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Abstract

We consider generic finite range percolation models on Zd under a high temper-
ature/low density assumption (exponential decay of connection probabilities and
exponential ratio weak mixing). We prove that the rate of decay of point-to-point
connections exists in every directions and show that it naturally extends to a norm on
Rd. This result is the base input to obtain fine understanding of the high temperature
phase (e.g. Ornstein-Zernike asymptotics for point-to-point connexions) and is usually
proven using correlation inequalities (such as FKG). The present work makes no use
of such model specific properties and is therefore a step towards the universality of
Ornstein-Zernike asymptotics.
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1 Introduction and results

1.1 Decay rate of connections

Let P denote an edge-percolation measure on Zd. The central object of our investiga-
tion is(are) the rate(s) of exponential decay for point-to-point connection probabilities
(two point functions):

Definition 1.1 (Inverse correlation length). Let s ∈ Sd−1. The point-to-point decay rates
are

ν(s) = lim sup
n→∞

− 1

n
logP (0↔ ns),

ν(s) = lim inf
n→∞

− 1

n
logP (0↔ ns).

(1.1)
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Existence of the I.C.L. in percolation models

1.2 Motivation

The main motivation of this work comes from the (supposed) universal behaviour
of two point functions in high temperature systems: they should decay exponentially
with a well-defined rate and the pre-factor to this decay should be the one predicted by
the Ornstein-Zernike theory [17, 21]. See [20] for a review on this topic. On the one
hand some fairly satisfactory universal statements are available in perturbative regimes
(very high temperature regime), see [2]. In the other hand, a non-perturbative approach
(giving statements about the whole high temperature regime) has been developed over
the past decades, proving the expected behaviour in various specific models: [1, 9, 14,
6, 7, 8, 18]. A key ingredient in the proofs being the validity of Theorem 1.2, which is
usually proven using correlation inequalities.

Let us give more details on this universality conjecture in the case of percolation
models. Denote D the set of translation-invariant percolation measures in the high tem-
perature/low density regime, which definition we now discuss. Comparing the common
properties of models (spin models and percolation models) at high temperature or low
density, two main ones are recurrent: exponential decay of correlations (connectivities)
and exponential mixing (a strong form of the two is also used in [10] as the definition of
the completely analytic regime for finite range lattice spin models). We propose here to
characterize D as the set of finite range percolation measures satisfying: exponential
decay of connectivities (in infinite volume) and ratio weak mixing (Definition 2.1). One
should also add some condition excluding pathologies occurring in systems with hard
core constraints, but we will ignore this issue for the present discussion. Then, the
following universal asymptotic should hold for any P ∈ D:

P (0↔ x) =
ψ(x/‖x‖)
‖x‖(d−1)/2

e−ν(x)(1 + o‖x‖(1)),

where ν is a norm on Rd and ψ : Sd−1 → R+ is some smooth function (both depending
on P ). The universal quantity is the order of the pre-factor: ‖x‖−(d−1)/2.

The latest non-perturbative approaches (mainly [8] combined with refinements
from [19] and [18]) seem to be robust enough to tackle the problem (with some work...)
for any percolation models in D, provided one already obtained the estimate

P (0↔ x) = e−ν(x)(1+o‖x‖(1)),

for ν a norm on Rd. This asymptotic is the goal of the present work. Notice that the
main motivation is to obtain a statement about universality, not to obtain the result for a
given model. Nevertheless, one can also apply this generic result to obtain information
on specific models of interest (see Subsection 1.5 for an application which should also
illustrate the difference between working in perturbative regimes and working under a
high temperature assumption).

1.3 Results

Our main result is (see Section 2 for missing definitions):

Theorem 1.2. Let E ⊂
{
{i, j} ⊂ Zd

}
be finite range, irreducible, invariant under

translations. Let P be a percolation measure on E. Suppose that

• P is invariant under translations,

• P has the insertion tolerance property (Definition 2.3) with constant θ > 0,

• P satisfies the exponential ratio weak mixing property (Definition 2.1) with rate
cmix > 0 and constant Cmix <∞ for the set of local connection events,

• there exists cco > 0 such that P (0↔ Λcn) ≤ e−ccon for any n large enough.
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Existence of the I.C.L. in percolation models

Then, for any s ∈ Sd−1,
ν(s) = ν(s) ≡ ν(s). (1.2)

Moreover, the extension of ν by positive homogeneity of order one defines a norm on Rd.

Remark 1.3. The ratio weak mixing condition demanded can look less natural and
more stringent than the weak mixing property (not ratio). However, it has been shown,
see [4, Theorem 3.3], that in many cases the two are equivalent. In particular, if
P (ω) ∝

∏
C∈cl(ω) f(C) (formally, the R.H.S. being infinite, cl denotes the set of connected

components), the assumption P (0↔ ΛcN | FE\E(ΛN )) ≤ e−cN implies that the model has
exponentially bounded controlling regions in the sense of [4].

Remark 1.4. The insertion tolerance property excludes degeneracies occurring in hard-
core models. Moreover, it gives lower bounds on local connections implying for example
that the decay rates of Definition 1.1 are in (ε, ε−1) for some ε > 0 (non-degenerate).

Remark 1.5. ν obviously inherit additional symmetries of P .

1.4 Extensions

A first extension is the relaxation of the mixing condition: modulo straightforward
changes in the proofs, one can replace the exponential mixing by any power law mixing
with power > d. But this type of mixing can generally be enhanced to exponential (see
for example the discussion on mixing in [15]).

A second is to consider directed percolation models. In this case, one obtains the
same result with the change that ν extends to an asymmetric norm instead of a norm.

A third straightforward extension is to replace the percolation model P by some
translation invariant weight function on connected sub-graphs of (Zd, E) (such as the
ones considered in [5]).

1.5 Example of application

A simple example where Theorem 1.2 provides a new result is the Random Cluster
model on Zd with nearest-neighbour edges for 0 < q < 1. Indeed, it is well know
that the model has finite energy and does not satisfy the FKG inequality [13] (negative
correlations are even expected). Define

Dco = {p ∈ [0, 1] : ∃c > 0, C ≥ 0, sup
η

ΦηΛ2N ;p,q(0↔ ΛcN ) ≤ Ce−cN}

Dmix = {p ∈ [0, 1] : Φp,q is ratio weak mixing}

where ΦηΛN ;p,q is the Random Cluster measure in ΛN = {−N, · · · , N} with boundary
conditions η (see [13, 11] for definition), and Φp,q is any infinite volume measure (if
p ∈ Dmix, there is only one such measure). Let D = Dco ∩ Dmix. It is the natural high
temperature/low density regime of the model and the regime in which one expects
Ornstein-Zernike picture of connectivities to hold (see [8]). The condition p ∈ D is
non-perturbative: it does not assume p < p0 for p0 given by an argument à la Peierls
(moreover, one could relax the condition of Dmix to weak mixing (not ratio) without
changing D by the results of [4]). Theorem 1.2 holds for any p ∈ D (even if D turned out
not to be an interval) while one can only obtain the claim for p close to 0 by perturbative
arguments (at least, to the best of the author’s knowledge).

This example should also clarifies the interest of working under non-perturbative
conditions instead of considering a perturbative regime of the parameters.

We quickly discuss how to obtain a “lower bound” on D (which is better than the one
obtained via a naive use of cluster expansion). One has (by a straightforward computation,
see [13, section 5.8]) that the model is stochastically dominated by a Bernoulli percolation
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0 n n+ l n+ l +m

Figure 1: Directed constraint induced by controlling regions.

of parameter p0(q) = p
p+(1−p)q independently of the volume considered and of boundary

conditions. When p0(q) < pc(Z
d) (the percolation threshold for Bernoulli percolation),

one obtains infs∈Sd−1 ν(s) > 0 via stochastic domination and sharpness of the phase
transition (see [16, 3] for the first proofs of the latter and [12] for a more recent one).
A simple coupling argument allows then to prove weak mixing: one can monotonically
couple the finite volume measures with different boundary conditions to the Bernoulli
measure, explore the outermost closed surface in the latter and resample the Random
Cluster measures inside the surface (as the surface will be closed in all the Random
Cluster measures, they can therefore be taken to be equal inside it). Weak mixing can
then be enhanced to ratio weak mixing via [4, Theorem 3.3]. So, {p : p0(q) < pc(Z

d)} ⊂ D.
We take the occasion to stress that stochastic domination alone does not yield existence
of ν (nor that it extends to a norm), it only provides a lower bound (which is the basic
hypotheses of the present work).

1.6 Strategy of the proof

To give an idea of what one would like to do, let us consider some translation invariant
percolation model P . When P satisfies the FKG inequality, one has P (0 ↔ x + y) ≥
P (0↔ x↔ x+y) ≥ P (0↔ x)P (0↔ y). The equality ν = ν ≡ ν is then easy consequence
of Fekete’s Lemma. One can further extend ν by positive homogeneity. The above
inequality directly implies that ν satisfies the triangle inequality.

One is therefore tempted to use the following strategy: for n, l,m with l small compare
to n,m start with

P (0↔ (n+ l +m)e) ≥ θ−lP
(
0↔ ne, (n+ l)e↔ (n+ l +m)e

)
(e denotes a unit vector along a coordinate axis). Then, restrict the two connexions
to some large sets and use mixing to factor the probability, then use some variation
of Fekete’s Lemma. Let us see how this does not work directly. The main problem is
that there is a priori no reason that the connexions restricted to some subspace have
the same decay rate as the free connexions. See Figure 1 for an illustration. Roughly,
the problem lies in showing that connexions restricted to half spaces and full space
connexions behave the same at the exponential scale... without using Theorem 1.2! The
proof is mainly about addressing this issue. Another problem arises when one wants to
obtain that ν satisfies the triangular inequality: there, one needs to be able to say that
connexions at a macroscopic scale occur arbitrarily close to a straight line without error
in the exponential rate.

Let us now summarize the proof. One can indeed recover sub-additivity from mixing
if typical clusters realizing connections are somehow directed (e.g.: occurring in a cone).
We thus introduce various notions of “directed connections” for which we prove existence
of an asymptotic decay rate. We then show that all these rates are equal and define a
norm ν̃. To relate the obtained “directed rate” to the “real rates”, we do a small detour:
we introduce point to hyperplanes decay rates and their directed version. Showing that
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these two agree is much easier than for point-to-point connections and is done using a
suitable coarse-graining argument. We then relate directed point-to-point to directed
point-to-hyperplane via convex duality (approximately: directed point-to-hyperplane
connections in a direction s are realized by a directed point-to-point connection in an
optimal direction s′). Finally, we relate (non directed) point-to-point connections to (non
directed) point-to-hyperplane connections via another coarse-graining argument.

2 Definitions and notations

2.1 General notations

Denote ‖ ‖ the Euclidean norm on Rd and d the associated distance. Write Sd−1 the
unit sphere for ‖ ‖. 〈 , 〉 will denote the scalar product. s will always be an element of
Sd−1. For a (possibly asymmetric) norm µ : Rd → R+, define the unite ball of µ and its
polar set (“Wulff shape”)

Uµ = {x ∈ Rd : µ(x) ≤ 1}, Wµ =
⋂

s∈Sd−1

{x ∈ Rd : 〈x, s〉 ≤ µ(s)}.

For A ⊂ Rd and x ∈ Rd, write A+ x the translate of A by x, ∂A the boundary of A and
Å = A \ ∂A the interior of A.

Denote

ΛN = [−N,N ]d, ΛN (x) = x+ ΛN .

We also denote ΛN the intersection of ΛN with Zd.
Define the half spaces: for s ∈ Sd−1,

Hs = {x ∈ Rd : 〈x, s〉 ≥ 0}, Hs(x) = x+Hs. (2.1)

Then, for δ ∈ [0, 1], define the cones

Ys,δ = {x ∈ Rd : 〈x, s〉 ≥ (1− δ)‖x‖}, Ys,δ(x) = x+ Ys,δ. (2.2)

δ = 0 is a line and δ = 1 is the half space Hs.
Also introduce the truncated cones

YKs,δ = Ys,δ \Hs(Ks), YKs,δ(x) = x+ YKs,δ. (2.3)

For x ∈ Rd, we denote int(x) the point in Zd closest to x, with some fixed breaking of
draws respecting symmetries/translations of Zd. We will often omit int from the notation.

We fix a priori some arbitrary total order on Zd.
We will regularly use the following notation: for (an)n≥1 ∈ RN a sequence, we denote

a = lim supn→∞ an ∈ R ∪ {±∞}, a = lim infn→∞ an ∈ R ∪ {±∞}. When a = a, we write
the limit a.

A quantity f(n) is on(1) if limn→∞ f(n) = 0.

2.2 Percolation

We consider edge percolation models, in all this work E will be a subset of
{
{i, j} ⊂

Zd
}

with the properties:

• Irreducibility: (Zd, E) is connected.

• Finite Range: there exists r > 0 such that ‖i− j‖ ≥ r =⇒ {i, j} /∈ E. The smallest
such r is called the range of E and is denoted R ≡ R(E).

• Translation Invariance: for any e ∈ E and x ∈ Zd, x+ e ∈ E.
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The graph distance on (Zd, E) is denoted dE . As E is finite range and irreducible,
there exists cE > 0 such that

c−1
E d(x, y) ≤ dE(x, y) ≤ cEd(x, y).

For a set A ⊂ Zd, denote Ac = Zd \ A, ∂intA = {x ∈ A : ∃y ∈ Ac, {x, y} ∈ E},
∂extA = {x ∈ Ac : ∃y ∈ A, {x, y} ∈ E}. Also define E(A) = {{x, y} ∈ E : x, y ∈ A}.

For ω ∈ {0, 1}E , we systematically identify the {0, 1}-valued function and the edge set
induced by the set {e : ωe = 1}, the set of open edges. When talking about connectivity
properties of ω, it is assumed that the graph (Zd, ω) is considered.

For F ⊂ E finite, denote FF = {A ⊂ {0, 1}F } and for F ⊂ E infinite, denote FF the
sigma algebra generated by the collection (FF ′)F ′⊂F finite. A percolation measure P is a
probability measure such that (P,FE , E) is a probability space. We write {x↔ y} for the
event that x, y lie in the same connected component (and {A ↔ B} for the event that

there exists x ∈ A, y ∈ B with x↔ y). We also will write {x F←→ y} for the event that x is
connected to y by a path of open edges in F . ω will be a random variable with law P .

2.3 Hypotheses

One of our hypotheses is a mixing condition, called the exponential ratio weak mixing
property for connections events:

Definition 2.1 (Ratio mixing). We say that P has the ratio weak mixing property with
rate c > 0 and constant C ≥ 0 if for any sets F, F ′ ⊂ E and events A ∈ FF , B ∈ FF ′ with
P (A)P (B) > 0, ∣∣∣1− P (A ∩B)

P (A)P (B)

∣∣∣ ≤ C ∑
e∈F,e′∈F ′

e−cd(e,e′), (2.4)

where d is the Euclidean distance. We say that the property is satisfied for the class
C ⊂ FE if (2.4) holds whenever, in addition to the hypotheses, A,B ∈ C.
Definition 2.2 (Connexion events). The class of local connection events is the set of
events of the form

{A ∆←→ B},

where A,B ⊂ Zd, ∆ ⊂ E are finite.

Definition 2.3 (Insertion tolerance). A percolation measure P on E is said to have the
insertion tolerance property if for any edge e ∈ E there exists θe > 0 such that

P (ωe = 1 | FE\{e}) ≥ θe.

If P is finite range and translation invariant, it is equivalent to the existence of θ > 0

such that

min
e∈E

P (ωe = 1 | FE\{e}) ≥ θ.

A useful consequence of insertion tolerance is

Lemma 2.4. Suppose P is a finite range, translation invariant percolation measure on
E. Then, for any x, y ∈ Zd, and any sets A,B ⊂ Zd,

P (x↔ A, y ↔ B, x↔ y) ≥ θdE(x,y)P (x↔ A, y ↔ B),

where dE is the graph distance on (Zd, E) and θ > 0 is given by Definition 2.3.
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Proof. Let γ be a path (seen as set of edges) from x to y realizing dE(x, y) (in particular,
|γ| = dE(x, y)). Now,

P (x↔ A, y ↔ B, x↔ y) ≥ P
(
P (x↔ A, y ↔ B, γ ⊂ ω | FE\γ)

)
= P

(
1ω∪γ∈{x↔A}1ω∪γ∈{y↔B}P (γ ⊂ ω | FE\γ)

)
≥ P

(
1ω∈{x↔A}1ω∈{y↔B}

)
θ|γ|.

We will regularly use this kind of argument without explicitly writing down the details.

3 Coarser lattice, restricted connections, preliminary results

In all this Section, we work under the hypotheses of Theorem 1.2.

3.1 Coarse connections

To avoid dealing with trivialities occurring from the discrete structure of Zd, we
will look at a coarser notion of connections. As the model is finite range and (Zd, E)

is connected and translation invariant, we can find R0 < ∞ such that for any ∆ ⊂ Rd
connected, any two sites in ∆ ∩Zd are connected by a path using only edges between
sites in [∆] =

⋃
x∈∆ ΛR0(x) ∩Zd.

For x, y ∈ Rd,∆ ⊂ Rd, we write {x ∆←→ y} = {[x]
E([∆])←−−−→ [y]}. By Lemma 2.4, when

∆ = Rd, these events have the same asymptotic decay rates as the point-to-point rates.

In the same spirit, for ∆ ⊂ Rd, we say that an event is ∆-measurable if it is in FE([∆]).

3.2 A family of coarse graining

We will regularly use coarse-graining of the cluster of 0. We describe here a generic
coarse-graining procedure parametrized by the “unit cell” of the coarse graining. These
procedures are a general formulation of the coarse-graining procedure applied in [8].
Let 0 ∈ ∆ ⊂ Zd be finite. Let ∆K =

⋃
x∈∆ ΛK(x). Let T = T (∆,K) be the set of

embedded rooted trees defined as follows: T ∈ T is the data consisting of a set of
vertices t = {t0, · · · , tm} where each ti ∈ Zd, and a set of edges f = {f1, · · · , fm} with
fi ⊂ t, |fi| = 2 such that

• The graph (t, f) is a tree.

• A given point in Zd can only occur once as element of t.

• t0 = 0, ti ∈ ∂ext(∆K + tj) where fi = {ti, tj}.

• The labels and edges can be inductively reconstructed from the set of vertices
(without labels) W as follows: ti is the smallest (for the fixed total order on Zd)
element of W \ {0, t1, · · · , ti−1} belonging to

⋃i−1
j=0 ∂

ext(tj + ∆K) and fi is given by
{ti, v∗} where v∗ is the smallest element of {t0, · · · , ti−1} with ti ∈ ∂ext(v∗ + ∆K).

A fairly direct observation is that the degree of a vertex ti in (t, f) is less than
d∆K

= |∂ext∆K | and one has a natural inclusion of Tl = {T ∈ T : |t| = l} in the set of
sub-trees of Td∆K

(the d∆K
-regular tree) containing 0 and having l vertices. In particular,

there exists c > 0 universal such that

|Tl| ≤ ec log(d∆K
)l. (3.1)

We now define a mapping CG∆,K from the set of clusters containing 0 to T (∆,K).
We define it via an algorithm constructing T ∈ T from C 3 0. Fix some C 3 0. Consider
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the graph formed by the vertices of Zd and the edges in C. Construct t, f as follows

Algorithm 1: Coarse graining of a cluster containing 0.

Set t0 = 0, t = {t0}, f = ∅, V = ∆K , i = 1;

while A =
{
z ∈ ∂extV : z

(z+∆)\V←−−−−→ ∂ext(z + ∆)
}
6= ∅ do

Set ti = minA;
Let v∗ be the smallest v ∈ t such that tm ∈ ∂ext(∆ + v∗);
Set fi = {v∗, ti};
Update t = t ∪ {ti}, f = f ∪ {fi}, V = V ∪ (ti + ∆K), i = i+ 1;

end
return (t, f);

Write CG∆,K(C) = (t(C), f(C)). One has automatically that C is in a
(K + 2× radius(∆))-neighbourhood of CG∆,K(C).

∆

∆K

K

A possible cell ∆.

A coarse graining using the square cell.

Figure 2: Coarse graining example. Required connections are depicted in red.

The usefulness of such coarse graining is the conjunction of the combinatorial control
we mentioned on trees with given number of vertices and the following energy bound.

Lemma 3.1. Suppose the hypotheses of Theorem 1.2 hold. Then, there exists K0 ≥ 0

such that for any 0 ∈ ∆ ⊂ Zd finite, K ≥ K0, and T = (t, f) ∈ T (∆,K),

P
(
CG∆,K(C0) = T

)
≤
(
P (0↔ ∆c)(1 + |∆|e−cmixK/2)

)|f |
.

Proof. Let T = (t, f). The event CG∆,K(C0) = T implies in particular that

|f |⋂
i=1

{ti
(ti+∆)\Vi←−−−−−→ ∂ext(ti + ∆)} ≡

|f |⋂
i=1

Ai

occurs, where Vi =
⋃

0≤j<i(tj + ∆K). Now, let Fi denote the support of Ai. One has that
|Fi| ≤ C|∆| for any i (recall P has finite range) and d(Fi, Fj) ≥ K. In particular, by (2.4),

P (

|f |⋂
i=1

Ai) ≤ P (

|f |−1⋂
i=1

Ai)P (A|f |)
(

1 + Cmix

∑
e∈F|f|,e′:d(e,e′)≥K

e−cmixd(e,e′)
)

≤ P (

|f |−1⋂
i=1

Ai)P (A|f |)
(

1 + C|∆|Kd−1e−cmixK
)

≤ P (

|f |−1⋂
i=1

Ai)P (0↔ ∆c)
(

1 + C|∆|Kd−1e−cmixK
)

where we used inclusion of events and translation invariance in the last line. Iterating
|f | times gives the result.
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4 Proofs

The proof will go by introducing a family of decay rates (rates associated to various
connection events). The idea is to prove the wanted properties for convenient rates and
then to prove that all rates are in fact the same. Again, we work under the hypotheses of
Theorem 1.2 which are implicitly assumed in the statements.

4.1 Constraint point-to-point

First introduce a family of connection events. For δ ∈ (0, 1] and s, s′ ∈ Sd−1 such that
s ∈ Y̊s′,δ,

Qs′,δ(s,N) = {0
Ys′,δ\Hs′ (Ns)←−−−−−−−−→ Ns}.

Lemma 4.1. For any δ ∈ (0, 1] and s, s′ ∈ Sd−1 such that s ∈ Y̊s′,δ, the limit

ν̃s′,δ(s) = lim
N→∞

− 1

N
logP (Qs′,δ(s,N))

exists.

Proof. Fix s, s′ ∈ Sd−1, δ ∈ (0, 1] such that s ∈ Y̊s′,δ. By assumption, P (0↔ Λcn) ≤ e−ccon.
Denote l = 2 lim supN→∞− 1

N logP (Qs′,δ(s,N)) and set α = l
cco

. In particular, there exists

N0 such that for any N ≥ N0, P (Qs′,δ(s,N)) ≥ e−lN . So, − 1
N logP (Qs′,δ(s,N)) has the

same upper and lower limits as the sequence

aN
N

= − 1

N
logP

(
0

(Ys′,δ\Hs′ (Ns))∩ΛαN←−−−−−−−−−−−−−→ Ns
)
.

See Figure 3 for the volume in which the connection is required to occur. This additional

s

N

ΛαN

Figure 3: The volume (Ys,1 \Hs(Ns)) ∩ ΛαN (in grey).

manipulation is only needed to handle δ = 1, see Figure 4. We show that aN satisfies
the hypotheses of Lemma A.1. Let ∆N = (Ys′,δ \Hs′(Ns)) ∩ ΛαN . Let n ≥ m be large
enough, r = log(m)2, and set N = n + m + r. Then, ∆n ⊂ ∆N ,

(
(n + r)s + ∆m

)
⊂ ∆N ,

and d(∆n, (n+ r)s+ ∆m) ≥ r. Then,

P
(
0

∆N←−→ Ns
)
≥ θcErP

(
0

∆n←−→ ns, (n+ r)s
(n+r)s+∆m←−−−−−−→ Ns

)
.

by inclusion of events and Lemma 2.4. Then, ratio mixing implies

P
(
0

∆n←−→ ns, (n+ r)s
(n+r)s+∆m←−−−−−−→ Ns

)
≥ (1− |∆m|e−cmixr/2)P

(
0

∆n←−→ ns
)
P
(
0

∆m←−→ ms
)

for any m large enough. |∆m| being upper bounded by a degree d polynomial in m,
the wanted property (hypotheses of Lemma A.1) follows with g(m) = log(m)2, and
f(m) = 2 + cE log(θ−1) log(m)2.
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0 s

m
log(m)2

n

Ns

δ < 1.

0 Nss

m log(m)2 n

δ = 1.

Figure 4: Construction of the local event. Dotted lines denote the use of insertion
tolerance.

Lemma 4.2. For any s ∈ Sd−1, ν̃s′,δ(s) does not depend on δ ∈ (0, 1] and s′ ∈ Sd−1 as
long as s ∈ Y̊s′,δ.

Proof. Fix s ∈ Sd−1 and omit it from notation. Let δ′, δ′′ ∈ (0, 1] and s′, s′′ ∈ Sd−1 be such
that s ∈ Y̊s′,δ′ ∩ Y̊s′′,δ′′ . To lighten notation, write r′ = ν̃s′,δ′ and r′′ = ν̃s′′,δ′′ . We first
prove r′ ≤ r′′. Let α = 2r′′

cco
. In particular, defining ∆n = (Ys′′,δ′′ \Hs′′(ns)) ∩ Λαn (see

Figure 5),

P (0
∆n←−→ ns) = e−r

′′n(1+on(1)).

Then, fix ε > 0 small and n large enough. Write ` = log(n)2. For any N large, (1− ε)N =

0 ns
s′′

s

Λαn

∆n

Figure 5: The volume ∆n when δ′′ = 1 (in grey).

q(n+ `) + b with b < n+ ` (integer parts are implicitly taken). One has

P
(
Qs′,δ′(s,N)

)
≥

≥ θcEεN+b+q`P
( q−1⋂
i=0

{
(
ε

2
N + i(n+ `))s

(εN+i(n+`))s+∆n←−−−−−−−−−−−→ (
ε

2
N + i(n+ `) + n)s

})
,
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where we used insertion tolerance (Lemma 2.4). See Figure 6.

n

log(n)2

0 Ns
s

s′

ε
2N

ε
2N

Figure 6: The construction of the lower bound. Dotted lines denote the use of insertion
tolerance.

Using ratio mixing and translation invariance, the probability in the RHS is lower
bounded by

e−q
q−1∏
i=0

P
(
0

∆n←−→ ns
)

= e−qe−r
′′qn(1+on(1))

whenever n is larger than some fixed constant. Taking the log, dividing by −N and
taking N →∞, one obtains

r′ ≤ cE log(θ−1)ε+
(log(θ−1)`+ 1)(1− ε)

n+ `
+

(1− ε)nr′′

n+ `

ε > 0 is arbitrary and n is arbitrarily large. Take n → ∞ and then ε ↘ 0 to obtain the
wanted inequality.

Repeating the argument with (s′, δ′) and (s′′, δ′′) exchanged yields the reverse in-
equality and thus the result.

From Lemma 4.1 and 4.2, it is natural to introduce ν̃ : Rd → R+ as the extension by
positive homogeneity of ν̃s′,δ(s).

Lemma 4.3. ν̃ defines a norm on Rd.

Proof. First, point separation follows from the exponential decay assumption (cco > 0).
Then, positive homogeneity of order one is a direct consequence of the way we extended
ν̃ to Rd and of

P
(
Qs,1(s,N)

)
= P

(
Q−s,1(−s,N)

)
,

by translation invariance. Remains the triangle inequality. Fix x, y ∈ Rd. Let sxy = x+y
‖x+y‖ ,

sx = x
‖x‖ , sy = y

‖y‖ . We can suppose that x, x+ y ∈ H̊sxy (otherwise, exchange the role of
0 and x+ y, see Figure 7). Then, for ε > 0 fixed, for any δ > 0 small enough and any N

0

x+ y

x

sxy

0

x+ y

x

−sxy

Figure 7
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large

P
(
Qsxy,1(sxy, N‖x+ y‖)

)
≥

≥ θεc(‖x‖+‖y‖)NP
(
Qsx,δ(sx, ‖x‖(1− ε)N), x+ y

Y‖y‖(1−ε)N−sy,δ
(x+y)

←−−−−−−−−−−→ x+ εN‖y‖sy
)
,

where we used insertion tolerance. See Figure 8. Now, for ε > 0 fixed and δ > 0 small

0 Nx

N(x+ y)

sxy

Figure 8: Construction of the forced connection through Nx. Dotted lines denote the
use of insertion tolerance.

enough (depending on ε), one can use ratio mixing to obtain that the last probability is
lower bounded by

(1− e−c
′εN )P

(
Qsx,δ(sx, ‖x‖(1− ε)N)

)
P
(
Qsy,δ(sy, ‖y‖(1− ε)N)

)
.

Taking the log, dividing by −N and sending N →∞, one obtains

‖x+ y‖ν̃(sxy) ≤ log(θ−1)εc(‖x‖+ ‖y‖) + (1− ε)‖x‖ν̃(sx) + (1− ε)‖y‖ν̃(sy).

ε > 0 was arbitrary, taking ε ↘ 0 and using positive homogeneity gives ν̃(x + y) ≤
ν̃(x) + ν̃(y).

4.2 Point-to-half-space

Lemma 4.4. Let s ∈ Sd−1. The limit

νH(s) = lim
N→∞

− 1

N
logP

(
0↔ Hs(Ns)

)
exists.

Proof. We fix s ∈ Sd−1 and omit it from the notation. Let (nk)k≥1 be an increasing
sequence of integers such that

lim
k→∞

− 1

nk
logP

(
0↔ Hs(nks)

)
= lim sup

N→∞
− 1

N
logP

(
0↔ Hs(Ns)

)
≡ νH

In particular, P
(
0↔ Hs(nks)

)
= e−nkνH(1+ok(1)).

By our hypotheses,
P (0↔ ΛM ) ≤ e−ccoM

for any M large enough. Let then α = νH
cco

. Set ∆k = Λαnk \ Hs(nks), Kk = log(nk)2,

∆k =
⋃
v∈∆k

ΛKk(v). See Figure 9. In particular, we have

P (0↔ ∆c
k) ≤ P (0↔ Λcαnk) + P

(
0↔ Hs(nks)

)
≤ e−νHnk(1+ok(1)) (4.1)

where we used a union bound.
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nk

αnk

log(nk)2

∆k

∆k

Figure 9: The cell ∆k.

We now coarse-grain C0 using CGk ≡ CG∆k,Kk (see Section 3.2). Write CGk(C0) =

(t(C0), f(C0)). One has that C0 is included in an 3αnk-neighbourhood of t(C0). We have

P (0↔ X) =
∑
T∈T

P
(
0↔ X,CGk(C0) = T

)
≤
∑
T∼X

P
(
CGk(C0) = T

)
(4.2)

where T ∼ X means that d(X, t(C0)) ≤ 3αnk. We can then use Lemma 3.1 and the bound
on the number of trees, (3.1), to obtain that for any fixed large enough k, as N goes to
infinity,

P
(
0↔ Hs(Ns)

)
≤

∑
l≥ N

nk+Kk

∑
T∈Tl

P
(
CGk(C0) = T

)
≤

∑
l≥ N

nk+Kk

e
c log(d∆k

)l
e−νHnkl(1+ok(1))

=
∑

l≥ N
nk+Kk

e−νHnkl(1+ok(1)+onk (1)) = e−NνH(1+ok(1)+onk (1))
(
1− ok(1)

)−1

as d∆k
is upper bounded by a polynomial of degree d in nk and any tree T with T ∼ Hs(Ns)

has |f | ≥ N
nk+Kk

. In particular, for any k large enough,

νH ≡ lim inf
N→∞

− 1

N
logP (0↔ Ns+Hs) ≥ νH(1 + ok(1) + onk(1)).

Taking k → ∞ yields νH ≥ νH . The direction s being arbitrary, νH(s) = νH(s) for all
s ∈ Sd−1.

4.3 Constrained point-to-half-space

Lemma 4.5. Let s ∈ Sd−1. The limit

ν̃H(s) = lim
N→∞

− 1

N
logP

(
0

Hs←→ Hs(Ns)
)

exists. Moreover,
ν̃H(s) = νH(s).

Proof. We fix s ∈ Sd−1 and omit it from the notation. By inclusion of events, one has

lim infN→∞− 1
N logP

(
0

Hs←→ Hs(Ns)
)
≥ νH . To obtain the other bound, start with, for any

ε > 0,

P
(
0↔ Hs(Ns)

)
≤ θ−cEεNP (εNs↔ Hs(Ns)) = eλεNe−νH(1−ε)N(1+oN (1)), (4.3)
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where λ = log(θ−1)cE > 0 and

P
(
0

Hs←→ Hs(Ns)
)
≥ e−λεNP (εNs

Hs←→ Hs(Ns)), (4.4)

by Lemma 2.4 (insertion tolerance).
We then use a coarse-graining described in Section 3.2 (the same as in the proof

of Lemma 4.4 with different sizes). Set ∆n = Λαn \ Hs(ns), Kn = log(n)2, and ∆n =⋃
v∈∆n

ΛKn(v), where α is the same quantity as in the proof of Lemma 4.4. As in
Lemma 4.4,

P (0↔ ∆c
n) ≤ e−νHn(1+on(1)).

We use CGn ≡ CG∆n,Kn . Write CGn(C0) =
(
t(C0), f(C0)

)
.

Now, any cluster contributing to {εNs ↔ Hs(Ns)} \ {εNs
Hs←→ Hs(Ns)} has |f | ≥

εN√
d(αn+log(n)2)

+ (1−ε)N
n+log(n)2 (see Figure 10). So, applying the same argument as in Lemma

4.4,

P (εNs↔ Hs(Ns))− P (εNs
Hs←→ Hs(Ns)) ≤ e−νHN(1−ε+ ε√

dα
+on(1))

.

In particular, for any fixed n large enough, and any N large

P (εNs
Hs←→ Hs(Ns))

P (εNs↔ Hs(Ns))
≥ 1− e−νHN(ε′+on(1)+oN (1)),

where ε′ = ε√
dα

. Plugging this in (4.4), and using (4.3), one obtains

P
(
0

Hs←→ Hs(Ns)
)
≥ e−2λεN (1− e−νHN(ε′+on(1)+oN (1)))P (0↔ Hs(Ns))

= e−2λεN (1− e−νHN(ε′+on(1)+oN (1)))e−νHN(1+oN (1)).

In particular lim supN→∞− 1
N logP (0

Hs←→ Hs(Ns)) ≤ νH + 2λε. ε > 0 being arbitrary,
taking ε↘ 0 yields the result.

0

εN

Hs(Ns)

Figure 10: Coarse graining of a cluster contributing to {εNs ↔ Hs(Ns)} \ {εNs
Hs←→

Hs(Ns)}.

We highlight at this point that we could easily remove the “directed constraint” for
point-to-half-spaces connections, which seems to be much harder to do for point-to-point
connections.
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4.4 Convex duality

We saw that ν̃ defines a norm on Rd. In particular, Uν̃ (the unit ball for ν̃) is a convex
set. To each s ∈ Sd−1, we associate the set of dual directions

s? =
{
s′ ∈ Sd−1 : Hs′

( 〈s, s′〉
ν̃(s)

s′
)
∩ Uν̃ ⊂ ∂Uν̃

}
.

It is the set of directions normal to the boundary of half-spaces tangent to Uν̃ at s
ν̃(s) (see

Figure 11). By abuse of notation, we will write s? for an arbitrarily chosen element of the
set. It satisfies 〈s, s?〉 > 0. Moreover, for a fixed s?, any s having s? as dual is a minimizer

of s′ 7→ ν̃(s′)
〈s?,s′〉 under the constraint 〈s?, s′〉 > 0. Notice that this notion of duality is not

the classical convex duality between Uν̃ andWν̃ (but it is related via normalization of the
dual directions).

s s?

Uν̃

Figure 11: Duality between directions.

The duality statement is

Lemma 4.6. For any s ∈ Sd−1,

ν̃(s) = νH(s?)〈s, s?〉. (4.5)

Proof. Fix s ∈ Sd−1. Let s? be a dual direction of s. Start with the easy inequality. By
inclusion of events and Lemma 4.2,

P
(
0↔ Hs?(Ns?)

)
≥ P

(
0

Hs?\Hs? (aNs)←−−−−−−−−→ aNs
)

= e−aν̃(s)N(1+oN (1))

where a = 〈s, s?〉−1. Taking the log, dividing by −N and letting N → ∞, one gets
νH(s?) ≤ aν̃(s).

We now proceed to the harder inequality. We use Lemma 4.5. The idea is illustrated
in Figure 12. Then, using the same argument as in the proof of Lemma 4.4, for some α
large enough,

P
(
0

Hs?←−→ Hs?(Ns?)
)
≤ CP

(
0

Hs?∩ΛαN←−−−−−→ Hs?(Ns?)
)
.

By a union bound, this is in turn upper bounded by

C
∑

x∈∂int[Hs? (Ns?)]∩ΛαN

P (0
Hs?\Hs? (x)←−−−−−−→ x). (4.6)

Let δ < 1 be such that ∂int[Hs?(Ns?)]∩ΛαN ⊂ Ys?,δ for any N large enough. Let ε > 0

be small. Choose a finite subset S of Sd−1 ∩ Ys?,δ such that |S| ≤ c′′ε−d+1 and Ys?,δ ⊂⋃
s′∈S Ys′,ε. Denote As′(N) = ∂int[Ns? +Hs? ] ∩ Ys′,ε. Then, by insertion tolerance, (4.6)

is upper bounded by

C
∑
s′∈S
|As′(N)|θ−c

′εNP (0
Hs?\Hs? (as′Ns

′)←−−−−−−−−−−→ as′Ns
′)
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with as′ = 〈s′, s?〉−1. By Lemma 4.2, P (0
Hs?\Hs? (as′Ns

′)←−−−−−−−−−−→ as′Ns
′) = e−as′Nν̃(s′)(1+oN (1))

with the oN (1) depending on s′. Denote it os
′

N (1). Now, as′ ν̃(s′) is minimal if s′, s? are dual
directions. So, combining all the previous observations,

P
(
0

Hs?←−→ Hs?(Ns?)
)
≤ C ′Nd−1ε1−dθ−c

′εNeasNν̃(s) maxs′∈S o
s′
N (1)e−asNν̃(s).

Taking the log, dividing by −N and taking N →∞ gives

νH(s?) ≥ log(θ)c′ε+ asν̃(s).

Taking then ε↘ 0 yields the result.

Hs(Ns)

s

Figure 12: Connection to Hs(Ns) is made at the point minimizing the distance measured
with ν̃ (here the square mark). The grey shape is a dilation of Uν̃ .

4.5 Final coarse-graining

Let us summarize what we did so far. First, we constructed a norm using a directed
version of the point-to-point connections (Lemmas 4.1, 4.2, and 4.3). Then, we proved
an equivalence (at the level of exponential rates) between directed and un-directed
point-to-half-space connections (Lemmas 4.4 and 4.5). Finally, we related these two
quantities using convex duality (Lemma 4.6). We can now gather these three results to
prove our key estimate

Lemma 4.7. For any ε > 0, there exists L0 ≥ 0 such that for any L ≥ L0,

P
(
0↔ (LUν̃)c

)
≤ e−L(1−ε). (4.7)

Proof. Fix ε > 0. Take S a finite subset of Sd−1 such that |S| ≤ cδ−d+1 and
⋃
s∈S Ys,δ∩Uν̃ =

Uν̃ . For s ∈ S, denote As = ∂ext(LUν̃) ∩ Ys,δ. Then,

P
(
0↔ (LUν̃)c

)
≤
∑
s∈S

∑
x∈As

P
(
0

LUν̃←−→ x
)

≤ θ−c
′δL(c′′Ld−1)

∑
s∈S

P
(
0

LUν̃←−→ sL

ν̃(s)

)
,

where we used insertion tolerance in the second line. Now, for any fixed s ∈ S, let s? be
dual to s. See Figure 13. One then has (using Lemma 4.6)

P
(
0

LUν̃←−→ sL

ν̃(s)

)
≤ P

(
0↔ L〈s, s?〉

ν̃(s)
s? +Hs?

)
≤ e−

L〈s,s?〉
ν̃(s)

νH(s?)(1+oL(1)) = e−L(1+oL(1)).

Now, the oL(1) depends on s. Write it osL(1). One therefore obtains

P
(
0↔ (LUν̃)c

)
≤ θ−cδL(c′Ld−1)c′′δ−d+1e−Lemaxs∈S o

s
L(1).
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Uν̃
Uν̃

Figure 13: For each direction s, we chose a dual direction for which connecting to a
half-spaces is the same as connecting in direction s.

Take δ small enough and then L large enough to have θ−cδL(c′Ld−1)c′′δ−d+1 ≤ eεL/2 and
maxs∈S o

s
L(1) ≤ εL/2.

We then use the coarse graining procedure of Section 3.2 with ∆ = LUν̃ and K =

log(L)2: CGL ≡ CGLUν̃ ,log(L)2 .
As a corollary of this construction, we obtain

Corollary 4.8. For any s ∈ Sd−1,

ν(s) ≤ ν̃(s) ≤ ν(s).

In particular, ν is well defined and defines a norm on Rd.

Proof. Fix some s ∈ Sd−1. One has the direct lower bound ν̃(s) ≥ ν(s). To obtain the
other bound, we use CGL. Any cluster C 3 0, Ns has |f(C)| ≥ Nν̃(s)

L+log(L)2 (recall Uν̃ is

convex). Fix ε > 0 small and take L ≥ L0(ε). Using the bound on the combinatoric of
trees and Lemmas 3.1 and 4.7, one obtains

P (0↔ Ns) ≤ e(ε+oL(1))Ne−Nν̃(s).

Taking the log, dividing by −N and letting N →∞ gives ν(s) ≥ ν̃(s)− ε+ oL(1). Letting
L→∞ and then ε↘ 0 give the result.

A Relaxed Fekete’s lemma

We use this Lemma which proof is an easy adaptation of the usual Fekete’s Lemma.

Lemma A.1. Suppose (an)n≥1 is a sequence with c−n < an < c+n for some 0 < c− ≤
c+ <∞. Suppose that there exists N0 ≥ 1 and functions f, g : (Z>0)→ Z such that

• f(n) = o(n), g(n) = o(n),

• For any n,m ≥ N0, an+m+g(min(n,m)) ≤ an + am + f(min(n,m)).

Then, the limit limn→∞
an
n exists in [c−, c+].

Proof. Let l = lim infn→∞
an
n . Let (nk)k≥1 be an increasing sequence such that

limk→∞
ank
nk

= l. Fix k such that nk ≥ N0. For any N large enough, N = q(nk + g(nk)) + r

with r < nk + g(nk). Then, by q − 1 iterations of our sub-additivity-type hypotheses

aN
N
≤

(q − 1)(ank + f(nk)) + ank+g(nk)+r

q(nk + g(nk)) + r
= l + ok(1) + onk(1) + oN (1).
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Taking N →∞, one obtains

lim sup
N→∞

aN
N
≤ l + ok(1) + onk(1).

k being arbitrary, one can now take k →∞ to obtain the wanted result.
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