 of Lepski [18]) as
follows, cf. relation (37) in Butucea and Stepanova [4]:

m̃ “ max tm P vMw : dpω̃pβmq, ω̃pβjqq ď vj for all j ď mu , (3.12)

and m̃ “ 1 if the set in (3.12) is empty. Here dpω̃,ωq “
řb

k“1 |ω̃k ´ ωk| is the
Hamming loss that counts the number of positions at which ω̃ “ pω̃kqkPvbw and

ω “ pωkqkPvbw differ, and the quantities vj “ vj,b are set to be vj “ b1´βj {τb, j P

vmw, with a sequence of numbers τb Ñ 8 satisfying τb “ o
´

bε{2 log1´p0{2 b
¯

as

b Ñ 8.
Algorithmically, Lepski’s procedure for choosing m̃ works as follows. We

start by setting m̃ “ 1 and attempt to increase the value of m̃ from 1 to 2.
If dpω̃pβ2q, ω̃pβ1qq ď v1, we set m̃ “ 2; otherwise, we keep m̃ equal to 1. In case
m̃ is increased to 2, we continue the process attempting to increase it further.
If dpω̃pβ3q, ω̃pβ2qq ď v2 and dpω̃pβ3q, ω̃pβ1qq ď v1, we set m̃ “ 3; otherwise, we
keep m̃ equal to 2; and so on. By construction v1 ě v2 ě . . . ě vM . It can be
seen from the proof of (3.13) below that if m0 P vM ´ 1w is such that the true
β P pβm0 , βm0`1s, then m̃ ě m0 with high probability.

The next result shows that, asymptotically, ω̃pβm̃q identifies correctly most
of the noncentrally distributed chi-square statistics among tT̃k,b : k P vbwu.

Lemma 1. Consider the prb1´βs, 2r log bq-sparse block-diagonal normal model
with known covariance matrix Σ, and let the statistics tT̃k,b : k P vbw, b “

2, 3, . . .u be as defined in (3.1). Then, the selector ω̃pβm̃q in (3.11) based on
tT̃k,b : k P vbwu with m̃ defined by (3.12) is an almost full selector in the sense
that for all p1 ´ θq{2 ă β ă 1 ´ θ and β ă r ă 4

sup
pμ,ΣqPMb,β,r

E dpω̃pβm̃q,ωq “ opb1´β
q, b Ñ 8. (3.13)

Lemma 1, whose proof is given in Section 7, says that in the region D1pθq the
maximum Hamming risk of ω̃pβm̃q is small relative to the number of noncentrally
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distributed statistics among tT̃k,b : k P vbwu. This suggests that in the definition

of the classifier ψ̃b given by (2.3) and (3.4) the threshold t̃ “ t̃b should be set at
the level

t̃ “ p2βm̃ ` εq log b. (3.14)

The next result shows that in the region D1pθq the classification rule ψ̃b defined
by (2.3), (3.4), and (3.14) is asymptotically optimal.

Theorem 1. Let Xp1q “ pX
p1q

j qjPvnw and Xp2q “ pX
p2q

j qjPvnw be training samples

of size n in the prb1´βs, 2r log bq-sparse block-diagonal normal model, with n and
b related through (2.5) for a given number θ P p0, 1q, and let X0 be a new
observation to be classified. Assume that the covariance matrix Σ is known.
Then, for all pβ, rq P D1pθq, the classifier ψ̃b defined by (2.3), (3.4), and (3.14)
satisfies

lim
bÑ8

sup
pμ,ΣqPMb,β,r

Rpψ̃bq “ 0.

Proof. For a number θ P p0, 1q, let pβ, rq be an arbitrary point in the region
D1pθq. It suffices to show that

lim
bÑ8

sup
pμ,ΣqPMb,β,r

EΠ2pψ̃bq “ 0, lim
bÑ8

sup
pμ,ΣqPMb,β,r

EΠ1p1 ´ ψ̃bq “ 0, (3.15)

where EΠi denotes the expectation with respect to the joint distribution of Xp1q,
Xp2q and X0 when X0 „ Πi for i P v2w.

For b “ 2, 3, . . ., denote

Ṽk “ Ṽk,b “ XJ
0,rksΣ

´1
rks

pμrks ´ p1{2qpμJ
rksΣ

´1
rks

pμrks, k P vbw, (3.16)

and observe that the classifier ψ̃b can be expressed as

ψ̃b “ I

#

b
ÿ

k“1 : ω̃k“1

Ṽk ď 0

+

,

where ω̃k “ ω̃kpβm̃q is the kth component of ω̃pβm̃q in (3.11). Denote also

Vk “ Vk,b “ XJ
0,rksΣ

´1
rks

μrks ´ p1{2qμJ
rksΣ

´1
rks

μrks, k P vbw, (3.17)

and note that, under Π2, Vk „ Np0

´

Δ2
k,b{2,Δ2

k,b

¯

for all k P vbw, b “ 2, 3, . . ..

Therefore, in view of the identity

b
ÿ

k“1 : ω̃k“1

Ṽk ´

b
ÿ

k“1 :ωk“1

Vk “

b
ÿ

k“1 :ωk“1

pṼk ´ Vkq `

b
ÿ

k“1 :ωk“0,ω̃k“1

Ṽk

´

b
ÿ

k“1 :ωk“1,ω̃k“0

Ṽk, (3.18)
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we can write

#

b
ÿ

k“1 : ω̃k“1

Ṽk ď 0

+

“

#

b
ÿ

k“1 :ωk“1

pVk ´ EΠ2pVkqq `

b
ÿ

k“1 :ωk“1

pṼk ´ Vkq

`

b
ÿ

k“1 :ωk“0,ω̃k“1

Ṽk ´

b
ÿ

k“1 :ωk“1,ω̃k“0

Ṽk ď ´
1

2

b
ÿ

k“1 :ωk“1

Δ2
k,b

+

, (3.19)

where, by assumption and the fact that n „ bθ, for all pβ, rq P D1pθq, as b Ñ 8

sup
pμ,ΣqPMb,β,r

b
ÿ

k“1 :ωk“1

Δ2
k,b “ O

`

b1´β´θ log b
˘

. (3.20)

The following result shows that the main contribution to
řb

k“1 : ω̃k“1 Ṽk is made

by the term
řb

k“1 :ωk“1 Vk.

Lemma 2. For any θ P p0, 1q and all pβ, rq P D1pθq, as b Ñ 8

sup
pμ,ΣqPMb,β,r

b
ÿ

k“1 :ωk“1

pṼk ´ Vkq “ oPΠ2

`

b1´β´θ log b
˘

, (3.21)

sup
pμ,ΣqPMb,β,r

b
ÿ

k“1 :ωk“1,ω̃k“0

Ṽk “ oPΠ2

`

b1´β´θ log b
˘

, (3.22)

sup
pμ,ΣqPMb,β,r

b
ÿ

k“1 :ωk“0,ω̃k“1

Ṽk “ oPΠ2

`

b1´β´θ log b
˘

. (3.23)

The proof of Lemma 2, where the key role is taken by Lemma 1, is given in
Section 7. Next, for b “ 2, 3, . . ., let us introduce the event

Ab “

#ˇ

ˇ

ˇ

ˇ

ˇ

b
ÿ

k“1 : ω̃k“1

Ṽk ´

b
ÿ

k“1 :ωk“1

Vk

ˇ

ˇ

ˇ

ˇ

ˇ

ą
1

4

b
ÿ

k :ωk“1

Δ2
k,b

+

.

Then, by (3.19) and Chebyshev’s inequality, for all sufficiently large b

sup
pμ,ΣqPMb,β,r

PΠ2

´

ÿb

k“1 : ω̃k“1
Ṽk ď 0

¯

ď sup
pμ,ΣqPMb,β,r

PΠ2

˜

b
ÿ

k“1 :ωk“1

pVk ´ EΠ2pVkqq ď ´
1

4

b
ÿ

k :ωk“1

Δ2
k,b

¸

` sup
pμ,ΣqPMb,β,r

PΠ2 pAbq ď sup
pμ,ΣqPMb,β,r

řb
k“1 :ωk“1 Δ

2
k,b

´

p1{4q
řb

k :ωk“1 Δ
2
k,b

¯2

` sup
pμ,ΣqPMb,β,r

PΠ2 pAbq .
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Together with relations (3.18) and (3.20), and Lemma 2 applied to the term
suppμ,ΣqPMb,β,r

PΠ2 pAbq, this upper bound yields, as b Ñ 8

sup
pμ,ΣqPMb,β,r

EΠ2pψ̃bq “ O
`

pb1´β´θ log bq´1
˘

` op1q “ op1q,

uniformly in pβ, rq P D1pθq for all θ P p0, 1q. This proves the first relation
in (3.15). The second relation in (3.15) is proved completely analogously. The
proof is complete.

Remark 1. Inspection of the proof of Theorem 1 shows that it can be extended
to a more realistic case of unequally-sized blocks Σr1s, . . . ,Σrbs of respective sizes
p1 ˆ p1, . . . , pb ˆ pb, where pk ě 3, k P vbw, are uniformly bounded integers such

that
řb

k“1 pk “ p. This is so because, in view of relations (7.2)–(7.4) in the
proof of Lemma 1, for large b the tails of the central and noncentral chi-square
statistics tT̃k,b : k P vbwu are not essentially affected by their degrees of freedom.

3.3. Classification rule in the region D2pθq

In the region D2pθq, where the parameter r is small and feature selection is
impossible, the classification problem is very hard (see Figure 3). We suggest
that, in this region of pβ, rq-values, the threshold t̃ of the classifier ψ̃b given by
(2.3) and (3.4) be chosen by using the weighted Kolmogorov–Smirnov statistic
with a suitable weight function q. Namely, we set the threshold t̃ “ t̃q at the
level (see formula (3.29) below)

t̃q “ T̃
pb`1´k̃qq

where T̃pkq is the kth order statistic of the data tT̃k,b : k P vbwu and the in-

dex k̃q is given by formula (3.28). The idea behind this choice of t̃q is tightly
connected to the problem of signal detection in sparse chi-square mixtures by
means of weighted Kolmogorov-Smirnov tests and is detailed below. It is similar
to the suggestion of Donoho and Jin [10]; the main difference is a more general
classification model and a different choice of the weight function used.

In view of the intrinsic difficulty of the problem, based on heuristic arguments,
we propose a classifier that numerically works well. As seen from Section 5, our
classifier ψ̃b given by (2.3), (3.4), and (3.29) works numerically better than the
procedure of Donoho and Jin [10]. There also exists a Donoho–Jin type classifier
proposed by Fan et al. [11] for the situation when the inverseΣ´1 of a covariance
matrix Σ admits an “acceptable” estimator which selects useful information by
means of truncated higher-criticism thresholding. Its quality, however, is hard to
assess because the numerical results in Section 4 of Fan et al. [11] are only given
for the region where feature selection is possible and where the classification
problem is relatively easy, whereas the obtained analytical results for the whole
classification region are “strongly asymptotic”, and it is not clear for what p the
asymptotics start to give reasonably accurate descriptions of the actual finite
sample performance.
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Assume that pβ, rq P D2pθq and consider the worst case scenario when all
nonzero noncentrality parameters nΔ2

k,b, k P vbw, are equal to 2r log b with some

ρ˚pβq ă r ă β. Then, asymptotically, the statistics tT̃k,b : k P vbwu obey a
chi-square mixture model

T̃1,b, . . . , T̃b,b
iid
„ p1 ´ εbqχ2

p0
p0q ` εbχ

2
p0

pγbq, (3.24)

where εb “ b´β for 0 ă β ă 1 and γb “ 2r log b for ρ˚pβq ă r ă β. Therefore,
we may consider an axillary problem of testing the null hypothesis H0 versus
the alternative (more precisely, a sequence of alternatives) H1,b given by

H0 : t1, . . . , tb
iid
„ χ2

p0
p0q,

H1,b : t1, . . . , tb
iid
„ p1 ´ εbqχ2

p0
p0q ` εbχ

2
p0

pγbq,

where εb “ b´β for 0 ă β ă 1, p0 is as before, and γb “ 2r log b for 0 ă r ă 1.
Next, we transform the statistics tk to the uniformly distributed on the interval
p0, 1q statistics sk “ 1 ´ Gp0ptk; 0q, k P vbw, where Gνpx; γq “ Ppχ2

νpγq ď xq,
x P R. In terms of a common cdf F puq of the sk’s, the problem of testing H0

versus H1,b is equivalent to that of testing

H0 : F puq “ F0puq, the uniform Up0, 1q cdf

versus a sequence of upper-tailed alternatives

H1,b : F puq “ F0puq ` εb
`

p1 ´ uq ´ Gp0pG´1
p0

p1 ´ u; 0q; γbq
˘

ą F0puq.

In connection with testing H0 versus H1,b (or, equivalently, H0 versus H1,b),
consider the function ρpβq defined in (2.11). It is known (see, for example, Sec-
tion 4 of Stepanova and Pavlenko [24]) that if r ą ρpβq then the hypothe-
ses separate asymptotically, whereas if r ă ρpβq then these hypotheses merge
asymptotically, that is, no consistent test exists. More precisely, let

Hbpuq “ b´1
b
ÿ

k“1

Ipsk ă uq, 0 ă u ă 1,

be the empirical distribution function (edf) based on the sk’s and for σ “

´1{2, 0, 1{2 let

qσpuq “
a

up1 ´ uq plog logp1{pup1 ´ uqqqq
1{2`σ

, 0 ă u ă 1. (3.25)

The function q´1{2puq “
a

up1 ´ uq is a regularly varying function which is
known in the literature as the standard deviation proportional (SDP) weight
function. The function q0puq “

a

up1 ´ uq log logp1{pup1 ´ uqqq is an Erdős-
Feller-Kolmogorov-Petrovski (EFKP) upper-class function of a Brownian bridge;
the importance of such weight functions in the theory of weighted quantile and
empirical processes has been demonstrated by Csörgő et al. [7]. The function
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q1{2puq “
a

up1 ´ uq log logp1{pup1´uqqq is an example of the Chibisov–O’Reilly
function. For the use of these three classes of functions in the theory of weighted
quantile and empirical processes, we refer to Csörgő et al. [7] and Csörgő and
Horváth [8]. It is known (see Donoho and Jin [9] and Stepanova and Pavlenko
[24]) that the tests based on the (one-sided) weighted Kolmogorov-Smirnov
statistics

D`
b pqσq “ sup

0ăuăα0

?
bpHbpuq ´ uq

qσpHbpuqq
, σ “ ´1{2, 0, 1{2, (3.26)

where α0 P p0, 1{2q is a small number (say, α0 “ 0.2) chosen by the statisti-
cian, distinguish between H0 and H1,b when r ą ρpβq, with H0 being rejected
for “small” values of D`

b pqσq. Moreover, the use of weight functions q0 and q1{2

makes the problem of distinguishing between the two hypotheses easier, as com-
pared to using q´1{2. This is so because, under H0, the statistics D`

b pq0q and

D`
b pq1{2q are finite with probability 1, whereas the statistic D`

b pq´1{2q intro-
duced by Donoho and Jin [9] tends to infinity, in probability and even almost
surely, under both H0 and H1,b, making the problem of separating these two
hypotheses relatively hard.

Let sp1q ă sp2q ă . . . ă spbq be the order statistics of the sample s1, . . . , sb.
Then, as each weight function qσ is monotone on p0, α0q for small α0 P p0, 0.2q,
the statistic D`

b pqσq is asymptotically equivalent to the statistic

D`
b pqσq “ max

1ďkďrα0bs

?
b
`

k{b ´ spkq

˘

qσpk{bq
, σ “ ´1{2, 0, 1{2.

In addition to weights qσpuq, σ “ ´1{2, 0, 1{2, we also explore one more weight
function:

q1{4puq “ pup1 ´ uqq
1{4, 0 ă u ă 1, (3.27)

which is an example of the Chibisov–O’Reilly function.
As shown in Ingster et al. [16] and Fan et al. [11], in somewhat different yet

similar settings, if H0 and H1,b are indistinguishable (merge asymptotically),
then successful classification cannot be achieved. It can only be achieved in the
region of r ą ρ˚pβq ą ρpβq with ρ˚pβq as in (2.12). Thus, recalling (3.24),
we arrive at the following idea of selecting useful feature blocks by means of
D`

b pqσq-thresholding in the region D2pθq. This idea is similar to that of Donoho
and Jin [10] to make feature selection via higher criticism thersholding, that is,
by using the statistic, cf. (3.26),

HCb “ sup
0ăuăα0

?
bpHbpuq ´ uq
a

up1 ´ uq
,

which is the statistic D`
b pq´1{2q in our notation.

First, consider the statistics Sk,b “ 1 ´ Gp0pT̃k,b; 0q, k P vbw, and note that,
under H0, the transformed statistics tSk,b : k P vbw, b “ 2, 3, . . .u form a triangu-
lar array of iid uniform Up0, 1q random variables. Next, denote by Spkq the kth
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order statistic of the sample tSk,b : k P vbwu and define the index k̃q by

k̃q “ argmax
1ďkďrα0bs

?
bpk{b ´ Spkqq

qpk{bq
, (3.28)

where q is one of the weight functions qσ with σ “ ´1{2, 0, 1{2, as given in
(3.25) or q1{4 as in (3.27). Finally, we take S

pk̃qq
as a (random) feature selection

threshold, that is, for all l P v2w, j P vnw, and k P vbw, the kth sub-vector X
plq
j,rks

of vector X
plq
j is deemed useful for classification if Sk,b is smaller than S

pk̃qq
or,

equivalently, if T̃k,b is larger than t̃q, where

t̃q “ G´1
p0

p1 ´ S
pk̃qq

; 0q “ T̃
pb`1´k̃qq

. (3.29)

This choice of t̃q is motivated by the fact that, in the region D2pθq, H0 and
H1,b are distinguished by the statistic D`

b pqσq (see Section 4 of Stepanova and

Pavlenko [24]). Note that the classifier ψ̃b defined by (2.3), (3.4), and (3.29) is
fully adaptive in the parameters of the model.

The behaviour of the objective function Kq,bpSpkqq :“
?
bpk{b´Spkqq

qpk{bq
on the in-

terval p0, 0.2q for four different weight functions q and the corresponding thresh-
olds S

pk̃qq
are shown on Figure 5. Figure 6 shows a histogram for T̃k,b, k P vbw,

and the threshold t̃q for the four weight functions q of our interest. As seen
from Figure 6, the threshold obtained by using the SDP weight function q´1{2

(red line) retains too many useless feature blocks for future use in classification,
whereas the thresholds that correspond to the Chibisov–O’Reilly weight func-
tions q1{2 and q1{4 (yellow and green lines) appear to ignore a certain number
of useful feature blocks contained in the data. The threshold obtained by using
the EFKP upper-class weight function q0 (blue line) is a compromiser that gives
a better classification result (see Table 1 in Section 5).

Note in passing that, in the rare and weak regime in question, various false
discovery rate (FDR) controlling multiple testing procedures, including the
Benjamini–Hochberg rule, provide very few discoveries and thus lead to high
classification error. The desirable properties of FDR controlling procedures in
multiple testing have been analytically justified mainly for the situations where
rare signals are strong.

4. Classification when Σ is unknown

4.1. Classification rule in the region D0
1pθq

Let T̂k,b, k P vbw, be the statistics as in (3.2). In the present settings when Σ is

unknown, consider a classifier ψ̂b defined by (2.4) for which

ω̂k “ ω̂k,b “ I

´

T̂k,b ą t̂
¯

, k P vbw, (4.1)
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Fig 5. Objective function Kq,bpSpkqq on p0, 0.2q with four different weights q for the trans-
formed observations tSk,b : k P vbwu in the region D2pθq with θ “ 0.5. The threshold S

pk̃qq
is

shown with yellow, green, blue, and red lines when q is q1{2, q1{4, q0, and q´1{2, respectively.

Fig 6. Threshold t̃q as in (3.29) with four different weights q for the chi-square observations

tT̃k,b : k P vbwu in the region D2pθq with θ “ 0.5. The threshold t̃q is shown with yellow, green,
blue, and red vertical lines when q is q1{2, q1{4, q0, and q´1{2, respectively.

with some threshold level t̂ “ t̂
`

Xp1q;Xp2q
˘

ą 0. We need to set up the threshold

t̂ in such a way that the maximum (over all pμ,Σq P Mb,β,r and all pβ, rq P

D1pθq) risk of ψ̂b is small when b is large. In the case of unknown Σ, we will
have to narrow down the region D1pθq of pβ, rq-values, which is the price paid
for not knowing Σ.

Note that for all b “ 2, 3, . . . the statistics T̂k,b, k P vbw, are independent
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and there exists a set S Ă vbw with s “ rb1´βs elements such that T̂k,b „

Fp0,2n´p0pnΔ2
k,bq for all k P S, and T̂k,b „ Fp0,2n´p0p0q for all k R S. For x P R,

let
Fν1,ν2px; γq “ Ppν1Fν1,ν2pγq ď xq, Gνpx; γq “ Ppχ2

ν ď xq.

Then, it follows from formula (6.8) of Siotani [22] that for any x ě 0, any ν1 ą 0,
and all large enough ν2 and γ, with γ tending to infinity not very fast,

Fν1,ν2px; γq “ Gν1px; γq ´
1

4ν2
tν1pν1 ´ 2qGν1px; γq ´ 2ν1pν1 ´ γqGν1`2px; γq

` rpν1 ´ γqpν1 ` 2 ´ γq ´ 2pν1 ` 1qγsGν1`4px; γq

` 2γpν1 ` 2 ´ γqGν1`6px; γq ` γ2Gν1`8px; γq
(

`Opν´2
2 γ4

q. (4.2)

Relation (4.2) shows that for large b, when multiplied by a constant factor p0,
the F -distributed statistics tT̂k,b : k P vbwu in (3.2) are well approximated by

the chi-square statistics tT̃k,b : k P vbwu in (3.1).
For all 0 ă θ ă 1, we now define the two subregions D0

1pθq and D0
2pθq of the

classification region as follows:

D0
1pθq “ tpβ, rq P R

2 : p1 ´ θq{2 ă β ă 1 ´ θ, β ` θ{2 ă r ă 4u Ă D1pθq,

D0
2pθq “ tpβ, rq P R

2 : p1 ´ θq{2 ă β ă 1 ´ θ, ρ˚
pβq ă r ď β ` θ{2u Ą D2pθq.

In the region D0
1pθq, we define a selector ω̂pβm̂q “ pω̂kpβm̂qqkPvbw based on tT̂k,b :

k P vbwu similar to the one in (3.11)–(3.12). Namely, we first pick a large number
M “ Mb, the equidistant grid points p1 ´ θq{2 ă β1 ă . . . ă βM ă 1 ´ θ, and
a small number δ “ δb as in (3.5)–(3.7). Next, for all k P vbw and m P vMw, we
set, cf. (3.9),

ω̂kpβmq “ ω̂k,bpβmq “ I

´

T̂k,b ą p´1
0 p2βm ` εq log b

¯

,

where ε “ εb ą 0 satisfies (3.10), and define an adaptive selector by the formula

ω̂pβm̂q “ pω̂1pβm̂q, . . . , ω̂bpβm̂qq, (4.3)

where m̂ “ m̂b is chosen by Lepski’s method as follows, cf. (3.12):

m̂ “ max tm P vMw : d pω̂pβmq, ω̂pβjqq ď vj for all j ď mu , (4.4)

and m̂ “ 1 if the set in (4.4) is empty. Here the quantities vj “ vj,b are set
to be vj “ b1´βj {τb, j P vmw, with a sequence of numbers τb Ñ 8 satisfying

τb “ o
´

bε{2 log1´p0{2 b
¯

as b Ñ 8.

It is not difficult to show, cf. Lemma 1, that the selector ω̂pβm̂q given by
(4.3) is an almost full selector in the sense that for all p1 ´ θq{2 ă β ă 1 ´ θ
and β ă r ă 4

sup
pμ,ΣqPMb,β,r

E d pω̂pβm̂q,ωq “ opb1´β
q, b Ñ 8.
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Fig 7. The curve r “ ρ˚pβq divides the rectangle p1 ´ θq{2, 1 ´ θq ˆ p0, 4q into classification
and no classification regions. In case of estimated covariance matrix, the classification region
splits further into two subregions D0

1pθq and D0
2pθq.

For the purpose of classification, however, the threshold that would exclude
most of the useless blocks from the classification procedure needs to be higher
and, as a result of this, the region where the classifier ψ̂b does its job properly
is narrowed down, as compared to the region D1pθq where ψ̃b works well, to

become D0
1pθq. Namely, return to the definition of the classifier ψ̂b given by

(2.4) and (4.1), and define the threshold t̂ “ t̂b in (4.1) by

t̂ “ p´1
0 p2βm̂ ` θ ` εq log b. (4.5)

The next theorem is an analogue of Theorem 1 for the case of estimated Σ. It
shows that in the region D0

1pθq of pβ, rq-values the classification rule ψ̂b defined
by (2.4), (4.1), and (4.5) provides successful classification.

Theorem 2. Let Xp1q “ pX
p1q

j qjPvnw and Xp2q “ pX
p2q

j qjPvnw be training samples

of size n in the prb1´βs, 2r log bq-sparse block-diagonal normal model, with n and
b related through (2.5) for a given number θ P p0, 1q, and let X0 be a new
observation to be classified. Assume that the covariance matrix Σ is unknown.
Then, for all pβ, rq P D0

1pθq, the classifier ψ̂b defined by (2.4), (4.1), and (4.5)
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satisfies

lim
bÑ8

sup
pμ,ΣqPMb,β,r

Rpψ̂bq “ 0.

Proof. The proof of Theorem 2 is similar to that of Theorem 1 yet more technical

due the presence of the estimator pΣ
´1

rks of Σ´1
rks

, k P vbw, in the definition of ψ̂b.

For a number θ P p0, 1q, let pβ, rq be an arbitrary point in the region D0
1pθq. We

need to show that

lim
bÑ8

sup
pμ,ΣqPMb,β,r

EΠ2pψ̂bq “ 0, lim
bÑ8

sup
pμ,ΣqPMb,β,r

EΠ1p1 ´ ψ̂bq “ 0, (4.6)

where, as in the proof of Theorem 1, EΠi denotes the expectation with respect
to the joint distribution of Xp1q, Xp2q and X0 when X0 „ Πi for i P v2w. As the
proofs of both relations in (4.6) go along the same lines, we shall only prove the

first one. Using the notation Δ̂2
k,b “ pμJ

rks
pΣ

´1

rkspμrks, for k P vbw, b “ 2, 3, . . ., we
put

V̂k “ V̂k,b “ XJ
0,rks

pΣ
´1

rkspμrks ´ p1{2qΔ̂2
k,b. (4.7)

Recall also the random variables Vk defined in (3.17) that, under Π2, satisfy

Vk „ Np0pΔ2
k,b{2,Δ2

k,bq for all k P vbw, b “ 2, 3, . . .. Then, we can express ψ̂b as

ψ̂b “ I

#

b
ÿ

k“1 : ω̂k“1

V̂k ď 0

+

,

where ω̂k “ ω̂kpβm̂q is the kth component of ω̂pβm̂q in (4.3) and, cf. (3.19),

#

b
ÿ

k“1 : ω̂k“1

V̂k ď 0

+

“

#

b
ÿ

k“1 :ωk“1

pVk ´ EΠ2pVkqq `

b
ÿ

k“1 :ωk“1

pV̂k ´ Vkq

`

b
ÿ

k“1 :ωk“0,ω̂k“1

V̂k ´

b
ÿ

k“1 :ωk“1,ω̂k“0

V̂k ď ´
1

2

b
ÿ

k“1 :ωk“1

Δ2
k,b

+

, (4.8)

with the term
řb

k“1 :ωk“1 Δ
2
k,b obeying relation (3.20). As seen from the next

result, the main contribution to
řb

k“1 : ω̂k“1 V̂k is made by
řb

k“1 :ωk“1 Vk.

Lemma 3. For all θ P p0, 1q, uniformly in pβ, rq P D0
1pθq, as b Ñ 8

sup
pμ,ΣqPMb,β,r

b
ÿ

k“1 :ωk“1

pV̂k ´ Vkq “ oPΠ2

`

b1´β´θ log b
˘

, (4.9)

sup
pμ,ΣqPMb,β,r

b
ÿ

k“1 :ωk“1,ω̂k“0

V̂k “ oPΠ2

`

b1´β´θ log b
˘

, (4.10)

sup
pμ,ΣqPMb,β,r

b
ÿ

k“1 :ωk“0,ω̂k“1

V̂k “ oPΠ2

`

b1´β´θ log b
˘

. (4.11)
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The proof of Lemma 3 is given in Section 7. Now, with Lemma 3 available,
the rest of the proof of Theorem 2 resembles that of Theorem 1 after Lemma
2.

Remark 2. Inspection of the proof of Theorem 2 shows that it can be extended
to the case of blocks Σr1s, . . . ,Σrbs of different sizes p1 ˆ p1, . . . , pb ˆ pb, where

pk ě 3, k P vbw, are uniformly bounded integers such that
řb

k“1 pk “ p. Indeed,

by (4.2) and relations (7.2)–(7.4), for large b, the tails of the statistics T̂k,b „

Fpk,2n´pk
pnΔ2

k,bq, k P vbw, are not essentially affected by the change of the
numerator degree of freedom pk and the denominator degree of freedom p2n´pkq

by a finite (independent of n) integer number. In this case, the sequence of
numbers τb which defines the quantities vj “ b1´βj {τb, j P vmw, in (3.12) and

(4.4) is to be chosen to have τb “ o
´

bε{2 log1´p̄{2 b
¯

as b Ñ 8, where p̄ “

maxpp1, . . . , pbq.

4.2. Classification rule in the region D0
2pθq

We shall now discuss a suitable choice for the threshold t̂ (for notational sim-

plicity, we suppress the dependence of t̂ on b) of the classifier ψ̂b defined by (2.4)
and (4.1). By the sparsity assumption on the model, only s “ rb1´βs statistics
among tT̂k,b : k P vbwu have a noncentral F distribution, whereas the remaining
pb ´ sq “ b ` opbq statistics are centrally F distributed. In view of (4.2), for all
k P vbw and all large enough b, a central random variable p0Fp0,2n´p0p0q is close
in distribution to a χ2

p0
p0q, and a noncentral random variable p0Fp0,2n´p0pnΔ2

k,bq

is close in distribution to a χ2
p0

pnΔ2
k,bq. Therefore, similar to the case of known

Σ, we may consider the problem of testing the hypotheses

H0 : t1, . . . , tb
iid
„ Fp0,2n´p0p0q,

H1,b : t1, . . . , tb
iid
„ p1 ´ εbqFp0,2n´p0p0q ` εbFp0,2n´p0pγbq,

where εb “ b´β for 0 ă β ă 1 and γb “ 2r log b for 0 ă r ă 1, by means of the
weighted Kolmogrov–Smirnov test statistics.

To this end, transform the statistics tk to the uniformly Up0, 1q distributed
under H0 statistics

uk “ 1 ´ Fp0,2n´p0ptk; 0q, k P vbw,

where Fν1,ν2px; γq “ PpFν1,ν2pγq ď xq, x P R. In terms of a common cdf F puq of
the uk’s, the problem of testing H0 versus H1,b is equivalent to that of testing

H0 : F puq “ F0puq, the uniform Up0, 1q cdf

versus a sequence of upper-tailed alternatives

H1,b : F puq “ F0puq`εb
`

p1´uq´Fp0,2n´p0pF´1
p0,2n´p0

p1´u; 0q; γbq
˘

ąF0puq.
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Similar to the problem of testing H0 versus H1,b, the hypotheses H0 and H1,b

are separated by a weighted Kolmogorov–Smirnov test statistic

D`
b pqq “ max

1ďkďrα0bs

?
bpk{b ´ upkqq

qpk{bq
,

where q is one of the weight functions qσ, σ “ ´1{2, 0, 1{2, of our interest, as
defined in (3.25), or function q1{4 as in (3.27).

Similar to the choice of threshold t̃ “ t̃q in Section 3.3, we now choose the

threshold t̂ “ t̂q to be that order statistic of the sample tT̂k,b : k P vbwu for which
the objective function under the maximum sign inD`

b pqq based on the translated

observations Uk,b “ 1´Fp0,2n´p0pT̂k,b; 0q, k P vbw, in maximized. Namely, using
relation (4.2) and the arguments that have led us to the threshold t̃q in (3.29),
we define the threshold t̂q “ t̂qpXp1q,Xp2qq by

t̂q “ F´1
p0,2n´p0

p1 ´ U
pk̂qq

; 0q.

where the index 1 ď k̂q ď rα0bs is chosen as, cf. (3.28),

k̂q “ argmax
1ďkďrα0bs

?
bpk{b ´ Upkqq

qpk{bq
,

and Upkq is the kth order statistic of the sample tUk,b : k P vbwu. Alternatively,
we can write

t̂q “ T̂
pb`1´k̂qq

. (4.12)

If T̂k,b ą t̂q, the kth block is rendered useful and hence is retained to contribute

to ψ̂b. The classifier ψ̂b defined by (2.4), (4.1), and (4.12) is fully adaptive in
the parameters of the model.

5. Numerical study

Let ψ̃
p1q

b and ψ̃
p2q

b be the classifiers defined by (2.3) and (3.4) with the thresholds

as in (3.14) and (3.29), respectively. Also, let ψ̂
p1q

b and ψ̂
p2q

b be the classifiers given
by (2.4) and (4.1) with the thresholds specified by (4.5) and (4.12), respectively.

In the regions D1pθq and D0
1pθq, with θ “ 0.5, p0 “ 3, b “ 103 and θ “ 0.5,

p0 “ 5, b “ 104, and various configurations of the parameters β and r, the

estimated risksRpψ̃
p1q

b q andRpψ̂
p1q

b q obtained by averaging over 100 independent
cycles of simulations, were found to be zero up to three decimal places. Note
that the choice of θ “ 0.5 leads to an interesting case when n “ b1{2 is much
smaller than b for large b.

We now present some simulation results related to high-dimensional classi-
fication in the regions D2pθq and D0

2pθq, where feature selection is impossible.

Table 1 gives the numerical summary of the performance of the classifiers ψ̃
p2q

b
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Table 1

Estimated risk Rpψq “
1
2
EΠ2pψq `

1
2
EΠ1 p1 ´ ψq for ψ “ ψ̃

p2q

b and ψ “ ψ̂
p2q

b

Weight function Restpψ̃
p2q

b q Restpψ̂
p2q

b q

q´1{2puq “
a

up1 ´ uq 0.2786 0.3039

q0puq “
a

up1 ´ uq log logp1{pup1 ´ uqqq 0.1579 0.1721

q1{2puq “
a

up1 ´ uq log logp1{pup1 ´ uqqq 0.2417 0.2418

q1{4puq “ pup1 ´ uqq1{4 0.1963 0.1987

All blocks 0.2085 0.2122
Only informative blocks 0.0014 0.0018

(when Σ is known) and ψ̂
p2q

b (when Σ is unknown) in the region where variable
selection is impossible for four different choices of weight function q in (3.29)
and (4.12). To run simulations, we picked b “ 104, θ “ 0.5, p0 “ 3, β “ 0.375,
r “ 0.25, and averaged the results over 100 simulation cycles. It is seen that, in

the region where variable selection is impossible, the classifiers ψ̃
p2q

b and ψ̂
p2q

b , for
which the selection of useful blocks is done by means of weighted Kolmogorov–
Smirnov thresholding, works best when the EFKP weight function q0puq is used.
At the same time, the SDP weight function q´1{2puq employed by Donoho and
Jin [10] in a similar context does not appear to be a good choice.

6. Concluding remarks

This work was inspired by the need for accurate parsimonious classification
procedures in sparse high-dimensional settings. Instead of imposing the usual
(and often unrealistic) assumption of mutual independence of feature variables,
we suggest a different approach by allowing some local dependence, which is
modelled by means of a block-diagonal covariance matrix with blocks of possibly
different sizes. The assumption on a block-diagonal covariance matrix allows for
a variety of within-block covariance structures. The proposed framework has
some definite advantages. In particular, it enables to obtain an accurate classifier
with incorporated group-wise adaptive feature selector.

The sparse classification model at hand is described by several known pa-
rameters, including θ and p0, and two unknown parameters β and r. For each of
the two assumptions regarding the covariance matrix Σ (known or unknown),
depending on the location of the point pβ, rq inside the classification region, we

have proposed two different classifiers: ψ̃
p1q

b and ψ̃
p2q

b when Σ is known, and ψ̂
p1q

b

and ψ̂
p2q

b when Σ is unknown. In certain subregions of the classification region,

the classifiers ψ̃
p1q

b and ψ̂
p1q

b were shown to be asymptotically optimal in provid-
ing successful classification (see Theorems 1 and 2). For small values of r, when

the problem of classification is very difficult, the adaptive procedures ψ̃
p2q

b and

ψ̂
p2q

b were proposed and studied numerically.
Although all our classifiers are adaptive, that is, their definitions do not

involve β and r, the application of ψ̃
p1q

b and ψ̃
p1q

b requires that the respective
assumptions r ą β and r ą β ` θ{2 be valid. If one cannot guarantee that r
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is large enough to use ψ̃
p1q

b and ψ̂
p1q

b , we would recommend to use the classifier

ψ̃
p2q

b in case of known Σ and the classifier ψ̂
p2q

b in case of estimated Σ. If we are

in a position to assume that r ą 1, then the classifiers ψ̃
p1q

b and ψ̂
p1q

b , that work
well for both equally-sized and unequally-sized blocks, should be used.

7. Proof of Lemmas

Proof of Lemma 1. The proof is largely based on the fact that if index m0 P

vM ´ 1w is such that β P pβm0 , βm0`1s, then with high probability m̃ ě m0,
where m̃ is given by (3.12). To verify this fact, Bernstein’s inequality will be
used.
Fact 1. Bernstein’s inequality. If X1, . . . ,Xb, b P N, are independent random
variables such that for all i P vbw and for some H ą 0

EpXiq “ 0 and |EpX
m
i q| ď

EpX2
i q

2
Hm´2m! ă 8, m “ 2, 3, . . . , (7.1)

then

max tP pSb ě tq ,P pSb ď ´tqu ď

"

exp
`

´t2{4D2
b

˘

if 0 ď t ď D
2
b{H,

exp p´t{4Hq if t ě D2
b{H,

where Sb “
řb

i“1 Xi and D
2
b “

řb
i“1 EpX2

i q.

Remark 3. (i) This version of Bernstein’s inequality can be found on pages
162–166 of [3] and in Section 2.2 of [19]. (ii) For independent random variables
X1, . . . ,Xb with the properties EpXiq “ 0 and |Xi| ď L, i P vbw, for some
L ą 0, the Bernstein condition (7.1) holds with H “ L{3. (iii) Below Bernstein’s
inequality will be applied for the case of t ě D

2
b{H.

The following asymptotics for the chi-square tail probabilities will also be of
great help: for any ν ě 1 as b Ñ 8

P
`

χ2
νp0q ą 2s log b

˘

“ O
´

b´s logν{2´1 b
¯

, 0 ă s ă 8, (7.2)

P
`

χ2
νp2r log bq ą 2s log b

˘

“ O
´

b´p
?
s´

?
rq

2

log´1{2 b
¯

, 0 ă r ă s ă 8, (7.3)

P
`

χ2
νp2r log bq ď 2s log b

˘

“ O
´

b´p
?
s´

?
rq

2

log´1{2 b
¯

, 0 ă s ă r ă 8. (7.4)

The first two relations follow from formula (5.5) in Donoho and Jin [9]. The
third one can be obtained by using relations (1) and (2) in Han [14] which give
an expression of the cdf of a non-central chi-square distribution with odd degrees
of freedom in terms of the cdf and pdf of the standard normal distribution.

Consider the selector ω̃pβm̃q “ pω̃1pβm̃q, . . . , ω̃bpβm̃qq given by (3.9)–(3.12).
Let indexm0 be such that the true (but unknown) parameter β P pp1´θq{2, 1´θq

satisfies β Ppβm0 , βm0`1s. Using the law of total expectation, we can write

sup
pμ,ΣqPMb,β,r

bβ´1E dpω̃pβm̃q,ωq
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ď sup
pμ,ΣqPMb,β,r

bβ´1E pdpω̃pβm̃q,ωq|m̃ ě m0qPpm̃ ě m0q

` sup
pμ,ΣqPMb,β,r

bβ´1E pdpω̃pβm̃q,ωq|m̃ ă m0qPpm̃ ă m0q

“: I1,b ` I2,b, (7.5)

where ω “ pωkqkPvbw “ pIpΔ2
k,b ‰ 0qqkPvbw.

Consider the term I1,b. When m̃ ě m0, by the triangle inequality and the
definition of m̃ in (3.12), for all pμ,Σq P Mb,β,r

dpω̃pβm̃q,ωq ď dpω̃pβm̃q, ω̃pβm0qq ` dpω̃pβm0q,ωq ď vm0 ` dpω̃pβm0q,ωq,

where as b Ñ 8

bβ´1vm0 “ Opτ´1
b q “ op1q. (7.6)

Next, for any non-negative random variable Y , for which the expectations below
are well defined, one has EpY |BqPpBq ď EpY q, and hence we can write

I1,b ď bβ´1vm0 ` bβ´1E dpω̃pβm0q,ωq

ď bβ´1vm0 ` bβP
`

χ2
p0

p0q ą p2βm0 ` εq log b
˘

`P
`

χ2
p0

p2r log bq ď p2βm0 ` εq log b
˘

“: bβ´1vm0 ` N1,b ` N2,b. (7.7)

For the term N1,b, using relations (3.8), (3.10), and (7.2), we obtain

N1,b “ O
´

bβ´βm0´ε{2 logp0{2´1 b
¯

“ O
´

bδ´ε{2 logp0{2´1 b
¯

“ op1q. (7.8)

For the term N2,b, by relation (7.4) and the fact that for all sufficiently large b
(recall that ε “ εb Ñ 0 as b Ñ 8) one has r ą βm0 ` ε{2, we obtain as b Ñ 8

N2,b “ O
´

b´p
?
r´

?
βm0`ε{2q

2

log´1{2 b
¯

“ op1q. (7.9)

Therefore, in view of (7.7)–(7.9), uniformly in p1 ´ θq{2 ă β ă 1 ´ θ and
β ă r ă 4

I1,b “ sup
pμ,ΣqPMb,β,r

bβ´1E pdpω̃pβm̃q,ωq|m̃ ě m0qPpm̃ ě m0q

ď bβ´1vm0 ` sup
pμ,ΣqPMb,β,r

bβ´1E dpω̃pβm0q,ωq

ď Opτ´1
b q ` N1,b ` N2,b “ op1q. (7.10)

It remains to show that, uniformly in p1 ´ θq{2 ă β ă 1 ´ θ and β ă r ă 4,
it is also true for the term I2,b in (7.5) that I2,b “ op1q. We have

I2,b “ sup
pμ,ΣqPMb,β,r

bβ´1E pdpω̃pβm̃q,ωq|m̃ ă m0qPpm̃ ă m0q ď bβPpm̃ ă m0q.
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Now, using Fact 1, we show that Ppm̃ ă m0q is small yielding I2,b “ op1q as

b Ñ 8. Indeed, recalling (3.12) and writing T̃i instead of T̃i,b for i P vbw, we have

Ppm̃ ă m0q “

m0´1
ÿ

k“1

Ppm̃ “ kq “

m0´1
ÿ

k“1

P pD j P vkw : dpω̃pβk`1q, ω̃pβjqq ą vjq

ď

m0´1
ÿ

k“1

k
ÿ

j“1

P pdpω̃pβk`1q, ω̃pβjqq ą vjq

“

m0´1
ÿ

k“1

k
ÿ

j“1

P

˜

b
ÿ

i“1

|ω̃ipβk`1q ´ ω̃ipβjq| ą vj

¸

“

m0´1
ÿ

k“1

k
ÿ

j“1

P

˜

b
ÿ

i“1

I

!

p2βj ` εq log b ă T̃i ď p2βk`1 ` εq log b
)

ą vj

¸

. (7.11)

Now, introducing the events

Ai “ Ai,j,k`1,b “

!

p2βj ` εq log b ă T̃i ď p2βk`1 ` εq log b
)

, i P vbw,

we obtain from (7.11) that

Ppm̃ ă m0q ď

m0´1
ÿ

k“1

k
ÿ

j“1

P

˜

b
ÿ

i“1

I tAiu ą vj

¸

“

m0´1
ÿ

k“1

k
ÿ

j“1

P

˜

b
ÿ

i“1

Xi ą vj ´

b
ÿ

i“1

PpAiq

¸

, (7.12)

where the random variables Xi are defined by

Xi “ Xi,j,k`1,b
def
“ I tAiu ´ PpAiq, i P vbw. (7.13)

To apply Bernstein’s inequality to the term P
´

řb
i“1 Xi ą vj ´

řb
i“1 PpAiq

¯

on

the right-hand side of (7.12), we first show that
řb

i“1 PpAiq “ opvjq as b Ñ 8.

Using (7.2) and (7.4) and recalling that rb1´βs statistics among tT̃i : i P vbwu

follow a noncentral chi-square distribution and the remaining statistics have a
central chi-square distribution, we get for all j P vkw and k P vm0 ´ 1w as b Ñ 8

b
ÿ

i“1

PpAiq “

b
ÿ

i“1:ωi“0

PpAiq `

b
ÿ

i“1:ωi“1

PpAiq

ď bP
`

χ2
p0

p0q ą p2βj ` εq log b
˘

` rb1´β
sP

`

χ2
p0

p2r log bq ď p2βk`1 ` εq log b
˘

“ O
´

b1´pβj`ε{2q logp0{2´1 b
¯

` O
´

b1´β´p
?
r´

?
βk`1`ε{2q

2

log´1{2 b
¯

,

where βj ď βm0´1 ă β ă r and βk`1 ď βm0 ă β ă r. From this, noting that

b1´pβj`ε{2q " b1´β´p
?
r´

?
βk`1`ε{2q

2

for all large enough b gives

b
ÿ

i“1

PpAiq “ O
´

b1´pβj`ε{2q logp0{2´1 b
¯

, b Ñ 8. (7.14)
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Since by definition vj “ τ´1
b b1´βj and τb “ o

´

bε{2 log1´p0{2 bq
¯

, it now follows

from (7.14) that for all j P vkw one has
řb

i“1 PpAiq “ opvjq as b Ñ 8 and hence
as b Ñ 8

vj ´

b
ÿ

i“1

PpAiq “ vjp1 ` op1qq, j P vkw, k P vm0 ´ 1w.

Also, since the variance of a random variable taking values in t0, 1u is smaller
than its expectation, we have by (7.14) and by the independence of T̃1, . . . , T̃b

that as b Ñ 8

Var

˜

b
ÿ

i“1

Xi

¸

“

b
ÿ

i“1

Var pItAiuq ď

b
ÿ

i“1

E pItAiuq “

b
ÿ

i“1

PpAiq

“ O
´

b1´pβj`ε{2q logp0{2´1 b
¯

.

Thus, for the random variables X1, . . . ,Xb defined in (7.13) we have |Xi| ď 2
and EpXiq “ 0 for i P vbw, and hence for all j P vkw and k P vm0 ´ 1w

D
2
b “

b
ÿ

i“1

EpX
2
i q “ Var

˜

b
ÿ

i“1

Xi

¸

“ O
´

b1´pβj`ε{2q logp0{2´1 b
¯

, b Ñ 8.

Therefore the application of Bernstein’s inequality stated in Fact 1 with t “

vjp1 ` op1qq, Remark 3, and the fact that βj ď βm0´1 for all j P vkw and
k P vm0 ´ 1w give

P

˜

b
ÿ

i“1

Xi ą vj ´

b
ÿ

i“1

PpAiq

¸

ď exp

ˆ

´
3vjp1 ` op1qq

8

˙

ď exp

ˆ

´
3b1´βm0´1

8τb
p1 ` op1qq

˙

.

From this and (7.12) we deduce that for all large enough b

Ppm̃ ă m0q ď M2 exp

ˆ

´
b1´βm0´1

4τb

˙

,

and hence

I2,b ď bβPpm̃ ă m0q ď bβM2 exp

ˆ

´
b1´βm0´1

4τb

˙

“ op1q, (7.15)

where the last equality is due to the fact that 1´βm0´1 is separated from zero,
which follows from the assumptions p1 ´ θq{2 ă β ă 1 ´ θ and βm0´1 ă βm0 ă

β ď βm0`1.
Now, combining (7.5), (7.10) and (7.15), we obtain

sup
pμ,ΣqPMb,β,r

bβ´1E dpω̃pβm̃q,ωq “ I1,b ` I2,b “ op1q, b Ñ 8,

uniformly in pβ, rq P D1pθq for all 0 ă θ ă 1. This shows that the selector ω̃pβm̃q

provides almost full selection in the region D1pθq for all 0 ă θ ă 1.
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Proof of Lemma 2. Throughout the proof, θ is an arbitrary number in the in-
terval p0, 1q and pβ, rq is an arbitrary point in the region D1pθq. For brevity, we
shall write Δ2

k,b and Δ̃2
k,b as Δ2

k and Δ̃2
k for k P vbw, b “ 2, 3, . . .. Let us first

check the validity of (3.21). For all k P vbw and b “ 2, 3, . . ., consider

Ṽk ´ Vk “ XJ
0,rksΣ

´1
rks

´

pμrks ´ μrks

¯

´
1

2

´

Δ̃2
k ´ Δ2

k

¯

, (7.16)

where Δ2
k “ μJ

rks
Σ´1

rks
μrks and Δ̃2

k “ pμJ
rksΣ

´1
rks

pμrks. It is easy to see that for all

pμ,Σq P Mb,β,r

EΠ2pṼk ´ Vkq “ ´
p0
2n

, k P vbw, (7.17)

and hence (recall that n „ bθ and #tk P vbw : ωk “ 1u “ rb1´βs)

b
ÿ

k“1 :ωk“1

EΠ2pṼk ´ Vkq “ ´
p0
2
b1´β´θ

p1 ` op1qq, b Ñ 8.

Therefore, by the triangle and Chebyshev’s inequalities, using the block-wise
independence of the data, for any ε ą 0 and all large enough b

sup
pμ,ΣqPMb,β,r

PΠ2

˜ˇ

ˇ

ˇ

ˇ

ˇ

b
ÿ

k“1 :ωk“1

pṼk ´ Vkq

ˇ

ˇ

ˇ

ˇ

ˇ

ě εb1´β´θ log b

¸

ď sup
pμ,ΣqPMb,β,r

PΠ2

˜ˇ

ˇ

ˇ

ˇ

ˇ

b
ÿ

k“1 :ωk“1

!

pṼk ´ Vkq ´ EΠ2pṼk ´ Vkq

)

ˇ

ˇ

ˇ

ˇ

ˇ

ě
ε

2
b1´β´θ log b

¸

ď sup
pμ,ΣqPMb,β,r

řb
k“1 :ωk“1 EΠ2pṼk ´ Vkq2

ppε{2qb1´β´θ log bq2
. (7.18)

Consider the numerator on the right side of (7.18). Using relation (7.16), the
inequalities pa´ bq2 ď 2pa2 ` b2q and puJvq2 ď }u}2}v}2, and the independence
of X0,rks and pμrks,

b
ÿ

k“1 :ωk“1

EΠ2pṼk ´ Vkq
2

ď 2
b
ÿ

k“1 :ωk“1

EΠ2

´

XJ
0,rksΣ

´1
rks

´

pμrks ´ μrks

¯¯2

`
1

2

b
ÿ

k“1 :ωk“1

E
´

Δ̃2
k ´ Δ2

k

¯2

ď 2
b
ÿ

k“1 :ωk“1

EΠ2

´

XJ
0,rksΣ

´1
rks

X0,rks

¯

E
´

ppμrks ´ μrksq
JΣ´1

rks
ppμrks ´ μrksq

¯

`
1

2

b
ÿ

k“1 :ωk“1

ˆ

1

n2
E
�

pχ2
p0

pnΔ2
kqq

2
(

´
2Δ2

k

n
E
�

χ2
p0

pnΔ2
kq
(

` pΔ2
kq

2

˙
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From this, using the identityXJAX“TrpAXXJq, the factEΠ2

´

X0,rksX
J
0,rks

¯

“

Σrks, and the equalities Epχ2
νpλqq “ ν `λ and Varpχ2

νpλqq “ 2pν ` 2λq, we may
continue

b
ÿ

k“1 :ωk“1

EΠ2pṼk ´ Vkq
2

ď 2
b
ÿ

k“1 :ωk“1

EΠ2Tr
´

Σ´1
rks

X0,rksX
J
0,rks

¯

ETr
´

Σ´1
rks

ppμrks ´ μrksqppμrks ´ μrksq
J
¯

`
1

2

b
ÿ

k“1 :ωk“1

ˆ

2p0 ` 4nΔ2
k ` pp0 ` nΔ2

kq2

n2
´

2Δ2
kpp0 ` nΔ2

kq

n
` pΔ2

kq
2

˙

“ 2
b
ÿ

k“1 :ωk“1

p20
n

`
1

2

b
ÿ

k“1 :ωk“1

ˆ

4Δ2
k

n
`

2p0
n2

`
p20
n2

˙

,

uniformly in pμ,Σq P Mb,β,r. Therefore, as b Ñ 8

sup
pμ,ΣqPMb,β,r

b
ÿ

k“1 :ωk“1

EΠ2pṼk ´ Vkq
2

“ O
`

b1´β´θ
˘

` O
`

b1´β´2θ log b
˘

“ O
`

b1´β´θ
˘

. (7.19)

The combination of (7.18) and (7.19) now yields that for any ε ą 0 and all
pβ, rq P D1pθq, as b Ñ 8

sup
pμ,ΣqPMb,β,r

PΠ2

˜ˇ

ˇ

ˇ

ˇ

ˇ

b
ÿ

k“1 :ωk“1

pṼk ´ Vkq

ˇ

ˇ

ˇ

ˇ

ˇ

ě εb1´β´θ log b

¸

“ op1q,

and hence (3.21) is proved.
Next, let us verify relation (3.22). For brevity, we shall omit the argument

βm̃ of the selector ω̃pβm̃q in (3.11) and write ω̃ “ pω̃1, . . . , ω̃bq. First, we have

sup
pμ,ΣqPMb,β,r

EΠ2

˜

b
ÿ

k :ωk“1

Ṽk Ipω̃k “ 0q

¸

“ opb1´β´θ log bq, b Ñ 8. (7.20)

Indeed, using Lemma 1, for all pβ, rq P D1pθq, uniformly in pμ,Σq P Mb,β,r, for
all large enough b

EΠ2

˜

b
ÿ

k :ωk“1

Ṽk Ipω̃k “ 0q

¸

ď

b
ÿ

k :ωk“1

EΠ2

´

Σ
´1{2
rks

X0,rks

¯J

E
!

Σ
´1{2
rks

pμrksI

´

n}Σ
´1{2
rks

pμrks}
2

ď p2βm̃ ` εq log b
¯)

ď
C log b

n

b
ÿ

k“1

Pp|ω̃k ´ ωk| “ 1q “
C log b

n
E dpω̃,ωq “ opb1´β´θ log bq,
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where C ą 0 is an absolute constant. From (7.20), by the triangle and Cheby-
shev’s inequalities, using the block-wise independence of the data, for any ε ą 0
and all large enough b

sup
pμ,ΣqPMb,β,r

PΠ2

˜ˇ

ˇ

ˇ

ˇ

ˇ

b
ÿ

k“1 :ωk“1

Ṽk Ipω̃k “ 0q

ˇ

ˇ

ˇ

ˇ

ˇ

ě εb1´β´θ log b

¸

ď sup
pμ,ΣqPMb,β,r

PΠ2

˜ˇ

ˇ

ˇ

ˇ

ˇ

b
ÿ

k“1 :ωk“1

!

Ṽk Ipω̃k “ 0q ´ EΠ2pṼk Ipω̃k “ 0qq

)

ˇ

ˇ

ˇ

ˇ

ˇ

ě
ε

2
b1´β´θ log b

¯

ď sup
pμ,ΣqPMb,β,r

řb
k“1 :ωk“1 EΠ2

´

Ṽ 2
k Ipω̃k “ 0q

¯

ppε{2qb1´β´θ log bq2
. (7.21)

Consider the numerator on the right side of (7.21). Using pa´bq2 ď 2pa2`b2q

and puJvq2 ď }u}2}v}2, and noting that EΠ2

´

XJ
0,rks

Σ´1
rks

X0,rks

¯

“ p0 and

p2βm̃ ` εq log b ď 3 log b when b is large, we obtain for all large enough b

b
ÿ

k“1 :ωk“1

EΠ2

´

Ṽ 2
k Ipω̃k “ 0q

¯

“

b
ÿ

k“1 :ωk“1

EΠ2

„

´

XJ
0,rksΣ

´1
rks

pμrks ´ p1{2qΔ̃2
k

¯2

Ipω̃k “ 0q

j

ď 2
b
ÿ

k“1 :ωk“1

EΠ2

„

´

XJ
0,rksΣ

´1
rks

pμrks

¯2

IpnΔ̃2
k ď p2βm̃ ` εq log bq

j

`1{p2n2
q

b
ÿ

k“1 :ωk“1

E
”

pnΔ̃2
kq

2
IpnΔ̃2

k ď p2βm̃ ` εq log bq
ı

ď p2{nq

b
ÿ

k“1 :ωk“1

EΠ2

´

XJ
0,rksΣ

´1
rks

X0,rks

¯

E
´

nΔ̃2
k IpnΔ̃

2
k ď p2βm̃ ` εq log bq

¯

`1{p2n2
q

b
ÿ

k“1 :ωk“1

E
´

pnΔ̃2
kq

2
IpnΔ̃2

k ď p2βm̃ ` εq log bq
¯

ď p2p0{nq3 log b
b
ÿ

k“1 :ωk“1

Ppω̃k “ 0q ` p3 log bq2{p2n2
q

b
ÿ

k“1 :ωk“1

Ppω̃k “ 0q

ď

ˆ

6p0 log b

n
`

9 log2 b

2n2

˙ b
ÿ

k“1

Pp|ω̃k ´ ωk| “ 1qď

ˆ

6p0 log b

n
`

9 log2 b

2n2

˙

E dpω̃,ωq.

From this, recalling (2.5) and applying Lemma 1, we get for all pβ, rq P D1pθq

as b Ñ 8

sup
pμ,ΣqPMb,β,r

b
ÿ

k“1 :ωk“1

EΠ2

´

Ṽ 2
k Ipω̃k “ 0q

¯

“ opb1´β´θ log bq. (7.22)
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It now follows from (7.21) and (7.22) that all pβ, rq P D1pθq as b Ñ 8

sup
pμ,ΣqPMb,β,r

PΠ2

˜ˇ

ˇ

ˇ

ˇ

ˇ

b
ÿ

k“1 :ωk“1

Ṽk Ipω̃k “ 0q

ˇ

ˇ

ˇ

ˇ

ˇ

ě εb1´β´θ log b

¸

“ op1q,

yielding relation (3.22).
It remains to prove (3.23). Aiming again at using Chebyshev’s inequality, we

first show that EΠ2

´

řb
k“1 :ωk“0 ṼkIpω̃k “ 1q

¯

“ o
`

b1´β´θ log b
˘

, uniformly in

pμ,Σq P Mb,β,r. To this end, we note that for each k for which ωk “ 0 the

statistic nΔ̃2
k has a central chi-square χ2

p0
p0q distribution with pdf

gpx; p0q “ p2p0{2Γpp0{2qq
´1xp0{2´1e´x{2, for x ą 0.

Also, as seen from the proof of Lemma 1, the grid point βm0 “ δm0, which is
chosen to have βm0 ă β ď βm0`1, satisfies

Ppβm̃ ă βm0q “ Ppm̃ ă m0q ď M2 exp

ˆ

´
b1´βm0´1

4τb

˙

,

where M “ Mb is as in (3.5), that is, the probability Ppm̃ ă m0q decreases to
zero at an exponential rate as b Ñ 8. In particular, for all large enough b

Ppm̃ ă m0q ď b´2β . (7.23)

Therefore, since EΠ2pX0,rksq “ 0 for all those indices k for which ωk “ 0, we
have
ˇ

ˇ

ˇ

ˇ

ˇ

EΠ2

˜

b
ÿ

k“1 :ωk“0

ṼkIpω̃k “ 1q

¸ˇ

ˇ

ˇ

ˇ

ˇ

“
1

2n

b
ÿ

k“1 :ωk“0

E
´

nΔ̃2
k IpnΔ̃

2
k ą p2βm̃ ` εq log bq

¯

“
1

2n

b
ÿ

k“1 :ωk“0

E
´

nΔ̃2
k IpnΔ̃

2
k ą p2βm̃ ` εq log b, m̃ ě m0q

¯

`
1

2n

b
ÿ

k“1 :ωk“0

E
´

nΔ̃2
k IpnΔ̃

2
k ą p2βm̃ ` εq log b, m̃ ă m0q

¯

ď
1

2n

b
ÿ

k“1 :ωk“0

E
´

nΔ̃2
k IpnΔ̃

2
k ą p2βm0 ` εq log bq

¯

`
1

2n

b
ÿ

k“1 :ωk“0

E
´

nΔ̃2
k Ipm̃ ă m0q

¯

.

Now, applying the Cauchy-Schwarz inequality to E
´

nΔ̃2
k Ipm̃ ă m0q

¯

, using

(7.23) and the asymptotic relation
ş8

A
xνe´x{2 dx „ 2Aνe´A{2 as A Ñ 8, uni-

formly in pμ,Σq P Mb,β,r,
ˇ

ˇ

ˇ

ˇ

ˇ

EΠ2

˜

b
ÿ

k“1 :ωk“0

ṼkIpω̃k “ 1q

¸ˇ

ˇ

ˇ

ˇ

ˇ
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ď
1

2n

b
ÿ

k“1 :ωk“0

ż 8

p2βm0`εq log b

xgpx; p0q dx `
1

2n

b
ÿ

k“1 :ωk“0

´

EtpnΔ̃2
kq

2
uPpm̃ ă m0q

¯1{2

ď
2

n

b
ÿ

k“1 :ωk“0

p2βm0 ` εqp0{2

2p0{2Γpp0{2q
b´βm0´ε{2 logp0{2 b `

1

2n

b
ÿ

k“1 :ωk“0

p2p0 ` p20q
1{2b´β

“ O
´

b1´θ´βm0´ε{2 logp0{2 b
¯

` O
`

b1´β´θ
˘

“ O
´

b1´θ´β`δ´ε{2 logp0{2 b
¯

` Opb1´β´θ
q “ O

`

b1´β´θ
˘

, b Ñ 8,

where the last two equalities are due to the fact 0 ă β ´ βm0 ă δ and relations
(3.8) and (3.10). Thus, as b Ñ 8

sup
pμ,ΣqPMb,β,r

EΠ2

˜

b
ÿ

k“1 :ωk“0

ṼkIpω̃k “ 1q

¸

“ o
`

b1´β´θ log b
˘

. (7.24)

Therefore, by the triangle and Chebyshev’s inequalities, using the block-wise
independence of the data, for any ε ą 0 and all large enough b

sup
pμ,ΣqPMb,β,r

PΠ2

˜ˇ

ˇ

ˇ

ˇ

ˇ

b
ÿ

k“1 :ωk“0

Ṽk Ipω̃k “ 1q

ˇ

ˇ

ˇ

ˇ

ˇ

ě εb1´β´θ log b

¸

ď sup
pμ,ΣqPMb,β,r

PΠ2

˜ˇ

ˇ

ˇ

ˇ

ˇ

b
ÿ

k“1 :ωk“0

!

Ṽk Ipω̃k “ 1q ´ EΠ2pṼk Ipω̃k “ 1qq

)

ˇ

ˇ

ˇ

ˇ

ˇ

ě
ε

2
b1´β´θ log b

¯

ď sup
pμ,ΣqPMb,β,r

řb
k“1 :ωk“0 EΠ2

´

Ṽ 2
k Ipω̃k “ 1q

¯

ppε{2qb1´β´θ log bq2
. (7.25)

Consider the numerator on the right side of (7.25). Applying the arguments
similar to those that have led us to (7.24), we obtain the relation

sup
pμ,ΣqPMb,β,r

b
ÿ

k“1 :ωk“0

EΠ2

´

Ṽ 2
k Ipω̃k “ 1q

¯

“ Opb1´β´θ log bq, b Ñ 8,

which together with (7.25) yields (3.23). Noting that θ P p0, 1q and pβ, rq P D1pθq

were chosen arbitrary completes the proof.

Proof of Lemma 3. Throughout the proof, θ is an arbitrary number in the in-
terval p0, 1q and pβ, rq is an arbitrary point in the region D0

1pθq. As in the proof
of Lemma 2, for all k P vbw and b “ 2, 3, . . ., we shall write Δ2

k,b, Δ̃
2
k,b, and Δ̂2

k,b

as Δ2
k, Δ̃

2
k, and Δ̂2

k, suppressing the dependence on b. For brevity, we shall also
omit the argument βm̂ of the selector ω̂pβm̂q in (4.3) and write ω̂ “ pω̂1, . . . , ω̂bq.
We first verify relation (4.9). Let Vk, Ṽk, and V̂k be as defined in (3.16), (3.17),
and (4.7). We have

b
ÿ

k“1 :ωk“1

´

V̂k ´ Vk

¯

“

b
ÿ

k“1 :ωk“1

´

V̂k ´ Ṽk

¯

`

b
ÿ

k“1 :ωk“1

´

Ṽk ´ Vk

¯

.
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Therefore, in view of (3.21), it is sufficient to show that as b Ñ 8

sup
pμ,ΣqPMb,β,r

b
ÿ

k“1 :ωk“1

´

V̂k ´ Ṽk

¯

“ oPΠ2
pb1´β´θ log bq.

Furthermore, due to the identity

V̂k ´ Ṽk “ XJ
0,rks

´

pΣ
´1

rks ´ Σ´1
rks

¯

pμrks ´
1

2

´

Δ̂2
k ´ Δ̃2

k

¯

and relation (3.3), the latter problem is reduced to showing that

sup
pμ,ΣqPMb,β,r

b
ÿ

k“1 :ωk“1

XJ
0,rks

´

pΣ
´1

rks ´ Σ´1
rks

¯

pμrks “ oPΠ2
pb1´β´θ log bq. (7.26)

Using Markov’s inequality, for any ε ą 0

PΠ2

˜ˇ

ˇ

ˇ

ˇ

ˇ

b
ÿ

k“1 :ωk“1

XJ
0,rks

´

pΣ
´1

rks ´ Σ´1
rks

¯

pμrks

ˇ

ˇ

ˇ

ˇ

ˇ

ě εb1´β´θ log b

¸

ď

řb
k“1 :ωk“1 EΠ2

ˇ

ˇ

ˇ
XJ

0,rks

´

pΣ
´1

rks ´ Σ´1
rks

¯

pμrks

ˇ

ˇ

ˇ

εb1´β´θ log b
. (7.27)

Consider the numerator on the right side of (7.27). Using the Cauchy-Schwarz

inequality, the identity XJAX “ TrpAXXJq, and the relations E
´

pΣ
´1

rks

¯

“

2n´1
2n´p0´2Σ

´1
rks

, EΠ2pΔ̂2
kq “

p2n´1qpp0`nΔ2
kq

p2n´p0´2qn , EΠ2pΔ̃2
kq “

p0

n ` Δ2
k, we have, uni-

formly in pμ,Σq P Mb,β,r,

b
ÿ

k“1 :ωk“1

EΠ2

ˇ

ˇ

ˇ
XJ

0,rks

´

pΣ
´1

rks ´ Σ´1
rks

¯

pμrks

ˇ

ˇ

ˇ

ď

b
ÿ

k“1 :ωk“1

EΠ2

ˆ

}

´

pΣ
´1

rks ´ Σ´1
rks

¯1{2

X0,rks} ¨ }

´

pΣ
´1

rks ´ Σ´1
rks

¯1{2

pμrks}

˙

ď

b
ÿ

k“1 :ωk“1

´

EΠ2

!

XJ
0,rks

´

pΣ
´1

rks ´ Σ´1
rks

¯

X0,rks

)

¨ E
!

Δ̂2
k ´ Δ̃2

k

)¯1{2

“

b
ÿ

k“1 :ωk“1

´

EΠ2Tr
!´

pΣ
´1

rks ´ Σ´1
rks

¯

X0,rksX
J
0,rks

)

ˆ

"

p2n ´ 1qpp0 ` nΔ2
kq

p2n ´ p0 ´ 2qn
´

p0
n

´ Δ2
k

*˙1{2

“

b
ÿ

k“1 :ωk“1

ˆ

Tr

"

1 ` p0
2n ´ p0 ´ 2

Ip0ˆp0

*"

1 ` p0
2n ´ p0 ´ 2

´p0
n

` Δ2
k

¯

*˙1{2
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“

b
ÿ

k“1 :ωk“1

p0p1 ` p0q

p2n ´ p0 ´ 2q

ˆ

1

n
`

Δ2
k

p0

˙1{2

,

and hence, as b Ñ 8,

b
ÿ

k“1 :ωk“1

EΠ2

ˇ

ˇ

ˇ
XJ

0,rks

´

pΣ
´1

rks ´ Σ´1
rks

¯

pμrks

ˇ

ˇ

ˇ
“ O

´

b1´β´3θ{2 log1{2 b
¯

. (7.28)

From this and (7.27), for any ε ą 0

sup
pμ,ΣqPMb,β,r

PΠ2

˜ˇ

ˇ

ˇ

ˇ

ˇ

b
ÿ

k“1 :ωk“1

XJ
0,rks

´

pΣ
´1

rks ´ Σ´1
rks

¯

pμrks

ˇ

ˇ

ˇ

ˇ

ˇ

ě εb1´β´θ log b

¸

“
Opb1´β´3θ{2 log1{2 bq

Opb1´β´θ log bq
“ Opb´θ{2 log´1{2 bq “ op1q, b Ñ 8.

This proves relation (7.26) and hence relation (4.9). Next, in order to verify
relations (4.10) and (4.11), we shall need the following fact.
Fact 2. Formula (22) from Sitgreaves [23]. Let Y1 and Y2 be d-dimensional
(d ě 3) normal random vectors with expected values k1δ and k2δ, where k1 and
k2 are known scalars, and let A be a d ˆ d symmetric matrix with a Wishart
distribution involving N degrees of freedom. Assume that Y1, Y2, and A are
independently distributed with the same covariance matrix Λ, and define the
2 ˆ 2 matrix M˚ “ pm˚

ijq “ YJA´1Y, where Y “ pY1,Y2q. Denote by I the

2 ˆ 2 identity matrix. Then, if δJΛ´1δ “ 0, the pdf of the symmetric matrix
M˚ (with three non-repeated elements m˚

11, m
˚
12, and m˚

22) is equal to

ppm˚
11,m

˚
22,m

˚
12q “

Γp
1
2 pN ` 1qqΓp

1
2 pN ` 2qq

Γp
1
2 pN ´ d ` 2qqΓp

1
2 pN ´ d ` 1qqΓp

1
2 pd ´ 1qqΓp

1
2 qΓp

d
2 q

ˆ
|M˚|

1
2 pd´3q

|I ` M˚|
1
2 pN`2q

, m˚
11 ě 0, m˚

22 ě 0, |M˚
| ě 0.

We shall apply Fact 2 to show that (4.11) holds true. Below, for brevity, we
shall write T̂k instead of T̂k,b. Using Markov’s inequality, for any ε ą 0

PΠ2

˜ˇ

ˇ

ˇ

ˇ

ˇ

b
ÿ

k“1 :ωk“0,ω̂k“1

V̂k

ˇ

ˇ

ˇ

ˇ

ˇ

ě εb1´β´θ log b

¸

ď

řb
k“1 :ωk“0 EΠ2

!

|V̂k|Ipω̂k “ 1q

)

εb1´β´θ log b
.

(7.29)

Consider the numerator on the right side of (7.29). The arguments between
relations (7.23) and (7.24) show that the error of replacing the event tω̂k “

1u “

!

T̂k ą p´1
0 p2βm̂ ` θ ` εq log b

)

by the analogous event with βm0 “ δm0,

as defined in the proof of Lemma 1, in place of βm̂ is negligible. Hence, it is
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sufficient to show that, uniformly in pμ,Σq P Mb,β,r, as b Ñ 8

b
ÿ

k“1 :ωk“0

EΠ2

!

|V̂k|I

´

T̂k ą p´1
0 p2βm0 ` θ ` εq log b

¯)

“ opb1´β´θ log bq.

We have

b
ÿ

k“1 :ωk“0

EΠ2

!

|V̂k|I

´

T̂k ą p´1
0 p2βm0 ` θ ` εq log b

¯)

ď

b
ÿ

k“1 :ωk“0

EΠ2

!

|XJ
0,rks

pΣ
´1

rkspμrks|IpT̂k ą p´1
0 p2βm0 ` θ ` εq log bq

)

`
1

2

b
ÿ

k“1 :ωk“0

E
!

Δ̂2
kIpT̂k ą p´1

0 p2βm0 ` θ ` εq log bq
)

“: J1,b ` J2,b. (7.30)

Consider the term J2,b “ J2,bpμ,Σ, β, r, θq. Using the asymptotic relations

Γpxq „ xx´1{2e´x
?
2π, x Ñ 8, (7.31)

and

ż 8

pc log bq{n

yp0{2

p1 ` yqn
dy „

pc log bqp0{2

np0{2`1bc
, b Ñ 8, (7.32)

where n satisfies (2.5) and c is a positive constant, and recalling that if index
k P vbw is such that ωk “ 0 then T̂k „ Fp0,2n´p0p0q, we can write

J2,b “
1

2

p2n ´ 1qp0
p2n ´ p0qn

b
ÿ

k“1 :ωk“0

E
!

T̂k I

´

T̂k ą p´1
0 p2βm0 ` θ ` εq log b

¯)

“

`

b ´ rb1´βs
˘

p2n ´ 1qp0Γpnq

2p2n ´ p0qnΓpp0{2qΓpn ´ p0{2q

ˆ

p0
2n ´ p0

˙p0{2

ˆ

ż 8

p2βm0 `θ`εq log b

p0

xp0{2

ˆ

1 `
p0

2n ´ p0
x

˙´n

dx

“ Opbnp0{2
q

ż 8

p2βm0 `θ`εq log b

2n´p0

yp0{2

p1 ` yqn
dy

“ Opbnp0{2
qO

´

n´pp0{2`1qb´β´θ{2´ε{2 logp0{2 b
¯

“ O
´

b1´β´3θ{2´ε{2 logp0{2 b
¯

, b Ñ 8.

From this, uniformly in pμ,Σq P Mb,β,r,

J2,b “ J2,bpμ,Σ, β, r, θq “ opb1´β´θ log bq, b Ñ 8. (7.33)
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We shall now consider the term J1,b “ J1,bpμ,Σ, β, r, θq and apply Fact 2, in

which we takeY1 “ X0,rks,Y2 “
?
npμrks,A “ p2n´1qpΣrks, d “ p0, N “ 2n´1,

δ “ 0, k1 “ 1, and k2 “
?
n. Then, the joint pdf of Xn :“ 1

2n´1X
J
0,rks

pΣ
´1

rksX0,rks,

Yn :“ n
2n´1

pμJ
rks

pΣ
´1

rkspμrks, and Zn :“
?
n

2n´1X
J
0,rks

pΣ
´1

rkspμrks is

pnpx, y, zq “
Cpn, p0qpxy ´ z2q

1
2 pp0´3q

pp1 ` xqp1 ` yq ´ z2qn` 1
2

, x ě 0, y ě 0, xy ´ z2 ě 0,

where, in view of (7.31), the normalizing constant

Cpn, p0q “
ΓpnqΓpn `

1
2 q

Γpn ´
p0

2 `
1
2 qΓpn ´

p0

2 qΓp
p0

2 ´
1
2 qΓp

1
2 qΓp

p0

2 q

satisfies Cpn, p0q “ Opnp0q as n Ñ 8. Denoting

ηb “
p2βm0 ` θ ` εq log b

2n ´ p0
, (7.34)

we have for all pμ,Σq P Mb,β,r, b ě 2,

J1,b “

b
ÿ

k“1 :ωk“0

2n ´ 1
?
n

EΠ2

" ?
n

2n ´ 1

ˇ

ˇ

ˇ
XJ

0,rks
pΣ

´1

rkspμrks

ˇ

ˇ

ˇ

ˆI

ˆ

n

2n ´ 1
pμJ

rks
pΣ

´1

rkspμrks ą
p2βm0 ` θ ` εq log b

2n ´ p0

˙*

“
2n ´ 1

?
n

`

b ´ rb1´β
s
˘

Cpn, p0q

¡

xą0,yąηb,xyąz2,
´8ăză8

|z|pxy ´ z2qpp0´3q{2

pp1 ` xqp1 ` yq ´ z2q
n`1{2

dx dy dz

“
2p2n ´ 1q

?
n

`

b ´ rb1´β
s
˘

Cpn, p0q

ˆ

ż 8

ηb

dy

ż 8

0

z dz

ż 8

z2{y

pxy ´ z2qpp0´3q{2

pp1 ` xqp1 ` yq ´ z2q
n`1{2

dx

“
2p2n ´ 1q

?
n

`

b ´ rb1´β
s
˘

Cpn, p0qC1pn, p0q

ˆ

ż 8

ηb

yn´1{2

p1 ` yqpp0´1q{2
dy

ż 8

0

z

py2 ` y ` z2qn`1´p0{2
dz,

where C1pn, p0q “
Γppp0´1q{2q

pn´1{2qpn´3{2q...pn´p0{2`1q
for p0 ě 3. Noting that Cpn, p0q “

Opnp0q and C1pn, p0q “ Opnp1´p0q{2q as n Ñ 8, and using (2.5) and (7.32), we
may continue and obtain that, uniformly in pμ,Σq P Mb,β,r,

J1,b “
p2n ´ 1q

?
n

`

b ´ rb1´β
s
˘ Cpn, p0qC1pn, p0q

pn ´ p0{2q

ż 8

ηb

ypp0´1q{2

p1 ` yqn´1{2
dy
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“
p2n ´ 1q

?
n

bCpn, p0qC1pn, p0q

pn ´ p0{2q

η
pp0´1q{2
b p1 ` op1qq

pn ´ 3{2qp1 ` ηbqn´3{2

“ O
´

b1´βm0´θ´ε{2
plog bqpp0´1q{2

¯

“ O
´

b1´β´θ´ε{2
plog bqpp0´1q{2

¯

“ O
`

b1´β´θ log b
˘

O
´

b´ε{2 logpp0´3q{2 b
¯

, b Ñ 8,

where, in view of (3.10), b´ε{2 logpp0´3q{2 b “ op1q as b Ñ 8. Therefore, uni-
formly in pμ,Σq P Mb,β,r,

J1,b “ J1,bpμ,Σ, β, r, θq “ opb1´β´θ log bq, b Ñ 8. (7.35)

It now follows from (7.29), (7.30), (7.33), and (7.35) that relation (4.11) holds
true.

Remark 4. As seen from the derivation of (7.35), the choice of threshold t̂ “

p´1
0 p2βm̂ `θ`εq log b instead of t̂ “ p´1

0 p2βm̂ `εq log b, which would be sufficient
for selecting useful feature blocks, is done to have relation (4.11) valid, and hence
successful classification possible.

Finally, we shall verify the validity of (4.10). Again, using Markov’s inequality,

PΠ2

˜ˇ

ˇ

ˇ

ˇ

ˇ

b
ÿ

k“1 :ωk“1,ω̂k“0

V̂k

ˇ

ˇ

ˇ

ˇ

ˇ

ě εb1´β´θ log b

¸

ď

řb
k“1 :ωk“1 EΠ2

!

|V̂k|Ipω̂k “ 0q

)

εb1´β´θ log b
,

(7.36)

and hence the problem reduces to showing that, uniformly in pμ,Σq P Mb,β,r,
the numerator is opb1´β´θ log bq as b Ñ 8. Consider the numerator on the right
side of (7.36):

b
ÿ

k“1 :ωk“1

EΠ2

!

|V̂k|Ipω̂k “ 0q

)

ď

b
ÿ

k“1 :ωk“1

EΠ2

!ˇ

ˇ

ˇ
XJ

0,rks
pΣ

´1

rkspμrks

ˇ

ˇ

ˇ
I

´

p0T̂k ď p2βm̂ ` θ ` εq log b
¯)

`
p0p2n ´ 1q

2np2n ´ p0q

b
ÿ

k“1 :ωk“1

E
!

T̂kI

´

p0T̂k ď p2βm̂ ` θ ` εq log b
¯)

“: L1,bpβm̂q ` L2,bpβm̂q. (7.37)

Similar to the proof of (3.23) in Lemma 2, for deriving suitable upper bounds on
L1,b “ L1,bpβm̂q and L2,b “ L2,bpβm̂q, the statistic βm̂ in the expressions for L1,b

and L2,b can be replaced by the (non-random) grid point βm0 “ δm0, which is
chosen to have βm0 ă β ď βm0`1, for the error of doing that is negligibly small,
uniformly in pμ,Σq P Mb,β,r.

Consider the term L2,bpβm0q “ L2,bpβm0 ,μ,Σ, β, r, θq. Recall that n „ bθ, the

number of k’s for which ωk “ 1 is rb1´βs, and T̂k “
p2n´p0qn
p2n´1qp0

Δ̂2
k „Fp0,2n´p0pnΔ2

kq.
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Then, using relations (4.2) and (7.4), and noting that pβ, rq P D0
1pθq, that is,

r ą β ` θ{2, we have, uniformly in pμ,Σq P Mb,β,r, as b Ñ 8

L2,bpβm0q “
p0p2n ´ 1q

2np2n ´ p0q

b
ÿ

k“1 :ωk“1

E
!

T̂k I

´

p0T̂k ď p2βm0 ` θ ` εq log b
¯)

ď
p0
2n

ˆ

4 log b

p0

˙ b
ÿ

k“1 :ωk“1

P
`

p0Fp0,2n´p0pnΔ2
kq ď p2βm0 ` θ ` εq log b

˘

ď
2b1´β log b

n
P pp0Fp0,2n´p0p2r log bq ď p2βm0 ` θ ` εq log bq

“
2b1´β log b

n
P
`

χ2
p0

p2r log bq ď p2βm0 ` θ ` εq log b
˘ `

1 ` Opb´θ log2 bq
˘

“
2b1´β log b

n
O
´

b´p
?
r´

?
βm0`θ{2`ε{2q

2

log´1{2 b
¯

“ opb1´β´θ log bq.

Thus, for all pβ, rq P D0
1pθq, uniformly in pμ,Σq P Mb,β,r, as b Ñ 8,

L2,bpβm0q “ L2,bpβm0 ,μ,Σ, β, r, θq “ opb1´β´θ log bq,

and hence

L2,bpβm̂q “ L2,bpβm̂,μ,Σ, β, r, θq “ opb1´β´θ log bq. (7.38)

Now, we turn to the analysis of the term L1,bpβm0q “ L1,bpβm0 ,μ,Σ, β, r, θq.
Denote

Bk “ Bk,b “ tp0T̂k ď p2βm0 ` θ ` εq log bu, k P vbw, b “ 2, 3, . . . ,

and observe that, in view of relations (4.2) and (7.4), for all pβ, rq P D0
1pθq,

uniformly in pμ,Σq P Mb,β,r,

max
1ďkďb

PpBkq “ op1q, b Ñ 8. (7.39)

By the triangle and Cauchy-Schwarz inequalities, using the independence of
X0,rks from pμrks and IpBkq, we get

L1,bpβm0q “

b
ÿ

k“1 :ωk“1

EΠ2

!ˇ

ˇ

ˇ
XJ

0,rks
pΣ

´1

rkspμrks

ˇ

ˇ

ˇ
I pBkq

)

ď

b
ÿ

k“1 :ωk“1

EΠ2

!ˇ

ˇ

ˇ
XJ

0,rksΣ
´1
rks

pμrks

ˇ

ˇ

ˇ
I pBkq

)

`

b
ÿ

k“1 :ωk“1

EΠ2

!ˇ

ˇ

ˇ
XJ

0,rks

´

pΣ
´1

rks ´ Σrks

¯

pμrks

ˇ

ˇ

ˇ
I pBkq

)

ď

b
ÿ

k“1 :ωk“1

EΠ2

!

}Σ
´1{2
rks

X0,rks}}Σ
´1{2
rks

pμrks}IpBkq

)
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`

b
ÿ

k“1 :ωk“1

EΠ2

!ˇ

ˇ

ˇ
XJ

0,rks

´

pΣ
´1

rks ´ Σ´1
rks

¯

pμrks

ˇ

ˇ

ˇ

)

ď

b
ÿ

k“1 :ωk“1

EΠ2}Σ
´1{2
rks

X0,rks}

´

}Σ
´1{2
rks

μrks}PpBkq

` E
!

}Σ
´1{2
rks

ppμrks ´ μrksq}IpBkq

)¯

`

b
ÿ

k“1 :ωk“1

EΠ2

!ˇ

ˇ

ˇ
XJ

0,rks

´

pΣ
´1

rks ´ Σ´1
rks

¯

pμrks

ˇ

ˇ

ˇ

)

“: K1,b ` K2,b. (7.40)

Consider the term K1,b. Since
?
nΣ

´1{2
rks

ppμrks ´ μrksq „ Np0p0, Ip0ˆp0q and

}Σ
´1{2
rks

X0,rks}
2 „ χ2

p0
pΔ2

kq, it follows that

EΠ2}Σ
´1{2
rks

X0,rks} ď

´

EΠ2}Σ
´1{2
rks

X0,rks}
2
¯1{2

“
`

EΠ2pχ2
p0

pΔ2
kqq

˘1{2
“

b

p0 ` Δ2
k,

and

E}
?
nΣ

´1{2
rks

ppμrks ´ μrksq} ď

´

E}
?
nΣ

´1{2
rks

ppμrks ´ μrksq}
2
¯1{2

“ pEpχ2
p0

p0qq
1{2

“
?
p0.

Therefore, noting that }Σ
´1{2
rks

μrks} “
a

Δ2
k, applying relation (7.39) and the

property of absolute continuity of the integral of an integrable function, for all
pβ, rq P D0

1pθq, uniformly in pμ,Σq P Mb,β,r, as b Ñ 8

K1,b ď

b
ÿ

k“1 :ωk“1

b

pp0 ` Δ2
kq

ˆ

ˆ

b

Δ2
k PpBkq `

1
?
n
E
!

}
?
nΣ

´1{2
rks

ppμrks ´ μrksq}IpBkq

)

˙

“ Opb1´β
qO

´

n´1{2 log1{2
¯!

O
´

n´1{2log1{2 b
¯

op1q ` O
´

n´1{2
¯

op1q

)

“ o
`

b1´β´θ log b
˘

. (7.41)

The upper bound on K2,b, for all pβ, rq P D0
1pθq, uniformly in pμ,Σq P Mb,β,r, is

given by (7.28). It now follows from (7.28), (7.40) and (7.41) that for all pβ, rq P

D0
1pθq, uniformly in pμ,Σq P Mb,β,r, L1,bpβm0q “ L1,bpβm0 ,μ,Σ, β, r, θq “

O
`

b1´β´θ log b
˘

op1q “ opb1´β´θ log bq, and hence as b Ñ 8

L1,bpβm̂q “ L1,bpβm̂,μ,Σ, β, r, θq “ opb1´β´θ log bq. (7.42)

Finally, the combination of (7.37), (7.38) and (7.42) gives (4.10). The proof
of Lemma 3 is complete.
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