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Abstract

We study the additive functional Xnpαq on conditioned Galton–Watson trees given,
for arbitrary complex α, by summing the αth power of all subtree sizes. Allowing
complex α is advantageous, even for the study of real α, since it allows us to use
powerful results from the theory of analytic functions in the proofs. For Reα ă 0, we
prove that Xnpαq, suitably normalized, has a complex normal limiting distribution;
moreover, as processes in α, the weak convergence holds in the space of analytic
functions in the left half-plane. We establish, and prove similar process-convergence
extensions of, limiting distribution results for α in various regions of the complex plane.
We focus mainly on the case where Reα ą 0, for which Xnpαq, suitably normalized,
has a limiting distribution that is not normal but does not depend on the offspring
distribution ξ of the conditioned Galton–Watson tree, assuming only that E ξ “ 1 and
0 ă Var ξ ă 8. Under a weak extra moment assumption on ξ, we prove that the
convergence extends to moments, ordinary and absolute and mixed, of all orders. At
least when Reα ą 1

2
, the limit random variable Y pαq can be expressed as a function

of a normalized Brownian excursion.
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1 Introduction and main results

In the study of random trees, one important part is the study of additive functionals.
These are functionals of rooted trees of the type

F pT q :“
ÿ

vPT

fpTvq, (1.1)

where v ranges over all nodes of the tree T , Tv is the subtree consisting of v and
all its descendants, and f is a given functional of trees, often called the toll function.
Equivalently, additive functionals may be defined by the recursion

F pT q :“ fpT q `
d
ÿ

i“1

F pTvpiqq, (1.2)
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where d is the degree of the root o of T and vp1q, . . . , vpdq are the children of o. (All trees
in this paper are rooted.)

We are mainly interested in the case when T “ Tn is some random tree of order
|Tn| “ n, and we study asymptotics of F pTnq as nÑ8. Such problems have been studied
by many authors, for different classes of functionals f and different classes of random
trees Tn; some examples are [29, 21, 17, 22, 28, 61, 38, 11, 51, 39, 1, 9].

In the present paper we consider the case where the toll function is fαpT q :“ |T |α for
some constant α, and Tn is a conditioned Galton–Watson tree, defined by some offspring
distribution ξ with E ξ “ 1 and 0 ă Var ξ ă 8; see Section 2.1 for definitions and note
that this includes for example uniformly random labelled trees, ordered trees, and binary
trees. (We use these standing assumptions on Tn and ξ throughout the paper, whether
said explictly or not.) Some previous papers dealing with this situation, in varying
generality, are [21, 17, 11, 1, 9]. We denote the corresponding additive functional (1.1)
by Fα; thus FαpT q is the sum of the αth power of all subtree sizes for T . We also introduce
the following notation:

Xnpαq :“ FαpTnq :“
ÿ

vPTn

|Tn,v|α, (1.3)

rXnpαq :“ Xnpαq ´ EXnpαq. (1.4)

Note that for α “ 0, we trivially have Xnp0q “ F0pTnq “ n. The case α “ 1 yields, as is
well known, the total pathlength, see Example 1.25.

Previous papers have studied the case when α is real, but we consider these variables
for arbitrary complex α. This is advantageous, even for the study of real α, since it allows
us to use powerful results from the theory of analytic functions in the proofs. We also
find new phenomena for non-real α (for example Theorem 1.20). Note that Xnpαq and
rXnpαq are random entire functions of α, for any given n. [The expectation in (1.4) exists
because, for a given n, the variable Xnpαq takes only a finite number of different values.]

We begin with the case Reα ă 0, where Xnpαq is asymptotically normal as an easy
consequence of [38, Theorem 1.5 and Remark 1.6]. More precisely, the following holds.
(Proofs of this and other theorems stated here are given later.) We say that a complex
random variable ζ is normal if pRe ζ, Im ζq has a two-dimensional normal distribution.
(See [32, Section 1.4], and note that a real normal variable is a special case.)

Theorem 1.1. Let Tn be a conditioned Galton–Watson tree defined by an offspring
distribution ξ with E ξ “ 1 and 0 ă σ2 :“ Var ξ ă 8. Then there exists a family of
centered complex normal random variables pXpαq, Reα ă 0, such that, as nÑ8,

n´1{2
rXnpαq “

Xnpαq ´ EXnpαq
?
n

d
ÝÑ pXpαq, Reα ă 0. (1.5)

Moreover, pXpαq is a (random) analytic function of α, and the convergence (1.5) holds
in the space HpH´q of analytic functions in the left half-plane H´ :“ tα : Reα ă 0u.
Furthermore,

pXpαq “ pXpαq, α P H´. (1.6)

The covariance function E
`

pXpαq pXpβq
˘

is an analytic function of two variables α, β P H´,
and, as nÑ8,

n´1 Cov
`

Xnpαq, Xnpβq
˘

Ñ E
“

pXpαq pXpβq
‰

, α, β P H´. (1.7)

The convergence in HpH´q means uniform convergence on compact sets and implies
joint convergence for different α in (1.5); see Section 2.2.
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The distribution of the limit pXpαq depends on the offspring distribution ξ in a rather
complicated way. Since the variables pXpαq are complex normal, and (1.6) holds, the
joint distribution of all pXpαq is determined by the covariance function E

`

pXpαq pXpβq
˘

,
α, β P H´. We give a formula for this in (5.1), but we do not know any simple way to
evaluate it.

In most parts of the paper we assume Reα ą 0. We introduce a normalization that
will turn out to be correct for Reα ą 0 and define

Ynpαq :“ n´α´
1
2Xnpαq, (1.8)

rYnpαq :“ n´α´
1
2 rXnpαq “ Ynpαq ´ EYnpαq. (1.9)

Then the following holds.

Theorem 1.2. There exists a family of complex random variables rY pαq, Reα ą 0, such
that if Tn is a conditioned Galton–Watson tree defined by an offspring distribution ξ with
E ξ “ 1 and 0 ă σ2 :“ Var ξ ă 8, then, as nÑ8,

σn´α´
1
2 rXnpαq “ σrYnpαq

d
ÝÑ rY pαq, Reα ą 0. (1.10)

Moreover, rY pαq is a (random) analytic function of α, and the convergence (1.10) holds
in the space HpH`q of analytic functions in the right half-plane H` :“ tα : Reα ą 0u.

Here rY pαq is not normal. [In fact, it follows from (1.20) and (1.21) below that if α ą 1
2 ,

then rY pαq is bounded below.] On the other hand, note that the family rY pαq does not
depend on the offspring distribution ξ; it is the same for all conditioned Galton–Watson
trees satisfying our conditions E ξ “ 1 and 0 ă σ2 ă 8, and thus the asymptotics of rXn

depends on ξ only through the scaling factor σ. Hence, we have universality of the limit
when Reα ą 0, but not when Reα ă 0.

We can add moment convergence to Theorem 1.2, at least provided we add a weak
extra moment assumption.

Theorem 1.3. Assume, in addition to the conditions on ξ in Theorem 1.2, that E ξ2`δ ă 8

for some δ ą 0. Then, the limit (1.10) holds with all moments, ordinary and absolute.
In other words, if Reα ą 0, then E |rY pαq|r ă 8 for every r ă 8; furthermore, for any
integer ` ě 1,

n´`pα`
1
2 qE

“

rXnpαq
`
‰

“ E
“

rYnpαq
`
‰

Ñ σ´`E
“

rY pαq`
‰

, Reα ą 0, (1.11)

and similarly for absolute moments and mixed moments of rXnpαq and rXnpαq.
Moreover, for each fixed `, (1.11) and its analogues for absolute moments and mixed

moments hold uniformly for α in any fixed compact subset of H`; the limit E rY pαq` is an
analytic function of α P H` while absolute moments and mixed moments of rY pαq and
rY pαq are continuous functions of α P H`.

The result extends to joint moments for several α P H`. The moments of rY pαq may
be computed by (1.20) and the recursion formula (1.25)–(1.26) below. Note that rY pαq is
centered: E rY pαq “ 0; this follows, e.g., by the case ` “ 1 of (1.11). See also Remark 1.15
and Example 1.16.

Remark 1.4. We conjecture that Theorem 1.3 holds also without the extra moment
condition. Note that even without that condition, (1.11) holds for α ‰ 1

2 as a simple
consequence of Theorem 1.12 below. The case α “ 1

2 is more complicated, but has been
treated directly in the special case ξ „ Bip2, 1

2 q (binary trees) by [21]; that special case
satisfies E ξr ă 8 for every r, but it seems likely that the proof in [21] can be adapted
to the general case by arguments similar to those in Section 12. However, we have not
pursued this and leave it as an open problem. See also [9].
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Theorems 1.1 and 1.2 are stated for the centered variables rXnpαq. We obtain results
for Xnpαq by combining Theorems 1.1–1.2 with the asymptotics for the expectation
EXnpαq given in the next theorem, but we first need more notation.

Let T be the Galton–Watson tree (without conditioning) defined by the offspring
distribution ξ; see Section 2.1. It follows from (2.6) that fαpT q “ |T |α has a finite
expectation if and only if Reα ă 1

2 , and we define

µpαq :“ E fαpT q “ E |T |α “
8
ÿ

n“1

nαPp|T | “ nq, Reα ă 1
2 . (1.12)

This is an analytic function in the half-plane Reα ă 1
2 . Note that µpαq depends on the

offspring distribution ξ, although we do not show this in the notation. Note also that
µpαq has a singularity at α “ 1

2 ; in fact, it is easily seen from (2.6) that

µpαq „
p2πσ2q´1{2

1
2 ´ α

, as αÕ 1
2 . (1.13)

Remark 1.5. In Section 10 (Theorem 10.7), we show by a rather complicated argument
that although µpαq Ñ 8 as α Õ 1

2 (se (1.13)), µpαq has a continuous extension to all
other points on the line Reα “ 1

2 .

It is shown by Aldous [2] that if we construct a random fringe tree Tn,V by first
choosing a random conditioned Galton–Watson tree Tn as above, and then a random node
V in the tree, then Tn,V converges in distribution as nÑ8 to the random Galton–Watson
tree T . This was sharpened in [37, Theorem 7.12] to the corresponding ‘quenched’ result:
the conditional distribution of Tn,V given Tn converges in probability to the distribution
of T . As a consequence (see Section 3), we obtain the following results, which show the
central role of µpαq in the study of Xnpαq.

Theorem 1.6. (i) If Reα ď 0, then as nÑ8,

EXnpαq “ µpαqn` opnq. (1.14)

(ii) If Reα ď 0, then Xnpαq{n
p
ÝÑ µpαq.

The following theorem improves and extends the estimate (1.14); in particular, note
that [in parts (i) and (ii)] the error term in (1.14) is improved to o

`

n1{2
˘

for Reα ă 0 and
O
`

n1{2
˘

for Reα “ 0.

Theorem 1.7. The following estimates hold as nÑ8, in all cases uniformly for α in
compact subsets of the indicated domains.

(i) If Reα ă 0, then
EXnpαq “ µpαqn` o

`

n1{2
˘

. (1.15)

(ii) If ´ 1
2 ă Reα ă 1

2 , then

EXnpαq “ µpαqn`
1
?

2σ

Γpα´ 1
2 q

Γpαq
nα`

1
2 ` o

`

npReαq``
1
2

˘

. (1.16)

(iii) If Reα ą 1
2 , then

EXnpαq “
1
?

2σ

Γpα´ 1
2 q

Γpαq
nα`

1
2 ` o

`

nα`
1
2

˘

. (1.17)

(iv) If α “ 1
2 , then

EXnp1{2q “
1

?
2πσ2

n log n` o
`

n log n
˘

. (1.18)
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Remark 1.8. As shown in Theorem 10.8(i), the estimate (1.16) holds also for α “ 1
2 ` iy,

y ‰ 0, where µpαq is the continuous extension described in Remark 1.5.

Theorems 1.1 and 1.7(i) together yield the following variant of (1.5).

Theorem 1.9. If Reα ă 0, then, as nÑ8,

Xnpαq ´ nµpαq
?
n

d
ÝÑ pXpαq. (1.19)

Moreover, this holds in the space HpH´q.
Similarly, Theorems 1.2 and 1.7 [parts (iii) and (ii)] yield the following. We define, for

Reα ą 0 and α ‰ 1
2 , the complex random variable

Y pαq :“ rY pαq `
1
?

2

Γpα´ 1
2 q

Γpαq
. (1.20)

Theorem 1.10. (i) If Reα ą 1
2 , then, as nÑ8,

Ynpαq :“ n´α´
1
2Xnpαq

d
ÝÑ σ´1Y pαq. (1.21)

(ii) If 0 ă Reα ă 1
2 , then, as nÑ8,

n´α´
1
2

“

Xnpαq ´ nµpαq
‰ d
ÝÑ σ´1Y pαq. (1.22)

Moreover, in both cases, this holds in the space HpDq for the indicated domain D.

Remark 1.11. As shown in Theorem 10.8(ii), the limit result (1.22) holds also for
α “ 1

2 ` iy, y ‰ 0, where µpαq is the continuous extension of Remark 1.5.

We can add moment convergence to Theorem 1.10, too.

Theorem 1.12. The limits (1.21) and (1.22) hold with all moments, for Reα ą 1
2 , and

0 ă Reα ă 1
2 , respectively. In other words, for any integer ` ě 1, if Reα ą 1

2 , then

EXnpαq
` “ σ´`EY pαq`n`pα`

1
2 q ` o

`

n`pα`
1
2 q
˘

, (1.23)

and if 0 ă Reα ă 1
2 , then

E
“

Xnpαq ´ nµpαq
‰`
“ σ´`EY pαq`n`pα`

1
2 q ` o

`

n`pα`
1
2 q
˘

. (1.24)

Moreover, in both cases, the moments κ` “ κ`pαq :“ EY pαq` are given by the recursion
formula

κ1 “
Γpα´ 1

2 q?
2 Γpαq

, (1.25)

and, for ` ě 2, with α1 :“ α` 1
2 ,

κ` “
`Γp`α1 ´ 1q
?

2 Γp`α1 ´ 1
2 q
κ`´1 `

1

4
?
π

`´1
ÿ

j“1

ˆ

`

j

˙

Γpjα1 ´ 1
2 qΓpp`´ jqα

1 ´ 1
2 q

Γp`α1 ´ 1
2 q

κjκ`´j . (1.26)

The result extends to joint moments; see Section 12.6.

Remark 1.13. For the case of random binary trees [the case ξ „ Bip2, 1
2 q] and real α,

Theorems 1.10 and 1.12 were shown already by Fill and Kapur [21], by the method used
here in Section 12 to show Theorem 1.12 (namely, singularity analysis of generating
functions and the method of moments). Recently (and independently), the case of
uniformly random ordered trees [ξ „ Gep 1

2 q, in connection with a study of Dyck paths]
has been shown (also by such methods) by Caracciolo, Erba and Sportiello [9], and they
have extended their result to general ξ, at least when ξ has a finite exponential moment
[personal communication].
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Remark 1.14. Theorem 1.10(i) has also been shown by Delmas, Dhersin and Sciauveau
[11] (for α ą 1, or for full binary trees) and Abraham, Delmas and Nassif [1] (in general).
(They consider only real α, but their results extend immediately to complex α.) The
results in these papers are more general and allow more general toll functions, and they
show how the result can be formulated in an interesting way as convergence of random
measures defined by the trees; moreover, they consider also more general conditioned
Galton–Watson trees, where Varpξq may be infinite provided ξ belongs to the domain of
attraction of a stable distribution. We do not consider such extensions here.

Remark 1.15. Centered moments E rY pαqk can as always be found from the ordinary
moments given by the recursion above. Alternatively, [21, Proposition 3.9] gives a (more
complicated) recursion formula for the centered moments that yields them directly. [The
formula there is given for real α, but it extends to complex α with Reα ą 0 by the same
proof or by analytic continuation. Note also the different normalizations: Y there is our
?

2Y pαq.] Another formula for centered moments is given by [9, Proposition 7] [again
with a different normalization: xp there is our 2´1{2Y ppq].

Example 1.16. Consider for simplicity real α ą 0. It follows from (1.25)–(1.26) that

E rY pαq2 “ VarY pαq “ κ2 ´ κ
2
1

“
Γp2αqΓpα´ 1

2 q

Γp2α` 1
2 qΓpαq

`
Γpα´ 1

2 q
2

4
?
πΓp2α` 1

2 q
´

Γpα´ 1
2 q

2

2Γpαq2
, α ‰ 1

2 . (1.27)

Moreover, the moments of rY pαq (which do not depend on ξ) are continuous functions
of α by Theorem 1.3, and thus we can obtain the variance Var rY p 1

2 q by taking the limit
of (1.27) as α Ñ 1

2 . A simple calculation using Taylor and Laurent expansions of Γpzq

yields, cf. [21, Remark 3.6(c)(iv)],

E rY p 1
2 q

2 “ Var rY p 1
2 q “

4 log 2

π
´
π

4
. (1.28)

Higher moments of rY p 1
2 q can be calculated in the same way. The moments of rY p 1

2 q

were originally found in [21, Proposition 3.8 and Theorem 3.10(b)], and given by a
recursion there. [Note again that Y there is our

?
2Y p 1

2 q.] See [9, Proposition 7 and
Table 3] for another formula and explicit expressions up to order 5 (again with a different
normalization).

Theorems 1.1 and 1.2, or 1.9 and 1.10, show that the asymptotic distribution exhibits
a phase transition at Reα “ 0.

Remark 1.17. We do not know how to bridge the gap between the two cases Reα ă 0

and Reα ą 0. Moreover, we do not know the asymptotic distribution, if any, when
Reα “ 0 (excepting the trivial case α “ 0 when Xnp0q “ n is deterministic), although we
note that Theorem 1.6(ii) yields a weaker result on convergence in probability. However,
we conjecture that pn log nq´1{2

rXnpitq converges in distribution to a symmetric complex
normal distribution, for any t ‰ 0.

Problem 1.18. Does Xnpitq have an asymptotic distribution, after suitable normalization,
for (fixed and real) t ‰ 0? If so, what is it?

Remark 1.19. For real αŒ 0, (1.25)–(1.26) show that EY pαq2 Ñ 0, and thus Y pαq
p
ÝÑ 0.

[See also (1.27).] As remarked in [21, Remark 3.6(e)], one can use (1.25)–(1.26) and the
method of moments to show that

α´1{2Y pαq
d
ÝÑ Np0, 2´ 2 log 2q, αŒ 0. (1.29)

If we consider complex α with Reα ą 0, and let α Ñ 0 from various different
directions, then α´1{2Y pαq converges in distribution to various different limits, each of
which has a certain complex normal distribution; see Appendix C.
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If we instead let α Ñ it with t ‰ 0 real, then (1.25)–(1.26) imply that the (complex)
moments EY pαq` converge. However, the absolute moment E |Y pαq|2 Ñ8 by a similar
calculation; see (12.80). It can be shown, again by the method of moments, that in this
case, pReαq1{2Y pαq converges in distribution to a symmetric complex normal distribution;
see Appendix D. As a consequence, the imaginary axis is a.s. a natural boundary for
the random analytic functions Y p¨q and rY p¨q i.e., they have no analytic extension to any
larger domain; see again Appendix D for details.

Theorems 1.7 and 1.10 show another phase transition at Reα “ 1
2 ; this phase

transition comes from the behavior of the mean EXnpαq, while the fluctuations rXnpαq

vary analytically by Theorem 1.2. To be precise, there is a singularity at α “ 1
2 , as

shown by (1.13) together with (1.16) or (1.22). For non-real α on the line Reα “ 1
2 ,

the situation is more complicated. As said in Remarks 1.5, 1.8, and 1.11, the results
for Reα ă 1

2 extend continuously to Reα “ 1
2 , α ‰ 1

2 . Moreover, the next theorem
(Theorem 1.20) shows that if we add a weak moment assumption on ξ, then we can
extend Theorems 1.7 and 1.10 analytically across the line Reα “ 1

2 , and also refine
the result at the exceptional case α “ 1

2 . [The results now depend on ξ through more
than just σ2, see (6.39).] Hence, assuming a higher moment, there is a singularity at
α “ 1

2 but no other singularities at the line Reα “ 1
2 . However, in general (without

higher moments), µpαq cannot be extended analytically across the line Reα “ 1
2 , see

Theorem 11.1; hence, in general the entire line Reα “ 1
2 is a singularity—in other words,

a phase transition.

Theorem 1.20. Suppose that E ξ2`δ ă 8 for some δ P p0, 1s. Then:

(i) µpαq can be analytically continued to a meromorphic function in Reα ă 1
2 `

δ
2 , with

a single pole at α “ 1
2 with residue ´1{

?
2πσ2.

(ii) Using this extension of µpαq, (1.16) holds, uniformly on compact sets, for ´ 1
2 ă

Reα ă 1
2 `

δ
2 with α ‰ 1

2 .

(iii) For some constant c (depending on the offspring distribution),

EXnp
1
2 q “

1
?

2πσ2
n log n` cn` opnq. (1.30)

Remark 1.21. If ξ has higher moments, then µpαq can be continued even further: see
Theorem 6.5. In particular, if ξ has finite moments of all orders, then µpαq can be
continued to a meromorphic function in the entire complex plane C, with poles at j ` 1

2 ,
j “ 0, 1, 2, . . . (or possibly a subset thereof).

Theorem 1.22. Suppose that E ξ2`δ ă 8 for some δ P p0, 1s. Then:

(i) The limit in distribution (1.22) holds for all α P D :“ tα ‰ 1
2 : 0 ă Reα ă 1

2 `
δ
2u;

moreover (1.22) holds in HpDq.
(ii) For some constant c (depending on the offspring distribution),

n´1
”

Xnp
1
2 q ´

1
?

2πσ2
n log n

ı

d
ÝÑ σ´1

rY p 1
2 q ` c. (1.31)

The constants c in (1.30) and (1.31) are equal. The proof yields the formula (6.39).

Remark 1.23. The phase transitions at Reα “ 0 and Reα “ 1
2 can be explained as

follows. Consider for simplicity real α, when all terms in (1.1) are positive. The expected
number of subtrees Tn,v of order k is roughly nPp|T | “ kq “ Θpnk´3{2q, by [37, Theorem
7.12] (see Section 3) and (2.6). Hence, if α ą 1

2 , EXnpαq is dominated by the rather few
large Tn,v of size Θpnq; there are roughly Θpn1{2q such trees, which explains the order
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nα`
1
2 of EXnpαq. For α ă 1

2 , EXnpαq is dominated by the small subtrees Tn,v, of size
Op1q, and this yields the linear behavior of EXnpαq in Theorem 1.7.

For α ă 0, the fluctuations, too, are dominated by the small subtrees (as shown in the
proof of [38, Theorem 1.5]); there are « n of these, and they are only weakly dependent
on each other, and as a result Xnpαq has an asymptotic normal distribution with the
usual scaling.

For 0 ă α ă 1
2 , on the other hand, the mean EXnpαq is dominated by the small

subtrees as just said, but fluctuations are dominated by the large subtrees of order
Θpnq. (To see this, note that for α ą 0 and ε ą 0, the contribution to Xnpαq from
subtrees of order ď εn has variance O

`

ε2αn2α`1
˘

by [38, Theorem 6.7].) Hence, we have

the same asymptotic behavior of rXnpαq as for larger α. The large subtrees are more
strongly dependent on each other, and lead to a non-normal limit; on the other hand,
asymptotically they do not depend on details in the offspring distribution.

At least when Reα ą 1
2 , the limit random variable Y pαq can be expressed as a function

of a normalized Brownian excursion peptqq. [Recall that peptqq is a random continuous
function on r0, 1s; see, e.g., [52] for a definition.] For a function f defined on an interval,
define

mpf ; s, tq :“ inf
uPrs,ts

fpuq. (1.32)

The general representation formula for Reα ą 1
2 is a little bit complicated, and we give

three closely related versions (1.33)–(1.35), where the first two are related by mirror
symmetry and the third, symmetric, formula is the average of the two preceding. (See
further the proof, which also gives a fourth formula (7.27). The representations (1.35)
and (1.36) were stated in [18, (4.2)–(4.3), see also Examples 4.6 and 4.7]; the present
paper gives, after a long delay, the proof promised there.) Note that the integrals
in (1.33)–(1.35) converge (absolutely) a.s. when Reα ą 1

2 , since eptq is a.s. Hölder(γ)-
continuous for every γ ă 1

2 , and thus, e.g., |eptq ´mpe; s, tq| ď Cpt´ sqγ for some random
constant C. (This well-known fact follows e.g. from the corresponding fact for Brownian
motion together with the construction of e from the excursions of the Brownian motion,
see [52, Theorem I.(2.2) and Chapter XII.2–3].)

We also give a simpler expression (1.36) valid for Reα ą 1. [The integral in (1.36)
diverges for Reα ď 1.]

Theorem 1.24. (i) If Reα ą 1
2 , then, jointly for all such α,

Y pαq
d
“ 2α

ż 1

0

tα´1eptqdt

´ 2αpα´ 1q

ĳ

0ăsătă1

pt´ sqα´2
“

eptq ´mpe; s, tq
‰

dsdt (1.33)

“ 2α

ż 1

0

p1´ tqα´1eptqdt

´ 2αpα´ 1q

ĳ

0ăsătă1

pt´ sqα´2
“

epsq ´mpe; s, tq
‰

dsdt (1.34)

“ α

ż 1

0

“

tα´1 ` p1´ tqα´1
‰

eptqdt

´ αpα´ 1q

ĳ

0ăsătă1

pt´ sqα´2 repsq ` eptq ´ 2mpe; s, tqs dsdt. (1.35)
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(ii) If Reα ą 1, we have also the simpler representation

Y pαq
d
“ 2αpα´ 1q

ĳ

0ăsătă1

pt´ sqα´2mpe; s, tqdsdt. (1.36)

Example 1.25. For α “ 1, (1.33)–(1.35) reduce to

Y p1q “ 2

ż 1

0

eptqdt, (1.37)

twice the Brownian excursion area. In fact, with dpvq denoting the depth of a given
node v, it is easy to see that

Xnp1q “
ÿ

vPTn

|Tn,v| “
ÿ

vPTn

pdpvq ` 1q “ n`
ÿ

vPTn

dpvq, (1.38)

i.e., n plus the total pathlength. The convergence of the total pathlength, suitably
rescaled, to the Brownian excursion area was shown by Aldous [3, 4], see also [34]. The
Brownian excursion area has been studied by many authors in various contexts, for
example [43, 44, 57, 58, 59, 55, 25, 24, 33], see also [36] and the further references
there.

Furthermore, for α “ 2, (1.36) reduces to

Y p2q
d
“ 4

ĳ

0ăsătă1

mpe; s, tqdsdt. (1.39)

This too was studied in [34], where Y p2q was denoted η. Moreover, the random variable
P pTnq there equals Xnp1q ´ n, QpTnq equals Xnp2q ´ n

2, and the Wiener index W pTnq “
nP pTnq ´ QpTnq equals nXnp1q ´ Xnp2q. Hence, the limit theorem [34, Theorem 3.1]
follows from Theorems 1.10 and 1.24.

Moreover, as noted by [21], Theorem 1.12 yields for α “ 1 a recursion formula for the
moments of the Brownian excursion area, which is equivalent to the formulas given by
[57, 58, 59, 25, 24], see also [36, Section 2]. Similarly, also noted by [21], Theorem 1.12
yields for α “ 2 the recursion formula for moments of Y p2q given in [34]. More generally,
the recursion in [34] for mixed moments of Y p1q and Y p2q follows from Theorem 12.9
below.

Remark 1.26. For α ą 1
2 , a different (but equivalent) representation of the limit Y pαq

as a function of a Brownian excursion e is given by Delmas, Dhersin and Sciauveau [11,
(1.10) and (2.6)]. That representation can also be written as a functional of the Brownian
continuum random tree; see Abraham, Delmas and Nassif [1, Theorem 1.1].

Remark 1.27. As demonstrated in Section 8, it follows from the proof of Theorem 1.2
given in that section that there exists a representation of Y pαq as a (measurable) func-
tional of e also for 0 ă Reα ď 1

2 with α ‰ 1
2 . However, this is only an existence statement,

and we do not know any explicit representation. More precisely, with H 1` :“ H`zt
1
2u,

there exists a measurable function Ψ : H 1` ˆ Cr0, 1s Ñ C such that

Y pαq “ Ψpα, eq, α P H 1`, (1.40)

where e as above is a Brownian excursion. Moreover, Ψpα, fq is an analytic function of
α P H 1` for every f P Cr0, 1s. For Reα ą 1

2 , Ψpα, eq is a.s. given by the formulas (1.33)–
(1.35), and for Reα ą 1 also by (1.36). Hence, in principle, Ψpα, eq is given by an analytic
extension of (1.36) to all α P H 1`, and such an extension (necessarily unique) exists a.s.
(Note that for Reα ă 1, the double integrals in (1.33)–(1.35) do not converge for every
function e P Cr0, 1s, so we can only claim existence of the extension a.s.)
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Similarly, rY pαq is a measurable functional of e also for α “ 1
2 , and there is a measur-

able function rΨ : H` ˆ Cr0, 1s Ñ C such that

rY pαq “ rΨpα, eq, α P H`. (1.41)

We concede that the existence of an analytic extension Ψpα, eq gives a “representation”
of Y pαq only in a rather abstract sense.

Problem 1.28. Find an explicit representation for Y pαq as a function of e for 0 ă Reα ă
1
2 , or even for 0 ă α ă 1

2 .

Finally, we consider real α and let αÑ8. We show the following asymptotic result
yielding a limit of the limit in Theorem 1.10; this improves a result in [21] which shows
the existence of such a limit together with (1.44). Let Bptq, t ě 0, be a standard Brownian
motion, and let

Sptq :“ sup
sPr0,ts

Bpsq (1.42)

be the corresponding supremum process.

Theorem 1.29. As αÑ `8 along the real axis, we have α1{2Y pαq
d
ÝÑ Y8, where Y8 is

a random variable with the representation

Y8 “

ż 8

0

e´tSptqdt. (1.43)

and moments
EY k8 “ 2´k{2

?
k!, k ě 0, (1.44)

and more generally, for real or complex r,

EY r8 “ 2´r{2
a

Γpr ` 1q, Re r ą ´1. (1.45)

Further representations of Y8 are given in (9.24) and (9.26).

Remark 1.30. Since convergence in the space HpDq (for a domain D Ď C) of a sequence
of analytic functions implies convergence of their derivatives, the results above imply
corresponding results for X 1npαq and Y 1npαq (and also for higher derivatives). Note that
X 1npαq is the additive functional given by the toll function d

dαfαpT q “ |T |α log |T |. In
particular, we have

X 1np0q “
ÿ

vPTn

log |Tn,v| “ log
ź

vPTn

|Tn,v|, (1.46)

which is known as the shape functional, see e.g. [16, 46]. Unfortunately, because of the
phase transition at Reα “ 0, most of our results do not include 0 in their domains. The
exception is Theorem 1.7(ii), which implies

EX 1np0q “ µ1p0qn` o
`

n1{2 log n
˘

, (1.47)

where the error term is obtained from (1.16) and Cauchy’s estimates using the circle
|z| “ 1{ log n. More precise estimates of EX 1np0q have been proved by [16, 21, 17]
[random binary trees, the case ξ „ Bip2, 1

2 q], and [46] (general ξ with an exponential
moment); furthermore, these papers also give results for the variance (which is of order
n log n). Moreover, asymptotic normality of X 1np0q has been shown in special cases by
Pittel [50] [random labelled trees, the case ξ „ Pop1q], Fill and Kapur [21] [random
binary trees, the case ξ „ Bip2, 1

2 q], and Caracciolo, Erba and Sportiello [9] [random
ordered trees, the case ξ „ Gep 1

2 q]. We have been able to extend this to general ξ,
assuming E ξ2`δ ă 8 for some δ ą 0, by suitable modifications of the arguments in

EJP 27 (2022), paper 114.
Page 11/77

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP831
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Sum of powers of subtree sizes

Section 12 (we might provide details in future work). It seems to be an open problem to
show asymptotic normality of X 1np0q for arbitrary ξ with 0 ă Var ξ ă 8 (and E ξ “ 1, as
always).

Note that although the asymptotic normality of X 1np0q does not follow from the results
in the present paper, it fits well together with Theorem 1.1 which shows that Xnpαq is
asymptotically normal for every α ă 0.

The contents of the paper are as follows. Section 2 contains some preliminaries.
Section 3 gives the simple proof of Theorem 1.6. Section 4 shows two lemmas on
tightness, and Section 5 then gives a short proof of Theorem 1.1. Section 6 is a detailed
study of the expectation EXnpαq. Section 7 treats convergence to Brownian excursion
and functions thereof. Section 8 gives some remaining proofs. Section 9 discusses the
limit as real αÑ `8. Sections 10 and 11 give proofs and a counterexample, respectively,
for the case Reα “ 1

2 . Section 12 studies moments and gives proofs of Theorems 1.3
and 1.12. This section uses a method different from that of the previous sections; the
two methods complement each other and combine in the proof of Theorem 1.3. Finally,
Appendix A discusses calculation of µpαq and gives some examples of it; Appendix B
gives a proof of a technical lemma in Section 12, together with some background on
polylogarithms used in the proof; Appendices C and D give proofs of the additional
results claimed in Remark 1.19.

2 Preliminaries and notation

2.1 Conditioned Galton–Watson trees

Given a non-negative integer-valued random variable ξ, with distribution Lpξq, the
Galton–Watson tree T with offspring distribution Lpξq is constructed recursively by
starting with a root and giving each node a number of children that is a new copy
of ξ, independent of the numbers of children of the other nodes. Obviously, only the
distribution Lpξq of ξ matters; we abuse language and say also that T has offspring
distribution ξ. Furthermore, let Tn be T conditioned on having exactly n nodes; this is
called a conditioned Galton–Watson tree. (We consider only n such that Pp|T | “ nq ą 0.)

We assume that Ppξ “ 0q ą 0, since otherwise the tree T is a.s. infinite. In fact,
we consider here only the critical case E ξ “ 1; in this case T is a.s. finite (provided
Ppξ ‰ 1q ą 0). It is well known that in most cases, but not all, a conditioned Galton–
Watson tree with an offspring distribution ξ1 with an expectation E ξ1 ‰ 1 is equivalent to
a conditioned Galton–Watson tree with another offspring distribution ξ satisfying E ξ “ 1,
so this is only a minor restriction. See e.g. [37, Section 4] for details.

We also assume 0 ă Var ξ ă 8 (but usually no higher moment assumptions).

Remark 2.1. More generally, a simply generated random tree Tn defined by a given
sequence of non-negative weights pφkq80 is a random ordered tree with n nodes such
that for every ordered tree T with |T | “ n, the probability PpTn “ T q is proportional
to

ś

vPT φδ`pvq, where δ`pvq denotes the outdegree of v, see e.g. [45] or [12, Section
1.2.7]. Every conditioned Galton–Watson tree is a simply generated random tree, and
the converse holds under a weak condition. In particular, if the generating function
Φpzq :“

ř8

k“0 φkz
k has a positive radius of convergence R and there exists τ with

0 ă τ ă R and τΦ1pτq “ Φpτq (which is a common assumption in studies of simply
generated random trees), then the simply generated random tree Tn equals a conditioned
Galton–Watson tree defined by a suitable ξ with E ξ “ 1; furthermore, this ξ has finite
moment generating function E etξ ă 8 at some t ą 0, and thus finite moments of all
orders. Again, see e.g. [37, Section 4] for details.
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Let ξ1, ξ2, . . . be independent copies of ξ and define

Sn :“
n
ÿ

i“1

ξi. (2.1)

It is well known (see Otter [48], or [37, Theorem 15.5] and the further references given
there) that for any n ě 1,

Pp|T | “ nq “
1

n
PpSn “ n´ 1q. (2.2)

In particular, (1.12) can be written

µpαq “
8
ÿ

n“1

nα´1PpSn “ n´ 1q, Reα ă 1
2 . (2.3)

For some examples where exact (and in one case rational) values of µpαq can be
computed when α is a negative integer, see Appendix A.

Recall that the span of an integer-valued random variable ξ, denoted spanpξq, is the
largest integer h such that ξ P a ` hZ a.s. for some a P Z; we consider only ξ with
Ppξ “ 0q ą 0 and then the span is the largest integer h such that ξ{h P Z a.s., i.e., the
greatest common divisor of tn : Ppξ “ nq ą 0u. (Typically, h “ 1, but we have for example
h “ 2 in the case of full binary trees, when ξ P t0, 2u.) The local limit theorem for discrete
random variables can in our setting can be stated as follows; see, e.g., [41, Theorem
1.4.2] or [49, Theorem VII.1].

Lemma 2.2 (Local limit theorem). Suppose that ξ is an integer-valued random variable
with Ppξ “ 0q ą 0, E ξ “ 1, 0 ă σ2 :“ Var ξ ă 8, and span h. Then, as nÑ8, uniformly
in all m P hZ,

PpSn “ mq “
h

?
2πσ2n

”

e´pm´nq
2
{p2nσ2

q ` op1q
ı

. (2.4)

In particular, for any fixed ` P Z, as nÑ8 with n ” ` pmod hq,

PpSn “ n´ `q „
h

?
2πσ2

n´1{2. (2.5)

Combining (2.2) and (2.5) we see that

Pp|T | “ nq „
h

?
2πσ2

n´3{2 (2.6)

as nÑ8 with n ” 1 pmod hq. [The probability is 0 when n ı 1 pmod hq.]
We will for simplicity assume in some proofs below that the span of ξ equals 1;

then (2.6) is valid as nÑ8 without restriction. However, this is just for convenience,
and the results hold also for h ą 1, using standard modifications of the arguments. (We
leave these to the reader, but give sometimes a hint.)

2.2 Random analytic functions

For a domain (non-empty open connected set) D Ď C, let HpDq denote the space of
all analytic functions on D, equipped with the usual topology of uniform convergence on
compact sets; this is a topological vector space with the topology given by the seminorms
pKpfq :“ supzPK |fpzq|, with K ranging over all compact subsets of D. The space HpDq
is a Fréchet space, i.e., a locally convex space with a topology that can be defined by
a complete translation-invariant metric, and it has (by Montel’s theorem on normal
families) the property that every closed bounded subset is compact, see e.g. [53, §1.45]
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or [60, Example 10.II and Theorem 14.6]. Furthermore, HpDq is separable. HpDq is
thus a Polish space (i.e., a complete separable metric space). We equip HpDq with
its Borel σ-field, and note that this is generated by the point evaluations f ÞÑ fpzq,
z P D. [This can be seen by choosing an increasing sequence pKiq of compact sets
with D “

Ť

iKi, and a countable dense subset pfjq of HpDq, and noting that then the
sets Ui,j,n :“ tf : pKipf ´ fjq ă 1{nu form a countable basis of the topology of HpDq;
furthermore, each Ui,j,n belongs to the σ-field generated by the point evaluations. We
omit the standard details.] It follows from this and the monotone class theorem that
the distribution of a random function f in HpDq is determined by its finite-dimensional
distributions (i.e., the distributions of finite sets of point evaluations).

We can use the general theory in e.g. Billingsley [5] or Kallenberg [40] for conver-
gence in distribution of random functions in HpDq. In particular, recall that a sequence
pXnq of random variables in a metric space S is tight if for every ε ą 0, there exists a
compact subset K Ď S such that PpXn P Kq ą 1 ´ ε for every n. Prohorov’s theorem
[5, Theorems 6.1–6.2], [40, Theorem 16.3] says that in a Polish space, a sequence Xn

is tight if and only if the corresponding sequence of distributions LpXnq is relatively
compact, i.e., each subsequence has a subsubsequence that converges in distribution.

It is easy to characterize tightness in HpDq in terms of tightness of real-valued
random variables.

Lemma 2.3. Let D be a domain in C, and let pXnpzqq be a sequence of random analytic
functions on D. Then the following are equivalent.

(i) The sequence pXnpzqq is tight in HpDq.
(ii) The sequence psupzPK |Xnpzq|q is tight for every compact K Ă D.

(iii) The sequence psupzPB |Xnpzq|q is tight for every closed disc B Ă D.

Proof. This proof is an easy exercise that we include for completeness.
(i) ùñ (ii) ùñ (iii) is trivial.
(iii) ùñ (i). Assume that (iii) holds and choose a sequence of closed discs Bj Ă D,

j ě 1, such that the interiors B˝j cover D. Let ε ą 0. Then, by (iii), for each j there exists
Mj ă 8 such that PpsupzPBj |Xnpzq| ąMjq ă 2´jε. Let L :“ tf P HpDq : supzPBj |fpzq| ď

Mj for all ju. Each compact subset K of D is covered by a finite collection of open
discs B˝j , and it follows that there exists MK ă 8 such that if f P L, then pKpfq :“

supzPK |fpzq| ďMK . In other words, supfPL pKpfq ă 8 for each compact K Ă D, which
says that L is bounded in HpDq, because the topology is defined by the seminorms pK [60,
Proposition 14.5]. Moreover, L is a closed set in HpDq, and thus L is compact in HpDq
by the Montel property mentioned above. Furthermore, PpXn R Lq ă

ř8

j“1 2´jε “ ε.

This leads to the following simple sufficient condition.

Lemma 2.4. Let D be a domain in C and let pXnpzqq be a sequence of random analytic
functions in HpDq. Suppose that there exists a function γ : D Ñ p0,8q, bounded on each
compact subset of D, such that E |Xnpzq| ď γpzq for every z P D. Then the sequence
pXnq is tight in HpDq.

Proof. Let B Ă D be a closed disc. There exists a circle Γ Ă D such that B lies in the
interior of Γ. If f P HpDq, then the value fpzq at a point inside Γ can be expressed by
a Poisson integral

ş

Γ
P pz, wqfpwq|dw| over the circle Γ, where P is the Poisson kernel.

(This is because analytic functions are harmonic. See e.g. [54, 11.4, 11.12, and 11.13].)
Furthermore, the Poisson kernel is continuous, and thus bounded by some constant C1

for all z P B and w P Γ. Consequently, for every f P HpDq we have

sup
zPB

|fpzq| ď C1

ż

Γ

|fpwq| |dw|. (2.7)
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Applying this to Xnpzq and taking the expectation, we obtain

E sup
zPB

|Xnpzq| ď C1E

ż

Γ

|Xnpwq| |dw| “ C1

ż

Γ

E |Xnpwq| |dw|

ď C1

ż

Γ

γpwq |dw| ă 8. (2.8)

Hence the sequence pXnq satisfies Lemma 2.3(iii) (by Markov’s inequality), and the
conclusion follows by Lemma 2.3.

We shall also use the following, which again uses properties of analytic functions.

Lemma 2.5. Let D be a domain in C and let E be a subset of D that has a limit point in
D. (I.e., there exists a sequence zn P E of distinct points and z8 P D such that zn Ñ z8.)
Suppose that pXnq is a tight sequence of random elements of HpDq and that there exists

a family of random variables tYz : z P Eu such that for each z P E, Xnpzq
d
ÝÑ Yz and,

moreover, this holds jointly for any finite set of z P E. Then Xn
d
ÝÑ Y in HpDq, for some

random function Y pzq P HpDq. Furthermore, Y pzq
d
“ Yz, jointly for any finite set of z P E.

That is, Y restricted to E and pYzq have the same finite-dimensional distributions, and
thus have the same distribution as random elements of CE .

Proof. It suffices to consider the case when E “ tz1, z2, . . . u with zn Ñ z8 P D. The
result then is a special case of Bousquet-Mélou and Janson [8, Lemma 7.1]; in the
notation there we take S1 “ HpDq, S2 “ C

E and let φ be the obvious restriction map
fpzq ÞÑ pfpziqq

8
i“1; note that φ is injective by the standard uniqueness for analytic

functions. The assumption of joint convergence Xnpzq
d
ÝÑ Yz for any finite subset of E is

equivalent to the convergence φpXnq
d
ÝÑ pYziq in CE , since this space has the product

topology [5, p. 19]. The conclusion follows from [8, Lemma 7.1].

Remark 2.6. Lemma 2.5 may fail if we do not assume joint convergence; i.e., if only

Xnpzq
d
ÝÑ Yz for each z P E separately. For a counterexample, let D “ C and E “

tz : |z| “ 1u; further, let U be uniformly distributed on the unit circle tz : |z| “ 1u, let

X2npzq :“ U (a constant function) and X2n`1pzq :“ Uz. Then Xnpzq
d
ÝÑ U for each fixed

z P E, and pXnq is tight in HpDq by Lemma 2.4 with γpzq :“ maxt1, |z|u, but Xn does not
converge in HpCq; for example, Xnp0q does not converge in distribution.

We do not know whether it would be sufficient to assume Xnpzq
d
ÝÑ Yz for each z P E

separately in the case when E contains a non-empty open set.

2.3 Dominated convergence

To show uniformity in α of various estimates, we use the following simple, but perhaps
not so well known, version of Lebesgue’s dominated convergence theorem.

Lemma 2.7. Let A be an arbitrary index set. Suppose that, for α P A and n ě 1, fα,npxq
are measurable functions on a measure space pS,F , µq, and that for a.e. fixed x P S,
we have fα,npxq Ñ gαpxq as nÑ8, uniformly in α P A. Suppose furthermore that hpxq
is an integrable function on S, such that |fα,npxq| ď hpxq a.e. for each α and n. Then
ş

S fα,npxqdµpxq Ñ
ş

S gαpxqdµpxq as nÑ8, uniformly in α P A.

Proof. Note first that the assumptions imply |gαpxq| ď hpxq a.e. for each α; hence,
ˇ

ˇfα,npxq ´ gαpxq
ˇ

ˇ ď 2hpxq a.e. Let αn be an arbitrary sequence of elements of A. Then
ş

S
`

fαn,npxq ´ gαnpxq
˘

dµpxq Ñ 0 as nÑ8 by the standard dominated convergence
theorem. The result follows.
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Remark 2.8. Suppose that the assumptions of Lemma 2.7 hold, and furthermore that
A is an open set in the complex plane and that gαpxq is an analytic function of α for
every x P S, and jointly measurable in α and x. Then the limit Gpαq :“

ş

S gαpxqdµpxq

is an analytic function of α P A. To see this, note again that the assumptions imply
|gαpxq| ď hpxq a.e. for each α. It follows by dominated convergence that Gpαq is a
continuous function of α, and by Fubini’s theorem that the line integral of Gpαq around
the boundary of any closed triangle inside A is 0; hence Gpαq is analytic by Morera’s
theorem.

2.4 Further notation

We denote the distance between two nodes v and w in a tree by dpv, wq. Furthermore,
we let dpvq :“ dpv, oq denote the distance from v to the root o; this is usually called the
depth of v.

For two nodes v, w of a rooted tree T , v ă w means that w is a descendant of v. Thus,
w P Tv ðñ w ľ v. Furthermore, v ^ w denotes the last common ancestor of v and w.
Thus,

u ĺ v ^ w ðñ pu ĺ vq ^ pu ĺ wq. (2.9)

For real numbers x and y, x ^ y is another notation for minpx, yq. Furthermore, x` :“

maxpx, 0q and x´ :“ ´minpx, 0q.
Unspecified limits are as nÑ8.
C,C1, . . . and c, c1, . . . denote positive constants (typically with large and small values,

respectively), not necessarily the same at different places. The constants may depend on
the offspring distribution ξ; they may also depend on other parameters that are indicated
as arguments.

3 The case Reα ď 0, convergence in probability

Proof of Theorem 1.6. By (1.3), recalling that V is a random node in Tn,

E
`

fαpTn,V q | Tn
˘

“
1

n

ÿ

vPTn

|Tn,v|α “
1

n
Xnpαq, (3.1)

and consequently

E fαpTn,V q “
1

n
EXnpαq. (3.2)

The random trees defined in Section 1 may be regarded as random elements of the
countable discrete set T of finite ordered rooted trees. As noted just before the statement

of Theorem 1.6 in Section 1, Aldous [2] shows that Tn,V
d
ÝÑ T , as random elements of T.

If Reα ď 0, then fα is a bounded function on T, trivially continuous since T is discrete.
Hence, it follows from (3.2) that

1

n
EXnpαq “ E fαpTn,V q Ñ E fαpT q “ µpαq, (3.3)

showing (1.14).
Similarly, by [37, Theorem 7.12], the conditional distribution of Tn,V given Tn con-

verges (as a random element of the space of probability distributions on T) in probability
to the distribution of T , which by (3.1) yields part (ii) of Theorem 1.6.

4 Tightness

Recall the notation at (1.3)–(1.4) and (1.8)–(1.9).
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Lemma 4.1. (i) For Reα ă 0 and all n ě 1, E | rXnpαq|
2 ď Cpαqn, for some constant

Cpαq “ O
`

1`|Reα|´2
˘

; thus Cpαq is bounded on each proper half-space tα : Reα ă ´ε ă

0u. (ii) For Reα ą 0 and all n ě 1, E | rXnpαq|
2 ď Cpαqn2 Reα`1 and thus E |rYnpαq|2 ď Cpαq,

for some constant Cpαq “ O
`

1 ` pReαq´2
˘

; thus Cpαq is bounded on each proper half-
space tα : Reα ą ε ą 0u.

Proof. Recall the notation fαpT q :“ |T |α. We apply [38, Theorem 6.7] to (the real and
imaginary parts of) the functional fpT q :“ fαpT q¨1|T |ďn. Since |fpTkq| “ |fαpTkq| “ |kα| “
kReα for k ď n, and fpTkq “ 0 for k ą n, this yields

`

E | rXnpαq|
2
˘1{2

ď C1n
1{2

´

sup
kďn

kReα `

n
ÿ

k“1

kReα´1
¯

ď

#

C2pαqn
1{2, Reα ă 0,

C3pαqn
Reα` 1

2 , Reα ą 0,

with C2pαq “ O
`

1` |Reα|´1
˘

and C3pαq “ O
`

1` |Reα|´1
˘

.

Lemma 4.2. (i) The family of random functions n´1{2
rXnpαq is tight in the space HpH´q.

(ii) The family of random functions rYnpαq :“ n´α´
1
2 rXnpαq is tight in the space HpH`q.

Proof. This is an immediate consequence of Lemmas 2.4 and 4.1 (and the Cauchy–
Schwarz inequality).

5 The case Reα ă 0

Proof of Theorem 1.1. For a fixed real α ă 0, [38, Theorem 1.5] yields (1.5) with pXpαq „

N
`

0, γ2pαq
˘

for some γ2pαq ě 0. Furthermore, as remarked in [38], [38, Theorem 1.5]
extends, by the Cramér–Wold device, to joint convergence for several functionals. By
considering Re fα and Im fα, we thus obtain (1.5) for complex α P H´; furthermore, we
obtain joint convergence for any finite set of (real or complex) such α. The convergence
in HpH´q now follows from Lemmas 4.2(i) and 2.5, taking D “ E “ H´.

The symmetry (1.6) is now obvious, since the corresponding formula for Xnpαq follows
trivially from the definition (1.3). Finally, (1.7) follows from [38, (1.16)] and polarization
(i.e., considering linear combinations).

Remark 5.1. Furthermore, [38, (1.17)] and polarization yield a formula for the covari-
ance function, for Reα,Reβ ă 0:

E
`

pXpαq pXpβq
˘

“ E
`

fαpT q
`

FβpT q ´ |T |µpβq
˘˘

` E
`

fβpT q
`

FαpT q ´ |T |µpαq
˘˘

´ µpα` βq `
`

1´ σ´2
˘

µpαqµpβq. (5.1)

6 The mean

Lemma 6.1. For any complex α,

EXnpαq “ n
n
ÿ

k“1

PpSn´k “ n´ kqPpSk “ k ´ 1q

PpSn “ n´ 1q
kα´1. (6.1)

Proof. By [38, Lemma 5.1], summing over k,

EXnpαq “ EFαpTnq “
n
ÿ

k“1

n
PpSn´k “ n´ kq

PpSn “ n´ 1q
E fα,kpT q (6.2)
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where fα,kpT q :“ fαpT q1|T |“k “ kα1|T |“k and thus, using (2.2),

E fα,kpT q “ kαPp|T | “ kq “ kα´1PpSk “ k ´ 1q. (6.3)

The result follows.

We now prove Theorem 1.7. We begin with part (i), which follows from [38], and
part (iii), which is rather easy.

Proof of Theorem 1.7(i). The estimate (1.15) is an instance of [38, (1.13)], and the proof
in [38] shows that the estimate holds uniformly in each half-space Reα ă ´ε ă 0.

Proof of Theorem 1.7(iii). We write (6.1) as EXnpαq “ nα´
1
2

řn
k“1 gn,αpkq where

gn,αpkq :“
PpSn´k “ n´ kqPpSk “ k ´ 1q

PpSn “ n´ 1q
kα´1n´α`

3
2 . (6.4)

Thus, converting the sum in (6.1) to an integral by letting k :“ rxns,

n´α´
1
2 EXnpαq “ n´1

n
ÿ

k“1

gn,αpkq “

ż 1

0

gn,αprxnsqdx. (6.5)

Assume for simplicity spanpξq “ 1. [Otherwise, replace rxns by xn rounded upwards to
the nearest integer k ” 1 pmod spanpξqq, and make minor modifications.] For any fixed
x P p0, 1q, it then follows from (2.5) that as nÑ8, for any fixed α and uniformly for α in
a compact set,

gn,αprxnsq „
pn´ nxq´1{2pnxq´1{2

?
2πσ2 n´1{2

pnxqα´1n´α`
3
2 “

1
?

2πσ2
p1´ xq´1{2xα´

3
2 . (6.6)

Furthermore, (2.5) similarly also implies that, for n so large that PpSn “ n´ 1q ą 0,

|gn,αprxnsq| ď Cp1´ xq´1{2x´pReα´ 3
2 q´ (6.7)

for some constant C (depending on the offspring distribution, but not on α). Since
we assume Reα ą 1

2 , the right-hand side of (6.7) is integrable, and thus dominated
convergence and (6.6) yield, evaluating a beta integral,

ż 1

0

gn,αprxnsqdxÑ
1

?
2πσ2

ż 1

0

xα´3{2p1´ xq´1{2 dx

“
1

?
2πσ2

B
`

α´ 1{2, 1{2
˘

“
1

?
2πσ2

Γpα´ 1{2qΓp1{2q

Γpαq

“
1
?

2σ

Γpα´ 1{2q

Γpαq
. (6.8)

Moreover, using Lemma 2.7, this holds uniformly for α in each compact subset of
tα : Reα ą 1

2u. The result follows by (6.5).

Before completing the proof of Theorem 1.7, we give another lemma with a related
estimate for EXnpαq. We define, compare (1.12) and (2.3), for any complex α,

µnpαq :“ E
`

|T |α1|T |ďn
˘

“

n
ÿ

k“1

kαPp|T | “ kq “
n
ÿ

k“1

kα´1PpSk “ k ´ 1q. (6.9)

EJP 27 (2022), paper 114.
Page 18/77

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP831
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Sum of powers of subtree sizes

Lemma 6.2. If Reα ą ´ 1
2 , then, as nÑ8,

EXnpαq “ nµnpαq `
1
?

2σ

„

Γpα´ 1
2 q

Γpαq
´
π´1{2

α´ 1
2



nα`
1
2 ` o

`

npReαq``
1
2

˘

. (6.10)

Moreover, this holds uniformly for any compact set of α with Reα ą ´ 1
2 .

Remark 6.3. For α “ 1
2 , the square bracket in (6.10) is interpreted by continuity. With

ψpxq :“ Γ1pxq{Γpxq, the value at 1
2 is easily found to be π´1{2

`

ψp1q´ψp 1
2 q
˘

“ p2 log 2qπ´1{2,
using [47, 5.4.12–13].

Proof. This time we use (6.1) and (6.9) to obtain, with gn,αpkq as in (6.4), cf. (6.5),

EXnpαq ´ nµnpαq “ nα´
1
2

n
ÿ

k“1

“

gn,αpkq ´ n
3
2´αkα´1PpSk “ k ´ 1q

‰

“ nα´
1
2

n
ÿ

k“1

hn,αpkq,

(6.11)

where, see (6.4),

hn,αpkq :“ gn,αpkq ´ n
3
2´αkα´1PpSk “ k ´ 1q

“ n
3
2´αkα´1PpSk “ k ´ 1q

„

PpSn´k “ n´ kq

PpSn “ n´ 1q
´ 1



. (6.12)

We use once more (2.5) and see that, assuming for simplicity that ξ has span 1, for
any fixed x P p0, 1q, for any fixed α and uniformly for α in a compact set,

hn,αprxnsq Ñ
1

?
2πσ2

xα´
3
2

”

p1´ xq´1{2 ´ 1
ı

. (6.13)

Furthermore, by (2.5), for all n, k, and α,

n
3
2´αkα´1PpSk “ k ´ 1q “ O

´´k

n

¯Reα´ 3
2
¯

. (6.14)

If 1 ď k ď n{2, then by [38, Lemma 5.2(i)],

PpSn´k “ n´ kq

PpSn “ n´ 1q
´ 1 “ O

ˆ

k

n

˙

` o
`

n´1{2
˘

, (6.15)

and if n{2 ă k ď n, then by [38, Lemma 5.2(ii)],

PpSn´k “ n´ kq

PpSn “ n´ 1q
´ 1 “ O

ˆ

n1{2

pn´ k ` 1q1{2

˙

. (6.16)

For k ě n1{2, the bound in (6.15) is Opk{nq. Let h˚n,αpkq :“ hn,αpkq1kěn1{2 , and fix α
with Reα ą ´ 1

2 . Then, combining (6.12) and (6.14)–(6.16), for all n and x P p0, 1q,

h˚n,αprxnsq “ O
`

x´pReα´ 1
2 q´ ` p1´ xq´1{2

˘

. (6.17)

This bound is integrable, and thus dominated convergence and (6.13) yield

n´1
ÿ

n1{2ďkďn

hn,αpkq “

ż 1

0

h˚n,αprxnsqdxÑ
1

?
2πσ2

ż 1

0

xα´
3
2

”

p1´ xq´1{2 ´ 1
ı

dx. (6.18)

The integral on the right-hand side of (6.18) converges for any α with Reα ą ´ 1
2 , and

defines an analytic function in that region. If Reα ą 1
2 , we have

ż 1

0

xα´
3
2

”

p1´ xq´1{2 ´ 1
ı

dx “

ż 1

0

xα´
3
2 p1´ xq´1{2 dx´

ż 1

0

xα´
3
2 dx
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“ B
`

α´ 1
2 ,

1
2

˘

´
1

α´ 1
2

“
Γpα´ 1

2 qΓp
1
2 q

Γpαq
´

1

α´ 1
2

. (6.19)

The right-hand side in (6.19) is analytic for Reα ą ´ 1
2 (with a removable singularity at

α “ 1
2 ), and thus by analytic continuation, (6.19) holds as soon as Reα ą ´ 1

2 .

By combining (6.11), (6.18), and (6.19), we obtain the main terms in (6.10). However,
it remains to show that the terms with k ă n1{2 in (6.11) are negligible. For this we use
again (6.14) and (6.15) and obtain

ÿ

kă
?
n

hn,αpkq ď C
ÿ

kă
?
n

´k

n

¯Reα´ 1
2

` o
`

n´1{2
˘

ÿ

kă
?
n

´k

n

¯´pReαq´´
3
2

ď C1pαqn
1
2 pReα` 1

2 q`
1
2´Reα ` o

`

n1`pReαq´
˘

“ o
`

n1`pReαq´
˘

. (6.20)

This shows that the contribution to (6.11) for kăn1{2 is o
`

nReα` 1
2`pReαq´

˘

“o
`

npReαq``
1
2

˘

,
which completes the proof of (6.10).

Moreover, the estimates (6.13), (6.17), and (6.20) hold uniformly in any compact
subset of tα : Reα ą ´ 1

2u, which using Lemma 2.7 gives the uniformity in (6.10).

Proof of Theorem 1.7(ii). Assume again for simplicity that ξ has span 1. Then (2.5) yields

PpSk “ k ´ 1q “
1

?
2πσ2

k´
1
2 p1` εkq, (6.21)

with εk Ñ 0 as k Ñ8, and thus, using dominated convergence, for Reα ă 1
2 ,

n
1
2´α

“

µpαq ´ µnpαq
‰

“ n
1
2´α

8
ÿ

k“n`1

kα´1PpSk “ k ´ 1q

“
1

?
2πσ2

ż 8

1

ˆ

rxns

n

˙α´ 3
2

p1` εrxnsqdx

Ñ
1

?
2πσ2

ż 8

1

xα´
3
2 dx “

1
?

2πσ2p 1
2 ´ αq

. (6.22)

Moreover, by Lemma 2.7, (6.22) holds uniformly in every half-plane Reα ă b ă 1
2 . The

result follows by combining (6.10) and (6.22).

Proof of Theorem 1.7(iv). By (6.9) and (6.21), again assuming spanpξq “ 1,

µnp
1
2 q “

n
ÿ

k“1

1
?

2πσ2
k´1p1` εkq “

1
?

2πσ2
log n` oplog nq, (6.23)

and the result follows from Lemma 6.2.

6.1 Extensions assuming higher moments

We first prove Theorem 1.20 where we assume E ξ2`δ ă 8 for some δ P p0, 1s. For an
example (without higher moments) where µpαq cannot be extended analytically across
the line α “ 1

2 , see Theorem 11.1 in Section 11.
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Proof of Theorem 1.20. Assume again for simplicity that spanpξq “ 1. Then the assump-
tion E ξ2`δ ă 8 implies that (2.5) can be improved to

PpSn “ n´ 1q “
1

?
2πσ2

n´1{2 ` rpnq, (6.24)

with
rpnq “ O

`

n´
1
2´

δ
2

˘

, (6.25)

see [30, Theorem 6.1], [31, Theorem 4.5.3 and 4.5.4].
(i): Consequently, with ζp¨q denoting the Riemann zeta function, (2.3) yields

µpαq “
1

?
2πσ2

8
ÿ

n“1

nα´
3
2 `

8
ÿ

n“1

nα´1rpnq “
ζp 3

2 ´ αq?
2πσ2

`

8
ÿ

n“1

nα´1rpnq, (6.26)

where the final sum by (6.25) converges and is analytic in α for Reα ă 1
2 `

δ
2 . It is well

known that the Riemann zeta function can be extended to a meromorphic function in the
complex plane, with a single pole at 1 with residue 1. The result follows. [If spanpξq ą 1,
we use the Hurwitz zeta function [47, §25.11] instead of the Riemann zeta function.]

(ii): Let Dδ :“ tα ‰ 1
2 : ´ 1

2 ă Reα ă 1
2 `

δ
2u, D

δ
´ :“ tα P Dδ : Reα ă 1

2u, and
Dδ
` :“ tα P Dδ : Reα ą 1

2u. Furthermore, fix a compact subset K of Dδ. Define, for k ě 2

and for k “ 1 and Reα ą 1
2 ,

apk, αq :“ kα´
3
2 ´ pα´ 1

2 q
´1

“

kα´
1
2 ´ pk ´ 1qα´

1
2

‰

, (6.27)

bpk, αq :“
1

?
2πσ2

apk, αq ` kα´1rpkq. (6.28)

Note that for k ě 2 and α P K, by a Taylor expansion,

apk, αq “ O
`

kReα´ 5
2

˘

, (6.29)

where the implied constant depends only on K, and thus, using also (6.25),

bpk, αq “ O
`

kReα´ 3
2´

δ
2

˘

. (6.30)

By (6.24), (6.27), and (6.28),

kα´1PpSk “ k ´ 1q “
pα´ 1

2 q
´1

?
2πσ2

“

kα´
1
2 ´ pk ´ 1qα´

1
2

‰

` bpk, αq, (6.31)

where either k ě 2 or k ě 1 and α P Dδ
`.

It follows from (6.29) that
ř8

k“2 apk, αq converges for α P Dδ and defines an analytic
function there. Furthermore, if α P Dδ

´, then, summing the telescoping sum,

8
ÿ

k“2

apk, αq “ ζ
`

3
2 ´ α

˘

´ 1`
`

α´ 1
2

˘´1
, (6.32)

and consequently, by (6.26),

µpαq “
1

?
2πσ2

˜

8
ÿ

k“2

apk, αq ` 1´
`

α´ 1
2

˘´1

¸

`

8
ÿ

k“1

kα´1rpkq. (6.33)

Both sides of (6.33) are analytic in Dδ, so by analytic continuation, (6.33) holds for all
α P Dδ (and also for Reα ď ´ 1

2 ). In particular, for α P Dδ
`, where ap1, αq is defined,

µpαq “
1

?
2πσ2

8
ÿ

k“1

apk, αq `
8
ÿ

k“1

kα´1rpkq “
8
ÿ

k“1

bpk, αq. (6.34)
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We now analyze µnpαq further. First, for α P K´ :“ K XDδ
´, using (6.31) and (6.30),

µpαq ´ µnpαq “
8
ÿ

k“n`1

kα´1PpSk “ k ´ 1q

“

8
ÿ

k“n`1

ˆ

pα´ 1
2 q
´1

?
2πσ2

“

kα´
1
2 ´ pk ´ 1qα´

1
2

‰

` bpk, αq

˙

“ ´
pα´ 1

2 q
´1

?
2πσ2

nα´
1
2 `O

`

nReα´ 1
2´

δ
2

˘

. (6.35)

Next, consider α P Dδ
`. By (6.31) and (6.34), for α P K` :“ K XDδ

`,

µnpαq ´ µpαq “
n
ÿ

k“1

ˆ

pα´ 1
2 q
´1

?
2πσ2

“

kα´
1
2 ´ pk ´ 1qα´

1
2

‰

` bpk, αq

˙

´

8
ÿ

k“1

bpk, αq

“
pα´ 1

2 q
´1

?
2πσ2

nα´
1
2 ´

8
ÿ

k“n`1

bpk, αq

“
pα´ 1

2 q
´1

?
2πσ2

nα´
1
2 `O

`

nReα´ 1
2´

δ
2

˘

. (6.36)

We have obtained the same estimate for the two ranges in (6.35) and (6.36), and can
combine them to obtain, for α P K´ YK`,

µnpαq ´ µpαq “
pα´ 1

2 q
´1

?
2πσ2

nα´
1
2 `O

`

nReα´ 1
2´

δ
2

˘

. (6.37)

Furthermore, for each n, µnpαq ´ µpαq is a continuous function in Dδ, and thus (6.37)
holds for α P K´ YK` by continuity. If K is a closed disc, then K “ K´ YK`, and
thus (6.37) holds for α P K. In general, any compact K Ă Dδ can be covered by a finite
union of closed discs Ki Ă Dδ, and it follows that (6.37) holds uniformly in α P K for
each compact K Ă Dδ.

Combining (6.10) and (6.37), we obtain (1.16), uniformly on each compact K Ă Dδ.
(iii): By (6.24)–(6.25), (6.21) holds with εk “ Opk´δ{2q. Consequently, (6.23) is im-

proved to

µnp
1
2 q “

n
ÿ

k“1

1
?

2πσ2
k´1p1` εkq “

1
?

2πσ2
log n` c1 ` op1q, (6.38)

with c1 “ p2πσ2q´1{2
`

γ `
ř8

k“1 εk{k
˘

. The result (1.30) follows from (6.10).

Remark 6.4. The proof shows, using Remark 6.3, that the constant c in Theorem 1.20(iii)
is given by

c “
8
ÿ

k“1

1

k

“

k1{2PpSk “ k ´ 1q ´
1

?
2πσ2

‰

´
1

?
2πσ2

ψ
´1

2

¯

, (6.39)

where ψp 1
2 q “ ´p2 log 2` γq [47, 5.4.13].

We next show that Theorem 1.20(i) extends to the case δ ą 1, at least if δ is an integer.

Theorem 6.5. If E ξk ă 8 for an integer k ě 3, then µpαq can be continued as a
meromorphic function in Reα ă k´1

2 with simple poles at t 1
2 ,

3
2 ,

5
2 , . . . u (or possibly a

subset of these points) and no other poles.

Typically, all these points `´ 1
2 (with 1 ď ` ă k{2) are poles; however in special cases,

µpαq might be regular at some of these points, see Example 6.8.
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Proof. Assume for simplicity that spanpξq “ 1. In this case, see [49, Theorem VII.13]
(with slightly different notation), (6.24) can be refined to

PpSn “ n´ 1q “
e´x

2
{2

?
2πσ2n

„

1`
k´2
ÿ

ν“1

q̃νpxqn
´ν{2



` o
`

n´pk´1q{2
˘

(6.40)

where x “ ´1{pσ
?
nq and q̃ν is a polynomial (independent of n) whose coefficients depend

on the cumulants of ξ of order up to ν ` 2, see [49, VI.(1.14)] for details. The polynomial
q̃ν is odd if ν is odd, and is even if ν is even; hence the term q̃νpxqn

´ν{2 is a polynomial in
n´1 for every ν, and expanding e´x

2
{2 “ e´1{p2σ2nq into its Taylor series and rearranging,

we obtain from (6.40)

PpSn “ n´ 1q “

tk{2u´1
ÿ

j“0

ajn
´j´ 1

2 ` rpnq (6.41)

with rpnq “ o
`

n´pk´1q{2
˘

, for some coefficients aj . Consequently (2.3) yields, cf. (6.26),

µpαq “

tk{2u´1
ÿ

j“0

ajζ
`

3
2 ` j ´ α

˘

`

8
ÿ

n“1

nα´1rpnq, (6.42)

where the final sum is analytic in Reα ă pk ´ 1q{2, which proves the result.

Remark 6.6. The proof of Theorem 6.5 shows that the residue of µpαq at α “ j ` 1
2

(assumed to be less than k´1
2 ) is ´aj , where aj is the coefficient in the expansion (6.41)

and can be calculated from the cumulants κ2 “ σ2,κ3 . . . ,κ2j`2 of ξ. For example, see
Theorem 1.20(i), the residue at 1

2 is ´a0 “ ´1{
?

2πσ2. As another example, a calculation
(which we omit) shows that if k ą 4, the residue at 3

2 is

´ a1 “
1

?
2πσ2

´ 1

2σ2
´

κ3

2σ4
´

κ4

8σ4
`

5κ2
3

24σ6

¯

. (6.43)

Example 6.7. Consider the case of uniformly random labelled trees, which is given by
ξ „ Pop1q. In this case,

PpSn “ n´ 1q “ PpPopnq “ n´ 1q “
nn´1

pn´ 1q!
e´n (6.44)

which by Stirling’s formula, see e.g. [47, 5.11.1], has a (divergent) asymptotic expansion
that can be written

„ p2πnq´1{2 exp
´

´

8
ÿ

k“1

B2k

2kp2k ´ 1qn2k´1

¯

(6.45)

where B2k are the Bernoulli numbers. Expanding the exponential in (6.45) (as a formal
power series), we obtain coefficients ak such that for any integer J we have

PpSn “ n´ 1q “
J
ÿ

j“0

ajn
´j´ 1

2 ` o
`

n´J´
1
2

˘

, (6.46)

which is the same as (6.41), and it follows by the argument above that µpαq has residue
´aj at j ` 1

2 .
For example, a0 “ p2πq

´1{2, see (6.24) and (6.26), and a1 “ ´
1
12 p2πq

´1{2, showing
that µpαq has a pole with residue 1

12 p2πq
´1{2 at 3

2 . (This agrees with (6.43) since κk “ 1

for every k ě 1.)
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Example 6.8. We construct an example where ξ is bounded, so Theorem 6.5 applies for
every k and µpαq is meromorphic in the entire complex plane, and furthermore µpαq is
regular at α “ 3

2 .
We use three parameters m, s, and A, where m ě 10 is a fixed integer (we may take

m “ 10), s P r0,mq, and A is a large integer. Let ξ “ ξm,s,A take the values 0, 1, A,mA

with the probabilities

Ppξ “ mAq “
s

2m2A
, (6.47)

Ppξ “ Aq “
1

2A
, (6.48)

Ppξ “ 1q “
1

2
´

s

2m
, (6.49)

Ppξ “ 0q “ 1´ Ppξ “ 1q ´ Ppξ “ Aq ´ Ppξ “ mAq. (6.50)

Then E ξ “ 1 and spanpξq “ 1. Keep m and s fixed, and let AÑ8; then

σ2 „ E ξ2 „
sA

2
`
A

2
“

1` s

2
A, (6.51)

κ3 „ E ξ
3 „

smA2

2
`
A2

2
“

1` sm

2
A2, (6.52)

κ4 „ E ξ
4 „

sm2A3

2
`
A3

2
“

1` sm2

2
A3. (6.53)

Denote the parenthesized factor in (6.43) by fpm,α,Aq. It follows from (6.51)–(6.53)
that as AÑ8 with fixed m and s,

fpm, s,Aq “ ´
1` sm2

4p1` sq2
A`

5p1` smq2

12p1` sq3
A` opAq “

`

gpm, sq ` op1q
˘

A, (6.54)

where

gpm, sq :“ ´
1` sm2

4p1` sq2
`

5p1` smq2

12p1` sq3
“

5p1` smq2 ´ 3p1` sqp1` sm2q

12p1` sq3
. (6.55)

For s “ 0, the final numerator in (6.55) is 2 ą 0, and thus gpm, 0q ą 0. For s “ 1, the final
numerator is 5p1`mq2 ´ 6´ 6m2 ă 0, and thus gpm, 1q ă 0. Hence, by (6.54), we may
choose a large A such that fpm, 0, Aq ą 0 and fpm, 1, Aq ă 0. Then, by continuity, these
exists s P p0, 1q such that fpm, s,Aq “ 0, and (6.43) shows that for the corresponding ξ,
we have the residue 0 at 3

2 , i.e., there is no pole there and µpαq is regular at 3
2 .

7 Brownian representations

We use the well-known result by Aldous [3, 4] that represents a conditioned Galton–
Watson tree asymptotically by a Brownian excursion peptqq in the following way (under
the conditions E ξ “ 1 and σ2 :“ Var ξ ă 8 that also we assume). (See also Le Gall [42]
and Drmota [12, Chapter 4.1].)

Consider the depth-first walk on the tree Tn; this is a walk vp1q, . . . , vp2n´ 1q on the
nodes of Tn, where vp1q “ vp2n´ 1q is the root o, and each time we come to a node, we
proceed to the first unvisited child of the node, if there is any, and otherwise to the parent.
For convenience, we also define vp0q “ vp2nq “ o. We define Wnpiq :“ dpvpiqq, and extend
Wn to the interval r0, 2ns by linear interpolation between the integers. Furthermore, we
scale Wn to a function on r0, 1s by

xWnptq :“ σn´1{2Wnp2ntq. (7.1)
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Then xWn is a random continuous funtion on [0,1], and is thus a random element of the
Banach space Cr0, 1s. One of the main results of Aldous [4, Theorem 23 with Remark 2]
is that, as random elements of Cr0, 1s,

pxWnptqq
d
ÝÑ p2eptqq. (7.2)

We can think of Wnptq as the position of a worm that crawls on the edges of the tree,
visiting each edge twice (once in each direction).

We define vpxq also for non-integer x P r0, 2ns as either vptxuq or vprxsq, choosing
between these two the node more distant from the root. Thus,

dpvpxqq “ rWnpxqs. (7.3)

For a node v, let i1v :“ minti ě 1 : vpiq “ vu and i2v :“ maxti ď 2n´ 1 : vpiq “ vu, i.e.,
the first and last times that v is visited (with i1o “ 1 and i2o “ 2n´ 1). Then the subtree
Tn,v is visited during the interval ri1v, i

2
vs, and i2v ´ i

1
v “ 2p|Tn,v| ´ 1q. Let

Jv :“ tx P p0, 2nq : vpxq ľ vu. (7.4)

Then Jv “ pi1v ´ 1, i2v ` 1q, and thus Jv is an interval of length

|Jv| “ i2v ´ i
1
v ` 2 “ 2|Tn,v|. (7.5)

We can now prove Theorem 1.24. When Reα ą 1, all four expressions (1.33)–(1.36)
are equivalent by elementary calculus, so part (ii) follows from part (i). Nevertheless, we
begin with a straightforward proof of the simpler part (ii), and then show how part (i)
can be proved by a similar, but more complicated, argument. Since we have not yet
proved convergence of Ynpαq, we state the result as the following two lemmas.

Lemma 7.1. Let Reα ą 1. Then Ynpαq
d
ÝÑ σ´1Y pαq as nÑ8, with Y pαq given

by (1.36). Similarly, rYnpαq
d
ÝÑ σ´1

rY pαq, with rY pαq then defined by (1.20). Moreover,
these hold jointly for any finite set of such α.

Proof. We assume Reα ą 1, and then (7.5) implies

p2|Tn,v|qα “
ĳ

x,yPJv
xăy

αpα´ 1qpy ´ xqα´2 dx dy. (7.6)

Hence,

2αXnpαq “
ÿ

vPTn

p2|Tn,v|qα “
ĳ

0ăxăyă2n

αpα´ 1qpy ´ xqα´2
ÿ

vPTn

1x,yPJv dxdy. (7.7)

Now, by (7.4) and (2.9), x, y P Jv ðñ v ĺ vpxq ^ vpyq, and thus
ÿ

vPTn

1x,yPJv “ #tv : v ĺ vpxq ^ vpyqu “ dpvpxq ^ vpyqq ` 1. (7.8)

Furthermore, from the construction of the depth-first walk,

dpvpxq ^ vpyqq “ rmpWn;x, yqs. (7.9)

recalling the notation (1.32). [Actually, mpWn;x, yq is an integer except when vpxq is an
ancestor of vpyq or conversely.] Combining (7.7)–(7.9) and (7.1) yields

2αXnpαq “

ĳ

0ăxăyă2n

αpα´ 1qpy ´ xqα´2
“

dpvpxq ^ vpyqq ` 1
‰

dxdy
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“

ĳ

0ăxăyă2n

αpα´ 1qpy ´ xqα´2
“

mpWn;x, yq `Op1q
‰

dxdy

“ αpα´ 1qp2nqα
ĳ

0ăsătă1

pt´ sqα´2
“

mpn1{2σ´1
xWn; s, tq `Op1q

‰

dsdt. (7.10)

Since xWn
d
ÝÑ 2e in Cr0, 1s by (7.2), and the integral below defines a continuous functional

on Cr0, 1s because
ť

pt´ sqα´2 dsdt converges (absolutely), it follows that

σn´α´
1
2Xnpαq “ αpα´ 1q

ĳ

0ăsătă1

pt´ sqα´2mpxWn; s, tqdsdt`O
`

n´1{2
˘

d
ÝÑ αpα´ 1q

ĳ

0ăsătă1

pt´ sqα´2mp2e; s, tqdsdt “ Y pαq. (7.11)

In other words, recalling (1.8), σYnpαq
d
ÝÑ Y pαq.

The corresponding result σrYnpαq
d
ÝÑ rY pαq follows from (1.9), (1.17), and (1.20).

Joint convergence for several α follows by the same argument.

Lemma 7.2. If Reα ą 1
2 , then Ynpαq

d
ÝÑ σ´1Y pαq as nÑ8, with Y pαq given by (1.33)–

(1.35). Moreover, this holds jointly for any finite set of such α.

Proof. Fix α with Reα ą 1
2 . We begin with a calculus fact (assuming only that Reα ą 0).

For any 0 ă a ă b ă 8,

pb´ aqα “ α

ż b

a

xα´1 dx´ αpα´ 1q

ĳ

0ăxăaăyăb

py ´ xqα´2 dxdy. (7.12)

We apply this to the interval pa, bq “ Jv in (7.4) and obtain, using (7.5),

p2|Tn,v|qα “ α

ż

xPJv

xα´1 dx´ αpα´ 1q

ĳ

0ăxăy, xRJv, yPJv

py ´ xqα´2 dx dy

and thus, summing over all nodes v of Tn,

2α
ÿ

v

|Tn,v|α “ α

ż 2n

0

xα´1
ÿ

vPTn

1xPJv dx

´ αpα´ 1q

ĳ

0ăxăyă2n

py ´ xqα´2
ÿ

vPTn

1xRJv, yPJv dx dy. (7.13)

Now, using (7.4) and (7.3),
ÿ

vPTn

1xPJv “ #tv : vpxq ľ vu “ dpvpxqq ` 1 “ rWnpxqs` 1 (7.14)

and similarly, using also (2.9) and (7.9),
ÿ

vPTn

1xRJv, yPJv “ #tv : vpxq ń v and vpyq ľ vu

“ #tv : vpyq ľ vu ´#tv : vpxq ^ vpyq ľ vu

“ dpvpyqq ´ dpvpxq ^ vpyqq

“ rWnpyqs´ rmpWn;x, yqs. (7.15)
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Consequently, recalling the definitions (1.3) and (1.8) of Xnpαq and Ynpαq,

2αXnpαq “ α

ż 2n

0

xα´1
`

rWnpxqs` 1
˘

dx

´ αpα´ 1q

ĳ

0ăxăyă2n

py ´ xqα´2
`

rWnpyqs´ rmpWn;x, yqs
˘

dxdy (7.16)

and thus

Ynpαq “ α

ż 1

0

tα´1n´1{2
`

rWnp2ntqs` 1
˘

dt

´ αpα´ 1q

ĳ

0ăsătă1

pt´ sqα´2n´1{2
`

rWnp2ntqs´ rmpWn; 2ns, 2ntqs
˘

dsdt. (7.17)

The first integral in (7.17) is no problem; it converges (in distribution) by (7.1) and (7.2),
just as the integral at the end of the proof of Lemma 7.1, because

ş

tα´1 dt converges
(absolutely).

The second integral, however, is more difficult, since
ť

pt ´ sqα´2 dsdt diverges if
Reα ď 1. We therefore use a truncation argument. For 0 ă ε ă 1 we split Ynpαq “
Zn,εpαq ` Z

1
n,εpαq, where

Zn,εpαq :“ α

ż 1

0

tα´1n´1{2
`

rWnp2ntqs` 1
˘

dt

´ αpα´ 1q

ĳ

t´sąε

pt´ sqα´2n´1{2
`

rWnp2ntqs´ rmpWn; 2ns, 2ntqs
˘

dsdt (7.18)

and

Z 1n,εpαq :“

´ αpα´ 1q

ĳ

0ăt´săε

pt´ sqα´2n´1{2
`

rWnp2ntqs´ rmpWn; 2ns, 2ntqs
˘

dsdt. (7.19)

For each fixed α with Reα ą 0 and each fixed 0 ă ε ă 1,

σZn,εpαq “ α

ż 1

0

tα´1
xWnptqdt

´ αpα´ 1q

ĳ

t´sąε

pt´ sqα´2
`

xWnptq ´mpxWn; s, tq
˘

dsdt`O
`

n´1{2
˘

(7.20)

and thus, by (7.2) and the continuous mapping theorem,

σZn,εpαq
d
ÝÑ Zεpαq :“ 2α

ż 1

0

tα´1eptqdt

´ 2αpα´ 1q

ĳ

t´sąε

pt´ sqα´2
`

eptq ´mpe; s, tq
˘

dsdt. (7.21)

We now use the assumption Reα ą 1
2 . We define Y pαq by (1.33), noting that the

integrals converge, as said in Section 1, because eptq is Hölder(γ)-continuous for every
γ ă 1

2 . This shows that as εÑ 0,
Zεpαq Ñ Y pαq (7.22)
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a.s. (and thus in distribution). Furthermore, let β be real with 1
2 ă β ă pReα ^ 1q. It

follows from (7.19) that

|Z 1n,εpαq| ď
|αpα´ 1q|

|βpβ ´ 1q|
εReα´βZ 1n,εpβq. (7.23)

Furthermore, by (7.17), Z 1n,εpβq ď Ynpβq, and by Theorem 1.7(iii) we have EYnpβq “ Op1q.
Consequently, (7.23) implies

E |Ynpαq ´ Zn,εpαq| “ E |Z
1
n,εpαq| “ O

`

εReα´β
˘

. (7.24)

Consequently, Zn,εpαq
p
ÝÑ Ynpαq as ε Ñ 0 uniformly in n, i.e., for any δ ą 0,

supnPp|Ynpαq ´ Zn,εpαq| ą δq Ñ 0. This together with the facts (7.21) and (7.22) imply

the result σYnpαq
d
ÝÑ Y pαq, see e.g. [5, Theorem 4.2] or [40, Theorem 4.28]. Joint

convergence for several α follows by the same argument.
It remains to show that (1.34)–(1.35) are equal to Y pαq. Let us temporarily denote

these expressions by Y p1qpαq and Y p2qpαq.
Note that, a.s.,

pα´ 1q

ĳ

t´sąε

pt´ sqα´2eptqdsdt “ pα´ 1q

ż 1

ε

eptq

ż t´ε

0

pt´ sqα´2 dsdt

“

ż 1

ε

eptq
`

tα´1 ´ εα´1
˘

dt

“

ż 1

0

eptq
`

tα´1 ´ εα´1
˘

dt`O
`

εReα
˘

(7.25)

and hence

Zεpαq “ 2αεα´1

ż 1

0

eptqdt` 2αpα´ 1q

ĳ

t´sąε

pt´ sqα´2mpe; s, tqdsdt`O
`

εReα
˘

. (7.26)

Consequently, (7.22) yields the formula

Y pαq “ lim
εÑ0

¨

˝2αεα´1

ż 1

0

eptqdt` 2αpα´ 1q

ĳ

t´sąε

pt´ sqα´2mpe; s, tqdsdt

˛

‚. (7.27)

If we replace eptq by the reflected ep1´ tq, the right-hand side of (7.27) is unchanged,
while Y pαq defined by (1.33) becomes Y p1qpαq defined by (1.34). Consequently, Y p1qpαq “
Y pαq a.s. Furthermore, Y p2qpαq “ rY pαq ` Y p1qpαqs{2, and thus also Y p2qpαq “ Y pαq

a.s.

Remark 7.3. For α “ k ě 2 integer, an alternative argument uses the following identity,
obtained by extending (7.8) to several nodes:

ÿ

vPTn

|Tn,v|k “
ÿ

v,v1,...,vkPTn

1v1,...,vkľv

“ 2´k
ż 2n

0

¨ ¨ ¨

ż 2n

0

`

dpvpx1q ^ ¨ ¨ ¨ ^ vpxkqq ` 1
˘

dx1 ¨ ¨ ¨ dxk

“ 2´kk!

ż

¨ ¨ ¨

ż

0ăx1ă¨¨¨ăxkă2n

rmpWn;x1, xkqs dx1 ¨ ¨ ¨ dxk ` n
k

“ nkkpk ´ 1q

ĳ

0ăt1ătkă1

rmpWn; 2nt1, 2ntkqsptk ´ t1q
k´2 dt1 dtk ` n

k. (7.28)

This easily shows Lemma 7.1 with (1.36) in this case. A similar, but simpler, argument
yields (1.37) for k “ 1, see (1.38).
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8 Proofs of Theorem 1.2 and remaining limit theorems

Proof of Theorem 1.2. Theorem 1.2 now follows from Lemma 2.5, with D “ H` and
E “ tα : Reα ą 1u, using Lemmas 4.2(ii) and 7.1.

Proof of Remark 1.27. This is implicit in the proof above, but we add some details. Let
D and E be as in the proof of Theorem 1.2. (Alternatively, take E :“ r2, 3s.) Let
ϕ : HpDq Ñ CpEq be the restriction mapping f ÞÑ f |E , and let ψ : Cr0, 1s Ñ CpEq be the
mapping taking e P Cr0, 1s to the element of CpEq that maps α P E to the right-hand
side of (1.36); both ϕ and ψ are continuous and thus measurable. Let also rY denote
the random function rY pαq P HpDq, let D1 :“ H 1` “ Dzt 1

2u, and let η P CpD1q denote the

non-random function ηpαq :“ Y pαq ´ rY pαq “ 1?
2

Γpα´ 1
2 q

Γpαq , see (1.20). The proof above (in

particular, Lemma 2.5) shows that ϕprY q
d
“ ψpeq ´ η, and thus we may assume

ϕprY q “ ψpeq ´ η a.s. (8.1)

(The skeptical reader might apply [40, Corollary 6.11] for the last step.) Furthermore, ϕ
is injective, and both HpDq and CpEq are Polish spaces; thus the range R :“ ϕpHpDqq
is a Borel set in CpEq, and the inverse function ϕ´1 : RÑ HpDq is measurable, see e.g.
[10, Theorem 8.3.7 and Proposition 8.3.5]. By (8.1), we have rY “ ϕ´1

`

ψpeq ´ η
˘

a.s.
Consequently, (1.41) holds with

rΨpα, fq :“

#

ϕ´1
`

ψpfq ´ η
˘

pαq, ψpfq ´ η P R,

0, otherwise.
(8.2)

The representation (1.40) of Y pαq follows with Ψpα, fq :“ rΨpα, fq ` ηpαq.

Proofs of Theorems 1.10 and 1.22. These results follow immediately from Theorem 1.2
and the estimates of EXnpαq in Theorems 1.7 and 1.20.

Proof of Theorem 1.24. Theorem 1.24 follows from Theorem 1.10(i) and Lemmas 7.1–
7.2, comparing the limits. More precisely, this yields equality in distribution jointly for
any finite number of α, which implies equality jointly for all α since the distribution of
Y pαq in HpH`q is determined by the finite-dimensional distributions, see Section 2.2.

9 The limit as αÑ 8

We introduce more notation. As above, eptq, t P r0, 1s, is a normalized Brownian
excursion, and mpe; s, tq is defined by (1.32). We further define

mpsq :“ m
`

e; s; 1
2

˘

, m1psq :“ m
`

e; 1
2 , 1´ s

˘

(9.1)

for 0 ď s ď 1
2 ; for convenience we extend m and m1 to continuous functions on r0,8q by

defining mpsq “ m1psq :“ mp 1
2 q “ ep 1

2 q for s ą 1
2 . Furthermore,

• pBptqq is a standard Brownian motion on r0,8q.

• pSptq :“ supsPr0,tsBpsqq is the corresponding supremum process.

• pτpaq :“ mintt : Bptq “ au, a ě 0q is the corresponding family of hitting times.

• pRptqq is a three-dimensional Bessel process on r0,8q, i.e., pRptqq
d
“ p|Bp3qptq|q,

where pBp3qptq “
`

B1ptq, B2ptq, B3ptq
˘

q is a three-dimensional Brownian motion (so
B1, B2, B3 are three independent copies of B). It is well known that a.s. Rp0q “ 0,
Rpsq ą 0 for all s ą 0 and Rpsq Ñ 8 as sÑ8 [52, §VI.3].
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• Jptq :“ infsětRpsq, t ě 0, is the future minimum of R. By Pitman’s theorem [52,
VI.(3.5)], as stochastic processes in Cr0,8q we have

pJptqq
d
“ pSptqq. (9.2)

• pJ 1ptq, t ě 0q is an independent copy of the stochastic process pJptqq. Similarly,
pS1ptqq is an independent copy of pSptqq and pτ 1paqq is an independent copy of pτpaqq.

For notational convenience, we also define, using (1.36), for r ą ´1,

Wr :“

ĳ

0ăsătă1

pt´ sqrmpe; s, tqdsdt “
1

2pr ` 1qpr ` 2q
Y pr ` 2q. (9.3)

The assertion α1{2Y pαq
d
ÝÑ Y8 in Theorem 1.29 is thus equivalent to r5{2Wr

d
ÝÑ 1

2Y8 as
r Ñ8.

Lemma 9.1. As r Ñ 8 we have jointly (i.e., bivariately for sequences of processes)

r1{2mpx{rq
d
ÝÑ Jpxq and r1{2m1px{rq

d
ÝÑ J 1pxq in Cr0, T s, for any T ă 8.

Remark 9.2. Convergence in Cr0, T s for every fixed T is equivalent to convergence in
Cr0,8q, see e.g. [40, Proposition 16.6], so the conclusion may as well be stated as joint
convergence in distribution in Cr0,8q.

Proof. Let us first consider m. We use the representation, see e.g. [6, II.(1.5)],

eptq
d
“ p1´ tqR

´ t

1´ t

¯

(9.4)

as processes on r0, 1q. Hence, using Brownian scaling, for x P r0, rq we have, as processes,

r1{2epx{rq
d
“

´

1´
x

r

¯

r1{2R
´ x{r

1´ px{rq

¯

d
“

´

1´
x

r

¯

R
´ x

1´ px{rq

¯

(9.5)

and thus, for x P r0, r{2s,

r1{2mpx{rq
d
“ min
xďtďr{2

´

1´
t

r

¯

R
´ t

1´ pt{rq

¯

. (9.6)

Recall that a.s. Rptq Ñ 8 as tÑ8. Hence, given T , we can choose a (random) T1 ě T

such that Rptq ě 2 supuPrT,2T sRpuq for all t ě T1. It follows that if T1 ď t ď r{2, then

´

1´
t

r

¯

R
´ t

1´ pt{rq

¯

ě 1
2 ¨ 2 sup

uPrT,2T s

Rpuq ě R
´ T

1´ pT {rq

¯

. (9.7)

Hence, if x ď T and r ě 2T1, the minimum in (9.6) equals the minimum over x ď t ď T1.
Furthermore, as r Ñ8, since R is continuous,

min
xďtďT1

´

1´
t

r

¯

R
´ t

1´ pt{rq

¯

Ñ min
xďtďT1

Rptq “ min
xďtă8

Rptq “ Jpxq (9.8)

uniformly for x P r0, T s, i.e. in Cr0, T s. Consequently,

min
xďtďr{2

´

1´
t

r

¯

R
´ t

1´ pt{rq

¯

a.s.
ÝÑ Jpxq (9.9)

in Cr0, T s, and (9.6) implies

r1{2mpx{rq
d
ÝÑ Jpxq in Cr0, T s, (9.10)
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which proves the assertion about m. By symmetry also

r1{2m1px{rq
d
ÝÑ Jpxq

d
“ J 1pxq in Cr0, T s, (9.11)

since pep1´ tqq
d
“ peptqq and thus pm1ptqq

d
“ pmptqq (as random functions in Cr0,8q).

It remains to prove joint convergence to independent limits. Let

m1psq :“ mpe; s, r´2{3q, m11psq :“ mpe; 1´ r´2{3, 1´ sq (9.12)

(for r with s ď r´2{3 ď 1
2 ). We may assume that the left and right sides of (9.5) are equal,

and then mpx{rq “ m1px{rq whenever the minimum in (9.6) equals the minimum over
t P rx, r1{3s; in particular, this holds if x ď T and r1{3 ě T1 defined above. (This implies
r ě 2r1{3 ě 2T1.) Consequently,

P
`

mpx{rq “ m1px{rq for all x P r0, T s
˘

ě P
`

T1 ď r1{3
˘

Ñ 1 (9.13)

as r Ñ8. By symmetry, also

P
`

m1px{rq “ m11px{rq for all x P r0, T s
˘

Ñ 1. (9.14)

Next, we may assume Rptq “ |Bp3qptq| and that equality holds in (9.4). Define the
modification R̃ptq :“ |Bp3qptq ´Bp3qp1q| and the corresponding ẽptq :“ p1´ tqR̃

`

t{p1´ tq
˘

and m̃11psq :“ mpẽ; 1 ´ r´2{3, 1 ´ sq. Then |R̃ptq ´ Rptq| ď |Bp3qp1q| for all t, and thus
|ẽptq´eptq| ď p1´tq|Bp3qp1q| and |m̃11psq´m

1
1psq| ď r´2{3|Bp3qp1q|. Consequently, assuming

r1{3 ě T ,
sup
xďT

|r1{2m̃11px{rq ´ r
1{2m11px{rq| ď r´1{6|Bp3qp1q|

p
ÝÑ 0. (9.15)

Let ρ denote the metric in Cr0, T s. By (9.14) and (9.15),

ρ
`

r1{2m̃11px{rq, r
1{2m1px{rq

˘ p
ÝÑ 0 (9.16)

as r Ñ8. Thus by (9.11),

r1{2m̃11px{rq
d
ÝÑ Jpxq in Cr0, T s, (9.17)

Now, for x ď T and large r, m̃11px{rq depends only on ẽptq for t ě 1
2 , and thus on

R̃ptq for t ě 1. However,
`

R̃ptq “ |Bp3qptq ´ Bp3qp1q|, t ě 1
˘

is independent of
`

Rptq “

|Bp3qptq|, t ď 1
˘

, and thus of
`

eptq, t ď 1
2

˘

and of
`

mpsq, s ď 1
2

˘

. Consequently, we can
combine (9.10) and (9.17) to

`

r1{2mpx{rq, r1{2m̃11px{rq
˘ d
ÝÑ

`

Jpxq, J 1pxq
˘

in Cr0, T s ˆ Cr0, T s,

with independent limits pJpxqq and pJ 1pxqq. Finally, the result follows by using (9.16)
again.

Lemma 9.3. As r Ñ8,

r5{2Wr
d
ÝÑW8 :“

ĳ

x,yą0

e´x´y
`

Jpxq ^ J 1pyq
˘

dxdy. (9.18)

Proof. Note first that for some constant c (in fact, c “ E |Bp3qp1q| “
a

8{π), ERptq “ ct1{2.
Hence, E Jpxq ď ERpxq “ cx1{2 and

E

ĳ

x,yą0

e´x´y
`

Jpxq ^ J 1pyq
˘

dx dy ď

ĳ

x,yą0

e´x´ycx1{2 dxdy ă 8.
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Consequently, the double integral in (9.18) converges a.s.
If s ď 1

2 ď t, then by (9.1), mpe; s, tq “ mpsq ^ m1p1 ´ tq. Noting this, we define a
truncated version of Wr by, for r ě 2T and substituting s “ x{r and t “ 1´ y{r,

WT
r :“

ĳ

0ăsăT {r
1´T {rătă1

pt´ sqrmpe; s, tqdsdt

“ r´2

ż T

0

ż T

0

´

1´
y

r
´
x

r

¯r
`

mpx{rq ^m1py{rq
˘

dxdy. (9.19)

Since
`

1´ y
r ´

x
r

˘r
Ñ e´y´x uniformly for x, y P r0, T s as r Ñ8, it follows from Lemma 9.1

and the continuous mapping theorem that for each fixed T ă 8, as r Ñ8 we have

r5{2WT
r

d
ÝÑWT

8 :“

ż T

0

ż T

0

e´x´y
`

Jpxq ^ J 1pyq
˘

dx dy. (9.20)

Furthermore, WT
8 ÑW8 a.s. as T Ñ8.

Moreover, by (9.4), E eptq “ ct1{2p1 ´ tq1{2 and thus Empe; s, tq ď E epsq ď cs1{2.
Hence, for r ě 2T ą 0, and again with the substitutions s “ x{r and t “ 1 ´ py{rq, we
have

EpWr ´W
T
r q “

ĳ

tT {răsătă1uYt0ăsătă1´T {ru

pt´ sqr Empe; s, tqdsdt

ď r´2

ĳ

r0,rq2zr0,T s2

´

1´
y

r
´
x

r

¯r

`
c
´x

r

¯1{2

dxdy

ď cr´5{2

ĳ

r0,8q2zr0,T s2

e´x´yx1{2 dxdy. (9.21)

Hence,
lim sup
rÑ8

E |r5{2Wr ´ r
5{2WT

r | Ñ 0 (9.22)

as T Ñ8. This shows, by [5, Theorem 4.2] or [40, Theorem 4.28] again, that we can let
T Ñ8 inside (9.20) and obtain the conclusion (9.18).

Proof of Theorem 1.29. By (9.3), Lemma 9.3 can be written

α1{2Y pαq
d
ÝÑ Y8 :“ 2W8 (9.23)

as αÑ8. We now give some equivalent expressions for the limit. First, by (9.2),

Y8
d
“ 2

ż 8

0

ż 8

0

e´x´y
`

Spxq ^ S1pyq
˘

dxdy. (9.24)

Secondly, note that τpaq ď x ðñ Spxq ě a; thus τ and S are inverses of each other.
Similarly, we may assume that τ 1 is the inverse of S1. By Fubini’s theorem,

Y8
d
“ 2

ż 8

0

ż 8

0

e´x´y
`

Spxq ^ S1pyq
˘

dxdy

“ 2

¡

0ďsďSpxq^S1pyq

e´x´y dsdxdy

“ 2

¡

τpsqďx, τ 1psqďy

e´x´y dx dy ds
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“ 2

ż 8

0

e´τpsq´τ
1
psq ds. (9.25)

However, pτpsqq and pτ 1psqq are independent processes with independent increments,
and thus pτpsq ` τ 1psqq has independent increments. Furthermore, for each fixed s,

τp2sq ´ τpsq
d
“ τpsq and is independent of τpsq, and hence τpsq ` τ 1psq

d
“ τp2sq. It follows

that the stochastic process pτpsq ` τ 1psqq equals in distribution pτp2sqq. Hence, we also
have the representation

Y8
d
“ 2

ż 8

0

e´τp2sq ds “

ż 8

0

e´τpsq ds. (9.26)

The same Fubini argument in the opposite direction now gives

Y8
d
“

ż 8

0

e´τpsq ds “

ĳ

xěτpsq

e´x dx ds “

ĳ

0ďsďSpxq

e´x dsdx “

ż 8

0

e´xSpxqdx. (9.27)

This shows (1.43).
It remains to calculate the moments of Y8. For integer moments we use (9.26).

Recall, see e.g. [52, Proposition II.3.7 and Sections III.3–4], that τpsq is a stable process
with stationary independent increments and

E e´sτptq “ e´t
?

2s, s, t ě 0. (9.28)

Define ∆τps, s1q :“ τps1q ´ τpsq. Then, by symmetry and the change of variables t1 “ s1,
t2 “ s2 ´ s1, . . . , tk “ sk ´ sk´1, noting that the increments ∆τpsi´1, siq are independent

and ∆τpsi´1, siq
d
“ τptiq (with s0 “ 0), we have

EY k8 “ k!

ż

0ăs1ăs2ă¨¨¨ăsk

E e´τps1q´¨¨¨´τpskq ds1 ¨ ¨ ¨ dsk

“ k!

ż

0ăs1ăs2ă¨¨¨ăsk

E e´k∆τp0,s1q´pk´1q∆τps1,s2q´¨¨¨´∆τpsk´1,skq ds1 ¨ ¨ ¨ dsk

“ k!

ż

t1,...,tką0

E e´kτpt1qE e´pk´1qτpt2q ¨ ¨ ¨E e´τptkq dt1 ¨ ¨ ¨ dtk

“ k!

ż

t1,...,tką0

e´t1
?

2k´t2
?

2pk´1q´¨¨¨´tk
?

2 dt1 ¨ ¨ ¨ dtk

“ k!
k
ź

1

1
?

2j
“ 2´k{2k!1{2, (9.29)

which is (1.44).
In order to extend this to non-integer moments, let

Z :“ log Y8 `
1

2
log 2, (9.30)

and let Z 1 be an independent copy of Z. Then, for integer k ě 1,

E
``

eZ`Z
1˘k˘

“ E ekpZ`Z
1
q “

`

E ekZ
˘2
“

`

2k{2EY k8
˘2
“ k!, (9.31)

and thus V :“ eZ`Z
1

„ Expp1q, since an exponential distribution is determined by its
moments. Hence, for any real r ą ´1,

`

E erZ
˘2
“ E erZ`rZ

1

“ EV r “

ż 8

0

xre´x dx “ Γpr ` 1q, (9.32)
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and thus E erZ “
a

Γpr ` 1q. Since erZ “ 2r{2Y r8, (1.45) follows, for real r. Finally, (1.45)
is extended to complex r by analytic continuation, or by (9.32) again, now knowing that
the expectations exist.

Remark 9.4. The characteristic function ϕZptq of the random variable Z in (9.30) is thus
Γp1` itq1{2, which decreases exponentially as tÑ ˘8; hence Z has by Fourier inversion
a continuous density

fZpxq “
1

2π

ż 8

´8

e´itxϕZptqdt “
1

2π

ż 8

´8

e´itxΓp1` itq1{2 dt, (9.33)

see e.g. [15, Theorem XV.3.3]; furthermore, by a standard argument, we may differentiate
repeatedly under the integral sign, and thus the density function fZpxq is infinitely
differentiable. (In fact, it follows from Stirling’s formula that ϕZptq “ Γp1` itq1{2 belongs
to the Schwartz class SpRq of infinitely differentiable functions such that every derivative
decreases faster than |x|´k for any k ă 8; hence fZ P SpRq, see [60, Theorem 25.1].)

Consequently, also Y8 is absolutely continuous, with a density fY pxq that is infinitely
differentiable on p0,8q. Results on the asymptotics of the density function fY pxq of Y8
as xÑ 0 and xÑ8 are given in [21].

Remark 9.5. 21{2Y8 has moments
?
k!, and it follows that if Y 18 is an independent copy

of Y8, then 2Y8Y
1
8 has moments k! and 2Y8Y

1
8 „ Expp1q. Hence, the distribution of

21{2Y8 is a “square root” of Expp1q, in the sense of taking products of independent
variables.

Moreover, if we let pτpsqq be another stable subordinator, with E e´sτptq “ e´ts
γ

(0 ă γ ă 1) instead of (9.28), then (9.26) defines by the same calculations a random
variable Ypγq with

EY kpγq “ pk!q1´γ . (9.34)

In particular, choosing γ “ 1´p1{mq, we obtain anmth root of the exponential distribution
Expp1q.

Recalling that V „ Expp1q and taking logarithms, this shows that log V is infinitely
divisible, and thus the same holds for ´ log V , which has a Gumbel distribution. This has
been known for a long time, and a calculation shows that ´ log V has a Lévy measure
with a density

ř8

j“1 e
´jx{x “ x´1pex ´ 1q´1, x ą 0; see, e.g., [56, Examples 11.1 and

11.10]. See also [7, Example 7.2.3].

10 Extensions to Reα “ 1
2

In this section, we show the extensions to Reα “ 1
2 claimed in Remarks 1.5, 1.8,

and 1.11. These require different methods from the ones used above.
Let ϕptq :“ E eitξ be the characteristic function of the offspring distribution ξ. Fur-

thermore, let ξ̃ :“ ξ ´ E ξ “ ξ ´ 1, and denote its characteristic function by

rϕptq :“ E eitξ̃ “ e´itϕptq, t P R. (10.1)

Since E ξ̃ “ 0 and E ξ̃2 “ σ2, we have rϕptq “ 1´ σ2

2 t
2 ` opt2q; hence

rϕptq “ 1´
σ2

2
t2
“

1` γptq
‰

, t P R, (10.2)

for some continuous function γptq on R such that γp0q “ 0.
We also let

ρptq :“ 1´ rϕptq “
σ2

2
t2
“

1` γptq
‰

. (10.3)
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Since ξ is integer-valued, ϕ and rϕ are 2π-periodic. Note that Ppξ̃ “ ´1q ą 0 and thus
rϕptq ‰ 1 if 0 ă |t| ď π [also when spanpξq ą 1]; hence (10.2) and continuity imply

Re ρptq “ 1´ Re rϕptq ě c1t
2, 0 ď |t| ď π, (10.4)

for some c1 ą 0. Furthermore, if spanpξq “ h ě 1, then ϕp˘2π{hq “ 1 but |ϕptq| ă 1 for
0 ă |t| ă 2π{h, and it follows similarly from (10.2) and continuity that

|rϕptq| “ |ϕptq| ď 1´ c2t
2 ď e´c2t

2

, 0 ď |t| ď π{h. (10.5)

Lemma 10.1. If Reα ă 1
2 , then

µpαq “
1

2πΓp1´ αq

ż π

´π

ż 8

0

x´α
ϕptq

ex ´ rϕptq
dxdt, (10.6)

where the double integral is absolutely convergent.

Proof. Let Reα ă 1
2 . Fourier inversion and (2.3) yield

µpαq “
8
ÿ

n“1

nα´1 1

2π

ż π

´π

e´ipn´1qtϕptqn dt “
8
ÿ

n“1

nα´1 1

2π

ż π

´π

eit
rϕptqn dt. (10.7)

Let spanpξq “ h ě 1. It follows from the estimate (10.5) that

ż π

´π

|rϕptq|n dt “ h

ż π{h

´π{h

|rϕptq|n dt ď h

ż 8

´8

e´c2nt
2

dt “ C1n
´1{2. (10.8)

Hence,
8
ÿ

n“1

ż π

´π

ˇ

ˇnα´1eit
rϕptqn

ˇ

ˇdt ď C1

8
ÿ

n“1

nReα´ 3
2 ă 8. (10.9)

Thus we may interchange the order of summation and integration in (10.7) and obtain

µpαq “
1

2π

ż π

´π

eit
8
ÿ

n“1

nα´1
rϕptqn dt. (10.10)

The sum
ř8

n“1 n
α´1

rϕptqn is known as the polylogarithm Li1´αprϕptqq [47, §25.12(ii)]. It
can be expressed as an integral [47, 25.12.11] by a standard argument, which we adapt
as follows: Since Reα ă 1

2 ă 1, we have nα´1Γp1´ αq “
ş8

0
x´αe´nx dx and thus (10.10)

yields

Γp1´ αqµpαq “
1

2π

ż π

´π

8
ÿ

n“1

ż 8

0

x´αe´nx rϕptqneit dxdt. (10.11)

Again, this expression is absolutely convergent as a consequence of (10.8) and (10.9),
and thus we may again interchange the order of summation and integration and obtain

Γp1´ αqµpαq “
1

2π

ż π

´π

ż 8

0

x´α
8
ÿ

n“1

e´nx rϕptqneit dxdt

“
1

2π

ż π

´π

ż 8

0

x´α
e´x rϕptq

1´ e´x rϕptq
eit dxdt. (10.12)

This yields (10.6), with absolute convergence.

We next modify (10.6) by ignoring terms that are analytic at Reα “ 1
2 ; more precisely,

we ignore terms that are analytic in D1 :“ tα : 0 ă Reα ă 1u.
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Lemma 10.2. There exists a function hpαq P HpD1q such that if 0 ă Reα ă 1
2 , then

µpαq “
Γpαq

2π

ż π

´π

ρptq´α dt` hpαq. (10.13)

Remark 10.3. Since ρptq ‰ 0 for 0 ă |t| ď π, the integral
ş

t0ď|t|ďπ
ρptq´α dt is an entire

function of α for any t0 P p0, πs, and thus the integral in (10.13) can be replaced by the
integral over |t| ď t0 for any such t0.

Proof of Lemma 10.2. First, for x ě 1 and Reα ą 0, the integrand in (10.6) is Ope´xq so
the double integral over tx ě 1, t P p´π, πqu converges and defines an analytic function
h1 P HpD1q. We may thus consider the integral for 0 ă x ă 1 only.

Next, using (10.3) and (10.4), for x ą 0 we have

ˇ

ˇex ´ rϕptq
ˇ

ˇ ě Re
`

ex ´ rϕptq
˘

“ ex ´ 1` Re ρptq ě x` c1t
2. (10.14)

Hence, using |ϕptq ´ 1| ď C2t (since E ξ ă 8),

ż π

´π

ż 1

0

ˇ

ˇ

ˇ
x´α

ϕptq ´ 1

ex ´ rϕptq

ˇ

ˇ

ˇ
dx dt ď C3

ż π

´π

ż 1

0

x´Reα |t|

x` t2
dxdt. (10.15)

Now, for 0 ă x ă 1,

ż π

0

t

x` t2
dt ď

ż

?
x

0

t

x
dt`

ż π

?
x

t

t2
dt “

1

2
` log π ´ log

?
x “ Op1` | log x|q (10.16)

and thus (10.15) converges for Reα ă 1. It follows that if we replace the numerator ϕptq
by 1 in (10.6) (with x ă 1 only), then the difference is in HpD1q.

Similarly, for 0 ă x ă 1 and |t| ď π,

ˇ

ˇ

ˇ

1

ex ´ rϕptq
´

1

x` 1´ rϕptq

ˇ

ˇ

ˇ
ď
ex ´ 1´ x

px` c1t2q2
ď 1, (10.17)

and we may thus also replace the denominator ex ´ rϕptq by x` 1´ rϕptq “ x` ρptq.
This yields

µpαq “
1

2πΓp1´ αq

ż π

´π

ż 1

0

x´α
1

x` ρptq
dxdt` h2pαq. (10.18)

with h2 P HpD1q. We now reintroduce x ě 1, noting that Re ρptq ě 0 and thus, for
Reα ą 0,

ż π

´π

ż 8

1

ˇ

ˇ

ˇ

x´α

x` ρptq

ˇ

ˇ

ˇ
dxdt ď 2π

ż 8

1

x´Reα´1 dx ă 8. (10.19)

Hence, for α P D1,

µpαq “
1

2πΓp1´ αq

ż π

´π

ż 8

0

x´α

x` ρptq
dxdt` hpαq, (10.20)

with h P HpD1q, and (10.13) follows by a standard beta integral: for 0 ă Reα ă 1 and
ρ R p´8, 0s we have

ż 8

0

x´α

x` ρ
dx “ ρ´α

ż 8

0

x´α

x` 1
dx “ ρ´αBp1´ α, αq “ ρ´αΓp1´ αqΓpαq, (10.21)

where the first equality holds for all ρ ą 0 by a change of variables and therefore for all
ρ R p´8, 0s by analytic continuation.
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Recall the function γpαq defined by (10.2).

Lemma 10.4. For any a ą 0 we have

ż 8

0

|γpatq ´ γptq|

t
dt ă 8. (10.22)

Proof. By (10.2), recalling E ξ̃ “ 0 and E ξ̃2 “ σ2, we have

´
σ2t2

2
γptq “ rϕptq ´ 1`

σ2t2

2
“ E eitξ̃ ´ 1´ Epitξ̃q ´

1

2
Epitξ̃q2. (10.23)

Define

ψ1pxq :“ eix ´ 1´ ix, (10.24)

ψ2pxq :“ eix ´ 1´ ix´ 1
2 pixq

2. (10.25)

Then (10.23) implies

γptq “ ´
2

σ2t2
Eψ2ptξ̃q (10.26)

and thus

γpatq ´ γptq “
2

σ2t2
E
”

ψ2ptξ̃q ´
1

a2
ψ2patξ̃q

ı

. (10.27)

Fix a ą 0. Taylor’s formula yields the standard estimate |ψ2pxq| ď |x|
3, and thus

|ψ2pxq ´ a
´2ψ2paxq| ď C|x|3. (10.28)

Furthermore, ψ2pxq ´ a
´2ψ2paxq “ ψ1pxq ´ a

´2ψ1paxq by cancellation, and |ψ1pxq| ď 2|x|

and thus
|ψ1pxq ´ a

´2ψ1paxq| ď C|x|. (10.29)

Consequently,
|ψ2pxq ´ a

´2ψ2paxq| ď C
`

|x| ^ |x|3
˘

. (10.30)

Combining (10.27) and (10.30) we obtain, for t ‰ 0,

|γpatq ´ γptq| ď Ct´2E
`

|tξ̃| ^ |tξ̃|3
˘

. (10.31)

Hence,

ż 8

0

|γpatq ´ γptq|

t
dt ď C

ż 8

0

E
`

|t´2ξ̃| ^ |ξ̃|3
˘

dt

“ C E

ˆ
ż |ξ̃|´1

0

|ξ̃|3 dt`

ż 8

|ξ̃|´1

t´2|ξ̃|dt

˙

“ C E
`

|ξ̃|2 ` |ξ̃|2
˘

“ 2Cσ2 ă 8. (10.32)

Remark 10.5. Lemma 10.4 and its proof hold with ξ̃ replaced by any random variable
X with EX “ 0 and EX2 ă 8.

Remark 10.6. Note, in contrast, that the integral
ş1

0
|γptq|t´1 dt may diverge; hence

some cancellation is essential in Lemma 10.4. In fact, it is not difficult to show, using
similar arguments, that

ş1

0
|γptq|t´1 dt ă 8 if and only if E ξ̃2log |ξ̃| ă 8. (Since γptq Ñ ´1

as tÑ8, we cannot here integrate to 8.)
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The function µpαq is defined by (1.12) for Reα ă 1
2 . As noted at (1.13), µpαq Ñ 8 as

αÕ 1
2 . However, µpαq has a continuous extension to all other points on the line Reα “ 1

2 .

Theorem 10.7. The function µpαq has a continuous extension to the set tα : Reα ď
1
2uzt

1
2u.

Proof. For 0 ă s ď π and Reα ă 1
2 , let

fspαq :“
´σ2

2

¯α
ż s

´s

ρptq´α dt “

ż s

´s

t´2α
“

1` γptq
‰´α

dt. (10.33)

Let a ą 0 and let s0 :“ π{p1_ aq. Then, for 0 ă s ď s0, we have

faspαq “

ż as

´as

t´2α
“

1` γptq
‰´α

dt “ a1´2α

ż s

´s

t´2α
“

1` γpatq
‰´α

dt. (10.34)

Fix B ă 8 and let DB :“ tα : 0 ď Reα ă 1
2 , | Imα| ď Bu. By (10.33) and (10.34),

uniformly for α P DB, noting that 1` γptq ‰ 0 for 0 ă |t| ď π by (10.2), we have

ˇ

ˇa2α´1faspαq ´ fspαq
ˇ

ˇ ď

ż s

´s

ˇ

ˇp1` γpatqq´α ´ p1` γptqq´α
ˇ

ˇ|t´2α| dt

ď C

ż s

´s

|γpatq ´ γptq|t´2 Reα dt

ď C

ż s

0

|γpatq ´ γptq|t´1 dt, (10.35)

which tends to 0 as sÑ 0 by Lemma 10.4.

Let

Fspαq :“ a2α´1
`

fπpαq ´ faspαq
˘

´
`

fπpαq ´ fspαq
˘

. (10.36)

We have just shown in (10.35) that as sÑ 0 we have

Fspαq Ñ
`

a2α´1 ´ 1
˘

fπpαq (10.37)

uniformly in DB. For s P p0, s0s, Fspαq is an entire function, see Remark 10.3, and
in particular continuous on DB. Hence, the sequence F1{npαq, which is uniformly

convergent on DB by (10.37), is a Cauchy sequence in CpDBq, and thus converges
uniformly on DB to some continuous limit. Together with (10.37) again, this shows that
pa2α´1 ´ 1qfπpαq has a continuous extension to DB.

This holds for any a ą 0. We now choose a “ e1{B; then a2α´1 ‰ 1 in DBzt 1
2u, and

thus fπpαq has a continuous extension to DBzt 1
2u. Since B is arbitrary, this shows that

fπpαq has a continuous extension to tα : 0 ď Reα ď 1
2uzt

1
2u.

Finally, the definition (10.33) shows that the same holds for
şπ

´π
ρptq´α dt, and the

result follows by Lemma 10.2.

In the sequel, µpαq is defined for Reα “ 1
2 , α ‰ 1

2 , as this continuous extension.

Theorem 10.8. (i) The estimate (1.16) in Theorem 1.7(ii) holds also for α “ 1
2 ` iy, y ‰ 0.

Moreover, (1.16) holds uniformly on compact subsets of tα : ´ 1
2 ă Reα ď 1

2uzt
1
2u.

(ii) The limit result (1.22) in Theorem 1.10(ii) holds also for α “ 1
2 ` iy, y ‰ 0.

Moreover, (1.22) holds in the space Cp pDq of continuous functions on the set pD :“ tα :

0 ă Reα ď 1
2uzt

1
2u.

The topology in Cp pDq is defined by uniform convergence on compact subsets of pD.
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Proof. Part (ii) follows by Theorem 1.2 and (i), so it suffices to prove (i).
In this proof, let D :“ tα : 0 ă Reα ă 3

4u, D´ :“ tα : 0 ă Reα ă 1
2u, and, for B ą 0,

DB
´ :“ tα P D´ : | Imα| ď Bu, pDB :“ tα P pD : | Imα| ď Bu.

By (2.3) and (6.9), for Reα ă 1
2 we have

µpαq ´ µnpαq “
8
ÿ

k“n`1

kα´1PpSk “ k ´ 1q. (10.38)

Imitating the proof of Lemma 10.1 we obtain, cf. (10.12), for α P D´,

Γp1´ αq
`

µpαq ´ µnpαq
˘

“
1

2π

ż π

´π

ż 8

0

x´α
8
ÿ

k“n`1

e´kx rϕptqkeit dxdt

“
1

2π

ż π

´π

ż 8

0

x´α
e´pn`1qx

rϕptqn`1

1´ e´x rϕptq
eit dxdt

“
1

2π

ż π

´π

ż 8

0

x´α
e´nx rϕptqn

ex ´ rϕptq
ϕptqdxdt (10.39)

and thus, by the change of variables x ÞÑ x{n, t ÞÑ t{
?
n, we have

fnpαq :“ n
1
2´αΓp1´ αq

`

µpαq ´ µnpαq
˘

(10.40)

“
1

2π

ż π
?
n

´π
?
n

ż 8

0

x´α
e´x rϕpt{

?
nqn

nrex{n ´ rϕpt{
?
nqs

ϕpt{
?
nqdxdt (10.41)

Denote the integrand in (10.41) by gnpα, x, tq, and let this define gnpα, x, tq for any α P D.
Note that for any fixed α P D, x ą 0, and t P R, by (10.2),

gnpα, x, tq Ñ x´α
e´x´

σ2

2 t
2

x` σ2

2 t
2
“: gpα, x, tq. (10.42)

Furthermore, (10.42) trivially holds uniformly for α P D. Note also that, by (10.4),

ˇ

ˇn
`

ex{n ´ rϕpt{
?
nq
˘
ˇ

ˇ ě Re
`

n
`

ex{n ´ rϕpt{
?
nq
˘˘

ě x` nRe
`

1´ rϕpt{
?
nq
˘

ě x` c1t
2.

(10.43)

Let h :“ spanpξq. If h ą 1, consider first t with π
?
n{h ă |t| ď π

?
n. For such

t, (10.43) implies
ˇ

ˇex{n ´ rϕpt{
?
nq
ˇ

ˇ ě c, and thus |gnpα, x, tq| ď Cn´1x´Reαe´x. Hence,
the integral (10.41) restricted to |t| ą π

?
n{h is O

`

n´1{2
˘

, uniformly in D.
Next (for any h), for α P D and |t| ď π

?
n{h, (10.5) and (10.43) yield

|gnpα, x, tq| ď x´Reα e
´x´ct2

x` ct2
ď
`

1` x´3{4
˘e´x´ct

2

x` ct2
. (10.44)

The right-hand side is integrable over px, tq P p0,8q ˆ pp´8,´1q Y p1,8qq; hence the
integral (10.41) restricted to 1 ă |t| ď π

?
n{h converges by Lemma 2.7 uniformly on D

to the corresponding integral of gpα, x, tq, which is an analytic function h1pαq P HpDq by
Remark 2.8.

Similarly, for x ě 1, using (10.43) again,

|gnpα, x, tq| ď x´Reα e´x

x` c1t2
ď e´x (10.45)

and it follows by Lemma 2.7 and Remark 2.8 that the integral (10.41) restricted to
px, tq P p1,8q ˆ p´1, 1q converges uniformly to an analytic function h2pαq P HpDq.
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It remains to consider the integral in (10.41) over px, tq P Q :“ p0, 1q ˆ p´1, 1q. We
modify this integral in several steps.

We first replace e´x by 1 in the numerator of gnpα, x, tq; the absolute value of the
difference is bounded, using (10.43) again, by

x´Reα 1´ e´x

x` c1t2
ď x´Reα ď 1` x´3{4 (10.46)

and thus Lemma 2.7 and Remark 2.8 show that the integral of the difference over
px, tq P Q converges uniformly to an analytic function h3pαq P HpDq.

Similarly, we then replace rϕpt{
?
nqn by 1 in the resulting integral; the difference is

by (10.43) and (10.2), using |1´ rϕpt{
?
nqn| ď n|1´ rϕpt{

?
nq|, bounded by

x´Reα Ct2

x` c1t2
ď Cx´Reα ď Cp1` x´3{4q (10.47)

and again the integral of the difference over Q converges uniformly to an analytic
function h4pαq P HpDq.

Next, we replace in the denominator ex{n´ rϕpt{
?
nq by px{nq` ρpt{

?
nq. The resulting

error is by (10.17) bounded by x´Reα 1
n so the error in the integral over Q is Opn´1q,

uniformly in α P D.
Similarly, ϕpt{

?
nq “ 1`Opt{

?
nq, so replacing the factor ϕpt{

?
nq by 1 yields an error

in the integral over Q that is bounded, for α P D, by

C
?
n

ż 1

´1

ż 1

0

x´3{4 |t|

x` t2
dxdt “ O

`

n´1{2
˘

, (10.48)

since the integral converges by (10.16).
Summarizing the development so far, we have shown that

fnpαq “
1

2π

ż 1

´1

ż 1

0

x´α
1

x` nρpt{
?
nq

dxdt` h5pαq ` op1q, (10.49)

uniformly in D´, for some h5pαq P HpDq.
Define, for a ą 0 and α P D´,

Fn,apαq :“

ż 1

´1

ż 1

0

x´α

x` na´2ρpat{
?
nq

dxdt

“

ż 1

´1

ż 1

0

x´α

x` σ2

2 t
2
“

1` γpat{
?
nq
‰ dx dt, (10.50)

noting that the integrals converge by (10.4) and the fact that

ż 1

´1

ż 1

0

|x´α|

x` t2
dxdt ď π

ż 1

0

x´Reα´ 1
2 dx ă 8. (10.51)

Thus, (10.49) can be written, uniformly in D´,

fnpαq “
1

2π
Fn,1pαq ` h5pαq ` op1q. (10.52)

Fix a ą 1. Then, for α P D´ (and n ě a2, say), using Lemma 10.4 we have

ˇ

ˇFn,apαq ´ Fn,1pαq
ˇ

ˇ ď

ż 1

´1

ż 1

0

|x´α|
Ct2

ˇ

ˇγpat{
?
nq ´ γpt{

?
nq
ˇ

ˇ

px` ct2q2
dxdt
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ď C

ż 1

´1

ˇ

ˇγpat{
?
nq ´ γpt{

?
nq
ˇ

ˇ

ż 1

0

x´1{2 dx

x` t2
dt

ď C

ż 1

´1

ˇ

ˇγpat{
?
nq ´ γpt{

?
nq
ˇ

ˇ

|t|
dt

“ C

ż 1{
?
n

´1{
?
n

ˇ

ˇγpatq ´ γptq
ˇ

ˇ

|t|
dtÑ 0, (10.53)

as nÑ8. Moreover, by the change of variables x ÞÑ a´2x, t ÞÑ a´1t,

Fn,apαq “ a2α´1

ż a

´a

ż a2

0

x´α

x` nρpt{
?
nq

dxdt, (10.54)

which differs from a2α´1Fn,1pαq by an integral which, using Lemma 2.7 and Remark 2.8
again, converges uniformly to some function h6pαq P HpDq.

It follows that, uniformly for α P D´,

`

a2α´1 ´ 1
˘

Fn,1pαq “ Fn,apαq ´ Fn,1pαq ´
`

Fn,apαq ´ a
2α´1Fn,1pαq

˘

Ñ ´h6pαq. (10.55)

Consequently, (10.52) shows that
`

a2α´1 ´ 1
˘

fnpαq converges uniformly in D´ to some
function h7pαq P HpDq, which, recalling the definition (10.40) of fnpαq, shows that

`

a2α´1 ´ 1
˘

n
1
2´α

`

µpαq ´ µnpαq
˘

“ h8pαq ` op1q, (10.56)

uniformly in DB
´ , for some function h8pαq P HpDq and every B ą 0. By (6.22),

h8pαq “
`

a2α´1 ´ 1
˘ 1
?

2πσ2p 1
2 ´ αq

(10.57)

for α P D´, and thus by analytic continuation for α P Dzt 1
2u.

By Theorem 10.7, µpαq is continuous on pD, and so are µnpαq (which is an entire
function) and h8pαq. Hence, by continuity, (10.56) holds uniformly in every pDB.

Finally, for any compact set K Ă pD, we can choose a ą 1 such that a2α´1 ‰ 1 on K,
and then (10.56) and (10.57) show that, uniformly for α P K,

n
1
2´α

“

µpαq ´ µnpαq
‰

“
1

?
2πσ2p 1

2 ´ αq
` op1q (10.58)

as nÑ8. The result (1.16), uniformly on K, follows from (10.58) and Lemma 6.2.
This shows that (1.16) holds uniformly on any compact subset of pD, and in particular

on any compact subset of tα : 1
4 ď Reα ď 1

2uzt
1
2u. Since Theorem 1.7(ii) implies

that (1.16) holds uniformly on any compact subset of tα : ´ 1
2 ă Reα ď 1

4u, it follows that
it holds uniformly on any compact subset of tα : ´ 1

2 ă Reα ď 1
2uzt

1
2u.

11 An example where µpαq has no analytic extension

Theorem 10.7 shows that µpαq has a continuous extension to the line Reα “ 1
2 , except

at α “ 1
2 . However, in general, µ cannot be extended analytically across this line; in fact

the derivative µ1pαq may diverge as α approaches this line. In particular, Theorem 1.20(i)
does not hold (in general) without the extra moment assumption there.

Theorem 11.1. There exists ξ with E ξ “ 1 and 0 ă Var ξ ă 8 such that for any α0 with
Reα0 “

1
2 , lim supαÑα0,Reαă 1

2
|µ1pαq| “ 8. In particular, µpαq has no analytic extension

in a neighborhood of any such α0. In other words, the line Reα “ 1
2 is a natural boundary

for µpαq.

EJP 27 (2022), paper 114.
Page 41/77

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP831
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Sum of powers of subtree sizes

We shall first prove three lemmas. Instead of working with µpαq directly, we shall use
Lemma 10.2 (and, for convenience, Remark 10.3). We define, for any function ρptq and a
complex α,

F pρ;αq :“

ż 1

´1

ρptq´α dt. (11.1)

Note that if ρptq ě ct2 (as will be the case below), then this integral is finite for Reα ă 1
2 ,

at least, and defines an analytic function there. If F pρ;αq extends analytically to a larger
domain, we will use the same notation for the extension (even if the integral (11.1)
diverges).

If ρptq “ 1´ E eitξ̃ as in (10.3), we also write F pξ;αq.
By Lemma 10.2 and Remark 10.3, Theorem 11.1 follows if we prove the statement

with µpαq replaced by F pξ;αq.
We define in this section the domains D0 :“ tα : 1

4 ă Reα ă 3
4u, D´ :“ tα : 1

4 ă

Reα ă 1
2u and D˚ :“ D0zt

1
2u. (These choices are partly for convenience; we could take

D0 larger.)
If pgN q is a sequence of functions in a domain D, we write OHpDqpgN pαqq for any

sequence of functions fN P HpDq such that fN pαq{gN pαq is bounded on each compact
K Ă D, uniformly in N . (Often, gN pαq will not depend on α.) We extend the definition
to functions gN,tpαq and fN,tpαq depending also on an additional parameter t, requiring
uniformity also in t.

It will be convenient to work with a restricted set of offspring distributions ξ. Let P1

be the set of all probability distributions ppkq80 on t0, 1, 2, . . . u such that p0, p1, p2 ą 0.1,
and if ξ has the distribution ppkq80 , then E ξ “

ř

k kpk “ 1, Var ξ “
ř

kpk ´ 1q2pk “ 2

and E ξ3 “
ř

k k
3pk ă 8. (The set P1 is clearly non-empty. A concrete example is

p0.52, 0.2, 0.2, 0, 0, 0.08q.) We write ξ P P1 for Lpξq P P1.
If ξ P P1, then σ2 “ 2 and E ξ3 ă 8, and thus rϕptq “ 1 ´ t2 ` Opt3q; hence ρptq “

t2 `Opt3q. Moreover, since Ppξ̃ “ jq ą 0.1 for j “ ˘1, we have

Re ρptq “ Re
`

1´ E eitξ̃
˘

“ E
`

1´ cos tξ̃
˘

ě 0.2p1´ cos tq ě ct2, (11.2)

for |t| ď π, uniformly for all ξ P P1.

Lemma 11.2. If ξ P P1, then F pξ;αq extends to a function in HpD˚q.

Proof. µpαq P HpD˚q by Theorem 1.20(i) (or Theorem 6.5), and the result follows by
Lemma 10.2 and Remark 10.3.

Lemma 11.3. If ξN P P1 for N ě 1 and ξN
d
ÝÑ ξ, then F pξN ;αq Ñ F pξ;αq in HpD´q.

Note that we do not assume ξ P P1. (In fact, it is easy to see that the lemma extends
to arbitrary ξN and ξ with expectation 1 and finite, non-zero variance.)

Proof. Let ρptq :“ 1 ´ E eitξ̃ and ρN ptq :“ 1 ´ E eitξ̃N , where as usual ξ̃ :“ ξ ´ 1 and

ξ̃N :“ ξN ´ 1. Since ξN
d
ÝÑ ξ, ρN ptq Ñ ρptq for every t. Lemma 2.7 together with the

estimate (11.2) show that F pξN ;αq “ F pρN ;αq Ñ F pξ;αq uniformly on every compact
subset of D´.

Lemma 11.4. If ξ P P1 and y P Rzt0u, then there exists a sequence ξN P P1, N ě 1, such

that, as N Ñ8, ξN
d
ÝÑ ξ and

ˇ

ˇ

d
dαF pξN ;αq

ˇ

ˇ

α“ 1
2`iy

Ñ8 for any fixed real y ‰ 0.

Proof. Let aN :“ plogNq´1{2 and let ξN have the distribution

LpξN q “ Lpξq ` aN
” 2

N2

`

δN ´Nδ1 ` pN ´ 1qδ0
˘

´
N ´ 1

N

`

δ2 ´ 2δ1 ` δ0
˘

ı

(11.3)
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where δj is unit mass at j. Since aN Ñ 0, and Ppξ “ jq ą 0.1 ą 0 for j “ 0, 1, 2, this

is clearly a probability distribution if N is large enough. Furthermore, ξN
d
ÝÑ ξ as

N Ñ8, and E ξN “ E ξ, E ξ2
N “ E ξ2 and E ξ3

N ă 8, and thus ξN P P1, provided N is
large enough. (We assume in the rest of this proof that N is large enough whenever
necessary, without further mention. We can define ξN arbitrarily for small N .)

Let ϕN ptq :“ E eitξN and, recalling (10.24)–(10.25),

∆N ptq :“ ϕN ptq ´ ϕptq “ E e
itξN ´ E eitξ

“ aN

” 2

N2

`

eiNt ´Neit `N ´ 1
˘

´
N ´ 1

N

`

e2it ´ 2eit ` 1
˘

ı

“ aN

” 2

N2

`

ψ1pNtq ´Nψ1ptq
˘

´
N ´ 1

N

`

pitq2 `Opt3q
˘

ı

“ 2aNN
´2

`

ψ2pNtq ´Nψ2ptq
˘

`OpaN t
3q

“ 2aNN
´2ψ2pNtq `OpaN t

3q, (11.4)

since ψ2pxq “ Opx3q. We further define

rψptq :“ 2
ψ2ptq

t2
“

2eit ´ 2´ 2it` t2

t2
“ 2

ψ1ptq

t2
` 1. (11.5)

Then rψ is bounded and continuous on R, rψptq “ Optq and rψptq “ 1 ` Opt´1q. Further-
more, (11.4) yields

∆N ptq “ aN t
2
rψpNtq `OpaN t

3q. (11.6)

In particular, ∆N ptq “ OpaN t
2q for |t| ď π.

We further let rϕN ptq :“ E eitξ̃N , ρN ptq :“ 1´ rϕN ptq and, using (11.6),

∆̃N ptq :“ ρN ptq ´ ρptq “ ´e
´it∆N ptq “ ´aN t

2
rψpNtq `OpaN t

3q. (11.7)

In particular,
∆̃N ptq “ OpaN t

2q, |t| ď π. (11.8)

Let ρ0ptq :“ t2, and let δptq :“ ρptq ´ ρ0ptq. Then δptq “ Opt3q, since Var ξ “ 2 and
E ξ3 ă 8. The general formula, for any twice continuously differentiable function f ,

fpx` y ` zq ´ fpx` yq ´ fpx` zq ` fpxq “ yz

ż 1

0

ż 1

0

f2px` sy ` tzqdsdt

implies together with (11.2) and (11.8), for α P D0,

ˇ

ˇpρptq ` ∆̃N ptqq
´α ´ ρptq´α ´

`

pρ0ptq ` ∆̃N ptqq
´α ´ ρ0ptq

´α
˘
ˇ

ˇ

ď C|∆̃N ptq| |δptq| |α| |α` 1| |t|´2pReα`2q

“ O
`

aN |α|
2|t|1´2 Reα

˘

. (11.9)

Hence, integrating over t and recalling (11.1),

F pρ` ∆̃N ;αq ´ F pρ;αq ´
`

F pρ0 ` ∆̃N ;αq ´ F pρ0;αq
˘

“ OHpD0qpaN q. (11.10)

Next, let ∆˚N ptq :“ ´aN t
2
rψpNtq. Then ∆̃N ptq ´∆˚N ptq “ OpaN t

3q by (11.7), and thus,
by the mean value theorem and (11.8), for |t| ď π,

ˇ

ˇpρ0ptq ` ∆̃N ptqq
´α ´ pρ0ptq `∆˚N ptqq

´α
ˇ

ˇ ď C|∆̃N ptq ´∆˚N ptq| |α| |t|
´2pReα`1q

“ O
`

aN |α||t|
1´2 Reα

˘

.
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Hence, by an integration,

F pρ0 ` ∆̃N ;αq ´ F pρ0 `∆˚N ;αq “ OHpD0qpaN q. (11.11)

Now consider F pρ0 ` ∆˚N ;αq ´ F pρ0;αq. Let χptq :“ 1|t|ą1. Then, considering first
t ą 0, for α P D´,

ż 1

0

“

pρ0ptq `∆˚N ptqq
´α ´ ρ0ptq

´α
‰

dt “

ż 1

0

t´2α
“

p1´ aN rψpNtqq´α ´ 1
‰

dt

“

ż 1

0

t´2α
“

p1´ aN rψpNtqq´α ´ p1´ aNχpNtqq
´α

‰

dt

`
“

p1´ aN q
´α ´ 1

‰

ż 1

1{N

t´2α dt

“ N2α´1

ż N

0

t´2α
“

p1´ aN rψptqq´α ´ p1´ aNχptqq
´α

‰

dt

`
“

p1´ aN q
´α ´ 1

‰ 1

1´ 2α

`

1´N2α´1
˘

. (11.12)

Since rψptq ´ χptq “ O
`

|t| ^ |t´1|
˘

, and aNχptq “ OpaN q “ op1q, with χptq “ 0 for 0 ď t ă 1,
a Taylor expansion yields, uniformly for t P R,

p1´ aN rψptqq´α ´ p1´ aNχptqq
´α

“ αaN
`

rψptq ´ χptq
˘

`OHpD0q

`

aN | rψptq ´ χptq|paN | rψptq| ` aNχptqq
˘

“ αaN
`

rψptq ´ χptq
˘

`OHpD0q

`

a2
N p|t|

2 ^ |t|´1q
˘

. (11.13)

Using (11.13) and a Taylor expansion of p1´ aN q´α in (11.12), we obtain for α P D´,

ż 1

0

“

pρ0ptq `∆˚N ptqq
´α ´ ρ0ptq

´α
‰

dt

“ N2α´1

ż N

0

t´2ααaN
`

rψptq ´ χptq
˘

dt´
αaN

1´ 2α
N2α´1

`OHpD˚q
`

a2
NN

2α´1
˘

`OHpD˚qpaN q. (11.14)

Furthermore, using again rψptq ´ χptq “ O
`

|t´1|
˘

,

ż 8

N

t´2α
`

rψptq ´ χptq
˘

dt “ O
`

N´2 Reα
˘

, (11.15)

so we may as well integrate to 8 on the right-hand side of (11.14).
For α P D´, recalling (11.5),

ż 8

0

t´2α
`

rψptq ´ χptq
˘

dt “ 2

ż 8

0

ψ1ptqt
´2α´2 dt`

ż 1

0

t´2α dt (11.16)

Furthermore, if α P D´ and Re ζ ě 0, then

ż 8

0

`

e´ζt ´ 1` ζt
˘

t´2α´2 dt “ ζ2α`1Γp´2α´ 1q; (11.17)

the case ζ “ 1 is well known [47, 5.9.5], the case ζ ą 0 follows by a change of variables,
the case Re ζ ą 0 follows by analytic continuation, and the case Re ζ ě 0 follows by
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continuity. Recalling (10.24), we take ζ “ ´i in (11.17), and obtain from (11.16), for
α P D´.

ż 8

0

t´2α
`

rψptq ´ χptq
˘

dt “ 2p´iq2α`1Γp´2α´ 1q `
1

1´ 2α
. (11.18)

Combining (11.14)–(11.15) and (11.18), we obtain (for α P D´)

ż 1

0

“

pρ0ptq `∆˚N ptqq
´α ´ ρ0ptq

´α
‰

dt “ 2αp´iq2α`1Γp´2α´ 1qaNN
2α´1

`OHpD˚q
`

a2
NN

2α´1
˘

`OHpD˚qpaN q. (11.19)

The integral over p´1, 0q yields the same result with p´iq2α`1 replaced by i2α`1, e.g. by
conjugating (11.19) and α. Consequently,

F pρ0 `∆˚N ;αq ´ F pρ0;αq “ 2α
`

i2α`1 ` p´iq2α`1
˘

Γp´2α´ 1qaNN
2α´1

`OHpD˚q
`

a2
NN

2α´1
˘

`OHpD˚qpaN q. (11.20)

For convenience, we write

Gpαq :“ 2α
`

i2α`1 ` p´iq2α`1
˘

Γp´2α´ 1q “ 2α
`

ieiπα ´ ie´iπα
˘

Γp´2α´ 1q. (11.21)

Combining (11.10), (11.11), and (11.20) yields, for α P D´,

F pρN ;αq “ F pρ` ∆̃N ;αq “ F pρ;αq ` aNGpαqN
2α´1 `OHpD˚q

`

a2
NN

2α´1
˘

`OHpD˚qpaN q.

(11.22)

By Lemma 11.2, all terms in (11.22) are analytic in D˚, and thus (11.22) holds for α P D˚.
Note that if fN and gN are functions such that fN pαq “ OHpD˚qpgN pαqq, then fN pαq “

gN pαqhN pαq with hN pαq “ OHpD˚qp1q. By Cauchy’s estimate, h1N pαq “ OHpD˚qp1q, and
it follows that f 1N pαq “ OHpD˚qpgN pαqq ` OHpD˚qpg

1
N pαqq. Hence, taking derivatives

in (11.22) and then putting α “ 1
2 ` iy for a fixed y ‰ 0 yields

F 1pρN ;αq “ F 1pρ;αq ` 2plogNqaNGpαqN
2α´1 `O

`

a2
N logN

˘

`OpaN q

“ 2GpαqplogNqaNN
2iy `Op1q. (11.23)

Since Gpαq “ ´4αpcoshπyqΓp´2 ´ 2yiq ‰ 0, |N2iy| “ 1 and aN logN “ plogNq1{2 Ñ

8, (11.23) shows that |F 1pξN ; 1
2 ` iyq| “ |F 1pρN ; 1

2 ` iyq| Ñ 8 as N Ñ8.

Proof of Theorem 11.1. Let pynq81 be an enumeration of all non-zero rational numbers.
We shall construct sequences xn P p

1
4 ,

1
2 q and ξn P P1, n “ 1, 2, . . . , such that, with

zn :“ xn ` iyn P D´,
|F 1pξn, zkq| ą k, k “ 1, . . . , n, (11.24)

and, furthermore, the total variation distance

dTVpξn, ξn´1q ă 2´n. (11.25)

We construct the sequences inductively. Suppose that ξn´1 is constructed. (For n “ 1,
we let ξ0 be any element of P1.) By Lemma 11.4, there exists a sequence ξn´1,N P P1 such

that, as N Ñ8, ξn´1,N
d
ÝÑ ξn´1 and |F 1pξn´1,N ; 1

2 ` iynq| Ñ 8. By Lemma 11.3, then
F pξn´1,N ;αq Ñ F pξn´1;αq in HpD´q. This implies F 1pξn´1,N ;αq Ñ F 1pξn´1;αq in HpD´q,
and in particular, F 1pξn´1,N ; zkq Ñ F 1pξn´1; zkq for 1 ď k ď n´ 1. Since (11.24) holds for
n ´ 1 by the induction hypothesis, it follows that |F 1pξn´1,N ; zkq| ą k for 1 ď k ď n ´ 1
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for all large N . Furthermore, if we choose N large enough, |F 1pξn´1,N ; 1
2 ` iynq| ą n and

dTVpξn´1,N , ξn´1q ă 2´n.
We choose a largeN such that these properties hold and let ξn :“ ξn´1,N . Then (11.24)

holds for k “ 1, . . . , n ´ 1. Furthermore, since ξn P P1, F pξn;αq P HpD˚q, and thus
F 1pξn;αq is continuous in D˚. Hence |F 1pξn;x ` iynq| Ñ |F 1pξn; 1

2 ` iynq| as x Ñ 1
2 , and

we can choose xn P p
1
4 ,

1
2 q with 1

2 ´ xn ă
1
n such that |F 1pξn;x` iynq| ą n.

This completes the construction of xn and ξn. By (11.25), the distributions Lpξnq form
a Cauchy sequence in total variation distance, so there exists a random variable ξ with

ξn
d
ÝÑ ξ. Clearly, ξ is non-negative and integer-valued. Moreover, since ξn P P1 we have

E ξ2
n “ Var ξn`pE ξnq

2 “ 3, for every n, and thus the sequence ξn is uniformly integrable,
so E ξ “ limnÑ8E ξn “ 1. Furthermore, by Fatou’s lemma, E ξ2 ď 3 ă 8. Note that ξ
does not necessarily belong to P1; in fact, it is easily seen from (11.26) below that ξ R P1.
Nevertheless (11.2) holds for every ξn (with the same c) and thus (11.2) holds for ξ too.
In particular Ppξ ‰ 1q ą 0 so Var ξ ą 0.

Lemma 11.3 shows that F pξn;αq Ñ F pξ;αq in HpD´q, and thus F 1pξn;αq Ñ F 1pξ;αq

for every α P D´. Hence, (11.24) implies

|F 1pξ; zkq| ě k (11.26)

for every k. Thus, |F 1pξ; znq| Ñ 8 as nÑ8.
Now take any y P R and let α0 :“ 1

2 ` iy. There is an infinite number of points yn in
each neighborhood of y, so we can find a subsequence converging to y. Since xn Ñ

1
2 ,

it follows that there is a subsequence of zn “ xn ` iyn that converges to α0. Suppose
first that y ‰ 0, so α0 ‰

1
2 . Then it follows from Lemma 10.2 (with Remark 10.3) and

Theorem 10.7 that, as nÑ8 along the subsequence,

µ1pznq “
1

2π
ΓpznqF

1pξ; znq `Op1q (11.27)

and thus, by (11.26), |µ1pznq| Ñ 8.
This proves the claim in Theorem 11.1 for every α0 with Reα0 “

1
2 and α0 ‰

1
2 . The

case α0 “
1
2 follows easily, either by noting that the set of α0 for which the claim holds is

closed, or simply by (1.13).

12 Moments

In this section we prove Theorems 1.3 and 1.12 on moments of Xnpαq and of the
limits Y pαq. The section is largely based on Fill and Kapur [19] and [21], and uses the
methods of [17], also presented in [26, Section VI.10].

We assume for simplicity throughout this section that ξ has span 1. The general case
follows by minor modifications of standard type.

12.1 More notation and preliminaries

Recall that T is the random Galton–Watson tree defined by the offspring distribution
ξ. Let pk :“ Ppξ “ kq denote the values of the probability mass function for ξ, and let Φ

be its probability generating function:

Φpzq :“ E zξ “
8
ÿ

k“0

pkz
k. (12.1)

Similarly, let qn :“ Pp|T | “ nq, and let y denote the corresponding probability generating
function:

ypzq :“ E z|T | “
8
ÿ

n“1

P
`

|T | “ n
˘

zn “
8
ÿ

n“1

qnz
n. (12.2)
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If T has root degree k, denote the subtrees rooted at the children of the root by T1, . . . , Tk;
note that, conditioned on k, these are independent copies of T . By conditioning on the
root degree, we thus obtain the standard formula

ypzq “
8
ÿ

k“0

pk Erz
1`|T1|`¨¨¨`|Tk|s “

8
ÿ

k“0

pkz
`

Erz|T |s
˘k
“ z

8
ÿ

k“0

pkypzq
k

“ zΦ
`

ypzq
˘

. (12.3)

A ∆-domain is a complex domain of the type

tz : |z| ă R, z ‰ 1, | argpz ´ 1q| ą θu (12.4)

where R ą 1 and 0 ă θ ă π{2, see [26, Section VI.3]. A function is ∆-analytic if it is
analytic in some ∆-domain (or can be analytically continued to such a domain). Under
our standing assumptions E ξ “ 1 and 0 ă Var ξ ă 8, the generating function ypzq is
∆-analytic; moreover, as z Ñ 1 in some ∆-domain,

ypzq “ 1´
?

2σ´1p1´ zq1{2 ` o
`

|1´ z|1{2
˘

, (12.5)

see [35, Lemma A.2]. This is perhaps more well-known if ξ has some exponential moment,
and then (12.5) may be improved to a full asymptotic expansion, and in particular

ypzq “ 1´
?

2σ´1p1´ zq1{2 `O
`

|1´ z|
˘

, (12.6)

see e.g. [26, Theorem VI.6]. In fact, (12.6) holds provided only E ξ3 ă 8. This follows
easily from (12.3), see Lemma 12.15.

In the present section, asymptotic estimates similar to (12.5) and (12.6) should always
be interpreted as holding when z Ñ 1 in a suitable ∆-domain, even when not said so
explicitly; the domain may be different each time.

Remark 12.1. In most parts of the present section, we will only use the assumption
E ξ2 ă 8 and the general (12.5). If we assume the E ξ3 ă 8, and thus (12.6) holds,
then the error estimates below can be improved, and explicit error estimates can be
obtained in Theorem 1.12; see [21] where this is done in detail for a special ξ using
similar arguments. In fact, it can be checked that if E ξ3 ă 8, then all o terms in the
proof below can be shown to be of (at most) the same order as the bounds given in
[21] for the corresponding terms. Further, when ξ has an exponential moment, a full
asymptotic expansion of the mean is derived in [17, Section 5.2]; it seems possible that
this can be extended to higher moments, but we have not pursued this.

In some formulas below, certain unspecified polynomials appear as “error terms”.
(These are best regarded as polynomials in 1´ z.) Let P be the set of all polynomials,
and, for any real a, let

Pa :“ tP pzq P P : degpP pzqq ă au. (12.7)

Note that if a ď 0, then Pa “ t0u, and thus terms in Pa vanish and can be ignored. In the
formulas below, a restriction of the type P pzq P Pa, i.e., degpP pzqq ă a, will always be a
triviality, since higher powers of 1´ z can be absorbed in an O or o term.

Recall that the polylogarithm function is defined, for α P C, by

Liαpzq :“
8
ÿ

n“1

n´αzn, |z| ă 1; (12.8)
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see [26, Section VI.8], [47, §25.12], or Appendix B. It is well known that Liαpzq is ∆-
analytic; in fact, it can be analytically continued to Czr1,8q. Moreover, if α R t1, 2, . . . u,
then, as z Ñ 1,

Liαpzq “ Γp1´ αqp1´ zqα´1 ` P pzq `O
`

|1´ z|Reα
˘

, P pzq P PReα, (12.9)

see [26, Theorem VI.7] or [23], where a complete asymptotic expansion is given; see
also Appendix B. In particular, if Reα ď 0, then P pzq vanishes and so (12.9) simplifies.

Recall also that the Hadamard product Apzq d Bpzq of two power series Apzq “
ř8

n“0 anz
n and Bpzq “

ř8

n“0 bnz
n is defined by

Apzq dBpzq :“
8
ÿ

n“0

anbnz
n. (12.10)

As a simple example, for any complex α and β,

Liαpzq d Liβpzq “ Liα`βpzq. (12.11)

We will use some results on Hadamard products, essentially taken from [17]. In
the next lemma, Part (i) is [17, Propositions 9 and 10(i)], and (ii) follows by the same
arguments; the proof of ∆-analyticity of the Hadamard product given for [17, Proposition
9] holds for any ∆-analytic functions. (For the case a` b` 1 P t0, 1, 2, . . . u, see [17] and
[26].)

Lemma 12.2 ([17]). If gpzq and hpzq are ∆-analytic, then gpzq d hpzq is ∆-analytic.
Moreover, suppose that a and b are real with a` b` 1 R t0, 1, 2, . . . u; then the following
holds, as z Ñ 1 in a suitable ∆-domain.

(i) If gpzq “ Op|1´ z|aq and hpzq “ Op|1´ z|bq, then

gpzq d hpzq “ P pzq `O
`

|1´ z|a`b`1
˘

, P pzq P Pa`b`1. (12.12)

(ii) If gpzq “ Op|1´ z|aq and hpzq “ op|1´ z|bq, then

gpzq d hpzq “ P pzq ` o
`

|1´ z|a`b`1
˘

, P pzq P Pa`b`1. (12.13)

The next lemma is a simplified version of [17, Proposition 8]; that proposition gives
(when α, β, α` β R Z) a complete asymptotic expansion, and in particular a more explicit
error term for our (12.14).

Lemma 12.3 ([17]). Suppose that Reα ` Reβ ` 1 R t0, 1, 2, . . . u. Then, as z Ñ 1 in a
suitable ∆-domain,

p1´ zqα d p1´ zqβ “
Γp´α´ β ´ 1q

Γp´αqΓp´βq
p1´ zqα`β`1 ` P pzq ` o

`

|1´ z|Reα`Re β`1
˘

,

P pzq P PReα`Re β`1. (12.14)

Proof. The case when none of α, β, α` β is an integer is part of [17, Proposition 8].
In general, we use arguments from [17]. If neither α nor β is a non-negative integer,

the result follows easily from (12.9), (12.11), and Lemma 12.2, which then imply that

Γp´αqp1´ zqα d Γp´βqp1´ zqβ

“
`

Liα`1pzq ` P1pzq ` o
`

|1´ z|Reα
˘˘

d
`

Liβ`1pzq ` P2pzq ` o
`

|1´ z|Re β
˘˘

“ Liα`β`2pzq ` P3pzq ` o
`

|1´ z|Reα`Re β`1
˘

“ Γp´α´ β ´ 1qp1´ zqα`β`1 ` P4pzq ` o
`

|1´ z|Reα`Re β`1
˘

, (12.15)
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where Pipzq are polynomials. [Note that P pzq d fpzq is a polynomial for any polynomial
P and analytic f , and that we may assume degpP4pzqq ă Reα` Reβ ` 1 by the comment
after (12.7).]

Finally, if α is a non-negative integer, then p1 ´ zqα is a polynomial and thus the
left-hand side of (12.14) is a polynomial, so (12.14) holds trivially [with 1{Γp´αq “ 0].
The same holds if β is a non-negative integer.

12.2 Generating functions

Let pbnq81 be a given sequence of constants and consider the toll function fpT q :“ b|T |
and the corresponding additive functional F pT q given by (1.1). We are mainly interested
in the case bn “ nα, but will also consider bn “ nα ´ c below for a suitable constant c.
In the present subsection, bn can be arbitrary if we regard the generating functions as
formal power series; if we assume bn “ OpnKq for some K, then the generating functions
below converge and are analytic at least in the unit disc.

We are interested in the random variable F pTnq. We denote its moments by

mp`qn :“ ErF pTnq`s (12.16)

for integer ` ě 0. Define the generating functions

M`pzq :“ E
“

F pT q`z|T |
‰

“

8
ÿ

n“1

qnE
“

F pT q`z|T | | |T | “ n
‰

“

8
ÿ

n“1

qnm
p`q
n zn. (12.17)

Note that M0pzq “ ypzq, see (12.2).
The generating functionsM` can be calculated recursively as follows, using Hadamard

products and the generating function

Bpzq :“
8
ÿ

n“1

bnz
n. (12.18)

Lemma 12.4. For every ` ě 1,

M`pzq “
zy1pzq

ypzq

ÿ̀

m“0

1

m!

ÿ**
ˆ

`

`0, . . . , `m

˙

Bpzqd`0 d
“

zM`1pzq ¨ ¨ ¨M`mpzqΦ
pmq

`

ypzq
˘‰

,

(12.19)

where
ř** is the sum over all pm`1q-tuples p`0, . . . , `mq of non-negative integers summing

to ` such that 1 ď `1, . . . , `m ă `.

Proof. Condition on the root degree k of T , and let T1, . . . , Tk be the principal subtrees
as at the beginning of Section 12.1. Then (1.2) can be written

F pT q “ fpT q `
k
ÿ

i“1

F pTiq “ b|T | `
k
ÿ

i“1

F pTiq. (12.20)

Hence, the multinomial theorem yields the following, where for each k we let
ř

denote
the sum over all pk ` 1q-tuples p`0, . . . , `kq summing to ` such that each `i ě 0, and
furthermore T1, . . . , Tk are independent copies of T , and |T | is 1` |T1| ` ¨ ¨ ¨ ` |Tk|:

M`pzq “
8
ÿ

k“0

pk E
”

z|T |
´

b|T | `
k
ÿ

i“1

F pTiq
¯`ı

“

8
ÿ

k“0

pk
ÿ

ˆ

`

`0, . . . , `k

˙

E
”

z|T |b`0
|T |F pT1q

`1 ¨ ¨ ¨F pTkq`k
ı
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“

8
ÿ

k“0

pk
ÿ

ˆ

`

`0, . . . , `k

˙

Bpzqd`0 d E
”

z|T |F pT1q
`1 ¨ ¨ ¨F pTkq`k

ı

“

8
ÿ

k“0

pk
ÿ

ˆ

`

`0, . . . , `k

˙

Bpzqd`0 d E
”

z
k
ź

i“1

`

z|Ti|F pTiq`i
˘

ı

“

8
ÿ

k“0

pk
ÿ

ˆ

`

`0, . . . , `k

˙

Bpzqd`0 d
”

z
k
ź

i“1

E
“

z|Ti|F pTiq`i
‰

ı

“

8
ÿ

k“0

pk
ÿ

ˆ

`

`0, . . . , `k

˙

Bpzqd`0 d
”

z
k
ź

i“1

M`ipzq
ı

. (12.21)

We consider the terms where `i “ ` for some 1 ď i ď k separately. In this case, `0 “ 0

and `j “ 0 for j ‰ i, and thus the combined contribution of these k terms is, recalling
M0pzq “ ypzq and (12.1),

8
ÿ

k“1

pkk
“

zM`pzqypzq
k´1

‰

“ zM`pzq
8
ÿ

k“1

pkkypzq
k´1 “ zM`pzqΦ

1pypzqq. (12.22)

Let
ř* denote the sum over the remaining terms, i.e., the terms with `1, . . . , `k ă `, and

define

R`pzq :“
8
ÿ

k“0

pk
ÿ*

ˆ

`

`0, . . . , `k

˙

Bpzqd`0 d
”

z
k
ź

i“1

M`ipzq
ı

. (12.23)

Using (12.22)–(12.23), we can write (12.21) as

M`pzq “ zΦ1
`

ypzq
˘

M`pzq `R`pzq. (12.24)

Moreover, differentiating (12.3) yields

y1pzq “ Φ
`

ypzq
˘

` zΦ1
`

ypzq
˘

y1pzq (12.25)

and thus, using (12.3) again,
`

1´ zΦ1
`

ypzq
˘˘

y1pzq “ Φ
`

ypzq
˘

“ ypzq{z. (12.26)

Hence, (12.24) yields

M`pzq “
R`pzq

1´ zΦ1
`

ypzq
˘ “

zy1pzq

ypzq
R`pzq. (12.27)

Finally, in each term in the sum
ř* in (12.23), let m ě 0 be the number of `1, . . . , `k

that equal 0. By symmetry, we may assume that `1, . . . , `m ě 1 and `m`1 “ . . . `k “ 0, and
multiply by the symmetry factor

`

k
m

˘

. Thus,

R`pzq “
8
ÿ

k“0

pk

k
ÿ

m“0

ˆ

k

m

˙

ÿ**
ˆ

`

`0, . . . , `m

˙

Bpzqd`0 d
”

z
´

m
ź

i“1

M`ipzq
¯

ypzqk´m
ı

“

8
ÿ

m“0

ÿ**
ˆ

`

`0, . . . , `m

˙

Bpzqd`0 d
”

z
´

m
ź

i“1

M`ipzq
¯

8
ÿ

k“m

pk

ˆ

k

m

˙

ypzqk´m
ı

“

8
ÿ

m“0

ÿ**
ˆ

`

`0, . . . , `m

˙

Bpzqd`0 d
”

z
´

m
ź

i“1

M`ipzq
¯ 1

m!
Φpmq

`

ypzq
˘

ı

. (12.28)

The result (12.19) follows from (12.27) and (12.28), noting that the sum
ř** is empty if

m ą `.
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12.3 The mean

For ` “ 1, (12.19) contains only the term m “ 0 and thus `0 “ ` “ 1. Hence,
Lemma 12.4 yields, recalling (12.3),

M1pzq “
zy1pzq

ypzq
¨
`

Bpzq d
“

zΦpypzqq
‰˘

“
zy1pzq

ypzq
¨
`

Bpzq d ypzq
˘

. (12.29)

Let us first consider the factor zy1pzq{ypzq. It follows from (12.3) that ypzq “ 0 implies
z “ 0, and thus z{ypzq is analytic in any domain where ypzq is. Hence, zy1pzq{ypzq is
∆-analytic, since ypzq is. Moreover, by Cauchy’s estimates as in [17, Theorem 6], (12.5)
implies, as z Ñ 1,

y1pzq “ 2´1{2σ´1p1´ zq´1{2 ` o
`

|1´ z|´1{2
˘

. (12.30)

Consequently,

zy1pzq

ypzq
“ 2´1{2σ´1p1´ zq´1{2 ` o

`

|1´ z|´1{2
˘

. (12.31)

We turn to the second factor Bpzq d ypzq. We consider first the case

fpnq “ bn “ nα, n ě 1, (12.32)

for some α P C; then F “ Fα and, by (1.3),

F pTnq “ Xnpαq. (12.33)

By (12.32) and (12.8), Bpzq “ Li´αpzq, a polylogarithm function, and thus (12.9) yields,
at least for Reα ą ´1,

Bpzq “ Γp1` αqp1´ zq´α´1 ` o
`

|1´ z|´Reα´1
˘

. (12.34)

Furthermore, by the definitions,

Bpzq d ypzq “
8
ÿ

n“1

bnqnz
n “

8
ÿ

n“1

qnn
αzn “ E

“

|T |αz|T |
‰

. (12.35)

Lemma 12.5. Let Reα ą 1
2 and let bn :“ nα. Then, as z Ñ 1 in some ∆-domain,

M1pzq “
σ´2

2
?
π

Γ
`

α´ 1
2

˘

p1´ zq´α ` o
`

|1´ z|´Reα
˘

. (12.36)

Proof. By (12.34) and (12.5) together with Lemmas 12.2 and 12.3, and the fact that
Bpzq d 1 “ 0,

Bpzq d ypzq “ ´Γp1` αqp1´ zq´α´1 d
?

2σ´1p1´ zq1{2 ` o
`

|1´ z|´Reα` 1
2

˘

“ ´21{2σ´1 Γpα´ 1
2 q

Γp´ 1
2 q

p1´ zq´α`
1
2 ` o

`

|1´ z|´Reα` 1
2

˘

. (12.37)

The result follows by (12.29) and (12.31).

12.4 The mean when 0 ă Reα ă 1
2

Consider now the case Reα ă 1
2 . If we still take bn “ nα as in (12.32), then (12.35)

and (2.6) show that Bpzq d ypzq is continuous in the closed unit disc, and a comparison
with (1.12) yields

pB d yqp1q “ E |T |α “ µpαq. (12.38)
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Hence, (12.37) cannot hold, since the right-hand side tends to 0 as z Ñ 1. Actually, it
follows from the arguments below that the leading term in Bpzq d ypzq is the constant
µpαq, which by (12.29) and singularity analysis corresponds to the fact that the leading
term in (1.16) is µpαqn. We recall from Section 1 that when Reα ă 1

2 , we want to subtract
this term. In the present setting, we achieve this by modifying (12.32) and instead taking

fpnq “ bn :“ nα ´ µpαq. (12.39)

Then (12.33) is modified to

F pTnq “
ÿ

vPTn

“

|Tn,v|α ´ µpαq
‰

“ Xnpαq ´ µpαqn, (12.40)

and (12.35) is modified to

Bpzq d ypzq “
8
ÿ

n“1

qnrn
α ´ µpαqszn “ E

“

|T |αz|T |
‰

´ µpαqypzq. (12.41)

In particular,

pB d yqp1q “ E |T |α ´ µpαq “ 0. (12.42)

Lemma 12.6. Let 0 ă Reα ă 1
2 and let bn :“ nα ´ µpαq. As z Ñ 1 in some ∆-domain,

M1pzq “
σ´2

2
?
π

Γ
`

α´ 1
2

˘

p1´ zq´α ` o
`

|1´ z|´Reα
˘

. (12.43)

Proof. We now have, by (12.39) and (12.9),

Bpzq “ Li´αpzq ´ µpαqzp1´ zq
´1

“ Γp1` αqp1´ zq´α´1 ` o
`

|1´ z|´Reα´1
˘

, (12.44)

just as in (12.34). Then, arguing as for (12.37) using (12.5) and Lemmas 12.2 and 12.3
now yields

Bpzq d ypzq “ ´Γp1` αqp1´ zq´α´1 d
?

2σ´1p1´ zq1{2 ` P1pzq ` o
`

|1´ z|´Reα` 1
2

˘

“ ´21{2σ´1 Γpα´ 1
2 q

Γp´ 1
2 q

p1´ zq´α`
1
2 ` P2pzq ` o

`

|1´ z|´Reα` 1
2

˘

, (12.45)

where P1pzq, P2pzq P P 1
2´Reα and thus are constants. Letting z Ñ 1 in (12.45) shows that

P2pzq “ pB d yqp1q “ 0, by (12.42). Hence, the result in (12.37) holds in the present case
too, and the result follows again by (12.29) and (12.31).

12.5 Higher moments

In the remainder of this Section 12, we assume that Reα ą 0, and that we have
chosen bn by (12.32) or (12.39) so that

bn :“

#

nα, Reα ě 1
2 ,

nα ´ µpαq, 0 ă Reα ă 1
2 .

(12.46)

In the present subsection we also assume Reα ‰ 1
2 .

We need one more general lemma.

Lemma 12.7. Under our standing assumptions E ξ “ 1 and 0 ă Var ξ ă 8, the function
Φpmqpyp¨qq is ∆-analytic for every m ě 0, and as z Ñ 1 in some ∆-domain,

Φpmq
`

ypzq
˘

“

#

Op1q, m ď 2,

o
`

|1´ z|1´
m
2

˘

, m ě 3.
(12.47)
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Proof. As noted at the beginning of Section 12.1, ypzq is ∆-analytic. It follows from (12.5)
that for some ∆-domain ∆1, if z P ∆1 with |1´ z| small enough, then

|ypzq| ă 1´ c|1´ z|1{2. (12.48)

Moreover, the definition (12.2) implies that |ypzq| ď 1 for |z| “ 1 with strict inequality
unless z “ 1. Hence, by continuity, for some δ, η ą 0, |ypzq| ď 1 ´ η when z P ∆1,
|1´ z| ě ε, and |z| ď 1` δ. It follows that (12.48) holds (with a new c ą 0) for all z in the
∆-domain ∆2 :“ tz P ∆1 : |z| ă 1` δu.

In particular, |ypzq| ă 1 in ∆2 and thus Φpmq
`

ypzq
˘

is analytic in ∆2.
The assumption E ξ2 ă 8 implies that Φ, Φ1 and Φ2 are bounded and continuous

functions on the closed unit disc. Hence, (12.47) holds for m ď 2.
Now suppose m ě 3. Since Φ2 is continuous, we have Φ2pzq ´ Φ2p1q “ op1q as z Ñ 1

with |z| ă 1. Hence it folows from Cauchy’s estimates that

Φpmqpzq “ o
`

p1´ |z|q2´m
˘

as z Ñ 1 with |z| ă 1. (12.49)

The result (12.47) for m ě 3 follows from (12.49) and (12.48).

Lemma 12.8. Assume Reα P p0, 1
2 q Y p

1
2 ,8q and that (12.46) holds. Then, for every

` ě 1, M`pzq is ∆-analytic, and as z Ñ 1 in some ∆-domain,

M`pzq “ χ`σ
´`´1p1´ zq´`pα`

1
2 q`

1
2 ` o

`

|1´ z|´`pReα` 1
2 q`

1
2

˘

, (12.50)

where the constants χ` are given recursively by

χ1 “
1

2
?
π

Γ
`

α´ 1
2

˘

, (12.51)

χ` “ 2´3{2
`´1
ÿ

j“1

ˆ

`

j

˙

χjχ`´j ` 2´1{2`
Γ
`

`pα` 1
2 q ´ 1

˘

Γ
`

p`´ 1qpα` 1
2 q ´

1
2

˘χ`´1. (12.52)

The ∆-domain may depend on `. We write χ` in (12.51)–(12.52) as χ`pαq when we
want to emphasize the dependence on α.

Proof. We use induction on `, based on Lemma 12.4. First, this shows that M` is
∆-analytic, using the fact that B and, by Lemma 12.7, Φpmqpyp¨qq are, together with
Lemma 12.2.

To show (12.50) by induction, we note that the base case ` “ 1 is Lemmas 12.5
and 12.6.

Assume thus ` ě 2, and let A :“ ´`pα` 1
2 q`

1
2 ă ´

1
2 be the exponent of 1´z in (12.50).

Consider the summand in (12.19). By the induction hypothesis and Lemma 12.7, we
have

zM`1pzq ¨ ¨ ¨M`mpzqΦ
pmq

`

ypzq
˘

“ O
`

|1´ z|´
řm
i“1 `ipReα` 1

2 q`
m
2 Φpmq

`

ypzq
˘˘

“

#

O
`

|1´ z|´p`´`0qpReα` 1
2 q`

m
2

˘

, m ď 2,

o
`

|1´ z|´p`´`0qpReα` 1
2 q`1

˘

, m ě 3.
(12.53)

Since `´ `0 ě m, the exponent here is

´p`´ `0qpReα` 1
2 q `

m^ 2

2
ď ´mpReα` 1

2 q `
m^ 2

2
ď ´mReα ď 0. (12.54)

Furthermore, (12.34) and (12.44) show that, for both Reα ą 1
2 and Reα ă 1

2 ,

Bpzq “ O
`

|1´ z|´Reα´1
˘

(12.55)
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and thus Lemma 12.2 applies `0 times and yields

Bpzqd`0 d
“

zM`1pzq ¨ ¨ ¨M`mpzqΦ
pmq

`

ypzq
˘‰

“

#

O
`

|1´ z|´p`´`0qpReα` 1
2 q`

m
2 ´`0Reα

˘

, m ď 2,

o
`

|1´ z|´p`´`0qpReα` 1
2 q`1´`0Reα

˘

, m ě 3.
(12.56)

The exponent here is

´p`´ `0qpReα` 1
2 q `

m^ 2

2
´ `0Reα “ ´`pReα` 1

2 q `
`0 `m^ 2

2
. (12.57)

For m ě 3, this is at least ´`pReα` 1
2 q ` 1 “ ReA` 1

2 , and thus the term is

o
`

|1´ z|ReA` 1
2

˘

. (12.58)

We will see that this contributes only to the error term in (12.50), so such terms may be
ignored. Similarly, for every term with m ď 2 and `0 `m ą 2, the exponent considered
in (12.57) is strictly larger than ReA` 1

2 , and thus such terms also satisfy (12.58) and
may be ignored.

If m “ 1, then `1 ă `, and thus `0 ě 1. Hence, the only remaining terms to consider
are (1) m “ 0 and thus `0 “ `; (2) m “ 1 and `0 “ 1; (3) m “ 2 and `0 “ 0.

Furthermore, also the term with m “ 0 can be ignored, since it is

Bpzqd` d
“

zΦ
`

ypzq
˘‰

“ Bpzqd` d ypzq

“ Bpzqd` d 1`Bpzqd` d
`

ypzq ´ 1
˘

, (12.59)

where Bpzqd` d 1 vanishes and ypzq ´ 1 “ O
`

|1 ´ z|
1
2

˘

“ o
`

|1 ´ z|0
˘

by (12.5); hence
Lemma 12.2(ii) yields

Bpzqd` d
“

zΦ
`

ypzq
˘‰

“ o
`

|1´ z|´`Reα
˘

“ o
`

|1´ z|ReA` 1
2

˘

. (12.60)

Consequently, recalling (12.28), we have

R`pzq “ `Bpzq d
“

zM`´1pzqΦ
1
`

ypzq
˘‰

`
1

2

`´1
ÿ

j“1

ˆ

`

j

˙

zMjpzqM`´jpzqΦ
2
`

ypzq
˘

` o
`

|1´ z|ReA` 1
2

˘

. (12.61)

Since Φ1 is continuous in the unit disc with Φ1p1q “ 1, the induction hypothesis implies
that

zM`´1pzqΦ
1
`

ypzq
˘

“ χ`´1σ
´`p1´ zq´p`´1qpα` 1

2 q`
1
2 ` o

`

|1´ z|´p`´1qpReα` 1
2 q`

1
2

˘

. (12.62)

Hence, (12.34), (12.44), and Lemmas 12.2 and 12.3 yield

Bpzq d
“

zM`´1pzqΦ
1
`

ypzq
˘‰

“ χ`´1σ
´` Γ

`

`pα` 1
2 q ´ 1

˘

Γ
`

p`´ 1qpα` 1
2 q ´

1
2

˘ p1´ zqA`
1
2 ` o

`

|1´ z|ReA` 1
2

˘

. (12.63)

Similarly, the induction hypothesis yields, using Φ2p1q “ σ2,

`´1
ÿ

j“1

ˆ

`

j

˙

zMjpzqM`´jpzqΦ
2
`

ypzq
˘

“

`´1
ÿ

j“1

ˆ

`

j

˙

χjχ`´jσ
´`p1 ´ zqA`

1
2 ` o

`

|1 ´ z|ReA` 1
2

˘

.

(12.64)

The result (12.50) now follows from (12.27), (12.31), and (12.61)–(12.64).

EJP 27 (2022), paper 114.
Page 54/77

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP831
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Sum of powers of subtree sizes

12.6 Mixed moments. Proof of Theorem 1.12

We may extend Theorem 1.12 to mixed moments of Xnpα1q, . . . , Xnpαmq, for sev-
eral given α1, . . . , αm, using the same arguments with only notational differences. For
convenience, define

Xnpαq :“

#

n´α´
1
2Xnpαq, Reα ą 1

2 ,

n´α´
1
2

`

Xnpαq ´ µpαqn
˘

, 0 ă Reα ă 1
2 .

(12.65)

We consider for simplicity only two different values of α; the general case is similar but
left to the reader.

Theorem 12.9. Let Reα1,Reα2 P p0,
1
2 q Y p

1
2 ,8q, and write α1i :“ αi `

1
2 . Then, for any

integers `1, `2 ě 0 with `1 ` `2 ě 1,

σ`1``2 E
“

Xnpα1q
`1Xnpα2q

`2
‰

Ñ E
“

Y pα1q
`1Y pα2q

`2
‰

“

?
2π

Γp`1α11 ` `2α
1
2 ´

1
2 q
χ`1,`2 , (12.66)

where χ1,0 “ χ1pα1q and χ0,1 “ χ1pα2q are given by (12.51), and, for `1 ` `2 ě 2,

χ`1,`2 “ 2´3{2
ÿ

0ăj1`j2ă`1``2

ˆ

`1
j1

˙ˆ

`2
j2

˙

χj1,j2χ`1´j1,`2´j2

` 2´1{2`1
Γ
`

`1α
1
1 ` `2α

1
2 ´ 1

˘

Γ
`

`1α11 ` `2α
1
2 ´ 1´ α1

˘χ`1´1,`2

` 2´1{2`2
Γ
`

`1α
1
1 ` `2α

1
2 ´ 1

˘

Γ
`

`1α11 ` `2α
1
2 ´ 1´ α2

˘χ`1,`2´1. (12.67)

Proof of Theorems 1.12 and 12.9. For a given α, we continue to use the choice (12.46)
of bn. This yields (12.33) (Reα ě 1

2 ) or (12.40) (Reα ă 1
2 ), i.e., now writing qFα for F ,

qFαpTnq “

#

Xnpαq, Reα ě 1
2 ,

Xnpαq ´ µpαqn, 0 ă Reα ă 1
2 .

(12.68)

Hence, in both cases, Xnpαq “ n´α´
1
2 qFαpTnq, and Theorem 1.10 yields

Xnpαq “ n´α´
1
2 qFαpTnq

d
ÝÑ σ´1Y pαq; (12.69)

moreover, this holds jointly for any number of α by the proof of Theorem 1.10.
The asymptotic formula (12.50) yields, by (12.17) and standard singularity analysis

[26, Chapter VI],

qnm
p`q
n “ rznsM`pzq „ χ`σ

´`´1 1

Γ
`

`pα` 1
2 q ´

1
2

˘n`pα`
1
2 q´

3
2 . (12.70)

Together with (2.6) (with h “ 1) for qn, this yields

mp`qn „

?
2πχ`σ

´`

Γ
`

`pα` 1
2 q ´

1
2

˘n`pα`
1
2 q. (12.71)

Recall that mp`qn :“ E qFαpTnq` by (12.16). Hence, (12.71) can be written as

σ`EXnpαq
` Ñ

?
2π

Γ
`

`pα` 1
2 q ´

1
2

˘χ` “: κ`, (12.72)

EJP 27 (2022), paper 114.
Page 55/77

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP831
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Sum of powers of subtree sizes

where we thus denote the right-hand side by κ`. The recursion (1.25)–(1.26) then follows
from (12.51)–(12.52).

This shows most parts of Theorem 1.12, but it remains to show that the κ`’s (the
limits of moments) are the moments of the limit (in distribution) Y pαq of σXnpαq. For
real α, this follows from (12.72) by a standard argument, but for general complex α we
want to consider absolute moments, so we postpone the proof of this, and first turn to
Theorem 12.9.

Define, in analogy with (12.16)–(12.17),

mp`1,`2qn :“ E
“

qFα1
pTnq`1 qFα2

pTnq`2
‰

, (12.73)

M`1,`2pzq :“ E
“

qFα1
pT q`1 qFα2

pT q`2z|T |
‰

“

8
ÿ

n“1

qnm
p`1,`2q
n zn. (12.74)

It is straightforward to extend Lemma 12.4 to the following, valid for every `, r ě 0 with
`` r ě 1:

M`,rpzq “
zy1pzq

ypzq

``r
ÿ

m“1

1

m!

ÿ**
ˆ

`

`0, . . . , `m

˙ˆ

r

r0, . . . , rm

˙

Bα1
pzqd`0

dBα2
pzqdr0 d

“

zM`1,r1pzq ¨ ¨ ¨M`m,rmpzqΦ
pmq

`

ypzq
˘‰

, (12.75)

where
ř** is the sum over all pairs of pm ` 1q-tuples p`0, . . . , `mq and pr0, . . . , rmq of

non-negative integers that sum to ` and r, respectively, such that 1 ď `i ` ri ă `` r for
every i.

Then, the inductive proof of Lemma 12.8 is easily extended to show that in some
∆-domain (possibly depending on `1 and `2)

M`1,`2pzq “ χ`1,`2σ
´`1´`2´1p1´ zq´`1α

1
1´`2α

1
2`

1
2 ` o

`

|1´ z|´`1Reα11´`2Reα12`
1
2

˘

, (12.76)

with χ`1,`2 given by (12.51) and (12.67). Singularity analysis yields, as for the special
case (12.71),

σ`1``2 E
“

Xnpα1q
`1Xnpα2q

`2
‰

Ñ

?
2π

Γ
`

`1α11 ` `2α
1
2 ´

1
2

˘χ`1,`2 “: κ`1,`2 . (12.77)

In particular, for any α in the domain, we may take α1 :“ α and α2 :“ α. Then (12.77)

shows, in particular, that for any integer ` ě 1, E
ˇ

ˇXnpαq
ˇ

ˇ

2`
“ E

“

Xnpαq
`Xnpαq

`
‰

converges
as nÑ8.

By a standard argument, see e.g. [27, Theorems 5.4.2 and 5.5.9], this implies uni-
form integrability of each smaller power of Xnpαq, which together with (12.69) implies
convergence of all lower moments to the moments of the limit σ´1Y pαq. This completes
the proof of (1.23)–(1.24) with

κ` :“ EY pαq` “

?
2π

Γ
`

`pα` 1
2 q ´

1
2

˘χ`. (12.78)

Similarly, using Hölder’s inequality, the sequence Xnpα1q
`1Xnpα2q

`2 is uniformly
integrable for every fixed α1, α2, `1, `2, and (12.66) follows from the joint convergence
in (12.69) and (12.77).

Example 12.10. Taking `1 “ `2 “ 1 in (12.67), we obtain, with obvious notation and
using (12.51),

χ1,1pα, βq “ 2´
1
2χ1pαqχ1pβq ` 2´

1
2

Γpα` βq

Γpβq
χ1pβq ` 2´

1
2

Γpα` βq

Γpαq
χ1pαq
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“
2´

5
2

π
Γpα´ 1

2 qΓpβ ´
1
2 q `

2´
3
2

?
π

Γpα` βqΓpβ ´ 1
2 q

Γpβq
`

2´
3
2

?
π

Γpα` βqΓpα´ 1
2 q

Γpαq
. (12.79)

In particular, taking β “ α and using (12.66) and (12.77),

E |Y pαq|2 “ κ1,1pα, αq “

?
2π

Γp2Reα` 1
2 q
χ1,1pα, αq

“
|Γpα´ 1

2 q|
2

4
?
πΓp2Reα` 1

2 q
`

Γp2Reαq

Γp2Reα` 1
2 q

Re
Γpα´ 1

2 q

Γpαq
. (12.80)

Example 12.11. As mentioned in Example 1.25, for the case of joint moments of Y p1q
and Y p2q, Theorem 12.9 yields the recursion formula given in [34]; the method used
there is related to the one used here, but seems to apply only for integer α.

Remark 12.12. The mixed moments of Y pαq and Y pαq “ Y pαq determine the distribu-
tion of Y pαq uniquely, for any α ‰ 1

2 with Reα ą 0. In fact, there exists Cpαq ą 0 such
that for every ` ě 1,

E |Y pαq|` ď Cpαq``!, (12.81)

and thus pReY pαq, ImY pαqq has a finite moment generating function in a neighborhood
of the origin. The estimate (12.81) was shown for real α in [21, Lemma 3.4] (with proof
in [20]); the general case is similar, considering even ` and using induction and (12.67).

The constant Cpαq in (12.81) can be taken uniformly bounded on compact subsets of
H`zt

1
2u. Moreover, (12.81) obviously implies the same estimate for rY pαq “ Y pαq´EY pαq

[with Cpαq replaced by 2Cpαq], and then we can argue using analyticity as in the proof
of Lemma 12.21 below and conclude that (12.81) holds also for rY p 1

2 q, which thus also is
determined by its moments, as noted in [21].

12.7 Uniform estimates

In this Section 12, we have so far estimated moments for a fixed α, or mixed moments
for a fixed set of different α. We turn to uniform estimates for α in suitable sets. This
is rather straightforward if Reα stays away from 1

2 . However, we want uniformity also
for Reα approaching (or equalling) 1

2 , and this is more complicated. For our proofs, we
assume throughout the present subsection the weak moment condition

E ξ2`δ ă 8, (12.82)

for some δ ą 0. Throughout this subsection, δ is fixed; we assume without loss of
generality that δ ď 1.

Problem 12.13. Do Lemmas 12.18–12.21 and Theorem 1.3 hold without the extra
condition (12.82)? (Cf. Remark 1.4.)

We begin with some preliminaries. We start with a standard estimate, included for
completeness.

Lemma 12.14. If (12.82) holds with 0 ă δ ď 1, then

Φpzq “ z ` 1
2σ

2p1´ zq2 `O
`

|1´ z|2`δ
˘

, |z| ď 1. (12.83)

Proof. Let z “ 1´ w, with |z| ď 1. Taylor’s theorem yields the two estimates, uniformly
for |z| ď 1 and k ě 0,

zk “ p1´ wqk “ 1´ kw `O
`

k2|w|2
˘

“ 1´ kw `

ˆ

k

2

˙

w2 `O
`

k2|w|2
˘

, (12.84)
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zk “ p1´ wqk “ 1´ kw `

ˆ

k

2

˙

w2 `O
`

k3|w|3
˘

, (12.85)

and thus, taking a geometric mean of the O terms in (12.84) and (12.85),

zk “ 1´ kw `

ˆ

k

2

˙

w2 `O
`

k2`δ|w|2`δ
˘

. (12.86)

Hence, (12.1) yields, using the assumption (12.82),

Φpzq “
8
ÿ

k“1

pk

”

1´ kw `

ˆ

k

2

˙

w2 `O
`

k2`δ|w|2`δ
˘

ı

“ 1´ w `
σ2

2
w2 `O

`

|w|2`δ
˘

, (12.87)

which is (12.83).

This enables us to improve (12.5).

Lemma 12.15. If (12.82) holds with 0 ă δ ď 1, then, for z in some ∆-domain,

ypzq “ 1´
?

2σ´1p1´ zq1{2 `O
`

|1´ z|
1
2`

δ
2

˘

. (12.88)

Proof. By [35, Lemma A.2], ypzq is analytic in some ∆-domain ∆ such that |ypzq| ă 1 for
z P ∆ and (12.5) holds as z Ñ 1 in ∆. To show the improvement (12.88), it suffices to
consider z P ∆ close to 1, since the estimate is trivial when |1´ z| is bounded below.

Let w :“ 1´ ypzq. By (12.5) we have |w| “ Θ
`

|1´ z|
1
2

˘

. The functional equation (12.3)
and Lemma 12.14 yield

ypzq{z “ Φ
`

ypzq
˘

“ ypzq `
σ2

2
w2 `O

`

|w|2`δ
˘

“ ypzq `
σ2

2
w2

“

1`O
`

|w|δ
˘‰

(12.89)

and thus, for |1´ z| small,

σ2

2
w2 “

1´ z

z
ypzq

“

1`O
`

|w|δ
˘‰

“ p1´ zq
“

1`O
`

|1´ z|δ{2
˘‰

. (12.90)

The result (12.88) follows.

We need also a uniform version of Lemma 12.2(i). We state it in a rather general
form.

Lemma 12.16. Let I be an arbitrary index set, and suppose that aι, bι, ι P I, are real
numbers such that supI |aι| ă 8, supI |bι| ă 8 and supIpaι ` bι ` 1q ă 0. Suppose
that gιpzq and hιpzq are ∆-analytic functions such that, in some fixed ∆-domain ∆,
gιpzq “ O

`

|1´ z|aι
˘

and hιpzq “ O
`

|1´ z|bι
˘

, uniformly in ι. Then

gιpzq d hιpzq “ O
`

|1´ z|aι`bι`1
˘

, (12.91)

in some fixed ∆-domain ∆1, uniformly in ι.

Proof. This follows from the proof of [17, Proposition 9], taking there the same integra-
tion contour for all ι.

As a final preparation, we state a uniform version of a special case of the asymptotic
expansion of polylogarithms by Flajolet [23], cf. (12.9). A proof is given in Appendix B.

Lemma 12.17. For every ∆-domain ∆ and every compact set K Ă Czt1, 2, . . . u we have

Liαpzq “ Γp1´ αqp1´ zqα´1 `O
`

|1´ z|Reα ` 1
˘

(12.92)

uniformly for z P ∆ and α P K.

EJP 27 (2022), paper 114.
Page 58/77

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP831
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Sum of powers of subtree sizes

We continue to assume (12.46). We now denote the generating function (12.18) by
Bαpzq; thus

Bαpzq “

#

Li´αpzq, Reα ě 1
2 ,

Li´αpzq ´ µpαqzp1´ zq
´1, Reα ă 1

2 .
(12.93)

The following lemma is the central step to establishing uniformity in the estimates
above. (Cf. Lemmas 12.5 and 12.6.) Note that the lemma does not hold for α “ 1

2 ; it is
easily seen from (2.6) that B1{2pzq d ypzq “ Θ

`

| log |1´ z||
˘

as z Õ 1.

Lemma 12.18. Assume that E ξ2`δ ă 8. Let K be a compact subset of tα : Reα ą

0uzt 1
2u. Then,

Bαpzq d ypzq “ O
`

|1´ z|
1
2´Reα

˘

(12.94)

in some fixed ∆-domain, uniformly for α P K.

Proof. We consider three different cases, and therefore define K1 :“ tα P K : Reα ě
1
2 `

δ
4u, K2 :“ tα P K : 1

2 ď Reα ă 1
2 `

δ
4u, K3 :“ tα P K : Reα ă 1

2u. Estimates of the
type O

`

|1´ z|a
˘

below are valid in some fixed ∆-domain, which may change from line to
line.
Case 1: Reα ě 1

2 `
δ
4 . In this range, we have by Lemma 12.17

Bαpzq “ Li´αpzq “ O
`

|1´ z|´Reα´1
˘

, (12.95)

uniformly in α P K1. Furthermore, ypzq “ 1 ` O
`

|1 ´ z|
1
2

˘

by (12.5) (or Lemma 12.15),
and 1

2 ´ Reα ď ´ δ
4 for α P K1. Hence, Lemma 12.16 yields

Bαpzq d ypzq “ Bαpzq d
`

ypzq ´ 1
˘

“ O
`

|1´ z|
1
2´Reα

˘

, (12.96)

uniformly in α P K1.
Case 2 and 3: 0 ă Reα ă 1

2 `
δ
4 . We have, by (12.88) and (12.9),

ypzq “ 1´ c1p1´ zq
1{2 `O

`

|1´ z|
1
2`

δ
2

˘

“ 1` c2 Li3{2pzq ` P pzq `O
`

|1´ z|
1
2`

δ
2

˘

,

(12.97)

where P pzq is a polynomial that can be assumed to have degree less than 1
2 `

δ
2 , and thus

P pzq “ C1, a constant. Let

hpzq :“ ypzq ´ c2 Li3{2pzq ´ 1´ C1 “ O
`

|1´ z|
1
2`

δ
2

˘

. (12.98)

Let ϑ denote the differential operator z d
dz . Note the identity ϑpg1pzq d g2pzqq “

ϑg1pzq d g2pzq and that ϑLiαpzq “ Liα´1pzq. Thus,

ϑ
`

Li´αpzq d hpzq
˘

“ ϑLi´αpzq d hpzq “ Li´α´1pzq d hpzq. (12.99)

We have Li´α´1pzq “ O
`

|1 ´ z|´Reα´2
˘

uniformly in α P K by Lemma 12.17, which
together with (12.98) and Lemma 12.16 yields

ϑ
`

Li´αpzq d hpzq
˘

“ O
`

|1´ z|´Reα´ 1
2`

δ
2

˘

, (12.100)

uniformly in α P K2 YK3.
Furthermore, by Lemma 12.17,

ϑ
`

Li´αpzq d Li3{2pzq
˘

“ ϑLi´α`3{2pzq “ Li´α`1{2pzq
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“ Γpα` 1
2 qp1´ zq

´α´ 1
2 `O

`

|1´ z|´Reα` 1
2 ` 1

˘

(12.101)

uniformly in α P K2 YK3.
The exponent ´Reα ´ 1

2 `
δ
2 in (12.100) lies in r´1 ` δ

4 , 0q, and thus (12.100) and
(12.101) yield, after division by z,

d

dz

`

Li´αpzq d ypzq
˘

“ c2
d

dz

`

Li´αpzq d Li3{2pzqq
˘

`
d

dz

`

Li´αpzq d hpzqq
˘

“ c2Γpα` 1
2 qp1´ zq

´α´ 1
2 `O

`

|1´ z|´Reα´ 1
2`

δ
2

˘

, (12.102)

again uniformly in α P K2 YK3.
We now consider Cases 2 and 3 separately.

Case 2: 1
2 ď Reα ă 1

2 `
δ
4 . By integrating (12.102) along a suitable contour, for example

from 0 along the negative real axis to ´|z| and then along the circle with radius |z| to z,

Bαpzq d ypzq “ Li´αpzq d ypzq “ c2Γpα´ 1
2 qp1´ zq

´α` 1
2 `Op1q, (12.103)

uniformly in α P K2, which implies (12.94).
Case 3: 0 ă Reα ă 1

2 . Recall that now

Bαpzq d ypzq “ Li´αpzq d ypzq ´ µpαqypzq, (12.104)

see (12.93) and (12.41). The estimate (12.5) implies, in a smaller ∆-domain,

y1pzq “ O
`

|1´ z|´
1
2

˘

. (12.105)

Furthermore, µpαq “ Op1q on K3, as a consequence of Theorem 10.7. Hence (12.104),
(12.102), and (12.105) imply

d

dz

`

Bαpzq d ypzq
˘

“ c2Γpα` 1
2 qp1´ zq

´α´ 1
2 `O

`

|1´ z|´ppReα` 1
2´

δ
2 q_

1
2 q
˘

. (12.106)

We now have pBα d yqp1q “ 0 by (12.42), and thus (12.94) follows from (12.106) by
integration, noting that the exponents in (12.106) stay away from ´1 for α P K3.

Lemma 12.19. Assume that E ξ2`δ ă 8. Let K be a compact subset of tα : Reα ą

0uzt 1
2u. Then, with notations as in (12.17) and (12.74), for every ` ě 1,

M`pzq “ O
`

|1´ z|´`pReα` 1
2 q`

1
2

˘

(12.107)

in some fixed ∆-domain (depending on `) uniformly for all α P K. More generally,

M`1,`2pzq “ O
`

|1´ z|´`1Reα11´`2Reα12`
1
2

˘

, (12.108)

in some fixed ∆-domain (depending on `1, `2), uniformly for all α1, α2 P K.

Proof. For (12.107), the case ` “ 1 follows from (12.29), (12.31), and Lemma 12.18. We
then proceed by induction as in the proof of Lemma 12.8. [But the induction is now
simpler; it suffices to note that (12.57) is at least ReA` 1

2 .]
The proof of (12.108) is essentially the same, see the proof of Theorem 12.9.

Lemma 12.20. Assume that E ξ2`δ ă 8. Let K be a compact subset of tα : Reα ą

0uzt 1
2u. Then, for every fixed r ą 0,

E
“

|Xnpαq ´ nµpαq|
r
‰

“ O
`

nrpReα` 1
2 q
˘

, (12.109)

uniformly for all α P K with Reα ă 1
2 , and

E
“

|Xnpαq|
r
‰

“ O
`

nrpReα` 1
2 q
˘

, (12.110)

uniformly for all α P K with Reα ě 1
2 .
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Proof. Using the notation (12.68), (12.109) and (12.110) can be combined as

E | qFαpTnq|r “ O
`

nrpReα` 1
2 q
˘

, (12.111)

uniformly in α P K. By Hölder’s (or Lyapounov’s) inequality, it suffice to prove (12.111)
when r “ 2`, an even integer. In this case, we let α1 “ α, α2 “ α and `1 “ `2 “ `;
then (12.73)–(12.74) show that, using also (2.6),

E | qFαpTnq|2` “ E
“

qFαpTnq` qFαpTnq`
‰

“ mp`,`qn “ q´1
n rz

nsM`,`pzq ď Cn3{2rznsM`,`pzq,

(12.112)

and the desired result (12.111) (with r “ 2`) follows from (12.112) and (12.108) by
standard singularity analysis, see [26, Proof of Theorem VI.3, p. 390–392].

Lemma 12.21. Assume that E ξ2`δ ă 8. Let K be a compact subset of tα : Reα ą 0u.
Then, for every r ą 0,

E
“

|Xnpαq ´ EXnpαq|
r
‰

“ O
`

nrpReα` 1
2 q
˘

, (12.113)

uniformly for all α P K.

Proof. It suffices to show this for r ě 1. Let Lr be the Banach space of all complex
random variables X defined on our underlying probability space such that

}X}r :“
`

E |X|r
˘1{r

ă 8. (12.114)

Case 1: 1
2 R K. In this case, Lemma 12.20 applies and thus (12.109) and (12.110) hold,

uniformly for α in the specified sets. We may write these as }Xnpαq´nµpαq}r ď CnReα` 1
2

and }Xnpαq}r ď CnReα` 1
2 , respectively. As is well known, for any (complex) random

variable X,

}X ´ EX}r ď }X}r ` |EX| ď 2}X}r. (12.115)

Hence we obtain in both cases, and thus uniformly for all α P K,

}Xnpαq ´ EXnpαq}r ď CnReα` 1
2 , (12.116)

which is equivalent to (12.113).
Case 2: 1

2 P K. Consider first the special case K1 :“ tα P C : |α ´ 1
2 | ď 0.1u and let

K2 :“ BK1 “ tα P C : |α´ 1
2 | “ 0.1u. Then Case 1 applies to K2. Moreover, recalling the

notation (1.9), we can write (12.113) and (12.116) as

}rYnpαq}r ď C, (12.117)

where rYnpαq “ n´α´
1
2

`

Xnpαq´EXnpαq
˘

is, for each n ě 1, an Lr-valued analytic function
of α. [Recall that for a fixed n, there are only finitely many choices for the tree Tn, and
for each choice, (1.3) is an entire function of α.] The maximum modulus principle holds
for Banach space valued analytic functions, see e.g. [13, p. 230], and thus, using (12.117)
for K2,

sup
αPK1

}rYnpαq}r “ sup
αPK2

}rYnpαq}r ď C. (12.118)

Hence, (12.117) holds uniformly for α P K1, and thus so does (12.113).
For a general compact set K, Case 1 applies to tα P K : |α´ 1

2 | ě 0.1u, which together
with the case K1 just proved yields the result (12.113) uniformly for all α P K.

EJP 27 (2022), paper 114.
Page 61/77

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP831
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Sum of powers of subtree sizes

Proof of Theorem 1.3. We give the proof for ordinary moments, i.e., (1.11). The other
cases are similar, with mainly notational differences.

Let ` ě 1 and choose r :“ ` ` 1. First, consider a fixed α with Reα ą 0. Then
Lemma 12.21 shows that E |rYnpαq|r “ Op1q, and thus the sequence rYnpαq

` is uniformly
integrable, which together with (1.10) implies (1.11). (See again [27, Theorems 5.4.2
and 5.5.9].)

To show uniform convergence on compact sets of α, consider first a convergent
sequence pαkq in H` with αk Ñ α8 P H` as k Ñ8, and a sequence nk Ñ 8. By

Theorem 1.2, rYnpαq
d
ÝÑ σ´1

rY pαq in HpH`q, and by the Skorohod coupling theorem [40,
Theorem 4.30], we may assume that a.s. rYnpαq Ñ σ´1

rY pαq in HpH`q, i.e., uniformly
on compact sets. It then follows that rYnkpαkq

a.s.
ÝÑ σ´1

rY pα8q as k Ñ8. Furthermore,
Lemma 12.21 applies to the compact set tα1, α2, . . . u Y tα8u, and thus (12.117) holds
and shows that E |rYnkpαkq|

r ď C. Hence, similarly to the case of a fixed α, the sequence
rYnkpαkq

` is uniformly integrable, and

E rYnkpαkq
` Ñ σ´`E rY pα8q

`, as k Ñ8. (12.119)

This holds for any sequence nk Ñ8. In particular, we may for each k, using (1.11) which
we just have proved for each fixed α, choose nk so large that

ˇ

ˇE rYnkpαkq
`´σ´`E rY pαkq

`
ˇ

ˇ ă

1{k for each k. Then (12.119) implies

E rY pαkq
` Ñ E rY pα8q

` as k Ñ8. (12.120)

Since this hold for any sequence αk Ñ α8, (12.120) shows that E rY pαq` is a continuous
function of α P H`.

Moreover, (12.119) and (12.120) show that for any convergent sequence pαkq in H`,
and any nk Ñ8,

E rYnkpαkq
` ´ σ´`E rY pαkq

` Ñ 0. (12.121)

Let K Ă H` be compact. We claim that E rYnpαq
` Ñ σ´`E rY pαq` uniformly for α P K.

Suppose not. Then there exists ε ą 0, a subsequence nk Ñ8 and a sequence pαkq P K
such that

ˇ

ˇE rYnkpαkq
` ´ σ´`E rY pαkq

`
ˇ

ˇ ą ε for every k. Since K is compact, we may by
selecting a subsequence assume that αk Ñ α8 for some α8 P K. But then (12.121)
holds, which is a contradiction. This shows the claimed uniform convergence on K.

Finally E rY pαq` is an analytic function of α P H` since it is the uniform limit on
compact sets of the sequence of analytic functions E rYnpαq

`.

12.8 Final remark

Remark 12.22. In this Section 12 we have only considered the case Reα ą 0. It seems
likely that similar arguments can be used to show moment convergence in Theorem 1.1
for Reα ă 0, but we have not pursued this, and we leave it as an open problem.

A Some examples of µpαq

Although µpαq easily can be evaluated numerically for a given ξ by (2.3) or per-
haps (10.6), neither formula seems to yield exact values for a given α in any simple form,
not even for, e.g., α “ ´1. We give here alternative formulas that can be used to find
exact values in some important examples when α is a negative integer.

Let U „ Up0, 1q and E :“ ´ logU „ Expp1q be independent of T . Define the random
variable

V :“ U1{|T | “ e´E{|T |. (A.1)
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Then 0 ă V ă 1, and V has the distribution function, for 0 ď x ď 1,

PpV ď xq “ P
`

U ď x|T |
˘

“

8
ÿ

n“1

Pp|T | “ nqxn “: gpxq, (A.2)

the probability generating function of |T |. Hence, the density function of V is, for
0 ď x ă 1,

g1pxq “
8
ÿ

n“1

nPp|T | “ nqxn´1 “

8
ÿ

n“1

PpSn “ n´ 1qxn´1. (A.3)

Since ´ log V “ E{|T |, we have, for Reα ă 1
2 ,

Ep´ log V q´α “ EpE{|T |q´α “ EE´αE |T |α “ Γp1´ αqµpαq (A.4)

and thus

µpαq “
1

Γp1´ αq
Ep´ log V q´α “

1

Γp1´ αq

ż 1

0

p´ log xq´α dgpxq. (A.5)

This can also be written as

µpαq “
1

Γp1´ αq

ż 1

0

p´ log xq´αg1pxqdx “
1

Γp1´ αq

ż 8

0

y´αg1pe´yqe´y dy. (A.6)

Define the generating function

Hpzq :“
8
ÿ

k“0

µp´kqzk, (A.7)

which converges absolutely for |z| ă 1, since |µp´kq| “ µp´kq “ E |T |´k ď 1. Then (A.5)
yields, for z P r0, 1q say, using an integration by parts in the final equality,

Hpzq “
8
ÿ

k“0

1

k!
Ep´ log V qkzk “ E e´z log V “ EV ´z (A.8)

“

ż 1

0

x´zg1pxqdx “ 1` z

ż 1

0

x´z´1gpxqdx. (A.9)

Note that both integrals in (A.9) converge for all z with Re z ă 1; hence, (A.9) shows that
Hpzq extends analytically to this halfplane.

We will see below several examples where Hpzq can be found explicitly; then µp´kq
can be found by extracting Taylor coefficients. In particular, by (A.7) and (A.9),

µp´1q “ H 1p0q “

ż 1

0

gpxq

x
dx, (A.10)

which also follows directly from (1.12) and (A.2).

Example A.1 (labelled trees; Pop1q). Consider uniformly random labelled trees; this is
the case ξ „ Pop1q. Then Sn „ Popnq, and thus (A.2) and (2.2) give

gpxq “
8
ÿ

n“1

1

n
PpSn “ n´ 1qxn “

8
ÿ

n“1

nn´1e´n

n ¨ pn´ 1q!
xn “

8
ÿ

n“1

nn´1

n!
px{eqn “ T px{eq, (A.11)

where T is the well-known tree function, satisfying

T pxqe´T pxq “ x, |x| ď e´1. (A.12)
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Since V has the distribution function g,

U
d
“ gpV q “ T pV {eq (A.13)

and thus, using (A.12),

V {e “ T pV {eqe´T pV {eq
d
“ Ue´U . (A.14)

Hence,

log V
d
“ 1` logU ´ U (A.15)

and

Ep´ log V q´α “ EpU ´ logU ´ 1q´α “

ż 1

0

pu´ log u´ 1q´α du. (A.16)

Consequently, by (A.5), for Reα ă 1
2 ,

µpαq “
1

Γp1´ αq

ż 1

0

pu´ log u´ 1q´α du “
1

Γp1´ αq

ż 8

0

`

e´x ´ 1` x
˘´α

e´x dx. (A.17)

In particular, when α is a negative integer, µpαq can be evaluated as a finite combina-
tion of gamma integrals, yielding a rational value. For example, µp0q “ 1 (as always!),
µp´1q “ 1{2, µp´2q “ 5{12, µp´3q “ 7{18. µp´4q “ 1631{4320, µp´5q “ 96547{259200.

In this example, by (A.8) and (A.15),

Hpzq “ E e´zp1`logU´Uq “ e´z E
`

U´zezU
˘

“ e´z
ż 1

0

u´zezu du

“ e´zΓp1´ zqγ˚p1´ z,´zq “ e´zp´zqz´1γp1´ z,´zq, (A.18)

where γ is an incomplete gamma function and γ˚ is closely related, see [47, §8.2(i)] for
both.

Example A.2 (Ordered trees; Gep1{2q). For uniformly random ordered trees we have
ξ „ Gep1{2q, with Ppξ “ kq “ 2´k´1, k ě 0. Thus Sn has a Negative Binomial distribution,
and, using (2.2),

Pp|T | “ nq “
1

n
PpSn “ n´ 1q “

1

n
21´2n

ˆ

2n´ 2

n´ 1

˙

“ 21´2n p2n´ 2q!

n! pn´ 1q!

“ p´1qn´1

ˆ 1
2

n

˙

. (A.19)

Hence, the distribution function gpxq of V is by (A.2)

gpxq “
8
ÿ

n“1

p´1qn´1

ˆ 1
2

n

˙

xn “ 1´ p1´ xq1{2 (A.20)

and the density function is

g1pxq “
1

2
p1´ xq´1{2. (A.21)

Thus, V has a Beta distribution: V „ Bp1, 1
2 q.

By (A.9) and (A.21),

Hpzq “
1

2

ż 1

0

x´zp1´ xq´1{2dx “
1

2
B
`

1´ z, 1
2

˘

“
Γp1´ zqΓp 3

2 q

Γp 3
2 ´ zq

. (A.22)

By repeated differentiations we obtain for example, assisted by [47, §5.15] and Maple,
and using again ψpxq :“ Γ1pxq{Γpxq,

µp´1q “ H 1p0q “ ψ
`

3
2

˘

´ ψp1q “ 2´ 2 log 2
.
“ 0.6137, (A.23)

EJP 27 (2022), paper 114.
Page 64/77

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP831
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Sum of powers of subtree sizes

µp´2q “
1

2
H2p0q “

1

2

´

`

ψ
`

3
2

˘

´ ψp1q
˘2
´
`

ψ1
`

3
2

˘

´ ψ1p1q
˘

¯

“ 2 log2 2´ 4 log 2´ 1
6π

2 ` 4
.
“ 0.5434, (A.24)

µp´3q “ 1
3 plog 2´ 1qπ2 ´ 4

3 log3 2` 4 log2 2´ 8 log 2´ 2ζp3q ` 8
.
“ 0.5190, (A.25)

µp´4q “ ´ 1
40π

4 `
`

´ 1
3 log2 2` 2

3 log 2´ 2
3

˘

π2 ` 2
3 log4 2

´ 8
3 log3 2` 8 log2 2´ 16 log 2` p4 log 2´ 4qζp3q ` 16

.
“ 0.5088. (A.26)

Example A.3 (Binary trees; Bip2, 1
2 q). Uniformly random binary trees is an example with

ξ „ Bip2, 1
2 q, Thus Sn „ Bip2n, 1

2 q and, using (2.2),

Pp|T | “ nq “
1

n
PpSn “ n´ 1q “

1

n
2´2n

ˆ

2n

n´ 1

˙

“ 2´2n p2nq!

n! pn` 1q!
“ 2p´1qn

ˆ 1
2

n` 1

˙

.

(A.27)

Hence,

gpxq “
8
ÿ

n“1

2p´xqn
ˆ 1

2

n` 1

˙

“
2

´x

`

p1´ xq1{2 ´ 1` 1
2x

˘

“
2´ x´ 2

?
1´ x

x
(A.28)

and (A.9) yields, first for z ă ´1 and then for Re z ă 1 by analytic continuation,

Hpzq “ 1` z

ż 1

0

´

2x´z´2 ´ x´z´1 ´ 2x´z´2p1´ xq1{2
¯

dx

“ 1`
2z

´z ´ 1
´

z

´z
´ 2z

Γp´z ´ 1qΓp 3
2 q

Γp 1
2 ´ zq

“
2

1` z
´ Γp 1

2 q
Γp1´ zq

p1` zqΓp 1
2 ´ zq

. (A.29)

Taking Taylor coefficients at 0 yields, for example, again using [47, §5.15] and Maple,

µp´1q “ H 1p0q “ ´1` ψp1q ´ ψp 1
2 q “ 2 log 2´ 1

.
“ 0.3863, (A.30)

µp´2q “ 1
6π

2 ´ 2 log2 2´ 2 log 2` 1
.
“ 0.2977. (A.31)

Example A.4 (Full binary trees; 2 Bip1, 1
2 q). Uniformly random full binary trees is an

example with ξ{2 „ Bip1, 1
2 q, i.e., Ppξ “ 0q “ Ppξ “ 2q “ 1

2 . Thus Sn{2 „ Bipn, 1
2 q and,

using (2.2), if n “ 2m` 1 is odd,

Pp|T | “ nq “
1

n
PpSn “ n´ 1q “

1

n
2´n

ˆ

n

m

˙

“ 2´2m´1 p2mq!

m! pm` 1q!
“ p´1qm

ˆ 1
2

m` 1

˙

.

(A.32)

Hence,

gpxq “
8
ÿ

k“0

p´1qmx2m`1

ˆ 1
2

m` 1

˙

“
1´

?
1´ x2

x
(A.33)

and (A.9) yields, similarly to (A.29), omitting some details,

Hpzq “ 1` z

ż 1

0

x´z´2
`

1´
a

1´ x2
˘

dx “
1

1` z
`

Γp´ 1`z
2 qΓp 3

2 q

Γp´ z
2 q

. (A.34)
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This yields, for example,

µp´1q “
π

2
´ 1

.
“ 0.5708, (A.35)

µp´2q “ 1´ 1
2 p1´ log 2qπ

.
“ 0.5180. (A.36)

B Polylogarithms

As said in (12.8), the polylogarithm function is defined, for α P C, by

Liαpzq :“
8
ÿ

n“1

n´αzn, |z| ă 1; (B.1)

the function is then extended analytically to z P Czr0,8q, for example by the integral
formula [26, (VI.48)]. As a bivariate function, Liαpzq is analytic in both variables pα, zq P
Cˆ pCzr0,8qq.

Let U :“ tz P Czp´8, 0s : | log z| ă 2πu (where log z denotes the principal value), and
note that U is a neighborhood of 1. In particular, U contains, for example, the disc
U1 :“ tz : |z ´ 1| ă 1

2u. If α R t1, 2, . . . u, z R r1,8q, and furthermore z P U 1 :“ Uzr0,8q,
then, see [47, 25.12.2] and [14, (1.11.8)],

Liαpzq “ Γp1´ αqp´ log zqα´1 `

8
ÿ

n“0

ζpα´ nq
plog zqn

n!
. (B.2)

We denote the infinite sum in (B.2) by hαpzq, and note that it converges absolutely for
z P U , and thus is analytic there, since the reflection formula for the Riemann zeta
function [47, 25.4.2] easily implies

|ζpα´ nq|

n!
“ O

´

p2πq´nΓpn` 1´ αqζpn` 1´ αq

n!

¯

“ O
´

n´Reαp2πq´n
¯

. (B.3)

for each fixed complex α and n ě Reα` 1.
Moreover, we define the analytic function

Gpzq :“
´ log z

1´ z
, z P U1, (B.4)

where by continuity Gp1q “ 1. Since Gpzq ‰ 0 in U1,

gpzq :“ logpGpzqq, z P U1, (B.5)

also defines an analytic function in U1, with gp1q “ 0. Then, for z P U 11 :“ U1zr1,8q,

p´ log zqα´1 “
`

p1´ zqGpzq
˘α´1

“
`

p1´ zqegpzq
˘α´1

“ p1´ zqα´1epα´1qgpzq. (B.6)

Consequently, (B.2) yields

Liαpzq “ Γp1´ αqp1´ zqα´1epα´1qgpzq ` hαpzq, z P U 11. (B.7)

The functions epα´1qgpzq and hαpzq are analytic functions of z P U1, and can thus
be expanded as Taylor series in 1 ´ z. Hence, (B.7) yields, for z P U 11, an absolutely
convergent expansion

Liαpzq “
8
ÿ

j“0

ajpαqp1´ zq
α´1`j `

8
ÿ

k“0

bkpαqp1´ zq
k (B.8)
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for some coefficients ajpαq and bkpαq. This is the asymptotic expansion given in Flajolet
[23] and [26, Theorem VI.7]; we see now that the expansion actually converges for
z P U 11.

The coefficients ajpαq and bkpαq can be found from the formulas above by repeated
differentiations at z “ 1, or (as in [23] and [26]) by substitution in (B.7) of

log z “ log
`

1´ p1´ zq
˘

“ ´

8
ÿ

k“1

p1´ zqk

k
“ ´p1´ zq

8
ÿ

k“0

p1´ zqk

k ` 1
(B.9)

and its consequence

gpzq “ log
”

1`
8
ÿ

k“1

p1´ zqk

k ` 1

ı

“

8
ÿ

m“1

p´1qm´1

m

”

8
ÿ

k“1

p1´ zqk

k ` 1

ım

, (B.10)

followed by rearrangements into single power series. Note that ajpαq and bkpαq are
analytic functions of α P Czt1, 2, . . . u.

In particular, a0pαq “ Γp1 ´ αq, and thus by keeping only the first term in the first
sum in (B.8), we obtain (12.9).

Proof of Lemma 12.17. It is easily checked that the estimate (B.3) holds uniformly for
α P K and large enough n. Hence, uniformly for α P K and z P U1,

|hαpzq| “ Op1q, (B.11)

Similarly, since gp1q “ 0, we have gpzq “ Op|1´ z|q in U1, and

epα´1qgpzq “ 1`O
`

|1´ z|
˘

, (B.12)

again uniformly for α P K and z P U1. Hence, for z P U 11, (12.92) follows from (B.7), with
the O term uniform for α P K. The case z P ∆zU 11 is trivial, since |1 ´ z| is bounded
above and below in that set, and Liαpzq is uniformly bounded in the compact set ∆zU1 by
continuity.

In the same way we see that we may expand the two sums in (B.8) to any number of
finite terms, and the resulting expansion will have error terms that are uniform in α P K,
for any compact K Ă Czt1, 2, . . . u.

C The limit as αÑ 0

We show here the claim in Remark 1.19 about limits (in distribution) of Y pαq as
α Ñ 0 (with Reα ą 0; recall that Y pαq is defined only for such α). It turns out that
the limit depends on how α appoaches 0. We consider for simplicity only the case
when α approaches on a straight line, i.e., with constant argument (necessarily with
| argα| ă π{2). In this case, α´1Y pαq has a complex normal limiting distribution, but the
limit depends on argα.

Theorem C.1. Let α “ reiθ with |θ| ă π{2, and let r Ñ 0 with θ fixed. Then

α´1{2Y pαq
d
ÝÑ ζ, (C.1)

where ζ is a centered complex normal variable, which is characterized by the covariance
matrix

Cov

ˆ

Re ζ

Im ζ

˙

“
1´ log 2

cos θ

ˆ

1` cos θ 0

0 1´ cos θ

˙

. (C.2)
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In other words, Re ζ and Im ζ are independent centered normal variables with respective
variances p1´ log 2qrp1{ cos θq ˘ 1s; equivalently, with

E ζ2 “ 2p1´ log 2q and E |ζ|2 “ 2p1´ log 2q{ cos θ. (C.3)

The case α real, i.e., θ “ 0, was noted in [21, Remark 3.6(e)]. As stated in (1.29), then
ζ is a real normal variable N

`

0, 2p1´ log 2q
˘

.
We prove Theorem C.1 by the method of moments, using Theorem 12.9. We procced

via a series of lemmas that are stated for somewhat more general situations.

Lemma C.2. As α, β Ñ 0, with Reα,Reβ ą 0, we have

EY pαq “ κ1pαq “

?
2π

Γpαq
χ1pαq „ ´

?
2π α, (C.4)

E
“

Y pαqY pβq
‰

“ κ1,1pα, βq „
?

2χ1,1pα, βq „ 4p1´ log 2q
αβ

α` β
. (C.5)

Proof. All asymptotic notions in the proof are as α, β Ñ 0. We assume throughout that
|α| and |β| are small.

Recall again the standard notation

ψpxq :“
d

dx
log Γpxq “

Γ1pxq

Γpxq
. (C.6)

First, by (12.51) and (C.6),

χ1pαq “
Γpα´ 1

2 q

2
?
π

“ ´
Γp´ 1

2 ` αq

Γp´ 1
2 q

“ ´
`

1` ψp´ 1
2 qα`Op|α|

2q
˘

. (C.7)

In particular, χ1pαq „ ´1 and thus (C.4) follows by (12.72) [or (1.25)].
For the second moment (C.5), we first note that by (12.66) and (12.77),

E
“

Y pαqY pβq
‰

“ κ1,1pα, βq “

?
2π

Γp 1
2 ` α` βq

χ1,1pα, βq „
?

2χ1,1pα, βq. (C.8)

Finally, by (12.67), as in (12.79),

?
2χ1,1pα, βq “ χ1pαqχ1pβq `

Γpα` βq

Γpβq
χ1pβq `

Γpα` βq

Γpαq
χ1pαq

“ χ1pαqχ1pβq
”

1`
Γpα` βq

Γpβqχ1pαq
`

Γpα` βq

Γpαqχ1pβq

ı

. (C.9)

We have, using (C.6),

Γpα` βq

Γpαq
“

α

α` β
¨

Γp1` α` βq

Γp1` αq
“

α

α` β

”

1` ψp1` αqβ `Op|β|2q
ı

“
α

α` β

”

1` ψp1qβ `Op|αβ| ` |β|2q
ı

, (C.10)

which together with (C.7) yields

Γpα` βq

Γpαqχ1pβq
“ ´

α

α` β

”

1`
`

ψp1q ´ ψp´ 1
2 q
˘

β `Op|αβ| ` |β|2q
ı

. (C.11)

Using (C.11), and the same with α and β interchanged, in (C.9) we obtain, recalling
χ1pαq „ χ1pβq „ ´1,

?
2χ1,1pα, βq „ 1`

Γpα` βq

Γpβqχ1pαq
`

Γpα` βq

Γpαqχ1pβq
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“ ´2
αβ

α` β

”

ψp1q ´ ψp´ 1
2 q `O

`

|α| ` |β|
˘

ı

. (C.12)

The result (C.5) now follows because ψp1q “ ´γ and

ψp´ 1
2 q “ ψp 1

2 q ` 2 “ ´γ ´ 2 log 2` 2, (C.13)

see [47, 5.4.12–13 and 5.5.2].

Lemma C.3. Let α “ reiθ1 and β “ reiθ2 with θ1, θ2 P p´
π
2 ,

π
2 q, and let r Ñ 0 with θ1, θ2

fixed. Then, for every fixed `1, `2 ě 0 with `1 ` `2 ě 2,

r´p`1``2q{2χ`1,`2pα, βq Ñ $`1,`2 , (C.14)

where $`1,`2 is given recursively by

$0,0 “ 0, (C.15)

$`1,`2 “ 0, when `1 ` `2 “ 1, (C.16)

$2,0 “
?

2p1´ log 2qeiθ1 , (C.17)

$0,2 “
?

2p1´ log 2qeiθ2 , (C.18)

$1,1 “ 2
?

2p1´ log 2q
eipθ1`θ2q

eiθ1 ` eiθ2
, (C.19)

$`1,`2 “ 2´3{2
ÿ

j1,j2

ˆ

`1
j1

˙ˆ

`2
j2

˙

$j1,j2$`1´j1,`2´j2 , when `1 ` `2 ě 3. (C.20)

Moreover,

$`1,`2 “ 0, when `1 ` `2 is odd. (C.21)

Proof. We define for convenience $`1,`2 :“ 0 for `1 ` `2 ď 1, and note that then (C.15)–
(C.16) hold, but not (C.14).

For `1 ` `2 “ 2, (C.17)–(C.19) hold by Lemma C.2.
It remains to treat the case `1 ` `2 ě 3, where we use induction on `1 ` `2. We

use (12.67). In the double sum there, the two terms with pj1, j2q “ p1, 0q and pj1, j2q “
p`1 ´ 1, `2q are equal, and together, using (C.7), sum to

2´1{2`1χ1pαqχ`1´1,`2pα, βq “ ´2´1{2`1
“

1`Oprq
‰

χ`1´1,`2pα, βq. (C.22)

On the other hand, the second of the three terms on the right in (12.67) is

2´1{2`1
Γpp`1 ` `2 ´ 2q{2` `1α` `2βq

Γpp`1 ` `2 ´ 2q{2` p`1 ´ 1qα` `2βq
χ`1´1,`2pα, βq

“ 2´1{2`1
“

1`Oprq
‰

χ`1´1,`2pα, βq. (C.23)

Hence the main terms of the contributions (C.22) and (C.23) cancel, and together, using
the induction hypothesis, (C.22) and (C.23) sum to

Oprq ¨ χ`1´1,`2pα, βq “ O
`

r1`p`1´1``2q{2
˘

“ o
`

rp`1``2q{2
˘

. (C.24)

Similarly, the terms in the double sum with pj1, j2q “ p0, 1q and p`1, `2´1q together cancel
the last term in (12.67) up to another error o

`

rp`1``2q{2
˘

.
This shows that (12.67) yields

χ`1,`2pα, βq “ 2´3{2
ÿ

2ďj1`j2ď`1``2´2

ˆ

`1
j1

˙ˆ

`2
j2

˙

χj1,j2χ`1´j1,`2´j2 ` o
`

rp`1``2q{2
˘

, (C.25)
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and (C.14) together with (C.20) follows by the induction hypothesis, noting that the
terms in (C.20) with j1 ` j2 ď 1 or j1 ` j2 ě `1 ` `2 ´ 1 vanish by (C.15)–(C.16).

The conclusion (C.21) follows from (C.16) and (C.20) by induction, since each of the
terms in (C.20) vanishes.

Recall that if ` “ 2k is an even integer, then

p`´ 1q!! “ p2k ´ 1q!! :“ 1 ¨ 3 ¨ ¨ ¨ ¨ ¨ p2k ´ 1q “
p2kq!

2kk!
“ 2k

Γpk ` 1
2 q

Γp 1
2 q

. (C.26)

Lemma C.4. Let α “ reiθ1 and β “ reiθ2 with θ1, θ2 P p´
π
2 ,

π
2 q, and let r Ñ 0 with θ1, θ2

fixed. Let t and u be fixed complex numbers. Then, for every ` ě 1,

r´`{2E
`

tY pαq ` uY pβq
˘`
Ñ

#

0, ` is odd,

p`´ 1q!! Σ`{2, ` is even,
(C.27)

where

Σ “ 2p1´ log 2q
´

t2eiθ1 ` u2eiθ2 ` 4tu
eipθ1`θ2q

eiθ1 ` eiθ2

¯

. (C.28)

Remark C.5. If Σ ě 0, then the limits in (C.27) are the moments of a normal distribution
Np0,Σq. Hence, if tY pαq ` uY pβq is a real random variable (and Σ ‰ 0), then Lemma C.4
implies asymptotic normality by the method of moments. However, in general, tY pαq `
uY pβq is a complex random variable and Σ is complex. Nevertheless, the right-hand
side can be interpreted as the moments of a complex normal random variable, since the
relation E ζ2` “ p2`´ 1q!! pE ζ2q` holds for arbitrary centered complex normal variables,
see e.g. [32, Theorem 1.28 and Section I.4].

Proof. Theorem 12.9 and Lemma C.3 imply that, if `1 ` `2 “ ` ě 2, then

r´`{2E
“

Y pαq`1Y pβq`2
‰

“ r´`{2κ`1,`2pα, βq Ñ

?
2π

Γpp`´ 1q{2q
$`1,`2 . (C.29)

For `1 ` `2 “ 1, (C.14) does not hold, but a direct appeal to (1.25) yields

EY pαq “
Γpα´ 1

2 q?
2Γpαq

“ Op|α|q “ O
`

r
˘

, (C.30)

and similarly EY pβq “ Oprq; hence, (C.29) holds in the case ` “ 1 too, with the limit 0.
(Recall that 1{Γp0q “ 0.)

By the binomial formula,

EptY pαq ` uY pβqq` “
ÿ

`1``2“`

ˆ

`

`1

˙

t`1u`2κ`1,`2pα, βq (C.31)

which together with (C.29) yields, for every ` ě 1,

r´`{2EptY pαq ` uY pβqq` Ñ
ÿ

`1``2“`

ˆ

`

`1

˙

t`1u`2
?

2π

Γpp`´ 1q{2q
$`1,`2

“

?
2π

Γpp`´ 1q{2q
τ`pt, uq, (C.32)

where we define

τ`pt, uq :“
ÿ

`1``2“`

ˆ

`

`1

˙

t`1u`2$`1,`2 . (C.33)
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We have τ`pt, uq “ 0 when ` is odd or ` “ 0, by (C.33) together with (C.21) and (C.15).
Hence (C.27) for odd ` follows from (C.32).

Moreover, if ` ě 3, then (C.33) (thrice) and the recursion (C.20) imply

23{2τ`pt, uq “
ÿ

`1``2“`

ÿ

j1,j2

ˆ

`

`1

˙ˆ

`1
j1

˙ˆ

`2
j2

˙

t`1u`2$j1,j2$`1´j1,`2´j2

“
ÿ

j

ÿ

j1`j2“j

ÿ

`1``2“`

ˆ

`

j

˙ˆ

j

j1

˙ˆ

`´ j

`1 ´ j1

˙

t`1u`2$j1,j2$`1´j1,`2´j2

“
ÿ

j

ˆ

`

j

˙

τjpt, uqτ`´jpt, uq. (C.34)

Since τ`pt, uq “ 0 when ` is odd or ` “ 0, (C.34) yields

23{2τ2`pt, uq “
`´1
ÿ

j“1

ˆ

2`

2j

˙

τ2jpt, uqτ2p`´jqpt, uq. (C.35)

The recursion (C.35) is easily solved, by defining

d` :“ 2´3{2τ2`pt, uq{p2`q!, (C.36)

e` :“ d´`1 d`. (C.37)

Then (C.35) yields

d` :“
`´1
ÿ

j“1

djd`´j and e` :“
`´1
ÿ

j“1

eje`´j , ` ě 2. (C.38)

This is a version of the Catalan recursion, and since e1 “ 1, it is solved by

e` “ C`´1 “
p2`´ 2q!

p`´ 1q! `!
, ` ě 1; (C.39)

and thus, by (C.36) and (C.37),

τ2`pt, uq “ 23{2 p2`q! p2`´ 2q!

p`´ 1q! `!
d`1. (C.40)

Hence, (C.32) yields

r´`EptY pαq ` uY pβqq2` Ñ

?
2π

Γp`´ 1
2 q
τ2`pt, uq “

4
?
π

Γp`´ 1
2 q

p2`q! p2`´ 2q!

p`´ 1q! `!
d`1

“ 22` p2`q!

`!
d`1 “ p2`´ 1q!! p8d1q

`. (C.41)

This proves (C.27) for even ` with, recalling (C.36) and (C.33),

Σ :“ 8d1 “
?

2τ2pt, uq “
?

2
`

t2$2,0 ` u
2$0,2 ` 2tu$1,1

˘

. (C.42)

Finally, (C.28) follows from (C.17)–(C.19).

Proof of Theorem C.1. We apply Lemma C.4 with β :“ α and thus θ1 “ θ and θ2 “ ´θ.
Let t P C and take u :“ t̄. Then tY pαq ` uY pβq “ 2 Re

`

tY pαq
˘

is a real random variable,
and thus (C.27) shows by the method of moments that

2r´1{2 Re
`

tY pαq
˘ d
ÝÑ Np0,Σq, (C.43)
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with Σ “ Σptq (now real) given by (C.28). Since t P C is arbitrary and Re
`

tY pαq
˘

can be
regarded as the (real) scalar product of t̄ and Y pαq if we identify C and R2, (C.43) and
the Cramér–Wold device show that

2r´1{2Y pαq
d
ÝÑ ζ 1, (C.44)

for some centered complex normal variable ζ 1. Consequently,

α´1{2Y pαq “ e´iθ{2r´1{2Y pαq
d
ÝÑ ζ :“

e´iθ{2

2
ζ 1, (C.45)

which proves (C.1). Moreover, the argument above shows that (C.44) holds with all
moments (including mixed moments with the complex conjugate), and thus so does (C.45).
Taking t “ 1, u “ 0 and ` “ 2 in (C.27)–(C.28) yields

E
`

α´1{2Y pαq
˘2
“ e´iθr´1EY pαq

2
Ñ 2p1´ log 2q. (C.46)

Similarly, by extracting the tu terms in (C.27) and (C.28),

E
ˇ

ˇα´1{2Y pαq
ˇ

ˇ

2
“ r´1E

ˇ

ˇY pαq
ˇ

ˇ

2
Ñ 2p1´ log 2q

2

eiθ ` e´iθ
“

2p1´ log 2q

cos θ
. (C.47)

This shows (C.3), and (C.2) follows by elementary calculations.

D The limit towards the imaginary axis

Let α “ a ` ib Ñ it in the right half-plane, i.e., with a “ Reα ą 0. The case t “ 0 is
treated in Appendix C; recall that then, if say α is real for simplicity, Y pαq

p
ÝÑ 0 and

that a´1{2Y pαq converges in distribution to a normal limit; see also Remark 1.19 and [21,
Remark 3.6(e)].

Assume in the sequel t ‰ 0. In this case, we have instead |Y pαq|
p
ÝÑ 8, and we obtain

a complex normal limit by the following normalization. (Note that, unlike the case t “ 0

in Theorem C.1, here α can approach its limit it in any way, as long as Reα ą 0.)

Theorem D.1. Let aŒ 0 and bÑ t ‰ 0. Then

a1{2Y pa` ibq
d
ÝÑ ζ, (D.1)

where ζ is a symmetric complex normal variable with

E |ζ|2 “
1

2
?
π

Re
Γpit´ 1

2 q

Γpit´ 1q
ą 0. (D.2)

That ζ is symmetric complex normal means that ζ
d
“ ωζ for every complex constant ω

with |ω| “ 1; equivalently, E ζ “ 0 and the real and imaginary parts are independent and
have the same variance. (See e.g. [32, Proposition 1.31].)

Proof. We use the method of moments, and argue similarly as for the related Theorem C.1.
Take α1 :“ a` ib and α2 :“ α1 “ a´ ib in Theorem 12.9. We claim that, for any `1, `2 ě 0,

ap`1``2q{2χ`1,`2pα1, α2q Ñ ρ`1,`2 , (D.3)

where

ρ`1,`2 “ 0 if `1 ‰ `2, (D.4)

ρ1,1 “
1
?

8π
Re

Γpit´ 1
2 q

Γpit´ 1q
, (D.5)
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ρ`,` “ 2´3{2
`´1
ÿ

j“1

ˆ

l

j

˙2

ρj,jρ`´j,`´j , l ě 2. (D.6)

We prove this using induction on `1 ` `2. First, if `1 ` `2 “ 1, so p`1, `2q “ p1, 0q or p0, 1q,
then (12.51) shows that χ`1,`2 is bounded (and converges) as αÑ it, so (D.3) holds with
ρ`1,`2 “ 0 as stated in (D.4).

If `1 ` `2 ě 2, we use (12.67). We have

`1α
1
1 ` `2α

1
2 ´ 1 Ñ `1

`

it` 1
2

˘

` `2
`

´it` 1
2

˘

´ 1 “
`

`1 ` `2
˘

{2´ 1`
`

`1 ´ `2
˘

it. (D.7)

If `1 ` `2 ě 3, or if `1 ‰ `2, the limit is not a pole of Γpzq, and thus the factor Γ
`

`1α
1
1 `

`2α
1
2 ´ 1

˘

“ Op1q; hence, (12.67) together with the induction hypothesis yields (D.3)
with (D.4) and (D.6).

In the remaining case `1 “ `2 “ 1, Γ
`

`1α
1
1 ` `2α

1
2 ´ 1

˘

“ Γp2aq „ p2aq´1, and (12.67)
yields, using (12.51),

aχ1,1 “ 2´1{2 1

2Γp´itq
χ0,1 ` 2´1{2 1

2Γpitq
χ1,0 ` op1q Ñ 2´1{2 Re

Γ
`

it´ 1
2

˘

2
?
πΓpitq

, (D.8)

which verifies (D.3) with (D.5).
This proves (D.3)–(D.6). The recursion (D.6) is similar to (C.35) and can be solved in

the same way. We now define, instead of (C.36),

d` :“ 2´3{2ρ`,`{`!
2. (D.9)

With (C.37) as above, we again have (C.38)–(C.39), Hence, using (C.37) and (D.9),

ρ`,` “ 23{2`!2d`1e` “ 23{2 `! p2`´ 2q!

p`´ 1q!
d`1. (D.10)

Finally, (12.66) and (D.3) yield, using the duplication formula for the Gamma function,

E
“

a`|Y pαq|2`
‰

Ñ

?
2π

Γp`´ 1
2 q
ρ`,` “ 4

?
π
`! Γp2`´ 1q

Γp`´ 1
2 qΓp`q

d`1 “ 22`d`1`! “ p4d1q
``!, (D.11)

and, whenever `1 ‰ `2,

E
“

ap`1``2q{2Y pαq`1Y pαq
`2‰
Ñ 0. (D.12)

These moment limits are the moments of a symmetric complex normal variable with

E |ζ|2 “ 4d1, (D.13)

(See e.g. [32, Theorem 1.28].) Hence, (D.1) follows by the method of moments, with (D.2)
following by (D.13), (D.9), and (D.5).

It remains to prove that the expression in (D.2) in non-zero. (It can obviously not be
negative by the case ` “ 1 in the argument above.) In other words, we must show that
Γpit´ 1

2 q{Γpit´ 1q cannot be imaginary when t ‰ 0. To see this, we first use the reflection
formula for the Gamma function [47, 5.5.3] to obtain

Γpit´ 1
2 q

Γpit´ 1q
“

Γp2´ itq sinppit´ 1qπq

Γp 3
2 ´ itq sinppit´ 1

2 qπq
“

i sinhpπtq

coshpπtq
¨

Γp2´ itq

Γp 3
2 ´ itq

. (D.14)

Hence, it is enough to show that Γp2´ itq{Γp 3
2 ´ itq is not real for t ‰ 0. Since plog Γpzqq1 “

Γ1pzq{Γpzq “ ψpzq, we have

arg
Γp2´ itq

Γp 3
2 ´ itq

“ Im log
Γp2´ itq

Γp 3
2 ´ itq

“ Im

ż 2

3{2

ψps´ itqds. (D.15)
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Moreover, see [47, 5.7.6],

ψps` itq “ ´γ `
8
ÿ

k“0

´ 1

k ` 1
´

1

k ` s` it

¯

, (D.16)

and thus

Imψps` itq “ ´
8
ÿ

k“0

Im
1

k ` s` it
“

8
ÿ

k“0

t

pk ` sq2 ` t2
. (D.17)

Hence, if s ě 1 and t ą 0, then

0 ă Imψps` itq ă

ż 8

s´1

t

x2 ` t2
dx ď

ż 8

0

t

x2 ` t2
dx “

π

2
. (D.18)

Consequently, if t ă 0, then (D.15) yields 0 ă arg
`

Γp2 ´ itq{Γp 3
2 ´ itq

˘

ă π{4, and thus
Γp2´ itq{Γp 3

2 ´ itq is not real. The case t ą 0 follows by conjugation. As said above,
using (D.14), this completes the proof that E |ζ|2 ą 0.

Remark D.2. A similar argument shows that if also α1 “ a1`ib1 Ñ it1, for some t1 R t0,˘tu,
then the covariances Cov

`

Y pαq, Y pα1q
˘

and Cov
`

Y pαq, Y pα1q
˘

“ Cov
`

Y pαq, Y pα1q
˘

are
Op1q, and thus after normalization as in (D.1), the covariances tend to 0. It follows that
we have joint convergence in (D.1) with independent complex normal limits, for any
number of αk “ ak ` ibk Ñ itk with tk ą 0. We thus find as limits an uncountable family
of independent complex normal variables.

As a corollary to Theorem D.1 we see that |Y pαq|
p
ÝÑ 8 as αÑ it, with t ‰ 0.

Problem D.3. For t ‰ 0, does |Y pαq|
a.s.
ÝÑ 8 as αÑ it?

Nevertheless, the divergence in probability is enough to show the following.

Corollary D.4. Almost surely, the imaginary axis is a natural boundary for the analytic
functions Y p¨q and rY p¨q.

Proof. Let t ‰ 0. Then Theorem D.1 implies that |Y ps` itq|
p
ÝÑ 8 as sŒ 0. Hence, there

exists a sequence sn Ñ 0 such that |Y psn ` itq| Ñ 8 a.s. In particular, a.s. Y pαq cannot
be extended analytically to a neighbourhood of it.

Almost surely, this holds for every rational t ‰ 0, and thus Y p¨q cannot be extended
analytically across the imaginary axis at any point. The same holds for rY p¨q by (1.20).
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