
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 27 (2022), article no. 63, 1–45.
ISSN: 1083-6489 https://doi.org/10.1214/22-EJP786

Second order cubic corrections of large deviations for
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Abstract

We prove that the Beta random walk, introduced in [BC17] 2017, has cubic fluctua-
tions from the large deviation principle of the GUE Tracy-Widom type for arbitrary
values α > 0 and β > 0 of the parameters of the Beta distribution, removing previous
restrictions on their values. Furthermore, we prove that the GUE Tracy-Widom fluctu-
ations still hold in the intermediate disorder regime. We also show that any random
walk in space-time random environment that matches certain moments with the Beta
random walk also has GUE Tracy-Widom fluctuations in the intermediate disorder
regime. As a corollary we show the emergence of GUE Tracy-Widom fluctuations from
the large deviation principle for trajectories ending at boundary points for random
walks in space (time-independent) i.i.d. Dirichlet random environment in dimension
d = 2 for a class of asymptotic behavior of the parameters.
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1 Introduction

The Beta-random walk, introduced in [BC17], is a random walk in space-time i.i.d.
random environment in Z which is exactly solvable. Given α,β ∈ (0,∞), for each space
time point (t, x) ∈ N×Z, a Beta-random variable Bt,x of parameters α and β is associated
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Second order cubic corrections

to the space-time point (t, x), so that (Bt,x)(t,x)∈N×Z are i.i.d. The Beta-random walk
(Xt)t∈N in the environment (Bt,x)(t,x)∈N×Z is then defined by its transition probabilities

P (Xt+1 = x+ 1|Xt = x) = Bt,x for x ∈ Z.
A general quenched large deviation principle for the position of the walk, which includes
the Beta-random walk, was proved in [RSY13]. Subsequently, Barraquand and Corwin
in [BC17], obtained an explicit formula for the quenched large deviation rate function
and also proved for the case α = β = 1, second order cube-root scale corrections to this
large deviation principle, with convergence to the GUE Tracy-Widom distribution. This
was recently extended for the case α = 1 and β > 0 in [K21].

Directed polymers in random environment in dimension 1 + 1 are in strong disorder
for all inverse temperatures β > 0, and it is conjectured that for general distributions,
there are second order cube-root fluctuations for the rescaled free energy with GUE
Tracy-Widom statistics. Random walks in space-time i.i.d. random environments share
several features with directed polymers in random environment. It is hence natural to
conjecture that a similar behavior would occur: second order corrections to the quenched
large deviation principle for random walk in space-time i.i.d. random environment
for a large class of distributions of the random environment, still of scale cube-root,
with convergence to the GUE Tracy-Widom distribution. Here, the strength of the
disorder given by the random environment, plays the role of the inverse temperature
(for dimensions d ≥ 3 + 1, regimes analogous to the strong and weak disorder regimes of
directed polymers exist for the random walk in space-time i.i.d. environment [BMRS19]).
The intermediate disorder regime probes the strong-weak disorder transition of directed
polymers in dimensions 1 + 1, by taking the limit β → 0 as the length of the polymer
is increased. For the special case βN = β̂N−1/4, it was shown in [AKQ14], that the
fluctuations crossover between the Edwards-Willkinson regime to the GUE Tracy-Widom
regime as β̂ → ∞, and the Kardar-Parisi-Zhang equation (KPZ) appears in the limit.
Subsequently Krishnan and Quastel in [KQ18], showed through a perturbation argument
involving matching a certain number of moments with the log-gamma polymer [S12], the
universality of the GUE Tracy-Widom distribution when 1� βN � O(N−1/4) (see similar
ideas used within the context of chaos phenomena and ultrametricity in the mixed p-spin
model in [AC16]).

The intermediate disorder has also been studied within the context of random walks
in space-time i.i.d. random environment in Z which are perturbations of the simple
symmetric random walk. Indeed, in [CG17], the intermediate disorder regime was proven
for a random walk in space-time i.i.d. random environment defined by its probability to
jump to the right at a given time t from a site x as 1

2 +t−1/4ξ(x, t) with (ξ(x, t))x∈Z,t∈N i.i.d.

with values in [0, 1]. This corresponds to the case βN = β̂N−1/4 of directed polymers. A
second result in [CG17] gives an intermediate disorder regime limit of the same kind for
the logarithmic fluctuations of the transition probability P0,ω(Xt = y) of the Beta random
walk, with scaling y = γt + xt1/2, γ ∈ (0, 1/2), x ∈ R with time-dependent parameters
αt = βt = t1/2, as t→∞ is time.

In this article we first prove convergence to the GUE Tracy-Widom distribution of the
second order fluctuations of the Beta random walk for any α > 0 and β > 0. This result
removes the restrictions of [BC17], where the convergence was proven for α = β = 1

and of [K21] where it was extended to the case α = 1 and β > 0. Furthermore, our result
shows that we can keep the same range θ ∈ (0, 0.5) parametrizing the target points x(θ)

(which is expressed as a rational function invlolving polygamma functions) of the large
deviation event {Xt ≥ x(θ)t} as in [BC17], as long as α ≥ 0.73 and β > 0. As a second
result we prove convergence to the GUE Tracy-Widom distribution for the logarithmic
fluctuations of the probability P0,ω(Xt ≥ xtt), for αt → ∞, βt → ∞ and xt → 1, under
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an appropriate condition on the growth of αt and βt. For the case αt = tr, βt = ts, this
condition reduces to r + max(r − s, 0) < 1. In the third result of this article we show
that the corresponding result for random walks in space-time i.i.d. environments which
are perturbations of the Beta random walk still holds, along the lines of [KQ18]. An
interesting corollary of our perturbation results, is the appearance of the GUE Tracy-
Widom fluctuations for random walks in space i.i.d. (static) Dirichlet environment in
dimension d = 2, for certain asymptotic behaviour of the parameters, corresponding
to events which force the random walk to move through directed trajectories. The
main challenge of the proofs is doing a sophisticated steep-descent analysis involving
polygamma functions.

In what follows we give a precise formulation of the main results of this article.

2 Main results

We first define the model of random walk in random environment on Zd ×N, where
the factor Zd will represent the space where it moves, while N is the time. Let | · |1
denote the l1 norm. Let U := {e ∈ Zd : |e|1 = 1} and P := {(p(e))e∈U ∈ [0, 1]2d :∑
e∈U p(e) ≤ 1}. Let Ω = PZd×N. We call Ω the environmental space and each element

ω := (ω(x, t))x∈Zd,t∈N ∈ Ω, with ω(x, t) = (ωe(x, t))e∈U ∈ P, an environment . Note that
we do not assume necessarily that

∑
e∈U ωe(x, t) = 1, which can be interpreted as jump

probabilities having a non-vanishing probability of absorption at each step. Given ω ∈ Ω,
consider the (sub)-Markov chain (Xt)t≥0 with state space Zd starting from x ∈ Zd,
defined through its transition probabilities

Px,ω(Xt+1 = y + e|Xt = y) = ωe(y, t),

for y ∈ Zd and t ≥ 0, with Px,ω(X0 = x) = 1. We call the (sub)-Markov process (Xt)t≥0

a random walk in the space-time environment ω on Zd and denote by Px,ω its law. If
P is a probability measure defined on Ω, we denote the law Px,ω the quenched law of
the random walk in random environment , and by Ex,ω the expectation corresponding to
Px,ω.

A special case of a random walk in random environment is the Beta random walk,
defined for d = 1, and where the environment is space-time i.i.d. Recall that a random
variable B is a Beta random variable of parameters α > 0 and β > 0 if for every r ∈ [0, 1]

we have that

P (B ≤ r) =

∫ r

0

xα−1(1− x)β−1 Γ(α + β)

Γ(α)Γ(β)
dx

Let (Bx,t)x∈Z,t≥0 be an i.i.d. collection of Beta random variables of parameter α > 0 and
β > 0. Let Pα,β be the joint law of ω with ω1(x, t) = Bx,t and ω−1(x, t) = 1−Bx,t. Then,
the random walk in random environment on Z with law Pα,β is called a Beta random
walk . We will denote by Eα,β the corresponding expectation.

An important class of a random walks in random environment corresponds to the
case in which the law P of the environment is concentrated on environments ω which
are time-independent, so that ω(x) := ω(t, x) for all t ≥ 0 and x ∈ Zd. In this case
we will use the notation ω(x) = (ω(x, e))e∈U . A particular example of a random walk
in (time-independent) random environment on Zd, is the random walk in Dirichlet
environment (RWDE). To define the RWDE, let us use the notation U = {e1, e2, . . . , e2d}
with the convention ed+i = −ei for 1 ≤ i ≤ d. For each 1 ≤ i ≤ 2d, let αi > 0.
The Dirichlet distribution with parameters α := (αi)i∈{1,...,k} is the distribution on
P1 = {(p(e))e∈U ∈ [0, 1]2d :

∑
e∈U p(e) ≤ 1} which has a density with respect to the

Lebesgue measure in P1 given by
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Γ(α1 + · · ·+ αk)

Γ(α1) · · ·Γ(αk)
uα1−1

1 · · ·uαk−1
k

∏
i 6=i0

dui,

where i0 is an irrelevant choice of index among {1, . . . , k} and ui0 = 1 −
∑
i 6=i0 ui. The

random walk in Dirichlet environment of parameter α := (αi)i∈{1,...,2d} is defined as the
random walk on Zd whose environment ω is time-independent and has a law Pα under
which (ω(x))x∈Zd are i.i.d. and have Dirichlet distribution of parameter α.

In what follows we will use the notation Pω := P0,ω for the quenched law of the Beta
random walk. Define Pω(t, x) := Pω(Xt ≥ x). In [RS14] and [RSY13], it was shown that
Pα,β-a.s.

lim
t→∞

1

t
logPω(t, xt) = −I(x),

where I is the Legendre transform of

λ(s) := lim
t→∞

1

t
log
(
Eω
[
esXt

])
s ∈ R,

where the right-hand side limit exists Pα,β-a.s. In [BC17] a closed formula for I was
obtained using critical Fredholm determinant asymptotics, so that I is implicitely defined
by

x(θ) =
Ψ1(θ + α + β) + Ψ1(θ)− 2Ψ1(θ + α)

Ψ1(θ)−Ψ1(θ + α + β)
(2.1)

and

I(x(θ)) =
Ψ1(θ + α + β)−Ψ1(θ + α)

Ψ1(θ)−Ψ1(θ + α + β)
(Ψ(θ + α + β)−Ψ(θ))

+ Ψ(θ + α + β)−Ψ(θ + α),

where Ψ is the digamma function defined as Ψ(z) = Γ′(z)/Γ(z), Ψ1(z) = Ψ′(z) is the
trigamma function, z ∈ C, θ ∈ (0,∞), and as θ ranges from 0 to∞, x(θ) ranges from 1 to
(α− β)/(α + β). Define σ(θ) by the relation

2σ(θ)3 = Ψ2(θ + α)−Ψ2(θ + α + β)

+
Ψ1(θ + α)−Ψ1(θ + α + β)

Ψ1(θ)−Ψ1(θ + α + β)
(Ψ2(θ + α + β)−Ψ2(θ)) , (2.2)

where Ψ2(z) := Ψ′1(z). By Lemma 5.3 of [BC17], the right hand side of (2.2) is positive
so that σ(θ) > 0. Our first result is an extension of Theorem 1.15 of [BC17] and Theorem
1.2 of [K21] which includes the case α ≥ 0.7, β > 0 and θ ∈ (0, 0.5). Recall that the GUE
Tracy-Widom distribution is defined by FGUE(x) = det(I −KAi)L2(x,+∞), x ∈ R, where
det(I −KAi)L2(x,+∞) is the Fredholm determinant of the Airy kernel KAi kernel defined
as

KAi(u, v) =
1

(2πi)2

∫ e2πi/3∞

e−2πi/3∞

∫ eπi/3∞

e−πi/3∞

ez
3/3−zu

ew3/3−wv
1

z − w
dzdw,

where the contours for z and w do not intersect.
Our first result is an extension of Theorem 1.15 of [BC17] and the implication of

Theorem 1.2 of [K21] for the Beta random walk.
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Theorem 2.1. For all α > 0, β > 0 and θ ∈ (0,min{0.5, 0.69× α}), we have that

lim
t→∞

Pα,β

(
log (Pω(t, x(θ)t)) + I(x(θ))t

t1/3σ(θ)
≤ y
)

= FGUE(y).

It should be noted that the range of target points x(θ) varies from x(θ) = 1 for θ = 0

to α−β
α+β

, which is the speed of the random walk, as θ →∞. Since the convergence in the
above theorem is for values of θ not larger than min{0.5, 0.69×α}, and x(θ) is decreasing
with θ, the range of target points is far from the velocity α−β

α+β
.

Also, Theorem 2.1 shows in particular that the convergence to the GUE Tracy-
Widom distribution occurs for all θ ∈ (0, 0.5) and β > 0 as long as α ≥ 0.73. The case
α = β = 1, was proven for all θ ∈ (0, 0.5) in [BC17] and extended to α = 1 and β > 0 in
[K21]. Removing these restrictions to obtain Theorem 2.1 is technically challenging and
requires sophisticated estimates involving the polygamma functions. Our bounds on θ
and α are not optimal, and the methods presented here could give better estimates.

Our second result shows that the intermediate disorder regime holds for the Beta
random walk with parameters tending to ∞. It should be noted that since θ will be
fixed, by (2.1), we will also have that x(θ)→ 1. To state the theorem, we introduce the
following function which will play a key role in the rate at which α and β can tend to
infinity,

g(x, y) :=
y

x(x+ y)
for x > 0, y > 0.

This function will appear from the difference between the trigamma functions Ψ1(θ +

α)−Ψ1(θ + α + β). We will assume that the parameters α and β depend on the terminal
time t, and we will denote them by (αt,βt): this means that the random environment is
given by space-time i.i.d. beta distributed random variables of parameters (αt,βt). We
will assume that

lim
t→∞

αt =∞, lim
t→∞

βt =∞ (2.3)

and that

lim
t→∞

tg(αt,βt) =∞. (2.4)

In the following theorem, the quantities x(θ) and σ(θ) will be time dependent since they
will be evaluated using time-dependent parameters (αt,βt) for the beta random walk. It
will turn out that under conditions (2.3) and (2.4), we will have that

tx(θ) ∼ t− C(θ)tg(αt,βt), (2.5)

where C(θ) > 0 is a constant depending on θ, with the correction term tg(αt,βt) = o(t)

but tg(αt,βt) → ∞ as t → ∞. This ensures that the entropy tends to ∞ in the sense
that the number of trajectories involved in the probability Pω(t, x(θ)t) will tend to∞ as
t→∞. Furthermore, we will also have under (2.4) that σ(θ) ∼ C ′(θ)g(αt,βt), for some
constant C ′(θ) > 0, so that

t1/3σ(θ)→∞.

Theorem 2.2. Consider a family of Beta random walks of parameters (αt,βt). Assume
that conditions (2.3) and (2.4) are satisfied. Then, for all θ ∈ (0, 0.5) we have that

lim
t→∞

Pαt,βt

(
log (Pω(t, x(θ)t)) + I(x(θ))t

t1/3σ(θ)
≤ y
)

= FGUE(y).
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In the above theorem, the target point x(θ) is approaching 1 as t→∞, through its
dependence on time from αt and βt (see (2.5)). If we want to achieve a result where
αt → ∞, βt → ∞, but the target point x(θ) is fixed, we would need to choose also the
parameter θ as a function of time, so that θt → ∞ as t → ∞. For the moment, this
regime is out of the reach of the methods used in this article because the deformations
of contours used are justified only for θ < min{0.5, 0.69× α}.

In the particular case in which αt = c1t
r, βt = c2t

s, for some constants c1 > 0 and
c2 > 0, and the following condition is satisfied,

r + max(r − s, 0) < 1, (2.6)

then assumptions (2.3) and (2.4) are satisfied. If also r = s, the law of the Beta
distribution with parameter (αt,βt) converges to the atom at c1/(c1 + c2).

The proof of Theorems 2.1 and 2.2 is based on an exact formula for the Laplace
transform of the probabilities Pω(t, x) from where an asymptotic analysis through steep-
descent methods of integrals on complex contours is carried out. The asymptotic analysis
approach is within the spririt of what is carried out in the context of the log-gamma
polymer in [BCR13], the O’Connell-Yor semi-discrete polymer and the continuum random
polymer in [BCF14] and for the Beta random walk (or Beta polymer) in [BC17] and [K21]
for α = 1 and β > 0. For the proof of Theorem 2.1, we have to do some challenging
computations involving the polygamma functions, leading to the required steep-descent
estimates and involving the following complex function

h(z) := I(x(θ))z +
1− x(θ)

2
log

(
Γ(α + z)

Γ(z)

)
+

1 + x(θ)

2
log

(
Γ(α + z)

Γ(α + β + z)

)
, (2.7)

which turns out to have a critical point at z = θ. We then do a steep-descent analysis
near this critical point, so that the choice of contours near this point will be important.
Here we choose them in a way similar to the choice of [K21]. It appears that this
approach is robust enough to extend the validity of the convergence to the GUE Tracy-
Widom of the second order correction of the large deviation probabilities to the range of
parameters stated in Theorem 2.1. Nevertheless, the first limitation of this approach
is the impossibility of deforming contours to achieve a circular contour centered at the
origin of radius larger than 1/2, restricting the range of parameters to θ ∈ (0, 1/2). The
second limitation shows up in the necessity of proving two key inequalities involving h
and its derivatives, which ensure the steep-descent properties with the chosen contours,
which actually turn out to be false for some values of α > 0, β > 0 and θ ∈ (0, 0.5). At
any rate, we expect that an approach which enables us to go to values of θ ≥ 0.5, might
be possible with a clever choice of contours, and could give an extension of Theorem 2.1
to all θ > 0, α > 0 and β > 0.

For Theorem 2.2, we have to keep track of the dependence of several estimates on αt
and βt, and essentially the time scale changes from t to σt3, but now σ depends on time
through αt and βt.

Our final result extends Theorem 2.2 to random walks in space time i.i.d. environ-
ments which are close to the Beta random walk. To state it, we need to define the concept
of matching moments between two families of environments, one of which has Beta dis-
tributions. Given an environment ω, define ξ = (ξ(x, t))x∈Z,t≥0 by ξ+(x, t) = − logω1(x, t)

and ξ−(x, t) = − logω−1(x, t), so that

e−ξ+(x,t) = ω1(x, t) and e−ξ−(x,t) = ω−1(x, t).

We will also use the multi-index notation for t = (t1, t2) ∈ R2,
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|α| = α1 + α2, tα = tα1
1 tα2

2 .

Definition 2.3 (Moment matching condition). Consider a family of Beta probability
measures (Pαt,βt)t≥0 such that (2.3), (2.4) are satisfied. Assume also that

M1 := lim
t→∞

Eαt,βt [ξ+(0, t)] = − lim
t→∞

(Ψ(αt)−Ψ(αt + βt))

and

M2 := lim
t→∞

Eαt,βt [ξ−(0, t)] = − lim
t→∞

(Ψ(βt)−Ψ(αt + βt))

exist. Define

ξ̄+(x, t) = ξ̄1(x, t) := ξ+(x, t)−M1 and ξ̄−(x, t) = ξ̄2(x, t) := ξ−(x, t)−M2.

Let f(t) : [0,∞)→ [0,∞). Given a family of probability measures (Pt)t≥0 defined on the
environmental space Ω (with corresponding expectations (Et)t≥0), we say that it matches
moments up to order k at rate f with the family (Pαt,βt)t≥0, if we have that for all x ∈ Z
and t ≥ 1, ∣∣Et[ξ̄α(x, t)]− Eαt,βt [ξ̄

α(x, t)]
∣∣ ≤ f(t), for |α| ≤ k,

and ∣∣Et[ξ̄α(x, t)]
∣∣ ≤ f(t), for |α| = k.

We can now state the third result of this article. Again, the quantities x(θ) and σ(θ)

will be time dependent through the time-dependent parameters (αt,βt) for the beta
random walk. To state this theorem, we define for time t ≥ 0, the set

Dt := {z ∈ Z2 : |z|1 ≤ t}.
Note that the convex hull of the range of the Dirichlet random walk at time t in Z2 is Dt.
Define its boundary

∂Dt := {z ∈ Z2 : |z|1 = t}.
We then can define ∂D+,+

t := {z ∈ ∂Dt : z1 ≥ 0, z2 ≥ 0}, ∂D+,−
t := {z ∈ ∂Dt : z1 ≥ 0, z2 ≤

0}, ∂D−,+t := {z ∈ ∂Dt : z1 ≤ 0, z2 ≥ 0} and ∂D−,−t := {z ∈ ∂Dt : z1 ≤ 0, z2 ≤ 0}. We have
that ∂Dt = ∂D+,+

t ∪ ∂D+,−
t ∪ ∂D−,+t ∪ ∂D−,−t . For t ≥ 0 and y ∈ (0, 1) consider the set

At,y := {z ∈ Z2 : |z|1 = t, z1 ≥ (t+ y)/2, z2 ≥ 0} ⊂ ∂D+,+
t .

See Figure 1 to visualize the sets Dt, ∂Dt, ∂D
+,+
t , ∂D+,−

t , ∂D−,+t , ∂D−,−t and At,x(θ)t.
We will adopt the notation

P0,ω(t, y) = P0,ω(Xt ∈ At,y). (2.8)

Theorem 2.4. Consider a family of parameters (αt,βt) that satisfy (2.3) and (2.4). Let
θ ∈ (0, 0.5). Let (Pt)t≥0 be a family of environmental laws which matches moments up to

order k at rate α
−d k2 e
t with (Pαt,βt)t≥0 and such that

lim
t→∞

t2α
−d k2 e
t

σ(θ)t1/3
= 0. (2.9)

Then

lim
t→∞

Pt

(
log (P0,ω(t, x(θ)t)) + I(x(θ))t

t1/3σ(θ)
≤ y
)

= FGUE(y).
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Our approach to prove Theorem 2.4 is to express the weak convergence in terms
of the convergence of a large enough family of expectations involving smooth enough
functions, and then making a Taylor expansion, and apply Theorem 2.2. This is similar to
what is presented in [KQ18], although here we have to deal with perturbations which
involve two parameters instead of one.

Theorem 2.4 has the following corollary for random walks in Dirichlet random envi-
ronment in dimension d = 2. As in Theorem 2.4, the quantities x(θ) and σ(θ) will be time
dependent through time-dependent parameters (αt,βt) and P0,ω(t, x(θ)t) is defined in
(2.8).

Corollary 2.5. Consider a family of random walks in Dirichlet environment on Z2 of
parameters (αt)t≥0 with αt = (αt,i)i∈{1,...,4} and αt,1 = αt,2 = tr, αt,3 ≤ t−p and αt,4 ≤ t−p
for t ≥ 1, for some r ∈ (0, 1) and

p ≥ r
⌈

5

3r
− 1

3

⌉
− r. (2.10)

Then for all θ ∈ (0, 0.5) we have that

lim
t→∞

Pαt

(
log (P0,ω(t, x(θ)t)) + I(x(θ))t

t1/3σ(θ)
≤ y
)

= FGUE(y).

t z1

z2

∂D+,+
t

At,x(θ)t

∂D−,−t ∂D+,−
t

∂D−,+t

Figure 1: The set Dt and its boundary ∂Dt divided into the four quadrants, the large
deviation event At,x(θ)t (in blue) of Theorem 2.4 and Corollary 2.5 and a typical directed
trajectory (in red) of a random walk starting from 0. In the case of Corollary 2.5, the
length of the blue segment At,x(θ)t grows like O(t1−r) as t→∞.

Corollary 2.5 is a particular case of perturbations of random walks in i.i.d. random
environment in dimension d = 2 which are perturbations of the Beta random walk (see
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Figure 1), and can be derived from Theorem 2.4 comparing the law of the Dirichlet
random walk (for directed trajectories) with the law of a Beta random walk with specific
parameters (αt,βt) (see Lemma 4.3 for the choice of these parameters). Its proof
requires obtaining good enough estimates for the moments of Dirichlet random variables.
It should be emphasized that even though the result concerns a random walk in a static
i.i.d. environment, the random walk is not allowed to backtrack simply because the
event {Xt ∈ At,x(θ)t} contains only directed trajectories. On the other hand, if αt,3
and αt,4 decay to 0 exponentially fast, it would be possible to state a variation of this
corollary where the large deviation event includes trajectories which could backtrack.
Nevertheless, in a sense, this situation would correspond to a case in which these
trajectories do not contribute at all to the large deviations, nor to its correction. It
might be possible to extend the corollary to large deviation events which genuinely allow
backtracking to some extent, but this would be a task for a separate article and it would
require different methods besides the moment matching technique.

In Section 3, we present the proof of Theorems 2.1 and 2.2 in a unified way. In
Section 4, we will prove Theorem 2.4. Throughout the rest of this article we will adopt
the notation C1, C2, . . ., and c1, c2, . . ., to denote constants, which in general might depend
on some of the parameters involved. In particular, they might depend on α and β, and it
will be important to keep track of this dependence in order to prove Theorem 2.2.

3 Proof of Theorems 2.1 and 2.2

To prove Theorems 2.1 and 2.2 we will do a careful steep-descent analysis, whose
starting point is the connection between the Laplace transform and the distribution
functions. This connection is explained in Section 3.1. In Section 3.2, we present an exact
determinantal formula derived in [BC17], which will then lend itself to do an asymptotic
analysis. In Section 3.3 we explain the general strategy to do the aymptotic analysis of
the determinantal formula to prove Theorems 2.1 and 2.2, summarizing the main step
as Proposition 3.4. In Section 3.5, several estimates will be proven showing that the
contours involved have the steep-descent property, starting from Lemmas 3.7 and 3.8.
This will be applied in Section 3.5 to obtain the necessary bound on the integrands over
these complex contours. In Section 3.7, Proposition 3.4 will be proven. Finally in Section
3.9, Lemmas 3.7 and 3.8 are proven.

3.1 Connection to the Laplace transform

The main conclusion of this section will be the following lemma showing how to
obtain the limiting distribution function of the fluctuations of logPω(t, x(θ)t) through its
Laplace transform. Part (i) of the Lemma is stated in [BC17], although it is a standard
method already used in similar contexts by other authors (se for example [BCR13] or
[BCF14]).

For y ∈ R define

u(y) := −etI(x(θ))−t1/3σ(θ)y. (3.1)

Our question is under what assumptions on the parameters (αt,βt)t≥0 is the following
equation valid:

lim
t→∞

Eαt,βt

[
eu(y)Pω(t,x(θ)t)

]
= lim
t→∞

Pαt,βt

(
log (Pω(t, x(θ)t)) + I(x(θ))t

t1/3σ(θ)
≤ y
)
, (3.2)
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The statement (3.2) says that also the right-hand side limit exists. But we would also
like to ensure that this limit corresponds to some convergence in distribution. We will
adopt the convention that for the case of a Beta distribution with fixed parameters (α,β),
αt = α and βt = β for all t ≥ 0.

Let us explain how we will prove (3.2). We will need the following lemma whose proof
we omit (see for example [BC14]).

Lemma 3.1. Consider a sequence of functions (ft)t∈N mapping R→ [0, 1] such that

(i) For each t, ft(x) is strictly decreasing in x.
(ii) For each t, limx→−∞ ft(x) = 1 and limx→∞ ft(x) = 0.

(iii) For each δ > 0, on R\[−δ, δ], ft converges uniformly to 1(x ≤ 0).

Define the r-shift of ft as frt (x) = ft(x− r). Consider a sequence of random variables Xt

such that for each r ∈ R,

lim
t→∞

E[frt (Xt)] = p(r),

and assume that p(r) is a continuous probability distribution function. Then Xt converges
weakly in distribution to a random variable X which is distributed according to P (X ≤
r) = p(r).

We will apply Lemma 3.1 to prove (3.2) making a specific choice of functions and
random variables. Let θ > 0. Consider the family of functions (ft)t∈N defined by

ft(w) := e−e
wt1/3σ(θ)

. (3.3)

In the case in which α, β and θ are fixed and satisfy the assumptions α > 0, β > 0 and
θ ∈ (0,min{0.5, 0.69× α}), it is obvious that this family satisfies conditions (i), (ii) and
(iii) of Lemma 3.1. For the case in which (αt)t≥0 and (βt)t≥0 satisfy (2.3) and (2.4), by
parts (iv) and (v) of Corollary 3.6 (which is stated and proven in Section 3.4) we have
that

lim
t→∞

tσ(θ)3 =∞, (3.4)

so that (3.3) still satisfies (i), (ii) and (iii) of Lemma 3.1. Let (Xt)t∈N be defined by

Xt =
logPω(t, x(θ)t) + I(x(θ))t

t1/3σ(θ)
. (3.5)

Consider now the statement

lim
t→∞

E[frt (Xt)] = lim
t→∞

Eαt,βt

[
eu(r)Pω(t,x(θ)t)

]
= lim
t→∞

Pαt,βt(Xt ≤ r). (3.6)

The following proposition summarizes what we have explained in relation to (3.2), and
will be proven below.

Proposition 3.2. Consider the family of functions (ft)t∈N defined in (3.3) and the ran-
dom variables (Xt)t∈N defined in (3.5).

(i) For all α > 0, β > 0 and θ ∈ (0,min{0.5, 0.69× α}), we have that (3.6) is satisfied,
and the limit exists for all r and (Xt)t∈N converges in distribution to some random
variable X.

(ii) Let (αt)t≥0 and (βt)t≥0 satisfy (2.3) and (2.4). Then, (3.6) is satisfied, the limit
exists for all r and (Xt)t∈N converges in distribution to some random variable X.

The first equality in (3.6) under the assumption of parts (i) or (ii) of Proposition 3.2
is immediate from the definitions. The second statement of parts (i) and (ii) Proposition
3.2 will be proven in Section 3.7.
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3.2 Determinantal formula for the Laplace transform

The second step in the proof of Theorem 2.1 will be the following exact formula for
the Laplace transform of P (t, x) proved in [BC17]. One way of deriving this formula is to
obtain integral formulas for the moments of P (t, x) using a variant of the Bethe ansatz
and a non-commutative binomial identity, throug a recurrent system of equations for the
moments of P (t, x).

Theorem 3.3 (Barraquand-Corwin, 2017). For u ∈ C\R>0, fix t ∈ Z≥0, x ∈ {−t, . . . , t}
with the same parity, and α,β > 0. Then one has

E
[
euP (t,x)

]
= det

(
I −KRW

u

)
L2(C0)

,

where C0 is a small positively oriented circle containing 0 but not −α− β nor −1, and
KRW
u : L2(C0)→ L2(C0) is defined by its integral kernel

KRW
u (v, v′) =

1

2πi

∫ 1/2+i∞

1/2−i∞

π

sin(πs)
(−u)s

gRW (v)

gRW (v + s)

ds

s+ v − v′
, (3.7)

where

gRW (v) =

(
Γ(v)

Γ(α+ v)

)(t−x)/2(
Γ(α+ β + v)

Γ(α+ v)

)(t+x)/2

Γ(v).

3.3 Asymptotic analysis of the Laplace transform

Here we will show how to finish the proof of Theorems 2.1 and 2.2, proving the
convergence of the Laplace transform of the normalized fluctuations of logPω(t, x(θ)t)

to the GUE Tracy-Widom distribution. From Proposition 3.2, we can see that to prove
these theorems, we can use the determinantal formula of Theorem 3.3. The asymptotic
steep-descent analysis that will be later used will be similar to the proof of Theorem 5.2
of [BC17] or Theorem 2.1 of [K21]. Nevertheless, to prove the necessary steep-descent
properties, a technical analysis of high complexity involving the polygamma functions
must be executed, both to deal with arbitrary values of α > 0 and β > 0 in Theorem 2.1
(specially in order to achieve the range θ ∈ (0, 0.5) of validity for all α ≥ 0.75 and β > 0),
and to deal with values of α and β tending to∞ in Theorem 2.2.

We first rewrite the kernel KRW
u (v, v′) choosing u = u(y) as in (3.1) so that

KRW
u (v, v′) =

1

2πi

∫ 1/2+i∞

1/2−i∞

π

sin(π(z − v))
et(h(z)−h(v))−t1/3σ(θ)y(z−v) Γ(v)

Γ(z)

dz

z − v′
. (3.8)

where we recall the definition of h in (2.7). It can be checked that θ is a critical point
for the function h, so that h′(θ) = h′′(θ) = 0. We hence follow the steepest-descent
method deforming the integration contours so that they go across this critical point.
As in [BC17], we deform the contour C0 in Theorem 3.3 (the Fredholm contour) to the
contour

Cθ := {z ∈ C : |z| = θ}, (3.9)

defined as the circle centered at 0 with radius θ, and the vertical line in C passing
through 1/2 in the definition of the kernel (3.7) to

Dθ = {θ + iy : y ∈ R}. (3.10)

There is no problem in doing this as long as we avoid the poles, which happens if
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θ < min{α + β, 1/2}. (3.11)

Let also for ε > 0, B(θ, ε) be the ball of radius ε centered at θ in C,

Cεθ := Cθ ∩B(θ, ε), (3.12)

the part of the contour Cθ inside B(θ, ε), while

Dε
θ := Dθ ∩B(θ, ε), (3.13)

the part of the contour Dθ inside B(θ, ε). As it is standard in several results proving
convergence to the GUE Tracy-Widom distribution (see for example [BC17] or [K21]), the
proof will be based in steep-descent methods for the complex contours. We summarize
this in a proposition that we state below. To state it, we will modify the the contour Cεθ,
to a contour which is a piece of a wedge, which in the limit becomes a full wedge defined
by a certain angle φ. Let us explain how to choose φ. For L > 0 define the contour for
arbitrary φ ∈ (π/6, π/2),

WL
θ :=

{
θ + |y|ei(π−φ)sgn(y) : y ∈ [−L,L]

}
.

Note that Cεθ is an arc of circle which crosses θ vertically. We now choose L and φ so
that the endpoints of WL

θ and of Cεθ coincide. Then note that for ε small enough we
can replace Cεθ by WL

θ . We will also introduce the extension of the piece of wedge WL
θ

outside of the ball B(θ, ε) through the contour

Cε,+θ := Cθ −B(θ, ε),

defined as (see Figure 2)

V εθ := WL
θ ∪ C

ε,+
θ .

θ

Cε,+θ

WL
θ

Cε,+θ

Figure 2: The contour V εθ composed by the union of the contours Cε,+θ and WL
θ , and in

dashed line the contour Cεθ.

With the choice of φ explained above, we also define
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W∞θ :=
{
θ + |y|ei(π−φ)sgn(y) : y ∈ R

}
. (3.14)

We will need to define for y ∈ R the kernel Ky,

Ky(w,w′) :=
1

2πi

∫ eiπ/3∞

e−iπ/3∞

1

(z − w′)(w − z)
ez

3/3−yz

ew3/3−yw dz,

where the contour for z is a wedge-shaped contour constituted of two rays going to
infinity in the directions e−iπ/3 and eiπ/3 that do not intersect W∞θ .

Proposition 3.4. Consider the equality

lim
t→∞

det
(
I −KRW

u

)
L2(Cθ)

= det(I +Ky)L2(W∞θ ). (3.15)

(i) For all α > 0, β > 0 and θ ∈ (0,min{0.5, 0.69× α}), we have that (3.15) is satisfied.

(ii) Assume that (αt)t≥0 and (βt)t≥0 satisfy (2.3) and (2.4). Then for all θ ∈ (0, 0.5),
(3.15) is satisfied.

The proof of Proposition 3.4 will proceed in two steps. Firstly, we will truncate all the
integrations to contours at a distance ε of θ for some ε ∈ (0, θ/2), showing that

lim
t→∞

det
(
I −KRW

u

)
L2(Cθ)

= lim
t→∞

det
(
I −KRW

y,ε

)
L2(Cεθ)

,

where

KRW
y,ε (v, v′)

=
1

2πi

∫
Dεθ

π

sin(π(z − v))
et(h(z)−h(v))−t1/3σ(θ)y(z−v) Γ(v)

Γ(z)

1

z − v′
dz. (3.16)

Secondly, we will prove that

lim
t→∞

det
(
I −KRW

y,ε

)
L2(Cεθ)

= det(I +Ky)L2(C).

The details of this proof will be given in Section 3.7. From Proposition 3.4, Theorem 2.1
now follows as in [BC17] from the identity

det(I +Ky)L2(C) = det(I −KAi)L2(y,+∞),

valid for y ∈ R. It remains to prove Proposition 3.4. We will first prove steep-descent
estimates needed for the proof of Theorem 2.1 and quantitative versions of them needed
for the proof of Theorem 2.2.

3.4 Preliminary estimates involving the polygamma functions

Here we will derive several estimates which will eventually prove the necessary
steep-descent properties of the integrals along the complex contours in the Fredholm
determinants and its kernel.

Recall that the polygamma function of order k, for k ≥ 1, is defined as

Ψk(z) :=
dk

dzk
Ψ(z).

We start with several estimates involving the polygamma functions.

Lemma 3.5. The following inequalities are satisfied.
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(i) For all k ≥ 1 and x > 0,

k!

(
1

xk+1
+

1

k

1

(x+ 1)k

)
≤ (−1)k+1Ψk(x) ≤ k!

(
1

xk+1
+

1

k

1

xk

)
. (3.17)

(ii) For every x > 0, y > 0 and k ≥ 1 we have that

k!g(x+ 1, y)

(
1

xk
+

1

k

1

(x+ 1)k−1

)
≤ k!g(x, y)

1

xk
+ (k − 1)!

1

(x+ 1)k−1
g(x+ 1, y)

≤ (−1)k+1(Ψk(x)−Ψk(x+ y))

≤ (k + 1)!g(x, y)

(
1

xk
+

1

k + 1

1

xk−1

)
. (3.18)

Proof. First note that for all k ≥ 1,

Ψk(z) = (−1)k+1k!

∞∑
j=0

1

(z + j)k+1
. (3.19)

Proof of part (i). From (3.19) we have that

(−1)k+1Ψk(x) = k!

 1

xk+1
+

∞∑
j=1

1

(x+ j)k+1

 ≤ k!

(
1

xk+1
+

1

k

1

xk

)
.

Similarly,

(−1)k+1Ψk(x) = k!

 1

xk+1
+

∞∑
j=1

1

(x+ j)k+1

 ≥ k!

(
1

xk+1
+

1

k

1

(x+ 1)k

)

Proof of part (ii). From the upper bound of part (i) note that

(−1)k+1(Ψk(x)−Ψk(x+ y)) =

∫ x+y

x

(−1)k+2Ψk+1(u)du

≤ (k + 1)!

∫ x+y

x

(
1

uk+2
+

1

k + 1

1

uk+1

)
du

≤ (k + 1)!g(x, y)

(
1

xk
+

1

k + 1

1

xk−1

)
.

For the lower bound, first note that∫ x+y

x

u−(k+2)du =
1

k + 1

(
1

xk+1
− 1

(x+ y)k+1

)
≥ 1

k + 1

1

xk
g(x, y).

Hence,
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(−1)k+1(Ψk(x)−Ψk(x+ y)) ≥ (k + 1)!

∫ x+y

x

(
1

uk+2
+

1

k + 1

1

(u+ 1)k+1

)
du

≥ (k + 1)!

(
1

k + 1

1

xk
g(x, y) +

1

k(k + 1)

1

(x+ 1)k−1
g(x+ 1, y)

)
≥ k!g(x+ 1, y)

(
1

xk
+

1

k

1

(x+ 1)k−1

)
.

We will now apply Lemma 3.5 to derive several crucial properties involving the
function h [cf. (2.7)], which plays a central role in the steep-descent analysis that will be
made. For the record, we write the following expression for h(k)(θ), valid when k ≥ 2,

h(k)(θ) = Ψk−1(θ + α)−Ψk−1(θ + α + β)

+
Ψ1(θ + α)−Ψ1(θ + α + β)

Ψ1(θ)−Ψ1(θ + α + β)
(Ψk−1(θ + α + β)−Ψk−1(θ)) . (3.20)

Corollary 3.6. The following estimates are satisfied,

(i) For all α > 0 and β > 0,

Ψ1(α)−Ψ1(α + β) ≥ g(α + 1,β).

(ii) For all α > 0, β > 0, θ > 0 and k ≥ 1, we have that

|Ψk(θ + α)−Ψk(θ + α + β)| ≤ (k + 1)!g(α,β)
1 + θ−1

θk−1
.

(iii) For all α > 0, β > 0, θ ∈ (0, 0.5) and k ≥ 3 we have that

|h(k)(θ)| ≤ 64g(α,β)
k!

θk+2
.

(iv) For all α0 > 0 there is a θ0 > 0 such that for α ≥ α0, β > 0 and θ ∈ (0, θ0) one has
that

σ3(θ)

2θ
+
h(4)(θ)

4!
≥ C1(θ,α0)g(α,β).

where C1(θ,α0) > 0 depends only on θ and α0. Furthermore θ0(α0) can be chosen
so that limα0→∞ θ0 =∞.

(v) For all α > 0, β > 0 and θ > 0 we have that

σ3(θ) =
1

2
h(3)(θ) > 0 and h(4)(θ) < 0. (3.21)

Proof. Proof of part (i). This is immediate from the lower bound of part (ii) of Lemma
3.5.
Proof of part (ii). From the upper bound of part (ii) of Lemma 3.5 note that

|Ψk(θ + α)−Ψk(θ + α + β)| ≤ (k + 1)!g(θ + α,β)
1 + θ−1

θk−1
.

Proof of part (iii). From part (ii) of Lemma 3.5 note that
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g(θ + 1,α + β)

(
1

θ
+ 1

)
≤ Ψ1(θ)−Ψ1(θ + α + β) ≤ g(θ,α + β)

(
2

θ
+ 1

)
. (3.22)

Combining this with part (ii), we have that for θ ∈ (0, 0.5),

|Ψk−1(θ + α + β)−Ψk−1(θ)|
Ψ1(θ)−Ψ1(θ + α + β)

≤ (k!)
1

θk−1

g(θ,α + β)

g(θ + 1,α + β)

≤ (k!)θ−(k−1)4θ−2 = 4(k!)θ−(k+1). (3.23)

On the other hand, using this bound and (3.20), we get that

|h(k)(θ)| = |Ψk−1(θ + α)−Ψk−1(θ + α + β)|

+
Ψ1(θ + α)−Ψ1(θ + α + β)

Ψ1(θ)−Ψ1(θ + α + β)
|Ψk−1(θ + α + β)−Ψk−1(θ)|

≤ |Ψk−1(θ + α)−Ψk−1(θ + α + β)|

+
Ψ1(α)−Ψ1(α + β)

Ψ1(θ)−Ψ1(θ + α + β)
|Ψk−1(θ + α + β)−Ψk−1(θ)|

≤ (k − 1)!g(α,β)
1

θk−1
+ 32g(α,β)

k!

θk+2
≤ 64g(α,β)

k!

θk+2
, (3.24)

where in the second to last inequality we have used (3.23) and part (ii) again. This
proves part (iii).
Proof of part (iv). Dropping out the positive terms of the first two lines of the above
display we obtain that,

σ3(θ)

2θ
+
h(4)(θ)

4!
≥ 1

2θ
(Ψ2(θ + α)−Ψ2(θ + α + β))

+
1

4!

Ψ1(θ + α)−Ψ1(θ + α + β)

Ψ1(θ)−Ψ1(θ + α + β)
Ψ3(θ + α + β)

− Ψ1(θ + α)−Ψ1(θ + α + β)

Ψ1(θ)−Ψ1(θ + α + β)
Ξ(θ)

≥ 1

2θ
(Ψ2(α)−Ψ2(α + β))− Ψ1(θ + α)−Ψ1(θ + α + β)

Ψ1(θ)−Ψ1(θ + α + β)
Ξ(θ)

≥ 1

2θ
(Ψ2(α)−Ψ2(α + β)) +

Ψ1(1 + α)−Ψ1(1 + α + β)

Ψ1(θ)−Ψ1(θ + α + β)
(−Ξ(θ))

≥ −2g(α,β)
1

α
+

g(2 + α,β)((1 + α)−1) + 1)

g(1,α + β)(θ−1 + 1)
(−Ξ(θ)) ,

where for the last inequality we have used parts (i) and (ii) of Lemma 3.5, and we have
used the fact that

Ξ(θ) = −
∞∑
n=0

2θ + 4n

4θ(θ + n)4
< 0.

Now assume that α0 > 0 is fixed and α ≥ α0, β > 0 and θ > 0. In this case

g(2 + α,β)

g(α,β)
≥
(

α0

2 + α0

)2

=: C2.
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We then have that

σ3(θ)

2θ
+
h(4)(θ)

4!
≥ g(α,β)

(
−2

1

α0
+ 2C2

1

1 + θ
(−θΞ(θ))

)
.

Since −θΞ(θ) → ∞ as θ → 0+, from this inequality it is clear that there is a θ0(α0) > 0

(depending only on α0), such that for all α ≥ α0, β > 0 and θ ∈ (0, θ0), the right-hand
side is positive. Furthermore, we can also easily check θ0(α0) can be chosen so that
limα0→∞ θ0 =∞.
Proof of part (v). The first inequality of (3.21) follows from part (iv) after we prove that
h(4)(θ) < 0. So we will just prove that h(4)(θ) < 0. Recall the expression (3.20) for h(4)(z).
From this expression, we see that it is enough to show that

Ψ3(θ + α)−Ψ3(θ + α + β)

Ψ1(θ + α)−Ψ1(θ + α + β)
<

Ψ3(θ)−Ψ3(θ + α + β)

Ψ1(θ)−Ψ1(θ + α + β)
.

This is equivalent to G = Ψ3

Ψ1
being strictly convex on (0,∞), that is,

G′′ =
Ψ′′3Ψ′1 −Ψ′3Ψ′′1

(Ψ′1)3
◦Ψ−1

1 > 0

or, as Ψ1 < 0,

(Ψ′′3Ψ′1 −Ψ′3Ψ′′1)(x) = 48

(
3

∞∑
n=0

1

x5
n

∞∑
n=0

1

x4
n

− 5

∞∑
n=0

1

x6
n

∞∑
n=0

1

x3
n

)
< 0,

where we used the notation xn = x+ n. But this is true, since

∞∑
n=0

1

x6
n

∞∑
n=0

1

x3
n

−
∞∑
n=0

1

x5
n

∞∑
n=0

1

x4
n

> 0,

as can be seen by writing the m-n products (the m = n terms are cero),

1

x6
m

1

x3
n

+
1

x6
n

1

x3
m

− 1

x5
m

1

x4
n

− 1

x5
n

1

x4
m

=
1

x6
nx

6
m

(xm − xn)(x2
m − x2

n).

3.5 Steep-descent estimates

Let us now state three lemmas which will give the steepest-descent properties of h
on Cθ and Dθ. The first one, is a quantitative version of Lemma 5.5 of [BC17] which had
the restriction α = β = 1, extending it for all values of α and β, at the cost of having to
choose θ small enough and is one of the main challenges in the proof of Theorem 2.1.

Lemma 3.7. For all α > 0, β > 0, θ ∈ (0,min{0.5, 0.69× α}) and φ ∈ [0, 2π], one has that

Re
(
iθeiφh′

(
θeiφ

))
> 0. (3.25)

Furthermore, there is an α0 > 0 such that for α ≥ α0, β > 0, φ ∈ [0, 2π] and θ ∈ (0, 0.5),

Re
(
iθeiφh′

(
θeiφ

))
≥ C3θ

2 sinφ(1− cosφ)g(α + 1,β),

for some constant C3 > 0 depending only on α, but increasing on α.

Numerical computations suggest (3.25) of Lemma 3.7 is false for some values of
α > 0, β > 0 and θ > 0 (even θ ∈ (0, 0.5)). Nevertheless, we expect Theorem 2.1 to
be valid for all α > 0, β > 0 and θ > 0. This would imply that different steep descent
contours would have to be chosen.
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The second lemma we present is a quantitative version of Lemma 5.4 of [BC17].
Define for x, y ∈ R,

Φ(x, y) =

∞∑
n=0

1

(n+ x)2 + y2
. (3.26)

Lemma 3.8. For all α > 0, β > 0 and θ > 0 we have that

(i) Imh′(θ + iy) > 0 for y > 0 and Imh′(θ + iy) < 0 for y < 0.

(ii) Imh′(θ + iy) = yH(θ, y,α,β) where

H(θ, y,α,β) ≥ 8
Ψ1(θ + α)−Ψ1(θ + α + β)

Ψ1(θ)−Ψ1(θ + α + β)

∫ θ+α

θ

∑
n≥0

y2(x− θ)dx
((x+ n)2 + y2)3

. (3.27)

Finally, the third lemma, is a requirement that has been used in the latest version of
[BC17], and which in our case gives the biggest limitation on the range of values of α,β
and θ for which we can prove Theorem 2.1.

Lemma 3.9. For all α > 0, β > 0 and θ ∈ (0,min{0.5,α}), we have that

σ3(θ)

2θ
+
h(4)(θ)

4!
> 0.

Numerical computations also suggest that Lemma 2.1 is false for some values of
α > 0, β > 0 and θ ∈ (0, 0.5). Again, we expect Theorem 2.1 to hold despite this, but
different steep descent contours would have to be chosen. We will present the proof of
Lemma 2.1 in Section 3.8.

We will present the proofs of Lemmas 3.7 and 3.8 in Section 3.9. Now we will
continue developing several consequences of these lemmas. From Lemma 3.7 we obtain
the following corollary which extends Lemma 5.5 of [BC17] for arbitrary α > 0 and
β > 0.

In what follows we will say that the contour Cθ is steep-descent for the function
−Re(h) if Re(h(θeiφ)) is strictly increasing for φ ∈ (0, π) and strictly decreasing for
(−π, 0).

Corollary 3.10. For all α > 0, β > 0 and θ ∈ (0,min{0.5, 0.69 × α}) the contour Cθ is
steep-descent for −Re(h).

On the other hand, exactly as in [BC17], from part (i) of Lemma 3.8, we obtain
Lemma 5.4 of [BC17], which we state as the following corollary for convenience.

Corollary 3.11. For all α > 0, β > 0 and θ > 0, the contour Dθ is steep-descent for the
function Re(h) in the sense that Re(h(θ + iy)) is strictly decreasing for y positive and
strictly increasing for y negative.

We will now need to modify the vertical line contourDθ so that it avoids the singularity
at θ. This will be a time dependent modification. For each r > 0 define,

Dr,+
θ := Dθ −B (θ, r) ,

V r,+θ := V εθ −B (θ, r) ,

the semicircle

Stθ :=

{
z ∈ C : |z − θ| = 1

σ(θ)t1/3
,Re(z − θ) ≥ 0

}
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and the contour

Dt
θ := Dσ−1t−1/3,+

θ ∪ Stθ.

See Figure 3 for a representation of these contours together with the contour V εθ . The
presence of the factor σ−1 in the definition ofDt

θ will be irrelevant in the proof of Theorem
2.1, since it will only change the computations by a fixed constant. Nevertheless, it will
be important in the proof of Theorem 2.2, where σ(θ)→ 0 as t→∞. In what follows we
adopt the notation σt = σt(θ) to admit the possibility that σ is time dependent because it
is a function of time dependent parameters (αt,βt).

θ

V εθ

Dt
θ

θ + 1
σt1/3

•• •
θ + ε

Figure 3: The contours V εθ and Dt
θ with its t dependent deformation to avoid the singu-

larity at θ.

Lemma 3.12. For all α > 0, β > 0, θ > 0 and t ≥ t0, where σt0t
1/3
0 θ ≥ 2, we have that

for all z ∈ Dt
θ,

Re(h(z)− h(θ)) ≤ 128g(α,β)
1

θ5σ3t
.

Proof. For z ∈ Dθ − B(θ, σ−1t−1/3), the lemma follows from Corollary 3.11. For z ∈
Dt
θ ∩B(θ, σ−1t−1/3) we have that, for t ≥ t0 where t0 is such that σt1/30 θ ≥ 2,

|h(z)− h(θ)| ≤
∞∑
k=3

1

k!

1

σktk/3
|h(k)(θ)| ≤ 64g(α,β)

∞∑
k=3

1

σktk/3θk+2

≤ 64g(α,β)
1

θ5

1

σ3t

∞∑
k=0

1

σktk/3θk
= 128g(α,β)

1

θ5σ3t
,

where we have used part (iii) of Corollary 3.6.

Corollary 3.13. For all α > 0, β > 0 and θ ∈ (0,min{0.5, 0.69 × α}) the following are
satisfied.
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(i) There is a constant C4 > 0 such that for every z ∈ Dε,+
θ and v ∈ Cθ we have that

Re(h(z)− h(v)) ≤ −C4h(α,β, θ)ε4,

where h(α,β, θ) > 0 and for α ≥ 1 and β ≥ 1 we have that

h(α,β, θ) ≥ C5(θ)g(α,β), (3.28)

for some C5(θ) > 0 which does not depend on α or β.

(ii) There is a constant C6 > 0 such that for every z ∈ Dt
θ and v ∈ Cε,+θ = V ε,+θ we have

that

Re(h(z)− h(v)) ≤ −C6ε
4g(α + 1,β) + 128g(α,β)

1

θ5σ3t
.

Proof. Proof of part (i). From Corollary 3.10 we can see that Re(h(θ)− h(v)) ≤ 0 which
implies that Re(h(z) − h(v)) ≤ Re(h(z) − h(θ)). On the other hand, by Corollary 3.11,
Re(h(z)) is decreasing in y for z = θ+ iy, y ≥ ε and increasing in y for z = θ+ iy, y ≤ −ε,
so that Re(h(z)− h(θ)) ≤ Re(h(θ + iε)− h(θ)) for z ∈ Dε,+

θ . It follows that

Re(h(z)− h(v)) = Re(h(z)− h(θ)) + Re(h(θ)− h(v))

≤ Re(h(θ + iε)− h(θ)) =

∫ ε

0

dRe(h(θ + iy))

dy
dy = −

∫ ε

0

Im(h′(θ + iy))dy

≤ −H(θ, ε,α,β)

4
ε4,

where in the last inequality we have used part (ii) of Lemma 3.8. Now,

H(θ, y,α,β) ≥ 8y2 Ψ1(θ + α)−Ψ1(θ + α + β)

Ψ1(θ)−Ψ1(θ + α + β)

∫ θ+α

θ

∑
n≥0

(x− θ)dx
((x+ n)2 + 1)3

.

Defining,

h(α,β, θ) := 8y2 Ψ1(θ + α)−Ψ1(θ + α + β)

Ψ1(θ)−Ψ1(θ + α + β)

∫ θ+α

θ

∑
n≥0

(x− θ)dx
((x+ n)2 + 1)3

,

we finish the proof.

Proof of part (ii). By Corollary 3.10 and the fact that v ∈ Cε,+θ , we have that Re(h(θ)−
h(v)) ≤ Re(h(θ)− h(θeiφ∗)), where φ∗ is such that |θeiφ∗ − θ| = ε. Hence, by Lemma 3.12,
we have that

Re(h(z)− h(v))

= Re(h(z)− h(θ)) + Re(h(θ)− h(v)) ≤ Re(h(θ)− h(θeiφ∗))

= −
∫ φ∗

0

Re(iθeiφh′(θeiφ))dφ ≤ −ε4c1g(α + 1,β) + 128g(α,β)
1

θ5σ3t
,

for some constant c1, where in the last inequality we have used Lemma 3.7.
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3.6 Steep-descent properties

Here we will apply the steep-descent estimates of the previous section to derive
important steep descent properties of the Fredholm determinant. We will start proving a
couple of properties about the functions involved.

Lemma 3.14. For all α > 0, β > 0, θ ∈ (0,min{0.5, 0.69 × α}) and ε ∈ (0, θ/2) the
following bounds are satisfied.

(i) For all v ∈ Cθ, z ∈ Dε,+
θ and t ≥ 0 we have that∣∣∣et(h(z)−h(v))−t1/3σ(θ)y(z−v)

∣∣∣ ≤ e−tC4ε
4h(α,β,θ)+t1/3σ(θ)|y|ε. (3.29)

(ii) For all v ∈ Cε,+θ = V ε,+θ , z ∈ Dt
θ and t ≥ 0 we have that∣∣∣et(h(z)−h(v))−t1/3σ(θ)y(z−v)
∣∣∣ ≤ e−tC6ε

4g(α+1,β)+128g(α,β) 1
θ5σ3

+2t1/3σ(θ)|y|. (3.30)

(iii) There is a constant C7(θ, ε,α,β) > 0, which is independent of α and β when both
α ≥ 1 and β ≥ 1, such that for all v ∈WL

θ,ε, z ∈ Dt
θ or v ∈ Cεθ, z ∈ Dt

θ, and t ≥ 1, we
have that

∣∣∣et(h(z)−h(v))−t1/3σ(θ)y(z−v)
∣∣∣ ≤ 1

C7(θ, ε,α,β)
e−C7(θ,ε,α,β)tσ(θ)3|v−θ|3 . (3.31)

Proof. Proof of parts (i) and (ii). Part (i) follows from part (i) of Corollary 3.13 and the
inequalities,

∣∣∣et(h(z)−h(v))−t1/3σ(θ)y(z−v)
∣∣∣ = etRe((h(z)−h(v)))−t1/3σ(θ)yRe((z−v))

≤ e−tC4ε
4h(α,β,θ)+t1/3σ(θ)|y|.

Similarly part (ii) follows from part (ii) of Corollary 3.13.
Proof of part (iii). Let us use the inequality |z − v| ≤ |v − θ|+ σ−1t−1/3 and Lemma 3.12
to conclude that

Re
(
t(h(z)− h(v))− t1/3σ(θ)y(z − v)

)
= Re(t(h(z)− h(θ)) + Re

(
t(h(θ)− h(v))− t1/3σ(θ)y(z − v)

)
≤Re (t(h(θ)− h(v))) + 128g(α,β)

1

θ5σ3
+ t1/3σ(θ)|y||v − θ|+ |y|. (3.32)

To estimate the first term of the right-hand side in display (3.32) we will make a Taylor
series expansion around θ of h(v). Recall that v ∈WL

θ,ε or v ∈ Cεθ. Define v̄ by

v = θ +
1

σ(θ)t1/3
v̄,

and h̄(v̄) := h(v). Then,

th̄(v̄)

= th(θ) +
v̄3

3!

1

σ3
h(3)(θ) +

v̄4

4!

1

σ4t1/3
h(4)(θ) +

∞∑
k=5

v̄k

k!

1

σkt(k−3)/3
h(k)(θ).
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Thus,

∣∣∣∣th̄(v̄)− th(θ)− v̄3

3!

1

σ3
h(3)(θ)− v̄4

4!

1

σ4t1/3
h(4)(θ)

∣∣∣∣
≤ |v̄

3|
σ3

∞∑
k=5

εk−3

k!
h(k)(θ). (3.33)

Now, from part (iii) of Corollary 3.6, we have that∣∣∣∣∣ |v̄3|
σ3

∞∑
k=5

εk−3

k!
h(k)(θ)

∣∣∣∣∣ ≤ 64
g(α,β)

σ3
|v̄3|

∞∑
k=5

εk−3

θk+2
≤ 128

g(α,β)

σ3
ε2

1

θ7
|v̄3|,

where in the last inequality we have used ε < θ/2. It follows that∣∣∣∣tRe(h̄(v̄)− h(θ))− Re(v̄3)

3
− Re(v̄4)

4!

1

σ4t1/3
h(4)(θ)

∣∣∣∣ ≤ 128
g(α,β)

σ3
ε2

1

θ7
|v̄3|. (3.34)

Now, since v ∈ WL
θ,ε or v ∈ Cεθ, the argument of v̄ is ±

(
π
2 + ε

2θ + o(ε)
)
. Then, from the

fact that h(4)(θ) < 0 (see part (v) of Corollary 3.6) and that (σt1/3)−1|v̄| < ε (because
v ∈WL

θ,ε), we have

− Re(v̄3)

3
− Re(v̄4)

4!

1

σ4t1/3
h(4)(θ)

= − sin

(
3ε

2θ
+ o(ε)

)
|v̄|3

3
− cos

(
2ε

θ
+ o(ε)

)
h(4)(θ)

σ4t1/3
|v̄|4

4!

≤ −ε|v̄|3 1

σ3

(
σ3

2θ
+
h(4)(θ)

4!
+ o1(ε)

σ3

ε
+ o2(ε)h(4)(θ)

)
= −ε|v̄|3 1

σ3

(
σ3

2θ
+
h(4)(θ)

4!

)
+ o1(ε)|v̄|3 + o2(ε)|v̄|3h

(4)(θ)

σ3

≤ −ε|v̄|3c2(θ,α,β), (3.35)

where in the last inequality we have assumed that ε is small enough, and where by parts
(iii) and (vi) of Corollary 3.6 and by Lemma 3.9, we have that c2(θ,α,β) is a constant
independent of α and β when both α ≥ 1 and β ≥ 1, and c2(θ,α,β) > 0. We then have
from (3.34) and (3.35), using again part (iv) of Corollary 3.6, that for ε small enough,

−tRe(h̄(v̄)− h(θ)) ≤ −c3(θ,α,β)ε|v̄|3,

where c3(θ,α,β) does not depend on α and β for α ≥ 1 and β ≥ 1. Hence,

−tRe(h(v)− h(θ)) ≤ −c3(θ,α,β)εσ(θ)3t|v − θ|3

and from (3.32) and Lemma 3.12, we get that

∣∣∣et(h(z)−h(θ))−t1/3σ(θ)y(z−v)
∣∣∣ ≤ ∣∣∣et(h(z)−h(θ))+t(h(θ)−h(v))−t1/3σ(θ)y(z−v)

∣∣∣
≤ e128g(α,β) 1

θ5σ3 et(Re(h(θ)−h(v)))+t1/3σ(θ)|y(z−v)|

≤ e−c3(θ,α,β)εtσ(θ)3|v−θ|3+128g(α,β) 1
θ5σ3

+c4t
1/3σ(θ)|y||v−θ|,

which proves part (iii).
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3.7 Proof of Proposition 3.4

We will now present the proof of Proposition 3.4 (see also Proposition 5.6 of [BC17]
and Section 8 of [K21]) using the steep descent properties of Section 3.6 along appro-
priate contours. At several steps, in order to deal with the singularity of the kernel
KRW
u (v, v′) for v = v′ = θ, we will deform the contours Cθ to V εθ (see Figure 2) and we

will also have to deform the contour Dε
θ so that it avoids θ. We will then show that the

integration outside the ball B(θ, ε) has a negligible contribution in the limit. In what
follows we will assume that either α and β are fixed (time-independent) or that these
parameters are time-dependent, (αt)t≥0 and (βt)t≥0, and satisfy (2.3) and (2.4).
Step 0. As explained above, we first deform the contour of integration in the definition
of the kernel KRW

u (v, v′) from D1/2 to Dt
θ (see Figure 3), so that

KRW
u (v, v′) =

1

2πi

∫
Dtθ

π

sin(π(z − v))
et(h(z)−h(v))−t1/3σ(θ)y(z−v) Γ(v)

Γ(z)

dz

z − v′
. (3.36)

Step 1. We will now show that whenever v, v′ ∈ Cθ we have that

|KRW
u (v, v′)−KRW

y,ε (v, v′)| ≤ 1

c5
e−a1t, (3.37)

for some constant c5 = c5(θ, ε, y) > 0 independent of α and β and a1 = a1(θ, ε,α,β, y) > 0,
such that

a1(θ, ε,α,β, y) ≥ c5g(α,β) for α ≥ 1 and β ≥ 1,

where the kernel Ky,ε was defined in (3.16). Note that

KRW
u (v, v′)−KRW

y,ε (v, v′) =∫
Dε,+θ

π

sin(π(z − v))
et(h(z)−h(v))−t1/3σ(θ)y(z−v) Γ(v)

Γ(z)

dz

z − v′
. (3.38)

From part (i) of Lemma 3.14, we have that since v ∈ Cθ and z ∈ Dε,+
θ ,∣∣∣et(h(z)−h(v))−t1/3σ(θ)y(z−v)

∣∣∣ ≤ e−tC4ε
4h(α,β,θ)+t1/3σ|y|ε. (3.39)

Now, recall the asymptotics |Γ(x+ iy)|eπ2 |y||y|1/2−x →
√

2π as y → ±∞ for x and y real.
This implies that

|Γ(z)| ≥ 1

c6
e−

π
2 | Im(z)|, (3.40)

for z ∈ Dθ for some c6(ε) > 0. Furthermore, we have that

| sin(πz)| ≥ c7eπ| Im(z)|, (3.41)

for some c7 > 0. From this and (3.39) we get now using that v, v′ ∈ Cθ and z ∈ Dε,+
θ that

∣∣∣∣ π

sin(π(z − v))
et(h(z)−h(v))−t1/3σ(θ)y(z−v) Γ(v)

Γ(z)

1

z − v′

∣∣∣∣
≤ c8|Γ(v)|e−π2 | Im(z)|e−tC4ε

4h(α,β,θ)+t1/3σ(θ)|y|ε, (3.42)

for some constant c8 = c8(θ, ε) > 0. Note that since v ∈ Cθ, |Γ(v)| ≤ c9(θ). Hence, from
(3.42), using the fact that
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h(α,β, θ) ≥ C5(θ)g(α,β) for α ≥ 1 and β ≥ 1,

(see (3.28) of part (i) of Corollary 3.13 and part (i) of Lemma 3.14), and part (iii) of
Corollary 3.6 and Lemma 3.9 to obtain an upper bound for σ, we obtain (3.37).
Step 2. Here we will show that for v ∈ Cε,+θ and v′ ∈ Cθ one has that

∣∣KRW
y,ε (v, v′)

∣∣ ≤ ∣∣KRW
u (v, v′)

∣∣ ≤ 1

c10
e−a2t, (3.43)

for a pair of constants a2(θ,α,β, y) > 0 and c10 = c10(θ, ε, y) > 0 such that

a2 = a2(θ, ε,α,β, y) ≥ c10g(α,β) for α ≥ 1 and β ≥ 1.

In fact, using again the estimates (3.40) and (3.41) and part (ii) of Lemma (3.14) we
have that (here z ∈ Dt

θ)

∣∣∣∣ π

sin(π(z − v))
et(h(z)−h(v))−t1/3σ(θ)y(z−v) Γ(v)

Γ(z)

1

z − v′

∣∣∣∣
≤ c11|Γ(v)|e−π2 | Im(z)|e−tC6ε

4g(α+1,β)+128g(α,β) 1
θ5σ3

+2t1/3σ(θ)|y|,

for some constant c11 = c11(θ, ε) > 0. Integrating over z and using part (iii) of Corollary
3.6 to bound σ, we obtain (3.43).
Step 3. Here we will show that for all v ∈ Cεθ and v′ ∈ Cθ, we have that

∣∣KRW
y,ε (v, v′)

∣∣ ≤ ∣∣KRW
u (v, v′)

∣∣ ≤ 1

c12
σt1/3e−c12tσ

3|v−θ|3 , (3.44)

for some constant c12 = c12(θ, ε,α,β) > 0 such that

c12(θ, ε,α,β) ≥ c13 for α ≥ 1,β ≥ 1,

for some constant c13 > 0 independent of α and β. Indeed, by part (iii) of Lemma 3.14,
(3.40), (3.41), the inequality ∣∣∣∣ (z − v)

sin(π(z − v))

∣∣∣∣ ≤ c14,

and the fact that |z − v′| ≥ c15(σt1/3)−1, we have that

∣∣∣∣ π

sin(π(z − v))
et(h(z)−h(v))−t1/3σ(θ)y(z−v) Γ(v)

Γ(z)

1

z − v′

∣∣∣∣
≤ c16σt

1/3|Γ(v)|e−π2 | Im(z)| 1

C7
e−C7tσ(θ)3|v−θ|3 ,

for some constant c16 > 0, where we recall that C7(θ, ε,α,β) > 0 does not depend on α

and β for α ≥ 1 and β ≥ 1. which proves (3.44).
Step 4. Here we will prove that

lim
t→∞

det
(
I −KRW

u

)
L2(Cθ)

= lim
t→∞

det
(
I −KRW

u

)
L2(Cεθ)

, (3.45)

as long as the limit in the right-hand side exists. Consider the Fredholm determinantal
expansion
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det
(
I −KRW

u

)
L2(Cθ)

= 1 +

∞∑
n=1

(−1)n

n!

∫
(Cθ)n

det
(
KRW
u (wi, wj)

)n
i,j=1

dw1 . . . dwn. (3.46)

Now note that

∫
(Cθ)n

det
(
KRW
u (wi, wj)

)n
i,j=1

dw1 . . . dwn

=

∫
(Cεθ)n

det
(
KRW
u (wi, wj)

)n
i,j=1

dw1 . . . dwn

+

∫
(Cεθ)n\(Cθ)n

det
(
KRW
u (wi, wj)

)n
i,j=1

dw1 . . . dwn.

Let us now show that the limit as t→∞ of the second term above vanishes.

Combining (3.43) and (3.44) with Hadamard’s inequality, and using part (iii) of
Corollary 3.6, we have that∣∣∣det

(
KRW
u (wi, wj)

)n
i,j=1

∣∣∣ ≤ nn/2(c17σ
3t)n/3e−c18σ

3t, (3.47)

for some constants c17 = c17(θ, ε,α,β) > 0 and c18 = c18(θ, ε,α,β) > 0 with the property
that both constants are independent of α and β for α ≥ 1 and β ≥ 1. But note that the
right-hand side of (3.47) defines a series

∞∑
n=1

nn/2

n!
(c17σ

3t)n/3e−c18σ
3t ≤ e−c18σ

3t+2(c17)2(σ3t)2/3 . (3.48)

Now, in the case in which α and β are fixed it is obvious that the right-hand side of (3.48)
converges to zero as t→∞. On the other hand, under the assumption that (αt)t≥0 and
(βt)t≥0 satisfy (2.3) and (2.4), we have that limt→∞ σ3t =∞ (see (3.4)), so that we also
have that the right-hand side of (3.48) tends to 0 as t→∞. It follows that

lim
t→∞

∞∑
n=1

(−1)n

n!

∫
(Cθ)n\(Cεθ)n

det
(
KRW
u (wi, wj)

)n
i,j=1

dw1 . . . dwn = 0,

which proves (3.45).

Step 5. Here we will show that

lim
t→∞

det
(
I −KRW

u

)
L2(Cεθ)

= lim
t→∞

det
(
I −KRW

y,ε

)
L2(Cεθ)

. (3.49)

Now we will use the following inequality for the difference between the determinants
of two n × n matrices A = (A1, . . . , An) and B = (B1, . . . , Bn), where (Ai)1≤i≤n and
(Bi)1≤i≤n are the columns of A and B respectively,

|det(A)− det(B)| ≤
n∑
j=1

|det(B1, . . . , Bj−1, Aj −Bj , Aj+1, . . . , An)|. (3.50)

Now choose A = (KRW
u (wi, wj))

n
i,j=1 and B = (KRW

y,ε (wi, wj))
n
i,j=1, and apply (3.50), the

bounds (3.37) of Step 1 and (3.44) of Step 4, and Hadamard’s inequality to conclude that
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∣∣∣det
(
KRW
u (wi, wj)

)n
i,j=1

− det
(
KRW
y,ε (wi, wj)

)n
i,j=1

∣∣∣
≤ n

(
n

1

c5
e−2a1t

)1/2

(nc19(σ3t)2/3)n/2 = (c20)n/2n(n+1)/2(σ3t)n/2e−a1t,

for some constants c19 = c19(θ, ε, y,α,β) > 0 and c20 = c20(θ, ε, y,α,β) > 0, which are
independent of α and β for α ≥ 1 and β ≥ 1. As in Step 4, this implies that

∞∑
n=1

1

n!

∣∣∣∣∣
∫

(Cεθ)n
det
(
KRW
u (wi, wj)

)n
i,j=1

dw1 · · · dwn (3.51)

−
∫

(Cεθ)n
det
(
KRW
y,ε (wi, wj)

)n
i,j=1

dw1 · · · dwn

∣∣∣∣∣ ≤ e−c21σ3t+2(c22)2(σ3t)2/3 ,

for a pair of constants c21 = c21(θ, ε, y,α,β) > 0 and c22 = c22(θ, ε, y,α,β) > 0, which are
independent of α and β for α ≥ 1 and β ≥ 1, As in Step 3, we conclude that either in the
case in which α and β are constant, or in the case in which (αt)t≥0 and (βt)t≥0 satisfy
(2.3) and (2.4), the right-hand side of (3.51) tends to 0 as t→∞ which combined with
Step 4, by the Fredholm determinant expansion implies (3.49).
Step 6. We will now show that

lim
t→∞

det
(
I −KRW

y,ε

)
L2(Cεθ)

= det(I +Ky)L2(C).

First note that there is no problem in deforming the contour Cεθ to WL
θ , so that it is

enough to prove that

lim
t→∞

det
(
I −KRW

y,ε

)
L2(WL

θ )
= det(I +Ky)L2(C).

To prove this, we will first do a change of coordinates in the integration variables
of the Fredholm determinant expansion and in the integral defining the kernel KRW

y,ε ,
introducing z̄, v̄ and v̄′ defined by

z = θ +
1

σ(θ)t1/3
z̄, v = θ +

1

σ(θ)t1/3
v̄ and v′ = θ +

1

σ(θ)t1/3
v̄′. (3.52)

We then have that

det
(
I −KRW

y,ε

)
L2(WL

θ )
= det

(
I − K̄t

ε

)
L2(W∞θ )

,

where

K̄t
ε(v̄, v̄

′) := 1|v̄|,|v̄′|≤εσt1/3
1

σ(θ)t1/3
KRW
y,ε

(
θ +

1

σ(θ)t1/3
v̄, θ +

1

σ(θ)t1/3
v̄′
)
.

We will first prove the pointwise convergence of the kernel K̄t
ε . Consider the contour

Lε := D1,εσt1/3,+
0 ∪S1

0 formed by the two vertical lines D1,εσt1/3,+
0 := {yi : y ∈ [1, εσt1/3]} ∪

{yi : y ∈ [−1,−εσt1/3]} and the semicircle S1
0 := {z : |z| = 1,Re z ≥ 0}. We adopt the

convention L∞ as the contour Lε with ε =∞. We then have

K̄t
ε(v̄, v̄

′)

=
1|v̄|,|v̄′|≤εσt1/3

2πi

∫
Lε

σ−1t−1/3π

sin
(
σ−1t−1/3π(z̄ − v̄)

)et(h̄(z̄)−h̄(v̄))−y(z̄−v̄) Γ̄(v̄)

Γ̄(z̄)

1

z̄ − v̄′
dz̄,
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where

h̄(w) = h
(
θ + σ−1t−1/3w

)
and Γ̄(w) = Γ(θ + σ−1t−1/3w).

Now, from the limits (where again we use that is (3.4) satisfied both in the case α and β

constant or (αt)t≥0 and (βt)t≥0 satisfying (2.3) and (2.4)),

lim
t→∞

σ(θ)−1t−1/3π

sin
(
σ−1t−1/3π(z̄ − v̄)

) =
1

z̄ − v̄

lim
t→∞

Γ̄(v̄)

Γ̄(z̄)
= 1

lim
t→∞

t(h̄(z̄)− h̄(v̄)) =
1

3
(z̄3 − v̄3),

it follows that

lim
t→∞

σ−1t−1/3π

sin
(
σ−1t−1/3π(z̄ − v̄)

)et(h̄(z̄)−h̄(v̄))−y(z̄−v̄) Γ̄(v̄)

Γ̄(z̄)

1

z̄ − v̄′

=
1

(z̄ − v̄)(z̄ − v̄′)
e

1
3 (z̄3−v̄3)−y(z̄−v̄).

We want to justify next that the above limit can be commuted with the integration over z̄.
Note that v ∈WL

θ,ε and z ∈ Dt
θ is implies that v̄ ∈W∞ and z̄ ∈ L∞, so we can apply part

(iii) of Lemma 3.14 to bound the exponential and conclude that

∣∣∣∣∣ σ−1t−1/3π

sin
(
σ−1t−1/3π(z̄ − v̄)

)et(h̄(z̄)−h̄(v̄))−y(z̄−v̄) Γ̄(v̄)

Γ̄(z̄)

1

z̄ − v̄′

∣∣∣∣∣
≤ c23

|Γ(v̄)|
|z̄ − v̄||z̄ − v̄′|

e−C7|v̄|3 . (3.53)

for some constant c23 > 0, which is integrable in z̄ at ∞ because the right-hand side
decays quadratically. We conclude then by the dominated convergence theorem that

lim
t→∞

Kt
ε(v̄, v̄

′) =

∫
L∞

1

(z̄ − v̄)(z̄ − v̄′)
e

1
3 (z̄3−v̄3)−y(z̄−v̄)dz̄. (3.54)

Now, from (3.53), we can conclude that

Kt
ε(v̄, v̄

′) ≤ c24e
−C7|v̄|3 ,

for some constant c24 > 0. By Hadamard’s inequality for the determinant, this implies
that

det(Kt
ε(w̄i, w̄j)

n
i,j=1 ≤ nn/2

n∏
i=1

c24e
−C7

2 |w̄i|
3

.

It follows from this bound, the convergence in (3.54) and the dominated convergence
theorem that

lim
t→∞

∫
(WL

θ )n
det
(
KRW
y,ε (wi, wj)

)
dw1 · · · dwn

=

∫
(W∞θ )n

det(Ky,(w̄i, w̄j))dw̄1 · · · dw̄n.
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Applying a second time the dominated convergence theorem to interchange the summa-
tion of the Fredholm determinant with the limit, we finish the proofs of both parts (i)

and (ii) of Proposition 3.4.

3.8 Proof of Lemma 3.9

Here we will prove Lemma 3.9. Define

Ξ(x) =
ψ2(γ)

4θ
+
ψ3(γ)

4!
=

1

4

∞∑
n=0

1

x4
n

− 1

2

∞∑
n=0

1

θ

1

x3
n

.

As

σ3(θ)

2θ
+
h(4)(θ)

4!
=
h(3)(θ)

4θ
+
h(4)(θ)

4!

= Ξ(θ + α)− Ξ(θ) +
ψ1(θ)− ψ1(θ + α)

ψ1(θ)− ψ1(θ + α + β)

(
Ξ(θ)− Ξ(θ + α + β)

)
goes to 0 when β → 0, it is enough to prove that its derivative with respect to β is
positive or, making the change y = θ + α + β, that

ψ1(θ)− ψ1(θ + α)

(ψ1(θ)− ψ1(y))2

[
− Ξ′(y)

(
ψ1(θ)− ψ1(y)

)
+ ψ2(y)

(
Ξ(θ)− Ξ(y)

)]
> 0,

for y > 2θ.
The first factor is positive and the second one equals

−
∑
m≥0

(
3

2θ
− 1

ym

)
1

y4
m

∑
n≥0

(
1

θ2
n

− 1

y2
n

)

+
∑
m≥0

1

y3
m

[∑
n≥0

(
1

θ
− 1

2θn

)
1

θ3
n

−
∑
n≥0

(
1

θ
− 1

2yn

)
1

y3
n

]

= −
∑
m≥0

3ym − 2θ

2θy5
m

∑
n≥0

y2
n − θ2

n

θ2
ny

2
n

+
∑
m≥0

1

y3
m

[∑
n≥0

2θn − θ
2θθ4

n

−
∑
n≥0

2yn − θ
2θy4

n

]
.

We will prove the positivity of the resulting products of terms in the sums. First products
of same index terms (m = n)

−3yn − 2θ

2θy5
n

y2
n − θ2

n

θ2
ny

2
n

+
1

y3
n

2θn − θ
2θθ4

n

− 1

y3
n

2yn − θ
2θy4

n

.

After factoring the common denominator we are left with

− (3yn − 2θ)(y2
n − θ2

n)θ2
n + (2θn − θ)y4

n − (2yn − θ)θ4
n

= −(3a+ 3t− 2θ)((a+ t)2 − a2)a2 + (2a− θ)(a+ t)4 − (2a+ 2t− θ)a4,

where we have abbreviated θn as a and α + β as t, so that yn = a + t and t > θ. After
expanding the fourth power binomial we see that the constant and linear in t terms
cancel out

− (3a+ 3t− 2θ)(2a+ t)ta2 + (2a− θ)(4a3t+ 6a2t2 + 4at3 + t4)− 2ta4

= −(9at+ 3t2 − 2tθ)ta2 + (2a− θ)(6a2t2 + 4at3 + t4)

= t2
[
3a3 − 4a2θ + (5a2 − 4aθ)t+ (2a− θ)t2

]
.

As a ≥ θ it is clear that this expresion is positive for t > θ.
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Now the products of terms with different index in the above sums

− 3ym − 2θ

2θy5
m

y2
n − θ2

n

θ2
ny

2
n

+
1

y3
m

2θn − θ
2θθ4

n

− 1

y3
m

2yn − θ
2θy4

n

− 3yn − 2θ

2θy5
n

y2
m − θ2

m

θ2
my

2
m

+
1

y3
n

2θm − θ
2θθ4

m

− 1

y3
n

2ym − θ
2θy4

m

.

The first half can be written as

− (3ym − 2θ)(y2
n − θ2

n)y2
n

2θy5
mθ

2
ny

4
n

+
(2θn − θ)y4

n − (2yn − θ)θ4
n

2θy3
mθ

4
ny

4
n

=
−(3ym − 2θ)(y2

n − θ2
n)y2

n + (3yn − 2θ)(y2
n − θ2

n)y2
m

2θy5
mθ

2
ny

4
n

+
−(3yn − 2θ)(y2

n − θ2
n)θ2

n + (2θn − θ)y4
n − (2yn − θ)θ4

n

2θy3
mθ

4
ny

4
n

.

The last numerator was already shown to be positive. By a similar reasoning for the
second half of the above expression, all that is left to finish the proof is to show that

−(3ym − 2θ)(y2
n − θ2

n)y2
n + (3yn − 2θ)(y2

n − θ2
n)y2

m

2θy5
mθ

2
ny

4
n

+
−(3yn − 2θ)(y2

m − θ2
m)y2

m + (3ym − 2θ)(y2
m − θ2

m)y2
n

2θy5
nθ

2
my

4
m

is positive for y > 2θ.
This is equivalent to showing the positivity of

− (3ym − 2θ)(y2
n − θ2

n)y3
nθ

2
m + (3yn − 2θ)(y2

n − θ2
n)y2

mynθ
2
m

− (3yn − 2θ)(y2
m − θ2

m)y3
mθ

2
n + (3ym − 2θ)(y2

m − θ2
m)y2

nymθ
2
n

Factorizing and using the abreviations a = θn and b = θm,[
(y2
n − θ2

n)θ2
myn − (y2

m − θ2
m)θ2

nym
][

(3yn − 2θ)y2
m − (3ym − 2θ)y2

n

]
=
[
(2a+ t)tb2(a+ t)− (2b+ t)ta2(b+ t)

]
×
[
3(a+ t)(b+ t)(b− a)− 2θ(a+ b+ 2t)(b− a)

]
.

A further algebraic manipulation leads us to the following expresion, which is positive
under the stated conditions.[

(a+ b)t3 + 3abt2
][

3ab+ 3t2 + (a+ b)(3t− 2θ)− 4θt
]
(b− a)2

3.9 Proof of Lemmas 3.7 and 3.8

In what follows we present the proofs of Lemma 3.7 in Section 3.9.1 and of Lemma
3.8 in Section 3.9.2.

3.9.1 Proof of Lemma 3.7

The main technical ingredient in the proof of Lemma 3.7 will be to extract the zero of
Re(izh′(z)) for z = eiφ at φ = 0, through a subtraction of appropriate functions. This
enables us to extract two key factors (sinφ and (1− cosφ)) from Re(izh′(z)). We will start
deducing several properties of a resulting function in these computations, defined for
x > 0,

P(x) = −
∞∑
n=0

θ2 + 2θxn cosφ

(θ2 + 2θxn cosφ+ x2
n)(θ + xn)2

, (3.55)

where we adopt the convention xn = n+ x.
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Lemma 3.15. Let θ > 0. Then, the following are satisfied,

(i) For all φ ∈ (0, π) such that cosφ ≥ 0, the function −P(x) is positive and decreasing
in x > 0.

(ii) For all φ ∈ (0, π) and x > 0 such that cosφ ≤ − θ
2x , −P(x) is negative.

(iii) For all φ ∈ (0, π) and x > 0 such that cosφ ≤ − θ
x , −P(x+ y) is increasing in y > 0.

(iv) For all φ ∈ (0, π), x ≥ θ and y > 0 we have that

− (P(x)− P(x+ y))

≤ v(ρ, φ)1(cosφ > −ρ) (Ψ1(θ + x)−Ψ1(θ + x+ y)) ,

where

v(ρ, φ) =
ρ2 + 2ρ cosφ+ ρ

ρ2 + 2ρ cosφ+ 1
≤ ρ2 + 3ρ

(ρ+ 1)2
,

and ρ = θ
x .

Proof. The positivity of −P(x) for cosφ ≥ 0 of part (i) is immediate. Also the negativity
of −P(x) for cosφ ≤ − θ

2x , which proves part (ii). We will now prove that −P(x) is
decreasing in x for cosφ ≥ 0 (part (i)), part (iii) and part (iv). To simplify notation define

C(u) := θ + 2u cosφ,

A(u) := θ2 + 2θu cosφ+ u2

and

B(u) = (θ + u)2.

Then note that

C(xn)

A(xn)B(xn)
− C((x+ y)n)

A((x+ y)n)B((x+ y)n)

=
θ + 2xn cosφ

A(xn)

(
1

B(xn)
− 1

B((x+ y)n)

)
− 2y cosφ

A(xn)

1

B((x+ y)n)
+
θ + 2(x+ y)n cosφ

A((x+ y)n)

2y(θ cosφ+ xn) + y2

A(xn)B((x+ y)n)

=
θ + 2xn cosφ

A(xn)

(
1

B(xn)
− 1

B((x+ y)n)

)
− 2 cosφ

2θ + 2xn + y

B(xn)

A(xn)

2yθ + 2xny + y2

B(xn)B((x+ y)n)

+
θ + 2(x+ y)n cosφ

A((x+ y)n)

B(xn)

A(xn)

2(θ cosφ+ xn) + y

2θ + 2xn + y

2θy + 2xny + y2

B(xn)B((x+ y)n)

= (b + c + a)

(
1

B(xn)
− 1

B((x+ y)n)

)
,

where

b =
θ + 2xn cosφ

θ2 + 2xnθ cosφ+ x2
n

,
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c = − 2 cosφ

2θ + 2xn + y

(θ + xn)2

θ2 + 2θxn cosφ+ x2
n

and

a

=
θ + 2(xn + y) cosφ

θ2 + 2θ(xn + y) cosφ+ (xn + y)2

(xn + θ)2

θ2 + 2θxn cosφ+ x2
n

2(θ cosφ+ xn) + y

2(θ + xn) + y
.

Note that

a + c

=
(2(xn + y)(θ + xn cosφ)− θy)(xn + θ)2

(θ2 + 2θxn cosφ+ x2
n)(θ2 + 2θ(xn + y) cosφ+ (xn + y)2)(2θ + 2xn + y)

. (3.56)

From (3.56) we can easily check that a + c ≥ 0 whenever cosφ ≥ 0, which combined with
the fact that the condition on φ also implies that b ≥ 0, proves that −P(x) is decreasing
when cosφ ≥ 0, and proves part (i). On the other hand, (3.56) also shows that a + c ≤ 0

when cosφ ≤ − θ
x , which combined with the fact that this condition also implies that

b ≤ 0, implies that −P(x+ y) is increasing in y when cosφ ≤ − θ
x (part (iii)).

Let us now prove part (iv). Note that

a + c ≤ 2(xn + y)(θ + xn cosφ)(xn + θ)2

(θ2 + 2θxn cosφ+ x2
n)(θ2 + 2θ(xn + y) cosφ+ (xn + y)2)(2θ + 2xn + y)

.

Now note that for all φ ∈ (0, π), the function

f1(v) =
v

θ2 + 2θv cosφ+ v2
,

is decreasing in v as long as v ≥ θ. Therefore, since by assumption we have that x ≥ θ, it
follows that xn + y ≥ θ, so that for all n ≥ 0,

(a + c)θ ≤ θxn(θ + xn cosφ)(xn + θ)

(θ2 + 2θxn cosφ+ x2
n)2

1(cosφ > −θ/xn)

≤ ρn(ρn + cosφ)(ρn + 1)

(ρ2
n + 2ρn cosφ+ 1)2

1(cosφ > −ρn),

where ρn := θ
xn

. Now, consider the function

f2(u, a) :=
u+ a

u2 + 2ua+ 1
.

Note that for u ∈ (0, 1),

∂f2(u, a)

∂a
=

1− u2

(u2 + 2ua+ 1)2
> 0,

which shows that for fixed u, f2(u, a) is increasing in a. Hence, for all n ≥ 0,

ρn(ρn + cosφ)(ρn + 1)

(ρ2
n + 2ρn cosφ+ 1)2

≤ ρn
ρ2
n + 2ρn cosφ+ 1

.

It follows that
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(a + b + c)θ ≤ f3(ρn, cosφ)1(cosφ > −ρn),

where we define for u ∈ [0, 1] and a ∈ (−1, 1),

f3(u, a) =
u2 + 2ua+ u

u2 + 2ua+ 1
.

Now note that for u ∈ (0, 1) and a arbitrary,

∂f3(u, a)

∂a
=

2u(1− u)

(u2 + 2ua+ 1)2
> 0.

Also for a ∈ (−u, 1) and u ∈ (0, 1),

∂f3(u, a)

∂u
=

1 + 2u+ 2a− u2

(u2 + 2ua+ 1)2
> 0.

Hence,

f3(ρn, a) ≤ f3(ρ0, a).

It also follows that f3(u, a) is increasing in a for fixed u and increasing in u for fixed a as
long as u, a ∈ (0, 1). Therefore, since ρn ≤ ρ0, we conclude that

(a + b + c)θ ≤ ρ2
0 + 2ρ0 cosφ+ ρ0

ρ2
0 + 2ρ0 cosφ+ 1

1(cosφ > −ρ0) ≤ ρ2
0 + 3ρ0

(ρ0 + 1)2
1(cosφ > −ρ0).

Let us now proceed to prove Lemma 3.7. Let z = θeiφ. Note that

Re(izh′(z)) = Θ(α)−Θ(α + β)

+
Ψ1(α + θ)−Ψ1(α + β + θ)

Ψ1(θ)−Ψ1(α + β + θ)
(Θ(α + β)−Θ(0)) ,

where for γ real we define

Θ(γ) := Re(iz(Ψ(z + γ)−Ψ(θ + γ)).

Now, note that for γ > 0, we have the following expansion valid for any z /∈ {0,−1,−2, . . . },

Ψ(z + γ)−Ψ(θ + γ) =
∑
n≥0

z − θ
(z + γ + n)(θ + γ + n)

. (3.57)

Also,

Re

(
iz
z − θ
γn + z

)
= Re

(
iθ2 (cosφ+ i sinφ)(cosφ− 1 + i sinφ)(θ cosφ+ γn − iθ sinφ)

(θ cosφ+ γn)2 + θ2 sin2 φ

)
= Re

(
iθ2

(
cos2 φ− sin2 φ− cosφ+ i sinφ(2 cosφ− 1)

)
(θ cosφ+ γn − iθ sinφ)

(θ cosφ+ γn)2 + θ2 sin2 φ

)

= θ2 θ sinφ(cos2 φ− sin2 φ− cosφ)− sinφ(2 cosφ− 1)(θ cosφ+ γn)

(θ cosφ+ γn)2 + θ2 sin2 φ

= θ2 sinφ
−θ − γn(2 cosφ− 1)

θ2 + 2θγn cosφ+ γ2
n

.
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This implies that

Θ(γ) = θ2 sinφR(γ), (3.58)

where

R(γ) := −
∞∑
n=0

θ + γn(2 cosφ− 1)

(θ2 + 2θγn cosφ+ γ2
n)(θ + γn)

.

Hence it is enough to prove that for φ ∈ (0, π),

R(α)−R(α + β) +
Ψ1(α + θ)−Ψ1(α + β + θ)

Ψ1(θ)−Ψ1(α + β + θ)
(R(α + β)−R(0)) > 0.

On the other hand note that

R(γ) + Ψ1(θ + γ)

=

∞∑
n=0

(
1

(θ + γn)2
− θ + γn(2 cosφ− 1)

(θ2 + 2θγn cosφ+ γ2
n)(θ + γn)

)
= 2(1− cosφ)Q(γ), (3.59)

where we define

Q(γ) =

∞∑
n=0

γ2
n

(θ2 + 2θγn cosφ+ γ2
n)(θ + γn)2

.

Therefore it is now enough to prove that for φ ∈ (0, π),

Q(α)−Q(α + β) +
Ψ1(α + θ)−Ψ1(α + β + θ)

Ψ1(θ)−Ψ1(α + β + θ)
(Q(α + β)−Q(0)) > 0.

Now note that

Q(γ)−Ψ1(θ + γ)

=
∞∑
n=0

(
γ2
n

(θ2 + 2θγn cosφ+ γ2
n)(θ + γn)2

− 1

(θ + γn)2

)
= P(γ), (3.60)

where we recall the definition of P in (3.55) above. So at this point it is enough to prove
that for φ ∈ (0, π),

P(α)− P(α + β) +
Ψ1(α + θ)−Ψ1(α + β + θ)

Ψ1(θ)−Ψ1(α + β + θ)
(P(α + β)− P(0)) > 0. (3.61)

Indeed, the lower bound in (3.25) now follows from the fact that (3.61), (3.58), (3.59)
and (3.60) imply that

Re(izh′(z)) =

2θ2 sinφ(1− cosφ)

(
(P(α)− P(α + β)+

Ψ1(α + θ)−Ψ1(α + β + θ)

Ψ1(θ)−Ψ1(α + β + θ)
(P(α + β)− P(0))

)
.
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From here we see that for θ ∈ [0, 0.5] (θ = 0 interpreted as the limit when limθ→0+),
α ≤ 1 and β ≤ 1, the factor multiplying 2θ2 sinφ(1 − cosφ) in the above expression, is
positive, while as α→∞ and β→∞, the dominant term in this factor is − P(0)

Ψ1(θ) (Ψ1(α +

θ)−Ψ1(α + β + θ)), which gives by compactness the lower bound of (3.25). Let us now
introduce the parameter ρ := θ

α
.

We will now continue with the proof of (3.61) which will be divided in four cases: Case
1, when cosφ ≤ −ρ; Case 2, when −ρ ≤ cosφ ≤ −ρ/2; Case 3, when −ρ/2 ≤ cosφ ≤ 0;
and Case 4 when 0 ≤ cosφ ≤ 1. To do this, first note that

− P(0) =

∞∑
n=0

θ2 + 2θn cosφ

(θ2 + 2θn cosφ+ n2)(θ + n)2
. (3.62)

In what follows we will assume that ρ ≤ 1. We will use the following consequence of part
(iv) of Lemma 3.15, valid for all θ < min(0.5,α) and β > 0,

− (P(α)− P(α + β))

≤ ρ2 + 2ρ cosφ+ ρ

ρ2 + 2ρ cosφ+ 1
1(cosφ > −ρ) (Ψ1(θ + α)−Ψ1(θ + α + β)) . (3.63)

Case 1 (cosφ ≤ −ρ). By part (ii) of Lemma 3.15 we have that P(α + β) > 0 while by
(3.63), the term −(P(α)−P(α + β)) ≤ 0. Therefore it is enough to prove that −P(0) > 0

(whenever θ ∈ (0, 0.5)). Note that the series (3.62) achieves it’s minimum value at
φ = −π, so we have

− P(0) ≥
∞∑
n=0

θ2 − 2θn

(n2 − θ2)2

=
1

θ2
+

θ2 − 2θ

(1− θ2)2
−
∞∑
n=2

2θn− θ2

(n2 − θ2)2

≥ 1

θ2
+

θ2 − 2θ

(1− θ2)2
−
∞∑
n=2

n− 1
4(

n2 − 1
4

)2 ≥ 1

θ2
+

θ2 − 2θ

(1− θ2)2
− 0.2

≥ 4− 4

3
− 1

5
> 0, (3.64)

where we used in the last inequality the fact that the terms in the series are decreasing
in θ and the minimum value is achieved for θ = 0.5.
Case 2 (−ρ ≤ cosφ ≤ −ρ/2). By the assumption cosφ ≤ −ρ2 and part (ii) Lemma 3.15,
we see that −P(α + β) ≤ 0. This time, the series (3.62) achieves it’s minimum value for
cosφ = −ρ. But we will assume that ρ ≤ 0.69, so we see from (3.64), that it is enough to
prove that

1

Ψ1(θ)−Ψ1(α + β + θ)

(
1

θ2
+

θ2 − 2θ × 0.69

(θ2 − 2θ × 0.69 + 1) (1 + θ)2
− 0.2

)
≥ ρ ≥ ρ2 + 2ρ cosφ+ ρ

ρ2 + 2ρ cosφ+ 1
.

Now, Ψ1(θ)−Ψ1(θ + α) ≤ Ψ1(θ). Hence, it would be enough to prove that

1

θ2Ψ1(θ)

(
1− θ2 2θ × 0.69− θ2

(θ2 − 2θ × 0.69 + 1) (1 + θ)2
− 0.2× θ2

)
≥ ρ.
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Now, since θ2Ψ1(θ) is increasing in θ, we see that the inequality is satisfied for all ρ ≤ 0.69

such that

1
1
4Ψ1

(
1
2

) (1− 1

4

0.69− 1
4(

1
4 − 0.69 + 1

) (
1 + 1

2

)2 − 0.2× 1

4

)
≥ ρ,

or

ρ ≤ 0.6994 · · · .

Case 3 (−ρ/2 ≤ cosφ ≤ 0). Let us first bound,

− P(α + β) ≤ θ2

(θ2 + (α + β)2)(α + β + θ)2

+

∞∑
n=1

θ2

(θ2 + (α + β)2
n)((α + β)n + θ)2

≤ 1

θ2

ρ4

(1 + ρ2)(1 + ρ)2
+

θ2

θ2 + 1
Ψ1 (1) . (3.65)

On the other hand,

− P(0) ≥
∞∑
n=0

θ2 − θn
(θ2 − θn+ n2)(θ + n)2

=
1

θ2
− θ − θ2

(1− (θ − θ2))(θ + 1)2
−
∞∑
n=2

nθ − θ2

(n2 − (nθ − θ2))(θ + n)2

≥ 1

θ2
− 1

3
−
∞∑
n=2

2n− 1

(4n2 − 2n+ 1)n2
≥ 1

θ2
− 1

3
− 0.65.

As in case 2, we now see that it would be enough to prove that

1
1
4Ψ1

(
1
2

) ( 1

θ2

(
1− ρ4

(1 + ρ2)(1 + ρ)2

)
− 1

3
− 0.65− θ2

θ2 + 1
Ψ1(1)

)
≥ ρ2 + ρ

ρ2 + 1
.

But the left-hand side is bounded from below by the case in which θ = 0.5, from where
we see that we have to show that

1
1
4Ψ1

(
1
2

) (4

(
1− ρ4

(1 + ρ2)(1 + ρ)2

)
− 1

3
− 0.65− 1

5
Ψ1(1)

)
≥ ρ2 + ρ

ρ2 + 1
,

which is satisfied for all ρ > 0.

Case 4 (0 ≤ cosφ ≤ 1). Since by part (i) of Corollary 3.6 the difference Ψ1(α + θ) −
Ψ1(α + β + θ) is positive, dividing (3.61) by this quantity, we see that now it is enough to
show that
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P(α + β)− P(0)

Ψ1(θ)−Ψ1(α + β + θ)
>
ρ2 + 2ρ cosφ+ ρ

ρ2 + 2ρ cosφ+ 1
1(cosφ > −ρ). (3.66)

To do this, first note that

−P(0) =

∞∑
n=0

θ2 + 2θn cosφ

(θ2 + 2θn cosφ+ n2)(θ + n)2
.

Therefore, the minimum value of −P(0) is achieved for cosφ = 0, so that

− P(0) ≥
∞∑
n=0

θ2

(θ2 + n2) (θ + n)
2 =

1

θ2
− P(1),

where −P(1) in the left-hand side is evaluated at φ = π/2. On the other hand, for
−P(α + β) we have that

− P(α + β) =
θ2 + 2θ(α + β) cosφ

(θ2 + 2θ(α + β) cosφ+ (α + β)2)(α + β + θ)2

+

∞∑
n=1

θ2 + 2θ(α + β)n cosφ

(θ2 + 2θ(α + β)n cosφ+ (α + β)2
n)((α + β)n + θ)2

≤ θ2 + 2θα cosφ

(θ2 + 2θα cosφ+ α2)(α + θ)2
− P(α + 1)

≤ 1

θ2

ρ2 + 2ρ

(ρ+ 1)4
− P(α + 1), (3.67)

where we have used part (i) of Lemma 3.15. Using again part (i) of Lemma 3.15, we
then conclude that

P(α + β)− P(0)

Ψ1(θ)−Ψ1(α + β + θ)
≥ 1

θ2Ψ1(θ)

(
1− ρ2 + 2ρ

(ρ+ 1)4

)
≥ 1

1
4Ψ1

(
1
2

) (1− ρ2 + 2ρ

(ρ+ 1)4

)
.

Therefore, by part (iv) of Lemma 3.15, it is enough to show that

1
1
4Ψ1

(
1
2

) (1− ρ2 + 2ρ

(ρ+ 1)4

)
≥ ρ2 + 3ρ

(ρ+ 1)4
,

which is satisfied for all ρ > 0.

3.9.2 Proof of Lemma 3.8

The following lemma will be useful to prove Lemma 3.8.

Lemma 3.16. Let f and g be twice continuously differentiable real functions defined
on an interval containing u < v < w. If f is convex and strictly decreasing, and
(g′′f ′ − g′f ′′)(x) ≥ ρ(x), with ρ ≥ 0 measurable, then

g(v)− g(w)− f(v)− f(w)

f(u)− f(w)
(g(u)− g(w)) ≥ f(v)− f(w)

f(u)− f(w)

∫ v

u

(u− x)
ρ(x)

f ′(x)
dx.
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Proof. By the chain rule and the inverse function theorem G = g ◦ f−1 is continuously
differentiable on an open interval containing a < b < c, the images under f of w, v, and u,
respectively. Also, as G′ = (g′/f ′) ◦ f−1, G′ is also continuously differentiable there, with

G′′ =
g′′f ′ − g′f ′′

(f ′)3
◦ f−1.

By hypothesis f ′ is negative, so that G′′ ≤ ρ/(f ′)3 ≤ 0, that is, we are assuming G is
concave. Now let us integrate from b to y ≥ b and apply the change of variables u = f(x)

to get

G′(y)−G′(b) ≤
∫ y

b

ρ

(f ′)3
◦ f−1(u)du =

∫ f−1(y)

f−1(b)

ρ(x)

f ′(x)2
dx.

Integrating from b to c we have

G(c)−G(b)− (c− b)G′(b) ≤
∫ c

b

∫ f−1(y)

f−1(b)

ρ(x)

f ′(x)2
dx dy.

Reversing the order of integration –remember f is decreasing– last integral equals∫ f−1(c)

f−1(b)

∫ c

f(x)

ρ(x)

f ′(x)2
dy dx =

∫ v

u

(f(x)− f(u))
ρ(x)

f ′(x)2
dy dx.

Now, let t ∈ [a, b] be such that G′(t) = (G(b) − G(a))/(b − a). As G′ is decreasing,
G′(t) ≥ G′(b). In a similar way we have f(x) − f(u) = f ′(η)(x − u) for an appropriate
η ∈ [u, x], and f ′(η) ≤ f ′(x). With both these inequalities we can write

G(c)−G(b)− c− b
b− a

(G(b)−G(a)) ≤
∫ v

u

(x− u)
ρ(x)

f ′(x)
dx dy.

Finally, as

G(b)−G(a)− b− a
c− a

(G(c)−G(a))

=(G(b)−G(a))
c− b
c− a

− (G(c)−G(b))
b− a
c− a

,

multiplying last inequality by −(b− a)/(c− a), we obtain the desired result.

Let us now prove Lemma 3.8. We have, for x > 0 and y real,

Im Ψ(x+ iy) = yΦ(x, y),

where Φ is defined in (3.26). Note that Imh′(θ + iy) = yH(θ, y,α,β), and

H(θ, y,α,β) = Φ(θ + α, y)− Φ(θ + α + β, y)−K1(Φ(θ, y)− Φ(θ + α + β, y)).

Applying again Lemma 3.16 we just need to show

(Φ′′Ψ′1 − Φ′Ψ′′1)(x) ≥ −8y2Ψ′1(x)
∑
n≥0

1

(x2
n + y2)3

,

where the derivatives of Φ are taken with respect to its first variable and the second
variable is set as y. Calculating the derivatives and replacing, in particular

Φ′′(x) =
∑
n≥0

6

(x2
n + y2)2

−
∑
n≥0

8y2

(x2
n + y2)3

,

EJP 27 (2022), paper 63.
Page 37/45

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP786
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Second order cubic corrections

the above inequality is equivalent to(∑
n≥0

1

x4
n

)(∑
n≥0

xn
(x2
n + y2)2

)
−
(∑
n≥0

xn
x4
n

)(∑
n≥0

1

(x2
n + y2)2

)
≥ 0,

and this follows by looking at the m-n products (the m = n terms are cero),

1

x4
m

xn
(x2
n + y2)2

+
1

x4
n

xm
(x2
m + y2)2

− xm
x4
m

1

(x2
n + y2)2

− xn
x4
n

1

(x2
m + y2)2

= (xm − xn)

(
1

x4
n

1

(x2
m + y2)2

− 1

x4
m

1

(x2
n + y2)2

)
= y2(xm + xn)(xm − xn)2 2x2

mx
2
n + y2(x2

m + x2
n)

x4
n(x2

m + y2)2x4
m(x2

n + y2)2
≥ 0.

4 Perturbative results

Here we will prove Theorem 2.4 and Corollary 2.5. We first need to derive several
estimates about Dirichlet and Beta random variables.

Consider a random vector X = (X1, . . . , Xk) having a Dirichlet distribution of param-
eters α = (α1, . . . ,αk). Let ξ̄i = logXi −Mi for 1 ≤ i ≤ k, where Mi are constants whose
value will be given later. We want to obtain estimates for the moments,

Li1,...,ik(α) := Eα[ξ̄i11 · · · ξ̄
ik
k ], (4.1)

for the shifted logarithmic moments of the random vectorX, with k ≥ 0, and i1, . . . , ik ≥ 0.
We will call i1 + · · ·+ik the degree of the shifted moment. Consider the following function,
which we will call the logarithmic partition function, defined by

A(α) :=

k∑
i=1

(log(Γ(αi))− αiMi)− log Γ

(
k∑
i=1

αi

)
.

Let also

B(α) =

∏k
i=1 Γ(αi)

Γ
(∑k

i=1 αi

) = eA(α).

Note that

Li1,...,ik(α) :=
1

B(α)

∂i1+···+ik

∂i1α1 · · · ∂ikαk
B(α). (4.2)

From this identity we can recursively compute the shifted moments Li1,...,ik(α). Nev-
ertheless, we want a statement giving us a sharp asymptotic bound on the decay of
these moments as the parameters tend to ∞ or to 0. We will now define the families
of functions corresponding to the higher order derivatives of the logarithmic partition
function as,

Ai1,...,ik(α) :=
∂i1+···+ik

∂i1α1 · · · ∂ikαk
A(α).

We will call i1 + · · ·+ ik the degree of Ai1,...,ik and we will use the notation

An := {Ai1,...,ik : i1 + · · ·+ ik = n},

for the set of functions of degree n ≥ 1. Furthermore, we define the degree of a product
of functions,
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l∏
j=1

fj ,

where fj ∈ Anj for some nj ≥ 1, as the sum n1 + . . .+ nl. Now, note from (4.2), that we
have that

L1,0,...,0(α) = A1,0,...,0,

with analogous equalities for L0,1,0,...,0 up to L0,...,0,1. Furthermore we have the following
recursion formulas,

Li1+1,i2,...,ik(α) = L1,0,...,0(α)Li1,...,ik(α) +
∂

∂α1
Li1,...,ik(α),

Li1,i2+1,i3,...,ik(α) = L0,1,0...,0(α)Li1,...,ik(α) +
∂

∂α2
Li1,...,ik(α),

...

Li1,...,ik−1,ik+1(α) = L0,...,0,1(α)Li1,...,ik(α) +
∂

∂αk
Li1,...,ik(α). (4.3)

From these recursion formulas, we can prove the following lemma.

Lemma 4.1. Consider the logarithmic moments L(i1, . . . , ik), ij ≥ 0, 1 ≤ j ≤ k, of a
Dirichlet random variable X of parameters (α1, . . . ,αk). We have the following represen-
tation,

Li1,...,ik(α) =

n∑
i=1

ai

li∏
j=1

fj ,

where n = i1 + · · · + ik is the degree of Li1,...,ik , l1, . . . , ln ≥ 1 and a1, . . . , an are real
constants and each term of the sum has the same degree n. Furthermore, one of the
terms of this expansion is a product of n functions of degree 1 each.

Proof. It is easy to see that it is true for shifted moments of degree 1. Now, by induction
on i1 + · · · + ik and the recursion (4.3), one can check that if the statement is true
for all moments of degree i1 + · · · + ik, it must also be true for moments of degree
i1 + · · ·+ ik + 1.

We now have the following corollary.

Corollary 4.2. Consider a family of Dirichlet random variables of parameters αt,1 =

αt,2 →∞ as t→∞, while αt,i ≤ 1 for 3 ≤ i ≤ 4. Then, for all i1, i2 ≥ 0 there is a constant
C8 > 0 such that

|Eαt [ξ̄
i1
1 ξ̄

i2
2 ]| ≤ C8

α
d k2 e
t,1

,

where i1 + i2 = k.

Proof. Note that

Eαt [ξj ] = Ψ(αt,j)−Ψ(

4∑
i=1

αt,i),

for j = 1, 2. Hence, from the fact that the digamma function has the asymptotics
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Ψ(x) = log x− 1

2x
+ o

(
1

x

)
, (4.4)

when x → ∞, we see that M1 = log(1/2). Similarly M2 = log(1/2). From (4.4) we also
see that

L1,0,0,0(αt) =
c25

αt,1
+ o

(
1

αt,1

)
,

for some constant c25 > 0. We can deduce a similar identity for L0,1,0,0. On the other
hand, note that when i1 + i2 = 2, we have that

Li1,i2,0,0 = g + f1f2,

where g ∈ A2 and f1, f2 ∈ A1. But for functions in A2 we have the asymptotics

g(α) =
c26

αt,1
+ o

(
1

αt,1

)
, (4.5)

for some constant c26 > 0 depending on g. In general, for i1 + i2 = 2m even, we have
from Lemma 4.1 the expansion

Li1,i2,0,0(α) =

2m∑
i=1

ai

li∏
j=1

fj .

Call nj the degree of fj , so that n1 + · · ·+ nli = 2m. Note that

fj =
∂α

∂α1αt,1∂α2αt,2
A(αt),

for some multi-index α = (α1, α2) with α1 + α2 = nj . For nj = 1, this function is of the
form

Ψ(αt,i)−Ψ(2αt,1),

for i = 1, 2, so the decay of fj in this case is bounded by

c25

αt,i
.

For the case nj ≥ 2, the function fj is of the following two possible forms

c27(Ψnj−1(αt,1)−Ψnj−1(2αt,1)) or c28Ψnj−1(αt,i).

From part (ii) of Lemma 3.5, in both cases this gives a decay bounded by

c29

α
nj−1
t,i

.

This means that the decay of

li∏
i=1

fj , (4.6)

as t→∞ is

c30

α2m−d
t,i

,
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where d is the number of factors in (4.6) with nj ≥ 2. This mean that the dominating
term of the form (4.6) is the one which has the highest number of factors of degree
larger than 1. It is not difficult to check that this term is

m∏
i=1

fi,

where fi ∈ A2 for 1 ≤ i ≤ 2, which gives, since in this case d = m, the decay

c31

αmt,i
.

For the case in which i1 + i2 = 2m− 1, there will be several dominant terms of the same
degree, inluding one of the form

f

m−1∏
i=1

gi,

where g1, . . . , gm−1 ∈ A2 and f ∈ A1, which gives the same decay as the one for the case
of degree 2m.

Let us now continue with the proof of Theorem 2.4.

4.1 Proof of Theorem 2.4

We will first need to show that a natural family of Beta random walks matches
moments with itself.

Lemma 4.3. Consider a family of Beta probability measures (Pαt,βt)t≥0 such that (2.3),
(2.4) are satisfied. Assume also that

M1 := lim
t→∞

Eαt,βt [ξ+(0, t)] = lim
t→∞

(Ψ(αt)−Ψ(αt + βt))

and

M2 := lim
t→∞

Eαt,βt [ξ−(0, t)] = lim
t→∞

(Ψ(βt)−Ψ(αt + βt))

exist. Then, for every k ≥ 1, and α such that |α| = k, we have that

∣∣Eαt,βt [ξ̄
α(x, t)]

∣∣ ≤ α
−d k2 e
t .

Hence, for every k ≥ 0, (Pαt,βt)t≥0 matches moments up to order k at rate α
−d k2 e
t with

itself.

Proof. The proof follows immediately from Corollary 4.2 and the definition of matching
moments.

Let

ht =
log
(
P0,ω(t, x(θ)t)

)
− I(x(θ))

σ(θ)t1/3
,

where P0,ω(t, y) is defined in (2.8).
Let Ck(R) be the set of functions f : R → R whose derivatives up to order k are

uniformly bounded. From the fact that the set Ck(R) is a convergence determining set of
functions (see for example [EK86]), Theorem 2.4 follows immediately from the following
lemma.
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Lemma 4.4. Consider a family of parameters (αt,βt) that satisfy (2.3), (2.4). Let θ > 0.
(Pt)t≥0 be a family of environmental laws which matches moments up to order k at rate

α
−d k2 e
t with (Pαt,βt)t≥0. Let ϕ ∈ Ck(R). Then there is a C9 > 0 such that

∣∣Et[ϕ(ht)]− Eαt,βt [ϕ(ht)]
∣∣ ≤ C9

t2α
−d k2 e
t

σ(θ)t1/3
.

Proof. Let z ∈ Z×N be a vertex with z = (v, s) for some v ∈ Z and 0 ≤ s ≤ t. For each
y1, y2 ∈ R, define

Pω(y1, y2) = P cω + ey1+M1P+
ω + ey2+M2P−ω ,

where

(i) P cω is the probability that Xt ∈ At,x(θ) and that X does not pass through the vertex
z,

(ii) P−ω is the probability that Xt = At,x(θ) and X passes through the edge z, so that
Xs = v, Xs+1 = v + 1, but with ω+(z) = 1.

(ii) P+
ω is the probability that Xt = At,x(θ) and X passes through the edge z, so that
Xs = v, Xs+1 = v − 1, but with ω−(z) = 1.

Let

h(y1, y2) :=
logPω(y1, y2) + I(x(θ))t

t1/3σ(θ)
.

Fixing all weights in the disorder at edges different from f and defining g(y1, y2) :=

ϕ(h(y1, y2)) we now use Taylor’s theorem for g(y1, y2) expanding it at (y1, y2) = (0, 0) to
conclude that

ϕ(h(ξ̄+(z), ξ̄−(z))) = g(ξ̄+(z), ξ̄−(z)) = g(0, 0) +

2∑
i=1

gi(0, 0)ξ̄i

+
1

2

2∑
i,j=1

gi,j(0, 0)ξ̄iξ̄j + · · ·+
2∑

i1,...,ik−1=1

1

(k − 1)!
gi1,...,ik−1

(0)ξ̄i1 · · · ξ̄ik−1

+

2∑
i1,...,ik=1

1

k!
gi1,...,ik(sξ̄+(z), sξ̄−(z))ξ̄i1 · · · ξ̄ik ,

for some s ∈ (0, 1), where for i1, . . . , ij ∈ {0, 1},

gi1,...,ij =
∂

∂yi1
· · · ∂

∂yij
g,

and ξ̄1 := ξ+(z) and ξ̄2 := ξ−(z). Taking expectation and using the independence of
(ξx,t)(x,t)∈Z×N, we get that

Et[ϕ(h(ξ̄+(z), ξ̄−(z)))] = a+

2∑
i=1

aiEt[ξ̄i]

+
1

2

2∑
i,j=1

ai,jEt
[
ξ̄iξ̄j

]
+ · · ·+

2∑
i1,...,ik−1=1

1

(k − 1)!
ai1,...,ik−1

Et[ξ̄i1 · · · ξ̄ik−1
]

+

2∑
i1,...,ik=1

1

k!
Et[gi1,...,ik(sξ̄+(z), sξ̄−(z))ξ̄i1 · · · ξ̄ik ], (4.7)
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where

a = Et[g(0, 0)]

and
ai1,...,ij = Et[gi1,...,ij (0, . . . , 0)].

Now, we will prove that

|ai1,...,ij | = |gi1,...,ij (0, 0)| ≤ c32

t1/3σ(θ)
(4.8)

for all 0 ≤ j ≤ k − 1 and

|āi1,...,ik | := |gi1,...,ik(y1, y2)| ≤ c33

t1/3σ(θ)
. (4.9)

We have an expansion analogous to (4.7) for Eαt,βt [φ(h(ξ̄+(z), ξ̄−(z)))], with the same
coeffiecients aj for 0 ≤ j ≤ k. We use Faà di Bruno’s formula for the chain rule of a
composition (here we use the multivariate version, see [KQ18]),

gi1,...,ij (y) =
∑
π∈Π

ϕ(|π|)(y)
∏
B∈π

∂|B|h∏
j∈B ∂yj

,

where Π is the set of partitions of {1, . . . , j}, π is an arbitrary partition of Π, |π| is the
number of blocks in the partition π, B ∈ π means that the variable B runs through all
the blocks of π, |B| is the size of block B and the variables y1, . . . , yj take only the values
y1 and y2 (with some abuse of notation). Since by assumption φ ∈ Ck(R), it is enough to

bound the derivatives ∂|B|h∏
j∈B ∂yj

. Now,

∂Pω(y1, y2)

∂yi
=

eyi+MiP+
ω

P cω + ey1+M1P+
ω + ey2+M2P−ω

=: pi(y1, y2),

for i = 1, 2. We then obtain for the higher order derivatives with k1 + k2 = k,

∂kPω(y1, y2)

∂k1y1∂k2y2
= Pk1,k2(p1(y), p2(y)),

where the following recursion formula holds,

Pk1+1,k2(p1(y), p2(y)) = P(1,0)
k1,k2

(p1(y), p2(y))p
(1)
1 (y) + P(0,1)

k1,k2
(p1(y), p2(y))p

(1)
2 (y),

and a similar recursion formula for Pk1,k2+1(p1(y), p2(y)), where P(1,0) and P(0,1) are the

partial derivatives of P with respect to its first and second variable respectively, and p(i)
j

is the partial derivative of pj with respect to yi, 1 ≤ i, j ≤ 2. This proves (4.8) and (4.9).
Now, from (4.7), (4.8) and (4.9) (and the corresponding expansion forEαt,βt [ϕ(h(ξ̄+(z),

ξ̄−(z)))], we get that

∣∣Et[ϕ(h(ξ̄+(z), ξ̄−(z)))]− Eαt,βt [ϕ(h(ξ̄+(z), ξ̄−(z)))]
∣∣

≤

|a|+ 2∑
i=1

|ai|+
2∑

i,j=1

ai,j +
∑

i1,...,ik−1

|ai1,...,ik−1
|

+
∑

i1,...,ik−1

āi1,...,ik−1

α
−d k2 e
t

EJP 27 (2022), paper 63.
Page 43/45

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP786
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Second order cubic corrections

≤ c34α
−d k2 e
t

t1/3σ(θ)
.

Summing over all z that can be reached up to time t starting from (0, 0) we finish the
proof of the lemma.

4.2 Proof of Corollary 2.5

Consider a family of Beta random walks with parameters (αt,1,αt,2)t≥0, with αt,1 =

αt,2 = tr. Note that since r ∈ (0, 1) conditions (2.3) and (2.4) are satisfied. Now, using
the fact that

σ(θ) ∼ t−r g(α,β) =
1

2
t−r,

as t→∞ (see part (iii) of Corollary 3.6),note that an integer k satisfies (2.9) if and only
if ⌈

k

2

⌉
>

5

3r
+ 1.

Let us denote by E′αt the expectation with respect to the environment of this Beta random
walk. Recall that the parameters of the Dirichlet environment are αt,1 = αt,2 = tr,
|αt,3| ≤ t−p and αt,4 ≤ t−p. On the other hand, note that

∣∣Eαt [ξ̄+]− E′αt [ξ̄+]
∣∣ = |Ψ(αt,1)−Ψ(2αt,1 + 2αt,3)−Ψ(αt,1) + Ψ(2αt,1)|

≤ c35
αt,3

αt,1
≤ c35t

−(r+p) ≤ c36t
−rd k2 e, (4.10)

for some constants c35 > 0, c36 > 0, and the last inequality is satisfied only when

p ≥ r
⌈
k

2

⌉
− r.

For higher order moments, using the recursions (4.3), note that the shifted logarithmic
moments of the random walk in Dirichlet environment can be obtained from the shifted
logarithmic moments of the Beta random walk by changing in all the expressions
involving the polygamma functions the sum

∑2
i=1 αt,i by

∑4
i=1 αt,i. Hence, the same

bound (4.10) will be satisfied for the differences between higher order moments. Now
choose k ≥ 1 so that ⌈

k

2

⌉
=

⌈
5

3r
− 1

3

⌉
.

Note that this is possible because 5
3r −

1
3 > 0 for all r ∈ (0, 1). Hence, it is enough to

choose p so that

p ≥ r
⌈

5

3r
− 1

3

⌉
− r.
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