
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 27 (2022), article no. 156, 1–14.
ISSN: 1083-6489 https://doi.org/10.1214/22-EJP871

The topology of SLEκ is random for κ > 4*
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Abstract

We study the topology of SLE curves for κ > 4. More precisely, we show that, a.s.,
there is no homeomorphism Φ : H → H, taking the range of one independent SLE
curve to another for κ ∈ (4, 8). Furthermore, we extend the result to κ ≥ 8 by showing
that there is no homeomorphism taking one SLE curve to another, when viewed as
curves modulo parametrization.
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1 Introduction

1.1 Initial overview

The Schramm-Loewner Evolutions (SLEκ), introduced by Oded Schramm [16], de-
scribes a family of probability distributions, parameterized by κ > 0 on non-self traversing
curves connecting two boundary points in a planar, simply connected domain. They are
characterized by a conformal invariance condition and a domain Markov property. They
were initially observed as possible candidates for the scaling limits of various discrete
lattice models in statistical physics; we now know that some of these convergences do
hold, and so SLE exhibits a universality in its definition.

SLEκ is the random growth of a set Kt, as described through a conformal map gt(z) on
the complement of Kt. This map gt(z) is the solution of the Loewner differential equation
driven by a Brownian motion, whose ‘speed’ is determined by a single parameter κ.
Rhodes and Schramm in [15] showed that for κ 6= 8, a.s. there is a (unique) continuous
path η : [0,∞) → H such that for each t > 0 the set Kt is the union of η[0, t] and the
bounded connected components of H \ η[0, t]. This has also been shown for κ = 8, but
was dealt with separately [8]. We call the path η the SLE trace or SLE curve. It was
shown as well in [15] that lim

t→∞
|η(t)| =∞ a.s. We will need the following facts about the

curve which are proven in [15]:
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The topology of SLE

• If κ ≤ 4, then η is simple with η(0,∞) ⊂ H.

• If 4 < κ < 8, then η(0,∞) has double points and intersects R.

• If κ ≥ 8, the curve is space-filling.

There are three (well studied) variants of SLE: chordal SLE, which connects two boundary
points (prime ends) in a given domain, radial SLE, which connects a boundary point
to an interior point, and whole-plane SLE, which connects two points on the Riemann
sphere. In this paper, we will focus on chordal SLE, but we expect that our results can
be generalized to other cases. One can also see [6, 2, 18] for some expository work on
SLE which go into details beyond the scope of this paper.

Most works on SLE have focused on its geometric and probabilistic properties, e.g.,
Hausdorff dimensions of various subsets of the curves, formulas for the probabilities
of various events, and connections to other random objects. In this work, we will
address a very basic question about the topology of SLE: namely, is the topology of
the curve deterministic? Said differently, if we have two independent chordal SLEκ
curves η1 and η2 (viewed as curves modulo time parametrization), does there a.s. exist a
homeomorphism H→ H taking η1 to η2?

Since SLEκ is a simple curve for κ ≤ 4, the answer to the above question is clearly
affirmative in this case. For κ > 4, however, the answer is less obvious. On the one hand,
many events for SLEκ occur with probability strictly between 0 and 1 (see Section 2
of [12]) so there are many opportunities for one of η1 or η2 to do something that the
other does not. On the other hand, it is common for seemingly very different fractal
sets to be homeomorphic. For example, if K1 and K2 are compact, non-empty, totally
disconnected subsets of C without isolated points (e.g., Cantor-type sets), then there
is a homeomorphism from C to C which takes K1 to K2 [13]. The main results of this
paper show that the topology of SLEκ is random for κ > 4. For κ ∈ (4, 8), we prove the
stronger statement that the topology of the range is random. The results of this paper
are in a similar vein to those of [11], which shows that an SLEκ curve for κ ∈ (4, 8) is not
determined by its range. Both this paper and [11] answer a seemingly simple question
about SLE whose answer is much less obvious than one might initially expect.

1.2 Summary of results

Theorem 1.1. The topology of chordal SLEκ is not deterministic in the following sense:
Fix κ ∈ (4, 8), and consider two independent SLEκ curves, η1 and η2 in H. Then a.s. there
is no homeomorphism on H taking the range of η1 to the range of η2.

We consider the left and right boundaries of an SLE curve η (which are boundary-
touching SLE16/κ(ρ̄) curves, to be defined later). These curves form ‘bubbles’ inH (which
we characterize explicitly in a later section) which we use as the primary observable to
prove Theorem 1.1.

The result also holds for κ ≥ 8. The proof is similar, though a bit more work is needed
in the setup.

Theorem 1.2. The topology of chordal SLEκ is not deterministic for κ ≥ 8 in the
following sense: Consider two independent SLEκ curves, η1 and η2 in H. Then a.s. there
is no homeomorphism Φ : H → H such that Φ(η1) = η2 viewed as curves modulo time
parametrization.

Remark 1.3. Notice that in Theorem 1.2, we care about parametrized curves, because
preservation of ranges in this setting makes less sense. Recall SLE in this instance is
plane filling.

As a natural extension, one can think about the behavior of these curves for varying
κ.
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The topology of SLE

Conjecture 1.4. Let κ1, κ2 > 4 be distinct. Let (η1, η2) be any coupling of a chordal
SLEκ1

and a chordal SLEκ2
. Almost surely, there is no homeomorphism Φ : H→ H such

that Φ(η1) = η2 viewed as curves modulo time parametrization. If one of κ1 or κ2 is in
(4, 8), a.s., there is no such homeomorphism which takes the range of η1 to the range of
η2.

The conjecture says, roughly speaking, that the topology of SLEκ1
and SLEκ2

should
be mutually singular. We expect that this conjecture can be proved using similar ideas to
the ones in this paper, but one would have to explicitly compute some of the quantities
involved to show that they are κ-dependent.

2 Preliminaries

Here we discuss a few SLE basics as well as how one defines the more general SLEκ(ρ̄)

processes. We write H := {z ∈ C : Im(z) > 0}. If K is a bounded closed subset of H such
that H \K is simply connected, then we call K a hull in H w.r.t. ∞. For such K, there

is a unique gK that maps H \K conformally onto H such that gK(z) = z +
a

z
+O

(
1

z2

)
as z → ∞, for some real a. The quantity a is known as the half plane capacity of K,
and is denoted by hcapK. It can be shown that a ≥ 0. The map gK is said to satisfy
the hydrodynamic normalization at infinity. For a real interval I, let C(I) denote the
real-valued continuous functions on I. Suppose U ∈ C([0, T ]) for some T ∈ (0,∞]. For
each z ∈ H \ {0}, let gt(z) be the solution of the ordinary differential equation

ġt(z) =
2

gt(z)− Ut
, g0(z) = z. (2.1)

Note that for z ∈ C \ 0, the solution to (2.1) holds ∀ t < Tz where

Tz = sup
t
{min{|gs(z)− Us| : 0 ≤ s ≤ t} > 0}.

Set
Kt := {z ∈ H : Tz ≤ t}.

The sets Kt are the chordal Loewner hulls, and the collection of maps {gt : t ≥ 0} are
called the chordal Loewner maps driven by Ut. Suppose that for every t ∈ [0, T ),

ηt := lim
z∈H,z→Ut

g−1t (z) ∈ H ∪R

exists, and η[0, T ) is a continuous curve. Then for every t ∈ [0, T ),Kt is the complement
of the unbounded component of H \ η((0, t]). We call η the chordal Loewner trace driven
by Ut. In general, however, such a curve may not exist depending on the choice of driving
function.

An SLEκ in H from 0 to ∞ is defined by the random family of conformal maps gt
obtained by solving the Loewner ODE driven by Brownian motion. In particular, we let
Ut =

√
κBt, where Bt is a standard Brownian motion. An SLEκ connecting boundary

points x and y of an arbitrary simply connected Jordan domain can be constructed as
the image of an SLEκ on H under a conformal transformation Ψ: H→ D sending 0 to x
and∞ to y. SLE curves are characterized by scale invariance and the domain Markov
property, and are viewed modulo reparametrization. It is shown in [15, 8] that the SLEκ
processes are generated by curves.

SLE(κ; ρ̄), which is often written as SLEκ(ρ̄L; ρ̄R), is the stochastic process one obtains
by solving (2.1) with a modification on the driving process Ut, which we now discuss. It
is a natural generalization of SLEκ in which one keeps track of additional marked points
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which are called force points. In this paper, we need only the two force point regime,
but the following definitions are easily extended to the multiple force point setting. Fix
x1 < 0 < x2. We associate with each xi for i ∈ {1, 2} a weight ρi ∈ R. An SLEκ(ρ1; ρ2)

process with force points (x1;x2) is the measure on continuously growing compact hulls
Kt generated by the Loewner chain with Ut given by the solution to the system of SDEs
given by

dUt =
ρ1

Ut − V 1
t

dt+
ρ2

Ut − V 2
t

dt+
√
κ dBt, (2.2)

dV it =
2

V it − Ut
dt; V i0 = xi, i ∈ {1, 2}. (2.3)

The existence and uniqueness of solutions to this SDE is discussed in [17], and follows
from results in [14]. These results are extended to the more general setting of multiple
force points in [9].

For κ > 4, there is also significant interest in the hulls that are generated by the
SLEκ curves. Duplantier conjectured in [4, 5] the duality between SLEκ and SLE16/κ,
which says that the boundary of an SLEκ hull behaves like an SLE16/κ curve, for κ > 4.
Many versions of this duality have been shown in [19, 20, 3, 9, 10].

Lemma 4.9 in [9] asserts that, for κ > 4, the outer boundary η′ of an SLEκ curve is an
SLEκ(ρ̄) process. This is done in the setting of imaginary geometry, in which the SLE
curves (for κ ∈ (0, 4)), are realized as flow lines of the Gaussian free field (i.e SLEκ(ρ̄)

curves coupled with the Gaussian free field in H), with the outer boundaries, themselves
SLE curves (for κ ∈ [4,∞)) described as counterflow lines (in which the coupling is
done with the negation of the Gaussian field). Though we do not need this machinery as
presented in [9] and [12], it serves as an excellent framework for proving some general
properties of SLEκ(ρ̄), some of which we rely on to prove the main results. We state one
such fact as follows:

Lemma 2.1. Fix κ > 0. Suppose that η is an SLEκ(ρ̄L; ρ̄R) process in H from 0 to
∞ with force points located at (x̄L; x̄R) with x1,L = 0− and x1,R = 0+ (possibly by
taking ρ1,q = 0 for q ∈ {L,R}). Assume that ρ1,L, ρ1,R > −2. Fix k ∈ N such that

ρ =
∑k
j=1 ρj,R ∈ (κ2 − 4, κ2 − 2) and ε > 0. There exists p1 > 0 depending only on

κ, maxi,q|ρi,q|, ρ, and ε such that if |x2,q| ≥ ε for q ∈ {L,R}, xk+1,R − xk,R ≥ ε, and
xk,R ≤ ε−1 then the following is true. Suppose that γ : [0, T ] → H is a simple curve
starting from 0, terminating in [xk,R, xk+1,R], and otherwise does not hit ∂H, for some
T ∈ [0,∞). Let A(ε) be the ε-neighborhood of γ([0, T ]) and let

σ1 = inf{t ≥ 0 : η(t) ∈ (xk,R, xk+1,R)} and σ2 = inf{t ≥ 0 : η(t) /∈ A(ε)}.

Then P[σ1 < σ2] ≥ p1.

Intuitively, Theorem 2.1 tells us that an SLEκ(ρ̄L; ρ̄R) process has a positive chance
to stay close to any fixed deterministic curve for a positive amount of time.

Proof. This is Lemma 2.5 in [12].

3 Proof of Theorem 1.1

Consider the left and right boundaries of the SLE curve η, which are boundary-
touching SLE 16

κ
(ρ) curves, with force points starting at 0. In fact, the left boundary

of SLEκ turns out to be SLE16/κ( 16
κ − 4; 8

κ − 2) and by symmetry, the right boundary is
SLE16/κ( 8

κ − 2; 16
κ − 4). This can be deduced from Theorem 5.3 in [19]. These curves are

shown in Figure 1. The open region between the left and right boundaries has countably
many connected components, which are separated by the intersection points of the left
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and right boundaries, i.e., the cut points of η. These connected components have a total
ordering, and come in four types:

• Type 0: Neither the left nor the right boundary of the component intersects the
real line.

• Type 1: Only the right boundary intersects the real line.

• Type 2: Only the left boundary intersects the real line.

• Type 3: The left and right boundaries both intersect the real line.

Figure 1: We view the complement of the SLE curve as the union of two boundary-
touching SLEκ(ρ̄) processes. We observe ‘bubbles’ of four types, which we use in
constructing the observable invariant.

Note that η is a continuous curve that travels between the positive and negative real axes
between any two consecutive components of type 3. This shows that the components of
type 3 form a discrete set, to which we may assign a labeling by the integers – written as

(. . . U−1, U0, U1, U2, . . . )

uniquely, modulo index shift. For concreteness, we choose the indexing for the sequence
so that U0 is the first type 3 bubble which has Euclidean diameter at least 1. We remark
here that our construction relies on a few tail triviality arguments, and so we require the
following:

Lemma 3.1. Suppose t > 0 and let at (resp. bt) be the last time before t at which η hits
the left (resp. right) boundary. Then η|[0,t] determines the set of bubbles (i.e. connected
components of the region between the left and right boundaries) which are formed
before time min{at, bt} as well as their types.

Proof. This follows trivially from the fact that η cannot cross itself and η([min{at, bt}, t])
disconnects all of the bubbles formed before time min{at, bt} from η(t).

Between pairs of consecutive type 3 bubbles, Ui and Ui+1, we may either observe a
type 1 or 2 bubble, or we may not. Let Ei be the event that there is a type 1 or type 2
bubble between Ui and Ui+1, and define

X := (. . . 1E−1 ,1E0 ,1E1 ,1E2 , . . . )

the bi-infinite sequence of 0’s and 1’s consisting of the indicators of the Ei’s.

Lemma 3.2. For any fixed deterministic bi-infinite sequence of 0’s and 1’s x, we have
P[X = x] = 0.
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We delay the proof of Theorem 3.2 to introduce some notation. The proof requires
a few key observations which we discuss below. Consider a left-infinite sequence
y = (. . . y−2, y−1, y0). For k ∈ N, let Ak be the event that {. . . X−k−1, X−k = y}. We wish
to show that P[A0] = 0. We will argue this by contradiction, but we first require a bit

of setup. For r ∈ R>0, n ∈ N, let K(n)
r be the nth smallest k such that the Euclidean

diameter of Uk is at least r. Now, we claim that P[A
K

(n)
1

] = 0 for all n. We argue to the

contrary, and so we assume that there exists some n such that P
[
A
K

(n)
1

]
> 0. Note that

by scale invariance, P
[
A
K

(n)
r

]
is independent of r, and so depends only on n. Consider

the event
⋂∞
i=0

⋃
m≥iAK(n)

1
m

, which is a tail event for the Brownian motion that drives the

SLE, for every choice of n. To see this, note that Theorem 3.1 implies that for each t, Ft
determines A

K
(n)
r

for each r which is small enough so that the bubble U
K

(n)
r

is formed
before time min{at, bt}. Thus, by continuity from above, we note that

P

 ∞⋂
i=0

⋃
m≥i

A
K

(n)
1
m

 ≥ P [A
K

(n)
1

]
> 0

and so the Blumenthal 0− 1 law implies that, a.s., there exists a sequence {rj} → 0 such
that the events A

K
(n)
rj

occur for all j. This implies that there exist infinitely many k such

that Ak occurs. Thus, it follows that a.s., ∃ infinitely many k such that

(. . . X−k−1, X−k) = y

forcing the sequence y to be periodic. We claim that this implies that the sequence
{Xk} is periodic. Indeed, let m be the period of y. Since there are arbitrarily large k for
which (...X−k−1, X−k) = y and y is periodic, it follows that with probability tending to 1

as r → 0, the sequence

(...X−K(n)
r −1

, X−K(n)
r

) is equal to (...y−j−1, y−j) for some j = 1, ...,m. By scale invari-
ance, the probability that this is the case for all values of r is equal to 1. Thus, as r →∞,
we see that the entire sequence {Xk} is equal to y, shifted by some j = 1, ...,m. This
means that if we observe (...X−k−1, X−k) for some k, we can determine the rest of the
sequence {Xk}, forcing this sequence to be itself periodic.

For t > 0, we have that by Theorem 3.1 Ft determines the sequence (. . . X−l−1, X−l)

for some l, which by periodicity is enough to determine the sequence {Xk}. Thus,
by Theorem 3.1, Ft determines {Xk} modulo an index shift for each t > 0, and hence the
sequence {Xk} is deterministic modulo an index shift. The goal now is to recursively
apply Theorem 2.1 to arrive at a contradiction.

Proposition 3.3. Let Z be a finite sequence of 0’s and 1’s which does not appear in y,
with |Z| = m. Then it must hold that

P [{X1, X2, . . . , Xm} = {Z1,Z2, . . . ,Zm}] > 0.

Note that the existence of such a Z follows from the periodicity of y. With this result,
we can conclude that the sequence {Xk} can contain any finite sequence of 0’s and 1’s
with positive probability, and hence cannot be periodic and deterministic modulo index
shift. We delay the proof of the proposition to state the following key lemma, which uses
the fact that the outer boundaries of the curve are SLEκ(ρL; ρR) processes, and more
specifically the right boundary, ηR, conditioned on the left boundary, ηL, has distribution
of SLE 16

κ
(− 8

κ ; 16
κ − 4) (see Lemma 7.1 in [9]):
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Figure 2: We condition on the left boundary (pictured as the orange curve) and run the
right boundary until we first form a type 3 bubble of diameter at least 1 (blue). At this
time (denoted ηR(τ)), we have two options: either the right boundary hits [0,∞) before
hitting the left boundary again (green), thus forming a type 3 bubble, or it hits the left
boundary first (red), forming a type 1 bubble before forming the next type 3 bubble.
These events each occur with positive probability.

Lemma 3.4. Let τ be a stopping time for ηR given ηL, at which ηR forms a type 3 bubble
denoted Ukτ . Let Ekτ be the event that there is a type 1 or type 2 bubble between Ukτ
and Ukτ+1, as defined previously. Then,

0 < P
[
Ekτ

∣∣∣ ηL, ηR|[0,τ]] < 1.

Proof. With some setup, this is a straightforward application of Theorem 2.1. Indeed, let
zτ := ηR(τ) and define Czτ to be the connected component of ηL \R containing zτ . Set

s1 := inf{t > τ : ηR ∩ [0,∞) 6= ∅}, s2 := inf{t > τ : ηR ∩ ηL \ (Czτ ∪ (−∞, 0]) 6= ∅.}

By Theorem 2.1, we have that

P
[
s2 > s1

∣∣∣ ηL, ηR|[0,τ]] > 0; P
[
s2 ≤ s1

∣∣∣ ηL, ηR|[0,τ]] > 0

where the second inequality follows from symmetry considerations. Indeed, we can
simply apply Theorem 2.1 to the curve ηR, under the conditional law given ηL. In
this case, an interval on the left boundary corresponds to a segment of ηL. Note that
these probabilities are strictly less than 1 as they are both positive and complementary.
With this, and appealing to the setting of Fig. 2, we have that ηR[τ,∞), conditioned on
ηL, ηR|[0,τ] , will either first intersect the left boundary and form a type 1 bubble before

forming another type 3 bubble, or it will intersect [0,∞) before hitting the left boundary
again, forming another type 3 bubble. In particular, the event that a type 1 bubble is
formed after Ukτ occurs with probability strictly between 0 and 1 as desired.

Proof of Theorem 3.3. We define a sequence of stopping times as follows: For a given
bubble Ui, let τi be the corresponding time at which Ui is formed. By our choice of
indexing of the type 3 bubbles, we have that

τ0 := 1st time we form a type 3 bubble of Euclidean diameter at least 1

τ1 := 1st time after τ0 we form a type 3 bubble

...

τm := 1st time after τm−1 we form a type 3 bubble.
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Note thatEkτi is measurable with respect to ηL and ηR|[0,τi+1], and for each i∈{1, 2, . . . ,m},
we have that by Theorem 3.4,

0 < P
[
Ekτi

∣∣∣ ηL, ηR|[0,τi]] < 1.

Thus, it follows that

P[Xi = Zi|X1 = Z1, ..., Xi−1 = Zi−1] > 0.

To finish the proof, we note that since {Xj = Zj} is determined by ηL and ηR|[0,τi] for
i < j, so

P[X1 = Z1, ..., Xi = Zi] = E
[
P[Xi = Zi | ηL, ηR|[0,τi]]1X1=Z1,...,Xi−1=Zi−1

]
.

The probability within the expectation on the right hand side is always positive, and so
inducting on i (and setting i = m as a final step) yields the desired result.

Proof of Lemma 3.2. By Theorem 3.3, we see that {Xk} can contain any finite sequence
of 0’s and 1’s not contained in y, implying that {Xk} cannot be deterministic modulo
index shift. This is a contradiction. Thus, P[A

K
(n)
1

] = 0 for every n.

Thus, by scale invariance we see that P[A
K

(n)
r

] = 0 for every r and n. Note that

every k is equal to K(n)
r for some rational r and some n. Indeed, every kth bubble has

some positive diameter, and there are at most finitely many bubbles before it of larger
diameter. Thus, we can set n to be the number of bubbles before the kth bubble with
diameter exceeding that of the kth bubble, and simply let r be any rational number
slightly smaller than this diameter. From this, it follows that

P[∃ k such that Ak occurs ] ≤ P

 ⋃
n∈N

⋃
r∈Q>0

A
(n)
Kr

 = 0.

In particular, we have that P[A0] = 0.

Proof of Theorem 1.1. Now let η1 and η2 be two independent SLE’s. In order for η1 ∪R
and η2 ∪R to be homeomorphic via a homeomorphism that takes R to R, it must be the
case that the corresponding bi-infinite sequences X1 and X2 differ by at most an index
shift. Indeed, any homeomorphism has to preserve the bi-infinite sequence of connected
components lying between the left and right boundaries of the curve, as well as the types
of these components. Thus, by the above argument, the probability that X1 is equal
to any of the countably many possible index shifted versions of X2 is zero. Hence the
probability that η1 ∪R and η2 ∪R are homeomorphic, via a homeomorphism that takes
R to R, is 0.

4 Proof of Theorem 1.2

Here, we require a more subtle argument that relies on a less obvious observable. In
this section, we fix κ ≥ 8. Let η be an instance of SLEκ in H. We are interested in the
successive crossing times (about the origin) of the curve η, i.e., the times at which η hits
the real line again, just after having hit it on the opposite side of the origin. Consider
one such crossing time, i.e., a single left right crossing about the origin. The SLE goes
back and forth between the left and right boundaries of this crossing at some times, and
the set of times when it does so has to be a discrete set since the SLE is continuous.
As pictured below in Fig. 3, these left and right crossings (within the curve) define a
sequence of marked points {Xk} along the boundary, which accumulate only at the tip
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of the curve. Via the corresponding Loewner map gηt , we may conformally map this
configuration as shown in Fig. 3, so that the tip goes to 0, and we obtain a sequence of
marked points along the left boundary. Notice these marked points are determined by
the past, so we can condition on (all of) their locations, and the future will still be an
SLE by the Markov property.

A bit more care is needed in defining these quantities. Let τ(t) be the last time before
t such that η(t) ∈ R. Define the sets

T− := {t : η(τ(t)) < 0} T+ := {t : η(τ(t)) > 0}

and set S = T̄− ∩ T̄+. Notice that S is a discrete set since η is continuous, and so it
cannot cross back and forth between (−∞, 0) and (0,∞) infinitely many times during
any compact time interval contained in (0,∞). Thus, we may index the elements of S as
a countable sequence of well defined crossing times {τj}.

Notice that these are not stopping times (which poses a problem in applying the
strong Markov property), but this can be addressed by adopting some notation from
the previous section as follows. Let ηj := η|[τj−1,τj ], which is the jth left-right crossing

around 0 that we observe, i.e., the crossing of index j ∈ Z. For r > 0, let J (n)
r be the nth

smallest j for which the Euclidean diameter of ηj is at least r. It is not difficult to see
that the set of times {τ

J
(n)
r
} is indeed a set of stopping times. To see this, let t > 0. If one

sees η|[0,t], then one can determine the set {τj : τj ≤ t}. This follows from the definition
of the times {τj} as the intersection points of T− and T+, as shown previously. Hence
η|[0,t] determines the set of excursions {ηj : τj ≤ t}. We have τ

J
(n)
r
≤ t if and only if this

set of excursions includes at least n elements which have Euclidean diameter at least r.
Hence {τ

J
(n)
r
≤ t} is determined by η|[0,t], which holds for any choice of t.

We fix some r and some n, and set J := J
(n)
r . Between the outer boundaries of the

crossing ηJ , we can keep track of the times at which {ηt : t < τJ} sequentially hits these
boundaries. More precisely, we let LJ be the outer boundary of η[0, τJ ]. We define our
sequence of crossing times inductively as follows:

σJ,1 := min{t > τJ−1 : ηt ∩ LJ 6= ∅}

σ̃J,1 := min{t > σJ,1 : ηt ∩ LJ−1 6= ∅}
...

σ̃J,k := min{t > σJ,k : ηt ∩ LJ−1 6= ∅}

σJ,k+1 := min{t > σ̃J,k : ηt ∩ LJ 6= ∅}

and so on. The sequences {σJ,k}k≥1 and {σ̃J,k}k≥1 define two discrete sets of times that
our curve successively hits the outer boundaries LJ and LJ−1 respectively. We assume
without loss of generality that the J th excursion goes from left to right. By considering
only the outer boundary LJ (as a priori τJ is a well-defined stopping time), we can
construct a sequence of marked points {XJ,k}k≥1 along the negative real axis, via the
(shifted) Loewner map which sends η(τJ) to 0. That is to say, XJ,k := gτJ (η(σJ,k))− UτJ .
As we are considering a fixed J , we may write XJ,k := Xk for ease.

Consider the points where the future of the SLE process, η|[τJ ,∞), hits the negative
real axis after having hit the real line to the right of 0, which we call crossing endpoints.
More precisely, we define these crossing endpoint times as follows:

σ∗1 := min{t > τJ : ηt ∩R>0 6= ∅}

σ̃∗1 := min{t > σ∗1 : ηt ∩R<0 6= ∅}
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Figure 3: The top picture illustrates a single left-right crossing around 0, with x0 = η(τJ)

and the corresponding triangulation in red, determined by the (past) piece of the curve
making boundary crossings. The marked points Xk define the locations of the tips of the
triangles in the triangulation, after conformally mapping to the real line via gηt . We thus
consider intervals [Xk+1, Xk] in which the tips of future triangles, obtained by left right
crossings about 0, may lie. Some intervals may have multiple, while some may have
none.

...

σ̃∗i := min{t > σ∗i : ηt ∩R<0 6= ∅}

σ∗i+1 := min{t > σ̃∗i : ηt ∩R>0 6= ∅}

and so on. We let
Nk = # {i : σ̃∗i ∈ [Xk+1, Xk]} .

In other words, we are looking at η′ := gτJ (η|[τJ ,∞))− UτJ as it successively makes left-
right crossings about 0, conditioned on the past, and for each interval we are keeping
track of how many crossing endpoints it contains. We wish to show that for every
deterministic sequence of integers {nk}k∈N, we have that

P[Nk = nk; ∀ k] = 0. (4.1)

It suffices to show that there are arbitrarily large k such that P[Nk = nk] is bounded
away from 1. Indeed, the event {Nk = nk for all sufficiently large k} is a tail event for
the Brownian motion driving the SLE, and the Blumenthal 0− 1 law implies that this has
probability 0 or 1. Thus, being bounded away from 1 guarantees that we have (4.1). We
do this in cases as follows:

Case 1 : Assume there exist arbitrarily large k such that nk 6= 0. We claim that there
exists q > 0 such that

P[Nk = n] ≤ 1− q ∀n ≥ 1.
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To see this, we consider the segment of the curve η′, just after the (n−1)th crossing about
0 is completed. Let Tn denote the nth time we have a crossing in the interval [Xk+1, Xk].
Thus Tn is a stopping time, and conditioned on what we have seen up until this time, the
future of the curve is still SLE. The goal is to have an upper bound on the probability
that there are exactly n crossings, and we do so by comparing the harmonic measure
(from ∞) of the interval [Xk+1, η

′(Tn−1)], to that of the outer boundary of the curve
η′[0, Tn−1](and more precisely, this is the harmonic measure from ∞ in H \ η′[0, Tn−1]).
These quantities are denoted a and b respectively, as shown in Fig. 4.

The proof relies on the following intuitive argument which we formalize later: If a
is larger than b, then with positive probability we observe 2 further crossings, hence
n + 1 total crossings. If a is smaller than b, then, with positive probability, we expect
the interval [Xk+1, η

′(Tn−1)] to be covered before we observe the next crossing. In other
words, there is always a positive chance that we observe either n− 1 crossings or n+ 1

crossings, and so
P[Nk 6= n] > 0.

Proposition 4.1. Let η be an SLEκ from 0 to ∞ in H with κ > 4. For marked points
a < 0 < c along the real line, let Ea,c be the event that the chordal SLEκ trace visits
[c,∞) before (−∞, a]. Then

P [Ea,c] = F

(
−a
c− a

)
where F (x) =

1

Zκ

∫ x

0

du

u
4
κ (1− u)

4
κ

and Zκ is chosen so that F (1) = 1.

Proof. This is Theorem 10 in [1], which is a generalized restatement of Theorem 3.2 in
[7].

Remark 4.2. It is possible to get an estimate which is weaker than Theorem 3 above,
but which is still sufficient for our purposes, via the following elementary argument. For
x ∈ R, let tx := inf[t ≥ 0 : η(t) = x]. If we let P (n) = P[tn < t−1], a bit of thought shows
that

P (n) ≥ P (n− 1)[1− P (n)]

which thus implies that

P (n) ≥ P (n− 1)

1 + P (n− 1)
.

The equality case can be realized as P (n) =
1

n+ 1
, the details of which we omit. By

considering f(x) =
x

x+ 1
, which is increasing on R≥0, we find that

P (n) ≥ f(P (n− 1)) ≥ f (2)(P (n− 2) · · · ≥ f (n)
(

1

2

)
=

1

n+ 1

Figure 4: We stop the SLE after it has made its (n− 1)th crossing in the interval shown.
Under the map g̃, we send the tip of the curve to the origin, and analyze the likelihood of
either observing two more crossings in the red interval of length a, or no more crossings,
in which case the interval is swallowed.
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which gives a rough (yet easy to compute) estimate. Note, for our purposes, we only
require a positive probability.

We return to the notation introduced in Fig. 4, and we consider the the behavior
of the SLE curve given the relative quantities a and b. In particular, we require the
following two key lemmas to prove the original claim:

Lemma 4.3. If a ≤ b, it holds with conditional probability at least 1
2 , given η′|[0,Tn−1],

that η′|[Tn−1,∞) hits Xk+1 before [b,∞).

Proof. Notice that by symmetry, there is a positive chance that we disconnect
[Xk+1, η

′(Tn−1)] before hitting b. Indeed, this follows from the fact that P[t−1 < t1] =
1
2 .

Lemma 4.4. There exists a deterministic κ-dependent constant c > 0 such that if a > b,
it holds with conditional probability at least c given η′|[0,Tn−1] that η′|[Tn−1,∞) crosses
between (−∞, 0) and (0,∞) at least twice before hitting Xk+1.

Proof. If a > b, then we can apply the estimate given in Theorem 4.1 via a two step
process. We retain the notation from Theorem 4.2, and define t−a and tb as discussed,
after having mapped η′([0, Tn−1]) to the real line via the map g̃. Note that Theorem 4.1
implies that ∃ p > 0 such that P[tb < t−a/2] ≥ p. In fact, we have assumed a > b, so
p in this instance can be thought of as a universal bound. We condition on this event
occurring, and we look at the harmonic measure of the outer boundary curve η̃ of this
most recent crossing. Note that hmH\η̃(∞, η̃) is bounded above by the harmonic measure

of the outer boundary at the time we hit −a
2

. This follows from the fact that the harmonic

measure can only increase, as we observe more of the curve. Moreover, the law of this
harmonic measure, divided by a, is independent of a by scale invariance, and is almost
surely finite. This implies that ∃C = C(p) > 0 such that

P
[
hmH\η̃(∞, η̃) ≤ Ca

]
≥ 1− p

2

from which it follows that

P
[
hmH\η̃(∞, η̃) ≤ Ca, tb < t−a/2

]
≥ p

2
.

This bound guarantees a positive probability that, after we have observed the first
crossing, the harmonic measure of the outer boundary is not too large. Now we condition

on this event, and we apply Proposition 4.1 to the quantities Ca and
a

2
. In particular, This

yields a positive κ-dependent constant lower bound for the probability that η′|[Tn−1,∞)

has at least two crossings before hitting Xk+1.

Case 2 : nk = 0 for all but finitely many k.
This condition implies that the SLE travels a positive distance of time without any

left-right crossings, which happens with probability 0. This shows that for any fixed
deterministic sequence {nk}k∈N with only finitely many non-zero elements, we have that

P[{Nk} = {nk}] = 0.

Proof of Theorem 1.2. Consider two instances of SLEκ in H, η1 and η2, with correspond-
ing sequences of points {X1

m1,k
}k∈N and {X2

m2,k
}k∈N respectively, for fixed indicies

m1,m2 ∈ S, corresponding to the m1
th crossing of η1 and m2

th crossing of η2 respectively.
Here, we indicate objects associated with ηj for j ∈ {1, 2} by a superscript j. Note that

EJP 27 (2022), paper 156.
Page 12/14

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP871
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The topology of SLE

Figure 5: We observe two instances of SLE, η1 and η2, stopped after the m1
th and m2

th

crossings respectively. Any homeomorphism between the two should send one tip to the
other, and retain the structure of the future crossings (i.e., preserve the corresponding
sequences {N j

k}).

by construction, m1 = J
(n1),1
r1 and m2 = J

(n2),2
r2 for some n1, n2 and (rational) r1, r2. Each

sequence of points {Xj
k}k∈N generates a sequence {N j

k}k∈N for j ∈ {1, 2} and so by the
independence of η1 and η2, as well as (4.1), we have that for any choice of m1,m2 and
number l

P
[
N1
k = N2

k+l; ∀ k
]

= P
[
N1
k = N2

k+l; ∀ k | η2
]

= 0.

This implies that
P
[
∃ l s.t N1

k = N2
k+l; ∀ k

]
= 0 (4.2)

as there are countably many possible choices of l, meaning we can apply this very
argument for each fixed choice of l, and apply the union bound.

Observe that a homeomorphism from H to itself taking η1 to η2, modulo time
parametrization, must preserve the number of left right crossings of the ‘future’ curves,
which correspond to the sequences {N j

k}, and it must take η1(τ1m1
) to η2(τ2m2

) for some
m2. In particular, as in the setting of Figure 4, for any fixed m1 and m2 there is no
homeomorphism which takes η1 to η2 and η1(τ1m1

) to η2(τ2m2
) by (4.2). As the set S of

crossing times is discrete, this holds for any choice of indices m1and m2, where there
are only countably many choices. Thus, it must hold that,

P
[
∃ a homeomorphism Φ : H→ H taking η1 to η2

]
= 0.
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