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Abstract

In this article we study a non-directed polymer model on Z, that is a one-dimensional
simple random walk placed in a random environment. More precisely, the law of
the random walk is modified by the exponential of the sum of potentials βωx ´ h

sitting on the range of the random walk, where pωxqxPZ are i.i.d. random variables
(the disorder) and β ě 0 (disorder strength) and h P R (external field) are two
parameters. When β “ 0, h ą 0, this corresponds to a random walk penalized by
its range; when β ą 0, h “ 0, this corresponds to the “standard” polymer model
in random environment, except that it is non-directed. In this work, we allow the
parameters β, h to vary according to the length of the random walk and we study
in detail the competition between the stretching effect of the disorder, the folding
effect of the external field (if h ě 0) and the entropy cost of atypical trajectories.
We prove a complete description of the (rich) phase diagram and we identify scaling
limits of the model in the different phases. In particular, in the case β ą 0, h “ 0

of the non-directed polymer, if ωx has a finite second moment we find a range size
fluctuation exponent ξ “ 2{3.
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1D polymers in random environment

1 Introduction

We consider here a simple symmetric random walk on Zd, d ě 1, placed in a time-
independent random environment, see [23]. The interaction with the environment occurs
on the range of the random walk, i.e. on the sites visited by the walk. This model may
be seen as a disordered version of random walks penalized by their range (in the spirit
of [11, 19]). One closely related model is the celebrated directed polymer in random
environment model (see [15] for a review), which has attracted interest from both the
mathematical and physics communities over the last forty years, and can be used to
describe a polymer chain placed in a solvent with impurities.

1.1 The model

Let S :“ pSnqně0 be a simple symmetric random walk on Zd, d ě 1, starting from 0,
whose trajectory represents a (non-directed) polymer. Let P denote its law. The random
environment, or disorder, is modeled by a field ω :“ pωxqxPZd of i.i.d. random variables.
We let P denote the law of ω, and E the expectation with respect to P (assumptions on
the law of ω are detailed in Section 1.2 below).

For β ě 0 (the disorder strength, or inverse temperature) and h P R (an external
field), we define for all N P N the following Gibbs transformation of the law P, called the
polymer measure:

dPωN,β,h
dP

pSq :“
1

ZωN,β,h
exp

ˆ

ÿ

xPZd

pβωx ´ hq1txPRNu

˙

, (1.1)

where RN “ tS0, S1, . . . , SNu is the range of the random walk up to time N , and

ZωN,β,h :“ E

„

exp

ˆ

ÿ

xPZd

pβωx ´ hq1txPRNu

˙

“ E

„

exp

ˆ

β
ÿ

xPRN

ωx ´ h|RN |

˙

is the partition function of the model, defined so that PωN,β,h is a probability measure.
Let us stress the main differences with the standard directed polymer model: (i) here,

the random walk does not have a preferred direction; (ii) there is an additional external
field h P R; (iii) the random walk can only pick up one weight βωx ´ h at a site x P Zd, so
returning to an already visited site does not bring any reward or penalty (in the directed
polymer model, the environment is renewed each time).

We now wish to understand the typical behavior of polymer trajectories pS0, . . . , SN q

under the polymer measure PωN,β,h. Two important quantities we are interested in are1

• the range size exponent ξ, loosely defined as EEωN,β,h|RN | — Nξ;

• the fluctuation exponent χ, loosely defined as VarplogZωN,β,hq — N2χ.

In view of (1.1), there are three quantities that may influence the behavior of the
polymer: the energy collected from the random environment ω; the penalty h (or reward
depending on its sign) for having a large range; the entropy cost of the exploration of
the random walk S. If β “ 0 and h ą 0, then we recover a random walk penalized by its
range. This model is by now quite well understood: the random walk folds itself in a
ball of radius ρdN1{pd`2q, for some specific constant ρd ą 0, see [19, 34, 11, 4, 18] (these
works mostly focus on the case of dimension d ě 2). If β “ 0 and h ă 0, then we get
a random walk rewarded by its range: the random walk “stretches” to obtain a range
of order N . If β ą 0 and h “ 0, then we obtain a model for a non-directed polymer in
random environment, the environment being seen only once by the random walk (in
the same spirit as the excited random walk [3] or more generally the cookie random

1We use the standard notation an — bn if lim supnÑ`8
an
bn
ă `8 and lim supnÑ`8

bn
an
ă `8.
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1D polymers in random environment

walk [35]). In general, disorder should have a “stretching” effect because the random
walk is trying to reach more favorable regions in the environment. We will see that it is
indeed the case in dimension d “ 1, where we find that the random walk stretches up to
a distance N2{3 (ξ “ 2

3 ).

1.2 Setting of the paper

In this article, we focus on the case of the dimension d “ 1: the behavior of the model
is already very rich and we are able to obtain sharp results. Let us mention that in
dimension d ě 2 some aspects of the model are considered in [8], but many questions
remain open.

Our main assumption on the environment is that ωx is in the domain of attraction of
some α-stable law, with α P p0, 2s, α ‰ 1. More precisely, we assume the following2.

Assumption 1. If α “ 2 we assume that Erω0s “ 0 and Erω2
0s “ 1. If α P p0, 1q Y p1, 2q

we assume that Ppω0 ą tq „ p t´α and Ppω0 ă ´tq „ q t´α as tÑ8, with p` q “ 1 (and
p ą 0); if q “ 0, we interpret it as Ppω0 ă ´tq “ opt´αq. Moreover, if α P p1, 2q, we also
assume that Erω0s “ 0.

Let us stress that Assumption 1 ensures that:

• if α “ 2, then ωi is in the normal domain of attraction, so that p 1?
n

řvn
i“un ωiquď0ďv

converges to a two-sided (standard) Brownian Motion.

• if α P p0, 1q Y p1, 2q, then ωi is in the domain of attraction of some non-Gaussian
stable law and p 1

n1{α

řvn
i“un ωiquď0ďv converges to a two-sided α-stable Lévy process.

We leave the case α “ 1 aside mostly for simplicity: indeed, to obtain a process conver-
gence as above, a non-zero centering term is in general needed (even in the symmetric
case p “ q, see [21, IX.8], or [7]); however most of our analysis applies in that case. We
also focus on pure power tails when α P p0, 2q, simply to lighten notation and simplify the
statements: our results could easily be adapted to the case of regularly varying tails.

Henceforth we refer to pXtqtPR as the two-sided Brownian motion if α “ 2 and as the
two-sided Lévy process defined below if α P p0, 1q Y p1, 2q. We refer to Chapter 1 of [1]
for an overview on Lévy processes.

Notation 1.1. Let α P p0, 2s. We let Xp1q “ pXp1qv qvě0 and Xp2q “ pXp2qu quě0 be two i.i.d.
standard Brownian motions if α “ 2 and two i.i.d. (α-stable) Lévy processes with no
Brownian component, no drift, and Lévy measure νpdxq “ αpp1txą0u ` q1txă0uq|x|

´1´α dx

if α P p0, 2q.

We now define a coupling between the discrete environment pωxqxPZ and the pro-
cesses Xp1q and Xp2q, using the construction proposed in [25]. Let us consider the space
D “ DpR`,Rq of all càdlàg real functions equipped with the Skorokhod metric d. We let

Σ`j “ Σ`j pωq :“
j
ÿ

x“0

ωx , Σ´j “ Σ´j pωq :“
´1
ÿ

x“´j

ωx for j ě 0 , (1.2)

and for u, v ě 0

X
p1q
N,v “ X

p1q
N,vpωq :“ N´

1
αΣ`

tNvu
, X

p2q
N,u “ X

p2q
N,upωq “ N´

1
αΣ´

tNuu
. (1.3)

For 0 ă α ă 2 the two (independent) processes Xp1qN “ pX
p1q
N,vqvě0 and Xp2qN “ pX

p2q
N,uquě0

are càdlàg (they are D-valued random variables) and they converge in distribution to
Xp1q “ pX

p1q
v qvě0 and Xp2q “ pX

p2q
u quě0 as in Notation 1.1, which are D-valued random

variables. Then, as done in [25, Section 3], we can build on the same probability space

2We use the standard notation aptq „ bptq if limtÑ`8
aptq
bptq

“ 1 and aptq “ opbptqq if limtÑ`8
aptq
bptq

“ 0.
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1D polymers in random environment

a sequence of random fields ωpNq “ pωpNqx qxPZ parametrized by N , such that ωpNq has
the same law as the original environment ω for every N and for which the processes
X
p1q
N pωpNqq and Xp2qN pωpNqq converge a.s. in the Skorokhod metric on D to Xp1q and Xp2q

respectively—we refer to chapter VI in [24] for a characterisation of the convergence of
sequences in D. A coupling can also be realized in the case α “ 2, see e.g. [16, Ch. 2].
We denote by P̂ the law of the coupling and in order to lighten notation we will denote ω̂
instead of ωpNq in such a coupling, letting the dependence on N be implicit.

1.3 Presentation of a first result

In the present paper, we allow β and h to vary with the size of the system, giving rise
to a large diversity of possible behaviors. Before we go into these details, let us already
state how our results translate in the case of fixed parameters β, h.

We define

M`
N :“ max

0ďnďN
Sn ě 0 and M´

N :“ min
0ďnďN

Sn ď 0

the right-most and left-most points of the random walk after N steps. In particular, the
size of the range is M`

N ´M
´
N .

Theorem 1.2. Consider the coupling P̂ defined above.

1. Case α P p1, 2s.

(a) If β ě 0 and h ą 0. Then, for any ε ą 0, we have that

lim
NÑ8

1

N
1
3

logZωN,β,h “ ´
3

2
phπq2{3 P-a.s.

and

lim
NÑ8

PωN,β,h

´ˇ

ˇ

ˇ

1

N1{3
pM`

N ´M
´
N q ´ π

2
3h´

1
3

ˇ

ˇ

ˇ
ą ε

¯

“ 0 P-a.s.

(the coupling is not needed here).

(b) If β ą 0 and h “ 0. Then, letting

Y p2qu,v “ Y β,p2qu,v :“ βpXp1qv `Xp2qu q ´
1

2
pu^ v ` u` vq2

for u, v ě 0, we have

lim
NÑ8

1

N
1

2α´1

logZω̂N,β,h “ sup
u,vě0

!

Y p2qu,v

)

P p0,`8q , P̂-probability.

Additionally, the location of the maximizer of supu,vě0

 

Y
p2q
u,v

(

is unique, that is

pU p2q,Vp2qq :“ arg maxu,vě0

 

Y
p2q
u,v

(

is well-defined, and for any ε ą 0,

lim
NÑ8

Pω̂N,β,h

´
ˇ

ˇ

ˇ

1

N
α

2α´1
pM´

N ,M
`
N q´p´U

p2q,Vp2qq
ˇ

ˇ

ˇ
ą ε

¯

“ 0 , in P̂-probability.

(c) If β ě 0 and h ă 0. Then for any ε ą 0, we have that

lim
NÑ8

PωN,β,h

´
ˇ

ˇ

ˇ

1

N
|SN | ´ tanh |h|

ˇ

ˇ

ˇ
ą ε

¯

“ 0 , P-a.s.

2. Case α P p0, 1q. Let β ą 0 and h P R. Then letting

Y p3qu,v “ Y β,p3qu,v :“ βpXp1qv `Xp2qu q ´ 81tu^v`u`vą1u
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1D polymers in random environment

for u, v ě 0, we have

lim
NÑ8

1

N
1
α

logZω̂N,β,h “ sup
u,vě0

!

Y p3qu,v

)

P p0,`8q , P̂-a.s.

Additionally, pU p3q,Vp3qq :“ arg maxu,vě0

 

Y
p3q
u,v

(

is well-defined and for any ε ą 0,

lim
NÑ8

Pω̂N,β,h

´
ˇ

ˇ

ˇ

1

N
pM´

N ,M
`
N q ´ p´U

p3q,Vp3qq
ˇ

ˇ

ˇ
ą ε

¯

“ 0 , P̂-a.s.

Let us stress that, when α P p1, 2s, the range size (see Definition 3.1 below for a
proper definition) of the polymer is:

(a) of order N1{3 if h ą 0 — folded phase, this is included in Theorem 3.7;

(b) of order Nα{p2α´1q if h “ 0, β ą 0 — extended phase, this is included in Theorem 3.4;

(c) of order N if h ă 0 — extended phase, this is included in Theorem 4.2.

On the other hand, in the case α P p0, 1q, the range size is always of order N , for whatever
value of h P R — extended phase, this is included in Theorem 3.5 below.

Remark 1.3. The main advantage of using the coupling P̂ defined above is that we are
able to discuss the size of the range of the random walk in relation to the environment.
More precisely, with high P̂-probability (or P̂-a.s., depending on the case), the end-points
of the range under the polymer measure converge to the maximizer of the variational
problem. This is what we present in Theorem 1.2 and later in Section 3 (Regions 2, 3
and 4, see Figure 1). Let us mention that there are some convergences in P̂-probability
that we are not able to upgrade to P̂-a.s. convergences: this is due to a lack of control of
the convergence of pΣ˘j qjě1 on different scales in Lemmas 5.2 and 5.6, see Remark 5.3.
Note that this problem disappears if we have a good control on the coupling (see again
Remark 5.3) or when ξ “ 1. On the other hand, in the case when the limiting behavior is
not affected by the environment (for example in Regions 1, 5, 6 discussed in Section 3),
the coupling is not needed.

1.4 Varying the parameters β and h

In order to observe a transition between a folded phase (h ą 0, β “ 0) and an unfolded
phase (h “ 0, β ą 0, or h ă 0), a natural idea is to consider parameters β and h that
depend on the size of the system, i.e. β :“ βN and h :“ hN . There are then some
sophisticated balances between the energy gain, the range penalty and the entropy cost
as we tune βN and hN . Our main results identify the different regimes for the behavior
of the random walk: we provide a complete (and rich) phase diagram (see Figures 1-2-3
below), and describe each phase precisely (range size and fluctuation exponents, limit of
the rescaled log-partition function).

In the rest of the paper, we therefore consider the following setting:

βN :“ β̂ N´γ and hN :“ ĥ N´ζ , (1.4)

where γ, ζ P R describe the asymptotic behavior of βN , hN , and β̂ ą 0, ĥ P R are two
fixed parameters. We could consider a slightly more general setting, adding some slowly
varying function in the asymptotic behavior of βN or hN : we chose to stick to the simpler
strictly power-law case, to avoid lengthy notation and more technical calculations.

2 Some heuristics: presentation of the phase diagrams

In this section, we focus on the case h ě 0; the case h ă 0 is considered in Section 4 (it
has a less rich behavior and is somehow simpler, see Remark 2.1 below). In analogy with
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1D polymers in random environment

the directed polymer model in a heavy-tailed random environment [5, 6], the presence
of heavy-tails (Assumption 1) strongly impacts the behavior of the model: the phase
diagrams are different according to whether α P p1, 2s, α P p 1

2 , 1q or α P p0, 1
2 q.

Let us denote ξ the typical range size exponent of the random walk under the polymer
measure PωN,βN ,hN (see Definition 3.1 below for a proper definition), and let us develop
some heuristics to determine ξ P r0, 1s.

First of all, thanks to Lemmas A.1-A.3 in Appendix, we have for 0 ă a ă b,

logP
`

|RN | P paN
ξ, bNξq

˘

— logP
´

max
0ďnďN

|Sn| P paN
ξ, bNξq

¯

—

#

´N2ξ´1, if ξ ě 1
2 ,

´N1´2ξ, if ξ ď 1
2 .
(2.1)

If ξ ą 1{2, this corresponds to a “stretching” of the random walk, whereas when ξ ă 1{2,
this corresponds to a “folding” of the random walk. We refer to (2.1) as the entropic cost
of having range size Nξ.

Then, if the range size is of order Nξ, then under Assumption 1 and in view of (1.4),
we get that

βN
ÿ

xPRN

ωx — β̂N
ξ
α´γ , hN |RN | — ĥNξ´ζ . (2.2)

We refer to the first term as the “disorder” term, and to the second one as the “range”
term (recall we focus for now on the case ĥ ą 0 so the “range” term is always with a
minus sign). All together, if the range size is of order Nξ, then logZωN,βN ,hN should get a
contribution from three terms:

disorder — β̂N
ξ
α´γ , range — ´ĥNξ´ζ , entropy — ´

#

N1´2ξ if ξ ď 1{2 ,

N2ξ´1 if ξ ě 1{2 .
(2.3)

In (2.3), there is therefore a competition between the “disorder” (first term), the
“range” (second term), and the “entropy” (last term). We now discuss how a balance
can be achieved between these terms depending on γ and ζ (and how they determine ξ).
There are three main possibilities:

(i) there is a “disorder”-“entropy” balance (and the “range” term is negligible);

(ii) there is a “range”-“entropy” balance (and the “disorder” term is negligible);

(iii) there is a “range”-“disorder” balance (and the “entropy” term is negligible).

To summarize, all three regimes can occur (depending on γ, ζ) if α P p1, 2s; on the other
hand, regime (iii) disappears if α P p0, 1q, and regime (i) disappears if α P p0, 1

2 q. We
now determine for which values of γ, ζ one can observe the different regimes above: we
consider the three subcases α P p1, 2s, α P p 1

2 , 1q and α P p0, 1
2 q separately.

2.1 Phase diagram for α P p1, 2s

Instead of looking for “disorder”-“entropy”, “range”-“entropy” or “range”-“disorder”
balance, we will find conditions to have the “disorder” term much larger, much smaller,
or of the order of the “range” term.

Case I (“disorder”" “range”). This corresponds to having ξ{α ´ γ ą ξ ´ ζ. In that
case, the random walk should not feel the penalty for having a large range, so we should
have ξ ě 1{2. The competition occurs only between energy and entropy: one could
achieve a balance if ξ{α´ γ “ 2ξ ´ 1, that is if

ξ “
α

2α´ 1
p1´ γq when γ ă

p2α´ 1qζ ´ pα´ 1q

α
, (2.4)
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where the condition on γ derives from the fact that ξ{α´ γ ą ξ ´ ζ, i.e. γ ă ζ ´ ξ α´1
α , in

the regime considered here. However, since ξ ď 1, we should have ξ “ 1 when γ is too
small, more precisely when γ ď ´α´1

α . Thus, we should have have

ξ “ 1 when γ ď ´
α´ 1

α
and γ ă ζ ´

α´ 1

α
. (2.5)

Also, since ξ ě 1{2, we should have ξ “ 1{2 if γ is too large, more precisely when γ ě 1
2α .

Thus, we should have

ξ “
1

2
when γ ě

1

2α
and γ ă ζ ´

α´ 1

2α
. (2.6)

Case II (“disorder”! “range”). This corresponds to having ξ{α´ γ ă ξ ´ ζ. In that
case, the random walk feels the penalty for having a large range, so we should have
ξ ď 1{2. The competition occurs only between range and entropy: one could achieve a
balance if ξ ´ ζ “ 1´ 2ξ, that is if

ξ “
1` ζ

3
when γ ą

p2α` 1qζ ´ pα´ 1q

3α
, (2.7)

where the condition on γ derives from the fact that ξ{α ´ γ ą ξ ´ ζ, i.e. γ ą ζ ´ ξ α´1
α ,

in the regime considered here. Since ξ P r0, 1{2s, similarly to (2.5)-(2.6) we should have
that

ξ “ 0 when ζ ď ´1 and γ ą ζ, (2.8)

and

ξ “
1

2
when ζ ě

1

2
and γ ą ζ ´

α´ 1

2α
. (2.9)

Case III (“disorder”— “range”" “entropy”). This corresponds to having ξ{α´γ “ ξ´ζ,
that is

ξ “
α

α´ 1
pζ ´ γq . (2.10)

In this regime, the entropy cost should be negligible compared to the disorder gain, and
we should therefore have that ξ{α´ γ ą 1´ 2ξ if ξ ď 1{2 and ξ{α´ γ ą 2ξ´ 1 for ξ ě 1{2:
after some calculation (and using (2.10)), we find the following condition on γ

p2α´ 1qζ ´ pα´ 1q

α
ă γ ă

p2α` 1qζ ´ pα´ 1q

3α
. (2.11)

Moreover, since ξ P r0, 1s, we must have

ζ ´
α´ 1

α
ď γ ď ζ. (2.12)

To summarize, for α P p1, 2s, we have identified six different regimes according to
the value of γ, ζ: they are described as follows. A representation of these regions in the
pζ, γq-diagram is given in Figure 1 below.

Region 1 “disorder”, “range” ! “entropy” (Case I-II degenerate)

R1 “
 

ξ “ 1
2 , γ ą

1
2α , ζ ą

1
2

(

;

Region 2 “range” ! “disorder” — “entropy” (Case I)

R2 “

!

ξ “ α
2α´1 p1´ γq,

1´α
α ă γ ă p2α´1qζ´pα´1q

α ^ 1
2α

)

;
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Region 3 “range”, “entropy” ! “disorder” (Case I degenerate)

R3 “
 

ξ “ 1, γ ă ´α´1
α , γ ă ζ ´ α´1

α

(

;

Region 4 “entropy” ! “range” — “disorder” (Case III)

R4 “

"

ξ “
α

α´ 1
pζ ´ γq, p2α´1qζ´pα´1q

α _ pζ ´ α´1
α q ă γ ă p2α`1qζ´pα´1q

3α ^ ζ

*

;

Region 5 “disorder” ! “range” — “entropy” (Case II)

R5 “

!

ξ “ 1`ζ
3 , γ ą p2α`1qζ´pα´1q

3α , ´ 1 ă ζ ă 1
2

)

;

Region 6 “disorder”, “entropy” ! “range” (Case II degenerate)

R6 “ tξ “ 0, γ ą ζ, ζ ă ´1u .

ζ

γ

p 1
2
, 1
2α
q

R1

γ “ p2α´1qζ´pα´1q
α

R2

p0,´α´1
α
q

R3

p´1,´1q

γ “ p2α`1qζ´pα´1q
3α

R5

R6

R4

γ “ ζ

γ “ ζ ´ α´1
α

R1 : ξ “ 1
2

R2 : ξ “ α
2α´1

p1´ γq

R3 : ξ “ 1

R4 : ξ “ α
α´1

pζ ´ γq

R5 : ξ “ 1`ζ
3

R6 : ξ “ 0

Figure 1: Phase diagram in the case α P p1, 2s. The region R1 and the dashed line
γ “ ζ ´ α´1

2α are the thresholds that split the regions of super-diffusivity and sub-

diffusivity. Note that when α “ 1, the four lines γ “ p2α´1qζ´pα´1q
α , γ “ p2α`1qζ´pα´1q

3α ,
and γ “ ζ, γ “ ζ ´ α´1

α all merge to the line γ “ ζ.

2.2 Phase diagram for α P p0, 1q

Let us highlight the main differences with the case α P p1, 2s: the region R4 no longer
exists when α ă 1, and the region R2 also disappears when α ă 1{2. Indeed, region R4

corresponds to the case “disorder”— “range”, in which we have ξ “ α
1´α pγ ´ ζq: it is

easy to check that for α P p0, 1q there is no γ that can satisfy (2.12), which suggests that
there is no “disorder”-“range” balance possible. In the same manner, when α P p0, 1

2 q

there is no γ that satisfy 1´α
α ă γ ă 1

2α (see the definition of R2 above), which suggests
that there is no “disorder”-“entropy” balance possible: region R2 no longer exists. We
also refer to Section 3.2 (Comment 2) for further comments on why regions R4 and R2

disappear for α ă 1 and α ă 1{2 respectively.
All together, for α P p 1

2 , 1q we obtain the pζ, γq-diagram presented in Figure 2 below:
the different regions are described as follows:
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1D polymers in random environment

R1 “
 

ξ “ 1
2 , γ ą

1
2α , ζ ą

1
2

(

,

R2 “

!

ξ “ α
2α´1 p1´ γq,

1´α
α ă γ ă p2α´1qζ´pα´1q

α ^ 1
2α

)

,

R3 “
 

ξ “ 1, γ ă 1´α
α , γ ă ζ ´ α´1

α

(

,

R5 “

!

ξ “ 1`ζ
3 ,

`

p2α´1qζ´pα´1q
α

˘

^
`

ζ ´ α´1
α

˘

ă γ, ´ 1 ă ζ ă 1
2

)

,

R6 “
 

ξ “ 0, γ ą ζ ´ α´1
α , ζ ă 1

α ´ 2
(

.

ζ

γ

p 1
2
, 1
2α
q

R1

γ “ p2α´1qζ´pα´1q
α R2

p0, 1´α
α
q

R3
p´1, 1

α
´ 2q

R5

R6

γ “ ζ ´ α´1
α

R1 : ξ “ 1
2

R2 : ξ “ α
2α´1

p1´ γq

R3 : ξ “ 1

R5 : ξ “ 1`ζ
3

R6 : ξ “ 0

Figure 2: Phase diagram in the case α P p1{2, 1q. Compared to Figure 1, the region R4

no longer exists.

Finally, for α P p0, 1
2 q we obtain the pζ, γq-diagram presented in Figure 3 below: the

different regions are described as follows:

R1 “
 

ξ “ 1
2 , γ ą

1´α
α , ζ ą 1

2

(

,

R3 “
 

ξ “ 1, γ ă 1´α
α , γ ă ζ ´ α´1

α

(

,

R5 “

!

ξ “ 1`ζ
3 , 1´α

α ^
`

ζ ´ α´1
α

˘

ă γ, ´ 1 ă ζ ă 1
2

)

,

R6 “
 

ξ “ 0, γ ą ζ ´ α´1
α , ζ ă 1

α ´ 2
(

.

ζ

γ

p 1
2
, 1´α

α
q

R1

p0, 1´α
α
q

R3

p´1, 1
α
´ 2q

R5

R6

γ “ ζ ´ α´1
α

R1 : ξ “ 1
2

R3 : ξ “ 1

R5 : ξ “ 1`ζ
3

R6 : ξ “ 0

Figure 3: Phase diagram in the case α P p0, 1{2q. Compared to Figure 2, the region R2

no longer exists.
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1D polymers in random environment

Remark 2.1. In the case ĥ ă 0, one can conduct similar computation as in (2.4)—(2.12)
and obtain a different phase diagram than those of Figures 1-2-3, see Figures 4 and 5
below (note that regions R1, R2, R3 are unchanged, since the range term is negligible in
these regions). Let us stress that when ĥ ă 0, the “disorder” and “range” terms both play
in the same direction and encourage exploration, resulting in a much simpler diagram:
only range size exponents ξ ě 1{2 are possible, see Section 4 below.

3 Main results

Our main results consist in proving the phase diagrams of Figures 1-2-3, with a
precise description of the behavior of the polymer in each region. In order to state our
results, let us introduce some definition.

Definition 3.1. If ptN qNě0 is a sequence of positive real numbers, we say that pSnq0ďnďN
has range size of order tN under PωN,βN ,hN if

lim
ηÓ0

lim sup
NÑ`8

E
”

PωN,βN ,hN

´

max
1ďnďN

|Sn| P rη,
1
η s tN

¯ı

“ 1 .

If pSnq0ďnďN has range size of order Nξ under PωN,βN ,hN , then we say that the range
size exponent is ξ.

In our results, we encounter doubly indexed processes

Yu,v :“ Xp1qv `Xp2qu ´ fpu, vq for u, v ě 0 , (3.1)

where Xp1qv and Xp2qu are the Lévy processes of Notation 1.1 and f is some deterministic
function (for instance, a large deviation rate function), such that pu, vq ÞÑ fpu, vq is
continuous on the set where fpu, vq ă `8, with fp0, 0q “ 0. We then have the following
result about the maximizer of the variational problem supu,vě0 Yu,v, that we prove in
Appendix A.3: it ensures the well-posedness of arg maxu,vě0 Yu,v.

Proposition 3.2. Suppose that P-a.s. the variational problem supu,vě0 Yu,v is positive
with Y defined in (3.1), and that Yu,v Ñ ´8 as maxpu, vq Ñ `8. Then

P
´

arg max
u,vě0

Yu,v is a singleton tpU ,Vqu with U ‰ V
¯

“ 1.

Let us stress that in the case α “ 2 of a Brownian motion, [26, Lem. 2.6] (or [29])
proves the uniqueness of the maximizer for one-indexed processes, but not doubly-
indexed ones.

3.1 Statement of the results

We now prove six different theorems, corresponding to the six possible regions in
the phase diagram presented in Figure 1. We mention that we will use P̂ only when the
coupling is needed; otherwise we will keep the notation P (in particular this will be the
case when the limit of the rescaled log-partition function is non-random).

In this section, we again focus on the case ĥ ą 0, but several results hold for a
general ĥ P R: we will highlight when the results are specific to the case ĥ ą 0. The
case ĥ ă 0 will be discussed separately in Section 4. Note that the case h “ 0 or β “ 0

can be recovered by taking ζ “ `8 or γ “ `8 respectively, while the case of constant
h or β can be recovered by taking ζ “ 0 or γ “ 0 respectively. One can then recover
Theorem 1.2 from Theorems 3.4-3.5-3.7 and 4.2 below.

Theorem 3.3 (Region 1). Assume that (1.4) holds with β̂ ě 0, ĥ P R and
#

γ ą 1
2α and ζ ą 1

2 , if α P r 12 , 1q Y p1, 2s,

γ ą 1´α
α and ζ ą 1

2 , if α P p0, 1
2 q.

EJP 27 (2022), paper 162.
Page 10/45

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP862
https://imstat.org/journals-and-publications/electronic-journal-of-probability/
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Then pSnq0ďnďN has range size of order
?
N under PωN,βN ,hN (i.e. ξ “ 1

2 ) and we have
the following convergence

lim
NÑ`8

ZωN,βN ,hN “ 1 P-a.s. . (3.2)

Moreover, we have limNÑ8 }P
ω
N,βN ,hN

´ P}TV “ 0 P-a.s., where } ¨ }TV is the total
variation distance.

Note that the total variation convergence stated in Theorem 3.3 implies that SN{
?
N

converges in distribution to a Brownian motion. This convergence holds P-almost surely.

Theorem 3.4 (Region 2). Assume that (1.4) holds with β̂ ą 0, ĥ P R and

1´α
α ă γ ă p2α´1qζ´pα´1q

α ^ 1
2α and α P p 1

2 , 1q Y p1, 2s.

Then pSnq0ďnďN has range size of order Nξ under Pω̂N,βN ,hN with ξ “ α
2α´1 p1´ γq P p

1
2 , 1q,

and we have the following convergence

lim
NÑ8

1

N
ξ
α´γ

logZω̂N,βN ,hN “W2 :“ sup
u,vě0

!

Y p2qu,v

)

P p0,`8q, in P̂-probability , (3.3)

where Y p2qu,v “ Y
β̂,p2q
u,v “ β̂pX

p1q
v `X

p2q
u q´ 1

2 pu^v`u`vq
2 is as defined in Theorem 1.2-(1b).

Additionally, for any ε ą 0 we have

lim
NÑ8

Pω̂N,βN ,hN

´
ˇ

ˇ

ˇ

1

Nξ
pM´

N ,M
`
N q ´ p´U

p2q,Vp2qq
ˇ

ˇ

ˇ
ą ε

¯

“ 0 , in P̂-probability,

where pU p2q,Vp2qq :“ arg maxu,vě0

 

Y
p2q
u,v

(

is well-defined thanks to Proposition 3.2.

Let us stress that the case α “ 2, β “ βN ” β ą 0 and h ” 0 corresponds to the case
γ “ 0 and ζ “ `8: we find in that case that the range size exponent is ξ “ 2

3 .

Theorem 3.5 (Region 3). Assume that (1.4) holds with β̂ ą 0, ĥ P R and

γ ă
`

ζ ´ α´1
α

˘

^
`

1´α
α

˘

and α P p0, 1q Y p1, 2s.

Then pSnq0ďnďN has range size of order N under Pω̂N,βN ,hN (i.e. ξ “ 1), and we have the
following convergence

lim
NÑ8

1

N
1
α´γ

logZω̂N,βN ,hN “W3 :“ sup
u,vě0

!

Y p3qu,v

)

P p0,`8q , P̂-a.s. , (3.4)

where Y p3qu,v “ Y
β̂,p3q
u,v “ β̂pX

p1q
v `X

p2q
u q ´ 81tu^v`u`vą1u is as defined in Theorem 1.2-(2).

Additionally, for any ε ą 0 we have

lim
NÑ8

Pω̂N,βN ,hN

´
ˇ

ˇ

ˇ

1

N
pM´

N ,M
`
N q ´ p´U

p3q,Vp3qq
ˇ

ˇ

ˇ
ą ε

¯

“ 0 , P̂-a.s.

where pU p3q,Vp3qq :“ arg maxu,vě0

 

Y
p3q
u,v

(

is well-defined thanks to Proposition 3.2.

Theorem 3.6 (Region 4). Assume that (1.4) holds with β̂ ą 0, ĥ ą 0 and

`

p2α´1qζ´pα´1q
α

˘

_
`

ζ ´ α´1
α

˘

ă γ ă
`

p2α`1qζ´pα´1q
3α

˘

^ ζ and α P p1, 2s.

Then pSnq0ďnďN has range size of order Nξ under Pω̂N,βN ,hN with ξ “ α
α´1 pζ ´ γq P p0, 1q,

and we have the following convergence

lim
NÑ8

1

Nξ´ζ
logZω̂N,βN ,hN “W4 :“ sup

u,vě0

!

Y p4qu,v

)

P p0,`8q , in P̂-probability , (3.5)
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where Y p4qu,v “ Y
β̂,ĥ,p4q
u,v :“ β̂pX

p1q
v `X

p2q
u q ´ ĥpu` vq. Additionally, for any ε ą 0 we have

lim
NÑ8

Pω̂N,βN ,hN

´
ˇ

ˇ

ˇ

1

Nξ
pM´

N ,M
`
N q ´ p´U

p4q,Vp4qq
ˇ

ˇ

ˇ
ą ε

¯

“ 0 , in P̂-probability

where pU p4q,Vp4qq :“ arg maxu,vě0

 

Y
p4q
u,v

(

is well-defined thanks to Proposition 3.2.

Theorem 3.7 (Region 5). Assume that (1.4) holds with β̂ ą 0, ĥ ą 0 and
$

’

&

’

%

γ ą p2α`1qζ´pα´1q
3α and ´ 1 ă ζ ă 1

2 , if α P p1, 2s ,

γ ą
`

p2α´1qζ´pα´1q
α

˘

^
`

ζ ´ α´1
α

˘

and ´ 1 ă ζ ă 1
2 , if α P p 1

2 , 1q ,

γ ą
`

1´α
α

˘

^
`

ζ ´ α´1
α

˘

and ´ 1 ă ζ ă 1
2 , if α P p0, 1

2 q .

Then pSnq0ďnďN has range size of order Nξ under PωN,βN ,hN with ξ “ 1`ζ
3 P p0, 1

2 q, and
we have the following convergence

lim
NÑ`8

1

Nξ´ζ
logZωN,βN ,hN “ ´

3

2
pĥπq2{3 “ sup

rě0

!

´ ĥr ´
π2

2r2

)

P-a.s. (3.6)

Additionally, for every ε ą 0, we have

lim
NÑ`8

PωN,βN ,hN

´ˇ

ˇ

ˇ

1

Nξ
pM`

N ´M
´
N q ´ π

2
3 ĥ´

1
3

ˇ

ˇ

ˇ
ą ε

¯

“ 0 P-a.s.

Theorem 3.8 (Region 6). Assume that (1.4) holds with β̂ ą 0, ĥ ą 0 and
#

γ ą ζ and ζ ă ´1, if α P p1, 2s,

γ ą ζ ´ α´1
α and ζ ă ´1, if α P p0, 1q.

Then we have the following convergences

lim
NÑ`8

PωN,βN ,hN p|Rn| “ 2q “ 1, lim
NÑ`8

Nζ logZωN,βN ,hN “ ´2ĥ P-a.s. (3.7)

Let us conclude this section with a result that complements Theorems 3.4-3.5 and
Theorem 3.6 in the case ξ ą 1

2 . It shows that under Pω̂N,βN ,hN trajectories travel bal-

listically to the closest point between ´UNξ and VNξ and then to the other one. Let
us introduce some notation to be able to state the result. For u, v ě 0 with u ‰ v, let
σu,v “ ´1 if u ă v and σu,v “ `1 otherwise, let cu,v “ u ^ v ` u ` v, and define the
function

bu,vptq “

#

σu,v cu,v t for 0 ď t ď u^v
cu,v

,

´σu,v cu,v t` 2σu,v pu^ vq for u^v
cu,v

ď t ď 1 ,
(3.8)

that goes with constant speed from 0 to the closest point between ´u and v and then to
the other one. Now, for ε ą 0, let us define the event

BεN pu, vq :“
!

sup
tPr0,1s

ˇ

ˇ

ˇ

1

Nξ
SttNu ´ bu,vptq

ˇ

ˇ

ˇ
ď ε

)

. (3.9)

We then have the following result.

Proposition 3.9. Assume that, for some ξ P p 1
2 , 1s, for any δ ą 0 we have

lim
NÑ8

Pω̂N,βN ,hN

´
ˇ

ˇ

ˇ

1

Nξ
pM´

N ,M
`
N q ´ p´U ,Vq

ˇ

ˇ

ˇ
ą δ

¯

“ 0 , in P̂-probability (resp. P̂-a.s.) ,

(3.10)
with U ,V ě 0 two random variables such that U ‰ V a.s. Then, for any ε ą 0 we have

lim
NÑ`8

Pω̂N,βN ,hN
`

BεN pU ,Vq
˘

“ 1 , in P̂-probability (resp. P̂-a.s.) .
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Remark 3.10. An analogous result should also hold in the case ξ P p0, 1
2 q. Assume

that (3.10) holds with ξ P p0, 1
2 q. Then we expect that N´ξSN`U

U`V converges in distribution

(under Pω̂N,βN ,hN ) towards a random variable X with density π
2 sinpπxq1r0,1spxq. This result

is easy to obtain for a random walk conditioned to remain inside an interval r´aNξ, bNξs,
but becomes trickier when the range is conditioned to be exactly r´aNξ, bNξs. We are
not aware of any such result for random walks conditioned on their range, but let us
mention [12] where a closely related question is considered. We therefore chose not to
develop this in the present paper to avoid lengthening it.

3.2 Some comments on the results (case ĥ ą 0)

Let us now make some observations on our results.
Comment 1. Our results describe a transition from folded trajectories (ξ ă 1{2)

to stretched trajectories (ξ ą 1{2), which is induced by the presence of disorder. Let
us illustrate this in the case α P p1, 2s for simplicity; we refer to the phase diagram of
Figure 1. If βN “ β̂ ą 0 and hN “ ĥ ą 0, that is if γ “ ζ “ 0, we find that trajectories are
folded, with range size exponent ξ “ 1{3. Now, if we keep hN “ ĥ ą 0 fixed (i.e. ζ “ 0)
and increase the strength of disorder, that is if we decrease γ (taking γ ă 0), we realize
that we have transitions between the following regimes:

(i) if γ ą 1´α
3α , the random walk is folded with range size exponent ξ “ 1

3 (disorder is
not strong enough);

(ii) if 1´α
3α ą γ ą 1´α

2α , then the random walk is still folded, with range size exponent
1
3 ă ξ “ γα

1´α ă
1
2 (disorder makes the random walk less folded);

(iii) if 1´α
2α ą γ ą 1´α

α , then the random walk is stretched, with range size exponent
1
2 ă ξ “ γα

1´α ă 1 (disorder is strong enough to stretch the random walk);

(iv) if γ ă 1´α
α , then the random walk is completely unfolded and has range size

exponent ξ “ 1.

Analogously, if we keep βN “ β̂ ą 0 fixed (i.e. γ “ 0) and decrease the penalty for the
range, that is if we increase ζ (taking ζ ą 0), we have transitions between the following
regimes:

(i) if 0 ă ζ ă α´1
2α`1 , then the random walk is still folded with range size exponent

1
2 ă ξ “ 1`ζ

3 ă α
2α`1 ă

1
2 (disorder plays no role);

(ii) if α´1
2α`1 ă ζ ă α´1

2α , then the random walk is still folded with range size exponent
α

2α`1 ă ξ “ ζα
α´1 ă

1
2 (disorder plays a role);

(iii) if α´1
2α ă ζ ă α´1

2α´1 , then the random walk is stretched, with range size exponent
1{2 ă ξ “ γα

1´α ă
α

2α´1 ă 1 (disorder stretches the random walk);

(iv) if ζ ą α´1
2α´1 , then the random walk is stretched and has range size exponent

2
3 ď ξ “ α

2α´1 ă 1 (and the penalty for the range is not felt).

Comment 2. Let us now discuss the limiting distributions for the log-partition
function in regions R2, R3, R4. For simplicity, we will restrict ourselves to the case where
u “ 0 in the variational problems (3.3)-(3.4)-(3.5) (which corresponds to considering
the case of a random walk constrained to stay non-negative): the variational problems
become, respectively

ĂW2 :“ sup
vě0

!

β̂Xv ´
1
2v

2
)

, ĂW3 :“ β̂ sup
vPr0,1s

tXvu , ĂW4 :“ sup
vě0

!

β̂Xv ´ ĥv
)

,
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with pXvqvě0 “ pX
p1q
v qvě0.

a) The variational problem ĂW3 is clearly always finite. In the case α “ 2, pXtqtě0 is
a Brownian motion and it is standard to get that ĂW3 has the distribution of β̂|Z|, with
Z „ N p0, 1q. In the case α P p0, 2q, pXtqtě0 is a stable Lévy process and we get that ĂW3 is
a postitive α-stable random variable (see [9, Ch. VIII], and also [27]).

b) The variational problem ĂW4 is finite only when α ą 1: when α P p0, 1q, then Xv

grows typically as v1{α " v as v Ñ8 and we therefore have W4 “ `8. This explains in
particular why there is no energy-range balance possible if α P p0, 1q and why region R4

no longer exists in that case. If α “ 2, pXtqtě0 is a Brownian motion and it is standard to
get that ĂW4 is an exponential random variable (here with parameter 2ĥ{β2). If α P p1, 2q,
pXtqtě0 is a stable Lévy process and pβ̂Xt´ ĥtqtě0 is also a Lévy process: the distribution
of its supremum ĂW4 has been studied extensively, going back to [2], but the exact
distribution does not appear to be known (we refer to the recent papers [14, 28]).

c) The variational problem ĂW2 is finite only when α ą 1
2 : when α P p0, 1

2 q, then Xv

grows typically as v1{α " v2 as v Ñ8 and we therefore have W2 “ `8. This explains in
particular why there is no energy-entropy balance possible if α P p0, 1

2 q, and why region
R2 no longer exists in that case. In the case α “ 2, that is when pXtqtě0 is a standard
Brownian motion, then ĂW4 has appeared in various contexts and its density is known
(its Fourier transform is expressed in terms of Airy function, see for instance [17, 22]).
In the case α P p 1

2 , 2q, exact asymptotics on the tail of the distribution of ĂW4 have been

derived in [30]; we are not aware whether the distribution of ĂW4 has been studied in
more detail.

Comment 3. To keep the paper lighter, we have chosen not to treat the cases of the
boundaries between different regions of the phase diagrams. These boundary regions
do not really hide anything deep: features of both regions should appear in the limit,
and “disorder”, “range” and “entropy” may all compete at the same (exponential) scale.
Let us state the limiting variational problems that one should find in some the most
interesting boundary cases, in the case α P p1, 2s for simplicity (we refer to the phase
diagram of Figure 1):

• Line between regions R2 and R4: γ “ p2α´1qζ´pα´1q
α and ζ P p0, 1

2 q. Then one should

have ξ “ αp1´γq
2α´1 and

lim
NÑ`8

1

N2ξ´1
logZω̂N,βN ,hN “ sup

u,vě0

!

β̂pXp1qv `Xp2qu q ´ ĥpu` vq ´ 1
2 pu^ v ` u` vq

2
)

in P̂-probability.
• Line between regions R4 and R5: γ “ p2α`1qζ´pα´1q

3α and ζ P p´1, 1
2 q. Then one

should have ξ “ 1`ζ
3 and

lim
NÑ`8

1

N1´2ξ
logZω̂N,βN ,hN “ sup

u,vě0

!

β̂pXp1qv `Xp2qu q ´ ĥpu` vq ´
π

2pu` vq2

)

in P̂-probability, where the last term inside the supremum comes from the entropic cost
of “folding” the random walk in the interval ruNξ, vNξs (see Lemma A.3).

• Line between regions R2 and R3: γ “ ´α´1
α and ζ ą 0. Then one should have ξ “ 1

and

lim
NÑ`8

1

N2ξ´1
logZω̂N,βN ,hN “ sup

u,vě0

!

β̂pXp1qv `Xp2qu q ´ κpu^ v ` u` vq
)

in P̂-probability, where

κptq :“

#

1
2 p1` tq logp1` tq ` 1

2 p1´ tq logp1´ tq, for t P r0, 1s

`8 for t ą 1,
(3.11)
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is the rate function for the large deviations of the simple random walk, see Lemma A.2.

• Line between regions R3 and R4: γ “ ζ ´ α´1
α and ζ ă 0. Then one should have

ξ “ 1 and

lim
NÑ`8

1

N2ξ´1
logZω̂N,βN ,hN “ sup

u,vě0

!

β̂pXp1qv `Xp2qu q ´ ĥpu` vq ´ κpu^ v ` u` vq
)

in P̂-probability.

Comment 4. In region R5, the disorder term does not appear in the variational
formula. In the case β “ 0 and h ą 0 (i.e. γ “ 8, ζ “ 0), corresponding to the random
walk penalized by its range in a homogeneous way, the behavior of the random walk
is well understood: it is confined in a segment of length pπ

2
3 ĥ´

1
3 qN1{3 with a random

center, see [33] for the continuum limit of the process. In our model, we have shown that
trajectories are still confined in a segment of length pπ

2
3 ĥ´

1
3 qN1{3. However, disorder

should appear in the fluctuations of the log-partition function and in particular we believe
that, depending on the strength βN of the disorder interaction, the center of this segment
should be determined by the environment so as to maximize the amount of potentials
in that segment; in particular, it should not be random anymore (under PωN,βN ,hN , for
typical realizations of ω). This picture should hold in region R5 as long as the effect
of disorder is sufficiently strong. More precisely, using the terminology of Section 2,
the “disorder” term is β̂N

ξ
α´γ , with ξ “ 1

3 p1 ` ζq: its effect does not vanish as long
as γ ă ξ{α, that is as long as γ ă 1

3α p1 ` ζq. In other words, there should be another
phase transition inside region R5: the random walk is confined in a segment of length
pπ

2
3 ĥ´

1
3 qNξ with ξ “ 1

3 p1` ζq, but under PωN,βN ,hN the location of this segment should be

non-random (i.e. determined by the realization of ω) when γ ă 1
3α p1` ζq, and random

when γ ą 1
3α p1` ζq (which includes the case β “ 0). We leave this as an open problem.

4 Results in the case ĥ ă 0

4.1 The phase diagram

In the case ĥ ă 0, the same type of “energy” vs. “range” vs. “entropy” heuristics as
in Section 2 can be carried out. The main difference is that the “range” term is now
a reward rather than a penalty and thus plays in the same direction as the “disorder”
term and encourages stretching: the range size exponent will always verify ξ ě 1{2.
Recall that for a polymer with typical range size Nξ, the “range” term is of order Nξ´ζ ,
the “disorder” term is of order Nξ{α´γ and the entropy term is N2ξ´1 (since ξ ě 1{2), as
in (2.2) and (2.3). In a similar fashion than in Section 2, we find that two cases need to
be considered.

Case I (“disorder”" “range”). As mentioned in Remark 2.1, regions R1, R2, R3 are
unchanged when h ă 0: we refer to (2.4)-(2.5)-(2.6) for the determination of ξ in these
three regions.

Case II (“disorder”! “range”). The balance between range and entropy is achieved if
ξ ´ ζ “ 2ξ ´ 1 (with ξ P r 12 , 1s), which gives ξ “ 1 ´ ζ when γ ą p2α´1qζ´pα´1q

α . Also, we
have ξ “ 1 when ζ ď 0 and γ ą ζ ´ α´1

α , and we have ξ “ 1{2 when ζ ě 1{2 and γ ą 1
2α .

To summarize, we can identify several regimes, according to the values of γ, ζ: there
are five regimes when α P p 1

2 , 2s, see Figure 4 below; there are four regimes when
α P p0, 1

2 q, see Figure 5 below.

4.2 Statement of the results

We only state the results in regions rR4 and rR5, since the regions R1, R2 and R3 are
treated in Section 3.1, see Theorems 3.3, 3.4 and 3.5 (respectively).
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ζ

γ

p 1
2
, 1
2α
q

R1

γ “ p2α´1qζ´pα´1q
α

R2

p0, 1´α
α
q

R3

rR4

rR5

γ “ ζ ´ α´1
α

R1 : ξ “ 1
2

R2 : ξ “ α
2α´1

p1´ γq

R3 : ξ “ 1

rR4 : ξ “ 1´ ζ
rR5 : ξ “ 1

Figure 4: Phase diagram for ĥ ă 0, in the case α P p1{2, 2s.

ζ

γ

p 1
2
, 1´α

α
q

R1

p0, 1´α
α
q

R3

rR4

rR5

γ “ ζ ´ α´1
α

R1 : ξ “ 1
2

R3 : ξ “ 1

rR4 : ξ “ 1´ ζ
rR5 : ξ “ 1

Figure 5: Phase diagram for ĥ ă 0, in the case α P p0, 1{2q.

Theorem 4.1 (Region rR4). Assume that (1.4) holds with β̂ ą 0, ĥ ă 0 and

γ ą
p2α´ 1qζ ´ pα´ 1q

α
_

1´ α

α
, ζ P

`

0, 1
2

˘

.

Then pSnq0ďnďN has range size of order Nξ under PωN,βN ,hN with ξ “ 1´ ζ P p 1
2 , 1q, and

we have the following convergence

lim
NÑ`8

1

Nξ´ζ
logZωN,βN ,hN “

1

2
ĥ2 “ sup

u,vě0

!

|ĥ|pv´ uq ´ 1
2 pu^ v` u` vq

2
)

P-a.s. (4.1)

Additionally, let us consider, for ε ą 0, the two events

B`,εN :“
!

sup
tPr0,1s

ˇ

ˇN´ξSttNu ` ĥ t
ˇ

ˇ ď ε
)

, B´,εN :“
!

sup
tPr0,1s

ˇ

ˇN´ξSttNu ´ ĥ t
ˇ

ˇ ď ε
)

,

which corresponds to pSnq0ďnďN travelling with roughly constant speed to either ´ĥNξ

or ĥNξ. Then for any ε ą 0, we have

lim
NÑ`8

´

PωN,βN ,hN
`

B`,εN

˘

`PωN,βN ,hN
`

B´,εN

˘

¯

“ 1 P-a.s.,

and P̂-a.s.

lim
εÓ0

lim
NÑ`8

Pω̂N,βN ,hN
`

B`,εN

˘

“

$

’

’

’

’

’

&

’

’

’

’

’

%

1
tX

p1q

|ĥ|
ąX

p2q

|ĥ|
u

if γ ă 1´ζ
α ,

exp
`

β̂X
p1q

|ĥ|

˘

exp
`

β̂X
p1q

|ĥ|

˘

`exp
`

β̂X
p1q

|ĥ|

˘ if γ “ 1´ζ
α ,

1
2 if γ ą 1´ζ

α .

(4.2)
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Before we state the result in region rR5 (which is somehow degenerate), let us state a
result in the case ζ “ 0, that is at the boundary of regions rR4 and rR5.

Theorem 4.2 (Boundary rR4— rR5). Assume that (1.4) holds with β̂ ą 0, ĥ ă 0 and with
ζ “ 0, γ ą ´α´1

α . Then we have the following convergence

lim
NÑ`8

1

N
logZωN,βN ,hN “ log

`

sinh |ĥ|
˘

“ sup
u,vě0

!

|ĥ|pu` vq ´ κpu^ v ` u` vq
)

P-a.s.,

(4.3)
with κp¨q defined in (3.11). Additionally, for ε ą 0, let us consider the two events

B`,εN :“
!

sup
tPr0,1s

ˇ

ˇN´1SttNu´tanhp|ĥ|qt
ˇ

ˇ ď ε
)

, B´,εN :“
!

sup
tPr0,1s

ˇ

ˇN´1SttNu`tanhp|ĥ|qt
ˇ

ˇ ď ε
)

,

which correspond to pSnq0ďnďN travelling at roughly constant speed to either tanhp|ĥ|qN

or ´ tanhp|ĥ|qN . Then for any ε ą 0, we have

lim
NÑ`8

´

PωN,βN ,hN
`

B`,εN

˘

`PωN,βN ,hN
`

B´,εN

˘

¯

“ 1 P-a.s.,

and P̂-a.s.

lim
εÓ0

lim
NÑ`8

Pω̂N,βN ,hN
`

B`,εN

˘

“

$

’

’

’

’

’

&

’

’

’

’

’

%

1
tX

p1q

tanh |ĥ|
ąX

p2q

tanh |ĥ|
u

if γ ă 1
α ,

exp
`

β̂X
p1q

tanh |ĥ|

˘

exp
`

β̂X
p1q

tanh |ĥ|

˘

`exp
`

β̂X
p2q

tanh |ĥ|

˘ if γ “ 1
α ,

1
2 if γ ą 1

α .

(4.4)

To conclude, we state the result in region rR5.

Theorem 4.3 (Region rR5). Assume that (1.4) holds with β̂ ą 0, ĥ ă 0 and ζ ă 0,
γ ą ζ ´ α´1

α . Then

lim
NÑ`8

Nζ´1 logZωN,βN ,hN “ |ĥ| P-a.s.

Additionally, for ε ą 0, let us consider the two events

B`,εN :“
!

sup
tPr0,1s

ˇ

ˇN´1SttNu ´ t
ˇ

ˇ ď ε
)

, B´,εN :“
!

sup
tPr0,1s

ˇ

ˇN´1SttNu ` t
ˇ

ˇ ď ε
)

,

which corresponds to pSnq0ďnďN travelling with roughly constant speed to either N
or ´N . Then, for any ε ą 0, we have

lim
NÑ`8

´

PωN,βN ,hN
`

B`,εN

˘

`PωN,βN ,hN
`

B`,εN

˘

¯

“ 1 P-a.s.,

and P̂-a.s.

lim
εÓ0

lim
NÑ`8

Pω̂N,βN ,hN pB
`,ε
N q “

$

’

’

’

’

&

’

’

’

’

%

1
tX

p1q
1 ąX

p2q
1 u

if γ ă 1
α ,

exp
`

β̂X
p1q
1

˘

exp
`

β̂X
p1q
1

˘

`exp
`

β̂X
p2q
1

˘ if γ “ 1
α ,

1
2 if γ ą 1

α .

(4.5)

If α P p0, 1q or if α P p1, 2s and γ ą ζ, then we can upgrade the result: we have

lim
NÑ`8

´

PωN,βN ,hN
`

SN “ N
˘

`PωN,βN ,hN
`

SN “ ´N
˘

¯

“ 1 P-a.s. (4.6)

and (4.5) holds with tSN “ Nu in place of B`,εN .

EJP 27 (2022), paper 162.
Page 17/45

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP862
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


1D polymers in random environment

4.3 Further comments on the results in the case ĥ ă 0

Comment 5. Notice that in Theorems 4.1, 4.2 and 4.3, the disorder term disappears
in the limiting variational problems and the displacement of SN under Pω̂N,βN ,hN is given
by a law of large number, possibly with a random direction. Analogously to Comment 4
above, disorder should also appear in the fluctuations of the log-partition function and
in the second order term for the displacement of SN . For simplicity, let us comment
further the case of the boundary rR4— rR5 (that is Theorem 4.2), i.e. consider the case
where h ă 0 is fixed (ζ “ 0) and βN “ β̂N´γ with γ ą 1´α

α . In that case, the polymer
has a (non-random) velocity vh :“ tanh |h| either to the positive side or to the negative

side: assume for simplicity that Xp1qvh ą X
p2q
vh , so that 1

N SN converges to vh (and not ´vh).
Randomness should then have the effect of stretching further (or back) the polymer: let
us present some heuristic explanation on what one should expect. If we assume that
M´
N “ ´uN

ρ and M`
N “ vhN ` vN

ρ, for some ρ P p 1
2 , 1q and v P R, u ě 0, then, compared

to the case SN “ vhN :

(i) there is an additional range reward |ĥ|pu` vqNρ;

(ii) there is an additional entropic cost κ1pvhqp2u` vqNρ ` 1
2κ
2pvhqp2u` vq

2N2ρ´1;

(iii) there is an energy gain of approximately β̂pX̌p1qu ` X̌
p2q
v qN

ρ
α´γ , with X̌p1q, X̌p2q the

scaling limits of the fields pωxqxď0, pωvhN`xqxPZ on a scale Nρ.

In particular, there are some cancellations between the range reward and the addi-
tional entropic cost: one gets ´κ1pvhquNρ´ 1

2κ
2pvhqp2u`vq

2N2ρ´1. One should therefore

take u “ 0: if u ą 0 the term´κ1pvhquN
ρ cannot be compensated by β̂ rX

p1q
u N

ρ
α´γ , because

γ ą 1´α
α . Therefore, for the entropy-energy balance, one has to compare 1

2κ
2pvhqv

2N2ρ´1

with β̂X̌p2qv N
ρ
α´γ .

All together, this suggests that in the case γ ă 1
2α (which is compatible with γ ą 1´α

α

only for α P p1, 2s) it is possible to take ρ :“ p1´γqα
2α´1 P p 1

2 , 1q, so that N2ρ´1 — N
ρ
α´γ . Then,

under Pω̂N,βN ,hN , one should have M´
N “ opNρq and M`

N “ vhN ´ p1` op1qqVNρ, where V
is the maximizer of the variational problem

sup
vPR

!

β̂X̌p2qv ´ 1
2κ
2pvhqv

2
)

.

On the other hand, when γ ą 1
2α , then there is no further stretching of the polymer by

the disorder: under Pω̂N,βN ,hN we should have SN “ vhN `Op
?
Nq, as it is the case when

βN ” 0. This goes beyond the scope of this article and we leave this as an open problem.
Comment 6. There is some room for improvement in Theorem 4.3, when α P p1, 2s

and ζ ě γ ą ζ ´ α´1
α . Indeed, we then have that 1

N SN goes to ˘1, but as in Comment 5
above, disorder should appear in the fluctuations of the log-partition function and in
the second order term for the displacement of SN . Let us assume that we are on the
event where 1

N SN goes to `1 (instead of ´1) and let us present a heuristic explanation
on what one should expect. If we assume that M´

N “ ´uNρ and M`
N “ N ´ vNρ, for

some ρ P p0, 1q and u, v ě 0 with 2u ď v (because of the constraint M`
N ´ 2M´

N ď N ), then
compared to the case SN “ N :

(i) there is a diminution of the range reward by |ĥ|pv ´ uqNρ´ζ ;

(ii) there is a reduction of the entropic cost by roughly Nρ logN , coming from the
combinatorial term

`

N
N´cNρ

˘

— this is negligible compared to the range term since
ζ ă 0;
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(iii) there is an energy gain of approximately β̂pX̌p2qu ´ X̌
p1q
v qN

ρ
α´γ , where X̌p1qv , X̌

p2q
v are

the scaling limits of pωxqxď0, pωN´xqxě0 on a scale Nρ.

This suggests that for α P p1, 2s and ζ ą γ ą ζ´ α´1
α , one should take ρ “ α

α´1 pζ´γq P

p0, 1q, so that Nρ´ζ — N
ρ
α´γ . Note that one recovers ρ “ 0 if γ “ ζ (to be compared

with (4.6)) and ρ “ 1 if γ “ ζ ´ α´1
α (i.e. on the boundary of Regions rR5 ´ R3, see

Figure 4). Additionally, under Pω̂N,βN ,hN , one should have M´
N “ ´p1 ` op1qqUNρ and

M`
N “ N ´ p1` op1qqVNρ, where pU ,Vq are the maximizers of the variational problem

sup
0ď2uďv

!

β̂
´

X̌p2qu ´ X̌p1qv

¯

´ |ĥ|pv ´ uq
)

.

As for Comment 5, we leave this as an open problem.

4.4 Organisation of the proof and useful notation

Let us give an overview of how the rest of the paper is organized:
• In Section 5, we start with the proof of Proposition 3.9, then we prove Theorems 3.3

to 3.8 (in that order), i.e. we prove the phase diagram of Regions R1 to R6; note that
regions R4 to R6 are specific to the case ĥ ą 0. The results in Regions R2, R4 and R5

involve competitions between “energy”, “range” or “entropy” (but all have the same
scheme of proof), while Regions R1, R3 and R6 are extreme cases where only one factor
is significant and hence are much simpler. Let us stress here that the statements on
range size of trajectories pSnq0ďnďN under PωN,βN ,hN are direct consequences of the

convergence of pM´
N ,M

`
N q under PωN,βN ,hN , so we do not write their proof explicitly.

• In Section 6, we prove the remaining Theorems 4.1 to 4.3, i.e. we complete the
phase diagram in the case ĥ ă 0. Here, the main contribution to the partition function
comes from the range term and finding the limit of the rescaled log-partition function is
not difficult. The harder part consists in showing that disorder plays a role in deciding
whether the random walk moves to the positive or to the negative side: this is done by a
careful decomposition of the partition function.

• In Appendix A, we regroup several technical estimates: large deviations for the
range of the random walk in Section A.1, deviation for sums of ωx (i.e. the proof of
Lemma 4.4 below) in Section A.2, the proof of Proposition 3.2 in Section A.3 and some
technical estimate on càdlàg path in Section A.4.

Some further notation and a useful lemma In the rest of the paper, to lighten
notation, we will drop the dependence on βN and hN : we write PωN instead of PωN,βN ,hN
and ZωN instead of ZωN,βN ,hN . We also use the convenient notation ZωN pEq for the partition
function restricted to trajectories pSnqně0 in E: more precisely,

ZωN pEq :“ E
”

exp
´

ÿ

xPZd

pβNωx ´ hN q1txPRNu

¯

1E
ı

. (4.7)

This way, we have that PωN pEq “ ZωN pEq{Z
ω
N .

For any j ě 0 let us recall the notation Σ`j :“
řj
x“0 ωx and Σ´j :“

ř´1
x“´j ωx, intro-

duced in (1.2) (with the convention that Σ´0 “ 0). We then let

Σ˚` :“ sup
0ďjď`

|Σ´j | ` sup
0ďjď`

|Σ`j | . (4.8)

Recall that we have set M`
N :“ max0ďnďN Sn ě 0 and M´

N :“ min0ďnďN Sn ď 0 the
right-most and left-most points of the random walk after N steps; we also denote

M˚
N :“ max

0ďnďN
|Sn| “ maxpM`

N ,´M
´
N q .
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With these notation, notice that we have
ř

xPRN
ωx “ Σ`

M`
N

` Σ´
´M´

N

. We now state the

following (standard) lemma, that we prove in Appendix A.2 for completeness.

Lemma 4.4. Let Σ˚` defined as in (4.8). Then, under Assumption 1 (α P p0, 1q Y p1, 2s),
there exists a constant c P p1,`8q such that for any T ą 0 and any ` we have

P
`

Σ˚` ą T
˘

ď c `T´α . (4.9)

Also, P-a.s. there is a constant C “ Cpωq such that Σ˚` ď C`1{αplog2 `q
2{α for all ` ě 1.

Finally, while we keep the distinction between P and P̂, we will only write ω (and not
ω̂) in order to lighten the notation,

5 Proof of the main results

5.1 Ballisticity of trajectories: proof of Proposition 3.9

Let ε ą 0 be fixed. For δ ą 0, let us define (recall we assume ξ ą 1
2 )

Aδ
N :“

"

ˇ

ˇ

ˇ

1

Nξ
pM´

N ,M
`
N q ´ p´U ,Vq

ˇ

ˇ

ˇ
ď δ

*

.

Then, by assumption, we have that for any δ ą 0, limNÑ`8
ZωN pA

δ
N q

ZωN
“ 1 in P̂-probability

(resp. P̂-a.s.), so the proof will be complete if we show that

lim
NÑ`8

ZωN
`

Aδ
N ,BεN pU ,Vqc

˘

ZωN
`

Aδ
N

˘ “ 0 , P̂-a.s. (5.1)

where we refer to (3.9) for the definition of BεN pU ,Vq.
To do so, we decompose the partition function as follows (here and in the rest of the

paper, we often omit integer parts for simplicity):

ZωN
`

Aδ
N ,BεN pU ,Vqc

˘

“
ÿ

|px,yq´NξpU,Vq|ďδNξ
ZωN

`

M´
N “ ´x,M

`
N “ y,BεN pU ,Vqc

˘

“
ÿ

|px,yq´NξpU,Vq|ďδNξ
eβN pΣ

´
x`Σ`y q´hN px`y`1qP

`

M´
N “ ´x,M

`
N “ y,BεN pU ,Vqc

˘

Now, for δ ą 0 small enough, we have thanks to (A.5) (recall U ,V ě 0 with U ‰ V) that

P
`

M´
N “ ´x,M

`
N “ y,BεN pU ,Vqc

˘

ď e´cN
2ξ´1

P
`

M´
N “ ´x,M

`
N “ y

˘

(5.2)

uniformly for x, y such that |px, yq´NξpU ,Vq| ď δNξ, for some constant c “ cδ,εpU ,Vq ą 0.
Using (5.2), we obtain that

ZωN
`

Aδ
N ,BεN pU ,Vqc

˘

ď e´cN
2ξ´1 ÿ

|px,yq´NξpU,Vq|ďδNξ
eβN pΣ

´
x`Σ`y q´hN px`y`1qP

`

M´
N “ ´x,M

`
N “ y

˘

ď e´cN
2ξ´1 ÿ

|px,yq´NξpU,Vq|ďδNξ
ZωN

`

M´
N “ ´x,M

`
N “ y

˘

ď e´cN
2ξ´1

ZωN
`

Aδ
N

˘

,

which shows (5.1).

5.2 Region R1: Proof of Theorem 3.3

Recall that in Region R1 we have
#

γ ą 1
2α and ζ ą 1

2 , if α P r 12 , 1q Y p1, 2s,

γ ą 1´α
α and ζ ą 1

2 , if α P p0, 1
2 q.

Let us note that we always have γ ą 1
2α , since 1´α

α ą 1
2α when α ă 1{2.
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Convergence of the partition function

Fix A (large) and split the partition function in the following way

ZωN “ ZωN
`

M˚
N ď A

?
N
˘

` ZωN
`

M˚
N ą A

?
N
˘

. (5.3)

Upper bound Recalling the definition (4.7) of the restricted partition function, one
easily sees that

ZωN
`

M˚
N ď A

?
N
˘

ď exp
´

β̂N´γΣ˚
A
?
N
` 2A|ĥ|N

1
2´ζ

¯

P
`

M˚
N ď A

?
N
˘

ď exp
´

β̂N´γΣ˚
A
?
N
` 2A|ĥ|N

1
2´ζ

¯ (5.4)

Notice that N
1
2´ζ goes to 0 as N Ñ8, since ζ ą 1

2 . Also, by Lemma 4.4, since γ ą 1
2α we

get that N´γΣ˚
A
?
N

goes to 0 almost surely. We therefore get that lim supNÑ8 Z
ω
N pM

˚
N ď

A
?
Nq ď 1 P-a.s.
It remains to show that the second term in (5.3) is also small. We split the partition

function as

ZωN

´

M˚
N ą A

?
N
¯

ď

log2p
1
A

?
Nq

ÿ

k“1

ZωN

´

M˚
N P p2

k´1A
?
N, 2kA

?
N s

¯

ď

log2p
1
A

?
Nq

ÿ

k“1

exp
´

β̂N´γΣ˚
2kA

?
N
`2k`1A|ĥ|N

1
2´ζ

¯

P
`

M˚
N ě 2k´1A

?
N
˘

.

Then, it is standard to get that PpM˚
N ą xq ď 2 expp´ x2

2N q for any x ą 0 and N P N

(thanks to Lévy’s inequality and a standard Chernov bound), so that

P
`

M˚
N ą 2k´1A

?
N
˘

ď 2 exp
`

´22k´3A2
˘

. (5.5)

Hence, choosing N large enough so that |ĥ|N
1
2´ζ ď 2´5A and in particular 2k`1A|ĥ|N

1
2´ζ

ď 22k´4A2, we get P-a.s.

ZωN

´

M˚
N ą A

?
N
¯

ď

log2p
1
A

?
Nq

ÿ

k“1

2 exp
´

Cpβ̂, A, ωq2k{αN
1
2α´γplog2Nq

2{α´22k´4A2
¯

, (5.6)

where we also used Lemma 4.4 to get an almost sure bound on Σ˚
2kA

?
N

. Now, note that
uniformly for k in the sum,

2k{αN
1
2α´γplog2Nq

2{α

22k
ď plog2Nq

2{α ˆ

#

N
1
2α´γ if α P r 12 , 2s ,

A´
1´2α

2 N
1
α´1´γ if α P p0, 1

2 q .

This (uniform) upper bound goes to 0 as N Ñ8, because γ ą 1
2α if α ě 1

2 and γ ą 1´α
α if

α P p0, 1
2 q.

All together, we get that P-a.s., for N large enough,

ZωN

´

M˚
N ą A

?
N
¯

ď

log2p
1
A

?
Nq

ÿ

k“1

2 exp
´

´ 22k´5A2
¯

ď C expp´A2{8q .

We have therefore proven that for any A ą 0, lim supNÑ8 Z
ω
N ď 1` Ce´A

2
{8. Since A is

arbitrary, this gives that lim supNÑ8 Z
ω
N ď 1.
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Lower bound For the lower bound, we use that

ZωN ě ZωN pM
˚
N ď A

?
Nq ě exp

´

´β̂N´γΣ˚
A
?
N
´ 2A|ĥ|N

1
2´ζ

¯

P
´

M˚
N ď A

?
N
¯

. (5.7)

As above, we get that β̂N´γΣ˚
A
?
N
` 2A|ĥ|N

1
2´ζ goes to 0 almost surely. Using that

PpM˚
N ď A

?
Nq ě 1´ 2e´A

2
{2, we therefore get that lim infNÑ8 Z

ω
N ě 1´ 2e´A

2
{2 P-a.s.

Since A is arbitrary, this gives lim infNÑ8 Z
ω
N ě 1 P-a.s., which concludes the proof.

Convergence in total variation distance

We show that for any ε P p0, 1
8 q,

lim sup
NÑ8

sup
B

ˇ

ˇPωN pBq ´PpBq
ˇ

ˇ ă 5ε P-a.s., (5.8)

where B ranges over all P-measurable sets. This implies the convergence from PωN to P

in total variation distance, since ε is arbitrary.
Let CN,ε :“ tω : |ZωN ´ 1| ă εu: we have proven above that P-a.s. limNÑ8 1CN,ε “ 1.

Note that PωN pBq “ ZωN pBq{ZωN . Hence, on the event CN,ε, we have

1

1` ε

`

ZωN pBq ´PpBq
˘

´
ε

1` ε
ă PωN pBq ´PpBq ă 1

1´ ε

`

ZωN pBq ´PpBq
˘

`
ε

1´ ε
,

where we also used that PpBq ď 1. Therefore, to prove (5.8), we need to show that
lim supNÑ8 supB |Z

ω
N pBq ´PpBq| ă ε,P-a.s.. For A ą 0, we have that

|ZωN pBq ´PpBq| ď
ˇ

ˇ

ˇ
ZωN

`

B X tM˚
N ď A

?
Nu

˘

´P
`

B X tM˚
N ď A

?
Nu

˘

ˇ

ˇ

ˇ

` ZωN
`

M˚
N ą A

?
N
˘

`P
`

M˚
N ą A

?
N
˘

.

As seen above, we have lim supNÑ8 Z
ω
N pM

˚
N ą A

?
Nq ď Ce´A

2
{8 almost surely, and also

PpM˚
N ą A

?
Nq ď 2e´A

2
{2: these two terms can be made arbitrarily small by taking A

large. Hence it is enough to show that for any A ą 0

lim sup
NÑ8

sup
B

ˇ

ˇ

ˇ
ZωN

`

B X tM˚
N ď A

?
Nu

˘

´P
`

B X tM˚
N ď A

?
Nu

˘

ˇ

ˇ

ˇ
“ 0 P-a.s..

Analogously to (5.4) and (5.7) we have, for any measurable B

ZωN
`

B X tM˚
N ď A

?
Nu

˘

ď exp
´

β̂N´γΣ˚
A
?
N
` 2A|ĥ|N

1
2´ζ

¯

P
`

B X tM˚
N ď A

?
Nu

˘

,

ZωN
`

B X tM˚
N ď A

?
Nu

˘

ě exp
´

´β̂N´γΣ˚
A
?
N
´ 2A|ĥ|N

1
2´ζ

¯

P
`

B X tM˚
N ď A

?
Nu

˘

,

so
ˇ

ˇZωN pB X tM˚
N ď A

?
Nuq ´PpB X tM˚

N ď A
?
Nuq

ˇ

ˇ is bounded by
ˇ

ˇ

ˇ
exp

´

β̂N´γΣ˚
A
?
N
` 2A|ĥ|N

1
2´ζ

¯

´ 1
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
exp

´

´β̂N´γΣ˚
A
?
N
´ 2A|ĥ|N

1
2´ζ

¯

´ 1
ˇ

ˇ

ˇ
,

where we also bounded PpBXtM˚
N ď A

?
Nuq by 1. Since β̂N´γΣ˚

A
?
N
` 2A|ĥ|N

1
2´ζ goes

to 0 almost surely (see Lemma 4.4), this concludes the proof.

5.3 Region R2: proof of Theorem 3.4

Recall that in Region R2 we have

2ξ ´ 1 “
ξ

α
´ γ ą ξ ´ ζ with α P p 1

2 , 1q Y p1, 2s ,

and that this region does not exist when α ă 1{2. We prove that the range size is of
order Nξ with ξ “ α

2α´1 p1´ γq.
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Convergence of the rescaled log-partition function

We fix some A large and we split the partition function as

ZωN “ ZωN
`

M˚
N ď ANξ

˘

` ZωN
`

M˚
N ą ANξ

˘

. (5.9)

The proof of the convergence is divided into three steps: (1) we show that after taking
logarithm and dividing by N2ξ´1, the first term converges to some random variable WA

2

as N Ñ8; (2) we show that the second term is small compared to the first one; (3) we
let AÑ8 and we observe that WA

2 converges to W2.

Step 1 We prove the following lemma.

Lemma 5.1. In Region R2, we have that P̂-a.s., for any A P N,

lim
NÑ8

1

N2ξ´1
logZωN

`

M˚
N ď ANξ

˘

“WA
2 :“ sup

u,vPr0,As

!

β̂pXp1qv `Xp2qu q ´ Ipu, vq
)

,

with pXp1qv , X
p2q
u qu,vě0 from Notation 1.1 and Ipu, vq :“ 1

2 pu^ v ` u` vq
2.

Proof. Let us fix δ ą 0 and write

Zω,ďN :“ ZωN
`

M˚
N ď ANξ

˘

“

tA{δu
ÿ

k1“0

tA{δu
ÿ

k2“0

ZωN pk1, k2, δq, (5.10)

where we define

ZωN pk1, k2, δq :“ ZωN

´

M´
N P p´pk1 ` 1qδNξ,´k1δN

ξs,M`
N P rk2δN

ξ, pk2 ` 1qδNξq

¯

(5.11)

(recall M´
N :“ min0ďnďN Sn and M`

N :“ max0ďnďN Sn). Since there are at most pA{δq2

terms in the sum, we easily get that

max
0ďk1,k2ď

A
δ

logZωN pk1, k2, δq ď logZω,ďN ď 2 logpAδ q ` max
0ďk1,k2ď

A
δ

logZωN pk1, k2, δq . (5.12)

Upper bound. An upper bound on logZωN pk1, k2, δq is given by

βN

´

Σ´
tk1δNξu

` Σ`
tk2δNξu

¯

` βNR
δ
N pk1δ, k2δq ` |ĥ|pk1 ` k2 ` 2qδNξ´ζ ` pδN pk1δ, k2δq,

where for u, v ě 0 we defined

RδN pu, vq :“ max
uNξďjďpu`δqNξ´1

ˇ

ˇ

ˇ
Σ´j ´ Σ´

tuNξu

ˇ

ˇ

ˇ
` max
vNξďjďpv`δqNξ´1

ˇ

ˇ

ˇ
Σ`j ´ Σ`

tvNξu

ˇ

ˇ

ˇ
, (5.13)

and

pδN pu, vq :“ logP
´

M´
N P

`

´ pu` δqNξ,´uNξ
‰

,M`
N P

“

vNξ, pv ` δqNξ
˘

¯

. (5.14)

Let us write u “ k1δ, v “ k2δ and set Uδ “ UδpAq “ t0, δ, 2δ, . . . , Au: using that
2ξ ´ 1 “ ξ{α´ γ, we get that

max
0ďk1,k2ď

A
δ

logZωN pk1, k2, δq

N2ξ´1
ď max
u,vPUδ

!

β̂N´
ξ
α

`

Σ´
tuNξu

` Σ`
tvNξu

˘

` β̂N´
ξ
αRδN pu, vq

` |ĥ|pu` v ` 2δqN pξ´ζq´p2ξ´1q `N´p2ξ´1qpδN pu, vq
)

.

(5.15)
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It is easy to see that the third term in the maximum goes to 0 uniformly in u, v, since u`v`
2δ ă 3A and since ξ´ζ ă 2ξ´1 in Region R2. Note that thanks to the coupling introduced
in Section 1.2 we have that pN´ξ{αΣ´

tuNξu
quPr0,A`δs and pN´ξ{αΣ`

tvNξu
qvPr0,A`δs converge

P̂-a.s. in the Skorokhod topology to two independent Lévy processes pXp2qu quPr0,A`δs and

pX
p1q
v qvPr0,A`δs (of Notation 1.1).
Note also that thanks to Lemma A.1 (see (A.2)) we have

lim
NÑ8

N´p2ξ´1qpN pu, v, δq “ ´Ipu, vq , with Ipu, vq :“
1

2
pu^ v ` u` vq2 , u, v ě 0 .

Since Uδ is a finite set, by (1.10) in [32], the limiting Lévy processes Xp1qv and Xp2qu
are P̂-a.s. continuous at every point in Uδ. Hence, thanks to Lemma A.5, P̂-a.s., for any
ε ą 0 there is a random integer N0 “ N0pε, δ, ωq, such that for all N ě N0,

N´
ξ
αRδN pu, vq ď 2ε` sup

uďu1ďu`δ`ε
|X
p2q
u1 ´X

p2q
u | ` sup

vďv1ďv`δ`ε
|X
p1q
v1 ´X

p1q
v | ,

ˇ

ˇN´
ξ
αΣ´

tuNξu
´Xp2qu

ˇ

ˇ ď ε and
ˇ

ˇN´
ξ
αΣ`

tvNξu
´Xp1qv

ˇ

ˇ ď ε ,

uniformly for all u, v P Uδ. Now letting N Ñ8 and then εÑ 0, we readily have that the
lim sup as N Ñ `8 of the right-hand side of (5.15) is P̂-a.s. smaller than

xWA,δ
2 :“ max

u,vPUδ

!

β̂pXp2qu `Xp1qv q ` β̂ sup
0ďtďδ

|X
p2q
u`t ´X

p2q
u | ` β̂ sup

0ďtďδ
|X
p1q
v`t ´X

p1q
v | ´ Ipu, vq

)

.

(5.16)
Lower bound. On the other hand, a lower bound on logZωN pk1, k2, δq is given by

βN

´

Σ´
tk1δNξu

` Σ`
tk2δNξu

¯

´ βNR
δ
N pk1δ, k2δq ´ |ĥ|pk2 ` k1 ` 2qδNξ ` pδN pk1δ, k2δq.

Thus, setting u “ k1δ, v “ k2δ and Uδ “ t0, δ, . . . , Au as above, we obtain

max
0ďk1,k2ď

A
δ

logZωN pk1, k2, δq

N2ξ´1
ě max
u,vPUδ

!

β̂N´
ξ
α

`

Σ´
tuNξu

` Σ`
tvNξu

˘

´ β̂N´
ξ
αRδN pu, vq

´ |ĥ|pu` v ` 2δqN pξ´ζq´p2ξ´1q `N´p2ξ´1qpδN pu, vq
)

.

We get as above that the lim inf as N Ñ `8 of the right-hand side is P̂-a.s. larger than

|WA,δ
2 :“ max

u,vPUδ

!

β̂pXp2qu `Xp1qv q ´ β̂ sup
0ďtďδ

|X
p2q
u`t ´X

p2q
u | ´ β̂ sup

0ďtďδ
|X
p1q
v`t ´X

p1q
v | ´ Ipu, vq

)

.

(5.17)
Conclusion. Summarizing, we have P̂-a.s. the upper bound (5.16) and the lower

bound (5.17) for lim supN N
´p2ξ´1q logZω,ďN and lim infN N

´p2ξ´1q logZω,ďN respectively.
Notice that, since trajectories of Lévy processes are a.s. càd-làg (continuous in the case
of Brownian motion), we have that

lim
δÓ0

|WA,δ
2 “ lim

δÓ0

xWA,δ
2 “ sup

u,vPr0,As

!

β̂pXp2qu `Xp1qv q ´ Ipu, vq
)

,

which is exactly WA
2 .

Step 2 Next, we prove the following result.

Lemma 5.2. In Region R2, there is some A0 ą 0 and some constant C “ Cβ̂ such that,
for all A ě A0, for all N ě 1

P
´ 1

N2ξ´1
logZωN

`

M˚
N ą ANξ

˘

ě ´1
¯

ď CA1´2α .
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Since α ą 1{2 in Region R2, this proves that for any ε ą 0 we can choose A ą 0 such that
1

N2ξ´1 logZωN
`

M˚
N ą ANξ

˘

ă ´1 with P-probability larger than 1´ ε. Therefore, thanks
to Lemma 5.1 and because WA

2 ě 0 (by taking u “ 0 “ v), one can choose A such that
the second term in (5.9) is negligible compared to the first one in P̂-probability.

Proof of Lemma 5.2. Let us write

Zω,ąN :“ ZωN
`

M˚
N ą ANξ

˘

“

8
ÿ

k“1

ZωN
`

M˚
N P p2

k´1ANξ, 2kANξs
˘

,

so that

Zω,ąN ď

8
ÿ

k“1

exp
´

β̂N´γΣ˚2kANξ ` |ĥ|2
k`1ANξ´ζ

¯

P
`

M˚
N ě 2k´1ANξ

˘

.

Using that P
`

M˚
N ě 2k´1ANξ

˘

ď 2 exp
`

´22k´3A2N2ξ´1
˘

, we get by subadditivity

P
´

Zω,ąN ě e´N
2ξ´1

¯

ď

8
ÿ

k“1

P
´

2 exp
´

β̂N´γΣ˚2kANξ ´ 22k´4A2N2ξ´1
¯

ě
1

2k`1
e´N

2ξ´1
¯

,

where we have used the fact that 2k`1|ĥ|ANξ´ζ ď 22k´4A2N2ξ´1 for large enough A,
uniformly in k,N ě 1 (using that we have ξ ´ ζ ă 2ξ ´ 1 in Region R2). Therefore,
provided that A is sufficiently large, recalling that γ ` 2ξ ´ 1 “ ξ{α, we end up with

P
´

Zω,ąN ě e´N
2ξ´1

¯

ď

8
ÿ

k“1

P
´

β̂Σ˚2kANξ ě 22k´5A2Nξ{α
¯

ď

8
ÿ

k“1

c β̂α2p1´2αqkA1´2α ,

where we have used Lemma 4.4 for the last inequality. Since α ą 1{2, this concludes the
proof of Lemma 5.2.

Remark 5.3. If we want to upgrade our convergence in P̂-probability to a P̂-a.s. conver-
gence, we would need to upgrade Lemma 5.2 to the following:

lim
AÑ8

P̂
´

lim sup
NÑ8

1

N2ξ´1
logZωN

`

M˚
N ą ANξ

˘

ě ´1
¯

“ 0 .

With the same proof as above, we would need to bound

lim
N0Ñ8

P

ˆ

sup
NěN0

pZω,ąN eN
2ξ´1

q ě 1

˙

ď lim
N0Ñ8

8
ÿ

k“1

P

ˆ

sup
NěN0

pN´ξ{αΣ˚2kANξq ě cβ̂22kA2

˙

.

The proof would be complete if one could exchange the limit and the sum since we
have lim supNÑ8N

´ξ{αΣ˚
2kANξ

ď 3X˚
2kA

with X˚t “ sup0ďsďt |X
p1q
s | ` sup0ďsďt |X

p2q
s |q the

continuous process analogous to Σ˚, see e.g. Lemma 2.23 in [24, Ch. VI]. But one needs
to apply dominated convergence, that is control the tail of supNěN0

pN´ξ{αΣ˚
2kANξ

q; for
that one would need a better control of the convergence in the coupling. Indeed, a
sufficient condition to obtain the P̂-a.s. convergence is the following: there is some
ε ă 2´ 1

α such that P̂-a.s. there exists a constant Cpωq such that

sup
Ně1

N´ξ{αΣ˚tNξ ď CpωqtεX˚t , uniformly in t ě 1.

The important part in this condition is that the constant Cpωq is uniform on all scales
t P r2kA, 2k`1As. For instance, this condition is verified if the coupling is exact, that is if

the ωi’s are α-stable, in which case we can set ω̂pNqi “ Nξ{αpX
p1q

pi`1qN´ξ
´X

p1q

iN´ξ
q for i ě 0

(and analogously for i ă 0).
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Step 3 Let us note that, by monotonicity in A, we have that W2 “ limAÒ8WA
2 is

well-defined (possibly infinite) and non-negative. We prove the following lemma:

Lemma 5.4. If α P p 1
2 , 2s, we have that W2 :“ supu,vě0tβ̂pX

p1q
v `X

p2q
u q ´ Ipu, vqu is P̂-a.s.

positive and finite.

Combined with Lemmas 5.1-5.2, this readily proves that N´p2ξ´1q logZωN converges
almost surely to W2 as N Ñ8.

Proof. To show that W2 ą 0 almost surely, notice that taking u “ 0 we have

W2 ě sup
vě0

 

β̂Xp1qv ´ 1
2v

2
(

.

Then, almost surely, we can find some sequence vn Ó 0 such that Xp1qvn ě v
1{α
n for all n

(see e.g. [1, Th. 2.1]): we get that W2 ě supně0tβ̂v
1{α
n ´ 1

2v
2
nu ą 0 since α ą 1{2.

To show that W2 ă `8 a.s., notice that Ipu, vq “ 1
2 pu^ v ` u` vq

2 ě 1
2 pu

2 ` v2q: we
therefore get that

W2 ď sup
uě0

 

β̂Xp2qu ´ 1
2u

2
(

` sup
vě0

 

β̂Xp1qv ´ 1
2v

2
(

.

Let us consider the second term and show that it is a.s. finite (the first term is identical).
For any ε ą 0, a.s. Xp1qv ď vp1`εq{α for v large enough, see e.g. [31, Sec. 3]. Hence
β̂X

p1q
v ´ 1

2v
2 ď β̂vp1`εq{α ´ 1

2v
2 ď 0 for all v large enough, provided that p1 ` εq{α ă 2,

which concludes the proof.

Convergence of pM´
N ,M

`
N q

Let us define, for ε, ε1 P p0, 1q

Uε,ε
1

2 “

!

pu, vq P pR`q
2 : sup

ps,tqPBεpu,vq

 

β̂pX
p1q
t `Xp2qs q ´ Ips, tq

(

ěW2 ´ ε
1
)

,

where Bεpu, vq is the closed ball of center pu, vq and of radius ε ą 0. Let us observe

that Uε,ε
1

2 is a.s. bounded: we know that a.s. the supremum outside a compact set
r´Apωq, 0s ˆ r0, Apωqs is smaller than ´1 ď W2 ´ ε1, see Lemma 5.4. Moreover, by
Lemma 5.4 we can choose ε1 such that W2 ´ ε

1 ą 0.
We now prove that for any ε, ε1 P p0, 1q, limNÑ8PωN p

1
Nξ
p´M´

N ,M
`
N q P Uε,ε

1

2 q “ 1 in

P̂-probability. To simplify the notation, we denote the event t 1
Nξ
p´M´

N ,M
`
N q R U

ε,ε1

2 u by

Aε,ε1

N,2. We have

logPωN pA
ε,ε1

N,2q “ logZωN pA
ε,ε1

N,2q ´ logZωN .

From what we showed above, we have that N´p2ξ´1q logZωN converges in P̂-probability

to W2, so the proof will be complete if we show that N´p2ξ´1q logZωN pA
ε,ε1

N,2q ă W2 with

P̂-probability close to 1. Thanks to Lemma 5.2 we only need to estimate ZωN pM
˚
N ď

ANξ;Aε,ε1

N,2q. For any δ ą 0, we perform a similar decomposition as in (5.10) to get

Zω,ďN pAε,ε1

N,2q :“ ZωN
`

M˚
N ď ANξ;Aε,ε1

N,2

˘

“

tA{δu
ÿ

k1“0

tA{δu
ÿ

k2“0

ZωN pk1, k2, δ;Aε,ε1

N,2q,

where we defined ZωN pk1, k2, δ;Aε,ε1

N,2q as

ZωN

´

M´
N P p´pk1 ` 1qδNξ,´k1δN

ξs,M`
N P rk2δN

ξ, pk2 ` 1qδNξq;Aε,ε1

N,2

¯

.
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By definition of Aε,ε1

N,2, we get that

Zω,ďN pAε,ε1

N,2q ď

ˆ

A

δ

˙2

max
pk1,k2qPU

ε,ε1

δ,2

ZωN pk1, k2, δq,

where Uε,ε
1

δ,2 :“
 

pk1, k2q : k1δ, k2δ P Uδ, rk1δ, pk1 ` 1qδq ˆ rk2δ, pk2 ` 1qδq Ć Uε,ε
1

2

(

, with

Uδ “ t0, δ, 2δ, . . . , Au; by convention the maximum is 0 if Uε,ε
1

δ,2 is empty.
Now, by the same argument as in Step 1, we have that

lim sup
δÑ0

lim sup
NÑ8

1

N2ξ´1
logZω,ďN pAε,ε1

N,2q ď sup
pu,vqRUε,ε

1

2

!

β̂pXp1qv `Xp2qu q ´ Ipu, vq
)

ďW2 ´ ε
1 ,

by definition of Uε,ε
1

2 . This concludes the proof that limNÑ8Pω̂N pA
ε,ε1

N,2q “ 0 P̂-a.s.

Let us now observe that thanks to Proposition 3.2, the maximiser pU p2q,Vp2qq of W2 is

P̂-a.s. unique: hence,
Ş

ε1ą0 U
ε,ε1

2 Ă B4εpU p2q,Vp2qq. Therefore, for any ε ą 0 there is a.s.

some ε1 ą 0 such that Uε,ε
1

2 is included in B8εpU p2q,Vp2qq, which concludes the proof.

5.4 Region R3: proof of Theorem 3.5

Recall that in Region R3 we have

γ ă ζ ´ α´1
α and γ ă 1´α

α , with α P p0, 1q Y p1, 2s .

We prove that the range size is of order N .

Convergence of the rescaled log-partition function

First of all, notice that we can reduce to the case hN ” 0. Indeed, we have the bounds

ZωN,βN ,hN“0 ˆ e
´|hN |N ď ZωN,βN ,hN ď ZωN,βN ,hN“0 ˆ e

|hN |N .

Since hN “ ĥN´ζ with ζ ą γ ` α´1
α , we have that limNÑ8N

´p 1
α´γq|hN |N “ 0. In the

following, we therefore focus on the convergence of N´p
1
α´γq logZωN,βN ,hN“0. We write

for simplicity ZωN for ZωN,βN ,hN“0.
For any δ ą 0, we can write

ZωN “

t1{δu
ÿ

k1“0

t1{δu
ÿ

k2“0

ZωN pk1, k2, δq,

with ZωN pk1, k2, δq as in (5.11) with ξ “ 1. Since there are at most N steps for the random
walk, we can have M´

N ď ´k1δN and M`
N ě k2δN only if δpk1 ^ k2 ` k1 ` k2q ď 1. Hence,

writing u “ k1δ, v “ k2δ, and Uδ “ t0, δ, 2δ, . . . , 1u, we have

max
u,vPUδ

u^v`u`vď1

logZωN p
u
δ ,

v
δ , δq ď logZωN ď ´2 log δ ` max

u,vPUδ
u^v`u`vď1

logZωN p
u
δ ,

v
δ , δq.

Upper bound. We have

max
u,vPUδ

u^v`u`vď1

Nγ´ 1
α logZωN p

u
δ ,

v
δ , δq ď max

u,vPUδ
u^v`u`vď1

β̂
´

N´
1
αΣ´

tuNu
`N´

1
αΣ`

tvNu
`N´

1
αRδN pu, vq

¯

,

where RδN pu, vq is as in (5.13) with ξ “ 1. As in the previous section, we get that P̂-a.s.
the lim sup of the right-hand side is bounded above by

xWδ
3 :“ max

u,vPUδ
u^v`u`vď1

!

β̂pXp2qu `Xp1qv q ` β̂ sup
0ďtďδ

|X
p2q
u`t ´X

p2q
u | ` β̂ sup

0ďtďδ
|X
p1q
v`t ´X

p1q
v q|

)

.
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Lower bound. We have

max
u,vPUδ

u^v`u`vď1

Nγ´ 1
α logZωN p

u
δ ,

v
δ , δq

ě max
u,vPUδ

u^v`u`vď1

!

β̂
´

N´
1
αΣ´

tuNu
`N´

1
αΣ`

tvNu

¯

´N´
1
αRδN pu, vq ´N

1`γ´ 1
α log 2

)

,

where we used that any non-empty event of pSnq0ďnďN has probability at least 2´N . Now,
since γ ă ζ ` 1

α ´ 1 and γ ă 1
α ´ 1, the last two terms in the maximum go to 0: we

therefore get that P̂-a.s. the lim inf of the right-hand side is bounded below by

|Wδ
3 :“ max

u,vPUδ
u^v`u`vď1

!

β̂pXp2qu `Xp1qv q ´ β̂ sup
0ďtďδ

|X
p2q
u`t ´X

p2q
u | ´ β̂ sup

0ďtďδ
|X
p1q
v`t ´X

p1q
v |

)

.

Conclusion. We can conclude in the same manner as in the proof of Lemma 5.1:
letting N Ñ8 and then δ Ó 0, we get that Nγ´ 1

α logZωN converges P̂-a.s. to

lim
δÓ0

xWδ
3 “ lim

δÓ0

|Wδ
3 “ sup

u,vPr0,1s
u^v`u`vď1

!

β̂pXp2qu `Xp1qv q

)

,

where the limit holds thanks to the a.s. càdlàg property of trajectories of the Lévy process
(or continuity in the Brownian motion case). This is exactly the variational problem W3

defined in Theorem 3.5. Together with the (trivial) fact that W3 P p0,`8q a.s., this
concludes the proof of (3.4).

Convergence of pM´
N ,M

`
N q

The proof follows the same strategy as in Region R2, so we only give a sketch. Let us

define the counterpart of Uε,ε
1

2 in Region R3 by

Uε,ε
1

3 “

!

pu, vq P pR`q
2 : u^ v ` u` v ď 1, sup

s,tě0,ps,tqPBεpu,vq
s^t`s`tď1

tβ̂pX
p1q
t `Xp2qs qu ěW3 ´ ε

1
)

.

Then we denote the event t 1
N p´M

´
N ,M

`
N q R Uε,ε

1

3 u by Aε,ε1

N,3. By the same procedure as

in Region R2 (here we can use P̂-a.s. convergences, since we do not have to restrict
trajectories), we can first show that P̂-a.s.

lim sup
NÑ8

1

N
1
α´γ

logZωN pA
ε,ε1

N,3q ăW3 and so lim sup
NÑ8

1

N
1
α´γ

logPωN pA
ε,ε1

N,3q ă 0 .

We then deduce, as done in Region R2 that P̂-a.s. limNÑ8PωN p
1
N p´M

´
N ,M

`
N q P U

ε,ε1

3 q “ 1.
By uniqueness of the maximizer pU p3q,Vp3qq of W3 (Propposition 3.2), we get that if ε1 is

small enough, then Uε,ε
1

3 is contained in B8εpU p3q,Vp3qq, which completes the proof.

5.5 Region R4: proof of Theorem 3.6

We prove that in Region R4 the range size is of order Nξ with ξ “ α
α´1 pζ ´ γq P p0, 1q.

We take ĥ ą 0, and recall that in this region we have

`

p2α´1qζ´pα´1q
α

˘

_
`

ζ ´ α´1
α

˘

ă γ ă
`

p2α`1qζ´pα´1q
3α

˘

^ ζ , with α P p1, 2s ,

and that ξ ´ ζ “ ξ{α´ γ ą |2ξ ´ 1|. Recall also that region R4 does not exist if α ă 1.
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Convergence of the rescaled log-partition function

For any A ą 0, we first write

ZωN “ ZωN
`

M˚
N ď ANξ

˘

` ZωN
`

M˚
N ą ANξ

˘

. (5.18)

The strategy is similar to that in Region R2 and we use analogous notation. We proceed
in three steps: (1) after taking logarithm and dividing by Nξ´ζ , we show that the first
term converges to some limit WA

4 when N Ñ 8; (2) we show that the second term
in (5.18) is small compared to the first one; (3) we show that WA

4 ÑW4 as AÑ8, with
W4 P p0,`8q almost surely.

Step 1 We prove the following lemma.

Lemma 5.5. In Region R4, we have that P̂-a.s., for any A P N,

lim
NÑ8

1

Nξ´ζ
logZωN

`

M˚
N ď ANξ

˘

“WA
4 :“ sup

u,vPr0,As

!

β̂pXp1qv `Xp2qu q ´ ĥpu` vq
)

,

with pXp1qv , X
p2q
u qu,vě0 from Notation 1.1.

Proof. For fixed δ ą 0, we write (recall the notation (5.11))

Zω,ďN :“ ZωN
`

M˚
N ď ANξ

˘

“

tA{δu
ÿ

k1“0

tA{δu
ÿ

k2“0

ZωN pk1, k2, δq.

Since the number of summands above is finite, we can write

max
0ďk1,k2ď

A
δ

logZωN pk1, k2, δq ď logZω,ďN ď 2 logpAδ q ` max
0ďk1,k2ď

A
δ

logZωN pk1, k2, δq .

Upper bound. We write u “ k1δ, v “ k2δ and set Uδ “ t0, δ, 2δ, . . . , Au. Recalling that
ξ ´ ζ “ ξ{α´ γ, we get that

max
0ďk1,k2ď

A
δ

1

Nξ´ζ
logZωN pk1, k2, δq

ď max
u,vPUδ

!

β̂N´
ξ
α

`

Σ´
tuNξu

` Σ`
tvNξu

˘

` β̂N´
ξ
αRδN pu, vq ´ ĥpv ` uq `N

ξ´ζpδN pu, vq
)

.

Then, notice that limNÑ8N
ξ´ζp

pδq
N pu, vq “ 0, thanks to Lemmas A.1 and A.3, since we

have ξ ´ ζ ą |2ξ ´ 1|. Therefore, similarly to the previous sections, P̂-a.s. the lim sup of
right-hand side is bounded above by

xWA,δ
4 :“ max

u,vPUδ

!

β̂
´

Xp2qu `Xp1qv ` sup
tPr0,δs

|X
p2q
u`t ´X

p2q
u | ` sup

tPr0,δs

|X
p1q
v`t ´X

p1q
v |

¯

´ ĥpv ` uq
)

.

Lower bound. On the other hand, we bound logZωN pk1, k2, δq from below by

βN

´

Σ´
tk1δNξu

` Σ`
tk2δNξu

¯

´ βNR
δ
N pk1δ, k2δq ´ hN pk2 ` k1 ` 2qδNξ ´ pδN pk1δ, k2δq.

Thus, setting u “ k1δ, v “ k2δ and Uδ “ t0, δ, . . . , Au as above, we obtain

max
0ďk1,k2ď

A
δ

1

Nξ´ζ
logZωN pk1, k2, δq

ě max
u,vPUδ

!

β̂N´
ξ
α

`

Σ´
tuNξu

` Σ`
tuNξu

˘

´ β̂N´
ξ
αRδN pu, vq ´ ĥpu` v ` 2δq ´Nξ´ζpδN pu, vq

)

.
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Hence, similarly to what is done above, P̂-a.s. the lim inf of the right-hand side is bounded
below by

|WA,δ
4 :“ max

u,vPUδ

!

β̂
´

Xp2qu `Xp1qv ´ sup
tPr0,δs

|X
p2q
u`t´X

p2q
u |´ sup

tPr0,δs

|X
p1q
v`t´X

p1q
v |

¯

´ ĥpv`u`2δq
)

.

Conclusion. The terms xWA,δ
4 , |WA,δ

4 are almost sure upper and lower bound for the
lim sup and lim inf of Nζ´ξ logZω,ďN . By the a.s. càd-làg property of trajectories of Lévy
processes (or continuity in the Brownian motion case), we have

lim
δÓ0

xWA,δ
4 “ lim

δÓ0

|WA,δ
4 “ sup

u,vPr0,As

!

β̂
´

Xp2qu `Xp1qv

¯

´ ĥpv ` uq
)

,

which is exactly WA
4 . The convergence in Lemma 5.5 is therefore achieved by letting

N Ñ8 and then δ Ñ 0.

Step 2 Next, we prove the following lemma.

Lemma 5.6. In region R4, there is some A0 ą 0 and some constant C “ Cβ̂,ĥ, such that
for all A ě A0 and any N ě 1

P

ˆ

1

Nξ´ζ
logZωN

`

M˚
N ą ANξ

˘

ě ´1

˙

ď CA1´α .

Since α ą 1 in region R4, this proves that for any ε ą 0 we can choose A large enough so
that 1

Nξ´ζ
logZωN

`

M˚
N ą ANξ

˘

ă ´1 with P probability larger than 1´ ε. Hence, thanks
to Lemma 5.5 and the fact that WA

4 ě 0, the second term in (5.18) is negligible compared
to the first one in P̂-probability. Note that here again, we are not able to upgrade the
convergence to a P̂-a.s. convergence, see Remark 5.3 which also applies here.

Proof. Let us write Zω,ąN :“ ZωN
`

M˚
N ą ANξ

˘

so

Zω,ąN “

8
ÿ

k“1

ZωN
`

M˚
N P p2

k´1ANξ, 2kANξs
˘

ď

8
ÿ

k“1

exp
´

β̂N´γΣ˚2kANξ ´ ĥ2k´1ANξ´ζ
¯

.

By subadditivity, we therefore get that

P
´

Zω,ąN ě e´N
ξ´ζ

¯

ď

8
ÿ

k“1

P

ˆ

e
β̂N´γΣ˚

2kANξ
´ĥ2k´1ANξ´ζ

ě
1

2k`1
e´N

ξ´ζ

˙

ď

8
ÿ

k“1

P
´

β̂N´γΣ˚2kANξ ě ĥ2k´2AN
ξ
α´γ

¯

,

where the last inequality holds provided that A has been fixed large enough (we also
used that ξ ´ ζ “ ξ

α ´ γ). Then Lemma 4.4 gives that each probability in the sum is
bounded by a constant times 2kp1´αqA1´α. Since α ą 1, summing this over k gives the
conclusion of the proof of Lemma 5.6.

Step 3 By monotone convergence, WA
4 converges a.s. to W4: we only need to show

that W4 is positive and finite. Combining this with Lemmas 5.5 and 5.6, this completes
the proof of (3.5).

Lemma 5.7. If α P p1, 2s, we have that W4 :“ supu,vě0tβ̂pX
p1q
v `X

p2q
u q´ ĥpu`vqu is P̂-a.s.

positive and finite.
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Proof. The proof is analogous to the proof of Lemma 5.4. To show that W4 ą 0, we use
that W4 ě supvě0tβ̂X

p1q
v ´ ĥvu. By [1, Th 2.1], there is a.s. a sequence vn Ó 0, such that

X
p1q
vn ě v

1{α
n for all n. Hence, for large enough n, W4 ě β̂v

1{α
n ´ ĥvn ą 0, since α ą 1.

To show that W4 ă 8, we use that W4 ď supuě0tβ̂X
p2q
u ´ ĥuu ` supvě0tβ̂X

p1q
v ´ ĥvu.

By [31], we have that for any ε ą 0, a.s. Xp1qv ď vp1`εq{α for v large enough. Therefore,
if p1 ` εq{α ă 1 (recall α ą 1), we get that β̂Xp1qv ´ ĥv ď β̂vp1`εq{a ´ ĥv ď 0 for all v

sufficiently large. Similarly we also have that β̂Xp2qu ´ ĥu ď 0 for all u large enough. This
concludes the proof.

Convergence of pM´
N ,M

`
N q

As in previous sections, we define

Uε,ε
1

4 “

!

pu, vq P pR`q
2 : sup

ps,tqPBεpu,vq

 

β̂pX
p1q
t `Xp2qs q ´ ĥps` tq

(

ěW4 ´ ε
1
)

and the event Aε,ε1

N,4 “ t 1
Nξ
p´M´

N ,M
`
N q R Uε,ε

1

4 u. Then, in an identical manner as in

Regions R2, we have that with P̂-probability close to 1,

1

Nξ´ζ
logZωN pA

ε,ε1

N,4q ăW4 and so
1

Nξ´ζ
logPωN pA

ε,ε1

N,4q ă 0 ,

from which one deduces that

lim
NÑ8

PωN

´ 1

Nξ
p´M´

N ,M
`
N q P U

ε,ε1

4

¯

“ 1 , in P̂-probability. (5.19)

Moreover, if ε1 is small enough, then Uε,ε
1

4 is contained in B8εpU p4q,Vp4qq, which completes
the proof.

5.6 Region R5: proof of Theorem 3.7

In Region R5, we prove that the range size is of order Nξ with ξ “ 1`ζ
3 P p0, 1

2 q. Note

that in this region we take ĥ ą 0 and that we have

1´ 2ξ “ ξ ´ ζ ą
ξ

α
´ γ and ´ 1 ă ζ ă

1

2
.

Convergence of the rescaled log-partition function

We fix some constant A “ Apĥq (large) and we split the partition function as

ZωN “ ZωN
`

M˚
N ď ANξ

˘

` ZωN
`

M˚
N ą ANξ

˘

.

The strategy of proof is similar to that in Region R2, but with only two steps: (1) we
show that after taking logarithm and dividing by N1´2ξ, the first term converges to some
constant independent of A (if A is large enough); (2) we show that for A large the second
term is negligible compared to the first one.

Step 1 We prove the following lemma.

Lemma 5.8. In Region R5, we have that for any A ą 0

lim
NÑ`8

1

N1´2ξ
logZωN

`

M˚
N ď ANξ

˘

“ sup
u,vPr0,As

!

´ĥpu` vq ´ Īpu, vq
)

P-a.s.,

where Īpu, vq :“ π2

2 pu ` vq´2 for u, v ě 0. By a simple calculation, the supremum is

´ 3
2 pĥπq

2
3 for any A ą π

2
3 ĥ´

1
3 and it is achieved at u` v “ π

2
3 ĥ´

1
3 .
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Proof. For any fixed A, we have the following upper and lower bounds

log pZAN ´ β̂N
´γΣ˚ANξ ď logZωN

`

M˚
N ď ANξ

˘

ď log pZAN ` β̂N
´γΣ˚ANξ , (5.20)

where pZAN :“ E
“

expp´hN |RN |q1tM˚
NďAN

ξu

‰

.

Since in Region R5 we have 1´ 2ξ ą ξ
α ´ γ, we get that N´p1´2ξqβ̂N´γΣ˚

ANξ
goes to 0

P-a.s. (see e.g. Lemma 4.4). Therefore, we only need to prove that

lim
NÑ8

1

N1´2ξ
log pZAN “ sup

u,vPr0,As

 

´ ĥpu` vq ´ Īpu, vq
(

(there is no disorder anymore). But this convergence is quite standard, since Īpu, vq is
the rate function for the LDP for pN´ξM´

N , N´ξM`
N q: more precisely, by Lemma A.3

´ Īpu, vq “ lim
NÑ8

1

N1´2ξ
logP

`

M´
N ě ´uN

ξ;M`
N ď vNξ

˘

. (5.21)

This is enough to conclude thanks to Varadhan’s lemma.

Step 2 Next, we prove the following lemma.

Lemma 5.9. In Region R5, we have for any fixed A

lim sup
NÑ8

1

N1´2ξ
logZωN

`

M˚
N ą ANξ

˘

ď ´
1

2
Aĥ P-a.s.

Combining this result with Lemma 5.8 readily yields the convergence (3.6), provided
that A ą π

2
3 ĥ´

1
3 and 1

2Aĥ ą
3
2 pĥπq

2
3 .

Proof. We consider four cases, which correspond to four different conditions on γ, ζ (see
Figures 1-2-3): (i) α P p1, 2s and ζ P p´1, 1{2q; (ii) α P p0, 1q and ζ P p´1, 0s; (iii) α P p 1

2 , 1q

and ζ P p0, 1
2 q; (iv) α P p0, 1

2 q and ζ P p0, 1
2 q. We deal with the first two ones at the same

time and we treat the third and fourth one afterwards since the strategy of the proof is
slightly different.

Cases (i)-(ii). Let us write

ZωN
`

M˚
N ą ANξ

˘

“

log2p
1
AN

1´ξ
q

ÿ

k“1

ZωN
`

M˚
N P p2

k´1ANξ, 2kANξs
˘

ď

log2p
1
AN

1´ξ
q

ÿ

k“1

exp
´

CpA, β̂, ωq 2k{αN
ξ
α´γplog2Nq

2{α ´ ĥ2k´1ANξ´ζ
¯

where we have used Lemma 4.4 to bound Σ˚
2kANξ

by Cpωq2k{αA1{αNξ{αplog2Nq
2{α, P-a.s..

Now, uniformly for k in the sum we have

2k{αN
ξ
α´γplog2Nq

2{α

2kNξ´ζ
ď plog2Nq

2{α

#

N
ξ
α´γ´pξ´ζq if α P p1, 2s ,

A´
1´α
α N

1´α
α `ζ´γ if α P p0, 1q .

Notice that in cases (i)-(ii) the upper bound always goes to 0 as N Ñ 8, because
ξ
α ´ γ ą ξ ´ ζ in the case α P p1, 2s and γ ą ζ ´ α´1

α in the case α P p0, 1q. Therefore,
P-a.s., for N large enough, we have

ZωN
`

M˚
N ą ANξ

˘

ď

log2p
1
AN

1´ξ
q

ÿ

k“1

exp
´

´ĥ2k´2ANξ´ζ
¯

ď C exp
´

´
1

2
ĥANξ´ζ

¯

.
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Since ξ ´ ζ “ 1´ 2ξ, this concludes the proof.
Cases (iii)-(iv). In that case, we have ξ P p0, 1{2q and ζ P p0, 1{2q. Hence, we can write

ZωN pM
˚
N ą ANξq “ ZωN pM

˚
N P pAN

ξ, N1´ζsq ` ZωN pM
˚
N P pN

1´ζ , N sq. (5.22)

For the first term, we have similarly as above that ZωN pM
˚
N P pAN

ξ, N1´ζsq is bounded by

log2p
1
AN

1´ξ´ζ
q

ÿ

k“1

exp
´

CpA, β̂, ωq2k{αN
ξ
α´γplog2Nq

2{α ´ ĥ2k´1ANξ´ζ
¯

.

Now, uniformly for k in the sum we have

2k{αN
ξ
α´γplog2Nq

2{α

2kNξ´ζ
ď plog2Nq

2{αA´
1´α
α N´γ`

2α´1
α ζ` 1´α

α ,

with the upper bound vanishing, because in cases (iii)-(iv) we have γ ą 2α´1
α ζ ` 1´α

α for
ζ P p0, 1{2q (note that if α ă 1

2 , 2α´1
α ă 0). Therefore, P-a.s., for N large enough, we get

ZωN
`

M˚
N P pAN

ξ, N1´ζs
˘

ď

log2p
1
AN

1´ξ´ζ
q

ÿ

k“1

exp
´

´ĥ2k´2ANξ´ζ
¯

ď C exp
´

´
1

2
ĥANξ´ζ

¯

.

(5.23)
For the second term on the right-hand side of (5.22), we have

ZωN pM
˚
N P pN

1´ζ , N sq “

log2pN
ζ
q

ÿ

k“1

ZωN pM
˚
N P p2

´kN, 2´k`1N sq

ď

log2pN
ζ
q

ÿ

k“1

2 exp
´

Cpβ̂, ωq2´k{αN
1
α´γplog2Nq

2{α ´ 2´2k´1N
¯

,

where we have used Lemma 4.4 to bound
ř˚

2´kN by Cpωq2´k{αN
1
α´γplog2Nq

2{α,P-a.s.

and also the fact that PpM˚
N ą xq ď 2 expp´ x2

2N q. Now, uniformly for k in the sum, we
have

2´k{αN
1
α´γ´1plog2Nq

2{α

2´2kN
ď plog2Nq

2{α

#

N´γ`
2α´1
α ζ` 1´α

α if α P p 1
2 , 1q,

N
1´α
α ´γ if α P p0, 1

2 q ,

which goes to 0 in cases (iii)-(iv), because γ ą 2α´1
α ζ ` 1´α

α if α P p 1
2 , 1q and γ ą 1´α

α if
α P p0, 1

2 q. Therefore, P-a.s., for N large enough, we have

ZωN pM
˚
N P pN

1´ζ , N sq ď C log2N exp

ˆ

´
1

4
N1´2ζ

˙

ď exp
´

´ĥANξ´ζ
¯

, (5.24)

where in the last inequality we have used the fact that 1´ 2ζ ´ pξ ´ ζq “ 1´ ξ ´ ζ ą 0,
since ξ ă 1

2 and ζ ă 1
2 .

Combining (5.23)-(5.24) with (5.22) and since ξ ´ ζ “ 1 ´ 2ξ, this concludes the
proof.

Convergence of M`
N ´M

´
N

Let us define cĥ :“ π
2
3 ĥ´

1
3 . Let ε ą 0 and define the event

Aε
N,5 “

!
ˇ

ˇ

ˇ

1

Nξ
pM`

N ´M
´
N q ´ cĥ

ˇ

ˇ

ˇ
ą ε

)

.
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As in the previous sections, since logPωN pAε
N,5q “ logZωN pAε

N,5q ´ logZωN , using the
convergence (3.6) we simply need to show that there is some δε ą 0 such that

lim
NÑ8

P
´ 1

N1´2ξ
logZωN pAε

N,5q ă ´
3

2
pĥπq2{3 ´ δε

¯

“ 1

But this is simply due to the fact that analogously to Lemma 5.8, we have P-a.s.

lim
NÑ`8

1

N1´2ξ
logZωN pAε

N,5q “ sup
u,vě0,|u`v´cĥ|ąε

!

´ĥpu` vq ´ Īpu, vq
)

ă ´
3

2
pĥπq2{3 ,

where the inequality is strict since the supremum in Lemma 5.8 is attained for u` v “ cĥ.

5.7 Region R6: proof of Theorem 3.8

Recall that in Region R6, we have

ζ ă p´1q ^ γ if α P p1, 2s and ζ ă p´1q ^
´

γ `
α´ 1

α

¯

if α P p0, 1q .

Let us note that in all cases we have γ ą ζ. We split ZωN in two parts

ZωN “ ZωN p|RN | “ 2q ` ZωN p|RN | ě 3q . (5.25)

It is clear that

ZωN p|RN | “ 2q “ e´2ĥN´ζ
´

eβ̂N
´γ
pω0`ω1q2´N ` eβ̂N

´γ
pω0`ω´1q2´N

¯

,

so that Nζ logZωN p|RN | “ 2q converges P-a.s. to ´2ĥ, since ζ ă γ and ζ ă ´1.
We now prove that lim supNÑ8N

ζ logZωN p|RN | ě 3q is strictly smaller than ´2ĥ a.s.:
this will imply that the second term in (5.25) is negligible compared to the first one and
as a consequence prove that PωN p|RN | “ 2q converges to 1 P-a.s.

We write

ZωN p|RN | ě 3q “
N
ÿ

k“3

ZωN p|RN | “ kq ď
N
ÿ

k“3

exp
´

´ kĥN´ζ ` Cpωq β̂N´γk1{αplog2Nq
2{α

¯

,

where we have used Lemma 4.4 to bound Σ˚k for the last inequality. Now, uniformly for k
in the sum we have

k1{αN´γplog2Nq
2{α

kN´ζ
ď plog2Nq

2{α

#

Nζ´γ if α P p1, 2s ,

N
1´α
α `ζ´γ if α P p0, 1q .

The upper bound always goes to 0 as N Ñ 8, because γ ą ζ in the case α P p1, 2s and
γ ą ζ ´ α´1

α in the case α P p0, 1q. Therefore, P-a.s., for N large enough, we have

ZωN
`

M˚
N ą ANξ

˘

ď

N
ÿ

k“3

exp

ˆ

´
5

6
kĥN´ζ

˙

ď C exp

ˆ

´
5

2
ĥN´ζ

˙

.

We therefore get lim supNÑ8N
ζ logZωN p|RN | ě 3q ď ´ 5

2 ĥ ă ´2ĥ a.s., which concludes
the proof.

6 Proof of the remaining results: the case ĥ ă 0

In all this section, we consider only the case ĥ ă 0.

EJP 27 (2022), paper 162.
Page 34/45

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP862
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


1D polymers in random environment

6.1 Region rR4: proof of Theorem 4.1

In this region, we prove that the range size is of order Nξ with ξ “ 1 ´ ζ P p1
2 , 1q.

Recall that in Region rR4 we have

2ξ ´ 1 “ ξ ´ ζ ą
ξ

α
´ γ and 0 ă ζ ă

1

2
.

The proofs are almost identical to what is done in regions R5-R6, so we give much less
detail. We fix some constant A “ Aĥ :“ 32|ĥ| and we split the partition function as

ZωN “ ZωN
`

M˚
N ď ANξ

˘

` ZωN
`

M˚
N ą ANξ

˘

.

Step 1 We have the following lemma, analogous to Lemma 5.8.

Lemma 6.1. In Region rR4, for any A ą 0 we have the following convergence

lim
NÑ`8

1

N2ξ´1
logZωN

`

M˚
N ď ANξ

˘

“ sup
u,vPr0,As

!

|ĥ|pu` vq ´ Ipu, vq
)

P-a.s.

By a simple calculation, the supremum is 1
2 ĥ

2 for any A ě |ĥ| and it is attained at

pu, vq “ p0, |ĥ|q or pu, vq “ p|ĥ|, 0q.

Proof. Since in Region rR4 we have 2ξ´ 1 ą ξ
α ´γ, for any fixed A we get that N´p2ξ´1qˆ

β̂N´γΣ˚
ANξ

almost surely goes to 0. Therefore we only need to prove that

lim
NÑ8

1

N2ξ´1
logZ0

N

`

M˚
N ď ANξ

˘

“ sup
u,vPr0,As

!

|ĥ|pu` vq ´ Ipu, vq
)

, (6.1)

where Z0
N denotes the partition function with ω ” 0 (or equivalently βN ” 0).

But (6.1) follows from Varadhan’s lemma, since Ipu, vq is the rate function for the
LDP for pN´ξM´

N , N´ξM`
N q, by Lemma A.1.

Step 2 To conclude the proof of the convergence (4.1), it remains to show the following.

Lemma 6.2. In Region rR4, we have for any A ě 32|ĥ|

lim sup
NÑ8

1

N2ξ´1
logZωN

`

M˚
N ą ANξ

˘

ď 0 P-a.s.

Together with Lemma 6.1, this readily yields the convergence (4.1).

Proof. We write

ZωN
`

M˚
N ą ANξ

˘

“

log2p
1
AN

1´ξ
q

ÿ

k“1

ZωN
`

M˚
N P p2

k´1ANξ, 2kANξs
˘

ď

log2p
1
AN

1´ξ
q

ÿ

k“1

2 exp
´

CpA, β̂, ωq 2k{αN
ξ
α´γplog2Nq

2{α ` 2k`1|ĥ|ANξ´ζ ´ 22k´3A2N2ξ´1
¯

,

where we have used Lemma 4.4 to get an almost sure bound on Σ˚
2kANξ

, and also the

fact that PpM˚
N ą xq ď 2 expp´ x2

2N q. Now, as in the proof of Lemma 5.9, the “disorder”
term is seen to be negligible compared to the “range” term (uniformly for k in the sum):
we get that P-a.s., for N large enough,

ZωN
`

M˚
N ą ANξ

˘

ď

log2p
1
AN

1´ξ
q

ÿ

k“1

2 exp
´

2k`2|ĥ|ANξ´ζ ´ 22k´3A2N2ξ´1
¯

ď 2 log2p
1
AN

1´ξq ,

where for the last inequality we have used that ξ ´ ζ “ 2ξ ´ 1 and that A ě 25|ĥ|. This
concludes the proof.
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Convergence of trajectories First of all, let us go one step further in the proof
of Lemma 6.1. Indeed, in (6.1) the supremum in the variational problem is attained
at pu, vq “ p0, |ĥ|q or pu, vq “ p|ĥ|, 0q, so we can deduce that the main contribution
to Z0

N (hence to ZωN in view of the proof of Lemma 6.1) comes from trajectories with
N´ξpM´

N ,M
`
N q either close to p0, |ĥ|q or to p´|ĥ|, 0q. One can actually show that the

main contribution comes from trajectories moving at roughly constant speed to these
endpoints (similarly to Proposition 3.9): using (A.4), one easily gets that analogously
to (6.1), for any ε ą 0,

lim sup
NÑ8

1

N2ξ´1
logZ0

N

`

M˚
N ď ANξ, pB`,εN Y B´,εN qc

˘

ă sup
u,vPr0,As

!

|ĥ|pu` vq ´ Ipu, vq
)

,

(6.2)
where we recall the definition of the events B˘,εN (recall ĥ ă 0):

B`,εN :“
!

sup
tPr0,1s

ˇ

ˇN´ξSttNu ` ĥ t
ˇ

ˇ ď ε
)

, B´,εN :“
!

sup
tPr0,1s

ˇ

ˇN´ξSttNu ´ ĥ t
ˇ

ˇ ď ε
)

.

All together, in view of the fact that N´p2ξ´1q ˆ β̂N´γΣ˚
ANξ

goes to 0 a.s., we get that

lim sup
NÑ8

1

N2ξ´1
logZωN

`

pB`,εN Y B´,εN qc
˘

ă lim
NÑ8

1

N2ξ´1
logZωN ,

from which one deduces that

lim
NÑ8

PωN pB
`,ε
N Y B´,εN q “ 1 P-a.s.

Given ĥ, the events B˘,εN are disjoint for ε small enough: this implies in particular that

lim
NÑ8

PωN pB
`,ε
N q `PωN pB

´,ε
N q “ lim

NÑ`8

ZωN pB
`,ε
N q ` ZωN pB

´,ε
N q

ZωN
“ 1 . (6.3)

Now, denoting again Z0
N the partition function with ω ” 0 (or equivalently βN ” 0)

and P0
N the corresponding measure, we have

e
βNΣ`

p|ĥ|´εqNξ
´βNR

2ε
N p0,|ĥ|´εqP0

N pB
`,ε
N q ď

ZωN pB
`,ε
N q

Z0
N

ď e
βNΣ`

p|ĥ|´εqNξ
`βNR

2ε
N p0,|ĥ|´εqP0

N pB
`,ε
N q ,

where RεN pu, vq is defined in (5.13). A similar inequality holds with B´,εN in place of B`,εN ,
simply by replacing Σ`

p|ĥ|´εqNξ
by Σ´

p|ĥ|´εqNξ
and R2ε

N p0, |ĥ| ´ εq by R2ε
N p|ĥ| ´ ε, 0q.

Therefore, we have

ZωN pB
`,ε
N q

ZωN pB
`,ε
N q ` ZωN pB

´,ε
N q

ď
e
βNΣ`

p|ĥ|´εqNξ
`βNR

2ε
N p0,|ĥ|´εqP0

N pB
`,ε
N q

e
βNΣ`

p|ĥ|´εqNξ
´βNR2ε

N p0,|ĥ|´εqP0
N pB

`,ε
N q ` e

βNΣ´
p|ĥ|´εqNξ

´βNR2ε
N p|ĥ|´ε,0qP0

N pB
´,ε
N q

, (6.4)

and similarly

ZωN pB
`,ε
N q

ZωN pB
`,ε
N q ` ZωN pB

´,ε
N q

ě
e
βNΣ`

p|ĥ|´εqNξ
´βNR

2ε
N p0,|ĥ|´εqP0

N pB
`,ε
N q

e
βNΣ`

p|ĥ|´εqNξ
`βNR2ε

N p0,|ĥ|´εqP0
N pB

`,ε
N q ` e

βNΣ´
p|ĥ|´εqNξ

`βNR2ε
N p|ĥ|´ε,0qP0

N pB
´,ε
N q

. (6.5)
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Let us make a few observations. First of all, notice also that by symmetry we get that
when ω ” 0, for any |ĥ| ą 0

lim
NÑ8

P0
N

`

B`,εN

˘

“ lim
NÑ`8

P0
N pB

´,ε
N q “

1

2
. (6.6)

Recall that limNÑ`8N
´ξ{αΣ`

p|ĥ|´εqNξ
“ X

p1q

|ĥ|´ε
and limNÑ`8N

´ξ{αΣ´
p|ĥ|´εqNξ

“ X
p2q

|ĥ|´ε

P̂-a.s., and that for fixed ĥ, P̂-a.s. the two processes Xp1qt and Xp2qt are both continuous

at t “ |ĥ|, so limεÓ0X
p1q

|ĥ|´ε
“ X

p1q

|ĥ|
and limεÓ0X

p2q

|ĥ|´ε
“ X

p2q

|ĥ|
. Note also that, for P̂-

almost every realization of ω, for any δ one can choose ε ą 0 small enough so that
N´ξ{αR2ε

N p0, |ĥ| ´ εq ď δ for all N large enough, and similarly for N´ξ{αR2ε
N p|ĥ| ´ ε, 0q.

Let us now consider three cases.
(i) If γ ă ξ{α. On the event Xp1q

|ĥ|
ă X

p2q

|ĥ|
, one can choose ε ą 0 small enough so that

lim inf
NÑ`8

N´ξ{α
´

Σ´
p|ĥ|´εqNξ

`R2ε
N p|ĥ| ´ ε, 0q ´

`

Σ`
p|ĥ|´εqNξ

`R2ε
N p0, |ĥ| ´ εq

˘

¯

ą 0 .

Since βN “ β̂N
ξ
α´γN´

ξ
α with N

ξ
α´γ Ñ `8, from (6.4) we deduce that a.e. on the event

X
p1q

|ĥ|
ă X

p2q

|ĥ|
, for ε ą 0 small enough

lim sup
NÑ`8

PωN pB
`,ε
N q “ lim sup

NÑ`8

ZωN pB
`,ε
N q

ZωN pB
`,ε
N q ` ZωN pB

´,ε
N q

“ 0 ,

recalling also (6.6). By an identical reasoning, we get that a.e. on the event Xp1q
|ĥ|
ą X

p2q

|ĥ|
,

for ε ą 0 small enough lim supNÑ`8PωN pB
´,ε
N q “ 0. Hence, because the event Xp1q

|ĥ|
“

X
p2q

|ĥ|
has probability 0 and recalling (6.3), we can conclude that

lim
εÓ0

lim
NÑ`8

PωN pB
`,ε
N q “ 1

tX
p1q

|ĥ|
ąX

p2q

|ĥ|
u

P̂-a.s. ,

where the limit in N is well-defined provided that ε is small enough. A similar statement
holds for PωN pB

´,ε
N q, exchanging the role of Xp1q and Xp2q.

(ii) If γ “ ξ{α, then similarly as above, from (6.4) and (6.5) we deduce that for any
δ ą 0, P̂-a.s. we can choose ε ą 0 small enough so that

lim sup
NÑ`8

PωN pB
`,ε
N q “ lim sup

NÑ`8

ZωN pB
`,ε
N q

ZωN pB
`,ε
N q ` ZωN pB

´,ε
N q

ď
e
β̂X

p1q

|ĥ|´ε
`δ

e
β̂X

p1q

|ĥ|´ε
´δ
` e

β̂X
p2q

|ĥ|´ε
´δ

,

lim inf
NÑ`8

PωN pB
`,ε
N q “ lim inf

NÑ`8

ZωN pB
`,ε
N q

ZωN pB
`,ε
N q ` ZωN pB

´,ε
N q

ě
e
β̂X

p1q

|ĥ|´ε
´δ

e
β̂X

p1q

|ĥ|´ε
`δ
` e

β̂X
p2q

|ĥ|´ε
`δ

,

recalling again (6.3) and (6.6). Taking δ arbitrarily small, we get that

lim
εÓ0

lim sup
NÑ`8

PωN pB
`,ε
N q “ lim

εÓ0
lim inf
NÑ`8

PωN pB
`,ε
N q “

e
β̂X

p1q

|ĥ|

e
β̂X

p1q

|ĥ| ` e
β̂X

p2q

|ĥ|

P̂-a.s.

The statement is analogous for PωN pB
´,ε
N q, exchanging the role of Xp1q and Xp2q.

(iii) If γ ą ξ{α, since βN “ β̂N
ξ
α´γN´

ξ
α and N

ξ
α´γ Ñ 0, we get from (6.4) and (6.5)

that for any ε ą 0

lim
NÑ`8

PωN pB
`,ε
N q “ lim

NÑ`8

ZωN pB
`,ε
N q

ZωN pB
`,ε
N q ` ZωN pB

´,ε
N q

“
1

2
P̂-a.s.,

recalling again (6.6). We also get limNÑ`8PωN pB
´,ε
N q “ 1

2 , P̂-a.s.
This concludes the proof of (4.2).
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6.2 Boundary region rR4— rR5: proof of Theorem 4.2

The proof is similar to that for region rR4: one only needs the analogous to Lemma 6.1.
The rate function Ipu, vq for pN´ξM´

N , N
´ξM`

N q is replaced by the rate function κpu ^

v ` u` vq for pN´1M´
N , N

´1M`
N q, see Lemma A.2. We end up with:

lim
NÑ`8

1

N
logZωN “ sup

u,vPr0,1s

 

|ĥ|pu` vq ´ κpu^ v ` u` vq
(

P-a.s.

Then, using that κptq “ 1
2 p1` tq logp1` tq ` 1

2 p1´ tq logp1´ tq if 0 ď t ď 1 and κptq “ `8
if t ą 1, a straightforward calculation finds that the supremum is attained at pu, vq “
p0, tanh |ĥ|q or pu, vq “ ptanh |ĥ|, 0q and equals logpsinh |ĥ|q.

Then, by following the same ideas as above, one can show that the events

B`,εN :“
!

sup
tPr0,1s

ˇ

ˇN´1SttNu´tanhp|ĥ|qt
ˇ

ˇ ď ε
)

, B´,εN :“
!

sup
tPr0,1s

ˇ

ˇN´1SttNu`tanhp|ĥ|qt
ˇ

ˇ ď ε
)

,

verify
lim
NÑ8

PωN pB
`,ε
N Y B´,εN q “ 1 P-a.s.

From this, one can proceed as above (see in particular (6.4) and (6.5)) to get (4.4).
Details are left to the reader.

6.3 Region rR5: proof of Theorem 4.3

First of all, notice that

ZωN ě ZωN p|SN | “ Nq ě e´β̂N
´γΣ˚N´ĥN

1´ζ
´N log 2 and ZωN ď e´ĥN

1´ζ
`β̂N´γΣ˚N . (6.7)

Hence, the P-a.s. convergence limNÑ8N
ζ´1 logZωN “ |ĥ| is immediate, since ζ ă 0 and

1
α ´ γ ă 1´ ζ.

The rest of the proof of Theorem 4.3 is similar to what is done in Sections 6.1-6.2
above. In particular, for any ε ą 0 one has that

lim sup
NÑ8

Nζ´1 logZωN
`

|SN | ď p1´ εqN
˘

ď ´p1´ 1
2εqĥ P-a.s.,

so that limNÑ8PωN p|SN | ě p1 ´ εqNq “ 1 P-a.s. Then, by following the same ideas as
above, one can show that the events

B`,εN :“
!

sup
tPr0,1s

ˇ

ˇN´1SttNu ´ t
ˇ

ˇ ď ε
)

, B´,εN :“
!

sup
tPr0,1s

ˇ

ˇN´1SttNu ` t
ˇ

ˇ ď ε
)

,

verify
lim
NÑ8

PωN pB
`,ε
N Y B´,εN q “ 1 P-a.s.

From this, one can proceed as above to get (4.5). Details are left to the reader.

Improvement in the case α P p0, 1q or α P p1, 2s and γ ą ζ We now prove (4.6). As
mentioned above, we have limNÑ8PωN p|SN | ě p1´ εqNq “ 1 almost surely. Now, we can
split the event |SN | ą p1´ εqN according to whether M`

N ą
1
2N or M´

N ă ´
1
2N . Hence,

we only have to prove that PωN p
1
2N ă M`

N ď N ´ 1q{PωN p|SN | “ Nq a.s. goes to 0, and
similarly for M´

N .
To this end, we show the following: P-a.s., for N large enough we have

ZωN p
1
2N ăM`

N ď N ´ 1q

ZωN p|SN | “ Nq
ď
ZωN p

1
2N ăM`

N ď N ´ 1q

ZωN pSN “ Nq
ď C exp

´

1
8 ĥN

´ζ
¯

. (6.8)
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This will conclude the proof of (4.6) since ĥN´ζ Ñ ´8 (recall ζ ă 0).
We have ZωN pSN “ Nq “ 2´NeβNΣ`N´hNN . Hence, using that in the case M`

N “ N ´ k

then M´
N ě ´

1
2k so |RN | ď N ´ 1

2k, we get that for 1 ď k ă 1
2N , after simplifications of

the numerator and denominator,

ZωN pM
`
N “ N ´ kq

ZωN pSN “ Nq
ď exp

´

βN

N
ÿ

i“N´k`1

ωi ` βNΣ˚1
2k
` 1

2hNk
¯

2NPpM`
N “ N ´ kq .

Denoting rΣ˚k :“ Σ˚1
2k
` sup1ďjďk |

řN
i“N´j`1 ωi|, we then get that for ` P t1, . . . , log2N ´1u

ZωN
`

M`
N P rN ´ 2`, N ´ 2`´1q

˘

ZωN pSN “ Nq
ď exp

´

β̂N´γ rΣ˚2` ` ĥN
´ζ2`´2

¯

2N`1PpSN ě N ´ 2`q,

where we also used that PpM`
N ě N ´ 2`q “ 2PpSN ě N ´ 2`q ´ 1 by the reflection

principle. Now, since N ´ SN has a BinompN, 1
2 q distribution, we have

PpSN ě N ´ 2`q “
2`
ÿ

i“0

2´N
ˆ

N

i

˙

ď 2´N2`
ˆ

N

2`

˙

,

for ` such that 2` ď 1
2N . Note that 2`

`

N
2`

˘

ď N2` , which is smaller than expp2`´3|ĥ|N´ζq

for N large enough (uniformly for the range of ` considered). We therefore end up with

ZωN
`

M`
N P rN ´ 2`, N ´ 2`´1q

˘

ZωN pSN “ Nq
ď exp

´

Cpβ̂, ωqN´γplog2Nq
2{α2`{α ` ĥN´ζ2`´3

¯

,

where we have also bounded rΣ˚
2`

by a constant c “ cpωq times `2{α2`{α, analogously to
Lemma 4.4. Now, uniformly for ` P t1, . . . , log2N ´ 1u, we have

N´γplog2Nq
2{α2`{α

N´ζ2`
ď plog2Nq

2{α

#

Nζ´γ if α P p1, 2s ,

N
1´α
α `ζ´γ if α P p0, 1q .

This upper bound goes to 0 as N Ñ8 since γ ą ζ if α P p1, 2s and γ ą ζ` 1´α
α if α P p0, 1q.

Hence, P-a.s., for N large enough we have

ZωN
`

1
2N ăM`

N ď N ´ 1
˘

ZωN pSN “ Nq
“

log2N´1
ÿ

`“1

ZωN
`

M`
N P rN ´ 2`, N ´ 2`´1q

˘

ZωN pSN “ Nq

ď

log2N´1
ÿ

`“1

exp
´

ĥN´ζ2`´4
¯

ď C exp
´1

8
ĥN´ζ

¯

,

which gives (6.8).
For the proof of the last statement (i.e. the analogous of (4.5)), notice that

ZωN pSN “ Nq “ 2´NeβNΣ`N´hNN , ZωN pSN “ ´Nq “ 2´NeβN pω0`Σ´N q´hNN ,

so that
ZωN pSN “ Nq

ZωN pSN “ Nq ` ZωN pSN “ ´Nq
“

eβNΣ`N

eβNΣ`N ` eβN pω0`Σ´N q
. (6.9)

Then, we proceed as in the previous sections to get (4.5) with tSN “ Nu in place of B`,εN .
Details are left to the reader.
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A Technical estimates

A.1 Estimates on deviation probabilities

We present here some large deviation estimates for the simple random walk that are
needed throughout the paper. Recall M´

N :“ min0ďnďN Sn and M`
N :“ max0ďnďN Sn.

Stretching

Our first lemma deals with the super-diffusive case: we estimate the probability that
M`
N ě vNξ and M´

N ď ´uN
ξ when ξ P p 1

2 , 1q, for u, v ě 0. The one-sided large deviation
results are classical, using e.g. explicit calculations for the simple random walk (see [20,
Ch. III.7]): we get that if ξ P p 1

2 , 1q

lim
NÑ8

´
1

N2ξ´1
logP

`

M`
N ě vNξ

˘

“ lim
NÑ8

´
1

N2ξ´1
logP

`

SN ě vNξ
˘

“
1

2
v2 .

The case where both the minimum and maximum are required to have large deviations
is an easy extension of the result: it follows from the reflection principle that

PpSN ě2a`bq_PpSN ěa`2bqďPpM´
N ď´a;M`

N ě bq ď PpSN ě 2a`bq`PpSN ě a`2bq ,

so that logPpM´
N ď ´uN

ξ;M`
N ě vNξq „ logPpSN ě pu^ v ` u` vqN

ξq as N Ñ `8.

Lemma A.1. If ξ P p 1
2 , 1q then for any u, v ě 0 we have that

lim
NÑ8

´
1

N2ξ´1
logP

´

M´
N ď ´uN

ξ;M`
N ě vNξ

¯

“ Ipu, vq :“
1

2
pu^ v ` u` vq2 . (A.1)

As an easy consequence of this lemma, we get that for any δ ą 0, for any u, v ě 0,

lim
NÑ8

´
1

N2ξ´1
logP

´

M´
N P

`

´ pu` δq,´u
‰

Nξ;M`
N P

“

v, v ` δ
˘

Nξ
¯

“ Ipu, vq. (A.2)

Using again the reflection principle, it is also not difficult to show that a local version
of (A.2) holds: omitting the integer parts for simplicity, we have

lim sup
NÑ8

´
1

N2ξ´1
log sup

xPru,u`δq
yPrv,v`δq

P
`

M´
N “ ´xN

ξ;M`
N “ yNξ

˘

“ Ipu, vq . (A.3)

We now state a result that shows that the large deviation is essentially realized by
the event that the random walk moves ballistically to one end (whichever is the closest)
and then ballistically to the other one. For u, v ě 0 with u ‰ v, recall the definition (3.8)
of the function bu,v that goes with constant speed from 0 to the closest point between ´u
and v and then to the other one. Recall also the notation (3.9):

BεN pu, vq :“

"

sup
tPr0,1s

ˇ

ˇ

ˇ

1

Nξ
SttNu ´ bu,vptq

ˇ

ˇ

ˇ
ď ε

*

.

We then have the following result, which is a direct consequence of Lemma A.1: let
u, v ě 0 with u ‰ v, then for any ε ą 0,

lim inf
NÑ8

´
1

N2ξ´1
logP

´

M´
N ď ´uN

ξ;M`
N ě vNξ;BεN pu, vqc

¯

ě Ipu, vq ` cεpu, vq , (A.4)

for some constant cεpu, vq ą 0.
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As a consequence, for δ ą 0 small enough such that pu ´ δq` ą 0 or pv ´ δq` ą 0

(where x` :“ maxtx, 0u) and ru´ δ, u` δs X rv ´ δ, v ` δs “ H, we also have

lim inf
NÑ8

´
1

N2ξ´1
log sup

xPrpu´δq`,u`δs

yPrpv´δq`,v`δs

P
`

M´
N “ ´xN

ξ;M`
N “ yNξ;BεN pu, vqc

˘

ě I
`

pu´ δq`, pv ´ δq`
˘

` cεpu´ δ, v ´ δq .

Together with (A.3), we end up with

lim inf
NÑ8

´
1

N2ξ´1
sup

xPrpu´δq`,u`δs

yPrpv´δq`,v`δs

log
P
`

M´
N “ ´xN

ξ;M`
N “ yNξ,BεN pu, vqc

˘

P
`

M´
N “ ´xN

ξ;M`
N “ yNξ

˘

ě I
`

pu´ δq`, pv ´ δq`
˘

` cεpu´ δ, v ´ δq ´ I
`

u` δ, v ` δ
˘

“: cε,δpu, vq

(A.5)

where cε,δpu, vq ą 0, provided that δ is small enough (how small depends on ε, u, v).
Let us also state the large deviation result in the case ξ “ 1. As above, it derives from

the fact that logPpM´
N ď ´uN ;M`

N ě vNq „ logPpSN ě pu^ v ` u` vqNq as N Ñ8.

Lemma A.2. For any u, v ě 0, we have that

lim
NÑ8

´
1

N
logP

`

M´
N ď ´uN ;M`

N ě vN
˘

“ κ
`

u^ v ` u` v
˘

,

where κ : R` Ñ R` is the LDP rate function for the simple random walk, that is
κptq :“ 1

2 p1` tq logp1` tq ` 1
2 p1´ tq logp1´ tq if 0 ď t ď 1 and κptq “ `8 if t ą 1.

Note that analogues of the ballisticity statements (A.4) and (A.5) hold in the case ξ “
1.

Folding

Our second lemma deals with the sub-diffusive case: we estimate the probability that
M`
N ď vNξ and M´

N ě ´uNξ when ξ P p0, 1
2 q, for u, v ě 0. The result follows from

classical random walk calculations, leading to explicit expressions of ruin probabilities
(see Eq. (5.8) in [20, Ch. XIV]); one may refer to [13, Lem. 2.1] and its proof for the
following statement.

Lemma A.3. If ξ P p0, 1
2 q, then for any u, v ě 0 we have that

lim
NÑ8

´
1

N1´2ξ
logP

´

M´
N ě ´uN

ξ;M`
N ď vNξ

¯

“
π2

2pu` vq2
. (A.6)

As an easy consequence of this lemma, we get that for any δ ą 0 and any u, v ě 0,

lim
NÑ8

´
1

N1´2ξ
logP

´

M´
N P r´u,´u` δqN

ξ;M`
N P pv ´ δ, vsN

ξ
¯

“
π2

2pu` vq2
. (A.7)

A.2 Proof of Lemma 4.4

We start with the first part of the statement. First of all, notice that the bound is
trivial if `T´α ą 1: we therefore assume that `T´α ď 1. Using Etemadi’s inequality
(see [10, Thm. 2.2.5]) we get that

P
`

Σ˚` ą T
˘

ď 3 max
kPt1,...,`u

P
`

|Σ`k | ą
1
6T

˘

` 3 max
kPt1,...,`u

P
`

|Σ´k | ą
1
6T

˘

.

We only bound P
`

|Σ`k | ą
1
6T

˘

, since the same bound will hold for P
`

|Σ´k | ą
1
6T

˘

. The
case α “ 2 is a consequence of Kolmogorov’s maximal inequality and the case α P p0, 2q
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(α ‰ 1) follows from the so-called big-jump (or one-jump) behavior. Let us give an easy
proof: define ω̄x :“ ωx1t|ωx|ďTu, so that

P
`

|Σ`k | ą
1
6T

˘

ď P
`

D 0 ď x ď k , |ωx| ą T
˘

` P
´
ˇ

ˇ

ˇ

k
ÿ

x“0

ω̄x

ˇ

ˇ

ˇ
ą 1

6T
¯

ď pk ` 1qP
`

|ω0| ą T
˘

`
36

T2

´

pk ` 1qE
“

pω̄0q
2
‰

` kpk ` 1qErω̄0s
2
¯

,

where we used a union bound for the first term and Markov’s inequality (applied
to p

řk
x“0 ω̄xq

2) for the second. Now, the first term is clearly bounded by a constant
times kT´α thanks to Assumption 1. For the second term, we use again Assumption 1,
to get that if α P p0, 1q Y p1, 2q, Erpω̄0q

2s ď cT2´α and Erω̄0s ď cT1´α (when α P p1, 2q we
use for this last inequality that Erω0s “ 0). Therefore, we end up with the bound

P
`

|Σ`` | ą
1
6T

˘

ď c`T´α ` c`2T´2α ď 2c`T´α ,

where we have used that `T´α ď 1 for the last inequality.
For the second part of the statement, notice that P

`

Σ˚
2k
ą k2{α2k{α

˘

ď ck´2: hence,
by Borel–Cantelli, P-a.s. there is a constant C 1 “ C 1pωq such that Σ˚

2k
ď C 1k2{α2k{α for all

k ě 0. Since Σ˚` is monotone in `, we get that P-a.s. there is a constant C “ Cpωq such
that Σ˚` ď Cplog2 `q

2{α`1{α for all ` ě 1.

A.3 Uniqueness of the maximizer: proof of Proposition 3.2

We start with the following lemma, at the core of the proof.

Lemma A.4. Let pXp1qv qvě0 and pXp2qu quě0 be two independent α-stable Lévy processes
and f : pR`q

2 Ñ R be any function. Denote Ic,da,b :“ rc, dsˆra, bs. Then for any two disjoint

rectangles Ic,da,b and Ic
1,d1

a1,b1 , we have that

P

ˆ

sup
pu,vqPIc,da,b

!

Xp1qv `Xp2qu ` fpu, vq
)

“ sup
pu1,v1qPIc

1,d1

a1,b1

!

X
p1q
v1 `X

p2q
u1 ` fpu

1, v1q
)

˙

“ 0 .

Proof. Let us assume that a1 ą b (other cases are treated similarly). Then, the difference
of the supremums can be written as Z ´ Z 1 ´ pXp1qa1 ´X

p1q
b q, with

Z “ sup
pu,vqPIc,da,b

 

Xp1qv ´X
p1q
b `Xp2qu `fpu, vq

(

, Z 1 “ sup
pu1,v1qPIc

1,d1

a1,b1

 

X
p1q
v1 ´X

p1q
a1 `X

p2q
u1 `fpu

1, v1q
(

.

Note that Z,Z 1 are independent of Xp1qa1 ´X
p1q
b : we therefore get that

P
`

X
p1q
a1 ´X

p1q
b “ Z 1 ´ Z

˘

“ 0 ,

since Xp1qa1 ´X
p1q
b has no atom (it is α-stable).

Proof of Proposition 3.2. By Lemma A.4 and subadditivity, we have

P

ˆ

D a, b, c, d, a1, b1, c1, d1 P Q, s.t. Ic,da,b X Ic
1,d1

a1,b1 “ H, sup
pu,vqPIc,da,b

Yu,v “ sup
pu1,v1qPIc

1,d1

a1,b1

Yu1,v1

˙

“ 0.

Since P-a.s. supu,vě0 Yu,v ą 0 and Yu,v Ñ ´8 as u Ñ `8 or v Ñ `8, then for P-a.s.

realization pXp1qv qvě0, pXp2qu quě0, there exists some rational constant A “ Apωq, such that
the supremum is achieved on the rectangle r0, As2. Then a sequential application of
dichotomy yields the uniqueness of the maximizer.
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Next, we show that

P
´

D v ě 0, such that arg max
u,vě0

Yu,v “ tpv, vqu
¯

“ 0 (A.8)

Note that the above probability is bounded above by

P
´

sup
u,vě0

Yu,v “ sup
vě0

Yv,v

¯

ď P
´

sup
0ďvďu

Yu,v “ sup
vě0

Yv,v

¯

` P
´

sup
0ďuďv

Yu,v “ sup
vě0

Yv,v

¯

. (A.9)

It suffices to show that both probabilities on the right-hand side of (A.9) are 0. We only
deal with the first term, the second one is identical.

For any n, k ě 0, let Bn,k “ r k2n ,
k`1
2n q ˆ r

k
2n ,

k`1
2n q. Note that

Ť8

k“1Bn,k covers the
line u “ v and that, as n Ñ `8,

Ť8

k“1Bn,k Ó tu “ vu and tv ď uuz
Ť8

k“1Bn,k Ò tv ă uu.
Hence, by Lemma A.4 and the monotone convergence theorem, we have that

P
´

sup
0ďvău

Yu,v “ sup
0ďv

Yv,v

¯

“ 0.

Furthermore, P-a.s., for any v ě 0, we can take un Ó v, such that Yun,v Ñ Yv,v by the
right continuity of Lévy processes. Hence,

P
´

sup
0ďvău

Yu,v “ sup
0ďvďu

Yu,v

¯

“ 1 .

This shows that the upper bound in (A.9) is equal to 0 and concludes the proof of (A.8).

A.4 Estimates on càd-làg paths at points of continuity

Lemma A.5. Let pαN ptqqNě1 be a sequence of càd-làg paths on r0,8q that converges to
a càd-làg path αptq for the Skorokhod distance d0 (cf. [24]). Suppose that α is continuous
at u. Then for any ε, δ ą 0, there exists N0 “ N0pu, ε, δq ą 0 such that for all N ě N0,

|αN puq ´ αpuq| ă ε, (A.10)

sup
vPru,u`δs

|αN pvq ´ αN puq| ă ε` sup
vPru,u`δ`εs

|αpvq ´ αpuq|. (A.11)

Proof. We start by proving (A.10). Fix ε and let η “ ηpεq ą 0 be some number to be
chosen below. Since limNÑ8 d0pαN , αq “ 0, for the above η ą 0, there exists a sequence
of non-decreasing bijections pλN ptqqNě1 : r0, T s Ñ r0, T s with T ą u arbitrary (but fixed)
and a large enough integer N0, such that for all N ě N0,

sup
tPr0,T s

|λN ptq ´ t| ă η and sup
tPr0,T s

|αN pλN ptqq ´ αptq| ă η. (A.12)

We have that

|αN puq ´ αpuq| ď |αN puq ´ αpλN puqq| ` |αpλN puqq ´ αpuq|.

By (A.12) we have |λN puq ´ u| ă η: if we had fixed η small enough, the second term
above is smaller than ε{2 by continuity while the first term is smaller than ε{2 by (A.12).
Therefore (A.10) is proved.

We now prove (A.11). Using (A.10) (with ε{3 instead of ε) together with the triangular
inequality, we get that |αN pvq ´ αN puq| ď |αN pvq ´ αpuq| ` ε{3 for N large enough, so we
only need to estimate |αN pvq ´ αpuq|. For any fixed δ ą 0 such that δ ` u ď T , using the
sequence λN defined above, we have that

sup
uďvďu`δ

|αN pvq ´ αpuq| “ sup
λ´1
N puqďv1ďλ´1

N pu`δq

|αN pλN pv
1qq ´ αpuq|

ď sup
λ´1
N puqďv1ďλ´1

N pu`δq

|αN pλN pv
1qq ´ αpv1q| ` sup

λ´1
N puqďv1ďλ´1

N pu`δq

|αpv1q ´ αpuq|.
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The first term above is smaller than ε{3 by (A.12). For the second term, always by (A.12),
we have that

|λ´1
N puq ´ u| ă η, |λ´1

N pu` δq ´ u| ă η ` δ

and hence we need to bound

sup
u´ηďvďu`η`δ

|αpvq ´ αpuq| ď sup
u´ηďvďu

|αpvq ´ αpuq| ` sup
uďvďu`δ`η

|αpvq ´ αpuq| .

By continuity, the first term above can be made arbitrarily small by choosing η small, so
this proves (A.11).
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