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Abstract

The Kardar-Parisi-Zhang equation (KPZ equation) is solved via Cole-Hopf transfor-
mation h = log u, where u is the solution of the multiplicative stochastic heat equa-
tion(SHE). In [CD20, CSZ20, G20], they consider the solution of two dimensional KPZ
equation via the solution uε of SHE with the flat initial condition and with noise which

is mollified in space on scale in ε and its strength is weakened as βε = β̂
√

2π
− log ε

, and

they prove that when β̂ ∈ (0, 1), 1
βε

(log uε −E[log uε]) converges in distribution as a
random field to a solution of Edwards-Wilkinson equation.

In this paper, we consider a stochastic heat equation uε with a general initial
condition u0 and its transformation F (uε) for F in a class of functions F, which
contains F (x) = xp (0 < p ≤ 1) and F (x) = log x. Then, we prove that 1

βε
(F (uε(t, ·))−

E[F (uε(t, ·))]) converges in distribution as a random field to a centered Gaussian field
jointly in finitely many F ∈ F, t, and u0. In particular, we show the fluctuations of
solutions of stochastic heat equations and KPZ equations jointly converge to solutions
of SPDEs which depend on u0.

Our main tools are Itô’s formula, the martingale central limit theorem, and the
homogenization argument as in [CNN22]. To this end, we also prove a local limit
theorem for the partition function of intermediate disorder 2d directed polymers.
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Fluc. of 2d SHE and KPZ eq. in subcritical regime for general initial cond.

1 Introduction and main result

The KPZ equation is an SPDE formally given by

∂

∂t
h(t, x) =

1

2
∆h(t, x) +

1

2
|∇h(t, x)|2 + βξ(t, x), (1.1)

where ξ is space-time white noise on [0,∞)×Rd. This SPDE is ill-posed since ∇h is no
longer a function and the non-linear term |∇h|2 cannot make sense.

For d = 1, Bertini and Giacomin formulated the solution of (1.1) via Cole-Hopf
transformation h = log u [BG97], where u is the solution of stochastic heat equation

∂

∂t
u(t, x) =

1

2
∆u(t, x) + βu(t, x)ξ(t, x). (1.2)

When we consider a space-regularized multiplicative stochastic heat equation for
d = 2, we will scale the disorder strength as

∂uε
∂t

=
1

2
∆uε + βεuεξε, uε(0, x) = u0(x), (1.3)

where βε = β̂
√

2π
− log ε with β̂ ≥ 0, and ξε is a mollification in space of ξ such that ξε ⇒ ξ

as ε→ 0, i.e.,

ξε(t, x) = (ξ(t, ·) ? φε)(x) =

∫
φε(x− y)ξ(t, y)dy,

with φε(x) = ε−2φ(ε−1x) and φ being a smooth, non-negative, compactly supported
function on R2, such that

∫
φ(x)dx = 1 and φ(−x) = φ(x). Let hε = log uε. Then, we find

by Itô’s formula that hε satisfies the SPDE

∂hε
∂t

=
1

2
∆hε +

[
1

2
|∇hε|2 − Cε

]
+ βεξε , hε(0, x) = h0(x), (1.4)

where Cε is the constant depending on ε given by:

Cε =
β2
εV (0)

2ε2
, (1.5)

where V (x) =
∫
R2 φ(x−y)φ(y)dy. Caravenna, Sun, and Zygouras proved that if the initial

condition is flat, i.e., hε(0, x) = h0(x) ≡ 0, and β̂ ∈ (0, 1), then β−1
ε (hε − E[hε]) converges

in distribution as a random field to the solution of Edwards-Wilkinson equation [CSZ20].
We remark that Chatterjee and Dunlap addressed the tightness of β−1

ε (hε − E[hε]) [CD20]
and Gu obtained Edwards-Wilkinson limit in β̂ ∈ (0, β0) for some β0 ≤ 1 [G20].

In this paper, we will look at the fluctuations of uε for general initial conditions and
its composition with functions in a certain class. Let C be a set of continuous functions
satisfying

0 < inf
x∈R2

u0(x) ≤ sup
x∈R2

u0(x) <∞, or equivalently ‖ log u0‖∞ <∞. (1.6)

Let F be a set of functions F ∈ C3((0,∞)) such that there exists a constant C = CF > 0

such that for any x ∈ (0,∞),

|F ′(x)| ≤ C(x−1 + 1), |F ′′(x)| ≤ C(x−2 + 1), |F ′′′(x)| ≤ C(x−3 + 1). (1.7)

We note that F contains xp (0 < p ≤ 1), log x, sinx, cosx, e−x. In this paper, we focus on
the fluctuation of u(F )

ε := F (uε).
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Fluc. of 2d SHE and KPZ eq. in subcritical regime for general initial cond.

We remark that uε is a process indexed by u0 and β̂, so we should write uε = u
(β̂,u0)
ε

and u(F )
ε = u

(F,β̂,u0)
ε . However, we omit β̂ and u0 for simplicity of notation when it is clear

from the context.
We denote by C∞c the set of infinitely differentiable, compactly supported functions

on R2.
Moreover, we introduce a family of centered Gaussian fields{

Ut(f, F, β̂, u0) : t ≥ 0, f ∈ C∞c , F ∈ F, β ∈ (0, 1), u0 ∈ C
}

(1.8)

with covariance

E
[
Ut(f, F, β̂, u0)Ut′(f

′, F ′, β̂′, u′0)
]

=
1

1− β̂β̂′

∫ t∧t′

0

dσ

∫
dxdyf(x)f ′(y)I(x)I ′(y)

∫
dzρσ(x, z)ρσ(y, z)ū(t− σ, z)ū(t′ − σ, z),

(1.9)

where ρt(x) = (2πt)−1e−
|x|2
2t is the heat kernel, ρt(x, y) = ρt(x − y), and ū(t, x) =∫

ρt(x, y)u0(y)dy. Also, I(x) = I(t,F,β̂,u0)(x) is given in (1.11) below andI ′(x) =

I(t′,F ′,β̂′,u′0)(x).

Theorem 1.1. Suppose u(1)
0 , · · · , u(n)

0 ∈ C, β̂(1), · · · , β̂(n) ∈ (0, 1) and F1, · · · , Fn ∈ F. For
t1, · · · , tn ≥ 0 and f1, · · · , fn ∈ C∞c , the following convergence holds jointly as ε→ 0

1

β
(i)
ε

∫
R2

fi(x)

(
u

(Fi,u
(i)
0 ,β̂(i))

ε (ti, x)− E
[
u

(Fi,u
(i)
0 ,β̂(i))

ε (ti, x)

])
dx

(d)−→ Uti(fi, Fi, β̂
(i), u

(i)
0 ) ,

where {Uti(fi, Fi, β̂
(i), u

(i)
0 ) : i = 1, . . . , n} are centered Gaussian random fields defined

in (1.8).

We have discussed so far the fluctuation of the random fields. On the other hand, the
one-point distribution hε(t, x) is also studied well. The following convergence is proved
in [CSZ17b, Theorem 2.15]: for any t > 0 and x ∈ R2,

hε(t, x)⇒

{
Xβ̂ := σ(β̂)Z − 1

2σ
2(β̂) if 0 ≤ β̂ < 1,

0 if β̂ ≥ 1,
(1.10)

where Z is a standard Gaussian random variable and σ(β̂) =
√

log 1
1−β̂2

.

Then, the function I(x) appears in Theorem 1.1 is given by

I(x) = I(t,F,β̂,u0)(x) = E
[
F ′
(
eXβ̂ ū(t, x)

)
eXβ̂

]
= E

[
F ′
(
eXβ̂+σ2(β̂)ū(t, x)

)]
, (1.11)

where Xβ̂ is as in (1.10).

Remark 1.2. The centered Gaussian fields defined in (1.8) can be constructed explicitly

as follows. Let

{(
V (β̂,u0)(t, x)

)
(t,x)∈[0,∞)×R2

: β̂ ∈ (0, 1), u0 ∈ C

}
be solutions of the

following Edwards-Wilkinson type equations: V (β̂,u0)(0, x) ≡ 0 and

∂tV
(β̂,u0)(t, x) =

1

2
∆V (β̂,u0)(t, x) + ū(t, x)ξβ̂(t, x), (1.12)
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Fluc. of 2d SHE and KPZ eq. in subcritical regime for general initial cond.

where ξβ̂(t, x) =
∑∞
n=0(β̂)n ξ(n)(t, x) with an independent sequence of space-time white

noises {ξ(n)(t, x)}n≥0 for β̂ ∈ (0, 1). We remark that ξβ̂ is space-time white noise with

E
[
ξβ̂(t, x)ξγ̂(t′, x′)

]
= 1

1−β̂γ̂
δt,t′δx,x′ . Then, by Duhamel’s principle, V (β̂i,u

(i)
0 ) is given by

V (β̂(i),u
(i)
0 )(t, x) =

∫ t

0

∫
R2

ρt−s(x, y)ū(i)(s, y)ξβ̂i(ds,dy), (1.13)

and the centered Gaussian field given by

Vti(fi, Fi, β̂i, u
(i)
0 ) =

∫
R2

dxI(i)(x)fi(x)V (β̂i,u
(i)
0 )(t, x) (1.14)

has the covariance structure (1.9).

Example 1.3. For some typical choice of F ∈ F, u(F )
ε = F (uε) and U (F ) are the solutions

of SPDEs:

• If F (x) = xp (0 < p ≤ 1), then u(F )
ε (0, x) = u0(x)p and u(F )

ε satisfies

∂tu
(F )
ε =

1

2
∆u(F )

ε − (p− 1)

2p

|∇u(F )
ε |2

u
(F )
ε

+
β2
εV (0)p(p− 1)u

(F )
ε

2ε2
+ βεu

(F )
ε ξε.

Also, we consider the solution U (F,u0,β̂)(t, x) of U (0, x) ≡ 0 and

∂tU =
1

2
∆U +

p(p− 1)

2
|∇ log ū|2U + (1− p)∇ log ū · ∇U +

pū(t, x)

(1− β̂2)
p2−p+1

2

ξ(t, x).

• If F (x) = log x (the KPZ equation), then u(F )
ε (0, x) = log u0(x) and

∂tu
(F )
ε =

1

2
∆u(F )

ε +
1

2
|∇u(F )

ε |2 −
β2
εV (0)

2ε2
+ βεξε.

Also, we consider the solution U (F,u0,β̂)(t, x) of U (0, x) ≡ 0 and

∂tU =
1

2
∆U +∇ log ū · ∇U +

ū(t, x)

(1− β̂2)
1
2

ξ(t, x).

Then, it is easy to see from (1.12) and (1.14) that Ut(f, F, u0, β̂)
(d)
=
∫
f(x)U (F,u0,β̂)(t, x)dx,

where Ut is a Gaussian process introduced in (1.8).

From the above remark, we have the following.

Corollary 1.4. Suppose β̂ <1. As p→ 0, p−1Ut(f, x
p, β̂, u0) converges to Ut(f, log x, β̂, u0)

in distribution.

Remark 1.5. In [DGRZ20], they study the fluctuations of the transformation F (uε) for
higher dimensional case d ≥ 3 with F , its derivative and second derivative growing
at most x−p + xp. They proved that there exists a constant βp such that the Gaussian
fluctuation holds for β̂ ∈ (0, βp). Our assumption on F is slightly different from theirs.

To analyze uε, we use the Feynman-Kac representation given in [BC95, Section 2]
where they considered the case d = 1 but it is easily modified for d ≥ 2:

uε(t, x) = Ex

[
exp

(
βε

∫ t

0

∫
R2

φε(Bs − y)ξ(t− s, y)dsdy − β2
ε tV (0)

2ε2

)
u0 (Bt)

]
,
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where we denote by Px and Ex the law and the expectation with respect to two dimen-
sional Brownian motion B = {Bt}t≥0 starting from x.

Due to the time-reversal invariance and the scaling invariance of space-time white

noise and the scale invariance of Brownian motion, εBε−2s
d
= Bs, {uε(t, x) : x ∈ R2} has

the same distribution as

Ex

[
exp

(
βε

∫ t

0

∫
R2

φε(Bs − y)ξ(s, y)dsdy − β2
ε tV (0)

2ε2

)
u0 (Bt)

]
= E x

ε

[
exp

(
βε

∫ t
ε2

0

∫
R2

φ
(
Bs −

y

ε

)
ξ(s, y)dsdy − β2

ε tV (0)

2ε2

)
u0

(
εB t

ε2

)]
. (1.15)

In particular, for the flat initial condition, uε has the same distribution as the partition
function Z t

ε2

(
x
ε

)
of continuum directed polymers, where Zt(x) is given by

Zβεt (x) = Ex

[
Φβεt

]
,

and for t ≥ 0, β ∈ (0,∞)

Φβt = Φβt (B, ξ) := exp

(
β

∫ t

0

∫
R2

φ(y −Bs) ξ(ds,dy)− β2tV (0)

2

)
.

Thus, we can reduce the problem on the law of uε to the partition function of continuum
directed polymers. Such connections between SHE (and KPZ equation) and directed
polymers have been already pointed out in [KPZ86] and used in a number of studies on
SHE and KPZ equation [BC95, BG97, MSZ16, GRZ18, MU17, DGRZ20, CSZ17a, CSZ17b,
CSZ19a, CSZ19b, CSZ20, CSZ21, CCM20, CCM19, CNN22, CN21, LZ20, CC22].

Remark 1.6. Edwards-Wilkinson type fluctuations for the KPZ equation for d = 2 have
been obtained in [CSZ20] and [G20] with the flat initial condition. In [CSZ20], the
problem was reduced to the SHE via approximating log uε by “uε − 1” and the authors
obtained the Gaussian fluctuation by combining the Wiener chaos expansion and the
fourth moment theorem. In [G20], Gaussian fluctuation was obtained by Malliavin
calculus and the second order Poincaré inequality.

In Theorem 1.1, we obtain the Gaussian fluctuations for the general initial conditions
and multi-dimensional parameters. Our proof uses a martingale CLT (see Theorem 3.3)
via Itô’s lemma and homogenization.

Remark 1.7. The Gaussian fluctuations for partition functions of discrete directed
polymers [LZ20] and solutions of the SHE [MSZ16, GRZ18, DGRZ18b, CNN22] and the
KPZ equation [MU17, DGRZ20, CNN22] in d ≥ 3 have been proved, where the disorder
strength is given by β̂ε

d−2
2 for d ≥ 3. The fluctuations of and around the stationary

solutions u(ε) of KPZ equation in d ≥ 3 was proved in [CCM19]. The space-time stationary
solution was constructed in [DS80]. In [CCM20], they also proved the point-wise and
space-time fluctuation results for F ( uε

u(ε) − 1) with general F .
The Gaussian fluctuations for a nonlinear stochastic heat equation with Gaussian

multiplicative noise that is white in time and smooth in space [GL20] and the counterpart
for d = 2 is stated in [DG20] and [T22].

Remark 1.8. For the critical case (β̂ = 1), it is proved that one-point distribution uε(t, x)

converges to 0 in [CSZ17b] but is tight and has non-trivial subsequential limit in the
sense of random field in [GQT19, CSZ19b]. Recently, it was proved that uε converges to
the unique random field in [CSZ21].
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Note: Throughout the paper and if clear from the context, the constant C that
appears in successive upper-bounds may take different values.

Organization of the article The main idea of Gaussian fluctuation is the same as
in [CNN22]. Section 2 is devoted to proving key properties of partition functions of
directed polymers, L2-boundedness, boundedness of negative moments, and local limit
theorem. Section 3 is dedicated to the proof of Theorem 1.1. In subsection 3.1, we give
a rough proof strategy and explain a heuristic idea of Gaussian fluctuation. The rigorous
proof starts from subsection 3.2.

2 Some estimates for partition functions

In this section, we discuss some properties of partition functions of continuum
directed polymers in random environment.

Hereafter, we set

T = Tε := ε−2,

β = βε := β̂

√
2π

log ε−1
= β̂

√
4π

log T
, and

γ = γε = γ̂

√
2π

log ε−1
= γ̂

√
4π

log T
.

(2.1)

Throughout the paper, we write the subscript ε in Tε and βε in each statement to
emphasize its dependence but we often omit the subscript ε in the proofs for simplicity.

2.1 Lp-bound of partition functions

First, we remark that for x, y ∈ R2,

E
[
Ex[ΦβtT ]Ey[ΦγtT ]

]
= 1 +

∞∑
n=1

βnγn
∫

0<s1<···<sn<tT

∫
(R2)n

n∏
i=1

(
V (
√

2xi)ρsi−si−1
(xi−1, xi)

)
dsdx, (2.2)

where E and P denote the expectation and the probability with respect to the white noise
ξ and we set x0 = x−y√

2
, s0 = 0 and ds = ds1 · · ·dsn, dx = dx1 · · ·dxn. This representation

is obtained from the general property of the white noise:

E

[
exp

(∫ t

0

∫
R2

f(t, x)ξ(ds,dx)

)]
= exp

(
1

2

∫ t

0

∫
R2

f(t, x)2dsdx

)
. (2.3)

Indeed, we have

E
[
Ex[ΦβtT ]Ey[ΦγtT ]

]
= Ex ⊗ Ey

[
exp

(∫ t

0

(βφ(Bs − y) + γφ(B̃s − y))2dsdy − (β2 + γ2)V (0)t

2

)]
= Ex ⊗ Ey

[
exp

(
βγ

∫ t

0

V (Bs − B̃s)ds
)]

= E x−y√
2

[
exp

(
βγ

∫ t

0

V (
√

2Bs)ds

)]
, (2.4)

and the Taylor expansion ex =
∑∞
n=0

xn

n! gives (2.2)
For simplicity, we write E = E0 for the expectation of a Brownian motion starting at

0.
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Lemma 2.1. Suppose β̂, γ̂ ∈ (0, 1) and fix t > 0. Then,

lim
ε→0

E
[
E[ΦβεtTε ]E[ΦγεtTε ]

]
=

1

1− β̂γ̂
, (2.5)

sup
ε≤1

sup
s≤tTε

E
[
Es,00,0

[
Φβεs

]2]
<∞, (2.6)

where Pt,y0,x and Et,y0,x, denote the probability measure and the expectation of the Brownian
bridge from (0, x) to (t, y) in R2.

Remark 2.2. [CSZ17b, Theorem 2.15] proved (2.5) when β̂ = γ̂, by reducing the
problem to directed polymers in random environments, which can be easily modified for
β̂ 6= γ̂, but we give a direct proof in this paper.

Notation 2.3. We call

Zt,y0,x = Z(β)
0,x;t,y :=Et,y0,x

[
Φβt

]
the point-to-point partition function of continuum directed polymers.

Proof of (2.5). We have from (2.2)

E
[
E
[
ΦβtT

]
E
[
ΦγtT

]]
= 1 +

∞∑
n=1

βnγn
∫

0<s1<···<sn<tT

∫
(R2)n

n∏
i=1

(
V (
√

2xi)ρsi−si−1(xi−1, xi)
)

dsdx, (2.7)

with x0 = 0. We first consider the upper bound:

lim
ε→0

E
[
E[ΦβtT ]E[ΦγtT ]

]
≤ 1

1− β̂γ̂
.

Let us consider the function

rs = sup
x∈R2

∫
R2

V (
√

2y)ρs(x, y)dy ≥ 0. (2.8)

Since
∫
R
ρs(x, y)dy = 1, sups>0 |rs| ≤ ‖V ‖∞. Moreover, using

∫
V (x)dx = 1, we obtain

rs =
1

4πs
sup
x∈R2

∫
R2

V (y)e−
|x−y|2

4s dy ≤ 1

4πs
sup
x∈R2

∫
R

V (y)dy =
1

4πs
. (2.9)

Hence, (2.7) is bounded from above by

1 +

∞∑
n=1

βnγn

(∫ tT

0

rsds

)n

≤ 1 +

∞∑
n=1

βnγn
(

log(tT )

4π
+ ‖V ‖∞

)n
= 1 +

∞∑
n=1

β̂nγ̂n
(

1 +
log t+ 4π‖V ‖∞

log T

)n
→

∞∑
n=0

(β̂γ̂)n =
1

1− β̂γ̂
,

as ε→ 0, where the convergence is absolute since β̂γ̂ < 1.
Next, we consider the lower bound. Let

Tn = {(s1, · · · , sn) ∈ (0, tT )n : s1 < · · · < sn, si − si−1 > 1, ∀i ∈ {1, · · · , n}}.
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Then, since each term is non-negative, it is enough to show for fixed L ∈ N,

lim
ε→0

(
1 +

L∑
n=1

βnγn
∫
Tn

∫
(R2)n

n∏
i=1

(
V (
√

2xi)ρsi−si−1(xi−1, xi)
)

dsdx

)
≥

L∑
n=0

(β̂γ̂)n. (2.10)

For fixed n ∈ N, we have∫
Tn

∫
(R2)n

n∏
i=1

(
V (
√

2xi)ρsi−si−1
(xi−1, xi)

)
dsdx

=

∫
Tn

∫
(R2)n

n∏
i=1

(
1

2π(si − si−1)
V (
√

2xi)− r̄si−si−1
(xi−1, xi)

)
dsdx

=

∫
Tn

n∏
i=1

1

4π(si − si−1)
ds +Anε , (2.11)

where

r̄s(x, y) =
1

2πs
V (
√

2y)− V (
√

2y)ρs(x, y) =
1

2πs

(
1− exp

(
−|y − x|

2

2s

))
V (
√

2y) ≥ 0,

Anε =

n∑
k=1

(−1)k
∑

1≤j1<j2<···<jk≤n

∫
Tn

∫
(R2)n

∏
i 6=j1,··· ,jk

V (
√

2xi)

4π(si−si−1)

∏
j=j1,··· ,jk

r̄sj−sj−1
(xj−1, xj)dsdx.

Let DV = {x ∈ R2 : V (
√

2x) 6= 0} be the support of V with scale 1/
√

2, which is compact.
Note that

sup
x∈DV

∫
R2

r̄s(x, y)dy = (2πs)−1 sup
x∈DV

∫
R2

(
1− exp

(
−|y − x|

2

2s

))
V (
√

2y)dy

≤ (2πs)−1|DV | sup
x,y∈DV

(
1− exp

(
−|y − x|

2

2s

))
≤ C(s−2 ∧ 1),

with some C = C(V ) ≥ 1 ∨ ‖V ‖∞, where |DV | is the volume of DV . Therefore, we have

|Anε | ≤ Cn+1
n∑
k=1

∑
j1<j2<···<jk

∫
Tn

∫
(R2)n

∏
i 6=j1,··· ,jk

dsi
si − si−1

≤ Cn+1
n∑
k=1

nk (log (tT ))
n−k

≤ (Cn)n+1(log (tT ))n−1,

and hence we have for any fixed L > 0

L∑
n=1

βnγnAnε =

L∑
n=1

β̂nγ̂n
(

4π

log T

)n
Anε → 0, (2.12)

as ε→ 0. Also,∫
Tn

n∏
i=1

1

4π(si − si−1)
ds ≥

(∫ tT
n

1

1

4πs
ds

)n
=

(
log (tT/n)

4π

)n
,

and hence we have

lim
ε→0

L∑
n=1

βnγn
∫
Tn

n∏
i=1

1

4π(si − si−1)
ds ≥

L∑
n=1

β̂nγ̂n. (2.13)

Then, (2.11), (2.12) and (2.13) yield (2.10).
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Proof of (2.6). We obtain by the same manner as in (2.2) that

E

[
EtT,00,0

[
ΦβtT

]2]
= EtT,00,0

[
exp

(
β2

∫ tT

0

V (
√

2Bu)du

)]

= 1 +

∞∑
n=1

β2n

∫
0<s1<···<sn<tT

∫
(R2)n

(
n∏
i=1

V (
√

2xi)ρsi−si−1(xi−1, xi)

)
ρtT−sn(xn)

ρtT (0)
dsdx,

(2.14)

where we use the orthogonal transformation invariance of Brownian bridges in the first
equation. We have for s, t > 0, by the Markov property of Brownian motion,∫

R

ρs(x, y)ρt(y)V (
√

2y)dy ≤ ‖V ‖∞
∫
R

ρs(x, y)ρt(y)dy ≤ ‖V ‖∞ρs+t(x),

and by
∫
R
V (
√

2y)dy = 1/2,∫
R

ρs(x, y)ρt(y)V (
√

2y)dy =
1

4πst

∫
R

V (
√

2y) exp

(
−|x− y|

2

2s
− |y|

2

2t

)
= ρs+t(x)

s+ t

2πst

∫
R

V (
√

2y) exp

(
− (s+ t)|y + ∗|2

2st

)
dy

≤ ρs+t(x)
s+ t

2πst

∫
R

V (
√

2y)dy =
s+ t

4πst
ρs+t(x). (2.15)

Putting things together with C = 4π‖V ‖∞, we have∫
R

ρs(x, y)ρt(y)V (
√

2y)dy ≤ 1

4π

(
C ∧ s+ t

st

)
ρs+t(x).

Using this successively, we can bound each term of (2.14) as

β2n

∫
0<s1<···<sn<tT

∫
(R2)n

(
n∏
i=1

V (
√

2xi)ρsi−si−1
(xi−1, xi)

)
ρtT−sn(xn)

ρtT (0)
dsdx

≤
(
β2

4π

)n ∫
0<s1<···<sn<tT

n∏
i=1

(
C ∧ tT − si−1

(si − si−1)(tT − si)

)
ds

=

(
β2

4π

)n ∫
0<s1<···<sn<tT

n∏
i=1

(
C ∧

(
1

si − si−1
+

1

tT − si

))
ds, (2.16)

where we set s0 = 0 and sn+1 = tT and we have used 1
tT−si + 1

si−si−1
= tT−si−1

(si−si−1)(tT−si)
in the last line. We write log+(x) = log(x∨ 1) and C1 = 2C. We use the following integral
estimate: for s < tT and k ≥ 0,∫ tT

s

(C1 + log+ (tT − u))k
(
C ∧

(
1

u− s
+

1

tT − u

))
du

≤ 2C(C1 + log+ (tT − s))k +

∫ tT−1

s+1

(C1 + log+ (tT − u))k
(

1

u− s
+

1

tT − u

)
du

≤C1(C1 + log+ (tT − s))k

+ (C1 + log+ (tT − s))k
∫ tT−1

s+1

1

u− s
du− (k + 1)−1

[
(C1 + log+ (tT − u))k+1

]tT−1

s+1

≤ C1(C1 + log+ (tT − s))k

+ (C1 + log+ (tT − s))k log+ (tT − s) + (k + 1)−1(C1 + log+ (tT − s))k+1
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=
k + 2

k + 1
(C1 + log+ (tT − s))k+1.

Using this, (2.16) can be successively bounded from above as∫
0<s1<···<sn<tT

n∏
i=1

(
C ∧

(
1

si − si−1
+

1

tT − si

))
ds ≤ (n+ 1)(C1 + log tT )n.

Together with (2.14) and (2.16), using β = β̂
√

4π
log T with β̂ < 1, we have

lim
ε→0

E

[
EtT ,00,0

[
ΦβtT

]2]
≤ lim
ε→0

∞∑
n=0

(
β2

4π

)n
(n+ 1)(C1 + log tT )n =

∞∑
n=0

(n+ 1)β̂2n <∞.

(2.17)

Remark 2.4. The right most summation in (2.17) is actually the limit of the second
moment of point-to-point partition functions ZtTε,y0,x . It is a consequence from the local
limit theorem (Theorem 2.10) and (2.5).

The following lemma is a consequence of Lemma 2.1 combining hypercontractivity of
chaos expansion:

Lemma 2.5. [CSZ20, (5.11)] Fix β̂ ∈ (0, 1). There exists pβ̂ > 2 such that for any
2 ≤ p < pβ̂ and for t ≥ 0

lim
ε→0

E
[
Ex

[
ΦβεtTε

]p]
<∞.

Remark 2.6. Recently, it has been proved that the limit exists for any p ≥ 2 and any
β̂ ∈ (0, 1) in [CZ21, LZ21] for the discrete setting. If the same holds for the continuous
setting, one may make the condition of F, (1.9), mild so that F has a polynomial growth
at infinity.

Lemma 2.7. Suppose β̂ ∈ (0, 1) and fix t > 0. Then,

sup
ε≤1

sup
x∈R2

sup
s≤tTε

Es,x0,0

[
exp

(
β2
ε

∫ s

0

V (
√

2Bu)du

)]
<∞. (2.18)

Proof. By (2.6), (2.14), for s ≤ tT ,

Es,z0,0

[
eβ

2
∫ s
0
V (
√

2Bu)du
]

= E[Es,z0,0[Φβs ]Es,00,0[Φβs ]]

≤ E[Es,00,0[Φβs ]2] = Es,00,0

[
eβ

2
∫ s
0
V (
√

2Bu)du
]

≤ sup
ε≤1

[
exp

(
β2
ε

∫ tTε

0

V (
√

2Bu)du

)]
<∞,

where in the first inequality, we have used the remark below and the Cauchy-Schwarz
inequality.

Remark 2.8. By the shear invariance of environment, we have

Et,y0,x

[
Φβt

]
(d)
= Et,00,0

[
Φβt

]
,

for any t > 0 and x, y ∈ R2.
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We end this subsection by presenting the boundedness of negative moments of
partition functions:

Lemma 2.9. [CSZ20, (5.12), (5.13), (5.14)] Let β̂ ∈ (0, 1) and fix t > 0. For any p ≥ 0

and x ∈ R2,

sup
s∈[0,t]

E

[(
ZβεsTε(x)

)−p]
<∞.

2.2 Local limit theorem

In this subsection, we give an estimate of the local limit theorem for partition
functions. To describe the statement, we introduce the time-reversed partition function
of time horizon `,

←−
Z βT,`(z):

←−
Z βt,`(z) = Ez

[
exp

{
β

∫ t

t−`

∫
R2

φ(Bt−s − y)ξ(ds,dy)− β2V (0)`

2

}]
.

Theorem 2.10 (Local limit theorem for polymers). Fix t > 0.Then, for all β̂ < 1 there
exists a positive constant C = Cβ̂ such that for 4 ≤ L ≤ tTε, 1 ≤ ` ≤ L

4 and for all x ∈ Rd,

E
(

EL,x0,0 [ΦβεL ]−Zβε` (0)
←−
Z βεL,`(x)

)2

≤

{
C `
L + Cβ2

ε

(
log L

` + |x| log `
L(T ) + |x|2`

L(T )2

)
|x| ≤

√
L logL

C |x| ≥
√
L logL

.

Remark 2.11. The theorem states that the point-to-point partition function from (0, x) to
(L(T ), y) is approximated by the product of the partition function from (0, x) with length
` and the time-reversed partition function from (L(T ), y) with length ` in L2-sense. In
the proof of Theorem 1.1, L appears as a length of partition function and ` will be chosen
appropriately such that `� L. For d ≥ 3, the reader may refer to [CNN22, S95, V06].
Also, a similar result was independently obtained for directed polymers in random
environment in d = 2 by Gabriel [G21].

Notation 2.12. Fix RV > 0 such that suppV ⊂ B(0, RV ).

The proof is composed of three lemmas (Lemma 2.13, 2.14, 2.15).

Lemma 2.13. Fix t > 0. There exists a positive constant C = Cβ̂ such that for 4 ≤ L ≤
tTε and 1 ≤ ` ≤ L

4 ,

sup
x∈R2

E

[(
EL,x0,0 [ΦβL]− EL,x0,0 [Φβ` ΦβL−`,L]

)2
]
≤ Cβ2

ε log
L

`
,

where

Φβs,t = exp

(
β

∫ t

s

∫
R2

φ(y −Bu)ξ(du,dy)− β2V (0)(t− s)
2

)
.

Proof. Since B(1)
s −B(2)

s
(d)
=
√

2Bs for two independent Brownian motions, by 1− e−x ≤ x
for x ≥ 0, we have

E

[(
E
L(T ),x
0,0 [ΦβL − Φβ` ΦβL−`,L]

)2]
= EL,00,0

[
eβ

2
∫ L
0
V (
√

2Bs)ds − eβ
2
∫ `
0
V (
√

2Bs)dseβ
2
∫ L
L−` V (

√
2Bs)ds

]
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≤ EL,00,0

[
eβ

2
∫ L
0
V (
√

2Bs)ds β2

∫ L−`

`

V (
√

2Bs)ds

]
.

The last expectation equals

β2

∫
[`,L−`]×R2

V (
√

2z)
ρs(z)ρL−s(z)

ρL(0)
Es,z0,0

[
eβ

2
∫ s
0
V (
√

2Bu)du
]

EL−s,00,z

[
eβ

2
∫ tT−s
0

V (
√

2Bu)du
]

dzds

≤ β2

(
sup
s≤L

sup
|z|≤RV

Es,z0,0

[
eβ

2
∫ s
0
V (
√

2Bu)du
])2 ∫ L−`

`

∫
R2

V (
√

2z)
ρs(z)ρL−s(z)

ρL(0)
dsdz,

where the supremum in the last line is finite by Lemma 2.7. Finally, by (2.15),∫ L−`

`

∫
R2

ρs(z)ρL−s(z)

ρL(0)
V
(√

2z
)

dsdz ≤ 1

4π

∫ L−`

`

L

s(L− s)
ds

≤ 1

2π
log

L− `
`
≤ log

L

`
,

and the statement of the lemma follows.

By the shear invariance of Brownian bridge, Brownian motion, and noise, we have

EL,x0,0

[
Φβ` ΦβL−`,L

]
−Zβ` (0)

←−
Z βL,`(x)

(d)
= EL,00,0

[
Φβ` ΦβL−`,L

]
− E0

[
Φβ`

(
B·−

x

L
·
)]

E0

[
exp

(
β

∫ L

L−`
φ

(
BL−s +

(L− s)x
L

− y
)
ξ(ds,dy)− β2V (0)`

2

)]
,

where B· − x
L · is a Brownian motion with drift − x

L .
Define

AL,` := EL,00,0

[
Φβ` ΦβL−`,L

]
− E0

[
Φβ`

]←−
Z βL,`(0),

BL,`,x := E0

[
Φβ`

]
− E0

[
Φβ`

(
B· −

x

L
·
)]
.

Lemma 2.14. There exists a positive constant C = Cβ̂ such that for 4 ≤ L ≤ tTε and

1 ≤ ` ≤ L
4 ,

E
[
(AL,`)

2
]
≤ C `

L
.

Proof. Since

E
[
A2
L,`

]
=

(
E

[
EL,00,0

[
Φβ` ΦβL−`,L

]2]
− E

[
EL,00,0

[
Φβ` ΦL−`,L

]
E0

[
Φβ`

]←−
Z L,`(0)

])
+
(
E
[
E0

[
Φβ`

]←−
Z L,`(0)2

]
− E

[
EL,00,0

[
Φβ` ΦL−`,L

]
E0

[
Φβ`

]←−
Z L,`(0)

])
=: A1 +A2,

it is enough to prove the absolute value of each term is bounded by C `
L .

(2.3) yields that

E

[
EL,00,0

[
Φβ` ΦβL−`,L

]2]
= EL,00,0 ⊗ EL,00,0

[
exp

(
β2

∫ `

0

V (Bs − B̃s)ds+ β2

∫ L

L−`
V (Bs − B̃s)ds

)]
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=

∫
R2×R2

dxdy ρ`(x)ρ`(y)
ρL−2`(y − x)

ρL(0)

∫
R2×R2

dzdwρ`(z)ρ`(w)
ρL−2`(z − w)

ρL(0)

× E`,x0,0 ⊗ E`,z0,0

[
exp

(
β2

∫ `

0

V (Bs − B̃s)ds

)]
E`,y0,0 ⊗ E`,w0,0

[
exp

(
β2

∫ `

0

V (Bs − B̃s)ds

)]
,

and

E
[
EL,00,0

[
Φβ` ΦL−`,L

]
E0

[
Φβ`

]←−
Z L,`(0)

]
=

∫
R2×R2

dxdy ρ`(x)ρ`(y)
ρL−2`(y − x)

ρL(0)

∫
R2×R2

dzdwρ`(z)ρ`(w)

× E`,x0,0 ⊗ E`,z0,0

[
exp

(
β2

∫ `

0

V (Bs − B̃s)ds

)]
E`,y0,0 ⊗ E`,w0,0

[
exp

(
β2

∫ `

0

V (Bs − B̃s)ds

)]
,

where B = {Bs : 0 ≤ s ≤ `} and B̃ = {B̃s : 0 ≤ s ≤ `} are independent Brownian bridges
with the law P`,u0,0 (u = x, y, z, w). Then, it is easy to see that

A1

= E

[
EL,00,0

[
Φβ` ΦβL−`,L

]2]
− E

[
EL,00,0

[
Φβ` ΦL−`,L

]
E0

[
Φβ`

]←−
Z L,`(0)

]
=

∫
R2×R2

dxdy ρ`(x)ρ`(y)
ρL−2`(y − x)

ρL(0)

∫
R2×R2

dzdwρ`(z)ρ`(w)

(
ρL−2`(z − w)

ρL(0)
− 1

)
× E`,x0,0 ⊗ E`,z0,0

[
exp

(
β2

∫ `

0

V (Bs − B̃s)ds

)]
E`,y0,0 ⊗ E`,w0,0

[
exp

(
β2

∫ `

0

V (Bs − B̃s)ds

)]
.

Combining with (2.18) gives

|A1| ≤ C
∫
R2×R2

dzdwρ`(z)ρ`(w)

∣∣∣∣ρL−2`(z − w)

ρL(0)
− 1

∣∣∣∣
= C

∫
R2×R2

dzdwρ`(z)ρ`(w)

∣∣∣∣ L

L− 2`

(
exp

(
−|z − w|

2

L− 2`

)
− 1

)
+

2`

L− 2`

∣∣∣∣
≤ C

(
2L`

(L− 2`)2
+

2`

L− 2`

)
≤ C `

L
,

where we have used 1 − e−x ≤ x for x ≥ 0 in the third line. Also, the same argument
holds for |A2|.

Lemma 2.15. Fix t > 0. For all β̂ < 1 there exists a positive constant C = Cβ̂ such that

for 4 ≤ L ≤ tTε, 1 ≤ ` ≤ L
4 and all x ∈ Rd,

E
[
B2
L,`,x

]
≤

{
Cβ2

ε

(
|x| log `
L + |x|2`

L2

)
|x| ≤

√
L logL,

C |x| ≥
√
L logL.

Proof. For |x| ≥
√
L logL, it is trivial from (2.5). We assume |x| <

√
L logL. Combin-

ing (2.3) and transformation of Brownian motions yield that

E
[
B2
L,`,x

]
= 2E

[
exp

(
β2

∫ `

0

V (
√

2Bs)ds

)
− exp

(
β2

∫ `

0

V
(√

2Bs −
xs

L

)
ds

)]

= 2

∞∑
n=1

β2n

∫
0<t1<···<tn<`

∫
(R2)n

dsdx
n∏
i=1

V (
√

2xi)
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×

(
n∏
i=1

ρsi−si−1(xi−1, xi)−
n∏
i=1

ρsi−si−1

(
xi − xi−1 −

x(si − si−1)

L

))
,

where we set x0 = 0. When we use the relation

n∏
i=1

ai −
n∏
i=1

bi =

n∑
j=1

(
j−1∏
i=1

bi

)
(aj − bj)

 n∏
k=j+1

ak

 ,

and recall the notation rs from (2.8), we have

E
[
B2
L,`,x

]
≤ 2 sup

z∈B(0,RV )

β2

∫ `

0

∫
R2

V (
√

2y)
∣∣∣ρs(y − z)− ρs(y − z − xs

L
)
∣∣∣dyds

×
∞∑
n=1

n∑
k=1

β2n−2

(
sup
z∈R

∫ `

0

∫
R2

V (
√

2y)ρs(y − z)dyds

)n−1

≤ 2

∞∑
n=1

nβ2(n−1)

(∫ `

0

rsds

)n−1

sup
z∈B(0,RV )

β2

∫ `

0

∫
R2

V (
√

2y)
∣∣∣ρs(y −z)−ρs (y −z − xs

L

)∣∣∣dyds

≤ Cβ2 sup
z∈B(0,RV )

∫ `

0

∫
R2

V (
√

2y)
∣∣∣ρs(y − z)− ρs (y − z − xs

L

)∣∣∣dyds, (2.19)

where we have used the estimate (2.9) in the last line. Also, we have for y, z ∈ B(0, RV )

and for s > 0 ∣∣∣ρs(y − z)− ρs (y − z − xs

L

)∣∣∣
= ρs(y − z)

∣∣∣∣1− exp

(
〈y − z, x〉

L
− |x|

2s

2L2

)∣∣∣∣
≤ ρs(y − z)

(
RV |x|
L

exp

(
2RV |x|
L

− |x|
2s

2L2

)
+
RV |x|
L

+
|x|2s
2L2

)
≤ Cρs(y − z)

(
|x|
L

+
|x|2s
L2

)
,

where we denote by 〈x, y〉 the inner product of x and y ∈ R2 and we use ex − 1 ≤ xex if
x ≥ 0 and 1− ex ≤ −x if x < 0 in the last line. For |x| ≤

√
L logL,

E
[
B2
L,`,x

]
≤Cβ2

(
|x| log `

L
+
|x|2`
L(T )

2

)
.

Putting things together, we conclude the proof of Theorem 2.10.
We also use the following lemma later.

Lemma 2.16. For fixed t > 0 and β̂ ∈ (0, 1), there exists a positive constant C such that
for x ∈ R2 and for 1 ≤ ` ≤ tTε

E

[(
Ex

[
Φβε`

]
− E0

[
Φβε`

])2
]
≤

{
Cβ2

ε (1 + |x|2) |x| ≤
√

log `,

C |x| >
√

log `.
(2.20)

Proof. For |x| ≥
√

log `, it is trivial from (2.5). We suppose |x| <
√

log `. Using the same
argument as in (2.19), with the convention x0 = 0,

E

[(
Ex

[
Φβε`

]
− E

[
Φβε`

])2
]

EJP 28 (2023), paper 1.
Page 14/38

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP885
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Fluc. of 2d SHE and KPZ eq. in subcritical regime for general initial cond.

= E

[
exp

(
β2

∫ `

0

V (
√

2Bs)ds

)
− exp

(
β2

∫ `

0

V
(
x+
√

2Bs

)
ds

)]

=

∞∑
n=1

β2n

∫
0<t1<···<tn<`

∫
R2n

dsdx
n∏
i=1

V (
√

2xi)

×

(
n∏
i=1

ρsi−si−1
(xi − xi−1)− ρsi−si−1

(x1 − x)

n∏
i=2

ρsi−si−1
(xi − xi−1)

)

≤ Cβ2

(
1 + sup

z∈B(0,RV )

∫ `

1

∫
R2

V (
√

2y) |ρs(y − z)− ρs(y − z + x)|dyds

)
.

Also, we have that for y, z ∈ B(0, RV ) and s ≥ 1,

|ρs(y − z)− ρs(y − z + x)| = ρs(y − z)
∣∣∣∣1− exp

(
−2〈y − z, x〉+ |x|2

2s

)∣∣∣∣
≤ C

s
ρs(y − z)

(
exp

(
R2
V

s

)
+ |x|+ |x|2

)
≤ C

s
ρs(y − z)

(
1 + |x|2

)
.

Since ∫ `

1

∫
R2

V (
√

2y)
1

s
ρs(y − z)dyds ≤

∫ `

1

∫
R2

s−2V (
√

2y)dyds ≤ 1,

we have

E

[(
Ex

[
Φβε`

]
− E0

[
Φβε`

])2
]
≤Cβ2

(
1 + |x|2

)
.

3 Proofs of Theorem 1.1

For fixed t > 0 and for u0 ∈ C, let us define the martingale

s→Ws(x) =W(t,T,β̂,u0)
s (x) = Ex

[
Φβs (B)u0

(
BtT√
T

)]
with respect to the filtration {Fs : 0 ≤ s ≤ tT} associated to the white noise ξ. Then, it
follows from the Feynman-Kac formula (see (1.15)) that for each (t, x) ∈ [0,∞)×R2

u(T,β̂,u0)
ε (t, x)

(d)
= W(t,T,β̂,u0)

tT (
√
Tx). (3.1)

We omit some superscripts t, T , β̂, and u0 to make notations simple when they are easily
understood from the contexts.

Since both ‖u−1
0 ‖∞ and ‖u0‖∞ are finite,

‖u−1
0 ‖−1
∞ Zs(x) ≤ Ws(x) ≤ ‖u0‖∞Zs(x).

Hereafter, we use this without any comment.
Itô’s formula yields that for each x ∈ R2,

W(t,T,β̂,u0)
s (x) = ū(t, x) +

∫ s

0

dW(t,T,β̂,u0)
u (x), (3.2)

W(t,T,γ̂,v0)
s (x) = v̄(t, x) +

∫ s

0

dW(t,T,γ̂,v0)
u (x), (3.3)
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with

〈W(β̂,u0)(x),W(γ̂,v0)(y)〉s=

∫ s

0

βγEx⊗Ey

[
V (Bu−B̃u)Φβu(B)Φγu(B̃)u0

(
BtT√
T

)
v0

(
B̃tT√
T

)]
du,

(3.4)

for each x, y ∈ R2, where Ex⊗Ey denotes the expectation of two independent Brownian

motions B and B̃ starting from x and y.
Then, using Itô’s formula, we see that for F ∈ F, F (Ws(x)) has the following semi-

martingale representation

F (W(β̂,u0)
s (x)) = F (ū(t, x)) +

∫ s

0

F ′(W(β̂,u0)
u (x))dW(β̂,u0)

u (x)

+
1

2

∫ s

0

F ′′(W(β̂,u0)
u (x))d〈W(β̂,u0)(x)〉u, (3.5)

and we denote by

G(t,T,F,β̂,u0)
s (x) = Gs(x) =

∫ s

0

F ′(W(β̂,u0)
u (x))dW(β̂,u0)

u (x), (3.6)

H(t,T,F,β̂,u0)
s (x) = Hs(x) =

∫ s

0

F ′′(W(β̂,u0)
u (x))d〈W(β̂,u0)(x)〉u. (3.7)

First, we will prove the fluctuations of the martingale parts converge to centered
Gaussian random variables.

Proposition 3.1. Suppose u(1)
0 , · · · , u(n)

0 ∈ C, β̂(1), · · · , β̂(n) ∈ (0, 1) and F1, · · · , Fn ∈ F.
For any test functions f1, · · · , fn ∈ C∞c (R2) and t ≥ 0, as ε→ 0{

1

β
(i)
ε

∫
R2

fi(x)G

(
t,Tε,Fi,β̂

(i),u
(i)
0

)
Tεt

(
√
Tεx)dx

}
i=1,··· ,n

(d)−→
{

U (t, fi, Fi, β̂
(i), u

(i)
0 )
}
i=1,··· ,n

,

(3.8)

where
{

U (t, fi, Fi, β̂
(i), u

(i)
0 )
}
i=1,··· ,n

are centered Gaussian random variables with co-

variance given by (1.9) at ti = tj = t.

Then, we will prove that the Itô correction terms are negligible in the limit:

Proposition 3.2. For any t > 0, β̂ ∈ (0, 1), u0 ∈ C and F ∈ F, as ε→ 0,

1

βε

∫
R2

f(x)
(
H

(F )
Tεt

(
√
Tεx)− E

[
H

(F )
Tεt

(
√
Tεx)

])
L1

−→ 0. (3.9)

Proposition 3.1 and Proposition 3.2 combined with (3.1) and (3.5) imply Theorem 1.1
for 1-dimensional in time. Thus, Gaussian limit comes from the martingale part of∫
f(x)F (Ws(

√
Tεx))dx.

3.1 Proof of Proposition 3.1 and heuristics

First, we introduce the key theorem to prove the convergence of martingale to
Gaussian process in this paper:

Theorem 3.3. [JS87, Theorem 3.11 in Chap. 8], [EK86, Theorem 1.4 in Chap. 7]
For each n ≥ 1, let Fn = {Fnt : t ≥ 0} be a filtration and let X(n) = (X

(n,d)
t , . . . , X

(n,d)
t )

be an Rd-valued continuous Fn-martingale with X
(n)
0 = 0. Suppose that there exists

a d × d positive definite matrix-valued continuous function c = {cij(t)}di,j=1 such that

for each t ≥ 0, 〈X(n,i), X(n,j)〉t → cij(t) in probability. Then, X(n) (d)−→ X, where X =

(X
(1)
t , · · · , X(d)

t ) is an Rd-valued Gaussian process with 〈X(i), X(j)〉t = cij(t).
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Remark 3.4. Theorem 3.3 is simplified from the original one for our convenience.

Thus, it suffices to focus our analysis on the cross-variation of martingales.
In the following, we give a heuristic idea of the proof of Proposition 3.1 and we will

discuss only the quadratic variation because it is easy to modify the following argument
to the cross-variation. Also, we fix β̂ ∈ (0, 1) and omit the superscript β̂ in notations
when it is clear from the context.

We fix δ ∈ (0, 1
100 ) arbitrary. By the local limit theorem (Theorem 2.10), we may expect

that for large s,

Ws(x) = Ex

[
Φs u0

(
BtT√
T

)]
=

∫
R2

ρs(z − x)Es,z0,x[Φs]Ez

[
u0

(
BtT−s√

T

)]
dz (3.10)

≈
∫
R2

ρs(z − x)Zs`(T )(x)
←−
Z s,s`(T )(z)Ez

[
u0

(
BtT−s√

T

)]
dz,

where we set

`(T ) = exp
(
− (log T )

1
2−δ
)
. (3.11)

Here, we choose `(T ) such that the last integrals in (3.37) in the proof of Lemma 3.16
tends to 0.

Moreover, one may expect that the last term of (3.10) is approximated in some sense
by

Zs`(T )(x)

∫
R2

ρs(z − x)E
[←−
Z s,s`(T )(z)

]
Ez

[
u0

(
BtT−s√

T

)]
dz = Zs`(T )(x)ū(t, T−

1
2 x),

(3.12)

since E
[←−
Z s,s`(T )(z)

]
= 1 and Lemma 2.16 may imply that (

←−
Z s,s`(T )(x))x∈R2 are asymp-

totically independent and homogenization occurs.
Therefore, one may observe for F ∈ F that for large s

F ′(Ws(x))dWs(x)

= βF ′(Ws(x))

∫
R2

ξ(ds,db)Ex

[
φ(Bs − b)Φs u0

(
BtT√
T

)]
= βF ′(Ws(x))

∫
R2

ξ(ds,db)

∫
R2

ρs(z−x)φ(z−b)Es,z0,x [Φs] Ez

[
u0

(
BtT−s√

T

)]
dz

≈ βF ′(Zs`(T )(x)ū(t, T−
1
2 x))Zs`(T )(x)

×
∫
R2

ξ(ds,db)

∫
R2

ρs(z−x)φ(z−b)
←−
Z s,s`(T )(z) Ez

[
u0

(
BtT−s√

T

)]
dz, (3.13)

where we have used (3.12) and the local limit theorem in the third line. We denote by

I(T )
s (x) = I(t,T,F,β̂,u0)

s (x) = F ′
(
Zβs`(T )(

√
Tx)ū(t, x)

)
Zβs`(T )(

√
Tx).

Thus, we may approximate the cross variation of F ′(Ws(x))dW(x) as

F ′(Ws(x))F ′(Ws(y))d〈W(x),W(y)〉s

= dsβ2F ′(Ws(x))F ′(Ws(y))

∫
(R2)2

dz1dz2ρs(x, z1)ρs(y, z2)V (z1 − z2)Es,z10,x [Φs] Es,z20,y [Φs]
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× Ez1

[
u0

(
BtT−s√

T

)]
Ez2

[
u0

(
BtT−s√

T

)]
≈ dsβ2F ′

(
Zs`(T )(x)ū(t, T−

1
2x)
)
F ′
(
Zs`(T )(y)ū(t, T−

1
2 y)
)
Zs`(T )(x)Zs`(T )(y)

×
∫

(R2)2
dz1dz2ρs(x, z1)ρs(y, z2)V (z1 − z2)

←−
Z s,s`(T )(z1)

←−
Z s,s`(T )(z2)

× Ez1

[
u0

(
BtT−s√

T

)]
Ez2

[
u0

(
BtT−s√

T

)]
,

where we have used (3.13) in the approximation. Changing the variables as s = Tσ,
x =
√
Tx′, and y =

√
Ty′, this is equal to

dσβ2I(T )
s (x′)I(T )

s (y′)

∫
(R2)2

dzdwρσ(x′, z)ρσ(y′, z − T− 1
2w)V (w)

×
←−
Z Tσ,Tσ`(T )(

√
Tz)
←−
Z Tσ,Tσ`(T )(

√
Tz − w)ū(t− σ, z)ū(t− σ, z − T− 1

2w).

Also, neglecting T−1/2w, we may approximate it by

dσβ2I
(T )
Tσ (x′)I

(T )
Tσ (y′)

∫
(R2)2

dzdwρσ(x′, z)ρσ(y′, z)V (w)
←−
Z Tσ,Tσ`(T )(

√
Tz)2ū(t− σ, z)2.

Roughly speaking,
←−
Z (
√
Tz) and

←−
Z (
√
Tz′) are independent if the distance between

z and z′ is sufficiently large. So integrating with respect to z, the law of large num-

bers can be applied and
←−
Z 2 would be replaced by E

[←−
Z 2
]

so that the cross variation

F ′(Ws(x))dW(x) would be approximated by

dσβ2I
(T )
Tσ (x′)I

(T )
Tσ (y′)

∫
R2

dzρσ(x′, z)ρσ(y′, z)E
[←−
Z Tσ,Tσ`(T )(

√
Tz)2

]
ū(t− σ, z)2.

Thus, the quadratic variation of 1
βε

∫
R2 f(x)GsT (x)dx would be approximated as

∫ sT

0

∫
(R2)2

f(x)f(y)F ′(Wu(
√
Tx))F ′(Wu(

√
Ty))d〈W(

√
Tx),W(

√
Ty)〉u,

≈
∫
sT

∫
(R2)2

dxdyf(x)f(y)I(T )
s (x′)I(T )

s (y′)

×
∫
R2

dzρσ(x′, z)ρσ(y′, z)E
[←−
Z Tσ,Tσ`(T )(z)

2
]
ū(t− σ, z)2.

Moreover, F ′(Zū)Z terms in I(T )
s (·) would be replaced by its expectations in the same

manner.
Due to (1.10) and (2.5), we have∫ sT

0

∫
(R2)2

f(x)f(y)F ′(Wu(
√
Tx))F ′(Wu(

√
Ty))d〈W(

√
Tx),W(

√
Ty)〉u

≈ 1

1− β̂2
E
[
F ′(eXβ̂−

1
2σ

2(β̂)ū(t, x))eXβ̂−
1
2σ

2(β̂)
]
E
[
F ′(eXβ̂−

1
2σ

2(β̂)ū(t, y))eXβ̂−
1
2σ

2(β̂)
]

×
∫ s

0

dσ

∫
(R2)2

dxdyf(x)f(y)

∫
R2

dzρσ(x, z)ρσ(y, z)ū(t− σ, z)2, (3.14)

and Theorem 3.3 implies that the limit process is a Gaussian process with covariance
function (3.14).
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To make this rough idea rigorous, we introduce a martingale increment dM(t,T,F,β̂,u0)
s

(x) for fixed t > 0, x ∈ R2, β̂ ∈ (0, 1), F ∈ F, and u0 ∈ C as

dMs(x) = dM(t,T,F,β,u0)
s

= βF ′(Zβs`(T )(x)ū(t, T−
1
2 x))Zβs`(T )(x)

×
∫
R2

ξ(ds,db)

∫
R2

ρs(z − x)φ(z − b)
←−
Z βs,s`(T )(z) Ez

[
u0

(
BtT−s√

T

)]
dz, (3.15)

and set

Ms(x) =M(t,T,F,β,u0)
s (x) :=


∫ s

tTε`(Tε)

dMu(x) (s ≥ tTε`(Tε)),

0 (0 ≤ s ≤ tTε`(Tε)).

Heuristically, dMs(x) is an approximation of dGs(x) following (3.13).
The following proposition computes the covariances ofMs:

Proposition 3.5. Suppose u(1)
0 , · · · , u(n)

0 ∈ C, β̂(1), · · · , β̂(n) ∈ (0, 1) and F1, · · · , Fn ∈ F.
For any test function f1, · · · , fn ∈ C∞c (R2), as ε→ 0

1

β
(i)
ε

∫
R2

fi(x)M(i)
Tεt

(
√
Tεx)dx

(d)−→ U (t, fi, Fi, β̂
(i), u

(i)
0 ). (3.16)

The following proposition states that dGs(x) can be replaced by dMs(x), which
concludes the proof of Proposition 3.1:

Proposition 3.6. For any test function f and s > 0,

1

βε
E

[∣∣∣∣∫
R2

f(x)
(
G

(t,T,F,β,u0)
sTε

(
√
Tεx)−M(t,T,F,β,u0)

sTε
(
√
Tεx)

)
dx

∣∣∣∣]→ 0,

as ε→ 0.

The proof of Proposition 3.5 is given in the following subsection and the proof of
Proposition 3.6 is given in Subsection 3.3.

3.2 Proof of Proposition 3.5

We will focus only on the quadratic variation of GsT (x
√
T ) to make our arguments

simple. Readers can easily replace the quadratic variation by the cross variation.
To prove Proposition 3.5, we will show the following two lemmas:

Lemma 3.7. Let 0 < τ0 ≤ τ ≤ t. Then, as ε→ 0,

1

β2
ε

∫ Tετ

Tετ0

∫
(R2)2

dxdyf(x)f(y)d 〈M(xTε),M(yTε)〉s

L1

−→ 1

1− β̂2

∫ τ

τ0

ds

∫
(R2)2

dxdyf(x)f(y)I(x)I(y)

∫
R2

dzρσ(x− z)ρσ(y − z)ū(t− σ, z)2,

(3.17)

where we set xTε = x
√
Tε for x ∈ R2 and I(x) = I(t,F,β̂,u0)(x) is defined by (1.11).

Lemma 3.7 with Theorem 3.3 implies that the centered martingale
( ∫
R2

1
β f(x)

(MTτ (xT )−MTτ0(xT )) dx
)
τ0≤τ≤t

converges in distribution to a Gaussian process with
covariance given by the RHS of (3.17).

Lemma 3.8.

lim
τ0→0

lim
ε→0

E

[
1

β2
ε

(∫
f(x)MTετ0(xTε)dx

)2
]

= 0. (3.18)

Letting τ0 → 0 and τ = t, the RHS of (3.17) is exactly the covariance function of the
Gaussian process Ut(f, F, β̂, u0). Combining it with Lemma 3.8 implies Proposition 3.5.
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3.2.1 Proof of Lemma 3.7

The proof of Lemma 3.7 is divided into several steps.
Recall that xT =

√
T x. We can write by the Markov property and (3.4) that

1

β2

∫ Tτ

Tτ0

∫
(R2)2

dxdyf(x)f(y)d 〈M(xT ),M(yT )〉s dxdy

=

∫ Tτ

Tτ0

ds

∫
(R2)2

dxdyf(x)f(y)I(T )
s (x)I(T )

s (y)

×
∫

(R2)2
dz1dz2ρs(z1 − xT )ρs(z2 − yT )V (z1 − z2)

×
←−
Z s,s`(T )(z1)

←−
Z s,s`(T )(z2)Ez1

[
u0

(
BtT−s√

T

)]
Ez2

[
u0

(
BtT−s√

T

)]
= T

∫ τ

τ0

dσ

∫
(R2)2

dxdyf(x)f(y)I
(T )
Tσ (x)I

(T )
Tσ (y)

×
∫

(R2)2
dzdwρσ(z − x)ρσ(w − y)V (zT − wT )

×
←−
Z Tσ,Tσ`(T )(zT )

←−
Z Tσ,Tσ`(T )(wT )ū(t− σ, z)ū(t− σ,w).

We define for x, y ∈ R2 and τ0 ≤ σ ≤ τ

ΨT
σ (x, y) = T

∫
(R2)2

dzdwρσ(z − x)ρσ(w − y)V (zT − wT )

×
←−
Z Tσ,Tσ`(T )(zT )

←−
Z Tσ,Tσ`(T )(wT )ū(t− σ, z)ū(t− σ,w).

Lemma 3.9. For each x, y ∈ R2, σ ∈ [τ0, τ ],

lim
ε→0

E
[∣∣ΨTε

σ (x, y)−Ψσ(x, y)
∣∣] = 0,

where

Ψσ(x, y) =
1

1− β̂2

∫
R2

dwρσ(w − x)ρσ(w − y)ū(t− σ, z)2.

Combining this with Lemma 2.9 and (1.7), we can see by the dominated convergence
theorem that

E

[∫ τ

τ0

dσ

∫
(R2)2

∣∣∣f(x)f(y)I
(T )
σT (x)I

(T )
σT (y)

∣∣∣ ∣∣ΨT
σ (x, y)−Ψσ(x, y)

∣∣]

=

∫ τ

τ0

dσ

∫
(R2)2

|f(x)f(y)|E
[∣∣∣I(T )

σT (x)I
(T )
σT (y)

∣∣∣]E [∣∣ΨT
σ (x, y)−Ψσ(x, y)

∣∣]→ 0.

Lemma 3.10. For any test function f ∈ C∞c (R2),∫ τ

τ0

dσ

∫
(R2)2

dxdyf(x)f(y)I
(Tε)
σTε

(x)I
(Tε)
σTε

(y)Ψσ(x, y)

≈L1

∫ τ

τ0

dσ

∫
(R2)2

dxdyf(x)f(y)I(x)I(y)Ψσ(x, y),

as ε→ 0, where the ≈Lp sign means that the difference between the left and the right
sides goes to 0 in Lp-sense.
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Proof of Lemma 3.9. (Step 1) We first prove that for each x, y ∈ R2 and σ ∈ [τ0, τ ],

ΨT
σ (x, y) ≈L1

∫
R2

dwdv ρσ(w − x)ρσ(w − y)V (v)
←−
Z Tσ,`(Tσ)(wT )2ū(t− σ,w)2 (3.19)

=

∫
R2

dwρσ(w − x)ρσ(w − y)
←−
Z Tσ,`(Tσ)(wT )2ū(t− σ,w)2.

Letting z = w + v√
T

,

ΨT
σ (x, y) =

∫
(R2)2

dwdv ρσ(w − y)V (v)
←−
Z Tσ,Tσ`(T )(wT )ū(t− σ,w)

×ρσ(w +
v√
T
− x)
←−
Z Tσ,Tσ`(T )(wT + v)ū

(
t− σ,w +

v√
T

)
.

We note that∣∣∣∣∣ρσ
(
w +

v√
T
− x
)
←−
Z Tσ,Tσ`(T )(wT + v)ū

(
t− σ,w +

v√
T

)

− ρσ(w − x)
←−
Z Tσ,Tσ`(T )(wT )ū(t− σ,w)

∣∣∣∣∣
≤
∣∣∣∣ρσ (w +

v√
T
− x
)
− ρσ(w − x)

∣∣∣∣←−Z Tσ,Tσ`(T )(wT + v)ū

(
t− σ,w +

v√
T

)
+ ρσ(w − x)

∣∣∣←−Z Tσ,Tσ`(T )(wT + v)−
←−
Z Tσ,Tσ`(T )(wT )

∣∣∣ ū(t− σ,w)

+ ρσ(w − x)
←−
Z Tσ,Tσ`(T )(wT )

∣∣∣∣ū(t− σ,w +
v√
T

)
− ū(t− σ,w)

∣∣∣∣ ,
all of which converge to 0 as T →∞ uniformly for v ∈ supp(V ) in L1 by Lemma 2.16 and
continuity of ρσ(·) and ū(t − σ, ·). Since ū and ρσ is bounded for σ ∈ [τ0, τ ], using (2.5)
and

∫
V (v)dv = 1, we have (3.19) by the dominated convergence theorem.

Since we have
←−
Z s,s`(T )(w)

(d)
= Zs`(T )(w) for each w ∈ R2 and s > 0, it is enough

from (2.5) to show that for each σ ∈ [τ0, τ ] and x, y ∈ R2,∫
R2

dwρσ(w − x)ρσ(w − y)ZTσ`(T )(wT )2ū(t− σ,w)2

≈L1

∫
R2

dwρσ(w − x)ρσ(w − y)E
[
ZTσ`(T )(wT )2

]
ū(t− σ,w)2. (3.20)

(Step 2) We prove that for each σ ∈ [τ0, τ ] and w ∈ R2,

E

[(
ZTσ`(T )(wT )

)2 − ((Z̃Tσ`(T ),`′(σ,T )(wT )
)2

∧ (`(T ))
− 1

2

)]
→ 0, (3.21)

where we define for t ≥ 0, r > 0, z ∈ R2,

Z̃t,r(z) = Z̃βt,r(z) = Ez

[
Φβt (B) : Ft,r(B, z)

]
, (3.22)

and Ft,r(B, z) is the event that Brownian motion B does not escape from the open ball
B(z, r) = {x ∈ R2 : |x− y| < r} up to time t;

Ft,r(B, z) = {Bs ∈ B(z, r) for any s ∈ [0, t]},

and we set

`′(σ, T ) =
√
Tσ`(T )

1
4 . (3.23)
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Also, we denote by VβT,σ(w) =
(
Z̃β(Tσ`(T ),`′(σ,T ))(wT )

)2

∧ (`(T ))
− 1

2 for simplicity. The

cut-off in the definition of Z̃ is introduced so that Z̃t,r(z) and Z̃t,r(z′) are independent if
|z − z′| > 2r + 2Rφ. We find

E
[(
ZTσ`(T )(wT )

)2 − VβT,σ(w)
]

≤ E
[(
ZTσ`(T )(wT )

)2 − (Z̃Tσ`(T ),`′(σ,T )(wT )
)2
]

+ E

[(
Z̃Tσ`(T ),`′(σ,T )(wT )

)2

:
(
Z̃Tσ`(T ),`′(σ,T )(wT )

)2

≥ (`(T ))
− 1

2

]
,

and the last term tends to 0 as T →∞ and thus `(T )→ 0 by Lemma 2.5. Furthermore,
the Cauchy-Schwarz inequality gives

E

[(
ZTσ`(T )(wT )

)2 − (Z̃Tσ`(T ),`′(σ,T )(wT )
)2
]

≤ 4E
[(
ZTσ`(T )(wT )

)2]
E
[
EwT

[
ΦTσ`(T )(B) : FTσ`(T ),`′(σ,T )(B,wT )c

]2]
,

and this is bounded from above due to a similiar computation to (2.4) and Lemma 2.1 by

CEwT ⊗ EwT

[
exp

(
β2

∫ Tσ`(T )

0

V (Bs −B′s)ds

)
: FTσ`(T ),`′(σ,T )(B,wT )c

]
. (3.24)

Also, it is easy to see from Hölder’s inequality for p, q > 1 with 1
p + 1

q = 1 that (3.24) is
bounded from above by

CEwT ⊗ EwT

[
exp

(
β2p

∫ Tσ`(T )

0

V (Bs −B′s)ds

)]1/p

PwT
(
FTσ`(T ),`′(σ,T )(B,wT )c

)1/q
≤ CPwT

(
FTσ`(T ),`′(σ,T )(B,wT )c

)1/q → 0,

where in the last line we have used the fact that there exists a constant p > 1 such that

lim
T→∞

Ex ⊗ Ex

[
exp

(
β2p

∫ Tσ`(T )

0

V (Bs −B′s)ds

)]
<∞. (3.25)

Thus, (3.21) follows.
Then, (3.21) implies that∫

R2

dwρσ(w − x)ρσ(w − y)
(
ZTσ`(T )(wT )

)2
ū(t− σ,w)2

≈L1

∫
R2

dwρσ(w − x)ρσ(w − y)VβT,σ(w)ū(t− σ,w)2, (3.26)

and ∫
R2

dwρσ(w − x)ρσ(w − y)E
[
VβT,σ(w)

]
ū(t− σ,w)2 ≈L1 RHS of (3.20). (3.27)

(Step 3) We end the proof by showing that the right hand side in (3.26) is approxi-
mated by the left hand side in (3.27) in the L1-sense.

First, we remark that if |wT − w′T | > 2(`′(σ, T ) +Rφ), then

Cov
(
VβT,σ(wT ),VβT,σ(w′T )

)
= 0,
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where Rφ is a constant with suppφ ⊂ B(0, Rφ).

Therefore,

E

[(∫
R2

dwρσ(w − x)ρσ(w − y)
(
VβT,σ(wT )− E

[
VβT,σ(wT )

])
ū(t− σ,w)2

)2
]

=

∫
(R2)2

dwdw′ρσ(w − x)ρσ(w − y)ρσ(w′ − x)ρσ(w′ − y)

× Cov
(
VβT,σ(wT ),VβT,σ(w′T )

)
ū(t− σ,w)2ū(t− σ,w′)2

≤
∫
|wT−w′T |≤2(`′(σ,T )+RV )

dwdw′ρσ(w − x)ρσ(w − y)ρσ(w′ − x)ρσ(w′ − y)

× E
[
VβT,σ(0)2

]
ū(t− σ,w)2ū(t− σ,w′)2

≤ C`(T )
1
2E
[
VβT,σ(0)2

]
.

Thus, it is enough to show that

lim
T→∞

`(T )
1
2E
[
VβT,σ(0)2

]
= 0,

which follows from Lemma 2.5 and the following:

Lemma 3.11. [CN21, Lemma 3.3] Let (Xk)k∈N be a non-negative, uniformly integrable
family of random variables. Then, for any sequence ak → ∞, a−1

k E[(Xk ∧ ak)2] → 0 as
k →∞.

Proof of Lemma 3.10. The proof is essentially the same as in Lemma 3.9. Indeed, we can
approximate I(T )

σT (x) by E
[
F ′(ZTσ`(T ))ZTσ`(T )

]
due to the same arguments as in (Step

2) and (Step 3) in the proof of Lemma 3.9 and (1.7). In particular, we remark that its
expectation converges to I(x) due to (1.10) and (1.7). We omit the detail.

3.2.2 Proof of Lemma 3.8

Proof of Lemma 3.8. By (1.7) and (2.5), for s ≤ tTε,

E
[
(I(T )
s (x))2

]
≤ CE

[(
1 + Zs`(T )(xT )

)2] ≤ Ct,
with some constant C = Ct > 0 independent of x, s, ε. Hence, we have

E

[
1

β2

(∫
f(x)MTτ0(xT )dx

)2
]

=

∫ τ0

t`(T )

dσ

∫
(R2)2

dxdyf(x)f(y)E
[
I(T )
s (x)I(T )

s (y)
]

×
∫
R2

dw

∫
R2

dvρσ

(
w +

v√
T
− x
)
ρσ(w − y)V (v)

×E
[←−
Z βTσ,Tσ`(T )(wT + v)

←−
Z βTσ,Tσ`(T )(wT )

]
ū

(
t− σ,w +

v√
T

)
ū(t− σ,w)

≤ C
∫ τ0

t`(T )

dσ

∫
(R2)2

dxdy|f(x)f(y)|
∫
R2

dw

∫
R2

dvρσ

(
w +

v√
T
− x
)
ρσ(w − y)V (v)

≤ C (τ0 − t`(T )) ,
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where we have used
←−
Z Tσ,Tσ`(T )(x)

(d)
= ZTσ,Tσ`(T )(x) with (2.5) and ‖u0‖∞ < ∞ in the

second line, and∫
(R2)2

dxdy|f(x)f(y)|
∫
R2

dw

∫
R2

dvρσ

(
w +

v√
T
− x
)
ρσ(w − y)V (v)

=

∫
(R2)2

dxdvV (v)|f(y)|
∫
R2

dx|f(x)|ρ2σ

(
y − x+

v√
T

)
≤ ‖f‖1‖f‖∞

in the last line.

3.3 Proof of Proposition 3.6

For s ≥ tTε`(Tε), writing

Gs(x)−Ms(x) = GtTε`(Tε)(x) + (Gs(x)−GtTε`(Tε)(x)−Ms(x)), (3.28)

the last term is a martingale which is equal to 0 at time s = tTε`(Tε).
The time tT `(Tε) is much smaller than tT so that the first term is negligible.

Lemma 3.12.

lim
ε→0

1

β2
ε

E

[(∫
f(x)GtTε`(Tε)(xTε)dx

)2
]

= 0.

Then, we will prove that the second term in (3.28) converges to 0 in the following
sense:

Lemma 3.13.

lim
ε→0

1

β2
ε

E

[(∫
f(x)

((
GtTε(xTε)−GtTε`(Tε)(xTε)

)
−MtTε(xTε)

)
dx

)2
]

= 0.

Lemma 3.12 and Lemma 3.13 conclude Proposition 3.6.

3.3.1 Proof of Lemma 3.12

To prove Lemma 3.12, we will introduce a new martingale: let

n(T ) =
√
`(T ) = exp

(
−1

2
(log T )

1
2−δ
)

and

W̃s(x) = Ex

[
Φs(B)u0

(
BtT√
T

)
: F

tT`(T ),
√
tTn(T )

(B, x)

]
, (3.29)

where recall the notation F from (3.22). W̃s(x) is the partition function in which the
underlying Brownian motion is constrained to a tube up to time tT `(T ). This enables us
to use the independence of W̃ (x) and W̃ (y) if the distance between x and y is sufficiently
large.

Lemma 3.12 is concluded by the following two lemmas.

Lemma 3.14. For any f ∈ C∞c (R2), t > 0, x ∈ R2, and β̂ ∈ (0, 1),

lim
ε→0

1

βε
E

[∣∣∣∣∣GtTε`(Tε)(x)−
∫ tTε`(Tε)

0

F ′(Wu(x))dW̃u(x)

∣∣∣∣∣
]

= 0.

Lemma 3.15. For any f ∈ C∞c (R2), t > 0, and β̂ ∈ (0, 1),

lim
ε→0

1

βε
E

[∣∣∣∣∣
∫
R2

dxf(x)

∫ tTε`(Tε)

0

F ′(Wu(xTε))dW̃u(xTε)

∣∣∣∣∣
]

= 0.
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Proof of Lemma 3.14. We have

E

∣∣∣∣∣GtT`(T )(x)−
∫ tT`(T )

0

F ′(Wu(x))dW̃u(x)

∣∣∣∣∣
2


= E

(∫ tT`(T )

0

F ′ (Wu(x)) dWu(x)−
∫ tT`(T )

0

F ′ (Wu(x)) dW̃u(x)

)2


= E

[∫ tT`(T )

0

F ′ (Wu(x))
2 d
〈
W(x)− W̃(x)

〉
u

]
.

Then, the last expectation is written by

E

[∫ tT`(T )

0

duF ′ (Wu(x))
2

×Ex ⊗ Ex

[
V (Bu − B̃u)Φu(Bu)Φs(B̃u)u0

(
BtT√
T

)
u0

(
B̃tT√
T

)
: AT (B, B̃, x)

]]
,

(3.30)

where we set

AT (B, B̃, x) := F
tT`(T ),

√
tTn(T )

(B, x)c ∩ F
tT`(T ),

√
tTn(T )

(B̃, x)c.

By using |V (Bs − B̃s)| ≤ ‖V ‖∞ and (1.7), (3.30) is bounded from above by

‖V ‖∞E

[∫ tT`(T )

0

duF ′ (Wu(x))
2

(Wu(x)− W̃u(x))2

]

≤ CE

[∫ tT`(T )

0

du

(
1

Wu(x)
+ 1

)2

(Wu(x)− W̃u(x))2

]

≤ C
∫ tT`(T )

0

duE

[
Wu(x)− W̃u(x)

Wu(x)
+Wu(x)− W̃u(x) +

(
Wu(x)− W̃u(x)

)2
]
. (3.31)

It is easy to see that

E

[(
Wu(x)− W̃u(x)

)2
]

= Ex ⊗ Ex

[
exp

(∫ u

0

β2V (Bs − B̃s)ds
)
u0

(
BtT√
T

)
u0

(
B̃tT√
T

)
: AT (B, B̃, x)

]

≤ CEx ⊗ Ex

[
exp

(∫ u

0

β2V (Bs − B̃s)ds
)

: AT (B, B̃, x)

]
. (3.32)

Then, Hölder’s inequality yields that

Ex ⊗ Ex

[
exp

(∫ u

0

β2V (Bs − B̃s)ds
)

: AT (B, B̃, x)

]
≤ Ex ⊗ Ex

[
exp

(∫ u

0

pβ2V (Bs − B̃s)ds
)] 1

p

Px

(
F
tT`(T ),

√
tTn(T )

(B, x)c
) 2
q

, (3.33)

where p, q > 1 with 1
p + 1

q = 1 are chosen such that

lim
T→∞

Ex ⊗ Ex

[
exp

(
pβ2

∫ Tt

0

V (Bu − B̃u)du

)]
<∞.
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Hence, (3.32) tends to 0 as T →∞ since we know

Px

(
F
tT`(T ),

√
tTn(T )

(B, x)c
)
≤ C exp

(
− n(T )

4`(T )

)
, (3.34)

which decays faster than any polynomial of T . By using the Cauchy-Schwarz inequality
with Lemma 2.9, we can see that (3.31) converges to 0 as T →∞.

Proof of Lemma 3.15. It is enough to show that

1

β2
E

(∫
R2

dxf(x)

∫ tT`(T )

0

F ′(Ws(xT ))dW̃s(xT )

)2


=
1

β2

∫
R2×R2

dxdyf(x)f(y)E

[∫ tT`(T )

0

F ′(Ws(xT ))F ′(Ws(yT ))d〈W̃(xT ), W̃(yT )〉s

]
→ 0,

as T → ∞. Since W̃s(x) and W̃s(y) are independent and hence d〈W̃(x), W̃(y)〉u = 0 if
|x− y| > 2(

√
tTn(T ) +Rφ), we have

E

(∫
R2

dxf(x)

∫ tT`(T )

0

F ′(Ws(xT ))dW̃s(xT )

)2


≤ Cn(T )E

[∫ tT`(T )

0

F ′(Ws(x))2d〈W̃(x)〉s

]

≤ Cn(T )E

[∫ tT`(T )

0

(
1

Ws(x)2
+ 1

)
d〈W̃(x)〉s

]
. (3.35)

By construction of W̃s(x), we have

Cn(T )E

[∫ tT`(T )

0

(
1

Ws(x)2
+1

)
d〈W̃(x)〉s

]
≤Cn(T )E

[∫ tT`(T )

0

(
1

Ws(x)2
+1

)
d〈W(x)〉s

]
,

and furthermore, by applying Itô’s lemma to logW(x) andW(x)2, it is bounded by

Cn(T )E
[
log ū(t, x)− logWtT`(T ) +WtT`(T )(x)2

]
≤ Cn(T ).

Thus, Lemma 3.15 is concluded.

3.3.2 Proof of Lemma 3.13

Define

dLs(x) = βεZβs`(T )(x)

∫
R2

dzξ(ds,db)

∫
R2

ρs(z − x)φ(z − b)
←−
Z βs,s`(T )(z) Ez

[
u0

(
BtT−s√

T

)]
.

Then, we can see that

dMs(xT ) = F ′
(
Zβs`(T )ū(t, x)

)
dLs(xT ), (3.36)

for s ≥ tT `(T ) and x ∈ R2.
Recalling the definition of G from (3.6), we know that

GtTε(x)−GtTε`(Tε)(x)−Ms(x)

=

∫
tTε`(Tε)

F ′(Ws(x))dWs(x)−
∫
tTε`(Tε)

F ′(Zβs`(Tε)ū(t, x))dLs(x).

Lemma 3.13 follows from the next two lemmas.
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Lemma 3.16. For t > 0,

lim
ε→0

1

βε
E

[∣∣∣∣∣
∫

dxf(x)

(∫ tTε

tTε`(Tε)

F ′(Ws(xTε))dWs(xTε)−
∫ tTε

tTε`(Tε)

F ′(Ws(xTε))dLs(xTε)

)∣∣∣∣∣
]

= 0.

Lemma 3.17. For t > 0,

lim
ε→0

1

βε
E

[∣∣∣∣∣
∫

dxf(x)

(∫ tTε

tTε`(Tε)

F ′(Ws(xTε))dLs(xTε)−MtTε(xTε)

)∣∣∣∣∣
]

= 0.

Proof of Lemma 3.16. By the Burkholder-Davis-Gundy inequality and the trivial bound
for martingale |MT | ≤ max0≤t≤T |Mt|, we have

1

β
E

[∣∣∣∣∣
∫

dxf(x)

(∫ tT

tT`(T )

F ′(Ws(xT ))dWs(xT )−
∫ tT

tT`(T )

F ′(Ws(xT ))dLs(xT )

)∣∣∣∣∣
]

≤ C

β

∫
dx|f(x)|E

(∫ tT

tT`(T )

F ′(Ws(xT ))2d 〈W(xT )− L(xT )〉s

) 1
2

 .
By using the Cauchy-Schwarz inequality, the right hand side is bounded from above by

C

β

∫
dx|f(x)|E

[
sup

0≤s≤tT
Zs(0)−2 + 1

] 1
2

E

[∫ tT

tT`(T )

d 〈W(xT )− L(xT )〉s

] 1
2

≤ C

β

∫
dx|f(x)|E

[∫ tT

tT`(T )

d 〈W(xT )− L(xT )〉s

] 1
2

,

where we have used Doob’s inequality and Lemma 2.9 in the inequality.
By boundedness of ū, we can see from the definitions ofW and L that for x ∈ R2,

1

β2
E

[∫ tT

tT`(T )

d 〈W(xT )− L(xT )〉s

]

=

∫ tT

tT`(T )

ds

∫
(R2)2

dz1dz2ρs(z1)ρs(z2)V (z1 − z2)ū(tT − s, z1)ū(tT − s, z2)

× E
[(

Es,z10,0 [Φs]−Zs`(T )(0)
←−
Z s,s`(T )(z1)

)(
Es,z20,0 [Φs]−Zs`(T )(0)

←−
Z s,s`(T )(z2)

)]
≤ C

∫ tT

tT`(T )

ds

∫
(R2)2

dz1dz2ρs(z1)ρs(z2)V (z1 − z2)

× E
[∣∣∣Es,z10,0 [Φs]−Zs`(T )(0)

←−
Z s,s`(T )(z1)

∣∣∣ ∣∣∣Es,z20,0 [Φs]−Zs`(T )(0)
←−
Z s,s`(T )(z2)

∣∣∣] .
By the Cauchy-Schwarz inequality and |xy| ≤ x2+y2

2 , the right hand side is bounded by

C

2

∫ t

t`(T )

dσ

∫
(R2)2

dwdvρσ(w)ρσ(w +
v√
T

)V (v)

×
(
E

[(
ETσ,wT0,0 [ΦTσ]−Zs`(T )(0)

←−
Z Tσ,Tσ`(T )(wT )

)2
]

+E

[(
ETσ,wT+v

0,0 [ΦTσ]−ZTσ`(T )(0)
←−
Z Tσ,Tσ`(T )(wT + v)

)2
])

.

By changing variables w + v√
T

= w′ for the second term and the symmetry of V , it is
equal to
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C

∫ t

t`(T )

dσ

∫
(R2)2

dwdvρσ(w)ρσ(w+
v√
T

)V (v)E

[(
ETσ,wT0,0 [ΦTσ]−ZTσ`(T )(0)

←−
Z Tσ,Tσ`(T )(wT )

)2
]
,

and furthermore Lemma 2.10 allows us to bound it from above by

C

∫ t

t`(T )

dσ

∫
|wT |≤

√
σT log(σT )

dw
ρσ(w)

σ

×

(
`(T )− log `(T )

log T
+

√
log(σT ) log(σT`(T ))√

σT log T
+
`(T ) log(σT )

log T

)

+ C

∫ t

t`(T )

dσ

∫
|wT |≥

√
σT log(σT )

dw
ρσ(w)

σ

≤ C
∫ t

t`(T )

dσ
1

σ

(
`(T )− log `(T )

log T
+

√
log(tT ) log(tT `(T ))√

σT log T
+
`(T ) log(tT )

log T

)

+ C

∫ t

t`(T )

1√
σ3T

dσ. (3.37)

Since both terms in the last line tend to 0 as T →∞ from the definition of `(T ), Lemma
3.16 is concluded.

Proof of Lemma 3.17. We have from (3.36),

1

β
E

[∣∣∣∣∣
∫
f(x)

(∫ tT

tT`(T )

F ′(Ws(xT ))dLs(xT )−MtT (xT )

)
dx

∣∣∣∣∣
]

≤ 1

β

∫
|f(x)|E

[∣∣∣∣∣
∫ tT

tT`(T )

F ′(Ws(xT ))dLs(xT )−MtT (xT )

∣∣∣∣∣
]

dx

≤ 1

β

∫
dx|f(x)|E

[∫ tT

tT`(T )

(
F ′(Ws(xT ))− F ′(Zs`(T )(xT )ū(t, x))

)2
d〈L(xT )〉s

] 1
2

,

and

E

[∫ tT

tT`(T )

(
F ′(Ws(xT ))− F ′(Zs`(T )(xT )ū(t, x))

)2
d〈L(xT )〉s

]

= β2

∫ t

t`(T )

dσ

∫
(R2)2

dzdvρσ(z)ρσ(z+
v√
T

)V (v)EzT

[
u0

(
BtT−σT√

T

)]
EzT+v

[
u0

(
BtT−σT√

T

)]
×E
[(
F ′(WTσ(xT ))−F ′(ZTσ`(T )(xT )ū(t, x))

)2
×ZTσ`(T )(xT )2←−Z Tσ,Tσ`(T )(zT )

←−
Z Tσ,Tσ`(T )(zT +v)

]
.

By (1.7), Lemma 2.5 and Lemma 2.9, we can choose p, q > 1 with 1
p + 1

q = 1 such that

E
[∣∣F ′(WTσ(xT ))− F ′(ZTσ`(T )(xT )ū(t, x))

∣∣2q] 1
q

× E
[
ZTσ`(T )(xT )2p←−Z Tσ,Tσ`(T )(zT )p

←−
Z Tσ,Tσ`(T )(zT + v)p

] 1
p

≤ C,

for some constant C > 0 uniformly in t`(T ) ≤ σ ≤ t, x ∈ R2 and 0 < ε < 1
2 .
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Since we have
∣∣F ′(WTσ(xT ))− F ′(ZTσ`(T )(xT )ū(t, x))

∣∣ =
∣∣∣∫WTσ(xT )

ZTσ`(T )(xT )ū(t,x)
F ′′(w)dw

∣∣∣,
(1.7) and Hölder’s inequality yield

E
[∣∣F ′(WTσ(xT ))− F ′(ZTσ`(T )(xT )ū(t, x))

∣∣2q]
≤ CE

[∣∣∣∣ 1

WTσ(xT )
+

1

ZTσ`(T )(xT )ū(t, x)
+ 1

∣∣∣∣2q−1 ∣∣F ′(WTσ(xT ))− F ′(ZTσ`(T )(xT )ū(t, x))
∣∣]

≤ CE

[
sup

t`(T )≤σ≤t

{∣∣∣∣ 1

ZTσ(xT )
+

1

ZTσ`(T )(xT )
+ 1

∣∣∣∣2q−1 ∣∣∣∣ 1

ZTσ(xT )2
+

1

ZTσ`(T )(xT )2
+ 1

∣∣∣∣
}

×
∣∣WTσ(xT )−ZTσ`(T )(xT )ū(t, x)

∣∣ ].
Moreover, Doob’s inequality, the Cauchy-Schwarz inequality, and Lemma 2.9 allow us to
bound the right most term from above by

CE
[(
WTσ(xT )−ZTσ`(T )(xT )ū(t, x)

)2]1/2
.

We have

WTσ(xT ) ≈L2 ZTσ`(T )(xT )

∫
pσ(x, y)

←−
Z Tσ,Tσ`(T )(y)ū(t− σ, y)dy

≈L2 ZTσ`(T )(xT )

∫
pσ(x, y)E

[←−
Z Tσ,Tσ`(T )(y)

]
ū(t− σ, y)dy = ZTσ`(T )(xT )ū(t, x),

where we have used Theorem 2.10 in the first approximation and a homogenization
argument as in Lemma 3.9 in the second approximation. Thus, Lemma 3.17 follows by
the dominated convergence theorem.

3.4 Proof of Proposition 3.2

Our goal is to prove that

1

βε

∫
R2

dxf(x)

(∫ tTε

0

F ′′(Ws(xTε))d〈W(xTε)〉s−E

[∫ tTε

0

F ′′(Ws(xTε))d〈W(xTε)〉s

])
L1

−→0.

(3.38)
For simplicity of notation, we set t = 1 hereafter.
The proof is composed of four steps. In the first step, we will investigate that the

influence at large time is negligible in the following sense:

Lemma 3.18 (Step 1).

lim
ε→0

1

βε
E

[∫
R2

dxf(x)

∫ Tε

Tε`(Tε)

F ′′(Ws(xTε))d〈W(xTε)〉s

]
= 0. (3.39)

In the second step, we will see that the contributions of “large” W(x) and “small”
W̃(x) are negligible. To do this, we introduce a stopping time:

τTε = τTε(x) := inf

{
s ≥ 0 : Ws(x) + W̃s(x)−1 >

1

`(Tε)
1
20

}
∧ Tε`(Tε).

Lemma 3.19 (Step 2). For any x ∈ R2,

lim
ε→0

1

βε
E

[∫ Tε`(Tε)

τTε (x)

|F ′′(Ws(x))|d〈W(x)〉s

]
= 0.
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In Lemma 3.22 below, we will see that the probability τTε < Tε`(Tε) is much smaller
than β−1

ε .
In the third step, we will prove that the contributions from W(x) and W̃(x) are

asymptotically identified.

Lemma 3.20 (Step 3). For any x ∈ R2,

lim
ε→0

1

βε
E

[∣∣∣∣∣
∫ τTε (x)

0

F ′′(Ws(x))d〈W(x)〉s −
∫ τTε (x)

0

F ′′(W̃s(x))d〈W̃(x)〉s

∣∣∣∣∣
]

= 0.

In the last, we will prove the remainder is also negligible.

Lemma 3.21 (Step 4).

lim
ε→0

1

β2
ε

E

[(∫
R2

dxf(x)

(∫ τTε

0

F ′′(W̃u(xTε))d〈W̃(xTε)〉u− E
[∫ τTε

0

F ′′(W̃u(xTε))d〈W̃(xTε)〉u
)])2

]
= 0.

Putting these lemmas together, Proposition 3.2 is concluded.

Proof of Lemma 3.18. With δ from (3.11), for C > (‖u0‖∞ + ‖u−1
0 ‖∞)4,

E

[∫ T

T`(T )

|F ′′(Ws(xTε))|d〈W(xT )〉s

]

≤ CE

[
sup

T`(T )≤s≤T

(
1 + Zs(x)−2

) ∫ T

T`(T )

d〈Z(xT )〉s

]

≤ 2CE

[
sup

T`(T )≤s≤T
Zs(x)−21

{
sup

T`(T )≤s≤T
Zs(x)−1 > (log T )δ/4

}∫ T

T`(T )

d〈Z(xT )〉s

]

+ 2C(log T )δ/2E

[
1

{
sup

T`(T )≤s≤T
Zs(x)−1 ≤ (log T )δ/4

}∫ T

T`(T )

d〈Z(xT )〉s

]
.

By the Burkholder-Davis-Gundy inequality, Doob’s inequality, and Hölder’s inequality,
the first expectation is bounded from above by

CP

(
sup

T`(T )≤s≤T
Zs(x)−1 > (log T )δ/4

) 1
2p

E

[
1

ZT (x)4p

] 1
2p

E

[(∫ T

T`(T )

d〈Z(xT )〉s

)q] 1
q

≤ C 1

(log T )2
E
[
ZT (x)−

16p
δ

] 1
2p

E
[
ZT (x)−4p

] 1
2p E

[
ZT (x)2q

] 1
q

≤ C(log T )−2,

where p, q > 1 with 1
p + 1

q = 1 and supε<1E
[
ZTε(x)2q

]
< ∞ from Lemma 2.5. On the

other hand, the second expectation can be bounded from above by

(log T )δ/2E

[∫ T

T`(T )

d〈Z(xT )〉s

]

= (log T )δ/2
∫ T

T`(T )

β2E0

[
V (
√

2Bs) exp

(∫ s

0

β2V (
√

2Bu)du

)]
ds

= (log T )δ/2
∫ T

T`(T )

β2

∫
R2

dxV (
√

2x)ρs(x)Es,x0,0

[
exp

(∫ s

0

β2V (
√

2Bu)du

)]
ds

≤ β2(log T )δ/2(log(T )− log(T`(T )))
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≤ −β2(log T )δ/2 log `(T ),

where we have used Lemma 2.7 in the third line and β2(log T )δ/2 log `(T )→ 0 as ε→ 0

as desired.

Let us define the event

ATε(x) = {τTε(x) = Tε`(Tε)} =
{
Ws(x) + W̃s(x)−1 ≤ `(Tε)−

1
20 for all s ≤ Tε`(Tε)

}
.

Before the proof of Lemma 3.19, we give an estimate of the probability of (AT (x))c.

Lemma 3.22. There exists a constant C > 0 such that for ε ∈ (0, 1) and x ∈ R2,

P (ATε(x)c) ≤ C`(Tε).

Proof. We have

P (AT (x)c)

≤ P(Ws(x) > (2`(T ))−
1
20 , ∃s ∈ [0, T `(T )]) + P(W̃s(x) < 2`(T )

1
20 , ∃s ∈ [0, T `(T )]).

The first term is bounded from above by 2‖u0‖∞`(T ) using Doob’s inequality and
E
[
WT`(T )(x)

]
≤ ‖u0‖∞. Using the fact that B < x implies A < 2x or A − B > x

for A ≥ B > 0 and x > 0, by Doob’s inequality with (sub-)martingales Ws(x)−20 and
Ws(x)− W̃s(x), the second term is bounded from above by

P(Ws(x) < 4`(T ), ∃s ∈ [0, T `(T )]) + P(Ws(x)− W̃s(x) > 2`(T ), ∃s ∈ [0, T `(T )])

≤ 220`(T )E[WT`(T )(x)−20] + `(T )−1E[WT`(T )(x)− W̃T`(T )(x)] ≤ C`(T ).

Proof of Lemma 3.19. By Hölder’s inequality and Minkowski’s inequality, the expectation
is bounded from above by

CE

[∫ T`(T )

τT

(
1

Ws(x)2
+ 1

)
d〈W(x)〉s

]

≤ CE

[∫ T`(T )

0

(
1

Ws(x)2
+ 1

)
d〈W(x)〉s; AT (x)c

]

≤ CE

[(∫ T`(T )

0

(
1

Ws(x)2
+ 1

)
d〈W(x)〉s

)p] 1
p

P (AT (x)c)
1
q

≤ C

E[(∫ T`(T )

0

d〈W(x)〉s
Ws(x)2

)p] 1
p

+ E

[(∫ T`(T )

0

d〈W(x)〉s

)p] 1
p

P (AT (x)c)
1
q ,

where p, q > 1 with 1
p + 1

q = 1 are constants with 2p < pβ̂ . Then, by the Burkholder-Davis-
Gundy inequality, we obtain

E

[(∫ T`(T )

0

d〈W(x)〉s

)p]
≤ CE

[(
WT`(T )(x)−W0(x)

)2p] ≤ C.
Applying Itô’s lemma to logWs(x), we have

logWs(x) = log ū(t, x) +

∫ s

0

dWu(x)

Wu(x)
− 1

2

∫ s

0

d〈W(x)〉u
Wu(x)2

:= log ū(t, x) +G′s(x)− 1

2
H ′s(x),
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with

〈G′(x)〉s = H ′s(x).

In particular, we have

E
[
H ′s(x)2

]
≤ 12 (log ū(t, x))

2
+ 12E

[
G′s(x)2

]
+ 12E

[
(logWs(x))

2
]

= 12 (log u(t, x))
2

+ 24E [H ′(x)] + 12E
[
(logWs(x))2

]
≤ C,

for some constant C > 0. Putting things together with Lemma 3.22, we have

1

βε
E

[∫ T`(T )

τT (x)

|F ′′(Ws(x))|d〈W(x)〉s

]
≤ C

β
P (AT (x)c)

1
q → 0.

Proof of Lemma 3.20. Recall the notation Fs,t(B, x) from (3.23). SinceWs(x)+W̃s(x)−1 ≤
`(T )−

1
20 for s ≤ τT (x), we have∣∣∣∣∫ τT

0

F ′′(Ws(x))d〈W(x)〉s −
∫ τT

0

F ′′(W̃s(x))d〈W̃(x)〉s
∣∣∣∣

≤
∣∣∣∣∫ τT

0

F ′′(Ws(x))d〈W(x)〉s −
∫ τT

0

F ′′(Ws(x))d〈W̃(x)〉s
∣∣∣∣

+

∣∣∣∣∫ τT

0

(
F ′′(Ws(x))− F ′′(W̃s(x))

)
d〈W̃(x)〉s

∣∣∣∣
≤ Cβ2

(
1 + `(T )−

1
10

)
×
∫ τT

0

dsEx⊗Ex

[
V (Bs−B̃s)Φs(B)Φs(B̃) :F

T`(T ),
√
Tn(T )

(B, x)c∪F
T`(T ),

√
Tn(T )

(B̃, x)c
]

+ Cβ2

∫ τT

0

ds
∣∣∣F ′′(Ws(x))− F ′′(W̃s(x))

∣∣∣Ex⊗Ex

[
V (Bs − B̃s)Φs(B)Φs(B̃)

]
.

Using Hölder’s inequality, there exists p > 2 such that the first term is bounded from
above by

E

[∫ T`(T )

0

dsEx⊗Ex

[
V (Bs−B̃s)Φs(B)Φs(B̃) :F

T`(T ),
√
Tn(T )

(B, x)c ∪ F
T`(T ),

√
Tn(T )

(B̃, x)c
]]

≤ 2‖V ‖∞
∫ T`(T )

0

dsE
[
Ex

[
Φs(B)Φs(B̃) : F

T`(T ),
√
Tn(T )

(B, x)c
]]

≤ C‖V ‖∞
∫ T`(T )

0

dsPx
(
F
T`(T ),

√
Tn(T )

(B, x)c
) 1
p

.

For the second term, we first note that for each s ≤ τT ,

|F ′′(Ws(x))− F ′′(W̃s(x))| =

∣∣∣∣∣
∫ Ws(x)

W̃s(x)

F ′′′(r)dr

∣∣∣∣∣ ≤ C(1 + `(T )−
3
20 )(Ws(x)− W̃s(x)),

and d〈W̃(x)〉s
ds ≤ β2‖V ‖∞W̃s(x)2 ≤ ‖V ‖∞`(T )−

1
10 . Hence,

E

[∣∣∣∣∫ τT

0

|F ′′(Ws(x))− F ′′(W̃s(x))|d〈W̃(x)〉s
∣∣∣∣]

≤ C‖V ‖∞(1 + `(T )−
3
20 )`(T )−

1
10

∫ T`(T )

0

E
[∣∣∣Ws(x)− W̃s(x)

∣∣∣]ds

= C‖V ‖∞(1 + `(T )−
3
10 )`(T )−

1
10

∫ T`(T )

0

Px

(
F
T`(T ),

√
Tn(T )

(B, x)c
)

ds.

By (3.34), the statement holds.
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Proof of Lemma 3.21. We define

H̃s(x) =

∫ s

0

F ′′(W̃s(x))d〈W̃(x)〉s.

We remark that for |x− y| ≥ 3
√
Tn(T )

Cov
(
H̃T`(T )(x), H̃T`(T )(y)

)
= 0,

so that

E

[(∫
R2

dxf(x)
(
H̃τT (xT )− E

[
H̃τT (xT )

]))2
]

=

∫
|x−y|≤3

√
n(T )

dxdyf(x)f(y)Cov
(
H̃τT (xT ), H̃τT (yT )

)
≤
∫
|x−y|≤3

√
n(T )

dxdy|f(x)f(y)|E
[
H̃τT (xT )2

] 1
2

E
[
H̃τT (yT )2

] 1
2

.

Since

|H̃τT (x)| ≤ C
∫ τT

0

(1 + W̃s(x)−1)2d〈W̃(x)〉s ≤ C(1 + `(T )−
1
10 )

∫ τT

0

d〈W̃(x)〉s,

by the Burkholder-Davis-Gundy inequality, we have

E
[
H̃τT (x)2

]
≤ C(1 + `(T )−

1
10 )2E

[
sup

0≤s≤τT
(Ws(x)− ū(1, x))

4

]
≤ C(1 + `(T )−

1
10 )2`(T )−

1
5 .

Putting things together, we have

1

β2
E

[(∫
R2

dxf(x)

(∫ τT

0

F ′′(W̃s(xT ))d〈W̃(xT )〉s − E
[∫ τT

0

F ′′(W̃s(xT ))d〈W̃(xT )〉s
]))2

]

≤ C n(T )

β2`(T )
2
5

.

3.5 Multidimensional convergence in the EW limits

We have proved the Gaussian fluctuations for F (uε) in one dimensional time t. In this
section, we complete the proof of Theorem 1.1 by proving the Gaussian fluctuations for
F (uε) in multidimensional times.

To ease the presentation, we restrict ourselves to the case where F (x) = x, and
β̂ ∈ (0, 1) is fixed, although a repetition of the argument would lead to the result for the
general initial conditions and the functions F that we have been considering.

Also, we note that for all 0 ≤ t1 ≤ · · · ≤ tn = t, u(1)
0 , · · · , u(n)

0 ∈ Cb(R
2), and

f1, · · · , fn ∈ C∞c (R2)(
u

(u
(1)
0 )

ε (t1, f1), · · · , u(u
(n)
0 )

ε (tn, fn)

)
(d)
=

(
W
(
t,T,u

(1)
0

)
T (t−t1) (Tt, f1), · · · ,W

(
t,T,u

(n−1)
0

)
T (t−tn−1) (Tt, fn−1),W

(
t,T,u

(n)
0

)
0 (Tt, fn)

)
,

where for fixed t > 0 we define that for u, s ≥ 0, x ∈ R2, and f ∈ C∞c (R2),

u(u0)
ε (s, f) =

∫
R2

f(x)u(u0)
ε (s, x)dx
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Wu(s, x) =W(t,T,u0)
u (s, x) =

Ex

[
Φu,s(B)u0

(
BTt−u√

T

)]
, 0 ≤ u ≤ s,

u0(x), 0 ≤ s ≤ u.

and

Wu(s, f) =W(t,T,u0)
u (s, f) =

∫
R2

f(x)W(t,T,u0)
u (s, xT )dx.

Thus, to complete the proof of Theorem 1.1, it suffices to show that jointly for finitely
many u ∈ [0, t], u0 ∈ Cb(R2), and f ∈ C∞c (R2), as ε→ 0,

1

βε

∫
f(x)

(
W(t,T,u0)
Tu,T t (xT )− ū(t− u, x)

)
dx

(d)−→ U (t,u0)
u (t, f), (3.40)

where
{

U
(t,u0)
u (s, f) : f ∈ C∞c (R2), u0 ∈ Cb(R2), 0 ≤ u ≤ s ≤ t

}
is a family of centered

Gaussian fields with covariance

Cov
(
U (t,u0)
u (s, f),U

(t,u′0)
u′ (s, f ′)

)
=

1

1− β̂2

∫ s

u∨u′
dσ

∫
dxdyf(x)f ′(y)

∫
dzρσ−u(x, z)ρσ−u′(y, z)ū(t− σ, z)ū′(t− σ, z).

Following the same strategy as in Subsection 3.1, we are reduced to showing that

1

βε
M(t,T,u0)

u (τ, f)
(d)−→ U (t,u0)

u (τ, f) jointly in u ∈ [0, τ ], f ∈ C∞c , (3.41)

where (see (3.15))

M(t,T,u0)

u (τ, f) :=


∫
R2

f(x)

∫ Tτ

Tu+T (t−u)`(T )

dM(t,T,u0)

u (s, xT )dx, τ ≥ u+ (t− u)`(T ),

0, τ ≤ u+ (t− u)`(T ),

and

dM(t,T,u0)

u (s, x) :=

βεZTu,Tu+(s−Tu)`(T )(x)

∫
ξ(ds,db)

∫
ρs−Tu(x, z)φ(z−b)

←−
Z s,(s−Tu)`(T )(z)Ez

[
u0

(
BTt−s√

T

)]
dz.

Then, for all u ≥ 0 and f ∈ C∞c (R2), τ → M(t,T )
u (τ, f) is a continuous martingale.

In view of the desired convergence (3.40), we have again in mind the functional CLT
for martingales Theorem 3.3, so we are interested in the limit of the cross-bracket
〈M(t,T )

u1 (·, f1),M(t,T )
u2

(·, f2)〉τ .

Proposition 3.23. For all test functions f and f ′ in C∞c , u0, u
′
0 ∈ Cb(R2), 0 ≤ u2 ≤ u1 ≤ t,

and τ ≥ 0,

1

β2
ε

〈M(t,T,u0)
u1

(·, f1),M(t,T,u′0)

u2 (·, f2)〉τ

L1

−→ 1

1− β̂2

∫ τ

u1∧τ
dσ

∫
dxdyf1(x)f2(y)

∫
dzρσ−u1(x, z)ρσ−u2(y, z)ū(t− σ, z)ū′(t− σ, z),

(3.42)

as ε→ 0.
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Proof. We first remark that for τ ≤ u1, the cross variation vanishes. For τ > u1, we have
τ ≥ u1 + (t− u1)`(T ) if ε > 0 is sufficiently small. Hence,

1

β2
〈M(t,T,u0)

u1
(·, f1),M(t,T,u′0)

u2 (·, f2)〉τ

=

∫
R2×R2

dxdyf1(x)f2(y)

∫ Tτ

Tu1+T (t−u1)`(T )

dsZTu1,Tu1+(s−Tu1)`(T )(xT )ZTu2,Tu2+(s−Tu2)`(T )(yT )

×
∫
R2×R2

dz1dz2ρs−Tu1
(z1−xT )ρs−Tu2

(z2−yT )V (z1−z2)
←−
Z s,(s−Tu1)`(T )(z1)

←−
Z s,(s−Tu2)`(T )(z2)

× Ez1

[
u0

(
BTt−s√

T

)]
Ez2

[
u′0

(
BTt−s√

T

)]
.

By a repetition of the arguments that lead to (3.17), we have that

1

β2
〈M(t,T,u0)

u1
(·, f1),M(t,T,u′0)

u2 (·, f2)〉τ

≈L1

∫
f1(x)f2(y)dxdy

×
∫ τ

u1+(t−u1)`(T )

dσE
[
ZTu,Tu+T (σ−u)`(T )(xT )

]
E
[
ZTu2,Tu2+(s−Tu2)`(T )(yT )

]
ΘT (x, y)

=

∫
f1(x)f2(y)dxdy

∫ τ

u1+(t−u1)`(T )

dσΘT (x, y),

where

ΘT (x, y)

=

∫
dzdvρσ−u1(z−x)ρσ−u2(z− v√

T
−y)V (v)E

[←−
Z σ,(σ−u1)`(T )(zT )

←−
Z σ,(σ−u2)`(T )(zT +v)

]
× EzT

[
u0

(
BTt−Tσ√

T

)]
EzT+v

[
u′0

(
BTt−Tσ√

T

)]
→ 1

1− β̂2

∫
dzρσ−u1(x− z)ρσ−u2(y − z)ū(t− σ, z)ū′(t− σ, z).
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