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Abstract

We study measures on random partitions, arising from condensing stochastic particle
systems with stationary product distributions. We provide fairly general conditions
on the stationary weights, which lead to Poisson-Dirichlet statistics of the condensed
phase in the thermodynamic limit. The Poisson-Dirichlet distribution is known to be
the unique reversible measure of split-merge dynamics for random partitions, which
we use to characterize the limit law. We also establish concentration results for the
macroscopic phase, using size-biased sampling techniques and the equivalence of
ensembles to characterize the bulk distribution of the system.
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1 Introduction and results

1.1 Mathematical setting and motivation

The results presented in this paper are motivated by the study of interacting particle
systems. We consider finite systems consisting of N particles on L sites indexed by the
set Λ, where |Λ| = L. For simplicity we take Λ = {1, . . . , L} in the remainder of this
paper. The space of such particle configurations η = (η1, . . . , ηL) with ηx ∈ N0 is given by

ΩL,N :=

{
η ∈ NL0 :

L∑
x=1

ηx = N

}
,
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Poisson-Dirichlet asymptotics in condensing particle systems

which we equip with the discrete topology. The dynamics of systems we consider are
assumed to be irreducible Markov processes on ΩL,N , conserving only the quantities N
and L. Thus, there exists a unique invariant distribution πL,N of the system on ΩL,N ,
which is called the canonical distribution.

We will focus on models where the canonical distributions are of product form

πL,N [dη] =


1

ZL,N

L∏
x=1

wL(ηx) dη if
∑L
x=1 ηx = N ,

0 otherwise.

(1.1)

Here dη denotes the counting measure on ΩL,N and (wL(n))n∈N0
is a sequence of positive

weights, possibly depending on the system size L. The normalising constant, called
canonical partition function, is given as

ZL,N =
∑

η∈ΩL,N

L∏
x=1

wL(ηx) .

Note that the weights (wL(n))n∈N0 are independent of the site x, thus the πL,N are per-
mutation invariant and in particular spatially homogeneous, so that single-site marginals
πL,N [ηx ∈ ·] do not depend on x.

We are primarily interested in the limiting behaviour of πL,N in the thermodynamic
limit N,L→∞ such that N

L converges to ρ > 0, which we will subsequently abbreviate
by N/L→ ρ. Assume for now that the weak limit of the single-site marginals exists for
all ρ > 0,

πL,N [ηx ∈ · ]→ νρ[ · ] as N/L→ ρ , (1.2)

and the limit is a probability measure on N0. This implies in particular convergence of
the expectations for bounded functions f : N0 7→ R, i.e.

∞∑
n=0

f(n)πL,N [ηx = n]→ νρ(f) ,

where we write νρ(f) for the expectation of f under νρ. Sometimes we will also write
νρ(f(ηx)) for the corresponding expectation if needed for clarity. Looking at a single
site’s expected occupation number under πL,N , we see that due to spatial homogeneity
we have

πL,N (ηx) =
1

L

L∑
y=1

πL,N (ηy) =
1

L
πL,N

( L∑
y=1

ηy

)
=
N

L
→ ρ ,

when taking the thermodynamic limit. However, because the identity f(n) = n is an
unbounded function, we cannot guarantee that the particle density of the system is
conserved in the limit νρ and νρ(ηx) may be strictly smaller than ρ. This phenomenon is
known as condensation.

Definition 1.1 (Condensation). A system characterised by spatially homogeneous canon-
ical distributions (πL,N )L,N exhibits condensation in the thermodynamic limit N/L→ ρ

if νρ in (1.2) exists and
νρ(ηx) < ρ = lim

N/L→ρ
πL,N (ηx) .

Furthermore, we say that the system has a condensation transition with critical
density ρc > 0 if

νρ(ηx)

{
= ρ if ρ < ρc ,

< ρ if ρ > ρc .
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Poisson-Dirichlet asymptotics in condensing particle systems

In the context of stochastic particle systems, condensation means that a positive
fraction of the total density ρ is not observed in the thermodynamic limit, since it
concentrates on sites with diverging occupation numbers called the condensed phase.
Clearly, the number of such sites has a vanishing volume fraction and does not contribute
to the weak limit νρ, which describes the distribution of the background or bulk phase.

Condensation in homogeneous stochastic particle systems has been studied previously
in great generality, partially reviewed e.g. in [6, 14, 20]. Early results are formulated
in the context of zero-range processes in [10, 13, 19] and in [29, 26, 2, 1] on a rigorous
level, where the condensed phase concentrates on a single lattice site. Our goal here
is to understand details of the condensed phase when it extends over more than one
site and exhibits a non-trivial structure. Such structures have previously been observed
as a result of spatial correlations [40, 39, 38] and as a result of L-dependent stationary
weights, with a soft cut-off for site occupation numbers under zero-range dynamics [37]
or in the inclusion process [28].

On the level of particle configurations the condensed phase disappears in the ther-
modynamic limit due to its vanishing volume fraction. To study its structure, it is more
useful to interpret a configuration as an ordered partition of the total mass. For models of
type (1.1) partitions and particle configurations are equivalent, since πL,N is permutation
invariant and the underlying lattice structure is irrelevant.

We will represent particle configurations rescaled by the total mass N as ordered
partitions of the unit interval [0, 1] on the set

∇ :=

{
p = (pi)i ∈ [0, 1]N :

∞∑
i=1

pi 6 1 and p1 > p2 > · · ·

}
. (1.3)

We use the map T = T (L,N) : ΩL,N → ∇ with

T (η) :=
1

N
(η̂1, . . . , η̂L, 0, . . .) , (1.4)

where η̂ = (η̂1, . . . , η̂L) denotes the entries in η in decreasing order with η̂1 > η̂2 >
. . . > η̂L. Since any permutation of entries in η yields the same partition in ∇, the map
T is not injective. Thus, the push-forward measure of πL,N under T on ∇ is given by

µL,N [dp] := πL,N ◦ T−1[dp] = πL,N [d(Np)] |T−1({p})| , (1.5)

with Np denoting any configuration in ΩL,N inducing the finite ordered partition p ∈ ∇.
Note that µL,N concentrates on finite partitions with at most L non-zero entries and
T−1({p}) = ∅ otherwise. In fact, the µL,N further concentrate on the subset where∑∞
i=1 pi = 1. However, this space is not compact, unlike ∇ which is compact w.r.t. the

product topology by Tychonoff’s theorem, ensuring existence of subsequential weak
limits of µL,N in the thermodynamic limit N/L → ρ. The objective of this article is to
identify general assumptions on the weights (wL)L, such that for ρ > 0 large enough
µL,N converges weakly to a Poisson-Dirichlet distribution as N/L→ ρ. Details on this
distribution are introduced in Section 2.

The starting point of our analysis is the recent paper [28] in which weights of the
form

wL(n) =
Γ(n+ d)

n!Γ(d)
, (1.6)

with d = d(L) ∈ R such that limL→∞ dL = θ ∈ (0,∞), are considered. Such weights
emerge for example from the dynamics of the inclusion process introduced in [17, 5],
which can also be applied in population genetics as a multi-species Moran model [35],
with the above scaling of the parameter d corresponding to a small mutation rate. With
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weights (1.6) the system (1.1) exhibits a condensation transition with critical density
ρc = 0, leaving an empty bulk behind, i.e. νρ(ηx) = 0. For the condensed phase in this
model we have

µL,N
d→ PD(θ) , as N/L→ ρ for all ρ > 0 , (1.7)

where PD(θ) denotes the Poisson-Dirichlet distribution with parameter θ [28, Theorem 1].
The proof uses the fact that πL,N with weights (1.6) is a Dirichlet multinomial distribution
which permits an exact, simple expression for the corresponding partition function ZL,N .
This leads to exact expressions for the distribution of size-biased marginals which
characterize the Poisson-Dirichlet limit (cf. Section 2.1).

Our main result provides a generalization to models with more general weights that
do not lead to exact expressions for ZL,N , and with non-trivial bulk distribution where
0 < νρ(ηx) < ρ. In our proof, we not only make use of the Poisson-Dirichlet distribution’s
characterisation via size-biased sampling, which was essential for the arguments in
[28], but also use the characterisation as the unique reversible distribution under split-
merge dynamics as explained in Section 2.1. This allows us to avoid explicit expressions
or approximations of the partition function ZL,N which are not always at hand. Our
approach is motivated by a recent paper by Ioffe and Tóth [27], where the embedding
of integer configurations into partitions of [0, 1] was used to show convergence of cycle-
length processes of stationary random stirring to the split-merge dynamics.

1.2 Main results

We recall from (1.1) that the πL,N are probability measures on ΩL,N given by

πL,N [dη] =
1

ZL,N

L∏
x=1

wL(ηx) dη .

For our first result we fix a density ρ > 0 and choose N,L→∞ such that N/L→ ρ. We
assume that

(A1) wL(n) > 0 for all n ∈ N and the limit

lim
L→∞

wL(n) =: w(n) > 0 exists for all fixed n ∈ N0 ,

such that w is summable and non-trivial,

and a weak form of the equivalence of ensembles:

(A2) The limiting probability distribution (1.2) exists and is of the form

πL,N [η1 = n]→ νρ[n] =
w(n)φn

Z
∀n > 0 ,

for some φ > 0, and Z =
∑
n w(n)φn ∈ (0,∞) is the corresponding normalising

constant.

Remark 1.2. The equivalence of ensembles is the main mathematical framework to
understand the large scale behaviour of statistical mechanics models, and in particular
to show condensation as in Definition 1.1 (see Section 4 for details). Assumption (A2)
has therefore been established for all homogeneous particle systems that are known to
exhibit condensation (see citations above). We will see in our second result Theorem 1.7,
that equivalence of ensembles and Assumption (A2) can be shown for a large class of
models under slightly stronger assumptions on convergence of the stationary weights.
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Remark 1.3. It is natural to ask if νρ, cf. (1.2), can always be described by an exponential
change of measure w.r.t. w, as is assumed in (A2). One possible sufficient condition to
recover the postulated form in (A2) is to require that νρ and the measure w defined by
the limiting weights in (A1) are equivalent in the sense of measures, i.e. νρ and w have
the same support, and w(0), w(1) > 0. Then we can define

φ :=
νρ[1]

w(1)

w(0)

νρ[0]
> 0 and Z =

w(0)

νρ[0]
∈ (0,∞)

and use a telescopic product argument for the ratio of partition functions to see that

ZL−1,N−n

ZL,N
=
ZL−1,N

ZL,N

n∏
k=1

ZL−1,N−k

ZL−1,N−k+1
→ 1

Z
φn .

Thus, we recover Assumption (A2) in this case, and a similar argument works in the
degenerate case w(0) > 0 and w(k) = 0 for all k > 1, which applies for the inclusion
process with weights (1.6). We believe that this connection between νρ and w holds
under more general conditions, but a more detailed discussion is out of the scope of this
paper.

In order to formulate our main result with simple notation, we assume without loss of
generality that φ = Z = 1, since we can absorb φ and Z into the weights by

w̃L(n) :=
wL(n)φn

Z
and w̃(n) :=

w(n)φn

Z
.

So w can be assumed to be the probability mass function of νρ, i.e.

νρ[ηx = n] = w(n) for all n > 0 . (1.8)

We are interested in the macroscopic part of the condensed phase, i.e. the distribution
of occupation numbers ηx that scale linearly with the total mass N in the system when
taking the thermodynamic limit. The structure of this macroscopic phase will depend
on the asymptotic behaviour of the stationary weights. In order to see Poisson-Dirichlet
statistics in this phase, the weights wL(n) must scale like (nL)−1, for at least all n which
are visible under macroscopic rescaling:

(A3) there exists θ > 0 such that for all ε ∈ (0, 1) we have

sup
εN 6 n 6 N

|nwL(n)L− θ| → 0 as N/L→ ρ .

For the second part of Theorem 1.4 we also impose a second moment condition:

(A4) The limit

α2 :=
1 + θ

ρ
lim

N/L→ρ

πL,N (η2
x)

N
∈ [0, 1] exists . (1.9)

In Section 3 we will see that

α = µ(‖p‖1) , with ‖p‖1 =

∞∑
j=1

pj ,

i.e. α coincides with the expected total mass fraction for each accumulation point µ of
the measures (µL,N )L,N , and that the variance of ‖p‖1 vanishes. Therefore, Assumption
(A4) guarantees that the macroscopic phase is well defined in the thermodynamic limit,
excluding fluctuations of mass towards other scales, and plays an important role when
identifying the accumulation points µ. This leads to our first main result.
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Theorem 1.4. Let ρ > 0 and (wL)L be a sequence of weights satisfying (A1) – (A3)
for some θ ∈ (0, 1] and let µ be an accumulation point of the laws of mass partitions
(µL,N )L,N defined in (1.5). Then

µ = PD[0,αµ](θ) with αµ = µ
(
‖p‖1

)
∈ [0, 1] ,

where PD[0,α′](θ) denotes the Poisson-Dirichlet distribution with parameter θ, concen-
trating on partitions of the interval [0, α′], which depends on the accumulation point. If
in addition (A4) holds then

(µL,N )L,N
d→ PD[0,α](θ) , as N/L→ ρ .

Remark 1.5. (a) If θ = 0, assumption (A3) does not specify the leading order limiting
behaviour of the weights. Our proof can cover this case, if we assume in addition that
n 7→ nwL(n) is a regularly varying function1 for large enough L (see (3.10) in the proof).
This is consistent with choosing fixed weights of the form wL(n) = w(n) = n−b/Z for
b > 2 whenever n > 0 and wL(0) = 1. Indeed, for this choice, as part of a larger class of
sub-exponential weights, it is a well known result that the condensed phase consists of a
single cluster [13, 26, 2], which can be interpreted as a degenerate Poisson-Dirichlet
distribution with θ = 0.

(b) The result also covers the case α = 0 where the macroscopic phase is empty and
its limiting distribution is trivial. This includes models that do not condense at all, or
where the condensed phase concentrates on sub-macroscopic scales such as for certain
models with spatial correlations [40, 39, 38]. Of course our result does not say anything
interesting in this case, since there is no mass on the macroscopic scale.

(c) All results in this paper extend to arbitrary θ > 0 under the assumption that
PD(θ) is the unique reversible distribution for the split-merge dynamics introduced in
Section 2. It seems widely accepted that this is indeed the case, though to the authors’
best knowledge no proof exists for θ > 1.

Assumption (A3) is the core premise which guarantees the Poisson-Dirichlet limit
of the macroscopic phase, and is consistent with the scaling of weights (1.6) for the
inclusion process

wL(n) =
Γ(n+ d)

n!Γ(d)
' θ

nL
, if we set d =

θ

L
.

This scaling implies that a size-biased sample of a macroscopic cluster has the stationary
weights nwL(n) ' θ/L which are independent of n. That means, picking a particle
uniformly at random, the size of its cluster is uniformly distributed. This is the trademark
of Poisson-Dirichlet statistics, and the distribution can only be normalized in the scaling
limit due to the factor 1/L. Thus, to get a non-trivial macroscopic phase with θ > 0, it
is necessary that the weights wL depend on the system size L. The role of θ and more
details on size-biased sampling will be given in Section 2.

Remark 1.6. A system where (A1) – (A3) are satisfied but (A4) is difficult to verify, is for
example given by weights of the form

wL(n) = w(n)1{n 6 N1/2}+
θ

nL
1{n > N1/2} , (1.10)

with w being an arbitrary probability mass function on N (not necessarily of finite
support). In this case, to determine if (A4) holds, careful evaluation of the second moment
condition would be required that would depend on the choice of w(n). Theorem 1.4 still
allows to characterise the macroscopic part of the condensate as Poisson-Dirichlet, with
the catch that it is possibly trivial with α = 0.

1i.e. nwL(n)/
(
λnwL([λn])

)
→ C ∈ (0,∞) for all λ > 0 as n→∞
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Recall that in Theorem 1.4 we have fixed the density ρ > 0 and it provides a very
general result that also includes trivial cases without condensation. But we had to
assume the equivalence of ensembles in (A2) and regularity of the macroscopic phase
in (A4), which are not easy to check in general (if not established already for particular
models). Strengthening the requirements (A1) and (A3) on the stationary weights (wL)L,
we can use Theorem 1.4 to show a stronger but more specialized result, including the
equivalence of ensembles and regularity of the macroscopic phase in the conclusion.

Theorem 1.7. Assume (wL)L is a sequence of non-negative weights satisfying the
following two conditions:

(B1) (wL)L converges in the sup-norm, ‖ · ‖∞, to a sequence w such that

∞∑
n=0

w(n) = 1

and either w(0) = 1 or

w(0) > 0 and sup
n

[w(n− 1) ∧ w(n)] > 0 . (1.11)

(B2) There exists some θ ∈ (0, 1] such that

lim
J→∞

lim
L→∞

sup
n>J
|nwL(n)L− θ| = 0 .

Then the system exhibits a condensation transition according to Definition 1.1 with
critical density

ρc :=

∞∑
n=0

nw(n) ∈ [0,∞) .

Furthermore, we have bulk density νρ(ηx) = ρc for all ρ > ρc and

(µL,N )L,N
d→ PD[0,α](θ) , as N/L→ ρ > ρc ,

with α = α(ρ) = 1− ρc
ρ .

Remark 1.8. By assumption (B2), there exists an A ∈ N0 such that

lim
L→∞

sup
n>A
|nwL(n)L− θ| 6 C with an arbitrary constant C > 0 .

So for each n > A we have wL(n)→ 0 as L→∞, and hence by assumption (B1)

w(n) = 0 for all n > A , (1.12)

and the limiting distribution w can only have finite support. In this sense, Theorem 1.4
is more general because it allows for arbitrary limiting distributions of possibly infinite
support, at the cost of loosing control over intermediate scales. Recall (1.10) for an
example.

Clearly, the restriction in (B1) that w can be interpreted as a probability mass function
is for notational convenience, we could just assume summability. Furthermore, with θ > 0

all models covered by this result have a macroscopic phase with non-trivial structure,
excluding systems where the latter concentrates on a single site which have been studied
previously (see citations above). Condition (1.11) is necessary to avoid lattice effects
and establish the equivalence of ensembles for the bulk part of the distribution (see
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Proposition A.1). In the special case that w(0) = 1 there is a simpler proof of the
equivalence of ensembles result.

We want to stress that single-site-condensation in models is typically due to a strong
enough attraction between particles, whereas for systems covered in Theorem 1.7
particle attraction alone is too weak, and condensation only occurs in combination
with particle expulsion from the bulk as represented by condition (1.12) on the limiting
weights. This strict exclusion condition for occupation numbers larger than A in the
limiting weights prevents clustering of particles on sub-macroscopic scales. It should be
possible to weaken this, but some form of bulk exclusion is essential for condensation
with non-trivial macroscopic phase in models with stationary product measures. In
Section 5 we provide an intuitive explanation of this in terms of dynamics of generic
particle systems covered by our result.

1.3 Key steps of the proofs

The essential steps of the proof of Theorem 1.4 may be summarised as follows.
By compactness we know that (µL,N )L,N has weak accumulation points. In order to
determine the limit points’ distributions, we prove that (µL,N )L,N is approximately
reversible w.r.t. a discrete split-merge dynamics. These discrete dynamics converge
to the generator of the coagulation-fragmentation process with split-merge dynamics,
which we will introduce in Section 2, see (2.1). Lastly, we use size-biased sampling
together with a disintegration argument to prove that the corresponding limit points
concentrate and therefore have a Poisson-Dirichlet law. This is due to the fact that
the Poisson-Dirichlet distribution is the unique distribution which concentrates and is
reversible w.r.t. the limiting split-merge dynamics mentioned above [41, 36]. Here, we
say that µ concentrates if ‖p‖1 = α µ-a.s. for some α ∈ [0, 1].

Essentially, Theorem 1.7 is a direct application of Theorem 1.4. Additionally, the
stronger assumptions allow us to establish the equivalence of ensembles in Appendix A,
which in our case implies the condensation transition. The proof is based on the
application of a local central limit theorem (LCLT) which, together with a relative
entropy bound, shows convergence of single-site marginals to a distribution independent
of the particle density ρ > ρc.

The remainder of the paper will be structured as follows: in Section 2 we will give
a short review on Poisson-Dirichlet distributions and size-biased sampling. Section 3
will focus on the proof of Theorem 1.4 whereas in Section 4 we state the proof of
Theorem 1.7. Lastly, we discuss possible applications of Theorem 1.7 to a family of
zero-range and generalized inclusion processes in Section 5. In Appendix A we give a
brief introduction to grand-canonical ensembles before proving equivalence of ensembles
for size-dependent weights under a sub-exponential growth condition.

2 Background on partitions

2.1 The Poisson-Dirichlet distribution

The Poisson-Dirichlet (PD) distribution is a one-parameter family of probability mea-
sures on the space of ordered partitions ∇ = ∇[0,1] of the unit interval, where for any
α > 0 we denote

∇[0,α] :=
{
p = (pi)i ∈ [0, 1]N : ‖p‖1 = α and p1 > p2 > · · ·

}
.

Note that elements p in ∇ are not partitions themselves but induce partitions of the form
{[0, p1), [p1, p1 + p2), . . .}. The family of measures was first introduced by Kingman [31]
in the study of random distributions on countably infinite sets, motivated by Bayesian
inference and decision theory. Apart from the original construction as a limit of Dirichlet
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distributions, the PD distribution can be more intuitively constructed via a stick-breaking
procedure. Let U1, U2, . . . be independent Beta(1, θ)-distributed random variables and
define

V1 := U1 , V2 := (1− U1)U2 , V3 := (1− U1)(1− U2)U3 , . . . ,

i.e. we start with a stick of unit length and continue by breaking a random fraction
of U1 apart. Then we do the same with the remaining part of the stick and iterate.
The resulting random vector V = (Vi)i > 1 is said to be GEM(θ)-distributed, named
after Griffiths [23, 24] Engen [11] and McCloskey [34]. Reordering the entries of V in
decreasing order yields V̂ which is known to be PD(θ)-distributed (see e.g. [16]).

Note the two special cases, θ = 1 where the Ui’s are uniformly distributed on the
interval [0, 1], and θ = 0 where the Ui’s are degenerated point-measures on one and
hence V̂ = V = (1, 0, 0, . . .). Clearly, the choice of the interval [0, 1] is arbitrary and one
can construct PD and GEM distributions on intervals [0, α] for arbitrary α > 0 just by
rescaling

p ∼ PD[0,α](θ) ⇔ p/α := (p1/α, p2/α, . . .) ∼ PD[0,1](θ) ,

and analogously for GEM[0,α](θ). Since its introduction in [31] the PD distribution
emerged first in population biology [31, 12], before appearing in statistical mechanics
[32, 25, 27] and interacting particle systems [28]. In particular, the statistics of cycle
length distributions in spatial permutations can be linked to condensation phenomena
in quantum-mechanical models, see e.g. [21, 3, 4] and references therein. While those
models often involve weights that satisfy a decay condition similar to (A3), they consider
a different scaling limit with only one diverging parameter, and our results are not
directly applicable.

Besides its characterisation via the GEM-construction, the PD distribution was fur-
thermore found to be the unique invariant (in fact reversible) measure on ∇ of the
coagulation-fragmentation process with split-merge dynamics for θ ∈ (0, 1]. This is a
Markov process on the state space ∇ with infinitesimal generator given by

Gθf(p) =
∑
i 6=j

pipj

[
f(M̂ijp)− f(p)

]
+ θ

∑
i

p2
i

[∫ 1

0

f(Ŝui p)du− f(p)

]
. (2.1)

Here M̂ijp denotes the operator that merges the parts pi and pj to a single block of size
pi + pj and then reorders the partition to maintain the decreasing order. On the other

hand, Ŝui p defines the operation of splitting pi into two blocks of size upi and (1− u)pi
before reordering the resulting partition.

Proposition 2.1 ([41, 36]). For θ ∈ [0, 1], the Poisson-Dirichlet distribution PD(θ) is the
unique invariant measure on ∇ with respect to split-merge dynamics defined by Gθ, and
it is also reversible.

Since the generator in (2.1) conserves the total mass of partitions, it is clear that
there exist stationary distributions for split-merge dynamics on ∇[0,α] for all α > 0, which
are unique and equal to PD[0,α](θ) with the above result. In general, the set Cb(∇) of
bounded continuous functions is the natural domain for the (Feller) Markov semigroup
associated to split-merge dynamics. Under the product topology on ∇, cf. (1.3), these
include in particular bounded cylinder functions, which depend only on finitely many
entries of a partition, and for all such functions the generator (2.1) is well defined (see
also [33, Lemma 4]).

Originally, the split-merge process was constructed in discrete time, see [33], the
extension to continuous time can be found in [21, Section 7.4]. The uniqueness of the
invariant measure when θ = 1 was proven in [41] by Zerner, Zeitouni, Mayer-Wolf and
Diaconis. An alternative technique allowed Schramm to extend this result to θ ∈ (0, 1],
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see [36] and Theorem 7.1 in [21]. Lastly, consider the case θ = 0, then clearly δ(1,0,...)
is invariant because G0 only consists of the merge term and there cannot exist another
invariant measure on ∇.

2.2 Size-biased sampling

Partitions in ∇ can be interpreted as probability mass functions themselves, which
allows for a natural size-biased resampling of its elements. Given p = (pi)i∈N ∈ ∇ we
sample an index i ∈ N at random according to (pi)i∈N. Continuing this procedure, while
renormalising the remaining partition to a total mass of one in each round, we construct
a so-called size-biased sample p̃ of p. For given p ∈ ∇, p̃ is a random element of the
unordered set

∆ :=
{
p = (pi)i ∈ [0, 1]N : ‖p‖1 = 1

}
,

and we denote its distribution by σp. Of course p̃ can also be defined in the same way for
p ∈ ∆.

The above procedure can be generalised to partitions in the compact space

∆ :=
{
p = (pi)i ∈ [0, 1]N : ‖p‖1 6 1

}
,

which includes in particular ∇ =
⋃
α∈[0,1]∇[0,α] that we already introduced in (1.3). More

precisely, fix an element p ∈ ∆. In the following, q = p̃ will denote the size-biased sample
with distribution σp on ∆ which is defined recursively:

• the first entry of q is assigned the value2

q1 ←

{
pj w.p. pj for all j ∈ N ,
0 w.p. 1− ‖p‖1 ,

(2.2)

• for i > 1, let V be the set of indices of p assigned to qk for k < i, then

qi ←


pj w.p.

pj

1−
∑i−1
k=1 qk

for all j ∈ N \ V ,

0 w.p.
1− ‖p‖1

1−
∑i−1
k=1 qk

.

(2.3)

In the case where p consists of finitely many non-zero components only, we sample zeros
in each iteration after exhausting all non-zero components. In contrast to size-biased
sampling on ∆ with ‖p‖1 = 1, which is usually defined in terms of shuffling indices of the
original sequence, size-biased sampling of p ∈ ∆ assumes a non-exhaustive reservoir of
zeros from which we pick with probability proportional to 1− ‖p‖1 in each round. For
given p ∈ ∆, the distribution σp[dq] then denotes the law on ∆ of q defined above, and
concentrates on partitions with ‖q‖1 = ‖p‖1.

For an arbitrary probability measure µ ∈ M1(∇) we then define its size-biased
distribution σ(µ) as the law

σ(µ)[dq] :=

∫
∇
σp[dq]µ[dp] . (2.4)

2We refrain from using an equal sign instead of ‘←’, since this could lead to mathematically wrong statements.
For example, if p = ( 1

2
, 1
2
, 0, . . .) then q1 = 1

2
with probability 1

2
+ 1

2
= 1 which is reflected by our notation

in (2.2), but would read q1 = 1
2

with probability 1
2

when replacing ‘←’ with ‘=’. In a fully rigorous construction
of size-biased samples we actually sample the index j at random and not the value pj , see [18] for the full
construction and more details. Because our analysis does not differentiate between entries of the same size,
we omit this step to significantly simplify notation and assign the value pj directly.
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One interesting result regarding size-biased distributions with reservoirs of zeros, is that
weak convergence of measures on ∇ implies weak convergence of the corresponding
size-biased distributions.

Lemma 2.2. If a sequence (µn)n∈N of probability measures on ∇ converges weakly to a

measure µ, then also σ(µn)
d→ σ(µ) on ∆.

Originally this result was stated in [9, Theorem 1] with a flawed construction and
proof. A correct proof of the lemma can be found in [18, Theorem 1] along with a nice
exposition on size-biased sampling.

From the stick-breaking construction of the PD distribution it is easy to see (e.g. in
[16]) that the size-biased distribution of PD(θ) on ∇[0,1] is precisely the GEM(θ) distribu-
tion. Considering on the other hand PD[0,α](θ) on ∇[0,α], its size-biased distribution, as
defined in (2.2) and (2.3), contains 0-elements and does not coincide with GEM[0,α](θ)

whenever α < 1. However, this connection still holds for a modified (positive) size-biasing
p̃′ without 0-elements, defined again via scaling. For p ∈ ∆ \ {0} (i.e. we have ‖p‖1 > 0),
the positive size-biased sample is defined as

p̃′ := ‖p‖1q where q ∼ σp/‖p‖1 . (2.5)

Therefore the law of p̃′ on ∆ \ {0} is σ′p[dq] = σp/‖p‖1 ◦ 1
‖p‖1 [dq], the pushforward measure

under rescaling of the size-biasing σp/‖p‖1 on ∆, which does not contain any 0-elements.
As for σp, σ′p[dq] concentrates on partitions with ‖q‖1 = ‖p‖1, and for a distribution µ on

∆ we define σ′(µ) analogously to (2.4).
Note that σ(µ) = σ′(µ) onM1(∇) since ‖p‖1 = 1 µ-a.s., and in this case we will write

µ[p̃ ∈ ·] instead to ease notation. Furthermore, we can recover the finite dimensional
marginals of σ′(µ) from σ(µ) by ignoring zeros sampled w.r.t. the latter measure [18].
We will only use this fact for the first marginal and state its derivation for completeness:
for fixed p ∈ ∇ \ {0}

σp[q1 ∈ · | q1 > 0] =
σp[q1 ∈ · , q1 > 0]

σp[q1 > 0]
=

∞∑
j=1

pj1{pj > 0, pj ∈ · }
‖p‖1

(2.6)

=

∞∑
j=1

pj
‖p‖1

1{pj ∈ · } = σp/‖p‖1 [q1 ∈ ·
‖p‖1 ] = σ′p[q1 ∈ · ] ,

where we started with the definition of σp, cf. (2.2), and rewrote the conditional proba-
bility in terms of σ′p. The statement for general µ follows by averaging.

Returning to the case of the PD distribution µ ∼ PD[0,α](θ), we can retrieve the first
marginal of the corresponding GEM distribution on [0, α]:

σ′(µ)[q1 ∈ ·] = σ(µ) [q1 ∈ · | q1 > 0] = Beta[0,α](1, θ) .

Note also that for positive size-biased distributions the equivalent statement of Lemma
2.2 does not hold, because loss of mass of the corresponding sequences p ∼ µn may
occur. This would correspond to a positive probability of sampling a block size of zero in
the limit, which is precisely the case for distributions µL,N we study in this paper.

We will work with size-biased sampling not only on ∆ but also on ΩL,N , which
corresponds to uniformly picking a particle and sampling the occupation number on
its site. Using our definition from above (cf. [28, Section 2.3] for a more detailed
construction), the size-biased distribution of πL,N is given by

σ(πL,N )[dη] := σ(µL,N )
[
d
( η
N

)]
,
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where µL,N (1.5) is the distribution of the ordered partition corresponding to a particle
configuration η. Because µL,N ∈ M1(∇), we will write πL,N [η̃ ∈ ·] instead of σ(πL,N ),
and note that due to the product structure of (1.1) we have e.g. for the first marginal

πL,N [η̃1 = n] =
L

N
nwL(n)

ZL−1,N−n

ZL,N
for all n = 0, . . . , N . (2.7)

Here, we used the notation η̃ for the size-biased configuration, in the same manner as
for partitions on ∆.

3 Proof of Theorem 1.4

Recall the canonical distributions πL,N on ΩL,N given by

πL,N [dη] =
1

ZL,N

L∏
z=1

wL(ηz)dη

and their macroscopic counterparts µL,N on ∇ ⊂ ∇, see (1.5). The proof of Theorem 1.4
can be broken down into two main steps. We begin by showing that every accumulation
point of (µL,N )L,N is reversible with respect to the infinitesimal generator Gθ of the split-
merge process (2.1). The second step consists of proving that each limiting measure on
∇ in fact concentrates on ∇[0,α] for some α. Together with Proposition 2.1 this implies
that the limiting measure must be a Poisson-Dirichlet distribution on the interval [0, α].

3.1 Reversibility of weak accumulation points

The space ∇ of ordered (sub-)partitions is compact w.r.t. the product topology on
[0, 1]N, which implies compactness of the spaceM1(∇) w.r.t. the topology induced by
weak convergence. Therefore, every subsequence of (µL,N )L,N has a weakly convergent
subsequence and (µL,N )L,N has at least one accumulation point.

We prepare the proof of Theorem 1.4 which is given at the end of this Section by the
following intermediate result.

Proposition 3.1. Consider weights (wL)L satisfying assumptions (A1) – (A3) with θ > 0.
All weak accumulation points of (µL,N )L,N are reversible w.r.t. Gθ.

In the remainder of this subsection, we set the stage for the proof of the proposition,
which can be found after the statement of Lemma 3.4.

Because µL,N concentrates on discrete partitions and by Assumption (A3) we only
control the weights on the macroscopic scale, it will be convenient to consider a discrete
version G(N,ε)

θ : Cb(∇) → Cb(∇) of the split-merge process corresponding to Gθ (2.1),
which only acts on the parts of the partition exceeding a fixed size of ε ∈ (0, 1),

G(N,ε)
θ f(p) :=

N

N − 1

∑
i 6=j

pipj1{pi, pj > ε}
[
f(M̂ijp)− f(p)

]

+
θ

N − 1

∑
i

pi1{pi > 2ε}
N(pi−ε)∑
k=εN

[
f(Ŝ

k
Npi
i p)− f(p)

]
.

As we will see Lemma 3.3, it suffices to control the weights on macroscopic scales larger
than ε in order to observe a PD limit.

Recall that under µL,N partitions consist of (at most) L blocks. Since we will lift
the split-merge dynamics to the space of particle configurations ΩL,N , the resulting
partitions should not exceed length L either. However, a priori it is not clear that there
is always an empty site to split on and the split-merge dynamics have to be slightly
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adapted to achieve this: recall from (1.8) that without loss of generality we can assume
that νρ[ηx = n] = w(n). Thus, Assumption (A2) guarantees that there exists m ∈ N
such that w(m) = limL→∞ wL(m) > 0. This implies that under µL,N a positive fraction
of blocks has size m/N , see Lemma 3.2 below. Hence, instead of leaving empty sites
behind when merging, and splitting onto empty sites only, we can impose to leave
a fraction of m/N behind when merging and only split onto blocks of size m/N , cf.
Figure 1. This will not affect the statistics on a macroscopic scale, where microscopic
blocks are indistinguishable; which is why henceforward we assume m = 0 for notational
convenience.

i j

i j i j

S
1/3
i

Mij

Figure 1: For example, consider the case m = 1 where limL→∞ wL(0) = w(0) = 0

but w(1) > 0. Configuration η ∼ πL,N will not include any empty sites with high
probability. Thus, when splitting we instead impose to split onto sites with single-
occupation. Similarly, we leave a single particle behind when merging occupations of
two sites. Here, Si and Mij denote the corresponding split- and merge-operations on
configurations; we ignored the subsequent order-operation ·̂ for the sake of a clearer
picture.

Lemma 3.2. Let #0(η) be the number of sites with zero occupation in the configuration
η. We have that

πL,N

((
#0(η)

L
− w(0)

)2
)
→ 0 , as N/L→ ρ .

In particular, we have a weak law of large numbers and for every ε > 0

πL,N

[∣∣∣∣#0(η)

L
− w(0)

∣∣∣∣ > ε

]
→ 0 , as N/L→ ρ .

Proof. By direct calculation of the second moment, it suffices to show that (using the
product structure of πL,N )

πL,N [ηx = 0, ηy = 0] = πL−1,N [ηx = 0]πL,N [ηy = 0]

converges to w(0)2 for all 1 6 x, y 6 L, x 6= y, which holds due to (A2). The second
statement follows immediately by Chebyshev’s inequality.

The operator G(N,ε)
θ approximates the corresponding continuous process acting on
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blocks of size larger than ε, which is characterised by the generator

G(ε)
θ f(p) :=

∞∑
i,j=1
i6=j

pipj1{pi, pj > ε}
[
f(M̂ijp)− f(p)

]

+ θ

∞∑
i=1

p2
i1{pi > 2ε}

[∫ 1−ε

ε

f(Ŝui p)du− f(p)

]
.

We summarise the corresponding convergence behaviour of the generators in the follow-
ing lemma:

Lemma 3.3. We have

G(N,ε)
θ → G(ε)

θ , as N →∞ , and G(ε)
θ → Gθ , as ε→ 0 ,

in the strong operator topology on bounded continuous functions Cb(∇).

Proof. Let g ∈ Cb(∇). To prove the first part of the statement, we need to show that

‖(G(N,ε)
θ − G(ε)

θ )g‖∞ vanishes in the limit N →∞. We will compare the two parts of each
operator separately. We start with the merge term:∣∣∣∣∣∣

L∑
i 6=j

pipj1{pi, pj > ε}
[
g(M̂ijp)− g(p)

]

− N

N − 1

L∑
i6=j

pipj1{pi, pj > ε}
[
g(M̂ijp)− g(p)

]∣∣∣∣∣∣
6

2‖g‖∞
N − 1

L∑
i 6=j

pipj1{pi, pj > ε} 6
2‖g‖∞
N − 1

.

And similarly for the split term:∣∣∣∣∣
L∑
i=1

p2
i1{pi > 2ε}

[∫ 1−ε

ε

g(Ŝui p)du− g(p)

]

− 1

N − 1

L∑
i=1

pi1{pi > 2ε}
N(pi−ε)∑
k=εN

[
g(Ŝ

k
Npi
i p)− g(p)

]∣∣∣∣∣∣
6

L∑
i=1

p2
i

∣∣∣∣∣∣
∫ 1−ε

ε

g(Ŝui p)du−
1

(N − 1)pi

N(pi−ε)∑
k=εN

g(Ŝ
k
Npi
i p)

∣∣∣∣∣∣+
‖g‖∞
N − 1

L∑
i=1

pi(1− pi)

6 max
i

ω(g(Ŝ•i p),
1
Npi

) +
‖g‖∞
N − 1

,

where ω is the modulus of continuity of the function u 7→ g(Ŝui p). The last inequality
holds since the sum inside the absolute value approximates the Riemann-sum which
in turn converges to the corresponding integral, where the error is controlled by the
modulus of continuity. By [27, Lemma 1], we know that

‖Ŝui p− Ŝvi p‖1 6 2|u− v|pi ,

which in particular implies

ω(Ŝ•i p,
1
Npi

) = sup
u,v∈[0,1]

|u−v| 6 (Npi)
−1

‖Ŝui p− Ŝvi p‖2 6 sup
u,v∈[0,1]

|u−v| 6 (Npi)
−1

‖Ŝui p− Ŝvi p‖
1/2
1 6

√
2√
N
.
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This allows us to uniformly bound the moduli of continuity above, in the sense that

ω(g(Ŝ•i p),
1
Npi

) = sup
|u−v| 6 1

Npi

∣∣g(Ŝui p)− g(Ŝvi p)
∣∣

6 sup
‖p′−q′‖2 6 ω(Ŝ•i p,

1
Npi

)

∣∣g(p′)− g(q′)
∣∣ = ω

(
g, ω(Ŝ•i p,

1
Npi

)
)

6 ω(g,
√

2√
N

) , (3.1)

where ω(g, ·) denotes the modulus of continuity w.r.t. g on (∇, ‖ · ‖2). The r.h.s. of (3.1)
vanishes due to uniform continuity of g. Here we used that the topology on ∇ induced by
‖ · ‖2 coincides with the product topology.

Since the sum of the first estimate and second estimate multiplied by θ bounds
‖(G(N,ε)

θ −G(ε)
θ )g‖∞ from above, we take the thermodynamic limit N/L→ ρ and conclude

the first part of the lemma.
The second statement requires us to show that ‖(Gθ − G(ε)

θ )g‖∞ → 0 as ε→ 0. First,
note that

(Gθ − G(ε)
θ )g(p) =

∞∑
i,j=1
i6=j

pipj1{pi < ε} ∪ {pj < ε}
[
g(M̂ijp)− g(p)

]

+ θ

∞∑
i=1

p2
i

[∫ 1

0

g(Ŝui p)du− g(p)

]

− θ
∞∑
i=1

p2
i1{pi > 2ε}

[∫ 1−ε

ε

g(Ŝui p)du− g(p)

]

=

∞∑
i,j=1
i 6=j

pipj1{pi < ε} ∪ {pj < ε}
[
g(M̂ijp)− g(p)

]

+ θ

∞∑
i=1

p2
i1{pi < 2ε}

[∫ 1

0

g(Ŝui p)du− g(p)

]

+ θ

∞∑
i=1

p2
i1{pi > 2ε}

[∫ 1

0

g(Ŝui p)du−
∫ 1−ε

ε

g(Ŝui p)du

]
.

The first two terms vanish by dominated convergence and for the last term we have the
estimate∣∣∣∣∣

∞∑
i=1

p2
i1{pi > 2ε}

[∫ 1

0

g(Ŝui p)du−
∫ 1−ε

ε

g(Ŝui p)du

]∣∣∣∣∣ 6 2ε‖g‖∞
∞∑
i=1

p2
i 6 2ε‖g‖∞ .

This concludes the proof.

The proof of Proposition 3.1, requires the following key observation which states that
µL,N is approximately reversible w.r.t. the dynamics corresponding to G(N,ε)

θ .

Lemma 3.4. For every f, g ∈ Cb(∇) and ε ∈ (0, 1) we have∣∣∣µL,N (f G(N,ε)
θ g)− µL,N (g G(N,ε)

θ f)
∣∣∣→ 0 , (3.2)

in the thermodynamic limit N/L→ ρ > 0.

We postpone the proof of Lemma 3.4 until after the one of Proposition 3.1. Now we
have everything to state the proof of this section’s main finding.
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Proof of Proposition 3.1: Due to compactness of the space M1(∇) w.r.t. the topology
induced by weak convergence, the sequence (µL,N ) has weak accumulation points. Let
µ be such an accumulation point and (µLj ,Nj )j a subsequence converging to it. Then for
each ε ∈ (0, 1) we have

|µ(fGθg)− µ(gGθf)| 6
∣∣∣µ(fGθg)− µLj ,Nj (fG

(Nj ,ε)
θ g)

∣∣∣
+
∣∣∣µLj ,Nj (fG(Nj ,ε)

θ g)− µLj ,Nj (gG
(Nj ,ε)
θ f)

∣∣∣
+
∣∣∣µLj ,Nj (gG(Nj ,ε)

θ f)− µ(gGθf)
∣∣∣ .

The middle term on the r.h.s. vanishes due to Lemma 3.4, whereas the first term can be
estimated by∣∣∣µ(fGθg)− µLj ,Nj (fG

(Nj ,ε)
θ g)

∣∣∣ 6
∣∣µ(fGθg)− µLj ,Nj (fGθg)

∣∣
+
∣∣∣µLj ,Nj (fGθg)− µLj ,Nj (fG

(Nj ,ε)
θ g)

∣∣∣ . (3.3)

Since (µLj ,Nj )j converges in distribution to µ and Gθg is bounded and continuous, see
[33, Lemma 4], the first term on the r.h.s. of (3.3) vanishes as L diverges. Also, by
Lemma 3.3, the second term on the right vanishes after taking the limit L,N →∞ before
ε→ 0, since ∣∣∣µLj ,Nj (f(Gθ − G

(Nj ,ε)
θ )g)

∣∣∣ 6 ‖f‖∞‖(Gθ − G
(Nj ,ε)
θ )g‖∞ .

The same steps hold when applied to
∣∣∣µLj ,Nj (gG(Nj ,ε)

θ f)− µ(gGθf)
∣∣∣. Overall, this

yields µ(fGθg) = µ(gGθf) which finishes the proof.

It only remains to state the proof of Lemma 3.4.

Proof of Lemma 3.4: First, we note that we can write µL,N (fG(N,ε)g) in terms of the
canonical distribution πL,N :

N(N − 1)µL,N (fG(N,ε)g) (3.4)

=
∑

η∈ΩL,N

f

(
η̂

N

) L∑
i 6=j

η̂iη̂j1{η̂i, η̂j > εN}
[
g

(
M̂ij

(
η̂

N

))
− g

(
η̂

N

)]
πL,N (η)

+ θ
∑

η∈ΩL,N

f

(
η̂

N

) L∑
i=1

η̂i1{η̂i > 2εN}
η̂i−εN∑
k=εN

[
g

(
Ŝ
k/η̂i
i

(
η̂

N

))
− g

(
η̂

N

)]
πL,N (η) ,

where we multiplied with N(N − 1) for convenience.
In the following it will be easier not to work with discrete partitions, but with corre-

sponding particle configurations without worrying about the order of the corresponding
sites. Hence, we require a new notation to lift split and merge operations to the space of
particle configurations: for η ∈ ΩL,N we define

Mxyη := η + ηy(e(x) − e(y)) ,

Skxyη := η + k(e(y) − e(x)) ,

Skxη := η + k(e(L+1) − e(x)) ,

where e(x) ∈ ΩL,1 denotes the configuration with a single particle at site x, i.e. (e(x))z =

δx,z. The operator Skx is only necessary for the case of a full particle configuration η, i.e.
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#0(η) = 0. Then, we simply append the additional block of particles at the end of the
configuration, which then has length (L + 1). This arbitrary but convenient choice of
course does not change the projection of the dynamics on the level of partitions. As such
we can rewrite (3.4) as

N(N − 1)µL,N (fG(N,ε)g) = πL,N

f̂ (η)

L∑
x 6=y

ηxηy1{ηx, ηy > εN} [ĝ (Mxyη)− ĝ (η)]


+ θ πL,N

(
1{#0(η) > 0}f̂ (η)

L∑
x=1

ηx1{ηx > 2εN}

×
ηx−εN∑
k=εN

L∑
y=1

1{ηy = 0}
#0(η)

[
ĝ
(
Skxyη

)
− ĝ (η)

])
(3.5)

+ θ πL,N

(
1{#0(η) = 0}f̂ (η)

L∑
x=1

ηx1{ηx > 2εN}

×
ηx−εN∑
k=εN

[
ĝ
(
Skxη

)
− ĝ (η)

])
,

where f̂ := f ◦ T and ĝ := g ◦ T with the ordering map T given in (1.4). Furthermore,
we can see that the terms that depend on f̂ and ĝ only through the product f̂(η)ĝ(η)

cancel when taking the difference between µL,N (fG(N,ε)g) and µL,N (gG(N,ε)f) in (3.2).
Additionally, the very last term in (3.5) is negligible since, using (ηx − 1)/(N − 1) 6 1

and
∑L
x=1 ηx/N = 1 πL,N -almost surely, we have

1

N(N − 1)
πL,N

(
1{#0(η) = 0}

L∑
x=1

ηx(ηx − 1)

)
6 πL,N [#0(η) = 0] ,

which vanishes due to Lemma 3.2 because w(0) > 0.
To simplify notation we introduce

V
(L,N,ε)
f,g := πL,N

f̂ (η)

L∑
x 6=y

ηxηy1{ηx, ηy > εN}ĝ (Mxyη)

 (3.6)

and

U
(L,N,ε)
f,g := θ πL,N

(
1{#0(η) > 0}f̂ (η)

L∑
x=1

ηx1{ηx > 2εN}

×
ηx−εN∑
k=εN

L∑
y=1

1{ηy = 0}
#0(η)

ĝ
(
Skxyη

))
. (3.7)

We are then left to analyse

N(N − 1)(µL,N (fG(N,ε)g)− µL,N (gG(N,ε)f))

= V
(L,N,ε)
f,g + U

(L,N,ε)
f,g − V (L,N,ε)

g,f − U (L,N,ε)
g,f + o(N2) .

The goal is to compare V (L,N,ε)
f,g −U (L,N,ε)

g,f and U (L,N,ε)
f,g − V (L,N,ε)

g,f , respectively, and show
that these differences vanish in the limit if divided by N(N − 1). In order to prove this,
we perform a change of measure, since both V (L,N,ε) and U (L,N,ε) are expectations with
respect to πL,N .
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First, we note that the restriction of the merge map

Mxy

∣∣∣
{ηy=k}

: ΩL,N ∩ {ηy = k} → ΩL,N

is injective and therefore defines a bijection between the set ΩL,N ∩ {ηy = k} and its
image Mxy(ΩL,N ∩ {ηy = k}) = ΩL,N ∩ {ηy = 0, k 6 ηx} with inverse Skxy. Therefore, the
change of measure of πL,N and its pushforward measure under Mxy for fixed x, y, k on
the set ΩL,N ∩ {ηy = k} is given by:

πL,N
πL,N ◦Mxy

[η] =

∏L
z=1 wL(ηz)∏L

z=1 wL((Mxyη)z)
=
wL((Mxyη)x − k)wL(k)

wL((Mxyη)x)wL(0)
. (3.8)

This will allow us to perform a change of measure in the following sense. Fix x, y and
k, furthermore let hy,k be a real valued function on ΩL,N with support in {ηy = k}. By

definition of Mxy, we can define h̃x,y,k = hy,k ◦M−1
xy which is zero outside of ΩL,N ∩{ηy =

0, k 6 ηx}. We then have

πL,N (hy,k(η)) = πL,N (h̃x,y,k(Mxyη)) =

∫
{ηy=k}

h̃x,y,k(Mxyη) πL,N [dη]

=

∫
{ξy=0,k 6 ξx}

h̃x,y,k(ξ) πL,N ◦M−1
xy [dξ]

=

∫
{ξy=0,k 6 ξx}

h̃x,y,k(ξ)
wL(ξx − k)wL(k)

wL(ξx)wL(0)
πL,N [dξ] .

Before we apply the change of measure, we divide and multiply by (Mxyη)x, decompose
over {ηy = k}, and interchange the order of integration:

V
(L,N,ε)
f,g =

L∑
x 6=y

N∑
k=1

πL,N

(
(Mxyη)xf̂ (η) ĝ (Mxyη)

ηxηy
(Mxyη)x

1{k, ηx > εN}

× 1{ηy = k}1{(Mxyη)y = 0}
)

=

L∑
x 6=y

N∑
k=1

πL,N

(
(Mxyη)xf̂

(
SkxyMxyη

)
ĝ (Mxyη)

((Mxyη)x − k)k

(Mxyη)x
1{k > εN}

× 1{k 6 (Mxyη)x − εN}1{(SkxyMxyη)y = k}1{(Mxyη)y = 0}
)
,

where in the last step we expressed η in terms of Mxyη. Recall now (3.8) and note that
we can recover η from Mxyη and k = ηy. Therefore, the change of measure yields

V
(L,N,ε)
f,g =

L∑
x 6=y

N∑
k=1

πL,N

(
1{#0(η) > 0}ηxf̂

(
Skxyη

)
ĝ (η)

(ηx − k)k

ηx

wL(ηx − k)wL(k)

wL(ηx)wL(0)
.

× 1{k 6 ηx − εN}1{k > εN}1{(Skxyη)y = k}1{ηy = 0}
)

= πL,N

(
1{#0(η) > 0}ĝ (η)

L∑
x=1

ηx1{ηx > 2εN}
ηx−εN∑
k=εN

L∑
y=1

1{ηy = 0}
#0(η)

× f̂
(
Skxyη

)
#0(η)

(ηx − k)k

ηx

wL(ηx − k)wL(k)

wL(ηx)wL(0)

)
.
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Comparing now V
(L,N,ε)
f,g to U (L,N,ε)

g,f in (3.7), the only discrepancy is the term

#0(η)
(ηx − k)k

ηx

wL(ηx − k)wL(k)

wL(ηx)wL(0)
=

#0(η)

L

k wL(k)L

wL(0)

(ηx − k)wL(ηx − k)

ηx wL(ηx)
. (3.9)

First, note that by Assumption (A3)

k wL(k)L
(ηx − k)wL(ηx − k)

ηxwL(ηx)
→ θ , as L→∞ , (3.10)

uniformly in k and η, since εN 6 k, ηx − k, ηx. Therefore, we have∣∣∣µL,N (fG(N,ε)g)− µL,N (gG(N,ε)f)
∣∣∣

=
1

N(N − 1)

∣∣∣(V (L,N,ε)
f,g − U (L,N,ε)

g,f

)
+
(
U

(L,N,ε)
f,g − V (L,N,ε)

g,f

)∣∣∣+ o(1)

6
2‖f‖∞‖g‖∞θ
N(N − 1)

πL,N

(
L∑
x=1

ηx

ηx−εN∑
k=εN

∣∣∣∣#0(η)

L

1

wL(0)
− 1

∣∣∣∣
)

+ o(1)

6 2‖f‖∞‖g‖∞θ πL,N
(∣∣∣∣#0(η)

L

1

wL(0)
− 1

∣∣∣∣)+ o(1) ,

where we used (3.10) before dropping all indicator functions in the first inequality. Lastly,
by Lemma 3.2 and Assumption (A1) we know that

lim
N/L→ρ

πL,N

(∣∣∣∣#0(η)

L

1

wL(0)
− 1

∣∣∣∣) = 0 ,

which completes the proof.

3.2 Concentration and uniqueness of the limit

As already mentioned in the introduction, the only invariant distribution w.r.t. Gθ
which concentrates on full partitions ∇[0,α], for some α ∈ [0, 1], is the Poisson-Dirichlet
distribution PD[0,α](θ). Hence, in order to prove that weak accumulation points of
measures (µL,N )L,N coincide, it is enough to show that each such weak limit µ from
Proposition 3.1 satisfies

Varµ

( ∞∑
i=1

pi

)
= 0

and there exists αµ ∈ [0, 1] such that µ (
∑∞
i=1 pi) = αµ for every limit µ.

In the following we consider not only the `1-norm but also the `2-norm as a function
on ∇ and write

‖p‖1 =

∞∑
i=1

pi and ‖p‖22 =

∞∑
i=1

|pi|2 ,

respectively. Note that the latter has the advantage, in contrast to ‖ · ‖1, of being a
continuous function on ∇ with respect to the product topology.

First, we recall the first part of Lemma 5 in [33] where Mayer-Wolf et al. proved the
following relationship between µ(‖p‖21) and µ(‖p‖22), which is a natural consequence of
the balance between expected split and merge rates for the stationary distribution µ.

Lemma 3.5 (Mayer-Wolf et al.). Let θ ∈ (0, 1] and let µ ∈ M1(∇) be invariant w.r.t. Gθ,
then

µ(‖p‖21) = (1 + θ)µ(‖p‖22) .

Together with its counterpart in the following lemma, this immediately proves that
each subsequential limit of (µL,N )L,N concentrates on some ∇[0,αµ].
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Lemma 3.6. Let θ ∈ (0, 1] and let µ ∈ M1(∇) be an accumulation point of (µL,N )L,N .
Then

µ(‖p‖1)2 = (1 + θ)µ(‖p‖22) .

Proof. Since the statement is trivial for µ = δ(0,0,...), we assume without loss of generality
µ 6= δ(0,0,...). Let (µLj ,Nj )j∈N be a sequence converging weakly to µ. For such µ we first
note that

µ(‖p‖22) = lim
j→∞

µLj ,Nj (‖p‖22) = lim
j→∞

Lj
N2
j

πLj ,Nj (η
2
1) , (3.11)

since µLj ,Nj converges weakly to µ. Rewriting the r.h.s. as size-biased expectation,
cf. (2.7), yields in particular

µ(‖p‖22) = lim
j→∞

1

Nj
πLj ,Nj (η̃1) = lim

j→∞
µLj ,Nj (p̃1) = lim

j→∞
σ(µLj ,Nj )(q1) . (3.12)

In the second to last step we used that the size-biased distribution is invariant under
reordering of the configuration. Furthermore, weak convergence of µLj ,Nj implies weak
convergence of the size biased distributions by Lemma 2.2, i.e.

σ(µLj ,Nj )→ σ(µ)

in the topology induced by weak convergence. Recall that under σ(µ), the first component
in q is zero with probability

σ(µ)[q1 = 0] = µ(1− ‖p‖1) . (3.13)

Since the projection map on the first component is continuous w.r.t. the product
topology, we have σ(µL,N )(q1)→ σ(µ)(q1) which yields with (3.12) and (2.6)

µ(‖p‖22) = σ(µ)(q1) = σ(µ)(q1 | q1 > 0)σ(µ)[q1 > 0] = σ′(µ)(q1)µ(‖p‖1) , (3.14)

where σ′(µ)[q1 ∈ ·] is the size-biased distribution conditioned on positive components
defined. Now, using (2.5) and disintegration of measures we write

σ′(µ)(q1) =

∫
∇
‖p‖1

∫
∇
q1 σp/‖p‖1 [dq]µ[dp]

=

∫ 1

0

ᾱ

∫
∇

∫
∇
q1 σp/‖p‖1 [dq]µ(ᾱ)[dp]µ[‖p‖1 ∈ dᾱ] ,

where µ(ᾱ) = µ[ · |‖p‖1 = ᾱ] denotes the measure µ conditioned on ∇[0,ᾱ], which is well
defined almost surely w.r.t. µ[‖p‖1 ∈ dᾱ]. Since Gθ (2.1) conserves ‖p‖1, µ(ᾱ) is also
invariant for Gθ and thus equal to PD[0,ᾱ](θ) by Proposition 2.1. Hence, σ(µ(ᾱ))[dq] =∫
∇ σp/‖p‖1 [dq]µ(ᾱ)[dp], as in (2.4), is the GEM distribution and therefore∫

∇

∫
∇
q1 σp/‖p‖1 [dq]µ(ᾱ)[dp] =

1

1 + θ
, for a.e. ᾱ ∈ (0, 1] .

Thus,

σ′(µ)(q1) =
1

1 + θ

∫ 1

0

ᾱ µ[‖p‖1 ∈ dᾱ] =
1

1 + θ
µ(‖p‖1)

which, with (3.14), yields

µ(‖p‖22) =
1

1 + θ
µ(‖p‖1)2 ,

and concludes the proof.
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Remark 3.7. It is interesting to note that Lemma 3.6 holds in greater generality, because
all k-norms are continuous whenever k > 1. We have

αkµ = µ(‖p‖1)k =
1

(k − 1)!

k−1∏
j=1

(j + θ)

µ(‖p‖kk) for all k > 1 .

This can be proven in exactly the same way as Lemma 3.6, with the only difference that
we replace µ(‖p‖22) with µ(‖p‖kk) when k > 1. The case k = 1 is trivial.

Lemmas 3.5 and 3.6 imply µ(‖p‖21) = µ(‖p‖1)2, which is equivalent to

Varµ(‖p‖1) = µ(‖p‖21)− µ(‖p‖1)2 = 0 . (3.15)

Therefore, accumulation points µ concentrate on ∇[0,αµ] with αµ := µ(‖p‖1). To conclude
the proof of Theorem 1.4, it is left to show that αµ is independent of the choice of µ if
assumption (A4) is satisfied.

Proof of Theorem 1.4. Let θ ∈ (0, 1]. By Proposition 3.1, we know that under Assump-
tions (A1) – (A3) all weak accumulation points of (µL,N )L,N are reversible w.r.t. Gθ.
Furthermore, every such limit µ of a subsequence (µLj ,Nj )j > 1 concentrates on ∇[0,αµ]

for some αµ ∈ [0, 1] as follows from (3.15). Thus, Proposition 2.1 implies that µ must
be the Poisson-Dirichlet distribution on [0, αµ] with parameter θ, which proves the first
statement.

The only control we have on αµ from (A1) – (A3) is that

αµ 6 1− νρ(η1)

ρ
, where νρ(η1) =

∞∑
n=0

nw(n)

is the expected density in the bulk. However, Assumption (A4) together with Lemma 3.6
implies uniqueness of the limit, since for every accumulation point µ we have

µ(‖p‖1) =
√

(1 + θ)µ(‖p‖22) =

√
1 + θ

ρ
lim

N/L→ρ

πL,N (η2
x)

N
= α , (3.16)

where we used the identity (3.11) in the second equality. This implies the second
statement and concludes the proof of the theorem.

4 Proof of Theorem 1.7

In this section we prove Theorem 1.7, a specialized version of Theorem 1.4 which
is better suited for application to condensation in particle systems. In contrast to
assumptions (A1) – (A3), we require uniform convergence of the weights as well as
stronger control on the weights in sub-L scales in (B2). However, this allows us to drop
assumption (A4) that was needed to guarantee the concentration of the macroscopic
phase in Theorem 1.4. Thanks to the stronger assumptions, we can explicitly calculate
the form of limiting single-site marginals, which will imply the equivalance of ensembles
(A2) and the condensation transition.

In Appendix A we prove the equivalence of ensembles and deduce that the system
defined by weights (wL)L satisfying (B1) (and a growth condition on the weights which
is weaker than (B2)) exhibits condensation for ρ large enough. We summarize this result
here, a more general and detailed version is given in Proposition A.1.

Proposition 4.1 (Equivalence of ensembles). Consider weights (wL)L and w satisfying
(B1), (B2) with corresponding canonical measures (πL,N )L,N as defined in (1.1). Then
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the system exhibits a condensation transition in the thermodynamic limit N/L→ ρ > 0

(cf. Definition 1.1) with critical density ρc :=
∑∞
n=1 nw(n). More precisely, we have

convergence of single-site marginals πL,N [ηx ∈ ·]→ νρ such that

νρ(ηx) =

{
ρ if ρ < ρc ,

ρc if ρ > ρc .
(4.1)

and νρ = w for ρ > ρc.

This establishes existence of the condensed phase for ρ > ρc, and the following
result guarantees that it agrees with the macroscopic phase, and there is no mass on
intermediate scales.

Proposition 4.2. Consider weights (wL)L and w satisfying (B1) and (B2) with corre-
sponding canonical measures (πL,N )L,N . Then, for every ρ > ρc

lim
ε→0

lim
N/L→ρ

πL,N [η̃1 > εN ] = 1− ρc
ρ
.

Proof. We fix a density ρ > ρc. Now, by definition of the first size-biased marginal,
cf. (2.7), we have for every ε ∈ (0, 1]

πL,N [J < η̃1 6 εN ] =
L

N

εN∑
n=J+1

nwL(n)
ZL−1,N−n

ZL−1,N
,

for N large enough. By Assumption (B2), there exists a sufficiently large J = J(ε) such
that

lim
L→∞

sup
n > J

|nwL(n)L− θ| < ε .

On the other hand, applying Lemma 4.3 below yields

lim sup
N/L→ρ

sup
J<n 6 εN

ZL−1,N−n

ZL−1,N
6
(

1− ε
1−ρc/ρ

)−1

.

Altogether,

lim
N/L→ρ

πL,N [J < η̃1 6 εN ] 6 ε (θ + ε)
(

1− ε
1−ρc/ρ

)−1

,

which vanishes as we take the limit ε→ 0. This completes the proof, since

lim
N/L→ρ

πL,N [η̃1 6 J ] = lim
N/L→ρ

L

N

J∑
n=0

nπL,N [η1 = n] =
ρc
ρ
,

which is a direct implication of Proposition 4.1.

We now prove the key estimate used in Proposition 4.2, which guarantees that the
ratio of partition functions ZL−1,N−n/ZL,N does not blow up for n = o(N).

Lemma 4.3. Assume that (B1) and (B2) are both satisfied. Then we have

lim sup
N/L→ρ

ZL−1,(1−κ)N

ZL,N
6
(

1− κ
1−ρc/ρ

)−1

,

for every κ = κ(L) = O(1) such that κ 6 1− ρc
ρ , where κ := lim supL→∞ κ(L).
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Proof. Fix ε ∈ (0, 1), by (B2) and Remark 1.8 there exists J ∈ N0 such that

mwL(m)

nwL(n)
> 1− ε for all m,n > J , (4.2)

for all L sufficiently large (depending on J and ε). Let K = dκNe, by definition of the
canonical measures we have

πL,N (η1 ; η1 > J) > πL,N (η1 ; η1 > J +K) =

N∑
n>J+K

nwL(n)
ZL−1,N−n

ZL,N

=

N−K∑
n>J

(n+K)wL(n+K)
ZL−1,N−K−n

ZL,N

>
(
1− ε

)N−K∑
n>J

nwL(n)
ZL−1,N−K−n

ZL,N
,

where the last inequality follows from (4.2). The sums above are all non-empty because
N −K > J for L,N sufficiently large since κ < 1. Multiplying and dividing by ZL,N−K
we have

πL,N (η1 ; η1 > J) >
(
1− ε

)ZL,N−K
ZL,N

πL,N−K(η1 ; η1 > J) . (4.3)

By equivalence of ensembles (Proposition 4.1), in the thermodynamic limit N/L→ ρ >
ρc the single site marginals of πL,N converge weakly to νρ which has mean ρc, so

πL,N (η1 ; η1 > J) =
N

L
− πL,N (η1 ; η1 6 J)→ ρ− ρJ , as N/L→ ρ ,

where ρJ is given by νρ(η1 ; η1 6 J). Furthermore, by dominated convergence, ρJ → ρc
as J →∞. Now taking the thermodynamic limit in (4.3), followed by the limit J →∞,
we have

lim sup
N/L→ρ

ZL,(1−κ)N

ZL,N
6

ρ− ρc
(1− κ)ρ− ρc

1

1− ε
.

From the equivalence of ensembles in Proposition 4.1, and the identity πL,N [η1 = 0] =

wL(0)ZL−1,N/ZL,N , we observe that limN/L→ρ ZL−1,N/ZL,N = 1, which completes the
proof, since we can choose ε arbitrarily small after taking J →∞.

We are now ready to state the full proof of Theorem 1.7 which follows by putting
together the statements of Theorem 1.4, Proposition 4.1 and Proposition 4.2.

Proof of Theorem 1.7. The equivalence of ensembles implies the condensation transition
with critical density ρc, and with its formulation in Proposition A.1, also Assumption
(A2) is satisfied. Next, we recover assumptions (A1), (A3) and (A4) for a fixed choice of
ρ > ρc. Clearly, (A1) is a direct implication of (B1), also (A3) follows immediately from
(B2). This already yields that the subsequential limits of the corresponding measures
µL,N are Poisson-Dirichlet distributions. It is only left to show that the macroscopic
phase is non-trivial and indeed agrees with the condensed phase. Recall from (3.13) that

µ(‖p‖1) = σ(µ)[q1 > 0] = lim
ε→0

σ(µ)[q1 > ε]
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and, as ε→ 0,

σ(µ)[q1 > ε] = lim
N/L→ρ

µL,N [p̃1 > ε]

= lim
N/L→ρ

πL,N [η̃1 > εN ]→ 1− ρc
ρ
,

which follows from Proposition 4.2. Hence, with (3.16) we conclude (A4) with α =

µ(‖p‖1) = 1− ρc
ρ . Altogether, we verified (A1) – (A4) and so can apply Theorem 1.4.

5 Application to interacting particle systems and conclusion

As mentioned in the introduction, condensation transitions occur naturally and have
been studied extensively for interacting particle systems, more precisely for stochastic
lattice gases which model transport phenomena and conserve the number of particles.
A large class of such models with state space ΩL,N has been introduced in [7] with
infinitesimal generator of the form

L(L)f(η) =

L∑
x,y=1

p(x, y)u(ηx, ηy) [f(ηxy)− f(η)] , (5.1)

where f ∈ Cb(ΩL,N ). Whenever ηx > 0, ηxy denotes the configuration η − e(x) + e(y)

where one particle moved from site x to site y. Recall that e(x)
z = δx,z. The jump rate

u(n,m) > 0 is a non-negative function of the occupation numbers n on the departure
and m on the target site of a particle jump, and to avoid degeneracies we assume that
u(n,m) = 0 if and only if n = 0. p(x, y) denotes an irreducible probability kernel on
{1, . . . , L} and models the geometry of the underlying lattice. Systems have been studied,
e.g. on regular lattices in various dimensions and with different boundary conditions,
here we assume that the system is closed and conserves the total number of particles∑L
x=1 ηx.
For any fixed number of particles N ∈ N, the operator L(L) defines an irreducible,

continuous-time Markov process on the finite state space ΩL,N , which therefore has a
unique invariant distribution πL,N . It has been established in [7, 15] that this distribution
is indeed of product form and spatially homogeneous, cf. (1.1), under the conditions:

u(n+ 1,m)

u(m+ 1, n)
=
u(n+ 1, 0)

u(1, n)

u(1,m)

u(m+ 1, 0)
∀n,m > 0 , (5.2)

and at least one of the following

• p(·, ·) is symmetric,

or

• p(·, ·) is doubly stochastic, i.e.
∑
y

(
p(x, y)− p(y, x)

)
= 0, and

u(n,m)− u(m,n) = u(n, 0)− u(m, 0) ∀n,m > 0 . (5.3)

Then the stationary weights are

w(n) =

n∏
k=1

u(1, k − 1)

u(k, 0)
∀n > 0 , (5.4)

which depend only on the jump rates u but not on the kernel p.
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For the special case of zero-range dynamics, (5.4) simplifies further since u(k, ·) =

u(k), and (5.2) and (5.3) are fulfilled. In this case (5.4) leads to the simple identification
between stationary weights and rates

u(n) =
w(n− 1)

w(n)
∀n > 1 . (5.5)

Due to this simple one-to-one correspondence between weights and transition rates,
zero-range processes provide a generic framework of studying condensation transitions
in interacting particle systems.

Another less restrictive simplification is to assume that u(n,m) = u1(n)u2(m) is of
product form, which automatically satisfies (5.2) and always leads to factorized stationary
measures under symmetric dynamics, i.e. p(·, ·) is a symmetric transition kernel. The
weights from (5.4) now take the form

w(n) =

(
u1(1)

u2(0)

)n n∏
k=1

u2(k − 1)

u1(k)
∀n > 0 . (5.6)

Note that due to the conservation law the exponential factor
(
u1(1)
u2(0)

)n
is usually omitted,

since it cancels in the definition of πL,N (1.1). One particular example is the inclusion
process with rates

u(n,m) = n (d+m) with d > 0 , (5.7)

which leads to the stationary weights (1.6). If we set

d = d(L) > 0 with dL→ θ > 0 as L→∞ , (5.8)

the system exhibits a condensation transition with ρc = 0 and a Poisson-Dirichlet struc-
ture with PD[0,1](θ), see [28, Theorem 1] or (1.7) above. Theorem 1.7 recovers this result
for θ ∈ (0, 1]. The restriction of θ is solely due to the fact that the Poisson-Dirichlet distri-
bution is (so far) only proven to be the unique invariant distribution for the split-merge
process if θ ∈ (0, 1].

Using the size-dependent parameter d as above, we will provide a few instructive
examples of particle systems with size-dependent jump rates uL of product form, where
Theorem 1.7 applies with a non-trivial critical density ρc > 0. We start by fixing the
weights

wL(n) =

{
w(n) if n 6 A ,
d
n if n > A ,

for some fixed A ∈ N , (5.9)

where d = d(L) as in (5.8), θ ∈ (0, 1] and w is a probability mass function on the set
{0, . . . , A}. Let us fix for simplicity the uniform distribution with w(n) = (1 +A)−11{n 6
A}. Using (5.5), the corresponding rates of a zero-range process are given by u2(m) = 1

and

uL(n) = u1,L(n) =


1 if 1 6 n 6 A ,

d−1 ' L/θ if n = A+ 1 ,
n
n−1 if n > A+ 1 .

(5.10)

This underlines the mechanism that leads to condensation in such systems: Sites with
occupation numbers different from A+ 1 are stable and eject particles at rates of order
1. Sites with occupation number A+ 1 are unstable and eject a particle at diverging rate
of order L, creating a sharp threshold between bulk sites (ηx 6 A) and cluster sites
(ηx > A+ 1). Note that with (5.6) the same effect could be achieved by a vanishing rate
of arrival onto sites with occupation number A. If in the thermodynamic limit

N/L→ ρ > ρc =
A

2
,
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i.e. the total density exceeds the expectation of the uniform bulk distribution, the
system exhibits a condensation transition with mass fraction 1− ρc/ρ in the condensate.
Heuristically, the excess mass is expelled from the bulk and accumulates in stable clusters
with occupation numbers larger than A+ 1. The particular form of the rates for those
clusters leads to a macroscopic phase with Poisson-Dirichlet statistics PD[0,1−ρc/ρ](θ),
which follows from Theorem 1.7 and is illustrated in Figure 2. Clearly, the weights
(wL)L converge uniformly to w and therefore satisfy both Assumption (B1) and (B2). The
same process with rates duL(n) corresponds to asymptotically vanishing exit rates from
stable sites, which is simply a time change and leads of course to the same stationary
behaviour.

Figure 2: Simulation results at stationarity for a zero-range process with rates (5.10),
parameters θ = A = ρ = 1 and ρc = 1/2. The left boxplot displays ‖p‖22 where p = η̂

N was
sampled 200-times for every system size, indicating convergence to 1

8 which agrees with
µL,N (‖p‖22) ' (1 + θ)−1(1 − ρc

ρ )2 from Lemma 3.6. The right plot shows three samples
of accumulated configurations in a system of size N = L = 1024, where we clearly see
occurance of large clusters, with a background density of ρc = 1/2 indicated by dotted
lines.

We can also generalize the inclusion process dynamics (5.7) to stationary weights of
the form (5.9). Consider a process with rates of product form uL(n,m) = u1,L(n)u2,L(m)

with

u1,L(n) = u2,L(n) =

{
d ' θ/L if 1 6 n 6 A ,

n if n > A ,
(5.11)

and u2,L(0) = d. It is easy to see from (5.6) that the stationary weights for this process
are given by (5.9) and Theorem 1.7 applies. Heuristically, sites with occupation number
up to A eject and attract particles at a slow rate d, and particles on sites with higher
occupation numbers become “free” and leave independently at the same rate and also
attract other particles, as a simple generalization of the standard inclusion interaction.
As a result, the dynamics in the condensed phase happen at a much higher rate than
in the bulk. This separation of time scales leads to completely different dynamics than
in the zero-range example above, even though both models share the same stationary
distributions. We want to stress that due to the general nature of Assumptions (B1) and
(B2), Theorem 1.7 applies also to modifications of these examples and the particular
form of the weights (5.9) is not important.

Understanding the dynamics of the condensed phase in these models is a very interest-
ing question for future research, in particular the coarsening regime, where macroscopic
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clusters emerge from homogeneous initial conditions and approach stationarity by ex-
changing particles. Heuristically, their stationary mass partition can be understood as
a balance between aggregation and fragmentation of macroscopic clusters. Note that
these dynamics are not described by split-merge processes, which we only use as an
auxiliary tool to characterize PD distributions, but are rather of a diffusive nature. A
diffusive model on partitions that has stationary PD distribution has been introduced
in [12], and it would be very interesting to study hydrodynamic scaling limits in this
context.

As we have seen, the Poisson-Dirichlet structure in the macroscopic phase arises
due to uniform stationary weights under size-biased sampling, which leads to particular
rates in the zero-range process (5.10) or the generalized inclusion process (5.11) for
large occupation numbers. In the context of the dynamics of interacting particle systems
this is only one particular case, and it would be interesting to study the statistics of the
condensed phase beyond Poisson-Dirichlet under a different scaling behaviour of the
weights.

A Equivalence of ensembles

In this section we prove that, under assumption (B1) and if the weights (wL)L decay
sub exponentially, i.e.

1

L
logwL(aL)→ 0 , ∀a > 0 , and

∞∑
n=0

n2w(n) <∞ , (A.1)

we have equivalence of ensembles and condensation in the sense of weak convergence
of finite dimensional marginals. Note that this includes condensation in the sense of
Definition 1.1, and (A.1) is weaker than Assumption (B2) in Theorem 1.7. The result is
in the same spirit as previous results on equivalence of ensembles and condensation
in stochastic particle systems with stationary product measures (see for example [6]).
However, as far as we know, this is the first general result in this direction for models
with size-dependent weights.

In order to state the result in more generality we first introduce some extra notation.
For a sequence of non-negative, non-trivial weights, (wL(n))n∈N0

, possibly depending
on the system size L, we define a family of probability measures on N0 by tilting the
weights by a non-negative fugacity parameter φ > 0:

ν̄φ,L[dn] :=
1

zL(φ)
wL(n)φndn with zL(φ) :=

∞∑
n=0

wL(n)φn ,

which is well defined for each φ ∈ DL := {φ : zL(φ) <∞}. The corresponding family of
grand-canonical distributions is given by the product measures

ν̄⊗Lφ,L[dη] =
1

zL(φ)L

L∏
x=1

wL(ηx)φηxdη , (A.2)

which are defined on the configuration space ΩL = NL0 =
⋃∞
N=0 ΩL,N , where the total

number of particles is arbitrary. The expected number of particles per site (density)
RL : DL → [0,∞) is a strictly increasing function of φ, with

RL(φ) := ν̄φ,L(ηx) = φ∂φ log zL(φ) , for φ ∈ DL . (A.3)

We denote the inverse of RL by ΦL. Furthermore, we define the variance of ν̄φ,L

σ2
L(φ) = ν̄φ,L(η2

x)−RL(φ)2 ,
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which is finite for each φ in the interior of DL. By construction, the canonical mea-
sures (1.1) on ΩL,N are given by conditioning any grand-canonical measure on the total
number of particles, i.e.

πL,N [dη] := ν̄⊗Lφ,L

[
dη

∣∣∣∣∣
L∑
x=1

ηx = N

]
=

1

ZL,N

L∏
x=1

wL(ηx)dη ,

which is independent of φ ∈ DL.
By Assumption (B1), the weights (wL(n))n,L converge uniformly in n as L→∞ to a

probability measure (w(n))n∈N0
. We define the limiting grand-canonical measures by

ν̄φ[dn] :=
1

z(φ)
w(n)φndn with z(φ) :=

∞∑
n=0

w(n)φn .

Since (w(n))n∈N0 is normalised, these measures must exist at least for each φ ∈ [0, 1],
and ν̄1 corresponds to the weights w. By analogy with (A.3), we define the function
R(φ) = ν̄φ(η1), which is a strictly increasing function R : [0, 1]→ [0, ρc] with

ρc = R(1) =
∞∑
n=0

nw(n) , as given in Theorem 1.7 .

We denote the inverse of R by Φ, so that the average particle density under ν̄⊗LΦ(ρ) is ρ for

all ρ 6 ρc. Further, we denote the variance of ν̄φ by σ2(φ) which is finite for φ ∈ [0, 1] by
the second moment condition in (A.1). Note that it may be possible that R(φ) <∞ and
ν̄φ is well defined also for φ > 1, but such measures are not accessible as limits of ν̄φ,L
and do not play a role in the following.

Under Assumption (B1) and sub-exponential weights (A.1), it turns out that there
is a condensation transition according to Definition 1.1 with critical density ρc = R(1).
In this case, in the thermodynamic limit N/L → ρ, all finite dimensional marginals of
the canonical measures converge weakly to the limiting grand-canonical measures with
density ρ if ρ 6 ρc, and with density ρc if ρ > ρc. This implies that for ρ > ρc the excess
mass must condense on a vanishing volume fraction in the thermodynamic limit.

Proposition A.1 (Equivalence of ensembles). Consider non-negative weights (wL)L
satisfying (B1) with limit w. Furthermore, assume that wL’s have sub-exponential tails,
in the sense of (A.1). Then for each M ⊂ N0, with |M | = m <∞, denoting the marginal
of πL,N on M by πML,N , we have

πML,N
d→

{
ν̄⊗mΦ(ρ) if ρ < ρc ,

ν̄⊗m1 if ρ > ρc ,

where ρc = R(1) <∞.

Throughout the proof we assume further that condition (1.11) is satisfied, i.e.

w(0) > 0 and sup
n

[w(n− 1) ∧ w(n)] > 0 ,

which implies that the variance, σ2(φ), given by
∑
n2w(n)φn, is positive for each φ ∈ (0, 1].

The special case of w(0) = 1 is covered at the end of the proof.
We firstly observe that for each ρ ∈ [0, ρc] we can construct a sequence of size-

dependent fugacities such that the mean of the size-dependent grand-canonical measures
converges to ρ and the variance remains bounded. The typical behaviour of RL(φ) is
illustrated in Figure 3.
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Figure 3: The dashed lines represent RL(φ) for systems of sizes L ∈ {4, 16, 128} and
weights (5.9) with θ = A = 1. The black line denotes the limit R(φ) = φ

1+φ .

Lemma A.2. Under Assumption (B1) and if the weights (wL)L are sub-exponential in
the sense of (A.1), then for each ϕ ∈ [0, 1] there exists a sequence (ϕL)L in [0, 1), with
limit point ϕ, such that

‖wL − w‖∞
1

(1− ϕL)3
→ 0 , as L→∞ , (A.4)

and

RL(ϕL)→ R(ϕ) ∈ [0, ρc] , σ2
L(ϕL)→ σ2(ϕ) > 0 , and zL(ϕL)→ z(ϕ) . (A.5)

Proof. For ϕ ∈ [0, 1) we may choose ϕL = ϕ for each L. For ϕ = 1, we let ϕL = 1−‖wL−
w‖1/4∞ . Then ϕL → 1 as L→∞ and condition (A.4) is satisfied since ‖wL − w‖∞ → 0 by
assumption (B1).

It is only left to prove the convergence in (A.5), which is equivalent to showing that

lim
L→∞

∞∑
n=0

npwL(n)ϕnL =

∞∑
n=0

npw(n)ϕn ,

for p ∈ {0, 1, 2}. Since the weights converge uniformly, we have∣∣∣∣ ∞∑
n=0

np(wL(n)− w(n))ϕnL

∣∣∣∣ 6 ‖wL(n)− w(n)‖∞
∞∑
n=0

npϕnL .

Term-by-term differentiation of the geometric series yields for p ∈ {0, 1, 2}

∞∑
n=0

npϕnL =
(p ∨ 1)ϕpL

(1− ϕL)p+1
+

ϕL
(1− ϕL)2

1{p = 2} .

Hence, using again (A.4), we have

∞∑
n=0

npwL(n)ϕnL '
∞∑
n=0

npw(n)ϕnL →
∞∑
n=0

npw(n)ϕn ,

where we used dominated convergence in the last step.
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We will prove Proposition A.1 by showing that the relative entropy between the single
site marginal of πL,N and ν̄ϕL,L vanishes, where the limit density R(ϕ) is equal to ρ in
the sub-critical case, and ρc in the super critical case. Optimally, in the super-critical
case, we would like to measure the relative entropy w.r.t. the limiting measure directly,
however this is not possible since πL,N [ηx ∈ · ] � w is in general not satisfied and the
relative entropy would be infinite.

The main tool we rely on in the proof of Proposition A.1 is a local central limit theorem
(see for example [8, Theorem 1.2]) which allows us to estimate the decay of the relative
entropy. For completeness we include the local limit theorem here. To state it, we first
introduce the Bernoulli part decomposition q of a probability measure Px,L on Z as

q(Px,L) :=
∑
n∈Z

(Px,L[n] ∧ Px,L[n+ 1]) .

Moreover, for a family of measures (Px,L)1 6 x 6 L we define QL :=
∑L
x=1 q(Px,L).

Lemma A.3 ([8, Theorem 1.2] Local central limit theorem). Consider a triangular array
of independent integer valued random variables ηx,L, for 1 6 x 6 L, and L ∈ N, where
ηx,L has law Px,L. Suppose there exist sequences aL and bL, L > 1, such that bL →∞,
lim supL→∞ b2L/QL <∞ and

1

bL

L∑
x=1

(ηx,L − aL)
d→ N (0, 1) . (A.6)

Then

sup
n∈Z

∣∣∣∣∣bLPL[
L∑
x=1

ηx,L = n
]
− g
(n− aL

bL

)∣∣∣∣∣→ 0 ,

where PL denotes the product measure
⊗L

x=1Px,L and g the density of a standard
normal.

To apply Lemma A.3 we consider independent random variables

(ηx,L)1 6 x 6 L with law ν̄⊗LϕL,L for each L > 1 , (A.7)

where (ϕL)L∈N is a sequence in [0, 1) satisfying (A.4). To apply Lemma A.3 in the proof
of Proposition A.1, we first verify the central limit theorem (A.6) for the ηx,L’s.

Lemma A.4. Consider (ϕL)L to be a sequence in [0, 1) with limit point ϕ ∈ [0, 1] satisfy-
ing (A.4) and (A.5). Furthermore, let (ηx,L)1 6 x 6 L,L∈N be as in (A.7) and define

ζx,L :=
ηx,L −RL(ϕL)√

Lσ2
L(ϕL)

.

Then
∑L
x=1 ζx,L converges weakly to a standard normal, as L tends to infinity.

Proof. We want to apply the Lindeberg-Feller central limit theorem, see [30, Theorem
5.12]: because the ζx,L’s are centered and normalised, it suffices confirm that the
following Lindeberg condition holds:

For every ε > 0, lim
L→∞

L∑
x=1

ν̄ϕL,L(ζ2
x,L1{|ζx,L| > ε}) = 0 .
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Since RL(ϕL) and σ2
L(ϕL) converge to positive numbers, we have that for L large enough

L∑
x=1

ν̄ϕL,L(ζ2
x,L1{|ζx,L| > ε})

=
1

zL(ϕL)σ2
L(ϕL)

∞∑
n=0

(n−RL(ϕL))2wL(n)ϕnL1
{
|n−RL(ϕL)| > ε

√
Lσ2

L(ϕL)
}

6
1

zL(ϕL)σ2
L(ϕL)

∞∑
n=Kε,L

n2wL(n)ϕnL ,

where Kε,L = ε
√
Lσ2

L(ϕL) + RL(ϕL), which diverges like
√
L. The denominator in the

above expression converges to a positive constant. For the numerator, we observe∣∣∣∣ ∞∑
n=Kε,L

n2(wL(n)− w(n))ϕnL

∣∣∣∣ 6 ‖wL(n)− w(n)‖∞
∞∑

n=Kε,L

n2ϕnL → 0 , (A.8)

where we used property (A.4) of the sequence (ϕL)L. Thus, using the second-moment
assumption on w in (A.1), we have, for each ε

∞∑
n=Kε,L

n2wL(n)ϕnL '
∞∑

n=Kε,L

n2w(n)ϕnL 6
∞∑

n=Kε,L

n2w(n)→ 0 ,

as L→∞, since Kε,L →∞. This concludes the Lindeberg condition.

Proof of Proposition A.1. We first consider the sub-critical and critical case together,
fix ρ ∈ (0, ρc]. Let (ϕL)L be a sequence converging to ϕ := Φ(ρ) ∈ (0, 1] satisfy-
ing (A.4) and (A.5). We will measure the relative entropy between single-site marginals
of πL,N [ηx ∈ · ] and ν̄ϕL,L.

We start with an expression for the relative entropy between πL,N and ν̄⊗LϕL,L which is
used frequently in the proof of similar equivalence of ensembles results (see for example
[6]),

H
(
πL,N | ν̄⊗LϕL,L

)
=

∑
η∈ΩL,N

πL,N [η] log

(
πL,N [η]

ν̄⊗LϕL,L[η]

)
= log

(
zL(ϕL)L

ZL,NϕNL

)

= − log ν̄⊗LϕL,L

[
L∑
x=1

ηx = N

]
.

Then, by subadditivity of the relative entropy we have for marginals

H (πL,N [ηx ∈ · ] | ν̄ϕL,L) 6 − 1

L
log ν̄⊗LϕL,L

[
L∑
x=1

ηx = N

]
. (A.9)

We estimate the right-hand side using the local limit theorem in Lemma A.3 with the
specific choices of

aL := LRL(ϕL) and bL :=
√
Lσ2

L(ϕL) .

It follows from Lemma A.4 that

L∑
x=1

ζx,L =

∑L
x=1 ηx,L − aL

bL

d→ N (0, 1) .
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Moreover, bL diverges in the large L limit because limL→∞ σ2
L(ϕL) = σ2(ϕ) > 0. Also,

lim sup
L→∞

b2L
QL

= lim sup
L→∞

σ2
L(ϕL)

q(ν̄ϕL,L)
6

σ2(ϕ)

supn∈N0
[w(n) ∧ w(n+ 1)]

,

where the final inequality follows by dominated convergence. The right hand side is
finite by assumption (B1). Therefore, we may apply the local limit theorem stated in
Lemma A.3 which yields

ν̄⊗LϕL,L

[
L∑
x=1

ηx = N

]
= O

(
L−1/2

)
,

and coming back to (A.9)

H (πL,N [ηx ∈ · ] | ν̄ϕL,L) ∼ logL

L
→ 0 as L→∞ .

With Pinsker’s inequality (see e.g. [22, Lemma 6.2]) this implies for the total variation
distance

dTV (πL,N [ηx ∈ · ], ν̄ϕL,L)→ 0 . (A.10)

Also, by (A.5) and uniform convergence of the weights, ν̄ϕL,L converges weakly to ν̄ϕ,

which together with (A.10) implies πL,N [ηx ∈ · ]
d→ ν̄Φ(ρ) as N/L→ ρ 6 ρc.

Finally, we conclude the super-critical case ρ > ρc using a large deviation estimate.
Now let ϕL be a sequence converging to 1 and satisfying (A.4) and (A.5) so that RL(ϕL)→
ρc. Then

− 1

L
log ν̄⊗LϕL,L

[
L∑
x=1

ηx = N

]
6 − 1

L
log ν̄

⊗L\{1}
ϕL,L

[
L∑
x=2

ηx = N − b(ρ− ρc)Lc

]

− 1

L
log ν̄ϕL,L [η1 = b(ρ− ρc)Lc] ,

where the first term on the r.h.s. converges to zero by the local central limit theorem,
since (N − b(ρ− ρc)Lc)/L→ ρc. For the second term,

− 1

L
log ν̄ϕL,L [η1 = b(ρ− ρc)Lc]

= − 1

L
logwL(b(ρ− ρc)Lc)− (ρ− ρc) logϕL +

1

L
log zL(ϕL)→ 0 ,

where convergence follows from the sub-exponential assumption (A.1), and since ϕL → 1

and zL(ϕL)→ z(1) ∈ (0,∞). It follows that H (πL,N [ηx ∈ · ] | ν̄ϕL,L) vanishes and, for the
same reason as in the sub-critical case, πL,N [ηx ∈ · ] converges weakly to w = ν̄1.

Finally, to establish weak convergence of finite dimensional marginals; fix n1, . . . , nm ∈
N0 and x1, . . . , xm distinct indices, then

πL,N [ηx1 = n1, ηx2 = n2]

=
wL(n1)ZL−1,N−n1

ZL,N

1

ZL−1,N−n1

wL(n2)
∑

ξ∈ΩL−2,N−n1−n2

(∏
z

wL(ξz)

)
= πL,N [ηx1

= n1]πL−1,N−n1
[ηx2

= n2] .

This identity immediately generalises to

πL,N [ηx1 = n1, . . . , ηxm = nm] =

m∏
j=1

πL−j+1,N−
∑j−1
k=1 nj

[ηxj = nj ] ,
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which, by taking the thermodynamic limit on the right hand side, completes the proof.
It is possible to drop the assumption that the variance of the limiting weights is

positive in the case w(n) = 1{n = 0}. If we fix ρ > 0, we can use the same argument as
in the super-critical case above and put all particles on a single site. In this case the
right hand side of (A.9) vanishes since

− 1

L
log ν̄⊗LϕL,L

[
L∑
x=1

ηx = 0

]
= − log νϕL,L [ηx = 0]→ logw(0) = 0 ,

as L → ∞. In this case we do not use the local central limit theorem. Otherwise, the
proof remains unchanged.
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