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1. Introduction

In recent years, research in probability and statistics has witnessed the rise of
Stein’s method but also the emergence of methods to tackle the analysis and
application of models which are based on non-normalized probability laws. In
this work, we seek to apply findings from the research on Stein’s method to
contribute to the solution of testing and estimation problems involving non-
normalized statistical distributions. We focus on the analysis of discrete prob-
ability laws, and how the theoretical results can be used to develop statistical
methods. As such, we tie on to Betsch and Ebner (2021) who provide similar
tools for continuous distributions. A rather well-known approach to the problem
of parameter estimation for non-normalized continuous probability distributions
is the score matching technique due to Hyvärinen (2005, 2007) (see Yu, Drton
and Shojaie, 2019, for recent progress). Another approach is known as noise
contrastive estimation (cf. Gutmann and Hyvärinen, 2010), but a number of
2019/20 papers indicate that the proposition and study of new tools remains an
important issue, see Matsuda and Hyvärinen (2019), Uehara et al. (2020), and
Uehara, Matsuda and Kim (2020).

The tool box which is now known as Stein’s method goes back to the work
of Stein (1972) (see also Stein, 1986) who sought for an alternative proof of the
central limit theorem that provides a bound on the rate of the convergence. This
inherent feature made Stein’s method popular. The idea is applied in all kinds
of settings, as it allows to find bounds on distributional distances between se-
quences of probability laws and a limit distribution, and as it often applies in the
absence of stochastic independence. The application of the method to discrete
distributions goes back to Chen (1975), who first derived corresponding results
for the Poisson distribution, known as the Stein-Chen method. The method has
since been extended to other discrete distributions, like the binomial distribution
(by Ehm, 1991), the geometric distribution (by Peköz, 1996), the negative bi-
nomial distribution (by Brown and Phillips, 1999), discrete Gibbs measures (by
Eichelsbacher and Reinert, 2008), and others. The foundation of the method are
characterization results for the underlying probability law. While for the first
distributions in consideration specific identities were used or devised, general
approaches have emerged that apply to many different distributions at once. In
this context, we mention the generator approach of Barbour (1988, 1990) and
Götze (1991) who use time-reversible Markov processes, where the stationary
distribution is the probability law of interest, to characterize that law. On the
other hand, a direct derivation of characterizations is possible, and a well-known
class of such identities can be found under the name of ‘density approach’. For
the continuous case, first ideas on the density approach came from Stein (1986)
and Stein et al. (2004), and a more complete version is due to Ley and Swan
(2013a). The corresponding characterizations for discrete distributions are given
by Ley and Swan (2013b).

The contribution at hand is certainly not the first application of Stein’s
method in statistics. Indeed, similar problems in the context of non-normalized
models are tackled with the use of so-called Stein discrepancies by the machine
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learning community, though many of them refer to the continuous setting. Let
us mention some papers that explore these tools. Namely, Chwialkowski, Strath-
mann and Gretton (2016), Liu, Lee and Jordan (2016), and Yang et al. (2018)
consider the construction of tests of fit, Gorham and Mackey (2015) build mea-
sures of sample quality, and Barp et al. (2019) solve estimation problems for
non-normalized models.

Our new work is based, in a strict sense, not on what is generally called
Stein’s method, but rather on the characterization identities we refer to above.
More precisely, we take as a starting point the discrete density approach identity
as provided by Ley and Swan (2013b). To sketch the idea, consider a probability
mass function p on N0 as well as an N0-valued random variable X. Subject to
few regularity conditions, X is governed by p if, and only if,

E

[
Δ+f(X) +

Δ+p(X)

p(X)
f(X + 1)

]
= 0

holds for a large enough class of test functions f . Hereby Δ+ denotes the forward
difference operator. Our first contribution lies in proving that this characteriza-
tion can essentially be restated as to X being governed by p if, and only if, the
probability mass function ρX of X satisfies

ρX(k) = E

[
− Δ+p(X)

p(X)
1{X ≥ k}

]
, k ∈ N0.

With regard to applications in statistics, this second identity is more acces-
sible. We can, for instance, tackle the goodness-of-fit testing problem as fol-
lows. Assume we are to test whether a sample X1, . . . , Xn of N0-valued ran-
dom variables follows one of the laws of a parametric family of distributions
{pϑ : ϑ ∈ Θ}, where Θ denotes the parameter space. By the above characteriza-
tion, if X1, . . . , Xn are governed by one of the pϑ, then the difference between

ρ̂n(k) =
1

n

n∑
j=1

1{Xj = k}

and

1

n

n∑
j=1

−
Δ+pϑ̂n

(Xj)

pϑ̂n
(Xj)

1{Xj ≥ k}

ought to be small for each k ∈ N0. Here we denote by ϑ̂n an estimator of
ϑ based on X1, . . . , Xn. Thus, in line with the idea of characterization based
goodness-of-fit testing, our proposal is to use

∞∑
k=0

(
1

n

n∑
j=1

1{Xj = k}+ 1

n

n∑
j=1

Δ+pϑ̂n
(Xj)

pϑ̂n
(Xj)

1{Xj ≥ k}
)2
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as a test statistic for the hypothesis

H0 : ρX1 ∈ {pϑ : ϑ ∈ Θ},
and to reject the hypothesis for large values of the statistic. Supposing that
X1, . . . , Xn are governed by pϑ0 for some (unknown) ϑ0 ∈ Θ, the very same
heuristic leads us to propose

ϑ̂n = argminϑ∈Θ

∞∑
k=0

(
1

n

n∑
j=1

1{Xj = k}+ 1

n

n∑
j=1

Δ+pϑ(Xj)

pϑ(Xj)
1{Xj ≥ k}

)2

as an estimator for the unknown ϑ0. The paper at hand formalizes these ideas
and puts them on firm mathematical ground. We also provide examples for the
theoretical results as well as for the testing and estimation methods we propose.
In Section 2 we introduce basic notation and recall the density approach iden-
tity. In Section 3 we prove the new characterization result as indicated above
and in Section 4 we discuss examples. We then construct and study empirically,
in Section 5, the test of fit for the Poisson distribution. In Section 6 a discrep-
ancy measure as above leads to minimum distance estimators for the negative
binomial distribution, which are put to a test in a simulation study. Section 7
deals with similar parameter estimators in the non-normalized class of discrete
exponential-polynomial models.

2. The foundation: Stein characterizations for discrete distributions

We denote by p : Z → [0, 1] a probability mass function (pmf) defined on the
integers. We assume that the support of p, that is, spt(p) = {k ∈ Z : p(k) > 0}
is connected, in the sense that

(C1) spt(p) = {L,L+ 1, . . . , R}, where L,R ∈ Z ∪ {±∞}, L < R.

This prerequisite is quite usual in the context of Stein’s method in the discrete
setting. We further assume that

(C2) sup
k∈{L,...,R−1}

∣∣∣∣Δ+p(k) ·min{P (k), 1− P (k)}
p(k) p(k + 1)

∣∣∣∣ < ∞,

where Δ+f(k) = f(k + 1) − f(k) is the forward difference operator. Moreover,

we denote by P (k) =
∑k

�=L p(�) the distribution function corresponding to p.
Assumption (C2) is known from the continuous setting, see Lemma 13.1 of Chen,
Goldstein and Shao (2011). The supremum in (C2) runs from L to ∞ whenever
R = ∞. In what follows, we stick to the convention of setting empty sums to 0.

Definition 2.1 Let p be a pmf that satisfies (C1) and (C2). We write Fp for
the class of functions f : {L, . . . , R} → R such that

(a)
R∑

k=L

∣∣Δ+
(
p(k) f(k)

)∣∣ < ∞ and
R∑

k=L

Δ+
(
p(k) f(k)

)
= 0, where we put

f(R+ 1) = 0 if R < ∞, as well as
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(b) sup
k∈{L,...,R}

∣∣Δ+f(k)
∣∣ < ∞, and sup

k∈{L,...,R}

∣∣∣∣Δ+p(k)

p(k)
f(k + 1)

∣∣∣∣ < ∞.

Conditions (C2) and (b) vanish completely whenever the support of p is finite.
We now state the characterization theorem that is known as Stein’s density
approach for discrete distributions. The proof is an easy adaptation of the proof
of Theorem 2.1 from Ley and Swan (2013b) taking into account the different
class of test functions. We give a full proof in Appendix A to make it possible
for the reader to comprehend how the assumptions come into play. Denote by
(Ω,A,P) the probability space which underlies all random quantities in this
work.

Theorem 2.2 (Discrete density approach) Let p be a pmf which satisfies
conditions (C1) and (C2), and let X : Ω → R be a random variable such that
P
(
X ∈ spt(p)

)
> 0. Then P

(
X = k |X ∈ spt(p)

)
= p(k), k ∈ Z, if, and only if,

E

[
Δ+f(X) +

Δ+p(X)

p(X)
f(X + 1)

∣∣∣∣ X ∈ spt(p)

]
= 0,

for all f ∈ Fp, where E[· | ·] denotes the conditional expectation.

We use the abbreviation X|p ∼ p for P
(
X = k |X ∈ spt(p)

)
= p(k), k ∈ Z.

There exists a very similar result for continuous probability distributions. This
continuous version existed first and was initiated by Stein (1986). For the fully
prepared statement we refer to Ley and Swan (2011) and Ley and Swan (2013a),
and for further constructions of this type of Stein operators, see Ley, Reinert
and Swan (2017).

Remark 2.3 It follows from the proof of Theorem 2.2 that, if L > −∞, we
may assume that f(L) = 0 for all f ∈ Fp.

3. Distributional characterizations via the probability mass function

In this section we derive explicit distributional characterizations via the proba-
bility mass function. The whole theory can be understood as a discrete version
of the results from Betsch and Ebner (2021) who established similar charac-
terization identities for continuous probability laws starting with a continuous
version of Theorem 2.2 as stated by Ley and Swan (2013a). We make the further
assumption that the expectation of p exists, that is,

(C3) E|Z| < ∞, where Z is a discrete random variable with pmf p.

It follows from (C3) that E|Δ+p(Z) · Z / p(Z)| < ∞, and hence we also have
E|Δ+p(Z) / p(Z)| < ∞. We note our first result, a proof of which is given in
Appendix B.

Theorem 3.1 Let p be a pmf which satisfies (C1) – (C3) with L > −∞. Let
X : Ω → R be a random variable with P

(
X ∈ spt(p)

)
> 0 as well as

E

∣∣∣∣Δ+p(X)

p(X)
X · 1

{
X ∈ spt(p)

}∣∣∣∣ < ∞,
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and denote by ρX|p(k) = P
(
X = k |X ∈ spt(p)

)
the pmf of X given X ∈ spt(p).

Then X|p ∼ p if, and only if,

ρX|p(k) = E

[
− Δ+p(X)

p(X)
1{X ≥ k}

∣∣∣∣ X ∈ spt(p)

]
, k ∈ Z, k ≥ L.

Notice that the integrability assumption on X implies the existence of the (con-
ditional) expectation that appears in the theorem. Even in stating Theorem 3.1
the ordering of the integers is essential. However, if p is an admissible probability
mass function on some arbitrary countable set S (where S is endowed with the
power set as a σ-field), there exists a bijection ι : S → N0, which corresponds
to imposing an order on the space S, and Theorem 3.1 can be applied. This
leads to the following corollary which allows the handling of more general state
spaces.

Corollary 3.2 Let S be a countable set and p : S → [0, 1] with
∑

s∈S
p(s) = 1.

Let ι : S → {L, . . . , R}, with L > −∞, be a bijection so that p̃ = p ◦ ι−1

satisfies (C1) – (C3). Assume that X : Ω → S is a random variable such that
P
(
X ∈ spt(p)

)
> 0, and

E

∣∣∣∣ (Δ+p̃)
(
ι(X)

)
p(X)

ι(X) · 1
{
X ∈ spt(p)

}∣∣∣∣ < ∞.

Then X|p ∼ p if, and only if,

ρX|p(k) = E

[
−

(Δ+p̃)
(
ι(X)

)
p(X)

1
{
ι(X) ≥ ι(s)

} ∣∣∣∣ X ∈ spt(p)

]
, s ∈ S.

Any such ordering on S gives a characterization result, and if X ∼ p, the (con-
ditional) expectation is the same for every ordering (as ρX|p does not depend
on ι). However, if one intends to use the converse of the characterization (with
general X), the calculation of the expectation depends on the ordering, so in
practice the question of choosing an efficient ordering arises. Finding an order
such that the conditions (C1) – (C3) are satisfied is a non-trivial endeavor. We
give one example of choosing an order such that a pmf with a support that is
not bounded from below can be considered. To state the result, we first recall
that Δ−f(k) = f(k)− f(k − 1) defines the backward difference operator.

Corollary 3.3 Let p be a pmf on {L, . . . , R} which satisfies (C1) – (C3) with
R < ∞. Let X : Ω → R be a random variable with P

(
X ∈ spt(p)

)
> 0 and

E

∣∣∣∣Δ−p(X)

p(X)
X · 1

{
X ∈ spt(p)

}∣∣∣∣ < ∞.

Then X|p ∼ p if, and only if,

ρX|p(k) = E

[
Δ−p(X)

p(X)
1{X ≤ k}

∣∣∣∣ X ∈ spt(p)

]
, k ∈ Z, k ≤ R.
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Choosing ι : {L, . . . , R} → {−R, . . . ,−L}, ι(k) = −k, the result follows from
Corollary 3.2, as

(Δ+p̃)
(
ι(X)

)
= (Δ+p̃)(−X) = p(X − 1)− p(X) = −Δ−p(X).

Note that Corollary 3.3 can also be obtained via a different path. With few tech-
nical changes in Definition 2.1 and Appendix A, a Δ−-version of Theorem 2.2
can be formulated (see also Ley and Swan, 2013b). Using this result and an
adaptation of the proof of Theorem 3.1 yields another proof of Corollary 3.3.

Remark 3.4 Whenever X is assumed a priori to take values in {L, . . . , R},
the conditioning on X ∈ spt(p) can be omitted, and when −∞ < L < R < ∞,
the integrability condition on X is trivially satisfied. As for the regularity as-
sumptions (C1) – (C3), notice that, by Corollary 3.2, (C1) is mostly an issue of
notation. Whenever we deal with discrete distributions that have finite support,
conditions (C2) and (C3) are trivially satisfied. In case of an infinite support,
assumption (C3) is easy to interpret. It is stated to guarantee that the statement
of Theorem 3.1 is consistent, as it ensures that a random variable Z ∼ p satisfies
the integrability condition on X. A drawback in terms of the assumptions is that
we cannot give a general treatment of (C2), and that this condition can some-
times be difficult to check for a given distribution. A similar condition (with
identical problems) is required by Betsch and Ebner (2021) in the continuous
setting. If L > −∞ and R = ∞ then (C2) holds if, and only if,

lim sup
k→∞

∣∣∣∣Δ+p(k) · (1− P (k))

p(k) p(k + 1)

∣∣∣∣ < ∞. (3.1)

Similar thoughts apply to other choices for L and R, but this does not solve the
problem in general. However, the Stolz-Cesáro theorem (see Theorem 2.7.1 of
Choudary and Niculescu, 2014) provides a useful tool for checking the condition
in practice, see Example 4.3.

Remark 3.5 (Non-normalized models) As explained in the introduction,
many statistical models, primarily in machine learning and physics, are too
complex for the normalization constant of the distribution to be calculable. As
estimation and testing procedures (e.g. the maximum likelihood estimator) usu-
ally rely on some knowledge about this constant, they may not be applicable to
such models. Thus, we want to emphasize that our explicit characterizations do
not need any knowledge about the normalization constants, and neither do any
of the statistical applications presented in subsequent sections.

4. Examples

In this section, we provide examples that fit into our framework. For each distri-
bution we indicate why (C1) – (C3) hold and we explicitly state the characteri-
zation via Theorem 3.1. We consider three infinite support examples which are
subject of our statistical applications in the subsequent sections. More precisely,
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we discuss the Poisson and the negative binomial distribution as well as a dis-
crete version of the exponential-polynomial model. From our previous discussion
in Remark 3.4 it is easy to see that many other examples can be found. For such
additional examples and further characterization results via transformations of
the pmf, we refer to the arXiv version of this paper.

Example 4.1 (Poisson distribution) The mass function of the Poisson dis-
tribution is given as p(k) = λk e−λ / k!, k ∈ N0, for some rate parameter λ > 0.
In this case, we obtain

Δ+p(k)

p(k)
=

λ

k + 1
− 1, k ∈ N0.

Conditions (C1) and (C3) are obviously true. To see that (C2) holds, note that
whenever λ /(k + 2) < 1, we have∣∣∣∣Δ+p(k) · (1− P (k))

p(k) p(k + 1)

∣∣∣∣ = ∣∣∣∣ λ

k + 1
− 1

∣∣∣∣ ∞∑
�=1

λ�−1

(�+ k)!
(k + 1)!

≤
∣∣∣∣ λ

k + 1
− 1

∣∣∣∣ ∞∑
�=0

(
λ

k + 2

)�

=

∣∣∣∣ λ

k + 1
− 1

∣∣∣∣ · 1

1− λ
k+2

,

and therefore (3.1) holds which yields (C2). Theorem 3.1 implies that a random
variable X : Ω → N0 with EX < ∞ has the Poisson distribution with parameter
λ if, and only if,

ρX(k) = E

[(
1− λ

X + 1

)
1{X ≥ k}

]
, k ∈ N0.

Example 4.2 (Negative binomial distribution) The probability mass func-
tion of the negative binomial distribution with parameters r > 0 and q ∈ (0, 1)
is p(k) =

(
k+r−1

k

)
(1−q)k qr, k ∈ N0. An important special case arises for r = 1,

where the negative binomial distribution reduces to the geometric distribution.
These laws are frequently used in the analysis of arrival times. We have

Δ+p(k)

p(k)
=

r + k

k + 1
(1− q)− 1, k ∈ N0.

Condition (C1) is trivially satisfied, and (C3) is easily verified. We prove (3.1)
to show that (C2) is satisfied. To this end, observe that∣∣∣∣Δ+p(k) · (1− P (k))

p(k) p(k + 1)

∣∣∣∣ = ∣∣∣∣r + k

k + 1
(1− q)− 1

∣∣∣∣ ∞∑
�=0

(�+ k + r)! · (k + 1)!

(�+ k + 1)! · (k + r)!
(1− q)�.

If r ≤ 1, the sum is bounded by
∑∞

�=0(1 − q)� = 1/q. If r > 1, let k be large
enough so that 2 · (r − 1) / (k + 2) < q / (1− q), and observe that

∞∑
�=0

(r + k + �) · (r + k + �− 1) · · · (r + k + 1)

(k + �+ 1) · (k + �) · · · (k + 2)
(1− q)�
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=

∞∑
�=0

(
1 +

r − 1

k + �+ 1

)
·
(
1 +

r − 1

k + �

)
· · ·

(
1 +

r − 1

k + 2

)
· (1− q)�

≤
∞∑
�=0

(
1 +

1

2
· q

1− q

)�

(1− q)� =

∞∑
�=0

(
1− q

2

)�

=
2

q
,

where the products in the sum are empty (hence equal to 1) for � = 0. In any
case, (3.1) follows, so (C2) is valid. Theorem 3.1 states that a discrete random
variable X : Ω → N0 with EX < ∞ follows the negative binomial law with
parameters r and q if, and only if,

ρX(k) = E

[(
1− r +X

X + 1
(1− q)

)
1{X ≥ k}

]
, k ∈ N0.

Note that the statement by Johnson, Kotz and Kemp (1993) (on p. 223) that
“only a few characterizations have been obtained for the negative binomial dis-
tribution” appears to still hold true. For one recent characterization related to
Stein’s method, we refer to Arras and Houdré (2019).

Example 4.3 (Exponential-polynomial models) We consider the follow-
ing discrete exponential-polynomial parametric model given through

pϑ(k) = C(ϑ)−1 exp
(
ϑ1k + . . .+ ϑdk

d
)
, k ∈ N,

where

C(ϑ) =

∞∑
k=1

exp
(
ϑ1k + . . .+ ϑdk

d
)
,

and ϑ = (ϑ1, . . . , ϑd) ∈ R
d−1 × (−∞, 0). This corresponds to a discrete ex-

ponential family in the canonical form with the sufficient statistic containing
monomials up to order d ∈ N, with d ≥ 2. Clearly condition (C1) is satisfied
and the restriction ϑd < 0 ensures that (C3) holds for every ϑ as well as that
C(ϑ) < ∞. We have

pϑ(k + 1)

pϑ(k)
= exp

(
ϑ1 + ϑ2

(
(k + 1)2 − k2

)
+ . . .+ ϑd

(
(k + 1)d − kd

))
−→ 0,

as k → ∞, and the Stolz-Cesáro theorem (Theorem 2.7.1 of Choudary and
Niculescu, 2014) yields

lim
k→∞

pϑ(k + 1)

1− Pϑ(k)
= − lim

k→∞

pϑ(k + 2)

pϑ(k + 1)
+ 1 = 1.

Consequently, we obtain

lim sup
k→∞

∣∣∣∣Δ+pϑ(k) · (1− Pϑ(k))

pϑ(k) pϑ(k + 1)

∣∣∣∣ ≤ lim sup
k→∞

∣∣∣∣pϑ(k + 1)

pϑ(k)
− 1

∣∣∣∣ · ∣∣∣∣1− Pϑ(k)

pϑ(k + 1)

∣∣∣∣ = 1
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for every ϑ ∈ R
d−1 × (−∞, 0), so (C2) holds. Finally observe that we have

pϑ(k + 1) / pϑ(k) < 1 for all but finitely many k ∈ N, so an N-valued random
variable with EX < ∞ also satisfies

E

∣∣∣∣Δ+pϑ(X)

pϑ(X)
X

∣∣∣∣ < ∞.

Theorem 3.1 yields that a random variable X : Ω → N with EX < ∞ has the
pmf pϑ if, and only if, ρX(k) is given through

E

[(
1− exp

(
ϑ1 + ϑ2

(
(X + 1)2 −X2

)
+ . . .+ ϑd

(
(X + 1)d −Xd

)))
1{X ≥ k}

]
for each k ∈ N. In Section 7 we use this characterization to construct an esti-
mation method for this type of parametric model, focusing on a two-parameter
case where d = 3 and ϑ2 = 0 fixed.

5. Goodness-of-fit testing for the Poisson distribution

A first application of the characterization results from the previous sections is
the construction of a test of fit for the Poisson distribution. Given a sample
of N0-valued independent identically distributed (i.i.d.) random variables, the
problem is to test the composite hypothesis that the sample comes from some
Poisson distribution Po(λ) with an unknown rate parameter λ > 0, that is,

H0 : P
X1 ∈

{
Po(λ) : λ > 0

}
.

This is a classical statistical problem, well studied in the literature. Apart from
Pearson’s χ2 test, see Khmaladze (2013) for recent developments, the hitherto
proposed tests are based on the (conditional) empirical distribution function, see
Beltrán-Beltrán and O’Reilly (2019); Gürtler and Henze (2000); Henze (1996);
Frey (2012), the empirical probability generating function, see Baringhaus and
Henze (1992); Puig and Weiß (2020); Rueda and O’Reilly (1999), on the in-
tegrated distribution function, see Klar (1999), on a characterization by mean
distance, see Székely and Rizzo (2004), on quadratic forms of score vectors, see
Inglot (2019), on Charlier polynomials, see Ledwina and Wylupek (2017), on
conditional probabilities ratio, see Beltrán-Beltrán and O’Reilly (2019), and on
relating first- and second-order moments, see Kyriakoussis, Li and Papadopoulos
(1998). For a survey of classical procedures and a comparative simulation study
see Gürtler and Henze (2000). However, the construction of new and powerful
methods is still of relevance: As Nikitin (2017) stated on p.4 of his contribution
that “[...] one should keep in mind that any hypothesis has to be tested with
several possible criteria. The point of the matter is that with absolute confidence
we can only reject it, while each new test which fails to reject the null-hypothesis
gradually brings the statistician closer to the perception that this hypothesis is
true”.
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The idea of our new method is to estimate the two quantities that appear in
the characterization via Theorem 3.1 as given in Example 4.1, and to compare
these empirical quantities. Based on the sample X1, . . . , Xn, let

ên(k) =
1

n

n∑
j=1

(
1− λ̂n

Xj + 1

)
1{Xj ≥ k}, k ∈ N0,

be an estimator of the expectation that arises in the characterization, where
λ̂n = n−1

∑n
j=1 Xj is a consistent estimator of the rate parameter. Also consider

the empirical probability mass function,

ρ̂n(k) =
1

n

n∑
j=1

1{Xj = k}, k ∈ N0,

as an estimator of ρX1 . By Theorem 3.1 (see Example 4.1), if the sample
X1, . . . , Xn comes from a Poisson distribution, the absolute difference between
ên(k) and ρ̂n(k) ought to be small for every k ∈ N0. On the other hand, if the
sample does not come from the Poisson law, we expect their absolute difference
to be large. Based on this heuristic, we suggest to use as a test statistic the
squared difference of ên and ρ̂n summed over k ∈ N0, that is,

TPo
n =

∞∑
k=0

(
ên(k)− ρ̂n(k)

)2
,

and to reject the Poisson hypothesis H0 for large values of TPo
n . Note that we

do not need to introduce any weight functions to make the infinite sum in the
definition of TPo

n converge, and observe that we choose the squared distance to
obtain a finite double sum representation for TPo

n , namely

TPo
n =

1

n2

n∑
j, �=1

[(
1− λ̂n

Xj + 1

)(
X� − 1− λ̂n

)
1{Xj ≥ X�}

+
(
Xj + 1− λ̂n

)(
1− λ̂n

X� + 1

)
1{Xj < X�}+ 1{Xj = X�}

]
,

which is easily implemented in a computer. The calculation of TPo
n involves only

straight forward algebra and consists, mainly, of writing the squared difference
of ên(k) and ρ̂n(k) as a double sum, multiplying the corresponding terms, and
solving the sum over k of the indicator functions.

As a proof of concept, we carry out a simulation study in order to compare our
new test of poissonity with established procedures. All simulations are performed
in the statistical computing environment R, see R Core Team (2020). We consider
the sample size n = 50 and the nominal level of significance is set to 0.05. Based
on the methodology for asymptotic theory detailed by Henze (1996), we expect
the (limit) distribution of the test statistics considered in the following to depend
on the unknown parameter λ. Consequently, we use for the implementation of
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the tests a parametric bootstrap procedure similar to the one suggested by
Gürtler and Henze (2000). For a given sample X1, . . . , Xn and a statistic Tn,
simulate an approximate critical value cn,B for a level α test procedure as follows:

1) Calculate λ̂n(X1, . . . , Xn) and generate B bootstrap samples of size n

with distribution Po(λ̂n), i.e., generate i.i.d. Po(λ̂n) random variables
X∗

j,1, . . . , X
∗
j,n, j = 1, . . . , B.

2) Compute T ∗
j,n = Tn(X

∗
j,1, . . . , X

∗
j,n) for j = 1, . . . , B.

3) Derive the order statistics T ∗
1:B ≤ . . . ≤ T ∗

B:B of T ∗
1,n, . . . , T

∗
B,n and put

cn,B = T ∗
k:B + (1− α) ·

(
T ∗
(k+1):B − T ∗

k:B

)
,

where k = 
(1− α) ·B� and 
·� denotes the floor function.
4) Reject the hypothesis H0 if Tn(X1, . . . , Xn) > cn,B.

This parametric bootstrap procedure was used for all of the following procedures
to generate the critical points. We consider the test of Baringhaus and Henze
(1992) based on the statistic

BH =
1

n

n∑
i,j=1

(
λ̂2
n

Xi +Xj + 1
+

Xi Xj

Xi +Xj − 1

)
− λ̂n

(
n− 1

n

(
n∑

j=1

1{Xj = 0}
)2)

.

The mean distance test by Székely and Rizzo (2004) is based on

SR = n

∞∑
j=0

(
M̂n(j)− P(j; λ̂n)

)2

p(j; λ̂n),

where M̂n(j) is an estimator of the CDF based on the mean distance and P(j;λ)
(resp. p(j;λ)) denotes the distribution function (resp. pmf) of Po(λ). Note that
SR is implemented in the R-package energy, see Rizzo and Székely (2019). The
test of Rueda, O’Reilly and Pérez-Abreu (1991) is based on

RU =
1

n

n∑
i,j=1

1

Xi +Xj + 1
+

n · (1− e−2λ̂n)

2 λ̂n

− 2
n∑

i=1

(
(−1)Xi ·Xi! · (1− e−λ̂n)

λ̂Xi+1
n

+

Xi∑
j=1

(−1)j+1 ·Xi!

(Xi − j + 1)! · λ̂j
n

)
.

Note that in the original paper of Rueda, O’Reilly and Pérez-Abreu (1991)
and in a slight handwritten correction thereof available on the internet, as well
as in the work of Gürtler and Henze (2000), the explicit formula of the RU-
statistic contains errors. We have corrected and numerically checked the formula
given above against the integral representation used to introduce the test. The
integrated distribution function based tests of Klar (1999) are defined via

K1 =
√
n

(
M∑
j=0

∣∣∣F̂n(j)− P(j; λ̂n)
∣∣∣+ λ̂n −

M∑
j=0

(
1− P(j; λ̂n)

))
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and

K2 =
√
n sup

1≤ k≤M

∣∣∣∣∣
k−1∑
j=0

(
F̂n(j)− P(j; λ̂n)

)∣∣∣∣∣,
where M = max{X1, . . . , Xn} and F̂n is the empirical distribution function
of X1, . . . , Xn. For representations of the Kolmogorov-Smirnov statistic and
the modified Cramér-von Mises statistic, we follow the representation given by
Gürtler and Henze (2000), namely

KS =
√
n sup

0≤ k≤M

∣∣∣F̂n(x)− P(k; λ̂n)
∣∣∣

and

CM = n

M∑
j=0

(
F̂n(j)− P(j; λ̂n)

)2

· 1
n

n∑
k=1

1{Xk = j}.

The simulation study consists of the following 45 representatives of families
of distributions. In order to show that all the considered testing procedures
maintain the nominal level α of 5%, we consider the Po(λ) distribution with
λ ∈ {1, 5, 10, 30}. As examples for alternative distributions, we consider the
discrete uniform distribution U{0, 1, . . . ,m} with m ∈ {1, 2, 3, 5, 6}, several dif-
ferent instances of the binomial distribution Bin(m, q), several Poisson mixtures
of the form PP(q;ϑ1, ϑ2) = q · Po(ϑ1) + (1 − q) · Po(ϑ2), a 0.9/0.1 mixture of
Po(3) and point mass in 0 denoted by Po(3)δ0, discrete Weibull distributions
W(ϑ1, ϑ2), zero-modified Poisson distributions zmPo(λ, q), the zero-truncated
Poisson distributions ztPo(λ) with λ ∈ {2, 3, 5}, and the absolute discrete nor-
mal distribution |N(μ, 1)| with μ ∈ {0, 2, 3}. Note that most distributions were
generated by the packages extraDistr, see Wolodzko (2019), and actuar, see
Dutang, Goulet and Pigeon (2008), and that a significant part of these distribu-
tions can also be found in the simulation study presented by Gürtler and Henze
(2000). Furthermore we indicate that the chosen design of simulation parame-
ters coincides with the study by Gürtler and Henze (2000) which facilitates the
comparison to other tests of poissonity not considered here.

Every entry in Table 1 is based on 100000 repetitions and 500 bootstrap
samples of size 50. All of the considered procedures maintain the significance
level α = 5% under the hypothesis, which supports the statement that the
parametric bootstrap procedure is well calibrated. Overall the best performing
tests are K2, BH and SR. The new test based on TPo

n is competitive to the stated
procedures, although it never outperforms them all at once for the considered
alternatives.

6. Parameter estimation in the family of negative binomial
distributions

The characterizations we employ contain information about the underlying
probability law and lead to empirical discrepancy measures being close to zero
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Table 1

Empirical rejection rates of the tests of poissonity (sample size 50, significance level 5%).

Distr. / Test TPo
n BH SR RU K1 K2 KS CM

Po(1) 5 5 5 5 5 5 5 5
Po(5) 5 5 5 5 5 5 5 5
Po(10) 5 5 5 5 5 5 5 5
Po(30) 5 5 5 5 5 5 5 5

U{0, 1} 99 99 99 99 99 99 99 99
U{0, 1, 2} 39 9 22 15 64 68 50 58
U{0, 1, 2, 3} 46 33 20 27 61 16 45 51
U{0, 1, 2, 3, 4, 5} 69 65 58 62 75 39 60 63
U{0, 1, 2, 3, 4, 5, 6} 85 85 83 85 86 66 72 76

Bin(2, 0.5) 81 81 89 87 86 90 83 81
Bin(4, 0.25) 18 22 23 24 18 22 21 15
Bin(10, 0.1) 7 7 7 7 6 7 7 6
Bin(10, 0.5) 57 52 49 52 82 88 60 68
Bin(1, 0.5) 73 77 82 81 80 82 76 77
Bin(2, 2/3) 34 38 44 44 43 45 37 39
Bin(3, 0.75) 19 22 26 26 26 27 21 23
Bin(9, 0.9) 6 7 8 8 8 8 7 8
Bin(5, 0.5) 82 85 80 84 88 89 67 71
Bin(10, 2/3) 41 45 41 44 48 50 28 31
Bin(15, 0.75) 23 27 26 26 28 30 16 18
Bin(45, 0.9) 8 9 10 9 9 8 6 7

PP(0.5; 2, 5) 64 64 69 65 72 74 53 57
PP(0.5; 3, 5) 17 19 20 19 20 21 12 14
PP(0.25; 1, 5) 93 95 96 95 87 88 75 73
PP(0.05; 1, 5) 23 33 32 32 13 12 8 7
PP(0.01; 1, 5) 7 9 9 9 6 5 5 5

Po(3)δ0 54 62 54 59 32 31 32 26

W(0.5, 1) 73 77 82 81 80 82 76 77
W(0.25, 1) 22 24 27 28 26 26 26 25
W(0.5, 2) 49 52 52 51 48 52 51 52
W(0.25, 2) 8 8 7 6 6 8 7 10
W(0.75, 2) 28 32 35 35 26 32 30 21
W(0.1, 1) 10 10 10 8 10 10 10 10
W(0.9, 3) 97 97 99 99 98 99 97 93

zmPo(1, 0.1) 91 93 90 92 81 84 90 64
zmPo(1, 0.5) 17 18 19 19 19 18 18 19
zmPo(1, 0.8) 71 72 74 74 74 74 74 74
zmPo(2, 0.1) 8 9 8 8 6 6 6 6
zmPo(3, 0.1) 24 30 24 27 13 12 11 9

ztPo(2) 93 99 83 95 38 39 56 19
ztPo(3) 12 18 18 18 9 10 7 9
ztPo(5) 4 1 1 1 5 5 5 5

|N(0, 1)| 45 48 48 50 42 46 47 41
|N(2, 1)| 44 46 59 53 54 61 42 37
|N(3, 1)| 88 78 94 86 96 98 85 90

if the distribution generating the data is the one stated in the characterization.
These measures can be used for estimation of the parameters of the consid-
ered parametric family of distributions. To illustrate this point, we propose
a minimum distance estimation procedure for the family of negative binomial
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distributions. Our objective is to estimate the unknown parameters q ∈ (0, 1)
and r > 0 of a negative binomial distribution based on an i.i.d. N0-valued
sample X1, . . . , Xn. Estimation in this particular family is not trivial, since
Aragón, Eberly and Eberly (1992) have shown the conjecture of Anscombe dat-
ing back to 1950, that the maximum likelihood equations have a unique solu-
tion if, and only if, Xn < S2

n with Xn = n−1
∑n

j=1 Xj , the sample mean, and

S2
n = n−1

∑n
j=1(Xj − Xn)

2, the sample variance. However, as Johnson, Kotz
and Kemp (1993) state in their Section 8.3, so called “[...] underdispersed sam-
ples [...] will occasionally be encountered, even when a negative binomial model
is appropriate.” The moment estimators defined by q̃n = Xn/S

2
n and

r̃n =

(
Xn

)2
(1− q̂n)S2

n

=

(
Xn

)2
S2
n −Xn

,

see display (5.49) and (5.50) of Johnson, Kotz and Kemp (1993), perform com-
parably bad as the maximum likelihood estimators, since, in underdispersed
samples, they lead to negative values of r̃n or values of q̃n that are greater than
one, see the following simulation study and Figure 2.

The heuristic for our new method is similar to that of the previous section,
again based on Theorem 3.1 (see also Example 4.2). Thus, we define

ên(k; r, q) =
1

n

n∑
j=1

(
1− r +Xj

Xj + 1
(1− q)

)
1{Xj ≥ k}, k ∈ N0,

and let ρ̂n be as in the previous section. Similar to the test for the Poisson
distribution, we consider the empirical discrepancy measure

SNB
n (r, q) =

∞∑
k=0

(
ên(k; r, q)− ρ̂n(k)

)2
which is given explicitly by the double sum

1

n2

n∑
j, �=1

[(
1− r +Xj

Xj + 1
(1− q)

)(
q(r +X�)− r − 1

)
1{Xj ≥ X�}

+
(
q(r +Xj)− r + 1

)(
1− r +X�

X� + 1

(
1− q

))
1{Xj < X�}+ 1{Xj = X�}

]
.

The proposed estimators for (r, q) are defined by

(r̂n, q̂n) = argmin(r,q) S
NB
n (r, q). (6.1)

In this particular example we expect that it is possible to minimize the quadratic
equation in r and q explicitly to obtain formulae for the estimators. However, in
the following section we cannot hope for an explicit solution to the optimization
problem and for reasons of consistency of the presentation, we use a numerical
routine to find the values of the estimators in both cases. Note that similar
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Fig 1. Biases of the minimum distance (red) and method of moments (black) estimation
procedures simulated for different parameters, (r0, q0) ∈ {2, 5, 10} × {0.05, 0.25, 0.5}, of the
negative binomial distribution. The sample size is n = 100 and 200 realizations are simulated.
A red circle represents a value of (r̂n − r0, q̂n − q0), while a black cross stands for a value of
(r̃n − r0, q̃n − q0).

estimators for parametric families of continuous distributions are investigated
by Betsch, Ebner and Klar (2021).

For a comparison of the two presented methods we conduct a simulation
study in R and use the optim routine to find the minimal values in (6.1).
The option method was fixed to L-BFGS-B, thus choosing an implementation
of the routine suggested by Byrd et al. (1995), and the maximum number of
iterations to maxit=1000. As starting values for the optimization routine we
choose independent uniformly distributed random numbers rs ∼ U(1, 3) and
qs ∼ U(0.1, 0.9). For different (r0, q0) ∈ (0,∞) × (0, 1) we simulate 200 i.i.d.
samples of size n = 100 from a negative binomial distribution with parameters
(r0, q0) and calculate the minimum distance estimators (r̂n, q̂n) as well as the
moment estimators (r̃n, q̃n). Then the bias of the estimation is derived by sub-
tracting the underlying ‘true’ parameters (r0, q0). In Figures 1 and 2 the results
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Fig 2. Biases of the minimum distance (red) and method of moments (black) estimation
procedures simulated for different parameters, (r0, q0) ∈ {20, 30, 50} × {0.8, 0.9, 0.95}, of the
negative binomial distribution. The sample size is n = 100 and 200 realizations are simulated.
A red circle represents a value of (r̂n − r0, q̂n − q0), while a black cross stands for a value of
(r̃n−r0, q̃n−q0). The number of cases of underdispersed samples, the number of convergence
failures of the optimization routine, and the number of cases where both occurred are stated
in the plot.

of the different simulations are plotted, with estimation results of the moment
estimators plotted as black crosses and the results of the minimum distance es-
timators as red circles. It is visible in Figure 1 that for small values of q0, both
procedures perform comparably, although the values of the moments estimators
seem to scatter a little more than those of the minimum distance estimators.
A completely different picture is seen in Figure 2, where values of q0 in the
neighborhood of 1 and greater values of r0 are assumed. The moment estima-
tors (r̃n, q̃n) regularly produce values which are clearly outside of the defined
parameter space (0,∞)× (0, 1) as opposed to the minimum distance estimators
(r̂n, q̂n) which do not show this behavior due to the optimization constraints.
Nevertheless, some convergence failures in the optimization routine did occur
and they are not exclusively related to the underdispersed samples and only
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happen for somewhat extreme parameter configurations. We chose to visually
assess the quality of estimation, since empirical versions of the bias and mean
squared error are very sensitive to big discrepancies, and hence did not pro-
vide valuable information on the quality of the estimation procedures. It would
be of interest to find theoretical statements for the estimators (r̂n, q̂n) such as
consistency results or a central limit theorem type asymptotic distribution.

7. Parameter estimation in discrete exponential-polynomial models

In this final section we present an application to a non-normalized model, namely
parameter estimation in the discrete exponential-polynomial models introduced
in Example 4.3. We follow Betsch, Ebner and Klar (2021) who apply the con-
tinuous version of our estimation method to continuous exponential-polynomial
models. In their work, they compare the method with two other methods for
parameter estimation in non-normalized continuous models. More specifically,
they implemented the score matching approach of Hyvärinen (2007) as well as
noise-contrastive estimators from Gutmann and Hyvärinen (2012). As another
contribution that focuses on the continuous exponential-polynomial distribution
and the corresponding parameter estimation problem, let us mention Hayakawa
and Takemura (2016). In our search through the literature we have found only
few methods for the parameter estimation in the discrete version of the model.
As such, contrastive divergence methods based on the initial proposal by Hin-
ton (2002) can be applied in principle though it does not avoid dealing with the
normalization constant C(ϑ) and Lyu (2009) proposes a discrete version of the
score matching approach but does not give details on its implementation. More
recently Takenouchi and Kanamori (2017) proposed a method (that avoids any
calculation or approximation of the normalization constant) based on suitable
homogeneous divergences which are empirically localized. We use this latter
method as a comparison to our approach.

Assume that X1, . . . , Xn is an i.i.d. N-valued sample from the exponential-
polynomial model pϑ(0) in Example 4.3 with some unknown parameter vector
ϑ(0) ∈ R

d−1×(−∞, 0) (with d ∈ N, d ≥ 2, fixed and known). We seek to estimate
ϑ(0) based on X1, . . . , Xn. Very similar to the previous section, we consider ρ̂n
as before, and put

ên(k;ϑ) =
1

n

n∑
j=1

(
1− exp

( d∑
m=1

ϑm

(
(Xj + 1)m −Xm

j

)))
1{Xj ≥ k}, k ∈ N.

We define the empirical discrepancy measure

SPE
n (ϑ) =

∞∑
k=0

(
ên(k;ϑ)− ρ̂n(k)

)2
.

In line with Theorem 3.1, or more precisely, Example 4.3, we propose as an
estimator

ϑ̂n = argminϑ S
PE
n (ϑ). (7.1)
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To see if this approach leads to sensible estimators, we conduct simulations
in a two-parameter special case of the model. Following the continuous-case
simulation setting of Betsch, Ebner and Klar (2021), we consider d = 3 but
fix ϑ2 = 0, thus effectively estimating the parameters of the parametric family
given through

p(ϑ1,ϑ3)(k) = C(ϑ1, ϑ3)
−1 exp

(
ϑ1k + ϑ3k

3
)
, k ∈ N, ϑ1 ∈ R, ϑ3 < 0, (7.2)

which, though simpler than the general case, is still a non-normalized model and
thus inaccessible to explicit maximum likelihood estimation. The discrepancy
measure SPE

n (ϑ) can be calculated as

SPE
n (ϑ) =

1

n2

n∑
j,�=1

[(
Ej(ϑ1, ϑ3)− 1

)(
E�(ϑ1, ϑ3) ·X� −X� + 2

)
1{Xj ≥ X�}

+ 1{Xj = X�}+
(
Ej(ϑ1, ϑ3)− 1

)(
E�(ϑ1, ϑ3)− 1

)
·Xj 1{Xj < X�}

]
,

where

Ei(ϑ1, ϑ3) = exp
(
ϑ1 + ϑ3 + 3ϑ3Xi + 3ϑ3X

2
i

)
, i = 1, . . . , n.

For a comparison, we consider the estimator proposed by Takenouchi and
Kanamori (2017). For positive constants α, α′, γ > 0, such that α > α′, and
ᾱ = (α+ γα′) / (1 + γ), their estimator is given as

ϑ̃n = argminϑ

{
1

1 + γ
log

( ∑
k∈Z

(nk

n

)α

qϑ(k)
1−α

)
− log

( ∑
k∈Z

(nk

n

)ᾱ

qϑ(k)
1−ᾱ

)

+
γ

1 + γ
log

( ∑
k∈Z

(nk

n

)α′

qϑ(k)
1−α′

)}
, (7.3)

where Z is the set of all values that appear in the sample X1, . . . , Xn, the
variable nk denotes how often the value k is found in the sample, and

qϑ(k) = exp
(
ϑ1k + . . .+ ϑdk

d
)
, k ∈ N.

Since Takenouchi and Kanamori (2017) do not propose a specific way of choosing
the constants α, α′ and γ, we use the values that appear most frequently in their
simulation study and therefore set α = 1.1, α′ = 0.1 and γ = 1/9.

As in the previous section, we use the software R for the simulation and the
optim routine to find the minimal values in (7.1) and (7.3). Again, the op-
tion method is fixed to L-BFGS-B and the maximum number of iterations to
maxit=1000. As starting values for the optimization we choose independent

uniformly distributed random numbers ϑ
(s)
1 ∼ U(−1, 1) and ϑ

(s)
3 ∼ U(−1, 0).

For different
(
ϑ
(0)
1 , ϑ

(0)
3

)
∈ R × (−∞, 0) we simulate 200 i.i.d. samples of size

n = 100 from the discrete exponential-polynomial model in (7.2) with param-

eters (ϑ
(0)
1 , ϑ

(0)
3 ) and calculate the estimators

(
ϑ̂n,1, ϑ̂n,3

)
and

(
ϑ̃n,1, ϑ̃n,3

)
pre-

sented in (7.1) and (7.3) respectively. The biases of the estimators are given by
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Fig 3. Simulated biases of the estimators ϑ̂n (red) and ϑ̃n (black) in the discrete exponential-

polynomial model for different parameters
(
ϑ
(0)
1 , ϑ

(0)
3

)
(n = 100; 200 repetitions). A red

circle represents the value of
(
ϑ̂n,1 − ϑ

(0)
1 , ϑ̂n,3 − ϑ

(0)
3

)
, while a black cross stands for(

ϑ̃n,1 − ϑ
(0)
1 , ϑ̃n,3 − ϑ

(0)
3

)
.

subtracting the underlying ‘true’ parameters
(
ϑ
(0)
1 , ϑ

(0)
3

)
. The simulation of a

discrete exponential-polynomial model is rather simple as ϑ
(0)
3 < 0 ensures that

the probability p
(ϑ

(0)
1 ,ϑ

(0)
3 )

(k) is rapidly decreasing as k grows. From a practical

point of view and minding the usual calculation accuracy, we only need to deal
with a discrete distribution with finite support. In Figure 3 the results of the
simulations are presented and it is visible that both procedures perform com-
parable and overall well. The newly proposed estimators tend to scatter more
which favors the competing estimators. However, our new estimators require
no (data-dependent or quick fix) choice of parameters (like α, α′ and γ for the
estimators of Takenouchi and Kanamori, 2017). Introducing additional param-
eters, for instance through suitable weight functions, is also conceivable for our
method. It would certainly allow for some choice which improves the overall
performance, but it also leads to a less intuitive implementation as these pa-
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rameters need to be chosen in practice. Note that, as in the previous simulation,
some convergence failures in the optimization routine occurred (less than ten
percent per parameter configuration).

Appendix A: Proof of Theorem 2.2

The following proof is, up to technical details involving the class of test functions,
due to Ley and Swan (2013b) and given here for the reader’s convenience.

Assume that X|p ∼ p. Then, for f ∈ Fp,

E

[
Δ+f(X) +

Δ+p(X)

p(X)
f(X + 1)

∣∣∣∣ X ∈ spt(p)

]
=

R∑
k=L

(
p(k)Δ+f(k) + f(k + 1)Δ+p(k)

)
=

R∑
k=L

Δ+
(
p(k) f(k)

)
= 0,

using assumption (a). To prove the converse, take a discrete random variable Z
with mass function p, independent ofX. Form ∈ Z, define fm :

{
L, . . . , R

}
→ R

via

fm(k) =
1

p(k)

k−1∑
�=L

(
1{� ≤ m} − P(Z ≤ m)

)
p(�).

This map satisfies

Δ+
(
p(k) fm(k)

)
=

(
1{k ≤ m} − P(Z ≤ m)

)
p(k), k ∈ {L, . . . , R}.

Therefore,

R∑
k=L

∣∣∣Δ+
(
p(k) fm(k)

)∣∣∣ ≤ 2

R∑
k=L

p(k) = 2 < ∞,

as well as

R∑
k=L

Δ+
(
p(k) fm(k)

)
=

R∑
k=L

(
1{k ≤ m} − P(Z ≤ m)

)
p(k)

= P(Z ≤ m)− P(Z ≤ m) = 0.

Moreover, we have fm(k + 1) ≤ 2 · P (k) / p(k + 1) and, since

R∑
�=L

(
1{� ≤ m} − P(Z ≤ m)

)
p(�) = 0,

we get

∣∣fm(k + 1)
∣∣ = 1

p(k + 1)

∣∣∣∣∣
R∑

�=k+1

(
1{� ≤ m} − P(Z ≤ m)

)
p(�)

∣∣∣∣∣
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≤ 2

p(k + 1)
·
(
1− P (k)

)
,

which implies

sup
k∈{L,...,R}

∣∣∣∣Δ+p(k)

p(k)
fm(k + 1)

∣∣∣∣ ≤ 2 sup
k∈{L,...,R−1}

∣∣∣∣Δ+p(k) ·min{P (k), 1− P (k)}
p(k) p(k + 1)

∣∣∣∣
< ∞.

Now, notice that

Δ+fm(k) =

(
1

p(k + 1)
− 1

p(k)

) k∑
�=L

(
1{� ≤ m} − P(Z ≤ m)

)
p(�)

+
1

p(k)

(
1{k ≤ m} − P(Z ≤ m)

)
p(k)

=

(
1− p(k + 1)

p(k)

)
1

p(k + 1)

k∑
�=L

(
1{� ≤ m} − P(Z ≤ m)

)
p(�)

+ 1{k ≤ m} − P(Z ≤ m)

= −Δ+p(k)

p(k)
fm(k + 1) + 1{k ≤ m} − P(Z ≤ m),

where the calculation is valid for k ∈ {L, . . . , R− 1}, but the equality obviously
also holds for k = R [using our convention fm(R+ 1) = 0] if R < ∞. From this
relation, we immediately get that

sup
k∈{L,...,R}

∣∣Δ+fm(k)
∣∣ < ∞,

so fm ∈ Fp, as well as, by the assumption in the converse implication,

0 = E

[
Δ+fm(X) +

Δ+p(X)

p(X)
fm(X + 1)

∣∣∣∣ X ∈ spt(p)

]
= E

[
1{X ≤ m} − P(Z ≤ m)

∣∣∣ X ∈ spt(p)
]
,

which implies the claim.

Appendix B: Proof of Theorem 3.1

First assume that X|p ∼ p. Then, for all k ∈ Z, k ≥ L, we have

ρX|p(k) = p(k) = −
R∑

�=k

Δ+p(�)

p(�)
p(�)

= E

[
− Δ+p(X)

p(X)
1{X ≥ k}

∣∣∣∣ X ∈ spt(p)

]
.
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For the converse implication, assume that

ρX|p(k) = E

[
− Δ+p(X)

p(X)
1{X ≥ k}

∣∣∣∣ X ∈ spt(p)

]
, k ∈ Z, k ≥ L.

We obtain for f ∈ Fp

E

[
Δ+f(X)

∣∣∣X ∈ spt(p)
]
=

R∑
�=L

(
Δ+f(�)

)
ρX|p(�)

=

R∑
�=L

Δ+f(�)E

[
− Δ+p(X)

p(X)
1{X ≥ �}

∣∣∣∣ X ∈ spt(p)

]

= E

[
− Δ+p(X)

p(X)

X∑
�=L

(
f(�+ 1)− f(�)

) ∣∣∣∣ X ∈ spt(p)

]

= E

[
− Δ+p(X)

p(X)
f(X + 1)

∣∣∣∣ X ∈ spt(p)

]
,

where we use that f(L) = 0 by Remark 2.3, and where Fubini’s theorem is
applicable as

R∑
�=L

E

∣∣∣∣Δ+f(�)
Δ+p(X)

p(X)
1
{
X ≥ �, X ∈ spt(p)

}∣∣∣∣
≤ sup

k∈{L,...,R}

∣∣Δ+f(k)
∣∣ · E∣∣∣∣Δ+p(X)

p(X)
(X − L) · 1

{
X ∈ spt(p)

}∣∣∣∣ < ∞.

Theorem 2.2 implies the claim.
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