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Abstract

Motivated by the work [6] of Mariusz Bieniek, Krzysztof Burdzy and Soumik Pal we
study a Fleming-Viot-type particle system consisting of independently moving particles
each driven by generalized Bessel processes on the positive real line. Upon hitting the
boundary {0} this particle is killed and an uniformly chosen different one branches
into two particles. Using the symmetry of the model and the self similarity property
of Bessel processes, we obtain a criterion to decide whether the particles converge
to the origin at a finite time. This addresses open problem 1.4 in [6]. Specifically,
inspired by [6, Open Problem 1.5], we investigate the case of three moving particles
and refine the general result of [6, Theorem 1.1(ii)] extending the regime of drift
parameters, where convergence does not occur – even to values, where it does occur
when considering the case of only two particles.
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1 Introduction

In [9], the authors analyzed the following particle system which was introduced
earlier in [10]: Consider a fixed open connected subset D of the Euclidean space as
domain and a system of particles starting at some deterministic point. As long as no
particle hits the boundary ∂D of the domain they move independently according to
Brownian motion. If a particle does hit the boundary, it jumps to the position of some
independently uniformly randomly chosen other one keeping the number of particles
constant. Then, they again move independently according to Brownian motion, and so
on. In [9] different limit theorems are proven, one of them shows, that the empirical
distribution at a fixed finite time converges to the law of Brownian motion conditioned to
stay inside the domain as the number of particles goes to infinity. These results have
been later improved and generalized to processes other than Brownian motion (e.g. [18],
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(Non-)extinction in a Fleming-Viot-type particle model

[1], [2], [21]) and also refined limit theorems such as theorems of central limit type have
been obtained. Interesting recent work include: [13], [24], [14], [12], [22], [4] and [26].

It turned out, that proving the non-extinction of the particle system, i.e. proving that
with probability one only finitely many jumps occur in finite time, is much more subtle
than initially thought. Under suitable regularity assumptions this property was proved in
[5, Theorem 5.4] and [20, Theorem 1] as well as in [28, Theorem 2.1]. In [6] the authors
demonstrated that extinction of the particle system can actually occur. In this paper the
authors in particular proved, that in the case of D = (0,∞) and two particles driven by
Bessel processes there is a phase transition. In fact in [6, Theorem 1.1(i)] it is shown,
that the two particle process goes extinct if and only if the parameter ν of the Bessel
process (in the parametrization (2.1)) is negative. Furthermore the authors are able
to prove the non-extinction of a N-particle system driven by Bessel processes, if the
parameter ν is greater or equal to 2/N .

In this work we are interested in the case of N ≥ 3 particles. We give sufficient
conditions ensuring the extinction and non-extinctions of the particle system in terms
of an integral test, which involves a probability measure, which seems difficult to
calculate explicitly. Still we demonstrate that the criterion can be applied efficiently
to establish non-extinction of the particle system. In particular, we in some sense
give an affirmative answer to a converse of [6, Open Problem 1.5] in Theorem 5.4:
There exists a Fleming-Viot-type process with extinction almost surely, for the 2-particle
system, but non-extinction with probability one for the 3-particle system. This illustrates
that generally speaking adding another particle to the system potentially does cause
non-extinction.

The rest of the paper is organized as follows: Section 2 is used to formalize the
problem and to rigorously formulate the notion of the model’s inherent symmetry.
Brownian Scaling for generalized Bessel processes is put to use in order for Corollary 2.7
to entail an alternative description of the law in question. In the subsequent section
a few calculations of some density functions are carried out to be used later on. In
Section 4, aspects of the theory of Markov chains in uncountable state spaces is utilized
to see, that the underlying Hidden Markov Model behaves well implying the criterion 4.5
as result. As an application, in the succeeding section the case of three particles is
considered and the result 5.4 is achieved.

Finally, in the closing sections we briefly discuss two possible directions of related
further research and append some formulas used from external sources and prove two
integral formulas we use in Section 3.

2 Notation and basic properties

This section follows the notion, that we only need to know the particles’ positions at
jumping times and how long it took for the next jump to occur. Without loss of generality
the positive positions of the particles not jumping may be indexed in ascending order.
Next, by a scaling property of generalized Bessel processes, we may transform the
problem to polar coordinates and see that the next position only depends on the angles
of the old positions. The dependency structure is expressible as Hidden Markov Model
and entails us to give an alternative expression for the extinction probability. This will
imply an abstract criterion in Section 4.

2.1 Problem formulation

Let us start by giving a more formal description of the problem under investigation:
We consider a system (Xt)t≥0 = (X1

t , . . . , X
N
t )t≥0 of N ∈ N, N ≥ 2 particles starting in

X0 = x0 ∈ (0,∞)N . We will generally use the superindex to distinguish components
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(Non-)extinction in a Fleming-Viot-type particle model

and denote the time in the subindex. Px0
(·) and Ex0

[·] represent probabilities and
expectations regarding events and functionals of Xt starting in x0. As long as no particle
reaches 0, they move independently according to the generalized Bessel processes with
parametrization

dXj
t = dBjt +

(ν − 1)/2

Xj
t

dt, j = 1, . . . , N. (2.1)

Here, Bjt are independent Brownian motions. The stopping time

τ1 :=
N

min
j=1

inf{t > 0 : lim
s↑t

Xj
s = 0}

denotes the first time any of the particles would hit 0. Note, that Px0
(τ1 <∞) = 1 if and

only if ν < 2 and in that case there is some unique j with τ1 = inf{t > 0 : lims↑tX
j
s = 0}

almost surely. This particle with superindex j will be set independently and uniformly
to the position of one of the other N − 1 particles at time τ1. Therefore, the system
stays in the state space (0,∞)N and the jump is implemented in a fashion, the paths
of all particles being càdlàg. After the jump the particles again move as independent
generalized Bessel processes until time τ2 where τn := τn−1 + τ ◦ θτn−1 for n ≥ 2 and θs
denotes the time shift θs((Xt)t≥0) := (Xs+t)t≥0. The mechanism is repeated inductively;
the system (Xt) is a Markovian process in continuous time 0 ≤ t < limn→∞ τn and state
space (0,∞)N with càdlàg paths. Since there is no natural way to define the process for
time points t ≥ limn→∞ τn =: τ∞ the question arises if that limit in fact diverges (i.e. no
extinction occurs) almost surely. Without loss of generality we may assume ν < 2.

2.2 Symmetry of the model

Let Xt− := lims↑tXs denote the limit from the left. To simplify notation we formally
define

X0− := x0− ∈ H :=

N⋃·
j=1

(0,∞)j−1 × {0} × (0,∞)N−j (2.2)

meaning that with xj0− = 0 for all l ∈ {1, . . . , N} \ {j} it holds

Px0−

(
X0 = (x10−, . . . , x

j−1
0− , xl0−, x

j+1
0− , . . . , xN0−)

)
= 1/(N − 1).

Upon setting τ0 := 0 we may consider the jump time chain (
◦
Xn)n∈N0

:= (Xτn−)n∈N0
as

discrete time Markov chain on state space H.
For x ∈ H and a permutation π ∈ SN on {1, . . . , N} let us introduce the notation

xπ := (xπ(1), . . . , xπ(N)) and for subsets A ⊆ H let us define Aπ := {aπ : a ∈ A}. Observe,
that for starting values x0 ∈ H, permutations π ∈ SN , measurable sets A ∈ B(H) and
time indices n ∈ N0:

Px0

( ◦
Xn ∈ A

)
= Pxπ0

( ◦
Xπ−1

n ∈ A
)

= Pxπ0

( ◦
Xn ∈ Aπ

)
.

For x, y ∈ H let the equivalence relation x!y hold, if and only if y = xπ for some
π ∈ SN . Let [x] := {xπ : π ∈ Sn} the equivalence class of x ∈ H. For subsets A ⊆ H let
A/! := {[a] : a ∈ A} the corresponding set of equivalence classes. The set B(H)/! :=

{A/! : A ∈ B(H)} is a σ-field. Note, that A/! = B/! implies
⋃
π∈SN A

π =
⋃
π∈SN B

π

and that [x] = [y] implies κ(x,
⋃
π∈SN A

π) = κ(y,
⋃
π∈SN A

π) where

κ : H × (B(H))
⊗N0 → [0, 1], κ(x,A) = Px

(
(
◦
Xn)n∈N0

∈ A
)
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denotes the distribution of the jumping time chain (
◦
Xn)n∈N0

.

We can therefore define the Markov chain (
◦
Zn)n∈N0

= (
◦
Xn/!)n∈N0

on state space
H/! with probability measures (Qx)x∈H/! via

Q[x0]

( ◦
Zn ∈ A/!

)
:= Px0

(
◦
Xn ∈

⋃
π∈SN

Aπ

)
.

For x ∈ H let x↓ the uniquely determined representative of [x] with

x1 ≥ x2 ≥ . . . ≥ xN = 0

and for A ⊆ H let A↓ := {a↓ : a ∈ A}. Using this notation it holds

Q[x0]

( ◦
Zn ∈ A/!

)
= Px0

(
◦
Xn ∈

⋃
π∈SN

Aπ

)
= Px↓0

( ◦
X↓n ∈ A↓

)
.

We might as well consider the Markov chain (
◦
X↓n)n∈N0 on {x ∈ (0,∞)N−1 × {0} : x1 ≥

x2 ≥ . . . xN = 0}. This suggests to neglect the redundant 0 in the last N -th component.
Finally, we may define

Q[z0](Zn ∈ A/!) := Q[(z10 ,...,z
N−1
0 ,0)](

◦
Zn ∈ {[(a1, . . . , aN−1, 0)] : a ∈ A})

= P(z10 ,...,z
N−1
0 ,0)(

◦
Xn ∈ {(a1, . . . , aN−1, 0)π : a ∈ A, π ∈ SN})

=
1

N − 1

N−1∑
l=1

P(z10 ,...,z
N−1
0 ,zl0)

(Xτn− ∈ {(a1, . . . , aN−1, 0)π : a ∈ A, π ∈ SN}).

This leads to

Definition 2.1. Let (Yn)n∈N0
:= ((X↓τn−)1, . . . , (X↓τn−)N−1)n∈N0

denote the Markov chain

on the state space (0,∞)N−1
↓
.

2.3 Self-similarity of generalized Bessel processes

In what follows we substantially want to exploit the scaling property of generalized

Bessel processes. Let ‖x‖ :=
(∑

j

(
xj
)2)1/2

denote the Euclidean norm. Let again

H :=
⋃·Nj=1 (0,∞)j−1 × {0} × (0,∞)N−j as in (2.2) denote the subspace of [0,∞)N where

exactly one component equals 0 and let m : H → {1, . . . , N}, m(x) := arg{j : xj = 0} the
mapping picking that component. Moreover, for x ∈ H and l ∈ {1, . . . , N}\{m(x)} define

y(x, l) := (x1, . . . , xm(x)−1, xl, xm(x)+1, . . . , xN ) ∈ (0,∞)N .

We now describe given N ∈ N, N ≥ 2, a “normed” Fleming-Viot N -particle process
(Xt)t≥0 to the parameter ν < 2 on the state space (0,∞)N . In a nutshell, ahead each
jumping time, we normalize the (N − 1) positive particles by dividing by their norm
‖Xτn−‖. Just after the jump, their norm will then be strictly larger than 1.

Definition 2.2. Let (Vn)n∈N0
a family of independent random variables uniformly dis-

tributed on {1, . . . , N−1} independently from anything else. For n ∈ N0 let τn := τn((X)),
i.e.

τ0 = 0, τn =
N

min
j=1

inf{t > τn−1 : X
j

s− = 0} for n ∈ N.

The components (X
j

t ), j = 1, . . . , N move during time points t ∈ (τn−1, τn) independently
from (Vn) and independently from each other according to a Bessel process starting in
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X
j

τn−1
and global parameter ν < 2 in the sense of (2.1). Denoting bn : {1, . . . , N − 1} →

{1, . . . , N} \ {m(Xτn−)} for the unique order preserving bijection we set

Xτn := y

(
Xτn−

‖Xτn−‖
, bn(Vn)

)
, n ∈ N0.

In order to facilitate an alternative problem formulation we must relate the normed
Fleming-Viot process Xt with the original process Xt, i.e. we must be able to properly
scale it back so we have no loss of information:

Definition 2.3. We define for n ∈ N0 the backscaled (series of) jumping times

τbs
n :=

n∑
k=1

k∏
j=1

‖Xτj−1−‖2 · (τk − τk−1)

and the backscaled process

Xbs
t :=

∞∑
n=1

1[τbs
n−1,τ

bs
n )(t)

 n∏
j=1

‖Xτj−1−‖ ·Xτn−1+(t−τbs
n−1)/

∏n
j=1‖Xτj−1−‖2

 .

Proposition 2.4 (cf. the alternative construction of the Fleming-Viot process in the
beginning of the proof of [6, Theorem 1.1 (i)].). Let X0− := x0− ∈ H arbitrary and set
X0− := x0−. Then the processes (Xt) and (Xbs

t ) are identically distributed.

Proof. We will use the following scaling invariance: If c > 0 and Xt a generalized Bessel
process stopped at the origin starting in x0 > 0 and Yt an independent generalized Bessel
process stopped at the origin starting in x0/c, the processes (1[0,inf{s:Xs=0})(t)Xt) and
(1[0,c2·inf{s:Ys=0})(t) c · Yt/c2) are identically distributed.

To this end, let us inductively show for M ∈ N:

M∑
n=1

1[τbs
n−1,τ

bs
n )X

bs d
=

M∑
n=1

1[τn−1,τn)X.

Start of induction (M = 1): Firstly, by assumption

Xbs
0 = ‖x0−‖ · y (x0−/‖x0−‖, b0(V0)) = y(x0−, b0(V0))

d
= X0.

By the scaling property

1[τbs
0 ,τ

bs
1 )X

bs = 1[0,‖x0−‖2τ1)‖x0−‖ ·X •/‖x0−‖2
d
= 1[τ0,τ1)X.

Inductive step (M → M + 1): By induction hypothesis, τbs
M

d
= τM and Xbs

τbs
M−

d
= XτM−.

Hence

Xbs
τbs
M

=

M+1∏
j=1

‖Xτj−1−‖ ·XτM = ‖Xbs
τbs
M−
‖ · y

(
Xτn−/‖Xτn−‖, bn(Vn)

)
= ‖Xbs

τbs
M−
‖ · y

(
Xbs
τbs
M−

/‖Xbs
τbs
M−
‖, bn(Vn)

)
= y

(
Xbs
τbs
M−

, bM (UM )
)
d
= XτM

and again by scaling

1[τbs
M ,τ

bs
M+1)

Xbs = 1[τbs
M ,τ

bs
M+1)

‖Xbs
τbs
M−
‖ ·XτM+(• −τbs

M )/‖Xbs

τbs
M
−
‖2

d
= 1[τM ,τM+1)X.
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Remark 2.5. Definition 2.2 and Definition 2.3 may be regarded to as generalization of
the construction given in the beginning of the proof of [6, Theoream 1.1 (i)] where the
scaling invariance of generalized Bessel processes was used as well. Here, for N > 2 the

sequence of random variables (X
↓
τn−/‖X

↓
τn−‖)n∈N0

is not deterministic.

We are now ready to consider the normed process written with descending ordering
and introduce some new letters for sequences of random variables to be used later on.

Definition 2.6. Let us change to polar coordinates upon defining

(Y n, Tn)n∈N0
:= (((X

↓
τn−)1, . . . , (X

↓
τn−)N−1), τn − τ (n−1)∨0)n∈N0

'
(

Y n

‖Y n‖
, ‖Y n‖, Tn

)
n∈N0

=: (Un, Rn, Tn)n∈N0
.

The following picture illustrates the dependency structure implied by Proposition 2.4:
Given the direction Un of the particles immediately ahead a jump, there is a Markovian
transition kernel to the direction Un+1 immediately ahead the next jump, the factor Rn+1

by which the magnitude will change and the time Tn+1 it will take. The marginals of
(Un+1, Rn+1, Tn+1) given Un are not independent.

U0 U1 U2 U3

(R0, T0) (R1, T1) (R2, T2) (R3, T3)

· · ·

· · ·

In other words: (Mn)n∈N0
:= ((Un, Un+1), (Rn+1, Tn+1))n∈N0 is a hidden Markov model

(HMM) with hidden chain (Un, Un+1) and observed chain (Rn+1, Tn+1) on the product
space S2 × (0,∞)2 where

S := {x = (x1, . . . , xN−1) ∈ (0,∞)N−1
↓

: ‖x‖ = 1}. (2.3)

Corollary 2.7. Under the assumptions of Proposition 2.4 it holds

τ∞
d
= ‖x0−‖2

∞∑
k=1

k−1∏
j=1

‖Xτj−‖2 · (τk − τk−1) = R2
0

∞∑
k=1

k−1∏
j=1

R2
j · Tk.

3 Densities

In this section we calculate several density functions for later usage. Some of the
technical aspects are outsourced to the appendix.

Lemma 3.1. The Markov chain (Yn) from Definition 2.1 admits a density function hy0(y)

of the form

hy0(y) =
2

N − 1

N−1∑
j,k=1

∑
π∈SN−1

π(k)≤π(j)

∫ ∞
0

gyk0 (t) ft(y
j
0, y

π(k))

N−1∏
s=1
s 6=k

ft(y
s
0, y

π(s)) dt,

where

gx(t) = Px(inf{t > 0 : X1
t = 0} ∈ dt) (3.1)
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is the density function of the hitting time of 0 of a generalized Bessel process and

ft(x, y) = Px(X1
t ∈ dy,min{Xs : s ≤ t} > 0) (3.2)

is the transition density of a generalized Bessel process stopped in the origin starting at
x > 0 and moving to y > 0 at time t > 0.

Proof. Let y0 ∈ (0,∞)N−1
↓

and A ∈ B
(

(0,∞)N−1
↓
)

arbitrary. By independence the

transition density of ((X↓t )1, . . . , (X↓t )N−1) up to the first jump is given by

Py0(Y1 ∈ A) =
1

N − 1

N−1∑
j=1

P(y10 ,...,y
N−1
0 ,yj0)

(Xτ− ∈ {(a1, . . . , aN−1, 0)π : a ∈ A, π ∈ SN})

=
1

N − 1

N−1∑
j=1

(
2

∫ ∞
0

∫
⋃

π∈SN−1

Aπ

N−1∏
s=1

ft(y
s
0, y

s) dy gyj0
(t) dt

+

N−1∑
k=1
k 6=j

∫ ∞
0

∫
⋃

π∈SN−1

Aπ
ft(y

j
0, y

k)

N−1∏
s=1
s6=k

ft(y
s
0, y

s) dy gyk0 (t) dt

)
.

=

∫
A

2

N − 1

N−1∑
j=1

( ∑
π∈SN−1

∫ ∞
0

N−1∏
s=1

ft(y
s
0, y

π(s)) gyj0
(t) dt

+

N−1∑
k=1
k 6=j

∑
π∈SN−1

π(k)<π(j)

∫ ∞
0

ft(y
j
0, y

π(k))

N−1∏
s=1
s 6=k

ft(y
s
0, y

π(s)) gyk0 (t) dt

)
dy

=

∫
A

2

N − 1

N−1∑
j,k=1

∑
π∈SN−1

π(k)≤π(j)

∫ ∞
0

ft(y
j
0, y

π(k))

N−1∏
s=1
s 6=k

ft(y
s
0, y

π(s)) gyk0 (t) dt dy.

In the second equation we have first considered both cases where the dying particle
starts from the doubly occupied position. In the third equation we have used that for
π1 6= π2 ∈ SN−1 it holds

Aπ1 ∩Aπ2 ⊆ (0,∞)N−1
↓π1

∩ (0,∞)N−1
↓π2

⊆
N−1⋃
j,k=1
j 6=k

{a ∈ (0,∞)N−1 : aj = ak}

which is a Lebesgue null set.

Remark 3.2. Accounting for the time length and using polar coordinates the Markov
transition from (Un) to (Un+1, Rn+1, Tn+1) as in Definition 2.6 is thereby given by the
density

h̃u0
(u, r, t) =

2rN−2

N − 1

N−1∑
l,k=1

∑
π∈SN−1

π(k)≤π(l)

guk0 (t) ft(u
l
0, r · uπ(k))

N−1∏
s=1
s 6=k

ft(u
s
0, r · uπ(s))

for u0, u ∈ S as in Definition 2.3 and r, t ∈ (0,∞) with the factor rN−2 accounting for the
functional determinant of the coordinate transformation.

Definition 3.3. Let 0 < w := 1− ν/2 an alternative representation of the drift parameter
in the generalized Bessel processes.
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Lemma 3.4 (cf. [27, Theorem 8 (ii)].). Using the parameterization with w > 0 the density
function hy0(y) in Lemma 3.1 may be computed to

hy0(y)

=
2N
(∏N−1

s=1 ys0

)2w∏N−1
s=1 ys

(N − 1)Γ(w)

∞∑
k1,...,kN−1=0

[
Γ
(

(w + 1)N − 1 + 2
∑N−1
s=1 ks

)
∏N−1
s=1 [Γ(ks + w + 1)ks!]

N−1∏
s=1

(ys)
2ks ×

×
N−1∑
i=1

(
yi0
)2w∑N−1

j=1

∑
π∈SN−1

π(i)≤π(j)

[(
yi0
)2kπ−1(j)

∏N−1
s=1

s6=π−1(j)

(
y
π(s)
0

)2ks]
((
yi0
)2

+
∑N−1
s=1

[
(ys0)

2
+ (ys)

2
])(w+1)N−1+2

∑N−1
s=1 ks

]
.

Proof. According to [7, Appenix 1.21] for w > 0 the transition density of a generalized
Bessel process stopped in the origin starting at x > 0 and moving to y > 0 at time t > 0

is given by

Px(X1
t ∈ dy,min{X1

s : s ≤ t} > 0)

= ft(x, y) :=
x2wy

2wtw+1
exp

(
−x

2 + y2

2t

) ∞∑
k=0

(
xy
2t

)2k
k! Γ(k + 1 + w)

(3.3)

and according to [25, Proposition 2.9] or to [19, Expression (15)] which is true for ν < 0

also, the density of the hitting time of 0 is given by

Px(inf{t > 0 : X1
t = 0} ∈ dt) = gx(t) :=

x2w

2wtw+1Γ(w)
exp

(
−x

2

2t

)
. (3.4)

Using monotone convergence theorem we generally rearrange expressions of the
form

∫∞
0

∏N−1
j=1 ft

(
xj , yj

)
gxN (t) dt with all variables positive and apply Lemma A.1:

∫ ∞
0

N−1∏
j=1

ft
(
xj , yj

)
gxN (t) dt

=

(∏N
j=1 x

j
)2w∏N−1

j=1 yj

2NwΓ(w)

∞∑
k1,...,kN−1=0

[(N−1∏
j=1

(
xjyj

2

)2kj
kj !Γ(kj + w + 1)

)
×

×
∫ ∞
0

t−N(w+1)−2
∑N−1
j=1 kj exp

(
−
∑N
j=1

(
xj
)2

+
∑N−1
j=1

(
yj
)2

2t

)
dt

]

=
2N−1

(∏N
j=1 x

j
)2w∏N−1

j=1 yj

Γ(w)
×

×
∞∑

k1,...,kN−1=0

[
Γ
(
−1+N(w+1)+2

∑N−1
j=1 kj

)
∏N−1
j=1 Γ(kj + w + 1)kj !

∏N−1
j=1

(
xjyj

)2kj(∑N
j=1(xj)

2
+
∑N−1
j=1 (yj)

2
)−1+N(w+1)+2

∑N−1
j=1 kj

]
.

In view of Lemma 3.1 this implies for the density function

hy0(y) =
2

N − 1

N−1∑
i,j=1

∑
π∈SN−1

π(i)≤π(j)

∫ ∞
0

ft(y
i
0, y

π(j))

N−1∏
s=1
s6=j

ft(y
s
0y
π(s)) gyj0

(t) dt
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=
2

N − 1

N−1∑
i,j=1

∑
π∈SN−1

π(i)≤π(j)

2N−1
(
yi0
∏N−1
s=1 ys0

)2w∏N−1
s=1 yπ(s)

Γ(w)
×

×
∞∑

k1,...,kN−1=0

[
Γ
(

(w + 1)N − 1 + 2
∑N−1
s=1 ks

)
∏N−1
s=1 [Γ(ks + w + 1)ks!]

×

×

(
yi0y

π(j)
)2kj ∏N−1

s=1
s6=j

(
ys0y

π(s)
)2ks

((
yi0
)2

+
∑N−1
s=1

[
(ys0)

2
+
(
yπ(s)

)2])(w+1)N−1+2
∑N−1
s=1 ks

]

=
2N
(∏N−1

s=1 ys0

)2w∏N−1
s=1 ys

(N − 1)Γ(w)

∞∑
k1,...,kN−1=0

[
Γ
(

(w+1)N−1+2
∑N−1
s=1 ks

)
∏N−1
s=1 [Γ(ks + w + 1)ks!]

N−1∏
s=1

(ys)
2ks×

×
N−1∑
i=1

(
yi0
)2w∑N−1

j=1

∑
π∈SN−1

π(i)≤π(j)

[(
yi0
)2kπ−1(j)

∏N−1
s=1

s6=π−1(j)

(
y
π(s)
0

)2ks]
((
yi0
)2

+
∑N−1
s=1

[
(ys0)

2
+ (ys)

2
])(w+1)N−1+2

∑N−1
s=1 ks

]
.

Definition 3.5. Let σ := σN−2 the (N − 2)-dimensional Riemannian measure on the
sphere as (N − 2)-dimensional manifold in RN−1.

Lemma 3.6. The density function of the chain (Un)n∈N0 from Definition 2.6 with respect
to the Riemannian measure σ may be expressed as

p(u0, u) := Pu0(U1 ∈ du)/dσ(u0) =

∫ ∞
0

∫ ∞
0

h̃u0(u, r, t) dt dr =

∫ ∞
0

rN−2hu0(r · u) dr

=
2N−1

(∏N−1
s=1 us0

)2w∏N−1
s=1 us

(N − 1)Γ(w)
×

×
∞∑

k1,...,kN−1=0

[
Γ
(∑N−1

s=1 ks +Nw
)(∑N−1

s=1 ks +N − 2
)

!∏N−1
s=1 [Γ(ks + w + 1)ks!]

N−1∏
s=1

(us)
2ks ×

×
N−1∑
i=1

(
ui0
)2w∑N−1

j=1

∑
π∈SN−1

π(i)≤π(j)

[(
ui0
)2kπ−1(j)

∏N−1
s=1

s6=π−1(j)

(
u
π(s)
0

)2ks]
(

1 +
(
ui0
)2)∑N−1

s=1 ks+Nw

]
.

Proof. By applying Lemma A.5 in the Appendix we attain

∫ ∞
0

rN−2hu0(r · u) dr =
2N
(∏N−1

s=1 us0

)2w∏N−1
s=1 us

(N − 1)Γ(w)
×

×
∞∑

k1,...,kN−1=0

[
Γ
(

(w + 1)N − 1 + 2
∑N−1
s=1 ks

)
∏N−1
s=1 [Γ(ks + w + 1)ks!]

N−1∏
s=1

(us)
2ks ×

×
N−1∑
i=1

[(
ui0
)2w N−1∑

j=1

∑
π∈SN−1

π(i)≤π(j)

[(
ui0
)2kπ−1(j)

N−1∏
s=1

s6=π−1(j)

(
u
π(s)
0

)2ks]
×

×
∫ ∞
0

r2N−3+2
∑N−1
s=1 ks((

ui0
)2

+ 1 + r2
)(w+1)N−1+2

∑N−1
s=1 ks

dr

]]
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=
2N−1

(∏N−1
s=1 us0

)2w∏N−1
s=1 us

(N − 1)Γ(w)
×

×
∞∑

k1,...,kN−1=0

[
Γ
(∑N−1

s=1 ks +Nw
)(∑N−1

s=1 ks +N − 2
)

!∏N−1
s=1 [Γ(ks + w + 1)ks!]

N−1∏
s=1

(us)
2ks ×

×
N−1∑
i=1

(
ui0
)2w∑N−1

j=1

∑
π∈SN−1

π(i)≤π(j)

[(
ui0
)2kπ−1(j)

∏N−1
s=1

s6=π−1(j)

(
u
π(s)
0

)2ks]
(

1 +
(
ui0
)2)∑N−1

s=1 ks+Nw

]
.

Remark 3.7. By construction, the index i ∈ {1, . . . , N − 1} indicates which particle
replicates and from the position uj0 one (out of at most two) particle dies. Particularly,
the mappings

pi : (u0, u) 7→ Pu0
(U1 ∈ dσ(u),particle i replicates)/dσ(u)=

2N−1
(∏N−1

s=1 us0

)2w∏N−1
s=1 us

(N−1)Γ(w)
×

×
∞∑

k1,...,kN−1=0

[
Γ
(∑N−1

s=1 ks +Nw
)(∑N−1

s=1 ks +N − 2
)

!∏N−1
s=1 [Γ(ks + w + 1)ks!]

N−1∏
s=1

(us)
2ks ×

×

(
ui0
)2w∑N−1

j=1

∑
π∈SN−1

π(i)≤π(j)

[(
ui0
)2kπ−1(j)

∏N−1
s=1

s6=π−1(j)

(
u
π(s)
0

)2ks]
(

1 +
(
ui0
)2)∑N−1

s=1 ks+Nw

]

define transition densities to subkernels with total mass 1/(N − 1).

Example 3.8. In the case of N = 3 the expression in Lemma 3.6 reads

p(u0, u) =
2
(
u10
)2w (

u10
)2w

u1u2

(N − 1)Γ(w)
×

×
∞∑

k1,k2=0

[
Γ (k1 + k2 + 3w) · (k1 + k2 + 1)!

Γ(k1 + w + 1) Γ(k2 + w + 1)

(
u1
)2k1
k1!

(
u2
)2k2
k2!

×

×

((u10)2w [(u10)2k1 (u20)2k2 (
u20
)2k1 (

u10
)2k2 (

u10
)2k1 (

u10
)2k2]

(
1 + (u10)

2
)k1+k2+3w

+

(
u20
)2w [(

u10
)2k1 (

u20
)2k2 (

u20
)2k1 (

u10
)2k2 (

u20
)2k1 (

u20
)2k2]

(
1 + (u20)

2
)k1+k2+3w

)]
.

Those six summands with their plus sign bold faced correspond to the following
cases:

i)

0 u20
[0,∞)u10

ii)

0 u20
[0,∞)u10
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iii)

0 u20
[0,∞)u10

iv)

0 u20
[0,∞)u10

v)

0 u20
[0,∞)u10

vi)

0 u20
[0,∞)u10

The figures in the first line illustrate i = j = 1 where in the left one the surviving
particles preserve their order and on the right they switch. The figure in the second line
of the display shows the situation i = 1, j = 2. In the third line, the particle from position
u20 replicated (i = 2) and also one of the two particles starting in u20 dies (j = 2). Finally,
in last figure, i = 2, j = 1.

4 (Non-)extinction criterion

The main result of this section is Theorem 4.5 which may be seen as simplification of
the original problem in question. It would be highly desirable to compute or approximate
the invariant probability measure η in Definition 4.3 in order to state more precise
results.

4.1 Markov chain analysis

We work in the framework of Markov chains in uncountable state space as laid out in
[15, Chapter 5, 9-11, 15]. The basic proof idea for Proposition 4.1 is that in the critical
regime of the state space in question, at least one component is small. But then by the
model under consideration the time-continuous moving has only a small amount of time
to emerge and the process is dominated by the jump mechanism. This allows at least
for a positive probability 1/(N − 1) to make one small particle large by jumping to the
largest of the (N − 1) others, which is at least 1/

√
N − 1. Iterating this N − 2 times

ensures all particles to be sufficiently large even at a geometric rate.
Technically, the transition function p of the chain of directions Un on S may be written

in terms of Lauricella series (cf. Definition A.8 in the Appendix). Starting at u0 ∈ S
with uN−10 close to zero means the particles are scarcely given time to evolve and
the discontinuous jump mechanism dominates. The density p(u0, ·) becoming singular
corresponds to the arguments of the Lauricella series approaching the boundary of the
domain of convergence.

Proposition 4.1. The Markov chain (Un) is irreducible with the (N − 2)-dimensional
spherical measure σ as maximal irreducibility measure, strongly aperiodic, positive
Harris and uniformly geometrically ergodic. The unique invariant probability measure
admits a density with respect to σ which is strictly positive σ– a.e.

Proof. In view of Lemma 3.6 the density function p : S2 → (0,∞) is a positive continuous
mapping and therefore has a positive minimum on the compact set

C0 :=

{
u ∈ S : uN−1 ≥

(
1

2
√

2

)N−2
/
√
N − 1

}
;
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i.e.
min

u0,u∈C0

p(u0, u) =: δ > 0.

Consequently, C0 is an (1, ξ)-small set for the kernel of the Markov chain (Un) in the
sense of [15, Definition 9.1.1] where

ξ : B(S)→ [0,∞), ξ(A) := δσ(A ∩ C0).

Due to ξ(C0) = δσ(C0) > 0 we further see, that C0 is strongly aperiodic in the sense
of [15, Definition 9.1.2]. Moreover, any set A ∈ B(S) with σ(A) > 0 is accessible
in the sense of [15, Definition 3.5.1] since for arbitrary u0 ∈ S for the return time
σA := inf{n ∈ N : Un ∈ A}

Pu0(σA <∞) ≥ Pu0(U1 ∈ A) =

∫
A

p(u0, u) dσ(u) > 0.

Particularly, the set C0 is accessible and the kernel of (Un) is seen to be irreducible by
means of [15, Definition 9.2.1]. The argument also exhibits σ to be an irreducibility
measure in the sense of [15, Definition 9.2.2]. Conversely, consider a set A ∈ B(S) with
σ(A) = 0. Then,

Pu0
(σA <∞) ≤

∞∑
n=1

Pu0
(Un ∈ A) ≤

∞∑
n=1

sup
u0∈S

Pu0
(U1 ∈ A)

=

∞∑
n=1

sup
u0∈S

∫
A

p(u0, u) dσ(u) = 0

for u0 ∈ S. This shows that σ is a maximal irreducibility measure, that is, the set of
accessible sets is given by {A ∈ B(S) : σ(A) > 0}. Following [15, Definition 9.3.5] not
only the set C0 but also the kernel of (Un) is strongly aperiodic.

We now turn to Harris recurrence and positivity properties of (Un). Observe, that for
compact sets K ⊆ S, it holds

inf
u0∈K

Pu0
(U1 ∈ C0) = min

u0∈K

∫
C0

p(u0, u) dσ(u) > 0, (4.1)

since the mapping S → (0, 1], u0 7→
∫
C0
p(u0, u) dσ(u) is continuous and p is strictly

positive. The space K := S is not compact, but still we will show

inf
u0∈S

Pu0
(∪N−2n=1 {Un ∈ C0}) > 0.

For this to end, define given an index j ∈ {1, . . . , N − 1}, a permutation π ∈ SN−1 and
u0 ∈ S the symbol ũ0π,j := ũ0π,j(u0) by

ũ0
s
π,j :=

{
u
π(s)
0 , s 6= π−1(j),

u10, s = π−1(j),

and additionally given u ∈ S define xπ,j := xπ,j(u0, u) by

xsπ,j :=
(us)

2

1 + (u10)
2 ·
(
ũ0
s
π,j

)2
.

Further, for k ∈ {0, . . . , N − 2} we consider the sets

Ck :=

{
u ∈ S : uN−1−k ≥

(
1

2
√

2

)N−2−k
/
√
N − 1

}
.
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We will now show, that for all j ∈ {1, . . . , N − 1}, π ∈ SN−1 and k ∈ {1, . . . , N − 2} it holds

sup
u0∈Ck

u∈S\Ck−1

N−1∑
s=1

(
xsπ,j

)1/2
< 1. (4.2)

Proof of (4.2): Let 〈x, y〉 :=
∑N−1
s=1 xs · ys denote the scalar product on the Euclidean

space RN−1. By the classical rearrangement inequality [23, Theorem 368]

N−1
max
j=1

max
π∈SN−1

N−1∑
s=1

(
xsπ,j

)1/2
=

N−1
max
j=1

〈
(u10, u

1
0, . . . , u

j−1
0 , uj+1

0 , . . . , uN−10 )√
1 + (u10)

2
, u

〉
.

In the case j ≤ N − 1− k we find using 〈x, y〉 ≤ ‖x‖ · ‖y‖

sup
u0∈Ck

〈
(u10, u

1
0, . . . , u

j−1
0 , uj+1

0 , . . . , uN−10 )√
1 + (u10)

2
, u

〉
≤ sup
u0∈Ck

1 +
(
u10
)2 − (uj0)2

1 + (u10)
2


1/2

< 1

and in the case j ≥ N − k we find using 〈x, y〉 = (‖x‖2 + ‖y‖2 − ‖x− y‖2)/2

sup
u0∈Ck

u∈S\Ck−1

〈
(u10, u

1
0, . . . , u

j−1
0 , uj+1

0 , . . . , uN−10 )√
1 + (u10)

2
, u

〉

≤ 1− 1

2
inf

u0∈Ck
u∈S\Ck−1

 uN−k−10√
1 + (u10)

2 −
(
uj0

)2 − uN−k


2

< 1.

This finishes the proof of (4.2). �

Let further denote (a)n := Γ(a+ n)/Γ(a) the Pochhammer symbol,

F
(n)
C (a, b, c1, . . . , cn, x1, . . . , xn) :=

∞∑
k1,...,kn=0

(a)k1+...+kn(b)k1+...+kn
(c1)k1 . . . (cn)knk1! · · · kn!

xk11 · · ·xknn

the C-type Lauricella hypergeometric series [17, (2.1.3)] convergent on {|x1|1/2 + . . .+

|xn|1/2 < 1} and the abbreviation

F (x) = F (x1, . . . , xN−1) := F
(N−1)
C (Nw,N − 1, w + 1, w + 1, . . . , w + 1; (xs)N−1s=1 ).

With this notation by hand, (4.2) implies: For all j ∈ {1, . . . , N − 1}, π ∈ SN−1, k ∈
{1, . . . , N − 2} it holds

sup
u0∈Ck

u∈S\Ck−1

F (xπ,j(u0, u)) <∞. (4.3)

For k ∈ {1, . . . , N − 2} and δ > 0 let us introduce the sets

Cδk := {u ∈ Ck : uN−1 < δ}.

With cw,N some constant depending on the Bessel parameter w and the number of
particles N only, if follows by (4.3) with the notation from Remark 3.7:

sup
u0∈Cδk

∫
Ck−1

p1(u0, u) dσ(u) ≤ σ(Ck−1) sup
u0∈Cδk

u∈S\Ck−1

p1(u0, u)

≤ σ(Ck−1) cw,N δ
2w

N−1∑
j=1

∑
π∈SN−1

π(1)≤π(j)

sup
u0∈Ck

u∈S\Ck−1

F (xπ,j(u0, u)) −−→
δ↓0

0.

(4.4)
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Provided by (4.4) let δ > 0 such that

sup
u0∈Cδk

∫
S\Ck−1

p1(u0, u) dσ(u) <
1

N − 1
/2.

If we then split

inf
u0∈Ck

Pu0
(U1 ∈ Ck−1) = inf

u0∈Ck\Cδk
Pu0

(U1 ∈ Ck−1) ∧ inf
u0∈Cδk

Pu0
(U1 ∈ Ck−1),

we see that the first infimum is positive since Ck \Cδk is compact and we may apply (4.1).
As for the second infimum, recalling Remark 3.7,

inf
u0∈Cδk

Pu0
(U1 ∈ Ck−1) ≥ inf

u0∈Cδk

∫
Ck−1

p1(u0, u) dσ(u)

=
1

N − 1
− sup
u0∈Cδk

∫
S\Ck−1

p1(u0, u) dσ(u) ≥ 1

N − 1
/2 > 0.

Therefore, for k ∈ {1, . . . , N − 2} it holds

inf
u0∈Ck

Pu0
(U1 ∈ Ck−1) > 0. (4.5)

We are now ready to prove for k ∈ {1, . . . , N − 2}:

inf
u0∈Ck

Pu0
(σC0

≤ k) > 0. (4.6)

Proof of (4.6): Let us show the claim by induction over k ∈ {1, . . . , N −2}. The base case
k = 1 is a consequence of Claim 4. Assuming the assertion for k − 1 ∈ {1, . . . , N − 3}
implies

inf
u0∈Ck

Pu0
(σC0

≤ k) ≥ inf
u0∈Ck

Pu0
(U1 ∈ Ck−1) · inf

u0∈Ck
Pu0

(σC0
| U1 ∈ Ck−1)

≥ inf
u0∈Ck

Pu0
(U1 ∈ Ck−1) · inf

u0∈Ck−1

Pu0
(σC0

≤ k − 1),

where the first factor is positive by (4.5) and the second factor is positive by induction
hypothesis. This finishes the proof of (4.6). �

As a consequence of (4.6), i.e. specifying to the case of k = N − 2,

κ := inf
u0∈S

Pu0(σC0 ≤ N − 2) > 0;

for each trial of N − 2 consecutive transitions, there is at least probability κ > 0 to return
to C0 during this time period. In other words, for G ∼ Geo(κ) geometrically distributed
supported on N with success parameter κ, i.e. P(G = l) = κ(1− κ)l−1 for l ∈ N, it holds

sup
u0∈S

Eu0
[σC0

] ≤ E[(N − 2) ·G] = (N − 2)/κ <∞. (4.7)

Following [15, Proposition 10.2.4], we deduce that (Un) is Harris recurrent and in view
of [15, Corollary 11.2.9] is further positive. Therefore, by [15, Theorem 9.2.15] the
unique invariant probability measure is a maximal irreducibility measure. We infer, that
it admits a positive density function. By [15, Lemma 9.4.8 (ii)], (4.7) shows that the state
space S is petite. Since our kernel is irreducible and aperiodic, every petite set is small.
Hence, also S is small and according to [15, Theorem 15.3.1] the kernel is uniformly
geometrically ergodic in the sense of [15, Definition 15.2.1].

EJP 27 (2022), paper 146.
Page 14/28

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP866
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


(Non-)extinction in a Fleming-Viot-type particle model

We use the formalism to transfer Proposition 4.1 to the enlarged state space applica-
ble to the HMM.

Proposition 4.2. The Markov kernel K of the HMM M = ((Un, Un+1), (Rn+1, Tn+1))n∈N0

is irreducible with maximal irreducibility measure σ
∣∣⊗2
B(S)⊗Leb

∣∣⊗2
B((0,∞))

, aperiodic, positive
Harris and uniformly geometrically ergodic. The invariant probability has positive density
h̃u1

(u2, r0, t0) pη(u1) with h̃ from Remark 3.2 and pη the invariant density of (Un).

Proof. Let δa(x) denote the Dirac-Delta distribution and dσ(u1, u2) := dσ(u2) dσ(u1) for
u = (u1, u2) ∈ S2. The Markov kernel Q of the hidden chain (Un, Un+1)n∈N0

on (S2,B(S2))

is given by

Q(u, V ) =

∫
V

δu2(v1) p(u2, v2) dσ(v),

where u ∈ S2 and V ∈ B(S2). The transition is independent of u1. Consider the kernel G
from (S2,B(S2)) to ((0,∞)2,B((0,∞)2)):

G((u1, u2), A) =

∫
A
hu1(u2, r, t) d(r, t)∫

(0,∞)2
hu1

(u2, r, t) d(r, t)
=

∫
A
hu1(u2, r, t) d(r, t)

p(u1, u2)
.

The Markov kernel of the HMM M = ((Un, Un+1), (Rn+1, Tn+1))n∈N0 is given by

K(((u1, u2), (r0, t0)), D) =

∫
D

G((v1, v2), d(r, t))Q((u1, u2), dv)

=

∫
D

hv1(v2, r, t) d(r, t)

p(v1, v2)
δu2

(v1) p(u2, v2) dσ(v) =

∫
D

hv1(v2, r, t) d(r, t) δu2
(v1) dσ(v)

as in [11, Equation (2.14)] and is independent of u1, r0, t0.
We have seen in the proof of Proposition 4.1 that the set

C0 :=

{
u ∈ S : uN−1 ≥

(
1

2
√

2

)N−2
/
√
N − 1

}

is small for (Un) because δ := minu0,u∈C0 p(u0, u) > 0 is positive. The measure

µ(D) := δ

∫
D∩(C0×S×(0,∞)2)

hw1(w2, ρ, s) d(ρ, s) dσ(w1, w2)

on B(S2 × (0,∞)2) is nonzero as

µ(C0 × S× (0,∞)2) = δ

∫
C0×S

p(w1, w2)dσ(w1, w2) = δ

∫
C0

dσ(w1) = δ σ(C0) > 0

and the set S × C0 × (0,∞)2 is (2, µ)-small with respect to K: For arbitrary x =

(u1, u2, r0, t0) ∈ S× C0 × (0,∞)2 and D ∈ B(S2 × (0,∞)2):

K2(x,D) ≥ K2(x,D ∩ (C0 × S× (0,∞)2))

=

∫
D∩(C0×S×(0,∞)2)

hw1
(w2, ρ, s) d(ρ, s) p(u2, w1) dσ(w1, w2) ≥ µ(D).

Next, we show, that sets D ∈ B(S2 × (0,∞)2) with
∫
D
d(ρ, s) dσ(w1, w2) > 0 are

accessible: Let x = (u1, u2, r0, t0) ∈ S2 × (0,∞)2 arbitrary. Then

Px(σD <∞) ≥ Px(σD ∈ {1, 2}) ≥ K2(x,D)
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=

∫
D

hw1
(w2, ρ, s) d(ρ, s) p(u2, w1) dσ(w1, w2) > 0.

This shows φ is an irreducibility measure and particularly, the small set S× C0 × (0,∞)2

is accessible since

φ(S× C0 × (0,∞)2) = σ(S) · σ(C0) · Leb((0,∞))2 =∞ > 0.

Therefore K is seen to be irreducible. Let us now consider a set D ∈ B(S2 × (0,∞)2)

with φ(D) = 0. From Fubini’s theorem it follows with Dv1,r,t := {v2 ∈ S : (v1, v2, r, t) ∈ D}

0 =

∫
(0,∞)2

∫
S

σ(Dv1,r,t) dσ(v1) d(r, t).

There must exist u2 ∈ S, r0, t0 ∈ (0,∞) such that σ(Du2,r0,t0) = 0. Then for x =

(u1, u2, r0, t0) with u1 ∈ S arbitrary

Px(τD <∞) ≤ K(x,D) +

∞∑
n=2

sup
x∈S2×(0,∞)2

K2(x,D).

Both summands vanish because for the first one

K(x,D) =

∫
(0,∞)2

∫
Du2,r,t

hu2(v2, r, t) dσ(v2) d(r, t)

where the inner integral is equal to zero since σ(Du2,r,t) = 0 and for the second summand

sup
x∈S2×(0,∞)2

K2(x,D) = sup
x∈S2×(0,∞)2

∫
D

hw1
(w2, ρ, s) p(u2, w1) d(ρ, s) dσ(w1, w2) = 0

since φ(D) = 0. In summary, we have computed φ to be a maximal irreducibility measure
for K. What is more, K is aperiodic since infx∈S×C0×(0,∞)2 K(x, S× C0 × (0,∞)2) > 0.

Writing

σD((Mn)) = inf{n ∈ N : Mn ∈ D}

for D ∈ B(S2 × (0,∞)2) to emphasize that σD is a return time for the process (Mn)n∈N0

the random values σS×C0×(0,∞)2((Mn)) and σC0
((Un)) relate in an easy way:

P−1(u0,1,u0,2,r0,t0)
◦ σS×C0×(0,∞)2((Mn)) = P−1u0,2

◦ σC0
((Un)).

This then enables us to use the same machinery as in the proof of Proposition 4.1
to deduce the HMM M to be positive Harris, uniformly geometrically ergodic with
the invariant probability having positive density with respect to σ

∣∣⊗2
B(S) ⊗ Leb

∣∣⊗2
B((0,∞))

.

Moreover, if η denotes the invariant probability measure of (Un) and pη its density such
that η(du) = pη(u) dσ(u) for u ∈ S, the invariant probability measure for K has density
hu1

(u2, r0, t0) pη(u1), since for D ∈ B(S2 × (0,∞)2)∫
S2×(0,∞)2

K(((u1, u2), (r0, t0)), D)hu1(u2, r0, t0) pη(u1) d(r0, t0) dσ(u1, u2)

=

∫
D

hv1(v2, r, t) pη(v1) d(r, t) dσ(v1, v2).

Definition 4.3. Let η denote the invariant probability of Un on S and µ denote the
invariant probability of Mn on S2 × (0,∞)2.
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4.2 Application of Birkhoff’s ergodic theorem

Definition 4.4. Let Pu0 denote the probability measure associated to the density h̃u0

from Remark 3.2 and Eu0 the corresponding expectation. Let Eη[·] =
∫
S
Eu0 [·] η(du0).

First assume that lnR1 and max{0, lnT1} are elements of L1(µ) which will be proved
later on (cf. Lemma 4.6 and Lemma 4.8). Then the following Theorem holds.

Theorem 4.5 (for the second part cf. [8, Theorem 9.1.1].). If Eη[lnR1] > 0 then τ∞ =∞
a.s. and if Eη[lnR1] < 0 then τ∞ <∞ a.s.

Proof. In view of Corollary 2.7 it is desirable to use Cauchy’s root test on the series. By
Proposition 4.1 combined with [15, Theorem 5.2.6], Lemma 4.6 and Lemma 4.8 below
tell us, that we may apply Birkhoff’s theorem for Markov chains [15, Theorem 5.2.9] on
the the HMM M to deduce for µ-almost all x = (u1, u2, r, t) ∈ S2 × (0,∞)2

1

k

k∑
j=1

lnRj → Eµ[lnR1] = Eη[lnR1]

Px-a.s. Similarly,

1

k

k∑
j=1

ln+ Tj
Px−a.s.−−−−−→
k→∞

Eµ[ln+ T1] <∞.

Thus, if Eη[lnR1] < 0 then a.s.

lim sup
k→∞

Tk k−1∏
j=1

R2
j

1/k

≤ exp

lim sup
k→∞

1

k

k∑
j=1

ln+ Tj −
1

k

k−1∑
j=1

ln+ Tj+
2

k

k−1∑
j=1

lnRj

 < 1,

which by Cauchy’s root test implies τ∞ <∞ a.s.
On the other hand, [15, Corollary 5.2.13] implies that for µ-almost all x ∈ S2× (0,∞)2,

Px-almost surely, for A := {l ∈ N : Tl ≥ 1} it holds |A| =∞. In other words, there exists
an increasing subsequence (kl)l∈N such that {kl : l ∈ N} = A and we infer in the case
Eη[lnR1] > 0

lim sup
k→∞

Tk k−1∏
j=1

R2
j

1/k

≥ exp

lim sup
l→∞

 2

kl

kl−1∑
j=1

lnRj

 > 1.

This finishes the proof.

4.3 Integrability of the ergodic elements

We use some calculation techniques already used before to show some quantities
under consideration are in L1(µ). Together with Lemma 4.8 this can be seen as prepara-
tion in order to use Birkhoff’s ergodic theorem in the proof of this section’s main result
Theorem 4.5.

Lemma 4.6. The expectation Eµ[| lnR1|] < ∞ is finite and for arbitrary u0 ∈ S the
expectation Eu0

[| lnR1|] <∞ is finite.

Proof. Define the interval I := [1/2, 2
√

2] and Ic := (0,∞) \ I = (0, 1/2) ∪ (2
√

2,∞). Then

Eµ[| lnR1|] =

∫
S2

∫ 2
√
2

1/2

| ln r| rN−2 hu0
(r · u) dr pη(u0) dσ(u0, u)

+

∫
S2

∫
Ic
| ln r| rN−2 hu0(r · u) dr pη(u0) dσ(u0, u).

(4.8)

EJP 27 (2022), paper 146.
Page 17/28

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP866
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


(Non-)extinction in a Fleming-Viot-type particle model

The first summand in Equation (4.8) is finite since∫
S2

∫ 2
√
2

1/2

| ln r| rN−2 hu0
(r · u) dr pη(u0) dσ(u0, u) ≤ max

1/2≤r≤2
√
2
| ln r| <∞.

Let us turn to the second summand in Equation (4.8). For u0, u ∈ S, r > 0 by
Lemma 3.4,

hu0(r · u) =
rN−12N

(∏N−1
s=1 us0

)2w∏N−1
s=1 us

(N − 1)Γ(w)
×

×
∞∑

k1,...,kN−1=0

[
Γ
(

(w + 1)N − 1 + 2
∑N−1
s=1 ks

)
∏N−1
s=1 [Γ(ks + w + 1)ks!]

N−1∏
s=1

(r · us)2ks ×

×
N−1∑
i=1

(
ui0
)2w∑N−1

j=1

∑
π∈SN−1

π(i)≤π(j)

[(
ui0
)2kπ−1(j)

∏N−1
s=1

s6=π−1(j)

(
u
π(s)
0

)2ks]
((
ui0
)2

+ 1 + r2
)(w+1)N−1+2

∑N−1
s=1 ks

]
.

Given indices i, j ∈ {1, . . . , N − 1}, a permutation π ∈ SN−1 and u0 ∈ S, we define the
symbol ũ0π,j,i := ũ0π,j,i(u0) by

ũ0
s
π,j,i :=

{
u
π(s)
0 , s 6= π−1(j),

ui0, s = π−1(j),

and additionally given r > 0 and u ∈ S define xπ,j,i,r := xπ,j,i,r(u0, u) by

xsπ,j,i,r :=

(
2r ũ0

s
π,j,i u

s(
ui0
)2

+ 1 + r2

)2

and let

F
(
(xs)N−1s=1

)
:= F

(N−1)
C

(
(w + 1)N − 1

2
,

(w + 1)N

2
, w + 1, . . . , w + 1, (xs)N−1s=1

)
the corresponding Lauricella series to write using the Legendre duplication formula for
the Gamma function

hu0
(r · u) =

rN−12(w+2)N−2
(∏N−1

s=1 us0

)2w∏N−1
s=1 us Γ

(
(w+1)N−1

2

)
Γ
(

(w+1)N
2

)
√
π (N − 1) Γ(w) Γ(w + 1)N−1

×

×
N−1∑
i=1

(
ui0
)2w((

ui0
)2

+ 1 + r2
)(w+1)N−1

N−1∑
j=1

∑
π∈SN−1

π(i)≤π(j)

F (xπ,j,i,r(u0, u)) .

With some constant Cw,N we bound the second summand in Equation (4.8) according to∫
S2

∫
Ic
| ln r| rN−2 hu0

(r · u) dr pη(u0) dσ(u0, u)

≤ Cw,N
∫
S2

∫
Ic

| ln r| r2N−3

(1 + r2)
N−1+Nw

N−1∑
i=1

N−1∑
j=1

∑
π∈SN−1

π(i)≤π(j)

F (xπ,j,i,r(u0, u)) dr pη(u0) dσ(u0, u).
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Note,

sup

{
N−1∑
s=1

(
xsπ,j,i,r(u0, u)

)1/2
: u0, u ∈ S, π ∈ SN−1, r ∈ Ic, i, j = 1, . . . , N − 1

}

≤ sup

{
2r
√

1 + ξ

ξ + 1 + r2
: ξ ∈ [0, 1], r ∈ Ic

}
≤ max

{
sup
r∈Ic

2r

1 + r2
, sup
r∈Ic

2
√

2r

2 + r2

}
< 1.

Turning back to the integral, we finally achieve using the same argument used to deduce
assertion (4.3) in the proof of Proposition 4.1

Cw,N

∫
S2

∫
Ic

| ln r| r2N−3

(1 + r2)
N−1+Nw

N−1∑
i=1

N−1∑
j=1

∑
π∈SN−1

π(i)≤π(j)

F (xπ,j,i,r(u0, u)) dr pη(u0) dσ(u0, u)

≤ const · Cw,N
N−1∑
i=1

N−1∑
j=1

∑
π∈SN−1

π(i)≤π(j)

∫
S2

∫
Ic

| ln r| r2N−3

(1 + r2)
N−1+Nw dr pη(u0) dσ(u0, u) <∞.

This shows the finiteness of the second summand in Equation (4.8) also, and there-
fore finishes the proof of the first assertion Eµ[| lnR1|] < ∞. The second assertion
Eu0

[| lnR1|] <∞ for u0 ∈ S arbitrary, follows along the lines.

Definition 4.7. Let us denote the mapping

ln+ : (0,∞)→ [0,∞), x 7→ ln+(x) := max{0, lnx} =

{
0, x ≤ 1,

lnx, x > 1,

as positive part of the natural logarithm.

Lemma 4.8. The expectation Eµ[ln+ T1] <∞ is finite.

Proof. According to [6, Equation (2.1)], the hitting time of the origin of a Bessel process
started at x > 0 is distributed as

√
x

2G where G ∼ Gamma(w) is Gamma-distributed, that is

P(G ∈ dt) =
1

Γ(w)
tw−1e−t dt, t > 0.

Letting (G,G0, . . . , GN−1) independent and Γ(w)-distributed we bound

Eµ[ln+ T1] ≤
∫
S

ln+

min


√
u10

2G0
,

√
u10

2G1
, . . . ,

√
uN−10

2GN−1


 η(du0) ≤ E

[
ln+ 1

2G

]

=

∫ ∞
0

ln+

(
1

2t

)
1

Γ(w)
tw−1e−t dt =

1

2wΓ(w)

∫ ∞
0

s · exp
(
−s · w − e−s/2

)
ds <∞.

4.4 Computation of the integrand lnR1 in Theorem 4.5

With the intention to use Theorem 4.5 more explicitly, let us give an explicit formula
for Eu0

[lnR1]. We will then rederive [6, Theorem 1.1 (ii)] and in Section 5 we will show
that for ν ≥ −0.03 the particle system does almost surely not extinct in Theorem 5.4.

Lemma 4.9. The integrand in Theorem 4.5 is given by

Eu0
[lnR1] =

∑N−1
s=1 ln

(
1 + (us0)

2
)

2 (N − 1)
+
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+
2
(∏N−1

s=1 us0

)2w
(N − 1) (N − 1)! Γ(w)

∞∑
k1,...,kN−1=0

[
Γ
(
wN +

∑N−1
s=1 ks

)
∏N−1
s=1 Γ(ks + w + 1)

×

×
N−1∑
i=1

(
ui0
)2w((

ui0
)2

+ 1
)wN+

∑N−1
s=1 ks

N−1∑
j=1

∑
π∈SN−1

π(i)≤π(j)

(ui0)2kπ−1(j)

N−1∏
s=1

s6=π−1(j)

(
u
π(s)
0

)2ks×

×
ψ
(
N − 1 +

∑N−1
s=1 ks

)
− ψ

(
wN +

∑N−1
s=1 ks

)
2

]
.

Proof. Applying Lemma 3.4 and Fubini’s theorem results in

Eu0
[lnR1]

=
2N
(∏N−1

s=1 u
s
0

)2w
(N − 1)Γ(w)

∞∑
k1,...,kN−1=0

[
Γ
(

(w+1)N−1+2
∑N−1
s=1 ks

)
∏N−1
s=1 [Γ(ks + w + 1)ks!]

∫
S

N−1∏
s=1

(us)
2ks+1

dσ(u)×

×
N−1∑
i=1

(
ui0
)2w N−1∑

j=1

∑
π∈SN−1

π(i)≤π(j)

(ui0)2kπ−1(j)

N−1∏
s=1

s6=π−1(j)

(
u
π(s)
0

)2ks×
×
∫ ∞
0

r2N−3+2
∑N−1
s=1 ks ln r((

ui0
)2

+ 1 + r2
)(w+1)N−1+2

∑N−1
s=1 ks

dr

]
.

(4.9)

By the constructed symmetry and [3, Equation (8)]∫
S

N−1∏
s=1

(us)
2ks+1

dσ(u) =

∏N−1
s=1 (ks!)

2N−2(N − 1)! (N − 2 +
∑N−1
s=1 ks)!

. (4.10)

By Lemma A.7 in the Appendix∫ ∞
0

r2N−3+2
∑N−1
s=1 ks ln r((

ui0
)2

+ 1 + r2
)(w+1)N−1+2

∑N−1
s=1 ks

dr

=
ln
((
ui0
)2

+ 1
)

2

∫ ∞
0

r2N−3+2
∑N−1
s=1 ks((

ui0
)2

+ 1 + r2
)(w+1)N−1+2

∑N−1
s=1 ks

dr+

+
ψ
(
N − 1 +

∑N−1
s=1 ks

)
− ψ

(
wN +

∑N−1
s=1 ks

)
2

×

×
Γ
(
N − 1 +

∑N−1
s=1 ks

)
Γ
(
wN +

∑N−1
s=1 ks

)
2
((
ui0
)2

+ 1
)wN+

∑N−1
s=1 ks

Γ
(

(w + 1)N − 1 + 2
∑N−1
s=1 ks

) .

(4.11)

Plugging (4.10) and (4.11) into (4.9), recalling Remark 3.7, this implies

2N
(∏N−1

s=1 us0

)2w
(N − 1)Γ(w)

∞∑
k1,...,kN−1=0

[
Γ
(

(w + 1)N − 1 + 2
∑N−1
s=1 ks

)
∏N−1
s=1 [Γ(ks + w + 1)ks!]

∫
S

N−1∏
s=1

(us)
2ks+1

dσ(u)×
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×
N−1∑
i=1

(
ui0
)2w N−1∑

j=1

∑
π∈SN−1

π(i)≤π(j)

(ui0)2kπ−1(j)

N−1∏
s=1

s6=π−1(j)

(
u
π(s)
0

)2ks×
×
∫ ∞
0

r2N−3+2
∑N−1
s=1 ks ln r((

ui0
)2

+ 1 + r2
)(w+1)N−1+2

∑N−1
s=1 ks

dr

]

=

∑N−1
s=1 ln

(
1 + (us0)

2
)

2 (N − 1)
+

2
(∏N−1

s=1 us0

)2w
(N − 1) (N − 1)! Γ(w)

∞∑
k1,...,kN−1=0

[
Γ
(
wN +

∑N−1
s=1 ks

)
∏N−1
s=1 Γ(ks + w + 1)

×

×
N−1∑
i=1

(
ui0
)2w((

ui0
)2

+ 1
)wN+

∑N−1
s=1 ks

N−1∑
j=1

∑
π∈SN−1

π(i)≤π(j)

(ui0)2kπ−1(j)

N−1∏
s=1

s6=π−1(j)

(
u
π(s)
0

)2ks×

×
ψ
(
N − 1 +

∑N−1
s=1 ks

)
− ψ

(
wN +

∑N−1
s=1 ks

)
2

]
.

As first application, we immediately obtain

Corollary 4.10. For ν ≥ 2/N the particle system does almost surely not extinct.

Proof. In view of Theorem 4.5 it suffices to show Eu0
[lnR1] > 0 uniformly for all u0 ∈ S.

This is the case by Lemma 4.9: Since the digamma function restricted to (0,∞) is strictly
monotonously increasing, for ν ≥ 2/N ⇔ w ≤ (N − 1)/N the difference

ψ
(
N − 1 +

∑N−1
s=1 ks

)
− ψ

(
wN +

∑N−1
s=1 ks

)
2

≥ 0

is non negative and it holds

inf
u0∈S

Eu0
[lnR1] ≥ inf

u0∈S

∑N−1
s=1 ln

(
1 + (us0)

2
)

2 (N − 1)
=

ln 2

2 (N − 1)
> 0.

Remark 4.11. Corollary 4.10 recovers [6, Theorem 1.1 (ii)]. There, the argumentation
suffices if each particle is only reflected upon hitting 0 instead of performing an actual
jump. The basic idea is to use the fact that for Z = (Z1, . . . , ZN ) consisting of N − 1

independent Bessel processes of parameter ν, the process ‖Z‖ is a Bessel process with
parameter N ·ν. Setting ν := 2/N leading to a Bessel process with parameter N ·2/N = 2

has the law of ‖(B1, B2)‖ with two independent Brownian motions and thereby never
hits 0. Observe, also by Lemma 4.9 for ν := 2/N it holds with notation X0− := u0

Eu0
[lnR1] =

1

N − 1

N−1∑
s=1

ln‖(u10, . . . , us0, us0, . . . , uN−10 )‖ = Eu0
[ln‖X0‖] > 0

as expected since by the explanation above ln‖Xt‖
d
= ln‖(B1, B2)‖ for ν = 2/N is a local

martingale.
If the particles actually do jump (and therefore interact) this generally may be taken

into account by considering infu0∈SEu0 [lnR1] instead where the contributions of different
pi’s might outweigh each other. This approach still neglects the ratios of the particles
infinitesimally ahead the jumping times τn so we do not need to know the stationary
distribution η any more explicit.
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5 Three particles

In this section we fix N := 3 and in the same fashion as in the proof of Corollary 4.10
we want to find regimes of parameter values ν with infu0∈SEu0

[lnR1] > 0. Then Cri-
terion 4.5 implies non-extinction. For this purpose we may without loss of generality
assume w ≥ 2/3 in what follows. Lemma 4.9 specifies for N = 3 using the angle
parametrization cosϕ0 = u10 and sinϕ0 = u20 to

Eϕ0 [lnR1] =
ln(1 + cos2 ϕ0) + ln(1 + sin2 ϕ0)

4
+

+
(cosϕ0 sinϕ0)2w

2 Γ(w)

∞∑
k1,k2=0

Γ(3w + k1 + k2)

Γ(k1 + w + 1)Γ(k2 + w + 1)
×

×

(
cos2w(ϕ0)

(1 + cos2 ϕ0)
3w+k1+k2

· ψ(2 + k1 + k2)− ψ(3w + k1 + k2)

2
·

·
(
2 cos2k1 ϕ0 sin2k2 ϕ0 + cos2k1 ϕ0 cos2k2 ϕ0

)
+

+
sin2w(ϕ0)(

1 + sin2 ϕ0

)3w+k1+k2
· ψ(2 + k1 + k2)− ψ(3w + k1 + k2)

2
·

·
(
2 cos2k1 ϕ0 sin2k2 ϕ0 + sin2k1 ϕ0 sin2k2 ϕ0

))
.

Let us recall Example 3.8; e.g. the summand with 2 cos2k1 ϕ0 sin2k2 ϕ0 in it corresponds
to the situation i = j = 1, the one with cos2k1 ϕ0 cos2k2 ϕ0 to i = 1 and j = 2.

Since the first term ln(1+cos2 ϕ0)+ln(1+sin2 ϕ0)
4 ≥ 0 is non-negative which corresponds

to the particle system performing a jump, we can allow the remainder to be slightly
negative accordingly which corresponds to the continuous drift to be more negative.

Lemma 5.1. For ν ≥ 0.2404 the particle system does almost surely not extinct.

Proof. Because the derivative of the digamma function, the trigamma function, is strictly
decreasing when restricted to (0,∞), the difference ψ′(3w + k)− ψ′(2 + k) is negative
for all k ≥ 0. Thereby the function k 7→ ψ(3w + k)− ψ(2 + k) is recognized to be strictly
decreasing yielding the uniform bound

ψ(2 + k1 + k2)− ψ(3w + k1 + k2) ≥ ψ(2)− ψ(3w)

whence

inf
ϕ0

Eϕ0
[lnR] ≥ inf

ϕ0

ln(2 + sin2 ϕ0 cos2 ϕ0)

4
+
ψ(2)− ψ(3w)

2
≥ ln 2

4
+
ψ(2)− ψ(3w)

2
.

Here, in spirit of Remark 3.7, we have used that

(cosϕ0 sinϕ0)2w

2 Γ(w)

∞∑
k1,k2=0

Γ(3w + k1 + k2)

Γ(k1 + w + 1)Γ(k2 + w + 1)
×

×

(
cos2w(ϕ0)

(1 + cos2 ϕ0)
3w+k1+k2

·
(
2 cos2k1 ϕ0 sin2k2 ϕ0 + cos2k1 ϕ0 cos2k2 ϕ0

))

=
(cosϕ0 sinϕ0)2w

2 Γ(w)

∞∑
k1,k2=0

Γ(3w + k1 + k2)

Γ(k1 + w + 1)Γ(k2 + w + 1)
×

×

(
sin2w(ϕ0)(

1 + sin2 ϕ0

)3w+k1+k2
·
(
2 cos2k1 ϕ0 sin2k2 ϕ0 + sin2k1 ϕ0 sin2k2 ϕ0

))
=

1

2
.

This shows the assertion for w ≤ 0.8798, respectively ν = 2 · (1− w) ≥ 0.2404.
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In order to achieve finer estimates we split the domain of summation (k1, k2) ∈ N2
0

into {(0, 0)} and N2
0 \ {(0, 0)}. With the following definition we measure the contribution

B(w, sin2 ϕ0) induced by the term with k1 = k2 = 0.

Definition 5.2. Let

B : (0,∞)× [0, 1/2]→ [0, 1];

B(w, ξ) :=
3 Γ(3w)

2 Γ(w) Γ(w + 1)2
· (ξ(1− ξ))w ·

((
1− ξ

(2− ξ)3

)w
+

(
ξ

(1 + ξ)3

)w)
.

Lemma 5.3. For ν ≥ 0 the particle system does almost surely not extinct.

Proof. Firstly according to Definition 5.2 and by using ψ(2 + k1 + k2)−ψ(3w+ k1 + k2) ≥
ψ(3)− ψ(3w + 1) for k1 + k2 ≥ 1 and for the equality the identity ψ(x+ 1)− ψ(x) = 1/x

for positive x > 0:

Eϕ0
[lnR2] = 2Eϕ0

[lnR] ≥ ln(2 + cos2 ϕ0 sin2 ϕ0)

2
+

+B(w, sin2 ϕ0) · (ψ(2)− ψ(3w)) + (1−B(w, sin2 ϕ0)) · (ψ(3)− ψ(3w + 1))

=
ln(2 + cos2 ϕ0 sin2 ϕ0)

2
+ ψ(3)− ψ(3w + 1) +B(w, sin2 ϕ0) ·

(
1

3w
− 1

2

)
.

(5.1)

By introducing the abbreviation ξ := sin2 ϕ0 and by using the generalized Bernoulli’s
inequality (1 + x)r ≤ 1 + r · x for x > −1, 0 ≤ r ≤ 1 it follows writing ζ := (1 − ξ) · ξ =

cos2 ϕ0 sin2 ϕ0:

B(w, ξ) ·
(

1

3w
− 1

2

)
= −(3w − 2) · Γ(3w)

4 Γ(w + 1)3

((
(1− ξ)2ξ
(2− ξ)3

)w
+

(
(1− ξ)ξ2

(1 + ξ)3

)w)
(5.2)

≥ −(3w − 2) · Γ(3w)

4 Γ(w + 1)3

(
2− 2w + w · ζ · 1 + 10ζ − 2ζ2

(2 + ζ)3

)
.

Whence

Eϕ0
[lnR2] ≥ ln(2 + ζ)

2
+ ψ(3)− ψ(3w + 1)−

− (3w − 2) · Γ(3w)

4 Γ(w + 1)3

(
2− 2w + w · ζ · 1 + 10ζ − 2ζ2

(2 + ζ)3

)
=: h(ζ).

(5.3)

In the relevant domain w ∈ [0.8798, 1], ζ ∈ [0, 1/4] differentiating with respect to ζ

computes to

d

dζ
h(ζ) =

1

2(2 + ζ)

(
1− (3w − 2) · w · Γ(3w)

Γ(w + 1)3

(
−11(ζ + 2)2 + 63(ζ + 2)− 81

(ζ + 2)3

))
.

(5.4)

It holds

0 < (3w − 2) · w ≤ 1 (5.5)

and by

d

dw

Γ(3w)

Γ(w + 1)3
=

3 Γ(3w)

Γ(w + 1)3
· (ψ(3w)− ψ(w + 1)) > 0

also

Γ(3w)

Γ(w + 1)3
≤ Γ(3 · 1)

Γ(1 + 1)3
= 2. (5.6)
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Furthermore, due to

d

dζ

−11(ζ + 2)2 + 63(ζ + 2)− 81

(ζ + 2)3
=

11

(ζ + 2)4

(
5

11
− ζ
)

(7− ζ) > 0

we get the estimate

−11(ζ + 2)2 + 63(ζ + 2)− 81

(ζ + 2)3
≤ −11 · (9/4)2 + 63 · 9/4− 81

(9/4)3
= 4/9. (5.7)

Using (5.5), (5.6) and (5.7) in (5.4) we deduce

d

dζ
h(ζ) ≥ 1

2(2 + ζ)
(1− 2 · 4/9) > 0

and therefore by recalling the bound given in (5.3)

Eϕ0
[lnR2] ≥ h(0) = ln(2)/2 + ψ(3)− ψ(3w + 1)− (3w − 2) · (1− w) · Γ(3w)

2 Γ(w + 1)3
.

Because the gamma function Γ(x) is strictly increasing for values larger than x >

1.46163.., the unique positive root of the digamma function, it holds Γ(3w)/(2Γ(w+1)3) ≤
Γ(1.8798)−3 and we may further estimate:

Eϕ0 [lnR2] ≥ ln(2)/2 + ψ(3)− ψ(3w + 1)− (3w − 2) · (1− w) /Γ(1.8798)3 =: α(w).

Differentiating with respect to w leads to

α′(w) = 3

(
2w − 5/3

Γ(1.8798)3
− ψ′(3w + 1)

)
.

Differentiating once again

α′′(w) = 9 ·
(

2

3 Γ(1.8798)3
− ψ′′(3w + 1)

)
> 0,

because ψ′′ |(0,∞) is a strictly negative function.
Due to α′(0.8798) ≈ −0.627691 < 0 < 0.296638 ≈ α′(1) in the interval w ∈ [0.8798, 1]

there is an unique global minimum of α in the interior (0.8798, 1). By α′(0.9611) ≈
−0.000299177 < 0 < 0.000466669 ≈ α′(0.9612) we can narrow down more and estimate

α(w) ≥ ln(2)/2 + ψ(3)− ψ(3 · 0.9612)− (3 · 0.9612− 2) · (1− 0.9611)/Γ(1.8798)3

≈ 0.00736878 > 0.

We have now shown Eϕ0
[lnR2

1] > 0 uniformly in (w,ϕ0) ∈ [0.8798, 1] × [0, π/4], which
shows the assertion.

In the case of N = 2 particles there is a critical parameter value ν = 0 (cf. [5,
Theorem 1.1 (i)]). This is not longer true for N = 3 particles as the following main result
shows. The assumption ν ≥ 0 in the preceding lemma was of technical nature only; we
may replace Bernoulli’s inequality adequately by the estimate xw + yw ≤ (x+ y)w valid
for w ≥ 1 and x, y > 0.

Theorem 5.4. For ν ≥ −0.03 the particle system does almost surely not extinct.

Proof. We want to recycle a few computations from the proof of Lemma 5.3 and again
write ξ := sin2 ϕ0 and ζ := ξ · (1− ξ).
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Firstly, again by (5.1) and (5.2)

Eϕ0
[lnR2

1] = Earcsin
√
ξ[lnR

2
1] ≥ ln(2 + cos2 ϕ0 sin2 ϕ0)

2
+ ψ(3)− ψ(3w + 1)−

− (3w − 2) · Γ(3w)

4 Γ(w + 1)3

((
(1− ξ)2ξ
(2− ξ)3

)w
+

(
(1− ξ)ξ2

(1 + ξ)3

)w)
.

For w ≥ 1 we may now apply the inequality xw + yw ≤ (x+ y)w for x, y > 0 and attain(
(1− ξ)2ξ
(2− ξ)3

)w
+

(
(1− ξ)ξ2

(1 + ξ)3

)w
≤
(
ζ · 1 + 10ζ − 2ζ2

(2 + ζ)3

)w
.

Due to ζ · 1+10ζ−2ζ2
(2+ζ)3 ≤ 1

4 ·
1+10/4
(2+0)3 = 7/64 < 1 we further estimate(

ζ · 1 + 10ζ − 2ζ2

(2 + ζ)3

)w
≤ ζ · 1 + 10ζ − 2ζ2

(2 + ζ)3
≤ w · ζ · 1 + 10ζ − 2ζ2

(2 + ζ)3

and altogether

Eϕ0
[lnR2

1] ≥ ln(2 + ζ)

2
+ ψ(3)− ψ(3w + 1)−

− (3w − 2) · Γ(3w)

4 Γ(w + 1)3
· w · ζ · 1 + 10ζ − 2ζ2

(2 + ζ)3
.

This expression read with respect to ζ is the same as the already analyzed bound (5.3)
up to some additive constant; we can directly transfer, that the minimum is attained in
ζ = 0:

Eϕ0 [lnR2
1] ≥ ln(2)/2 + ψ(3)− ψ(3w + 1).

The unique root is located at w ≈ 1.01565264025354....

6 Open problems

It is clear that the bound of Theorem 5.4 can not be sharp. With the same method
of requiring lnR to be positive uniformly for all ϕ0 ∈ [0, π/4], numerical approximations
suggest that the critical value is at w ≈ 1.20360229090196 which corresponds to ν ≈
−0.40720458180392; there, the minimum is attained for ϕ0 = π/4. The authors believe
that in the case N = 3 there is ν? sufficiently small, such that the particle system extincts
almost surely for all ν ≤ ν?. For the criterion Theorem 4.5 to be useful in proving so,
since the integrand lnR1 will be negative only in some regime of S near (1, 0) and positive
near (1/

√
2, 1/
√

2), it seems to be a reasonable strategy to partition S =
⋃· j Sj properly

and to show bounds for lnR1 with u0 ∈ Sj and for η(Sj). The later might be achieved
even in considering only one-step transition probabilities.

Another concern addresses asymptotics for N →∞: The result Theorem 5.4 shows
that adding particles potentially really enlarges the domain of parameter values where
non-extinction occurs almost surely. It would be very interesting to know, whether for
all ν ∈ R there exists Nν , such that for all N ≥ Nν the particle system does not extinct
almost surely.

A Properties of hypergeometric functions

In this Appendix we collect some explicit properties of special functions which are
used during the paper.

The Gamma function Γ(x) for x > 0 may be represented by the integral Γ(x) =∫∞
0
e−t tx−1 dt. This implies the following integral formula:
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Lemma A.1. For a > 0, b > 1 it holds∫ ∞
0

t−b e−a/t dt = Γ(b− 1)/ab−1.

Proof. Substituting s := a/t, we derive∫ ∞
0

t−b e−a/t dt =

∫ ∞
0

(s/a)b e−s a/s2 ds = Γ(b− 1)/ab−1.

Definition A.2. We denote by

(x)k :=

k−1∏
j=0

(x+ j), k ∈ N0

the Pochhammer symbol (rising factorial).

Definition A.3. The Gausian hypergeometric function is defined for |z| < 1 as

2F1(a, b; c; z) :=

∞∑
k=0

(a)k(b)k
(c)k

zk

k!
.

Lemma A.4. The hypergeometric function obeys for a, b > 0 and x < 1 the identity

2F1(a, b; a;x) = (1− x)−b (A.1)

and according to [16, 2.12 (5)] has the following integral representation:

2F1(a, b; c; 1− z) =
Γ(c)

Γ(b)Γ(c− b)

∫ ∞
0

sb−1(1 + s)a−c(1 + sz)−a ds,

Re c > Re b > 0, | arg z| < π.

(A.2)

Lemma A.5. For a, c, β > 0, γ > 1+δ
β > 0 it holds

∫ ∞
0

yδ

(c+ a · yβ)
γ dy = β−1 c−γ

( c
a

) 1+δ
β ·

Γ
(

1+δ
β

)
Γ
(
γ − 1+δ

β

)
Γ(γ)

.

Proof. By (A.2) and (A.1)∫ ∞
0

yδ

(c+ a · yβ)
γ dy =

c−γ

β

∫ ∞
0

z
1+δ−β
β(

1 + a
c · z

)γ dz
=
c−γ

β

Γ
(

1+δ
β

)
Γ
(
γ − 1+δ

β

)
Γ(γ)

· 2F1

(
γ,

1 + δ

β
; γ; 1− a

c

)

=
c−γ

β

Γ
(

1+δ
β

)
Γ
(
γ − 1+δ

β

)
Γ(γ)

·
( c
a

) 1+δ
β

.

Definition A.6. Let ψ = (ln ◦Γ)′ = Γ′/Γ denote the Digamma function.

Lemma A.7. For a, c, β > 0, γ > 1+δ
β > 0∫ ∞

0

yδ · ln y
(c+ a · yβ)

γ dy

= β−2 c−γ
( c
a

) 1+δ
β ·

Γ
(

1+δ
β

)
Γ
(
γ − 1+δ

β

)
Γ(γ)

(
ln
c

a
+ ψ

(
1 + δ

β

)
− ψ

(
γ − 1 + δ

β

))

=
ln c

a + ψ
(

1+δ
β

)
− ψ

(
γ − 1+δ

β

)
β

∫ ∞
0

yδ

(c+ a · yβ)
γ dy.
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Proof. Recalling Lemma A.5,∫ ∞
0

yδ · ln y
(c+ a · yβ)

γ dy =
∂

∂δ

∫ ∞
0

yδ

(c+ a · yβ)
γ dy

= β−2 c−γ
( c
a

) 1+δ
β ·

Γ
(

1+δ
β

)
Γ
(
γ − 1+δ

β

)
Γ(γ)

(
ln
c

a
+ ψ

(
1 + δ

β

)
− ψ

(
γ − 1 + δ

β

))
.

Definition A.8. Let

F
(n)
C (a, b, c1, . . . , cn, x1, . . . , xn) :=

∞∑
k1,...,kn=0

(a)k1+...+kn(b)k1+...+kn
(c1)k1 . . . (cn)knk1! · · · kn!

xk11 · · ·xknn

denote the C-type Lauricella hypergeometric series as can be found e.g. in [17, Equa-
tion (2.1.3)].

Proposition A.9. The C-type Lauricella series converges absolutely on

{|x1|1/2 + . . .+ |xn|1/2 < 1}.

Proof. A discussion with proof can be found in [17, Section 2.2] and is omitted here; cf.
also [17, Section 2.9] for a general theory of convergence of multiple hypergeometric
series.

References

[1] Amine Asselah, Pablo A. Ferrari, and Pablo Groisman, Quasistationary distributions and
Fleming-Viot processes in finite spaces, J. Appl. Probab. 48 (2011), no. 2, 322–332.
MR2840302

[2] Amine Asselah, Pablo A. Ferrari, Pablo Groisman, and Matthieu Jonckheere, Fleming-Viot
selects the minimal quasi-stationary distribution: the Galton-Watson case, Ann. Inst. Henri
Poincaré Probab. Stat. 52 (2016), no. 2, 647–668. MR3498004

[3] John A. Baker, Integration over spheres and the divergence theorem for balls, Amer. Math.
Monthly 104 (1997), no. 1, 36–47. MR1426416

[4] Michel Benaim, Bertrand Cloez, and Fabien Panloup, Stochastic approximation of quasi-
stationary distributions on compact spaces and applications, Ann. Appl. Probab. 28 (2018),
no. 4, 2370–2416. MR3843832

[5] Mariusz Bieniek, Krzysztof Burdzy, and Sam Finch, Non-extinction of a Fleming-Viot particle
model, Probab. Theory Related Fields 153 (2012), no. 1-2, 293–332. MR2925576

[6] Mariusz Bieniek, Krzysztof Burdzy, and Soumik Pal, Extinction of Fleming-Viot-type particle
systems with strong drift, Electron. J. Probab. 17 (2012), no. 11, 15. MR2878790

[7] Andrei N. Borodin and Paavo Salminen, Handbook of Brownian motion—facts and formulae,
second ed., Probability and its Applications, Birkhäuser Verlag, Basel, 2002. MR1912205

[8] Andreas Brandt, Peter Franken, and Bernd Lisek, Stationary stochastic models, Wiley Series
in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John
Wiley & Sons, Ltd., Chichester, 1990. MR1086872

[9] Krzysztof Burdzy, Robert Hołyst, and Peter March, A Fleming-Viot particle representation of
the Dirichlet Laplacian, Comm. Math. Phys. 214 (2000), no. 3, 679–703. MR1800866

[10] Krzysztof Burdzy, Robert Hołyst, David Ingerman, and Peter March, Configurational transition
in a Fleming - Viot-type model and probabilistic interpretation of Laplacian eigenfunctions,
Journal of Physics A: Mathematical and General 29 (1996), no. 11, 2633–2642.

[11] Olivier Cappé, Eric Moulines, and Tobias Rydén, Inference in hidden Markov models, Springer
Series in Statistics, Springer, New York, 2005, With Randal Douc’s contributions to Chapter
9 and Christian P. Robert’s to Chapters 6, 7 and 13, With Chapter 14 by Gersende Fort,
Philippe Soulier and Moulines, and Chapter 15 by Stéphane Boucheron and Elisabeth Gassiat.
MR2159833

EJP 27 (2022), paper 146.
Page 27/28

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=2840302
https://mathscinet.ams.org/mathscinet-getitem?mr=3498004
https://mathscinet.ams.org/mathscinet-getitem?mr=1426416
https://mathscinet.ams.org/mathscinet-getitem?mr=3843832
https://mathscinet.ams.org/mathscinet-getitem?mr=2925576
https://mathscinet.ams.org/mathscinet-getitem?mr=2878790
https://mathscinet.ams.org/mathscinet-getitem?mr=1912205
https://mathscinet.ams.org/mathscinet-getitem?mr=1086872
https://mathscinet.ams.org/mathscinet-getitem?mr=1800866
https://mathscinet.ams.org/mathscinet-getitem?mr=2159833
https://doi.org/10.1214/22-EJP866
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


(Non-)extinction in a Fleming-Viot-type particle model

[12] Frédéric Cérou, Bernard Delyon, Arnaud Guyader, and Mathias Rousset, A central limit
theorem for Fleming–Viot particle systems, Ann. Inst. Henri Poincaré Probab. Stat. 56 (2020),
no. 1, 637–666. MR4059003

[13] Nicolas Champagnat and Denis Villemonais, Convergence of the Fleming-Viot process toward
the minimal quasi-stationary distribution, ALEA Lat. Am. J. Probab. Math. Stat. 18 (2021),
no. 1, 1–15. MR4198866

[14] Frédéric Cérou, Arnaud Guyader, and Mathias Rousset, On synchronized Fleming-Viot particle
systems, Theory Probab. Math. Statist. 102 (2020), 45–71. MR4421336

[15] Randal Douc, Eric Moulines, Pierre Priouret, and Philippe Soulier, Markov chains, Springer
Series in Operations Research and Financial Engineering, Springer, Cham, 2018. MR3889011

[16] Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher
transcendental functions. Vol I, McGraw-Hill Book Company, Inc., New York-Toronto-London,
1953, Based, in part, on notes left by Harry Bateman. MR0058756

[17] Harold Exton, Multiple hypergeometric functions and applications, Ellis Horwood Ltd., Chich-
ester; Halsted Press [John Wiley & Sons, Inc.], New York-London-Sydney, 1976, Foreword by
L. J. Slater, Mathematics & its Applications. MR0422713
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