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Abstract

In this article we study a non-directed polymer model on Z, that is a one-dimensional
simple random walk placed in a random environment. More precisely, the law of
the random walk is modified by the exponential of the sum of potentials Sfw, — h
sitting on the range of the random walk, where (wz)zez are i.i.d. random variables
(the disorder) and 8 > 0 (disorder strength) and h € R (external field) are two
parameters. When § = 0,h > 0, this corresponds to a random walk penalized by
its range; when 8 > 0,h = 0, this corresponds to the “standard” polymer model
in random environment, except that it is non-directed. In this work, we allow the
parameters (3, h to vary according to the length of the random walk and we study
in detail the competition between the stretching effect of the disorder, the folding
effect of the external field (if A > 0) and the entropy cost of atypical trajectories.
We prove a complete description of the (rich) phase diagram and we identify scaling
limits of the model in the different phases. In particular, in the case 8 > 0,h = 0
of the non-directed polymer, if w, has a finite second moment we find a range size
fluctuation exponent £ = 2/3.
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1D polymers in random environment

1 Introduction

We consider here a simple symmetric random walk on Z¢, d > 1, placed in a time-
independent random environment, see [23]. The interaction with the environment occurs
on the range of the random walk, i.e. on the sites visited by the walk. This model may
be seen as a disordered version of random walks penalized by their range (in the spirit
of [11, 19]). One closely related model is the celebrated directed polymer in random
environment model (see [15] for a review), which has attracted interest from both the
mathematical and physics communities over the last forty years, and can be used to
describe a polymer chain placed in a solvent with impurities.

1.1 The model

Let S := (S,)n>0 be a simple symmetric random walk on Z<, d > 1, starting from 0,
whose trajectory represents a (non-directed) polymer. Let P denote its law. The random
environment, or disorder, is modeled by a field w := (w;)zeza of i.i.d. random variables.
We let P denote the law of w, and IE the expectation with respect to IP (assumptions on
the law of w are detailed in Section 1.2 below).

For 8 > 0 (the disorder strength, or inverse temperature) and h € R (an external
field), we define for all N € IN the following Gibbs transformation of the law P, called the
polymer measure:

dPy 51 1
—=2==(5) 1= ———exp ( (Bwz — h)1ier }>, (1.1)
dP Z% sn Iéd {zeRN
where Ry = {So, 51, -..,Sn} is the range of the random walk up to time N, and
Z g = E[exp ( > (Bwg — h)l{xeRN}” = E[exp (5 D we - hRN|>]
reZd xGRN

is the partition function of the model, defined so that P°](,7 gnisa probability measure.

Let us stress the main differences with the standard directed polymer model: (i) here,
the random walk does not have a preferred direction; (ii) there is an additional external
field h € R; (iii) the random walk can only pick up one weight Sw, — h at a site z € Z¢, so
returning to an already visited site does not bring any reward or penalty (in the directed
polymer model, the environment is renewed each time).

We now wish to understand the typical behavior of polymer trajectories (Sp, ..., Sn)
under the polymer measure Py 5 ,. Two important quantities we are interested in are!

* the range size exponent £, loosely defined as EE°]<,757h|RN\ = N§;
* the fluctuation exponent y, loosely defined as Var(log Zy 5 ) = N°X.

In view of (1.1), there are three quantities that may influence the behavior of the
polymer: the energy collected from the random environment w; the penalty h (or reward
depending on its sign) for having a large range; the entropy cost of the exploration of
the random walk S. If 5 = 0 and & > 0, then we recover a random walk penalized by its
range. This model is by now quite well understood: the random walk folds itself in a
ball of radius ple/(d”), for some specific constant p; > 0, see [19, 34, 11, 4, 18] (these
works mostly focus on the case of dimension d > 2). If = 0 and h < 0, then we get
a random walk rewarded by its range: the random walk “stretches” to obtain a range
of order N. If 5 > 0 and h = 0, then we obtain a model for a non-directed polymer in
random environment, the environment being seen only once by the random walk (in
the same spirit as the excited random walk [3] or more generally the cookie random

1We use the standard notation a,, = b, if lim SUP, s 4 oo Z—" < +00 and limsup,,_, | o Z—" < +o0.
n n
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walk [35]). In general, disorder should have a “stretching” effect because the random
walk is trying to reach more favorable regions in the environment. We will see that it is
indeed the case in dimension d = 1, where we find that the random walk stretches up to
a distance N2/3 (¢ = 2).

1.2 Setting of the paper

In this article, we focus on the case of the dimension d = 1: the behavior of the model
is already very rich and we are able to obtain sharp results. Let us mention that in
dimension d > 2 some aspects of the model are considered in [8], but many questions
remain open.

Our main assumption on the environment is that w, is in the domain of attraction of
some a-stable law, with a € (0,2], o # 1. More precisely, we assume the following?.

Assumption 1. If o = 2 we assume that E[wy] = 0 and E[w3] = 1. If a € (0,1) U (1,2)
we assume that P(wy > t) ~ pt~® and P(wy < —t) ~ gt~ * ast — o, with p+ ¢ =1 (and
p > 0); if ¢ = 0, we interpret it as P(wy < —t) = o(t~%). Moreover, if a € (1,2), we also
assume that Efwg] = 0.

Let us stress that Assumption 1 ensures that:

o if ¢ = 2, then w; is in the normal domain of attraction, so that (ﬁ Y n Wi)u<o<w

converges to a two-sided (standard) Brownian Motion.
« if a € (0,1) U (1,2), then w; is in the domain of attraction of some non-Gaussian
stable law and (—= >""  w;)u<o0<v CONverges to a two-sided a-stable Lévy process.

nl/a i=un

We leave the case a = 1 aside mostly for simplicity: indeed, to obtain a process conver-
gence as above, a non-zero centering term is in general needed (even in the symmetric
case p = q, see [21, IX.8], or [7]); however most of our analysis applies in that case. We
also focus on pure power tails when « € (0, 2), simply to lighten notation and simplify the
statements: our results could easily be adapted to the case of regularly varying tails.

Henceforth we refer to (X;)r as the two-sided Brownian motion if & = 2 and as the
two-sided Lévy process defined below if o € (0,1) u (1,2). We refer to Chapter 1 of [1]
for an overview on Lévy processes.

Notation 1.1. Let a € (0,2]. We let X = (X{V),20 and X® = (X{?),=0 be two i.id.
standard Brownian motions if « = 2 and two i.i.d. (a-stable) Lévy processes with no
Brownian component, no drift, and Lévy measure v(dz) = a(pli;~oy + ql{w<0})\x|*1*“ dx
ifa e (0,2).

We now define a coupling between the discrete environment (w, ).cz and the pro-
cesses XM and X, using the construction proposed in [25]. Let us consider the space
D = D(R4,R) of all cadlag real functions equipped with the Skorokhod metric d. We let

7 -1
SF=Sf(w) = Dlwe, I =%7(w)i= ) w, forj>0, (1.2)
=0

r=—7
and for u,v = 0

X\, = XW @) = NTesl s XE, = X0, W) = NS, (1.3)

For 0 < o < 2 the two (independent) processes X](\}) = (X](\}’)v)@() and X](\?) = (X](\?,)u)uzo
are cadlag (they are D-valued random variables) and they converge in distribution to
X0 = (xM)ys0 and X@ = (X{?),>0 as in Notation 1.1, which are D-valued random

variables. Then, as done in [25, Section 3], we can build on the same probability space

2We use the standard notation a(t) ~ b(t) if lim¢— 1 o0 % = 1and a(t) = o(b(t)) if lims— 4o % =0.
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a sequence of random fields w) = (wiN))er parametrized by N, such that w®) has

the same law as the original environment w for every N and for which the processes
X (w™) and X P (w™) converge a.s. in the Skorokhod metric on D to X() and X ()
respectively—we refer to chapter VI in [24] for a characterisation of the convergence of
sequences in D. A coupling can also be realized in the case a = 2, see e.g. [16, Ch. 2].
We denote by P the law of the coupling and in order to lighten notation we will denote w
instead of w™) in such a coupling, letting the dependence on N be implicit.

1.3 Presentation of a first result

In the present paper, we allow 3 and h to vary with the size of the system, giving rise
to a large diversity of possible behaviors. Before we go into these details, let us already
state how our results translate in the case of fixed parameters §, h.

We define

My = max S, >0 and My:= min S, <0
osn<N 0s<n<N

the right-most and left-most points of the random walk after N steps. In particular, the
size of the range is M}, — M.

Theorem 1.2. Consider the coupling IP defined above.
1. Case a € (1,2].

(a) If 3 > 0 and h > 0. Then, for any € > 0, we have that

: 1 w _ 3 2/3
A}l_r)noc e log Z% g = 2(h7r) P-a.s.
and )
: w + — 2, 1 o
NhianNw(‘W(MN —My)—ninTE| > 5) -0 Pas

(the coupling is not needed here).

(b) If 8 > 0 and h = 0. Then, letting

1

V@ =y2® .= p(xM + x[?) Sunv+u+t v)?

u,v

for u,v = 0, we have

1 .
lim ———log Z% 4, = sup {y;?g} €(0,+%),  DP-probability

N—0 Nza=T 030

Additionally, the location of the maximizer of sup,, ,>¢ {Yu(zv) } is unique, that is
UP,V?) 1= argmax,, - {Yu(zv)} is well-defined, and for any € > 0,

. @ 1 - & .
]\}linoo PRX s (‘ﬁ(MN’ M) —(~U?, V(2))‘ > 5) =0, in P-probability.

2a

(c) If 3 > 0 and h < 0. Then for any € > 0, we have that
lim P¥ (‘iw |t h|h|‘> )—0 P-a.s
JVIETIm N,B,h N N an el =0, .S.
2. Case e (0,1). Let 8 > 0 and h € R. Then letting
Y(3) = YB7(3) = B(Xz()l) + X1(L2)) - Ool{u/\z;+u+11>1}

uU,v U,v
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for u,v = 0, we have

1 5 .
lim Flog ZN g p = Sup {Yu(‘q’v)} € (0,40), P-a.s.

N—wo Na u,0=0

Additionally, (U®),V®) := argmax, ,=, { Vi) } is well-defined and for any & > 0,

s 1, i
NhinocPNm(’N(MN,M;) - (—u<3>,v<3>)( > e) ~0, Pas.

Let us stress that, when « € (1,2], the range size (see Definition 3.1 below for a
proper definition) of the polymer is:

(a) of order N/3 if h > 0 — folded phase, this is included in Theorem 3.7;
(b) of order N®/2¢=1) if b, — 0, 3 > 0 — extended phase, this is included in Theorem 3.4;
(c) of order N if h < 0 — extended phase, this is included in Theorem 4.2.

On the other hand, in the case a € (0, 1), the range size is always of order N, for whatever
value of h € R — extended phase, this is included in Theorem 3.5 below.

Remark 1.3. The main advantage of using the coupling P defined above is that we are
able to discuss the size of the range of the random walk in relation to the environment.
More precisely, with high If’-probability (or P-a.s., depending on the case), the end-points
of the range under the polymer measure converge to the maximizer of the variational
problem. This is what we present in Theorem 1.2 and later in Section 3 (Regions 2, 3
and 4, see Figure 1). Let us mention that there are some convergences in ]f’—probability
that we are not able to upgrade to P-a.s. convergences: this is due to a lack of control of
the convergence of (Ef)];l on different scales in Lemmas 5.2 and 5.6, see Remark 5.3.
Note that this problem disappears if we have a good control on the coupling (see again
Remark 5.3) or when ¢ = 1. On the other hand, in the case when the limiting behavior is
not affected by the environment (for example in Regions 1, 5, 6 discussed in Section 3),
the coupling is not needed.

1.4 Varying the parameters 5 and h

In order to observe a transition between a folded phase (h > 0, 5 = 0) and an unfolded
phase (h = 0,8 > 0, or h < 0), a natural idea is to consider parameters § and & that
depend on the size of the system, i.e. § := Gy and h := hy. There are then some
sophisticated balances between the energy gain, the range penalty and the entropy cost
as we tune Sy and hy. Our main results identify the different regimes for the behavior
of the random walk: we provide a complete (and rich) phase diagram (see Figures 1-2-3
below), and describe each phase precisely (range size and fluctuation exponents, limit of
the rescaled log-partition function).

In the rest of the paper, we therefore consider the following setting:

By:=BN"7 and hy:=hN¢, (1.4)

where v, € R describe the asymptotic behavior of Sy, hy, and B > 0, h € R are two
fixed parameters. We could consider a slightly more general setting, adding some slowly
varying function in the asymptotic behavior of Sy or hy: we chose to stick to the simpler
strictly power-law case, to avoid lengthy notation and more technical calculations.

2 Some heuristics: presentation of the phase diagrams

In this section, we focus on the case h > 0; the case h < 0 is considered in Section 4 (it
has a less rich behavior and is somehow simpler, see Remark 2.1 below). In analogy with
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the directed polymer model in a heavy-tailed random environment [5, 6], the presence
of heavy-tails (Assumption 1) strongly impacts the behavior of the model: the phase
diagrams are different according to whether a € (1,2], a € (3,1) or ac € (0, 3).

Let us denote £ the typical range size exponent of the random walk under the polymer
measure Pj(h Bn by (S€€ Definition 3.1 below for a proper definition), and let us develop
some heuristics to determine ¢ € [0, 1].

First of all, thanks to Lemmas A.1-A.3 in Appendix, we have for 0 < a < b,

—N2%-1 fex>1
IOgP(‘RN|€(aN57bN5)):10gP<0maXN\Sn|e(a]\/'f,b]\]ﬁ)) :{ ) 1 §< ?,
=2

<n<

If £ > 1/2, this corresponds to a “stretching” of the random walk, whereas when & < 1/2,
this corresponds to a “folding” of the random walk. We refer to (2.1) as the entropic cost
of having range size N¢.

Then, if the range size is of order N ¢ then under Assumption 1 and in view of (1.4),
we get that

By Y. we=pBNET, hy|Ry|=hNEC, (2.2)
TERN

We refer to the first term as the “disorder” term, and to the second one as the “range”
term (recall we focus for now on the case h > 0 so the “range” term is always with a
minus sign). All together, if the range size is of order N¢, then log ZN gy.hy Should get a
contribution from three terms:

(2.3)

. . N1-2€ jf ¢ <
disorder = BNE_’Y , range = —hN®"¢  entropy = — { ¢
=

N2-1 jf¢

In (2.3), there is therefore a competition between the “disorder” (first term), the
“range” (second term), and the “entropy” (last term). We now discuss how a balance
can be achieved between these terms depending on v and ¢ (and how they determine &).
There are three main possibilities:

” o

(i) there is a “disorder”-“entropy” balance (and the “range” term is negligible);

”ou

(ii) there is a “range”-“entropy” balance (and the “disorder” term is negligible);

(iii) there is a “range”-“disorder” balance (and the “entropy” term is negligible).

To summarize, all three regimes can occur (depending on v, ¢) if a € (1, 2]; on the other
hand, regime (iii) disappears if « € (0,1), and regime (i) disappears if « € (0, %) We
now determine for which values of v, ( one can observe the different regimes above: we
consider the three subcases a € (1,2], a € (3,1) and a € (0, 1) separately.

2.1 Phase diagram for « € (1, 2]

o »oou

Instead of looking for “disorder”-“entropy”, “range”-“entropy” or “range”-“disorder”
balance, we will find conditions to have the “disorder” term much larger, much smaller,
or of the order of the “range” term.

Case I (“disorder”>» “range”). This corresponds to having £/a — v > £ — (. In that
case, the random walk should not feel the penalty for having a large range, so we should
have ¢ > 1/2. The competition occurs only between energy and entropy: one could
achieve a balance if £/a — v = 2¢ — 1, that is if
! 2a—-1)¢—(a—1)

=2a—1(1_7) when ~ < - ,

” o«

¢ (2.4)
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where the condition on v derives from the fact that {/a — v > ¢ —(, ie.y < (—¢ O‘T’l in

the regime considered here. However, since £ < 1, we should have £ = 1 when ~ is too
small, more precisely when v < —“T_l. Thus, we should have have

-1 -1
£=1 when yg—a and*y<§—a . (2.5)
Also, since & > 1/2, we should have & = 1/2 if v is too large, more precisely when v >

Thus, we should have

1
2a°

a—1

5o (2.6)

§=1 when fy>iand7<C—
2 2c
Case II (“disorder” « “range”). This corresponds to having {/a — v < £ — . In that
case, the random walk feels the penalty for having a large range, so we should have
¢ < 1/2. The competition occurs only between range and entropy: one could achieve a
balance if ¢ — ( =1 — 2¢, that is if

_1+¢ when ~ > 2a+1)(—(a=1)

¢ 3 3a ’

(2.7)

where the condition on ~ derives from the fact that {/a — v > ¢ —(, ie. v > (—¢ "T_l
in the regime considered here. Since ¢ € [0, 1/2], similarly to (2.5)-(2.6) we should have
that

£E=0 when (< -1land~y>(, (2.8)

and

1 1 1
£=- when (>-andy>(— — -, (2.9)
2 2 2a

Case III (“disorder” = “range” » “entropy”). This corresponds to having /a—v = £—(,

that is
(6%

&=

In this regime, the entropy cost should be negligible compared to the disorder gain, and
we should therefore have that {/a—v > 1—-2¢if¢ <1/2and {/a—v >2{—1for& = 1/2:
after some calculation (and using (2.10)), we find the following condition on ~

(). (2.10)

Ga-D¢-(a=1) __ _@atlC-(a=1)

2.11
o 3a ( )

Moreover, since ¢ € [0, 1], we must have

a—1

C_

<y <C (2.12)
(0%

To summarize, for o € (1,2], we have identified six different regimes according to
the value of v, (: they are described as follows. A representation of these regions in the
(¢,7)-diagram is given in Figure 1 below.

noou

Region 1 “disorder”, “range” « “entropy” (Case I-II degenerate)
Ri={{=3,7>3: ¢>3};
Region 2 “range” « “disorder” = “entropy” (Case I)

R2 = {g = Qaa,1 (1 - ’Y)a 1?TO( <7< Qo—1)¢— (1) A QL} 5

[e% [e%
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Region 3 “range”, “entropy” « “disorder” (Case I degenerate)
Ry={¢=1~v<-°7t v<(- 9}
Region 4 “entropy” « “range” = “disorder” (Case III)
R4—{f—a(j1(<—v>, W;““‘”v(c—0y><w<m“>§;““‘%<} ;
Region 5 “disorder” « “range” = “entropy” (Case II)
Ry = {6 = 448,y > Qortineot) - o< 4y

Region 6 “disorder”, “entropy” « “range” (Case II degenerate)

R6={£=0;'Y>C,<<_1}~

R :
Rs :

Rs :
Rs :

¢

Figure 1: Phase diagram in the case a € (1,2]. The region R; and the dashed line
v = (- "‘2—;1 are the thresholds that split the regions of super-diffusivity and sub-

diffusivity. Note that when o = 1, the four lines v = Wxﬂ v = %
and v = ¢, v = ( — %1 all merge to the line y = ¢.

2.2 Phase diagram for a € (0,1)

Let us highlight the main differences with the case « € (1, 2]: the region R4 no longer
exists when « < 1, and the region R, also disappears when « < 1/2. Indeed, region Ry
corresponds to the case “disorder” = “range”, in which we have { = 2-(y — (): it is
easy to check that for « € (0, 1) there is no « that can satisfy (2.12), which suggests that
there is no “disorder”-“range” balance possible. In the same manner, when « € (0, %)
there is no « that satisfy 1*7“ <y < i (see the definition of R, above), which suggests
that there is no “disorder”-“entropy” balance possible: region R, no longer exists. We
also refer to Section 3.2 (Comment 2) for further comments on why regions R4 and Ro
disappear for a < 1 and « < 1/2 respectively.

All together, for « € (3, 1) we obtain the (¢, y)-diagram presented in Figure 2 below:

the different regions are described as follows:
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204’ C> 2}

R3={€:1v7<%&a7<c_

fis = {6 16, (B (o) <0 1 <0<

& <y <

‘b

a /\204

(2a—1)¢—(a—1) L}

Ro={§=0,v>¢—251, c<1-2}.
Y Ry
R1:§:%
Ry:&=575(1-7) y = ezl DA(5, 50)
Rs:¢=1 Rs Ry
Rs: €= 3 0,5%)
Rs:£=0 R
v (-t ¢
R3
(_17é_2>

Figure 2: Phase diagram in the case « € (1/2,1). Compared to Figure 1, the region Ry
no longer exists.

Finally, for o € (0, 3) we obtain the ({,v)-diagram presented in Figure 3 below: the
different regions are described as follows:

Ri={6=35 7> 5% ¢> 3},
R3={€:177<1TTQ77<C_L_1 ,

Ry = {6 =55 5 a (- 2g) <o —1<C< 3,
Rg={6=0,v>¢—-1 (<1 -2}

Y
Ry
R1:£:%
Rs:¢=1
Ry 6o 15 Ry (3 =)
Re:£=0 0, 52)
Re
v FC- o
R3

Figure 3: Phase diagram in the case « € (0, 1/2). Compared to Figure 2, the region Ry
no longer exists.
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Remark 2.1. In the case h < 0, one can conduct similar computation as in (2.4)—(2.12)
and obtain a different phase diagram than those of Figures 1-2-3, see Figures 4 and 5
below (note that regions R;, Rs, R3 are unchanged, since the range term is negligible in
these regions). Let us stress that when h < 0, the “disorder” and “range” terms both play
in the same direction and encourage exploration, resulting in a much simpler diagram:
only range size exponents ¢ > 1/2 are possible, see Section 4 below.

3 Main results

Our main results consist in proving the phase diagrams of Figures 1-2-3, with a
precise description of the behavior of the polymer in each region. In order to state our
results, let us introduce some definition.

Definition 3.1. If (tx) n>0 is a sequence of positive real numbers, we say that (S, )o<n<nN
has range size of order ¢y under Py, 5, = if

- w 1 _
il sup B[P 5y 80l €3] )| =1
If (S,)o<n<n has range size of order N¢ under PR sy .ny- then we say that the range
size exponent is .
In our results, we encounter doubly indexed processes

Yoo :i= X+ X — flu,v) foru,v=0, (3.1)

where qul) and Xz(f) are the Lévy processes of Notation 1.1 and f is some deterministic

function (for instance, a large deviation rate function), such that (u,v) — f(u,v) is
continuous on the set where f(u,v) < +o0, with f(0,0) = 0. We then have the following
result about the maximizer of the variational problem sup, ,>q Yu,», that we prove in
Appendix A.3: it ensures the well-posedness of arg max,, > Yu,v-

Proposition 3.2. Suppose that P-a.s. the variational problem sup,, ,>q Yu,» IS positive
with Y defined in (3.1), and that Y, , — —o0 as max(u,v) — +00. Then

IP(arg max Y, , is a singleton {(U,V)} withU # V) =1
uw,v=0
Let us stress that in the case a = 2 of a Brownian motion, [26, Lem. 2.6] (or [29])
proves the uniqueness of the maximizer for one-indexed processes, but not doubly-
indexed ones.

3.1 Statement of the results

We now prove six different theorems, corresponding to the six possible regions in
the phase diagram presented in Figure 1. We mention that we will use P only when the
coupling is needed; otherwise we will keep the notation P (in particular this will be the
case when the limit of the rescaled log-partition function is non-random).

In this section, we again focus on the case h > 0, but several results hold for a
general h € R: we will highlight when the results are specific to the case h > 0. The
case h < 0 will be discussed separately in Section 4. Note that the case h=0or =0
can be recovered by taking ( = +o0 or 7 = 4+ respectively, while the case of constant
h or 3 can be recovered by taking ( = 0 or 7 = 0 respectively. One can then recover
Theorem 1.2 from Theorems 3.4-3.5-3.7 and 4.2 below.

Theorem 3.3 (Region 1). Assume that (1.4) holds with,@’ >0, h e R and

[e3

v> 5 and (> 1, if ae[3,1)u(1,2],
v>12 and (>3, ifac(0,
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Then (S,)o<n<n has range size of order v/N under PTV,ﬁN,hN (i.e. £ = %) and we have
the following convergence

Nl_l)rg_lw ZR}»ﬁNth = 1 IP-a.S. . (3.2)
Moreover, we have limy—.o [PX 5, 1y — PlTv = 0 P-a.s., where | - |rv is the total

variation distance.

Note that the total variation convergence stated in Theorem 3.3 implies that Sy /v N
converges in distribution to a Brownian motion. This convergence holds IP-almost surely.

Theorem 3.4 (Region 2). Assume that (1.4) holds with 8 > 0, h € R and

la oy < Bazleolozl) L and ae(3,1) U (1,2].

Then (S,)o<n<n has range size of order N® under P} ;- with{ = 525(1—7) € (3,1),
and we have the following convergence

1 . .
m o log 2%, =Wy = @) . N
J\P_r}r(l)o i log ZR gy by = Wa': us,}g)o {Yu,v € (0, +x), in P-probability, (3.3)

where YU(QU) = Yf;@) = B(Xél) +X§2)) — %(u Av+u+v)? is as defined in Theorem 1.2-(1b).
Additionally, for any € > 0 we have

N 1 ~
lim P% 5 50 (‘W(M;, MF) — (U, V(Q))‘ > e) —0, inP-probability,

N—>

where (U®, V@) := argmax, > {YU(QU)} is well-defined thanks to Proposition 3.2.

Let us stress that the case a =2, § = Sy = > 0 and h = 0 corresponds to the case
v =0 and { = +00: we find in that case that the range size exponent is £ = %

Theorem 3.5 (Region 3). Assume that (1.4) holds withﬁ >0, heR and
1< (¢~ A (52) and ae(0,1)0 (1]

Then (S, )o<n<n has range size of order N under P‘}’V’ﬁN’hN (i.e. £ = 1), and we have the
following convergence

1 : ( i
lim ——10g Z% 5,y = Wai= sup (YO} (0.4+x), Pas, (34)

u,v
N—ow Na u,v=0 ’

where YU(SU) = Yf;}g) = B(qul) + Xftz)) — 01y nvtutv>1) IS as defined in Theorem 1.2-(2).
Additionally, for any € > 0 we have

. o r 3) 15(3 A
Jim PR (| (MR ) - (U V) > ) —0, Paas.

where (U®),V®)) := argmax, -, {Ya4 } is well-defined thanks to Proposition 3.2.
Theorem 3.6 (Region 4). Assume that (1.4) holds with 3 > 0, h > 0 and

(7(20171)@(&71)) v((-=l) <y < (7(2'1“)47('171)) A¢ and ace(1,2].

e} 3o

Then (S,,)o<n<n has range size of order N* under PL]DV,BN7hN with§ = %5 (( —~v) € (0,1),
and we have the following convergence

. 1 & 4 Lo s
i e 108 28 oy = W= s {Yu{g} €(0,+%), inP-probability, (3.5)
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where quflv) = Yf,;,}"”(‘l) = B(Xgl) + Xl(f)) — h(u + v). Additionally, for any ¢ > 0 we have
. . 1 _ & o
Jim PS s (‘ﬁ(MN, M) = (U, VD) > ) =0, in P-probability

where (U™, V) := argmax,, >, {Ya } is well-defined thanks to Proposition 3.2.
Theorem 3.7 (Region 5). Assume that (1.4) holds withB >0, h >0 and

»Y>W and _]_<C<%7 lfQE(].,Q],
7>(%)A(g—%l) and —1<(<3, ifac(},1),
7> (155) A (€= %5) and —1<¢<, foe(s).

Then (Sn)o<n<n has range size of order N under P%, 5 , = with ¢ = ¢ e (o, 1), and
we have the following convergence
2

]. o 3 ~ 2/3 o T
ngiloo et log ZN gy hw = —§(h7r) = 3121%){ hr — 2—73} P-a.s. (3.6)

Additionally, for every € > 0, we have

Mw
=
o«\

+ —
0, P el 00

) =0 P-a.s.

Theorem 3.8 (Region 6). Assume that (1.4) holds with 3 > 0, h > 0 and

~v>(¢ and ¢ < —1, if ae(1,2],
v>(—2t and (< -1, if a€(0,1).

Then we have the following convergences

e P oy ((Ral =2) =1, m NClog Z§ gy ny = —2h  P-as. (3.7)

Let us conclude this section with a result that complements Theorems 3.4-3.5 and
Theorem 3.6 in the case ¢ > % It shows that under P%, gn.hy trajectories travel bal-
listically to the closest point between —/N¢ and VN¢ and then to the other one. Let

us introduce some notation to be able to state the result. For u,v > 0 with u # v, let

Ouw = —1ifu < v and o,, = +1 otherwise, let ¢, , = v A v + u + v, and define the
function
Cuw Cunl for0 <t < 2Y
bu,v(t) _ w,v Cu,v = Carv 3.8)
— Oy Cupt + 20y (U A V) for “ t<1,

that goes with constant speed from 0 to the closest point between —u and v and then to
the other one. Now, for € > 0, let us define the event

By (u,v) == { sup

e NfStN (t)’ < 5—:}. (3.9)

We then have the following result.

Proposition 3.9. Assume that, for some £ € (%, 1], for any § > 0 we have

. o 1 - . . -
Jim PS5, (‘ﬁ(MN, M) - (—U, V)‘ > 5) —0, inP-probability (resp. P-a.s.),
(3.10)
withU,V > 0 two random variables such thatU # V a.s. Then, for any € > 0 we have

Nliriloo P sy.nn (By(U,V)) =1, inP-probability (resp. P-a.s.).
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Remark 3.10. An analogous result should also hold in the case ¢ € (0, %) Assume

that (3.10) holds with £ € (0, ). Then we expect that % converges in distribution
(under P, g .hy) towards a random variable X’ with density 7 sin(mx)1[0,1)(x). This result
is easy to obtain for a random walk conditioned to remain inside an interval [-aN¢,bN¢],
but becomes trickier when the range is conditioned to be exactly [—-aN®, bN¢]. We are
not aware of any such result for random walks conditioned on their range, but let us
mention [12] where a closely related question is considered. We therefore chose not to

develop this in the present paper to avoid lengthening it.

3.2 Some comments on the results (case h> 0)

Let us now make some observations on our results.

Comment 1. Our results describe a transition from folded trajectories (£ < 1/2)
to stretched trajectories (£ > 1/2), which is induced by the presence of disorder. Let
us illustrate this in the case « € (1, 2] for simplicity; we refer to the phase diagram of
Figure 1. If By = B > 0and hy = h > 0, that is if v = ( = 0, we find that trajectories are
folded, with range size exponent £ = 1/3. Now, if we keep hy = h > 0 fixed (i.e. ¢=0)
and increase the strength of disorder, that is if we decrease v (taking v < 0), we realize
that we have transitions between the following regimes:

@{) ify > 1:;7”‘ the random walk is folded with range size exponent £ = % (disorder is
not strong enough);

(ii) 1f =2 > v > 3=, then the random walk is still folded, with range size exponent
= < 5 = laa (dlsorder makes the random walk less folded);

(iii) 1f 20" >y > 1_70‘ then the random walk is stretched, with range size exponent

5 <& = 1 <1 (disorder is strong enough to stretch the random walk);

(iv) if ¥ < =2, then the random walk is completely unfolded and has range size

exponent £ = 1.
Analogously, if we keep By = B > ( fixed (i.e. v = 0) and decrease the penalty for the
range, that is if we increase ( (taking ¢ > 0), we have transitions between the following
regimes:

@) if 0< (< O“H, then the random walk is still folded with range size exponent

1o¢= TC 2(;’“ < 1 (disorder plays no role);

(i) if 5

2a +1 < ( < %=, then the random walk is still folded with range size exponent

<¢= 4"‘ < 1 (disorder plays a role);

2a+1

es 1
(iii) 1f“¥ <(<2a o
1/2<§— A’a <

then the random walk is stretched, with range size exponent
< 1 (disorder stretches the random walk);

2a71
(iv) if ¢ > Qaa 1, then the random walk is stretched and has range size exponent
r < ¢ = 2= < 1 (and the penalty for the range is not felt).

Comment 2. Let us now discuss the limiting distributions for the log-partition
function in regions Ro, R3, R4. For simplicity, we will restrict ourselves to the case where
u = 0 in the variational problems (3.3)-(3.4)-(3.5) (which corresponds to considering
the case of a random walk constrained to stay non-negative): the variational problems
become, respectively

WQ := sup {BXU — %1)2}, Wg = B sup {X,}, W4 ;= sup {BXU — iw} ,

v=0 ve[0,1] v=0

EJP 27 (2022), paper 162. https://www.imstat.org/ejp
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with (XU)UZO = (ngl))@O-

a) The variational problem W; is clearly always finite. In the case a = 2, (X})t>0 is
a Brownian motion and it is standard to get that Ws 37|, with
Z ~ N(0,1). In the case a € (0,2), (X¢):=0 is a stable Lévy process and we get that W is
a postitive a-stable random variable (see [9, Ch. VIII], and also [27]).

b) The variational problem W4 is finite only when o > 1: when « € (0, 1), then X,
grows typically as v/ » v as v — o and we therefore have W, = +o0. This explains in
particular why there is no energy-range balance possible if a € (0,1) and why region Ry
no longer exists in that case. If o = 2, (X}):>0 is @ Brownian motion and it is standard to
get that W, is an exponential random variable (here with parameter 2iL/ ). Ifae (1,2),
(Xt)t=0 is a stable Lévy process and (BXt - fzt)tzo is also a Lévy process: the distribution
of its supremum 17\54 has been studied extensively, going back to [2], but the exact
distribution does not appear to be known (we refer to the recent papers [14 28)).

c¢) The variational problem WQ is finite only when a > f: when « € (0, ) then X,
grows typically as v'/* » v? as v — c and we therefore have Wy = +00. Th1s explains in
particular why there is no energy-entropy balance possible if « € (0, %) and why region
R5 no longer exists in that case. In the case «a = 2, that is when (X});>¢ is a standard
Brownian motion, then W4 has appeared in various contexts and its density is known
(its Fourier transform is expressed in terms of Airy function, see for instance [17, 22]).
In the case a e (%, 2), exact asymptotics on the tail of the distribution of W, have been

derived in [30]; we are not aware whether the distribution of W4 has been studied in
more detail.

Comment 3. To keep the paper lighter, we have chosen not to treat the cases of the
boundaries between different regions of the phase diagrams. These boundary regions
do not really hide anything deep: features of both regions should appear in the limit,
and “disorder”, “range” and “entropy” may all compete at the same (exponential) scale.
Let us state the limiting variational problems that one should find in some the most
interesting boundary cases, in the case « € (1, 2] for simplicity (we refer to the phase
diagram of Figure 1):

* Line between regions Ry and Ry: v = w and ¢ € (0, ) Then one should

a(l—y)
2a—1

have ¢ = and

. 1 o A .
NEIEOO N2 log Z% gy .hn = usggo {ﬁ(X(l + X)) — h(u+0v) — flurv+u+ 11)2}
in ]?-probability.

* Line between regions Ry and Rj: v = W% and ¢ € (-1, %) Then one
should have ¢ = 1%( and

1 A A ™
_ (1 | x)_ T
W g 08 2Ry = SO, {BXD + XP) ~hfu+0) OB }

in P-probability where the last term inside the supremum comes from the entropic cost
of “folding” the random walk in the interval [uN¢,vN¢] (see Lemma A.3).

e Line between regions R, and R3: v = —"‘T_l and ¢ > 0. Then one should have £ =1
and

1 A 1 2
W e 108 25y = sup X+ X))~ w(unv ko)

in P—probability where

1 1
s(1+t)log(l+t)+s(1—t)log(l—1t), for te]0,1
w(t) o | BOF DI040+ 51— 1) log(1 =) [0.1] 6D
+oo for t>1,
EJP 27 (2022), paper 162. https://www.imstat.org/ejp
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is the rate function for the large deviations of the simple random walk, see Lemma A.2.
e Line between regions R3 and Ry: v = ( — O‘T_l and ¢ < 0. Then one should have
£ =1and

: 1 @ Ay (1 2 7
Nl—lfiloomngNﬁN’hN = us,}g)o {B(XQ() )+ XP) —h(u+v) —k(uAv+u+t v)}

in IP-probability.

Comment 4. In region Rj5, the disorder term does not appear in the variational
formula. In the case 8 =0 and h > 0 (i.e. v = 0, ( = 0), corresponding to the random
walk penalized by its range in a homogeneous way, the behavior of the random walk
is well understood: it is confined in a segment of length (7T§IA1*%)]\71/‘3 with a random
center, see [33] for the continuum limit of the process. In our model, we have shown that
trajectories are still confined in a segment of length (wgﬁ_%)N /3. However, disorder
should appear in the fluctuations of the log-partition function and in particular we believe
that, depending on the strength Sy of the disorder interaction, the center of this segment
should be determined by the environment so as to maximize the amount of potentials
in that segment; in particular, it should not be random anymore (under P‘fv, B b for
typical realizations of w). This picture should hold in region R; as long as the effect
of disorder is sufficiently strong. More precisely, using the terminology of Section 2,
the “disorder” term is BN§*7, with ¢ = %(1 + (): its effect does not vanish as long
as v < £/a, that is as long as v < %(1 + (). In other words, there should be another
phase transition inside region R5: the random walk is confined in a segment of length
(73 h~5)N€ with £ = (14 ¢), but under P% 5y.ny the location of this segment should be
non-random (i.e. determined by the realization of w) when v < z=(1 + ¢), and random
when v > i(l + () (which includes the case 8 = 0). We leave this as an open problem.

4 Results in the case h < 0

4.1 The phase diagram

In the case h < 0, the same type of “energy” vs. “range” vs. “entropy” heuristics as
in Section 2 can be carried out. The main difference is that the “range” term is now
a reward rather than a penalty and thus plays in the same direction as the “disorder”
term and encourages stretching: the range size exponent will always verify £ > 1/2.
Recall that for a polymer with typical range size N¢, the “range” term is of order N¢—¢,
the “disorder” term is of order N¢/~ and the entropy term is N2¢-1 (since £>1/2), as
in (2.2) and (2.3). In a similar fashion than in Section 2, we find that two cases need to
be considered.

Case I (“disorder”>» “range”). As mentioned in Remark 2.1, regions R;, R, R3 are
unchanged when h < 0: we refer to (2.4)-(2.5)-(2.6) for the determination of £ in these
three regions.

Case II (“disorder” « “range”). The balance between range and entropy is achieved if
€ — ¢ =26 — 1 (with £ € [3,1]), which gives £ = 1 — ¢ when y > Z2=U(@=l) 150, we
have { = 1 when ( <0Oandy > ¢ — %1, and we have { =1/2when ( >1/2and v > 5.

To summarize, we can identify several regimes, according to the values of v, (: there
are five regimes when « € (%, 2], see Figure 4 below; there are four regimes when
a € (0, 1), see Figure 5 below.

4.2 Statement of the results

We only state the results in regions R, and }~%5, since the regions R;, R and R3 are
treated in Section 3.1, see Theorems 3.3, 3.4 and 3.5 (respectively).
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Y Ry
Rlzfzé
Ry: €= 525(1—7) ~
RJZfIl - =W
Riig=1-¢ Rs "
Ry:6=1 2

- ()

Y 7, Ry
Rlzﬁzé
Ry:g=1 7, (0,%32) (5. 45%)
éy&zl—(
Rs:é':l V:C—O‘T*l R3

¢

Figure 5: Phase diagram for i < 0, in the case a € (0,1/2).

Theorem 4.1 (Region §4). Assume that (1.4) holds wjthB >0, h < 0 and

20—-1)—(a—1 1-—
Semlelen) 1o o).

Then (S,,)o<n<n has range size of order N¢ under PR gyny With§ =1—C(Ce€ (1,1), and
we have the following convergence

o ) 1. )
Nli{fl:go mlogZ]\LBN,hN = 5}12 = uSﬂl)lsO{‘hKU 7U) — %(U AN +U+U)2} P-a.s. (41)

Additionally, let us consider, for e > 0, the two events

By = { sup |N_5SltNJ + ﬁt| < 5}, By© = { sup {N—fsltm - th| < 5},
te[0,1] te[0,1]

which corresponds to (S, )o<n<n travelling with roughly constant speed to either —hN¢
or hN¢. Then for any € > 0, we have

lim (P gy (BY) + Phgyny (By)) =1 Peas,

N—+00
and P-a.s.
1{X(1>>X(2)} ify < %7
|R] R
: : @ +,e\ _ exp ,éX(})
151%1 Nl—lgloo PN (BN ) B 5 <1)( ‘hl)A 6 ify = % ’ (4.2)
exp (ﬂX\ftl )Jrexp ('BX\M )
1 ; 1-<
3 ify>=—.
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Before we state the result in region ]3% (which is somehow degenerate), let us state a
result in the case ¢ = 0, that is at the boundary of regions R4 and Rs.

Theorem 4.2 (Boundary [,—R;). Assume that (1.4) holds with 8 > 0, h < 0 and with
(=0,v> —%. Then we have the following convergence

: 1 w L .
Nl_lfﬂoo N 108 Z% gy .hy = 10g (sinh |h[) = usjg)o {|h\(u +v)—k(uArv+u+ u)} P-a.s.,
(4.3)

with x(-) defined in (3.11). Additionally, for e > 0, let us consider the two events

B;\’,’s = { sup |N*1S[tNthanh(|iAL|)t’ < E}, By = { sup |N*IS[tNJ+tanh(\iAL|)t’ < 6},
te[0,1] te[0,1]

which correspond to (S, )o<n<n travelling at roughly constant speed to either tanh(|h|)N
or —tanh(|h|)N. Then for any € > 0, we have

lim (P gy (BY) + Phsyny (By)) =1 Peas,

N—+w0
and P-a.s.
i 1
X =X ) i =a
: : @ +,e exp (ﬁX(l) - )
lim lim P% 4.5 (B ' ) = tanh || ifry— L (4.4)
el0 N—>+w Bshn N (BX(I) )+ ([f;X(2) ) iy = PR
exp tanh |R|/) T EXP tanh |A|
1 . 1

To conclude, we state the result in region ]§5.
Theorem 4.3 (Region §5).Assume that (1.4) holds with ﬁ > 0, h < 0 and ¢ <0,
v >(— 21 Then

. -1 w 7
NlinijC 108 Z% gy ny = |Nl  P-as.

Additionally, for € > 0, let us consider the two events

By* 22{ sup |[N71S) N — 1 <€}7 By~ 12{ sup [N ™'Spn) + | g“:}’
te[0,1] te[0,1]

which corresponds to (Sy)o<n<n travelling with roughly constant speed to either N
or —N. Then, for any € > 0, we have

lim (P50 (BR7) + Plsyn (BYS)) =1 Paas,

N+
and P-a.s.
: 1
1{X§1)>X£2)} ify <z,
. e

lim lim P2 Bte) = exp (Ax (V) e 1 (4.5)

el0 N—>+o0 W (B) exp (BXD) +exp (BX ) =

% ify > i .

Ifae (0,1) orifae (1,2] and v > ¢, then we can upgrade the result: we have

S (PR (Sy = N) + Sy (Sv=—N)) =1 P-as.  (46)

and (4.5) holds with {Sy = N} in place ofB;\’,’E.
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4.3 Further comments on the results in the case / < 0

Comment 5. Notice that in Theorems 4.1, 4.2 and 4.3, the disorder term disappears
in the limiting variational problems and the displacement of Sy under Pf\, Bn.hy 1S given
by a law of large number, possibly with a random direction. Analogously to Comment 4
above, disorder should also appear in the fluctuations of the log-partition function and
in the second order term for the displacement of Sy. For simplicity, let us comment
further the case of the boundary }~%4—I§5 (that is Theorem 4.2), i.e. consider the case
where h < 0 is fixed (( = 0) and By = SN ~7 with v > 1% In that case, the polymer
has a (non-random) velocity v, := tanh |h| either to the positive side or to the negative
side: assume for simplicity that Xq(,i) > Xgi), so that %SN converges to v (and not —uvy,).
Randomness should then have the effect of stretching further (or back) the polymer: let
us present some heuristic explanation on what one should expect. If we assume that
My = —uN” and M]’\L, = vp N + v NP, for some p € (%, 1) and v € R, u > 0, then, compared
to the case Sy = v, N:

(i) there is an additional range reward |fz|(u + v)NP;
(ii) there is an additional entropic cost £’(v;)(2u + v)N? + 1" (v,)(2u + v)2 N2~

(iii) there is an energy gain of approximately B(Xf}) + XZSQ))N§*7, with X, X the
scaling limits of the fields (wy)z<0, (Wy, N+ )zez On a scale N”.

In particular, there are some cancellations between the range reward and the addi-
tional entropic cost: one gets —x’ (v, )ulN* — ££" (v,) (2u+v)> N2, One should therefore
take u = 0: if u > 0 the term —«'(v)uN” cannot be compensated by B)?&l)Ng_V, because
v > 1_7"‘ Therefore, for the entropy-energy balance, one has to compare %n”(vh)va 2p—1
with X NE-7.

All together, this suggests that in the case v < % (which is compatible with v > 177"
only for « € (1,2]) it is possible to take p := (;;z)la € (1,1), so that N?7~1 =< N&~7. Then,
under P%, 5, . one should have My = o(N?) and My, = vy N — (14 0(1))VN”, where V
is the maximizer of the variational problem

sup {BA)VQ()Q) — %n"(vh)vz} )
veR
On the other hand, when v > i then there is no further stretching of the polymer by
the disorder: under P%,ﬁmhw we should have Sy = vy N + O(\/N) as it is the case when
Bn = 0. This goes beyond the scope of this article and we leave this as an open problem.
Comment 6. There is some room for improvement in Theorem 4.3, when « € (1, 2]
and (= vy>(— QT*I Indeed, we then have that %SN goes to *+1, but as in Comment 5
above, disorder should appear in the fluctuations of the log-partition function and in
the second order term for the displacement of Sy. Let us assume that we are on the
event where ﬁSN goes to +1 (instead of —1) and let us present a heuristic explanation
on what one should expect. If we assume that My = —uN” and M; = N —vN?, for
some p € (0,1) and u, v > 0 with 2u < v (because of the constraint M]J\; —2My < N), then
compared to the case Sy = N:

(i) there is a diminution of the range reward by |h|(v — u)N*~¢;

(ii) there is a reduction of the entropic cost by roughly N”log N, coming from the

combinatorial term ( N_AC[ N,,) — this is negligible compared to the range term since
¢ <0;
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(iii) there is an energy gain of approximately B()V(ﬁz) — )v(él))Nﬁﬂ, where Xf;l), )@52) are
the scaling limits of (w;)z<0, (WN—z)z>0 ON @ scale N”.

This suggests that for a € (1,2] and ¢ > v > ¢ — %=1, one should take p = -2+ ({—7) €
(0,1), so that NP=¢ = N&~7. Note that one recovers p = 0if v = ( (to be compared
with (4.6)) and p = 1 if v = ( — QT” (i.e. on the boundary of Regions R5 — R3, see
Figure 4). Additionally, under P, y.hy ODE should have My = —(1 + o(1))UN* and
My, = N — (1+0(1))VN*, where (U, V) are the maximizers of the variational problem

sup {B (Xl(f) - Xgl)) —|h|(v - u)} .

0<2u<wv

As for Comment 5, we leave this as an open problem.

4.4 Organisation of the proof and useful notation

Let us give an overview of how the rest of the paper is organized:

¢ In Section 5, we start with the proof of Proposition 3.9, then we prove Theorems 3.3
to 3.8 (in that order), i.e. we prove the phase diagram of Regions R; to Rg; note that
regions R4 to Rg are specific to the case h > 0. The results in Regions Ry, R4 and Rs
involve competitions between “energy”, “range” or “entropy” (but all have the same
scheme of proof), while Regions R;, R3 and Rg are extreme cases where only one factor
is significant and hence are much simpler. Let us stress here that the statements on
range size of trajectories (S, )o<n<y under P‘](,’ Bn.hy are direct consequences of the
convergence of (M, M) under P, 5 , , so we do not write their proof explicitly.

e In Section 6, we prove the remaining Theorems 4.1 to 4.3, i.e. we complete the
phase diagram in the case h < 0. Here, the main contribution to the partition function
comes from the range term and finding the limit of the rescaled log-partition function is
not difficult. The harder part consists in showing that disorder plays a role in deciding
whether the random walk moves to the positive or to the negative side: this is done by a
careful decomposition of the partition function.

* In Appendix A, we regroup several technical estimates: large deviations for the
range of the random walk in Section A.1, deviation for sums of w, (i.e. the proof of
Lemma 4.4 below) in Section A.2, the proof of Proposition 3.2 in Section A.3 and some
technical estimate on cadlag path in Section A.4.

Some further notation and a useful lemma In the rest of the paper, to lighten
notation, we will drop the dependence on 3y and hy: we write P{; instead of PT\L Bn b
and Zy instead of Z 5 ;.- We also use the convenient notation Z§, (£) for the partition
function restricted to trajectories (S,,),>0 in E: more precisely,

ZN(E) = E[QXP ( 2 (BNwg — hN)l{xERN})lE] . (4.7)
T€Z

This way, we have that P4 (E) = Z¥(E)/Z%;. A
For any j > 0 let us recall the notation Zj+ = > _,we and Y= Z;ifj w,, intro-
duced in (1.2) (with the convention that >¥; = 0). We then let

b

S ¥

= sup |2;|+Osu[<) =571 (4.8)

o< <t <j<L

Recall that we have set Mf\; ‘= maXg<n<N On = 0 and My := minggn<n S < 0 the
right-most and left-most points of the random walk after N steps; we also denote

Mj; = max |S,| = max(My,—My).

0<n<N

EJP 27 (2022), paper 162. https://www.imstat.org/ejp
Page 19/45


https://doi.org/10.1214/22-EJP862
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

1D polymers in random environment

With these notation, notice that we have }, ., w, = »t M + X7 My We now state the
following (standard) lemma, that we prove in Appendix A 2 for completeness

Lemma 4.4. Let X} defined as in (4.8). Then, under Assumption 1 (a € (0,1) U (1,2]),
there exists a constant c € (1, +o0) such that for any T > 0 and any ¢ we have

P(X;>T)<clT® (4.9)
Also, P-a.s. there is a constant C = C(w) such that £} < C¢'/*(log, ¢)?® for all { > 1

Finally, while we keep the distinction between IP and P, we will only write w (and not
w) in order to lighten the notation,

5 Proof of the main results

5.1 Ballisticity of trajectories: proof of Proposition 3.9

Let € > 0 be fixed. For § > 0, let us define (recall we assume & > %)

1 _
A% = {‘M(MN,M;) — (—u,V)] < 5}.

Then, by assumption, we have that for any § > 0, limy_, 1 o Zﬁz(f?v) =1lin P-probability
N
(resp. P-a.s.), so the proof will be complete if we show that
7% (A%, B (U, V)° .
lim 8 (AX By, V)%) =0, P-a.s. (5.1)

N>+ A (A?V)

where we refer to (3.9) for the definition of BS, (U, V).
To do so, we decompose the partition function as follows (here and in the rest of the
paper, we often omit integer parts for simplicity):

[(z,y)—NEWU,V)|<ENE
- 2, NN DD (M = g, My =y, B (U, V)°)

[(z,y)—NEU,V)|<INE
Now, for § > 0 small enough, we have thanks to (A.5) (recall 4,V > 0 with &/ # V) that
P(My = —x, M = y, By (U, V)°) < e N 'P(My = —2, M = ) (5.2)

uniformly for x, y such that |(x,y) — N*(U, V)| < 6N¢, for some constant ¢ = ¢s5. (U, V) > 0.
Using (5.2), we obtain that

Z55 (AN, By (U, V)°)

<e eV BN (55 +2) - hn @+ DP (M = —o, MY, = )
|(z,y)—NEWU,V)|<SNE
< et 25 (M = —o, M =y) < =V 25 (AR,
[(z,y)—NEWU,V)|<EINE
which shows (5.1). -

5.2 Region R1: Proof of Theorem 3.3

Recall that in Region R; we have

'y>i and (> 3, if aeli,1)u(1,2],
y>1=2 and (>3, if ae(0,i).

Let us note that we always have v > -, since =2 > ;L when o < 1/2.

EJP 27 (2022), paper 162. https://www.imstat.org/ejp
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Convergence of the partition function

Fix A (large) and split the partition function in the following way

7% = 7% (M < AVN) + 2% (M% > AVN). (5.3)

Upper bound Recalling the definition (4.7) of the restricted partition function, one
easily sees that

7% (M3 < AVN) <exp (,BN—’Yzjlﬁ + 2A|h|INE— ) P (M} < AVN)
) . (5.4)
< exp <6N*“’E:m + 2A|h|Nr<)

Notice that Nz—¢ goes to 0 as N — oo, since ( > % Also, by Lemma 4.4, since v > i we
get that N _72: i goes to 0 almost surely. We therefore get that limsup_,,, Z5 (M5 <
AVN) <1 P-as.

It remains to show that the second term in (5.3) is also small. We split the partition
function as

10%‘2(%\/ﬁ)
Zi(Mi > AVN) < ) zg (M e (21 AVN, 2" AVN])
k=1
10%2(%”) . R L
Mo exp (5N—72§kAW+2k+1A\h|N§— )P(Mj‘\‘, > 2" 1AVN).
k=1

N

Then, it is standard to get that P(M} > z) < 2exp(—%) forany x > 0and N € N
(thanks to Lévy’s inequality and a standard Chernov bound), so that

P (M} > 271 AVN) < 2exp (—2277347) . (5.5)

Hence, choosing N large enough so that [2|N2—¢ < 2754 and in particular 28+ A|h| N2~
< 227442 we get P-a.s.

1082(%m) . L
z% (Mj\‘, > A\/N) < Y 2ew (C(ﬁ,A,w)zk/an—mogz N)2/a—22k—4A2) . (5.6)
k=1
where we also used Lemma 4.4 to get an almost sure bound on X7, | v Now, note that
uniformly for & in the sum,
2%/ N'7a =7 (log, N) N7 ifae[l,2
2 2(k0g2 ) < (IOgQ N)Q/a % 21720‘ ) 1 « [27 1]7
2 A== Na—1= ifae(0,3).

This (uniform) upper bound goes to 0 as N — o, because v > 5 if & > £ and v > =2 if
ae(0,3).
All together, we get that IP-a.s., for NV large enough,

IOgQ(%\/ﬁ)
Zi(ME > AVN) < 3, 2exp (- 2%704%) < Cexp(-4%/8).
k=1

We have therefore proven that for any A > 0, limsupy_,,, 2% <1+ Ce=A°/8_ Since A is

arbitrary, this gives that limsupy_,, 2% < 1.
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Lower bound For the lower bound, we use that
7% > 79(M% < AVN) = exp ( BNTIEE 2A\h|N%—<) P (M}‘\‘, < A\/N) . (5.7)

As above, we get that BN‘VZ:W + 2A\E|N%‘< goes to 0 almost surely. Using that

P(M# < AVN) = 1 —2e=4°/2, we therefore get that lim infy ., Z% > 1 — 2¢~47/2 P-a.s.
Since A is arbitrary, this gives liminfy_,,, Z% > 1 PP-a.s., which concludes the proof. O

Convergence in total variation distance

We show that for any ¢ € (0, §),

limsupsup [P{(B) — P(B)| <5¢  P-as., (5.8)
N—owo B
where B ranges over all P-measurable sets. This implies the convergence from P, to P
in total variation distance, since ¢ is arbitrary.
Let Cn. := {w: |[Z§ — 1| < }: we have proven above that P-a.s. limy_ 1cy, = 1.
Note that P4 (B) = Z%(B)/Z%,. Hence, on the event Cy ., we have

1 5 1
— < PX¥ -P
1+¢ 1+5< ~(B) (B) <

" €
T (Z8(B) = P(B) + 1

where we also used that P(B) < 1. Therefore, to prove (5.8), we need to show that
limsupy_,o, supg | Z%(B) — P(B)| < ¢,P-a.s.. For A > 0, we have that

(2%(B) - P(B)) —

122.(B) — P(B)| < ’Zj(,(B A {M} < AVN}) = P(B ~ {M} < A\/JV})‘
+ 2% (M} > AVN) + P(M% > AVN).

As seen above, we have limsupy_,., Z% (M} > AVN) < Ce~4"/8 almost surely, and also
P(My > A\/N) < 2¢=4’/2; these two terms can be made arbitrarily small by taking A
large. Hence it is enough to show that for any A > 0

limsupsup |25 (B n (M, < AVNY) ~P(B o (M3 < AVNY| =0 Pas.
Analogously to (5.4) and (5.7) we have, for any measurable B
7% (B~ {M}; < AVN}) < exp (ﬁN TSE ot 2A|h\Nr<) P (B~ {M} < AVN}),
7% (B~ {M} < AVN}) > exp( BNTISE o~ 2A|hINE )P(Bm (M} < AVNY),
s0 |Z4(B n {M} < AVN}) = P(Bn {M} < AV/N})|is bounded by

‘eXp (5]\/ ¥ \/»+2A\h|N§_C)—1‘ ‘exp( ﬁN Ty e 2A|h|N5_C)

where we also bounded P(B n {M3# < Av/N}) by 1. Since BN“YE:W +2A|h|N2—¢ goes
to 0 almost surely (see Lemma 4.4), this concludes the proof. O

5.3 Region R2: proof of Theorem 3.4

Recall that in Region R; we have

25—1:2—7>5—§ with a € (3,1) U (1,2],

and that this region does not exist when « < 1/2. We prove that the range size is of
order N¢ with = -2 (1—1).
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Convergence of the rescaled log-partition function
We fix some A large and we split the partition function as
Z% = Z% (M} < AN®) + Z (Mf; > AN¢). (5.9)

The proof of the convergence is divided into three steps: (1) we show that after taking
logarithm and dividing by N?¢~1, the first term converges to some random variable Wj'
as N — o0; (2) we show that the second term is small compared to the first one; (3) we
let A — oo and we observe that Wj' converges to Ws.

Step 1 We prove the following lemma.

Lemma 5.1. In Region R, we have that P-a.s., for any Ae NN,

1 a
& WA . o 1 2
Jim ey log Z3% (M7 < AN®) = W3 = wﬁ&] {,B(X,g )+ X)) _I(u,v)} ,

with (Xq(,l),Xq(f))u’v)O from Notation 1.1 and I(u,v) := 3(u A v+ u+ v)2.

Proof. Let us fix § > 0 and write

LA/5] |A/5)
Z5S = 25 (MG < ANS) = 30 Z% (ki k2, 8) (5.10)
kl Ok}g 0

where we define
2% (k1 ks, 8) := 2% (M]; € (—(ky + 1)NS, —kySNE], Mib € [ko0 NS, (s + 1)5N€)) (5.11)

(recall My := minp<,<n Sy, and My, := maxo<n<n Sy). Since there are at most (A/5)?
terms in the sum, we easily get that

max log Z%(k1, ko, ) < log Zi'S < 2log(?) max log Z% (k1, ke,0). (5.12)

0<ky ka<4 0<ky ka<4

Upper bound. An upper bound on log Z% (k1, k2, 0) is given by

ﬂN( k1 NE| + 2[2251\,5]) + BNRKISV(]{Il(S, kQ(S) + ‘iL|(/€1 + k2 + 2)5N£*C +P§v(k15, k2§),

where for u,v > 0 we defined

5 o -y +_ v+
Biy(u,v) = UNS<jL(ur s NS -1 ‘Ej EWV&J’ * VNS (0t H)NE~1 ‘E] Eloney]s (5:13)
and
P (u, ) = 1ogP(M]; e (= (u+O)NE, —uN¢], M} € [uN§, (v + 5)N5)>. (5.14)

Let us write u = k1,v = kod and set Us = Us(A) = {0,4,26,...,A}: using that
26 —1=¢&/a— v, we get that

IOgZ]u\)](kth,(S) Sar—& — 5
T e I il {mv : (ELuNSJ + 5 ye)) + BN E Ry (u,0)
+||(u+ v+ 20)NE=O=(26=D) | N—(2¢- 1>pN(u,v)}.
(5.15)
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It is easy to see that the third term in the maximum goes to 0 uniformly in u, v, since u+v+
26 < 3A and since £ —( < 26 —1 in Region R,. Note that thanks to the coupling introduced
in Section 1.2 we have that (N_g/aE@NsJ)ue[o,AwLé] and (N_f/azlt,Ngj)tze[O,A+6] converge

IP-a.s. in the Skorokhod topology to two independent Lévy processes (Xfp)ue[o,AM] and

(Xél))ve[O’AM] (of Notation 1.1).
Note also that thanks to Lemma A.1 (see (A.2)) we have

1
A}im N=CE Ny (u,0,6) = —I(u,v), with I(u,v) = i(u AvHu+v)?, uv=0.
—0
Since Uy is a finite set, by (1.10) in [32], the limiting Lévy processes X( ) and X( )
are PP-a.s. continuous at every point in Us. Hence, thanks to Lemma A.5, IP-a.s., for any
€ > 0 there is a random integer Ny = Ny(¢, d,w), such that for all N > Ny,
N_gR‘ISV(u,v) <2+  sup |X1(f) - XP|+  sup \Xé,l) —x(M,

U
u<u'<u+d+e v<v'<v+d+e

_&
N7%50 e

uniformly for all u,v € Us. Now letting NV — o0 and then ¢ — 0, we readily have that the
limsup as N — +oo of the right-hand side of (5.15) is IP-a.s. smaller than

- x?Pl<e and ]N_’ZUNgj—Xél)‘ég

Wi = max {B(XI(LQ) + XY+ 3 sup |X1S2 - XP|+5 sup |X(1) XM - I(u, v)}
u,veUs 0<t<d 0<t<
(5.16)

Lower bound. On the other hand, a lower bound on log Z (k1, k2, d) is given by

B (zl—,ﬁmgJ + s ) — BN R (K10, kad) — |h| (ke + k1 + 2)ONE + pd (10, kad).
Thus, setting u = k10,v = ko6 and Us = {0,, ..., A} as above, we obtain

log Z% (k1, k2, 9) s & Srr £ 5
o SRS = ma {ONTE (S + ) — AN R 0)

— B+ v+ 26) NN L N (0 |
We get as above that the liminf as N — +o0 of the right-hand side is P-a.s. larger than

17\//54’5 := max {B(Xq(f) + Xél)) —B sup |X152-2t - X(2 | — B sup |X(1) X51)| — I(u, v)}
u,veUs 0<t<s 0<t<s
(5.17)

Conclusion. Summarizing, we have P-a.s. the upper bound (5.16) and the lower
<

bound (5.17) for limsupy N~ ¢~V log Z%'S and liminfy N~(¢~V log Z4'S respectively.
Notice that, since trajectories of Lévy processes are a.s. cad-lag (continuous in the case
of Brownian motion), we have that

limw/f’é = lirnl7\/\2A"S = sup {B(X(2 + Xy — I(u, v)},
510 510 u,ve[0,A]

which is exactly W4'. O

Step 2 Next, we prove the following result.

Lemma 5.2. In Region R, there is some Ay > 0 and some constant C = CB such that,
forall A > Ag, forallN > 1

IP<N21§ e T 108 ZN (MN>AN5) _1) < CA 20
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Since a > 1/2 in Region Ry, this proves that for any ¢ > 0 we can choose A > 0 such that
e log Z% (M} > AN®) < —1 with P-probability larger than 1 — e. Therefore, thanks
to Lemma 5.1 and because W§4 > 0 (by taking © = 0 = v), one can choose A such that
the second term in (5.9) is negligible compared to the first one in ]P-probability.

Proof of Lemma 5.2. Let us write
o8]
757 = Zy (M} > AN®) = > Z§ e (2FTANE, 2FANT])
k=1
so that

0
237 < Y exp (BNTISE e + [2HANSC) P(MF > 287 ANS)

Using that P (M}, > 2871 AN¢) < 2exp (—2247342N%~1), we get by subadditivity

o)
_ 1 _
P (Z]“\’,’> S N 1) < Z (2exp <5N TSE e _ 2k—4 42 N2 1) e N2 1)7
k=1

where we have used the fact that 25+1|h|AN$—¢ < 22k-4 A2 N%-1 for large enough A4,
uniformly in k£, N > 1 (using that we have £ — { < 2§ — 1 in Region Ry). Therefore,
provided that A is sufficiently large, recalling that v + 2§ — 1 = £{/a, we end up with

0 0
P (Zju\,v[,> > e—N2£—1) < Z P (BZSkANE > 22k—5A2N§/a> < Z CB()¢2(1—2()¢)l€141—2()47
k=1 k=1

where we have used Lemma 4.4 for the last inequality. Since o > 1/2, this concludes the
proof of Lemma 5.2. O

Remark 5.3. If we want to upgrade our convergence in IAP-probability to a P-a.s. conver-
gence, we would need to upgrade Lemma 5.2 to the following:

lim IP(hmsule log Z% (M3 >AN5) ) =0.

A—0 N>

With the same proof as above, we would need to bound

0]
lim P( sup (297N ) >1) < lim Y P( sup (N-¢/oxs > .02k 42
No—0 <N>Eg( ) No—o0 1;1 NZEO( arane) = €3

The proof would be complete if one could exchange the limlt and the sum smce we
have limsupy_,, NV /O‘E;‘MNS 3XJ. , with X7 = supgc.<; |X | + SUPp<sct |X \) the
continuous process analogous to X*, see e.g. Lemma 2.23 in [24, Ch. VI]. But one needs
to apply dominated convergence, that is control the tail of sup s v, (N ¢/ X% ane); for
that one would need a better control of the convergence in the coupling. Indeed, a
sufficient condition to obtain the P-a.s. convergence is the following: there is some

e <2— L such that IP-a.s. there exists a constant C/(w) such that

]svuplN oy o < C(w)tX}, uniformlyint > 1.
>

The important part in this condition is that the constant C'(w) is uniform on all scales
t € [2F A, 281 A]. For instance, this condition is verified if the coupling is exact, that is if

the w;’s are a-stable, in which case we can set w(N) Nf/a(X((zll)N P XZ(N) ¢ fori=0
(and analogously for i < 0).
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Step 3 Let us note that, by monotonicity in A, we have that W, = limaye Wit is
well-defined (possibly infinite) and non-negative. We prove the following lemma:
Lemma 5.4. If o € (3, 2], we have that W, := supuw?O{B(Xf,l) + Xff)) — I(u,v)} is P-a.s.
positive and finite.

Combined with Lemmas 5.1-5.2, this readily proves that N~(%~1 Jog Z%; converges
almost surely to W, as N — o0.

Proof. To show that W, > 0 almost surely, notice that taking © = 0 we have

Wy = sup {BXSD — %1}2}.

v=0

Then, almost surely, we can find some sequence v,, | 0 such that Xq(,i) > v,l/a for all n
(see e.g. [1, Th. 2.1]): we get that W, > supn>O{Bv,1/a — 3v2} > 0'since a > 1/2.
To show that W, < + a.s., notice that I(u,v) = (u A v +u+v)? > 2 (u? +v?): we

therefore get that

Wy < sup {BX (2 — Lu?} + sup {Bx{ — 12},

u=0

Let us consider the second term and show that it is a.s. finite (the first term is identical).
For any ¢ > 0, a.s. Xél) < v(1+9)/a for v large enough, see e.g. [31, Sec. 3]. Hence
Bx{M — 30?2 < poli+e)/e — 142 < 0 for all v large enough, provided that (1 + ¢)/a < 2,
which concludes the proof. O

Convergence of (M, M)

Let us define, fore,&’ € (0,1)

U = {(wo)e Re)* s (B + X))~ I(s,0)} = Wy — '},
(s,t)€Be (u,v)

where B.(u,v) is the closed ball of center (u,v) and of radius ¢ > 0. Let us observe
that U;° is a.s. bounded: we know that a.s. the supremum outside a compact set
[-A(w),0] x [0, A(w)] is smaller than —1 < W, — €', see Lemma 5.4. Moreover, by

Lemma 5.4 we can choose ¢’ such that W, — &’ > 0. )
We now prove that for any ¢, ¢’ € (0,1), limy_o PY (e (—My, M) € Us®) = 1 in
IP-probability. To simplify the notation, we denote the event {se(—My, My) ¢ Us ’E/} by

ff; We have
log PTV(A;’/;) = log Z}‘\’,(Ai’,;) —log Z} .

From what we showed above, we have that N~(%-1 Jog Z% converges in IF’-probability
to Ws, so the proof will be complete if we show that N~(¢=1) log Z% ( ?VE;) < W, with
P-probability close to 1. Thanks to Lemma 5.2 we only need to estimate Z (M o<
ANE; ?f;) For any § > 0, we perform a similar decomposition as in (5.10) to get
, , [A/5] 1 A/S] ,
ZS(ANR) = 25 (MG S ANSARS) = D) D) Z5(ka ko 05 AR,

k1=0 ko=0

where we defined Z% (k, k2, 6; Afvsé) as

7% (M]; € (— (k1 + 1)6NE, —ky 6NE], M € [ka0 NS, (ks + 1)6N5);A§\’,f;> .

EJP 27 (2022), paper 162. https://www.imstat.org/ejp
Page 26/45


https://doi.org/10.1214/22-EJP862
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

1D polymers in random environment

By definition of A%, we get that

w e,e A 2 w
ZN,S( ]\’772) < (5) max ,ZN(k17k2a6)7
(kl,k‘g)EU;';
where U5 = {(k1,ks) : ki8,k28 € Us, [k1d, (ki + 1)8) x [kad, (k2 + 1)0) ¢ US® }, with

Us ={0,6,26,...,A}; by convention the maximum is 0 if UE_’;' is empty.
Now, by the same argument as in Step 1, we have that

lim sup hm sup

nst N25 - log Z3S (A?VE;) < sup {B(ijl) + X&) - I(u,v)} <W, —¢€,

(u,v)¢l/{2€’sl
by definition of 245 ". This concludes the proof that limy_,., P% (A ) 0 P-a.s.

Let us now observe that thanks to Proposition 3.2, the maximiser (L{ @) V) of W, is
U5 < By (UP, V), Therefore, for any ¢ > 0 there is a.s.

some ¢’ > 0 such that /;° is included in Bg.(U(?),V(?)), which concludes the proof. [

P-a.s. unique: hence, (.-,

5.4 Region R3: proof of Theorem 3.5
Recall that in Region R3; we have

y<(—21 and y<2, withae(0,1)u(1,2].

We prove that the range size is of order V.

Convergence of the rescaled log-partition function

First of all, notice that we can reduce to the case Ay = 0. Indeed, we have the bounds

7|hN‘N IhN‘N'

w w w
ZN B hy=0 X € S ZNpyhn S ZN By hy=0 X €

Since hy = AN~¢ with ¢ > v + 2=1, we have that limy_ N=G="|hy|N = 0. In the
following, we therefore focus on the convergence of N-G=) log Z% 5, hy—o- We write
for simplicity Z5, for Z 5. 1, —o-

For any § > 0, we can write

[1/5] 1/6]

Zi = . D Zi(ka ks, 6)

k1=0ko=0

with Z% (k1, k2,6) as in (5.11) with € = 1. Since there are at most N steps for the random
walk, we can have My < —k;0N and Mﬁ > koON only if 6(k1 A ko + k1 + ko) < 1. Hence,
writing u = k10, v = k26, and Us = {0, 6,26, ...,1}, we have

max log 73 (%, %,0) <logZy < —2logd + max log ZN (%, %,9).

u,veU s o w,veU s
uArvtutv<l uAvt+ut+v<l

Upper bound. We have

max N7 @ log Z%(%, % §) < max N-ax-
u,veU§ g N(‘S 700 ) = u,veEU§ ﬁ l NJ
uArvtutv<l uArvtut+v<l

+ N5y + N5 R (u, v)) ,

where R}S\,(u, v) is as in (5.13) with ¢ = 1. As in the previous section, we get that P-a.s.
the lim sup of the right-hand side is bounded above by

ZE HXP + XW) + 5 2 _xO| 44 L ya
W= mex {5()(75’ '+ XV)+ B sup |X’L(L+t - XP+ 8 sup [X,Y, — X{ ))|}
u/\’U,+u+§JS1 0<t<d 0<t<s
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Lower bound. We have

1
max N alogZ%(%, %6
Bt g Zn(5:5:9)
uArvt+ut+v<l

> max {5( Sun] +N‘éZL+UNJ) ~ N7 Ry (u,v) _N1+v—élog2},
wAvtutv<l

where we used that any non-empty event of (S, )o<n,<n has probability at least 2=V, Now,
since v < ¢ + é —land vy < é — 1, the last two terms in the maximum go to 0: we

therefore get that P-a.s. the lim inf of the right-hand side is bounded below by

W= max AKX+ X() =B sup XD, - X5 sup X[, - X (]},
wnvtutaet 0<t<s o<t<

Conclusion. We can conclude in the same manner as in the proof of Lemma 5.1:
letting N — o0 and then 6 | 0, we get that N7~ = log Z% converges P-a.s. to

lim W¢ = lim W3 = {AX(2)+X(1)},
ImWs = lmWs = sup B(X, o)

uAvtutvs<l

where the limit holds thanks to the a.s. cadlag property of trajectories of the Lévy process
(or continuity in the Brownian motion case). This is exactly the variational problem W5
defined in Theorem 3.5. Together with the (trivial) fact that W5 € (0,+0) a.s., this
concludes the proof of (3.4). O

Convergence of (My, My,)

The proof follows the same strategy as in Region R,, so we only give a sketch. Let us
define the counterpart of U5 in Region R3 by

u35=8/ ={(u,v)e(]R+)2 TuAvF+u+v<], sup {B(Xt(l)—i—Xs(z))}ZWg—s’}.
5,t20,(s,t)eBe (u,v)
sAat+s+t<1l

Then we denote the event {+(— MN, My) ¢ Us < } by A5 By the same procedure as

in Region R, (here we can use P-a.s. convergences, since we do not have to restrict
trajectories), we can first show that PP-a.s.

1 1
hmsupN log Z% ( N3)<W3 and so limsup —— logP“’( N3)<0.

N—w o N—w0 o

We then deduce, as done in Region R, that P-a.s. limy P (% (—My, My) € L{§’6/) =1.
By uniqueness of the maximizer (U(S), V(S)) of W5 (Propposition 3.2), we get that if & is
small enough, then U5 ° is contained in Bg. (U4, V), which completes the proof. O

5.5 Region R4: proof of Theorem 3.6

We prove that in Region R, the range size is of order N¢ with £ = —2<(¢ —v) € (0,1).
We take h > 0, and recall that in this region we have

(7(20‘71)5;(0‘71)) v (C — O‘(—:l) << (7(2a+1)§;(a71)) AC¢, withae (1,2],

and that £ — ( = §/a — v > |2£ — 1]. Recall also that region R4 does not exist if o < 1.
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Convergence of the rescaled log-partition function

For any A > 0, we first write
Z% = Z% (Mf < AN®) + 2% (M% > ANY). (5.18)

The strategy is similar to that in Region R, and we use analogous notation. We proceed
in three steps: (1) after taking logarithm and dividing by N¢~¢, we show that the first
term converges to some limit Wf when N — o0; (2) we show that the second term
in (5.18) is small compared to the first one; (3) we show that W;* — W, as A — o, with
Wiy € (0, +00) almost surely.

Step 1 We prove the following lemma.
Lemma 5.5. In Region R4, we have that ]f’—a.s., forany Ae NN,

1 . .
li 1 Z < ANS) = = XU 4+ X3 — h(u+
oz log N( ) wil %Uselg)’ ]{6( N W) (uw v)} ,

with (Xél),Xl(f))u,v;O from Notation 1.1.

Proof. For fixed § > 0, we write (recall the notation (5.11))

LA/5] |A/5]
Z]“-\’[:< - ZR’[ (M]’X\‘f < ANé Z Z ZN k17k27
k1=0 k2=0

Since the number of summands above is finite, we can write

max logZN(kl,kg,é)glogZ;f/\ 21og(?) max log Z% (k1, k2,0) .
0<kq,ka< 0<k1,k2<é

Upper bound. We write u = k16,v = ko6 and set Us = {0,0,20, ..., A}. Recalling that
& —(=¢/a—, we get that

1
0o NE< log Z (1, k2, 0)

< max {BN a(Z [une T2 lva ) + BN~ c*RN(u v) — h(v +u) + N $pd (u, v)}

u,veUs

Then, notice that limy_,q N~ Cp( )( v) = 0, thanks to Lemmas A.1 and A.3, since we
have £ — ¢ > |2¢ — 1]|. Therefore, similarly to the previous sections, P-a.s. the lim sup of
right-hand side is bounded above by

Wf‘s = max {ﬁ(X(Q) + XM+ sup |X( XP| + sup |X(1 X§1)|) —ﬁ(v—&-u)}.
u,veUs te[0,5] te[0,6]

Lower bound. On the other hand, we bound log Z%;(k1, k2, 0) from below by

B (Ssane) + Slhaswe) — BN R (k16 5a0) — (s + by + 25N — i (ks ).

Thus, setting u = k10,v = k3 and Us = {0, 6, ..., A} as above, we obtain

1
0o, NE< log Z (K1, k2, 0)

> max {AN7E (3]

A e R -
u,veUs [uN¢] +E[ZN£J) 75]\7 QR?V(U’U) 7h(u+v+25) 7N£ CP?\/(“H”)}
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Hence, similarly to what is done above, P-a.s. the lim inf of the right-hand side is bounded
below by

17\//;4’5 i= max {B(X&Q)—I—Xf,l)— sup |X£2+)t_X£2)| sup |X +t X(1)|) (v+u+25)}
u,veUs te[0,5] te[0,4]

Conclusion. The terms W\f"‘s, W/f"; are almost sure upper and lower bound for the
limsup and lim inf of N¢~¢log Z'S. By the a.s. cad-lag property of trajectories of Lévy
processes (or continuity in the Brownian motion case), we have

limV/\Zf"(S = limWf’5 = sup {B (Xﬁz) + X£1)> — h(v + u)},
510 510 w,ve[0,A]

which is exactly Wf. The convergence in Lemma 5.5 is therefore achieved by letting
N — oo and then § — 0. O

Step 2 Next, we prove the following lemma.

Lemma 5.6. In region Ry, there is some A > 0 and some constant C' = C ;, such that
forall A > Ag and any N > 1

1 1-a
]P(N§ ¢ log Zg (M > AN¢) > —1)<CA >,

Since a > 1 in region Ry, this proves that for any € > 0 we can choose A large enough so
that i log Z§ (M7 > AN¢) < —1 with PP probability larger than 1 — . Hence, thanks
to Lemma 5.5 and the fact that W;' > 0, the second term in (5.18) is negligible compared
to the first one in ]f’-probability. Note that here again, we are not able to upgrade the
convergence to a P-a.s. convergence, see Remark 5.3 which also applies here.

Proof. Letus write Zy~ 1= Z% (M} > AN®) so

0 0
757 = Z € (2 TANE 2 ANS)) < ) exp (BNTISg e — h2ETLANE).
k=1 k=1

By subadditivity, we therefore get that

[es}
£—¢ ANk _iok—1 4 nE—C 1 e—¢
IP(ZZU\J/>>€_N )<Z]P(€BN S aneh2 T ANSTE N )
k=1

Z (BN "85 ane = h2k_2AN§_7) ’

where the last inequality holds provided that A has been fixed large enough (we also
used that £ — ( = > — «). Then Lemma 4.4 gives that each probability in the sum is
bounded by a constant times 28— A= Since a > 1, summing this over k gives the
conclusion of the proof of Lemma 5.6. O

Step 3 By monotone convergence, W} converges a.s. to W,: we only need to show
that W, is positive and finite. Combining this with Lemmas 5.5 and 5.6, this completes
the proof of (3.5).

Lemma 5.7. Ifa € (1,2], we have that W, := sup,, u>o{5( M4 x ) h(u+wv)} is P-a.s.
positive and finite.

EJP 27 (2022), paper 162. https://www.imstat.org/ejp
Page 30/45


https://doi.org/10.1214/22-EJP862
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

1D polymers in random environment

Proof. The proof is analogous to the proof of Lemma 5.4. To show that W, > 0, we use
that W, > Supvgo{Bngl) — fw}. By [1, Th 2.1], there is a.s. a sequence v,, | 0, such that
XSV > /* for all n. Hence, for large enough n, Wy > Bui/® — hv,, > 0, since a > 1.

To show that W, < o, we use that W, < Supu;O{BX”S2) — hu} + supvzo{BXf,l) — hv}.
By [31], we have that for any ¢ > 0, a.s. Xl(,l) < v(1+e)/a for ¢ large enough. Therefore,
if (1 +¢)/a < 1 (recall a > 1), we get that BXl(,l) — hv < Bu+a)/a _ hy < 0 for all v
sufficiently large. Similarly we also have that BAX,(f) —hu<o0forallu large enough. This
concludes the proof. O

Convergence of (M, My,)

As in previous sections, we define

L{Z’El = {(u,v)e (R, )%: sup {B(Xt(l) +X5(2))—ﬁ(s+t)} >W4—6’}
(s,t)eBe(u,v)

and the event .Ai’,i = {3 (=My, M) ¢ US°'}. Then, in an identical manner as in
Regions R,, we have that with P-probability close to 1,

1 1 "
NE=C logZN( )<W4 and so Ne=C ¢ log P ( N4)<O,
from which one deduces that
w( 1 o .
I\}EnocP (Nﬁ( My, M7) eujs) =1, in P-probability. (5.19)

Moreover, if ¢’ is small enough, then U/, <" is contained in Bg. (U™, V), which completes
the proof. m

5.6 Region R5: proof of Theorem 3.7

In Region Rs, we prove that the range size is of order N¢ with ¢ = igf € (0, %) Note

that in this region we take h > 0 and that we have

1—2§=§—§>£—7 and 71<§<1.
« 2

Convergence of the rescaled log-partition function
We fix some constant A = A(ﬁ) (large) and we split the partition function as
Z% = 7% (M}, < AN®) + Z% (M}, > AN®).

The strategy of proof is similar to that in Region R., but with only two steps: (1) we
show that after taking logarithm and dividing by N'~2, the first term converges to some
constant independent of A (if A is large enough); (2) we show that for A large the second
term is negligible compared to the first one.

Step 1 We prove the following lemma.
Lemma 5.8. In Region Rs;, we have that for any A > 0

1 - -
Nl_l)l’ilop NI log Z§ (M} < AN¢) = u,US;;(E),A] {—h(u +v) — I(u,v)} P-a.s.,

where f(u v) = ( v)~2 for u,v > 0. By a simple calculation, the supremum is

2 _1

—*(hﬂ') for anyA > 75h~3 and it is achieved at u +v = 75 h~3.
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Proof. For any fixed A, we have the following upper and lower bounds
log Z# — BNTYS% e <log Z% (M} < ANS) <log Z# + BN TS v, (5.20)

where Z{ := E[ exp(=hn|RN )15 <cane;]-

Since in Region R5 we have 1 — 2¢ > g — 7, we get that N‘(l‘QE)BN‘A@jN{ goes to 0
P-a.s. (see e.g. Lemma 4.4). Therefore, we only need to prove that

. 1 S . _
A}linoo T log Zj = u,'uSElE(PJ),A] {—h(u+v)—I(u,v)}
(there is no disorder anymore). But this convergence is quite standard, since I (u,v) is
the rate function for the LDP for (N ~5My, N~¢Mj): more precisely, by Lemma A.3

1
—I(u,0) = lim < logP(My > —uN*%; My, < vN%). (5.21)

This is enough to conclude thanks to Varadhan’s lemma. O

Step 2 Next, we prove the following lemma.

Lemma 5.9. In Region Rs5, we have for any fixed A

1 1 .
limsup ———- log Z% (M% > AN®) < —~Ah  P-as.
o g 08 24 (VY = ANG) < b P

Combining this result with Lemma 5.8 readily yields the convergence (3.6), provided
that A > 73h~5 and L Ah > 3(hr)3.

Proof. We consider four cases, which correspond to four different conditions on ~, ¢ (see
Figures 1-2-3): (i) a € (1,2] and ¢ € (—1,1/2); (ii) € (0,1) and ¢ € (—1,0]; (i) o € (3, 1)
and ¢ € (0,3); (iv) a € (0,%) and ¢ € (0,1). We deal with the first two ones at the same
time and we treat the third and fourth one afterwards since the strategy of the proof is
slightly different.

Cases (i)-(ii). Let us write

10g2(%N17§)
Z{(M% > ANS) = > Zy (M e 2" TANS 28 ANY))
k=1
10%2(%]\717&)
< Z exp (C’(A, B, w) Zk/“]\f%_'y(log2 N)z/"‘ — lALQk_lANg_C)
k=1

where we have used Lemma 4.4 to bound ©* by C(w)2"/* AV N¢/(log, N)?/*, P-a.s..

2k ANS
Now, uniformly for k in the sum we have

NE—1—(E=0) ifae(1,2],
A5 ey ifae(0,1).

2k/a N& =7 (log, N)?/°
2FNE<C

< (log, N)Q/a {

Notice that in cases (i)-(ii) the upper bound always goes to 0 as N — o0, because
g — 7> ¢ —(inthe case € (1,2] and v > ¢ — 2! in the case a € (0,1). Therefore,
PP-a.s., for N large enough, we have

Ing(%Nlig) 1
A (M]"\‘, > ANg) < Z exp (—iLQk_QANE_C) < Cexp ( - §BAN£_<> .
k=1
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Since £ — ( = 1 — 2¢, this concludes the proof.
Cases (iii)-(iv). In that case, we have ¢ € (0,1/2) and ¢ € (0,1/2). Hence, we can write

Z5(Mj > AN®) = Z% (M3 € (ANS, N'™¢)) + Z% (M} € (N*=¢, N]). (5.22)
For the first term, we have similarly as above that Z% (M3 € (AN$, N'=¢]) is bounded by
logy (5 N'7¢7¢)
N e (C(A,B,wpk/aN%*V(logQ Ny — IE2’€*1AN§*C) .
k=1

Now, uniformly for & in the sum we have

2k/a N &= (log, N)/=
2FNEC

< (logy N)Q/"A_PTO@N_"’+ Sl Sl

with the upper bound vanishing, because in cases (iii)-(iv) we have v > Q‘D‘Q—_IC —+ 1?70‘ for
¢ €(0,1/2) (note that if o < §, 22=1 < 0). Therefore, P-a.s., for N large enough, we get

10%2(%N17£7C)
- 1.
Z% (M} e (ANS, Nl_c]) < Z exp (—h2k_2AN5_<) < Cexp ( - ihANg_g) .

k=1
(5.23)
For the second term on the right-hand side of (5.22), we have
IOEQ(NC)
Z5(My e (NS N) = > Zg(My e (27FN,27IN))
k=1
Ing(NC)

Z 2 exp ( ﬁ w)2_k/(’Nn 7 (logy N)Q/O‘ — 2_2k_1N) ,

where we have used Lemma 4.4 to bound Y5, v by C(w)27%*Na~7(log, N)?/*, P-a.s.

and also the fact that P(M > x) < 2exp(—3 z 55 )- Now, uniformly for k in the sum, we
have

2a—1

2—k/aNé—'y—1 1 N 2/a N—7+7%
(OgQ ) < (1og2 N)2/oz

G ifae (4,1),
1—a .
N—= 7 if ae(0,%),

272kN

which goes to 0 in cases (iii)-(iv), because v > 291 + =2 jf o € (
a € (0, 3). Therefore, P-a.s., for N large enough, we have

i,1)and vy > =2 if

1 .
Z%(M% e (NS, N]) < Clogy N exp <4N12<> < exp <7hANE*C> , (5.24)

where in the last inequality we have used the factthat 1 —2¢ — (- () =1—-¢—-( >0,
since § < 3 and ¢ < 3.

Combining (5.23)-(5.24) with (5.22) and since £ — ( = 1 — 2¢, this concludes the
proof. O

Convergence of M}, — My

73h~3. Let ¢ > 0 and define the event

t.oho

Let us define ¢;, :=
N5 = {’NE (M7, — My) _CE‘ >5}.
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As in the previous sections, since log P§ (A% 5) = log Z§ (A% 5) — log Z%, using the
convergence (3.6) we simply need to show that there is some 6. > 0 such that

. 1 w € 3 4 2/3 o

But this is simply due to the fact that analogously to Lemma 5.8, we have P-a.s.

1 A _ 3 .
lm  ——— log Z9 (A% <) = {—h — I(u, } _2(h)?/3,
N N1—2€ 908 ~N(AN5) u,v}O,\i&gfcﬂ\>6 (u+v) = I(u,v) ¢ < 2( )

where the inequality is strict since the supremum in Lemma 5.8 is attained for u + v = ¢;,.

O
5.7 Region R6: proof of Theorem 3.8
Recall that in Region Rg, we have
C<(-1)ay ifae(1,2] and C<(-1)A (7+ O‘T_l) ifae(0,1).
Let us note that in all cases we have v > (. We split Z%; in two parts
Zy =Z% (IRnl =2)+ Z% (IRN| = 3) . (5.25)

It is clear that

Z% (|Rn| = 2) = e—2ilN7< (eBwa(woﬁ-wl)Q—N + eBwa(wo+w_1)2—N> ;
so that N¢log Z% (|Rn| = 2) converges P-a.s. to —2h, since ¢ <~ and ¢ < —1.

We now prove that limsup_, . N¢log Z% (|[Rx| = 3) is strictly smaller than —2/ a.s.:
this will imply that the second term in (5.25) is negligible compared to the first one and
as a consequence prove that P4 (|JRny| = 2) converges to 1 P-a.s.

We write

=
1=

Z% IRyl 2 3) = ), Z% (IRn| = k) <

exp ( _ kiLN_C + C(W) BN—’Ykl/a(logg N)Q/oz) ’
3 k

k

3

where we have used Lemma 4.4 to bound X} for the last inequality. Now, uniformly for &
in the sum we have

EYeN=7(log, N )%/

N¢ if 1,2
KN < <(10g2N)2/“{ foe (1,2,

N4 ifae (0,1).

The upper bound always goes to 0 as N — o0, because v > ( in the case « € (1,2] and

y>(— 0‘7*1 in the case « € (0, 1). Therefore, P-a.s., for N large enough, we have

5

N
Z5 (M} > ANS) < Z exp <6kizNC> < Cexp (;HNC> .
k=3

We therefore get limsupy_,,, N¢log Z% (|Rn| = 3) < —%fz < —2h a.s., which concludes
the proof. O

6 Proof of the remaining results: the case h<0

In all this section, we consider only the case h<o.
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6.1 Region §4: proof of Theorem 4.1
In this region, we prove that the range size is of order N¢ with ¢ = 1 —( € (%, 1).
Recall that in Region R4 we have

25—1=§—§>é—7 and 0<C<1.
«a 2

The proofs are almost identical to what is done in regions Rs-Rg, so we give much less

detail. We fix some constant A = A; := 32|7z| and we split the partition function as

Z% = Z% (Mf < AN®) + Z3% (Mj; > ANY).

Step 1 We have the following lemma, analogous to Lemma 5.8.
Lemma 6.1. In Region ]§4, for any A > 0 we have the following convergence

1 .
Nlinjoo NI log Z§ (M} < AN*) = u,vselE(I)),A] {|h|(u +v) — I(u,v)} P-a.s.

By a simple calculation, the supremum is %fﬁ for any A > \fL| and it is attained at
(u,v) = (0,[h]) or (u,v) = (|h],0).

Proof. Since in Region R, we have 26 —1 > £ —, for any fixed A we get that N—(26-1) x
BN ~7X% ye almost surely goes to 0. Therefore we only need to prove that

1 ~
< AN¢ —
]\}linoo NI log Z% (M}, < AN®) = u,vselE(I)),A] {|h|(u + ) I(u,v)} , (6.1)

where Z%, denotes the partition function with w = 0 (or equivalently Sy = 0).
But (6.1) follows from Varadhan’s lemma, since I(u,v) is the rate function for the
LDP for (N~SMy, N=¢M;};), by Lemma A.1. O

Step 2 To conclude the proof of the convergence (4.1), it remains to show the following.

Lemma 6.2. In Region R,, we have for any A > 32|h|

hmbup log Z% (M} > ANg) <0 P-as.

N25 1
Together with Lemma 6.1, this readily yields the convergence (4.1).

Proof. We write

10%2(%]\[17&)
Z{ (Mg > AN®) = YT Z% (M e (2" T ANS, 28 ANY))
k=1
10%2(%1\{1_&)
< Y 2ew (C(A, B,w) 2N &= (log, N)2/® + 2F+1 || ANS—C — 22’6*3,421\725*1) :
k=1

where we have used Lemma 4. 4 to get an almost sure bound on X* and also the

2k ANE”
fact that P(M} > z) < 2exp(—3 ) Now, as in the proof of Lemma 5.9, the “disorder”
term is seen to be negligible compared to the “range” term (uniformly for k in the sum):
we get that P-a.s., for N large enough,
10%2(%]\71_5)
Z5%(ME> AN < Y 2exp (2’“+2|h|AN5*4 - 22’“*3A2N25*1) < 2logy(LN'¢),
k=1
where for the last inequality we have used that ¢ — ¢ = 2¢ — 1 and that A > 25|h|. This
concludes the proof. O
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Convergence of trajectories First of all, let us go one step further in the proof
of Lemma 6.1. Indeed, in (6.1) the supremum in the variational problem is attained
at (u,v) = (0,|h|) or (u,v) = (|h|,0), so we can deduce that the main contribution
to Z?V (hence to Z% in view of the proof of Lemma 6.1) comes from trajectories with
N=¢(Mpy, M3;) either close to (0,]h|) or to (—|h|,0). One can actually show that the
main contribution comes from trajectories moving at roughly constant speed to these
endpoints (similarly to Proposition 3.9): using (A.4), one easily gets that analogously
to (6.1), forany € > 0,

lim sup —+— ! — log Z3; (M7 < AN®, (By®uBy9)) < sup {|ﬁ|(u+v)—[(u7v)} :
N—ooo N2¢ w,ve[0,A]
(6.2)

where we recall the definition of the events B~ N ¢ (recall h < 0):

By* :={ sup |[N~SSn +ht| } By© :={ sup [N SN — iLt’ <E}.
te[0,1] te[0,1]

All together, in view of the fact that N~(%~1) x BN”E;M goes to 0 a.s., we get that

1 +, _ . 1 w
lllr;ljupN -log Z% ((By® v By©)° )<A}1inoomlogZN,

from which one deduces that

: w +,e —,&\ _ _
A}l_r)nOOPN(BN uBy®)=1 P-as.

Given h, the events Bli\’,’g are disjoint for € small enough: this implies in particular that

Zw +,€ Zw —E
Jim PY(B%) + PY(By°) = lim &(By") + 2y (ByT) 1. (6.3)
—00

N—>+00 ZR’,

Now, denoting again Z% the partition function with w = 0 (or equivalently Sy = 0)
and PS{, the corresponding measure, we have

BnEt

e (Jhl—e) §+BNR?\I€(07‘M75)

— B R2E(0,]h|—¢ Z$ (B +
e —BNR3 (0[] )P?V(BTV,E)< Y(By) _ pam

Al— 0 +,&
0 < e VTUhl-an Py (By©),
N

where R5(u,v) is defined in (5.13). A similar inequality holds with B¢ in place of B},

simply by replacing E(Ihl e DY Z . and R%(0,|h| — ) by R (|h| — ,0).
Therefore, we have

(Ih|—e)N

Z%.(BX°)
Z{(BY°) + 2% (By®)

BNZ+* _ §+BNR?\I€(07‘M7€) 0 +,e
- Py (B5°)

- — - (6.4)
+ _ e _ _ & _ ’
eBNE(me)NE Bn R (0,]h] 6)P9\,(BX/E)+66N2<|’1\*5>N5 Bn R (Rl E7O)P9V(BX/E)
and similarly
+,
Z§ (By")
+, -
Z{(By©) + Z%(By©)
+ _ 26 0 (5]
eBNZ(m\*E)Ng ﬂNRN (Ov‘h‘ E)P%(B?\},E) (6 5)
T 2 (0 17| — - 2¢ (|h|— ’
N PNV ORI P (ghey L A Eione VIR (N0 o (302
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Let us make a few observations. First of all, notice also that by symmetry we get that
when w = 0, for any || > 0

. £ —,E ]-
A}linao P (By°) = hrn P (ByS) = 3 (6.6)
. ¢Jas+ (D) . Elag— (2)
EA{ecall that limy_, 400 N ™ A E(Ihl N X‘h| and limy_, 100 N~ E(|h| NE = X|iL|—s
P-a.s., and that for fixed h, P-a.s. the two processes X(l) and Xt(2) are both continuous

_ ; (1) (1) (2) (2) S
at t = , SO hmeX\fll— XIH and lim.}o thl . X\h\ Note also that, for PP

almost every realization of w, for any 6 one can choose ¢ > 0 small enough so that
N=8>R%(0,|h| — ) < ¢ for all N large enough, and similarly for N~/ R3¢ (|h| — ¢,0).
Let us now consider three cases.

(i) If v < &/a. On the event X\(fil) < Xl(hl) one can choose € > 0 small enough so that

s ¢lay— 2617 (vt 2¢ nl_
lim inf N~ (Euu + B (1Bl = 2,0) = (S5, e + BX O, IA) s))) > 0.
Since By = BNg‘VN‘é with Ne—7 - 400, from (6.4) we deduce that a.e. on the event

X ‘(}3‘) <X I(il) for € > 0 small enough

Zw B+,8
lim sup P§, (B3°) = lim sup §(By)

-0,
No+w Noto Z$5(BET) + Z%(By°)

recalling also (6.6). By an identical reasoning, we get that a.e. on the event X \(fil) > X I(h2 |)

for ¢ > 0 small enough limsupy_,, P%(By°) = 0. Hence, because the event X‘(m) =
X ‘(;‘) has probability 0 and recalling (6.3), we can conclude that

lim lim P%(By°) =1 P-a.s.,

20 No>+oo (XG5 =xG
where the limit in /V is well-defined provided that ¢ is small enough. A similar statement
holds for P%,(By°), exchanging the role of X(*) and X(?).

(ii) If v = £/«, then similarly as above, from (6.4) and (6.5) we deduce that for any
6 > 0, P-a.s. we can choose € > 0 small enough so that

BX“) +5
Zw (BJHE) |h|—e
lim sup P, (B}°) = lim sup N < )
N—to0 N Notw Z45(BYE) + Z5(By®)  SXG8 | PXG
ﬁx‘” -5
Zw B+’E |h|—e
lim inf P§, (Bx'°) = lim inf . é\'( N — = &) @ .
N—+w0 N—o+ow ¥ (BN7 ) + Z%(BN’ ) ﬂX\h\ +6 + € Bth\ +o

recalling again (6.3) and (6.6). Taking § arbitrarily small, we get that

Ax D
e [ N
lim lim sup P, (B5°) = lim lim inf P% (B%°) = SO G ® P-a.s.
el0 Nioo cl0 N>+ 5 W) n eﬁXw

The statement is analogous for P4 (B,°), exchanging the role of X M) and X®),
(iii) If v > &/a, since Sy = BNéﬂN*% and Ng”f — 0, we get from (6.4) and (6.5)
that forany e > 0

Z%(B° 1 .
lim P%(BL°) = lim = ;V( ) — = - TPas,
N—o+wm N—+o Z9(BYS) + Z%(By©) 2
recalling again (6.6). We also get limy_, o P (By°) = 1, P-a.s.
This concludes the proof of (4.2). O
EJP 27 (2022), paper 162. https://www.imstat.org/ejp

Page 37/45


https://doi.org/10.1214/22-EJP862
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

1D polymers in random environment

6.2 Boundary region ]§4—]§5: proof of Theorem 4.2

The proof is similar to that for region ]§4: one only needs the analogous to Lemma 6.1.
The rate function I(u,v) for (N=*Mpy, N~¢Mj};) is replaced by the rate function x(u A
v+ u+v) for (N"1My, N"1M}), see Lemma A.2. We end up with:

1 .
lim —logZ% = sup hl(lu+v)—k(luAnv+u+wv P-as.
Jim, losZy = s (bl o) = K )}

Then, using that £(¢) = 3(1 +¢)log(1+¢) + (1 —t)log(1 —t) if 0 < ¢t < 1 and k(t) = +o0
if t > 1, a straightforward calculation finds that the supremum is attained at (u,v)

(0, tanh |A]) or (u,v) = (tanh|h|,0) and equals log(sinh |h)).
Then, by following the same ideas as above, one can show that the events

By* ::{ sup [N7'Sn —tanh(|ﬁ|)t’ < E} . By© ::{ sup [N 7S +tanh(\ﬁ|)t’ < E} ,
te[0,1] te[0,1]

verify
: w +,e —,&\ __ _
A}liréoPN(BN uBy®)=1 P-as.

From this, one can proceed as above (see in particular (6.4) and (6.5)) to get (4.4).
Details are left to the reader.

6.3 Region §5: proof of Theorem 4.3
First of all, notice that

7% > Z9(|Sy| = N) = e PN TSE-hN'"TC=Nlog2  apg 79 < ¢ AN THANTIEX - (6.7)

Hence, the P-a.s. convergence limy_,o, N¢~1log Z% = |iL| is immediate, since { < 0 and
é —v<1-¢.

The rest of the proof of Theorem 4.3 is similar to what is done in Sections 6.1-6.2
above. In particular, for any € > 0 one has that

limsup N¢ !log Z§ (|Sy| < (1 —)N) < —(1 —
N—w0
so that limy_.o P%(]Sny| = (1 —¢)N) = 1 P-a.s. Then, by following the same ideas as
above, one can show that the events

By = { sup [N7'Spn) —t] < 5}, By© = { sup [N7'Spn +t] < 6},
te[0,1] te[0,1]
verify
Jim PY By uBy) =1 Pas.

From this, one can proceed as above to get (4.5). Details are left to the reader.

Improvement in the case a € (0,1) or a € (1,2] and v > ¢ We now prove (4.6). As
mentioned above, we have limy_.o, P% (|Sn| = (1 —&)N) = 1 almost surely. Now, we can
split the event |Sy| > (1 — )N according to whether M}, > 1N or My < —1N. Hence,
we only have to prove that P{ (3N < My < N —1)/P%(|Sn| = N) a.s. goes to 0, and
similarly for M.

To this end, we show the following: IP-a.s., for NV large enough we have

ZG(AN < My < N—1) Z%$(AN <M <N-1 .
wz = ) < i — ) < Cexp (%hN‘C). (6.8)
Z%(]Sn| = N) Z%(Sy =N)
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This will conclude the proof of (4.6) since AN—C - —m (recall ¢ < 0).

We have Z% (Sy = N) = 2-NePvEx—h~N_ Hence, using that in the case M}, = N — k
then My > —1k so [Ry| < N — 1k, we get that for 1 < k < N, after simplifications of
the numerator and denominator,

Z;{,(M;, =N—k) S * 1 N + _
Zw(SN:N) §exp(ﬂN4 Z wl+ﬁNZ%k+§hNk>2 P(MNfN—k)
N i=N—k+1

Denoting i”k‘ = X%, +supigicy | ZZN:N#H wi|, we then get that for £ € {1,...,log, N — 1}
2

Z5 (M € [N — 26, N —271))
Z%(Sny = N)

<exp (BNTIESE, + AN$20-2)2N+1p(5y = N — 2°),
2

where we also used that P(My > N —2%) = 2P(Sy > N — 2°) — 1 by the reflection
principle. Now, since N — Sy has a Binom(N, %) distribution, we have

22
P(Sy > N-2) =) 27V (JZV) <2 N2t @;) ,
=0

for ¢ such that 2¢ < 1N. Note that 2¢(}}) < N?', which is smaller than exp(2/~3|i[N )

for N large enough (uniformly for the range of ¢ considered). We therefore end up with

Z8 (MY e [N — 25, N —2¢71))
Z%(Sv =N)

<exp (C(B,w)z\fﬂ(log2 N)/agt/a | BN*CQZ*?’) :

where we have also bounded i;‘e by a constant ¢ = ¢(w) times ¢%/*2¢/*, analogously to
Lemma 4.4. Now, uniformly for ¢ € {1,...,log, N — 1}, we have

N~ (logy N)¥/2¢/ < (log, N)?/® Ni‘” ifa e (1,2],
N—¢2¢ ° N7 ifae(0,1).

This upper bound goes to 0 as N — o since v > (ifa € (1,2] and v > ( + =2 ifa € (0,1).
Hence, P-a.s., for N large enough we have

Zi(aN < My < N-1) PR Zg(My e [N 2N -2

Z5(Sy = N) = Z%(Sny = N)
logy N—1 1
< exp (AN~€24) < Cexp (=hN~¢),
;1 Xp ( ) Xp (8 )

which gives (6.8).
For the proof of the last statement (i.e. the analogous of (4.5)), notice that

Z5(Sn = N) = 27 NePNBh—hwN - ze(Gy = —N) = 27 Nefn(wotZy)—hv N

so that

Z%(Sn = N) B eBNER ©.9)
Z{%(Sn = N) + Z§(Sy = —N) C eBNEL 4 BN (wotTy) :

Then, we proceed as in the previous sections to get (4.5) with {Sy = N} in place of B]\L,’E.
Details are left to the reader.
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A Technical estimates

A.1 Estimates on deviation probabilities

We present here some large deviation estimates for the simple random walk that are
needed throughout the paper. Recall My, := ming<p<n Sy, and Mﬁ ‘= MaXg<p<N Sn-

Stretching

Our first lemma deals with the super-diffusive case: we estimate the probability that
My, = vN® and My < —uN® when ¢ € (1, 1), for u,v > 0. The one-sided large deviation
results are classical, using e.g. explicit calculations for the simple random walk (see [20,
Ch. II1.7]): we get thatif £ € (3,1)

lim — 1 logP(M vNE) = lim

_ &\ — =
N T Jim — e 1logP(S >uN ) =

The case where both the minimum and maximum are required to have large deviations
is an easy extension of the result: it follows from the reflection principle that

P(Sy>2a+b)vP(Sy=a+2b)<P(My<—a; My, >b) < P(Sy > 2a+b)+P(Sy = a+2b),
so that log P(My < —uN%; M, = vN¢) ~logP(Sy > (u A v +u+v)N%) as N — +oo.

Lemma A.1. If{ € (1,1) then for any u,v > 0 we have that

: 1 1
1\}1—I>noo_N25 T logP(M < —uNS My > vNé) = I(u,v) := i(u Av+u+o)?. (A1)

As an easy consequence of this lemma, we get that for any § > 0, for any u,v > 0,

lim —%bgP(M;, € (= (u+d),—u]N* M e [v,v+5)N5) =I(u,v). (A.2)

N—x

Using again the reflection principle, it is also not difficult to show that a local version
of (A.2) holds: omitting the integer parts for simplicity, we have

lim sup — ~EET log sup P(My=—-aN% M =yN®) =1I(u,v). (A.3)
N—-w ze[u,u+d)
ye[v,v+46)

We now state a result that shows that the large deviation is essentially realized by
the event that the random walk moves ballistically to one end (whichever is the closest)
and then ballistically to the other one. For u,v > 0 with u # v, recall the definition (3.8)
of the function b, , that goes with constant speed from 0 to the closest point between —u
and v and then to the other one. Recall also the notation (3.9):

i) = { s [ S — buslt)] < <}
te[0,1]

We then have the following result, which is a direct consequence of Lemma A.1: let
u, v = 0 with v # v, then for any € > 0,

1
liminf—m 10gP<M;, < —uN& My = va;B‘IEV(u,v)C) = I(u,v) + ce(u,v), (A.4)

N—w

for some constant c¢. (u,v) > 0.
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As a consequence, for § > 0 small enough such that (v —6)* > 0or (v—40)T >0
(where 27 := max{z,0}) and [u — §,u + ] n [v — §,v + ] = &, we also have

1

liminf ————log sup P(My = —aN& M, = yN¢; By (u,v)°

N—o0 NQE 1 xe[(u_§)+7u+5] ( N N )
ye[(v—38)T v +4]

>I((u—0)*" (v=0)") +cc(u—6bv—74).
Together with (A.3), we end up with

e 1 P(Mg = —aN& My = ny,Bf\,(u,v)c)
lim inf — e 1 sup log — T 7
N—owx N ze[(u—8)T u+d] P(MN = —aN& My =yN )
ye[(v—8)T v +0]
>I((u=0)* (v=0)") +c(lu—8v—208)—I(u+dv+0) =:ces(u,v)

(A.5)

where c. 5(u,v) > 0, provided that ¢ is small enough (how small depends on ¢, u, v).
Let us also state the large deviation result in the case £ = 1. As above, it derives from
the fact that log P(My < —ulN; M}, > oN) ~1logP(Sy = (u Av+u+v)N)as N — .

Lemma A.2. For any u,v > 0, we have that

. 1 _
A}linoo—ﬁlogP(MN < —uN; My = oN) =k(unv+u+v),
where k : Ry — R, is the LDP rate function for the simple random walk, that is
k(t) == 2(1+t)log(l +t) + $(1 —t)log(1 —¢) if0 < t < 1 and K(t) = +o0 if t > 1.

Note that analogues of the ballisticity statements (A.4) and (A.5) hold in the case £ =

Folding

Our second lemma deals with the sub-diffusive case: we estimate the probability that
My, < vN® and My > —uN® when £ € (0,3), for u,v > 0. The result follows from
classical random walk calculations, leading to explicit expressions of ruin probabilities
(see Eq. (5.8) in [20, Ch. XIV]); one may refer to [13, Lem. 2.1] and its proof for the

following statement.

Lemma A.3. If{ € (0, 1), then for any u,v > 0 we have that

7T2

. 1 _

As an easy consequence of this lemma, we get that for any § > 0 and any u,v > 0,

2

. 1 -
lim —mlogP(MN € [~u, —u+ NS My e (v—&,v]Nf) =

N—

A.2 Proof of Lemma 4.4

We start with the first part of the statement. First of all, notice that the bound is
trivial if /T~® > 1: we therefore assume that /T~* < 1. Using Etemadi’s inequality
(see [10, Thm. 2.2.5]) we get that

P(X;>T) < 3kema‘u~>.<

P(|x T 3
(1ot} (31> 5T) + ker{rll?.).(,

, PO > 5T).

We only bound P(|Zf| > {T), since the same bound will hold for P(|X; | > $T). The
case a = 2 is a consequence of Kolmogorov’s maximal inequality and the case « € (0, 2)
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(a # 1) follows from the so-called big-jump (or one-jump) behavior. Let us give an easy
proof: define w, := w1y, |<T}, SO that

k
P(ISf] > 4T) < PRO < <k fuol > T) +P(| Y @ > 4T)
=0
< k 36 — \2 — 12
< (k+ 1P (jwo| > T) + ﬁ((/c+1)]E[(w0) |+ k(k + 1)E[w)] )

where we used a union bound for the first term and Markov’s inequality (applied
to (Zi:o @,)?) for the second. Now, the first term is clearly bounded by a constant
times k£ T~ thanks to Assumption 1. For the second term, we use again Assumption 1,
to get that if a € (0,1) U (1,2), E[(@)?] < ¢T?~® and E[wo] < ¢T!™ (when «a € (1,2) we
use for this last inequality that IE[wy] = 0). Therefore, we end up with the bound

P(IS)] > &T) < clT™ % 4+ elPT 2 < 2T,

where we have used that /T~ < 1 for the last inequality.

For the second part of the statement, notice that ]P(E;‘k > kQ/QQk/O‘) < ck~2: hence,
by Borel-Cantelli, P-a.s. there is a constant C’ = C’(w) such that ©%, < C'k¥ agk/e for all
k = 0. Since ¥} is monotone in ¢, we get that IP-a.s. there is a constant C' = C'(w) such
that ¥ < C(log, £)%*¢'/* for all £ > 1. O

A.3 Uniqueness of the maximizer: proof of Proposition 3.2

We start with the following lemma, at the core of the proof.
Lemma A.4. Let (Xq(,l))@o and (X,L(f))uzo be two independent a-stable Lévy processes
and f : (R;)? — R be any function. Denote I;"bi :=[¢,d] x [a,b]. Then for any two disjoint

c,d < d’
rectangles 7, and 1, we have that

IP( sup {Xq()l) + quz) + f(u,v)} = sup {Xf),l) + Xg) + f(u',v')}) =0.
(u0)eZyy (W v)ezsy

Proof. Let us assume that a’ > b (other cases are treated similarly). Then, the difference
of the supremums can be written as Z — 2’ — (Xé,l) - Xlsl)), with
Z = sup {Xq()l)fXél)JrXﬁz)Jrf(u,v)}, Z'= sup {X

(u0)eTSs (u/,u/)ezgj:;jf

W_xD e xP o)}

v’

Note that Z, Z’ are independent of XC(L,I) - X t(,l): we therefore get that

P(x - x\M =7 -27) =0,

a’

1)

since X’ — X lﬁ” has no atom (it is a-stable). O

Proof of Proposition 3.2. By Lemma A.4 and subadditivity, we have

IP(EI a,b,c,d,a’ b, c,d €Q, s.t. IZ:Z N Ig::g,/ =, sup Y,,=  sup Yu/ﬂ,r) =0.

(u,v)elszg (u’,v/)el';i:‘;,l

Since P-a.s. sup, ,>q Yu,» > 0 and Yy, — —o0 as u — 400 or v — +c0, then for P-a.s.
realization (Xf)l))vzo, (Xl(f))uzo, there exists some rational constant A = A(w), such that
the supremum is achieved on the rectangle [0, A]?>. Then a sequential application of
dichotomy yields the uniqueness of the maximizer.
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Next, we show that

]P(H v > 0, such that argmaxY, , = {(v,v)}) =0 (A.8)

u,v=0

Note that the above probability is bounded above by

IP( sup Y, , = sup ij) < IP( sup Y, = sup Yv,v) + IP( sup Y, , = sup YWJ) . (A9)
u,v=0 v=0 o<sv<u v=0 o<su<v v=0
It suffices to show that both probabilities on the right-hand side of (A.9) are 0. We only
deal with the first term, the second one is identical.

For any n,k > 0, let B, , = [£, &) x [£, EEL). Note that | J,—_, By covers the
line u = v and that, as n — +m, (Jp_; Bk | {u = v} and {v < u}\Uj_, Bux 1 {v < u}.
Hence, by Lemma A.4 and the monotone convergence theorem, we have that

IP( sup Yy, , = sup Yvw) =0.

o<v<u o<wv

Furthermore, P-a.s., for any v > 0, we can take u, | v, such thatV,, , — Y, , by the
right continuity of Lévy processes. Hence,

IP( sup Yy, = sup Yu’v) =1.
o<v<u osv<u

This shows that the upper bound in (A.9) is equal to 0 and concludes the proof of (A.8). O

A.4 Estimates on cad-lag paths at points of continuity

Lemma A.5. Let (an(t))n>1 be a sequence of cad-lag paths on [0, ) that converges to
a cad-lag path a(t) for the Skorokhod distance dy (cf. [24]). Suppose that « is continuous
at u. Then for any ¢,6 > 0, there exists Ng = Ny(u,&,0) > 0 such that for all N = N,

lan (u) — a(u)| < e, (A.10)
sup  |axy() —any@)] <e+ sup  |a(v) — aluw)]. (A.11)
ve[u,u+5] ve[u,u+5+¢]

Proof. We start by proving (A.10). Fix ¢ and let n = n(¢) > 0 be some number to be
chosen below. Since limy_,o do(an, @) = 0, for the above 1 > 0, there exists a sequence
of non-decreasing bijections (Ay(t))n>1 : [0,7] — [0,7T] with T > u arbitrary (but fixed)
and a large enough integer Ny, such that for all N > N,,

sup |[An(t) —t|<n and sup |an(An(t)) — al(t)] <. (A.12)
te[0,T] te[0,T7]

We have that
lan (u) — a(u)| < oy (u) — a(An(w)] + |a(An (v) — a(u)].

By (A.12) we have |Ay(u) — u| < n: if we had fixed n small enough, the second term
above is smaller than ¢/2 by continuity while the first term is smaller than /2 by (A.12).
Therefore (A.10) is proved.

We now prove (A.11). Using (A.10) (with /3 instead of ¢) together with the triangular
inequality, we get that |an (v) — an(u)| < |an(v) — a(u)| + /3 for N large enough, so we
only need to estimate |ay(v) — a(u)|. For any fixed § > 0 such that § + u < T, using the
sequence Ay defined above, we have that

sup  |an(v) — a(u)| = sup lan (An(v')) — a(u)]
uLv<u+d ,\El (u)é’u’S)\El (u+9)
< sup lan(An (V")) — a(v))] + sup la(v') — a(u)|.
AN (W) <o’ AR (u+d) AN (W) <v' ARG (u+td)
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The first term above is smaller than /3 by (A.12). For the second term, always by (A.12),
we have that
|)\J_V1(u) —u| <mn, |)\J_V1(u +6)—ul<n+d

and hence we need to bound

sup  Ja(v) —a(u)| < sup a(v) —a(uw)+  sup  Ja(v) —a(u)].
u—n<v<u+n+9 u—nN<Uv<UY u<v<u+d+n

By continuity, the first term above can be made arbitrarily small by choosing 7 small, so
this proves (A.11). O
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