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Markovian structure in the concave majorant of
Brownian motion
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Abstract

The purpose of this paper is to highlight some hidden Markovian structure of the
concave majorant of the Brownian motion. Several distributional identities are implied
by the joint law of a standard one-dimensional Brownian motion B and its almost surely
unique concave majorant K on [0,∞). In particular, the one-dimensional distribution
of 2Kt−Bt is that of R5(t), where R5 is a 5-dimensional Bessel process with R5(0) = 0.
The process 2K −B shares a number of other properties with R5, and we conjecture
that it may have the distribution of R5. We also describe the distribution of the convex
minorant of a three-dimensional Bessel process with drift.
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1 Introduction

There is a rich literature on convex minorants of stochastic processes such as Brow-
nian motion and Lévy processes initiated by Groeneboom in [12], and continued in
[18, 10, 4, 7, 22, 2, 16, 15, 3] with applications to problems in statistics such as isotonic
regression [21], and in ruin theory and mathematical finance (see [8][9]). An analogous
study of Lipschitz minorants of Lévy processes was taken up in [1, 11]. The purpose of
this paper is to develop a deeper understanding of Markovian properties of the concave
majorant of Brownian motion.

For any real-valued function f defined on a domain U , we say that c is its concave
majorant if c is the minimal concave function such that c(u) ≥ f(u) for all u ∈ U . It
was shown by Groeneboom in [12] that a standard one-dimensional Brownian motion
B admits almost surely a unique concave majorant K on the domain [0,∞), with the
following properties. The process (K(t))t≥0 is an increasing piecewise-linear function
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Markovian structure in the concave majorant of Brownian motion

with infinitely many linear segments which accumulate only at zero and at infinity, and
the process of slopes and lengths of these segments is a Poisson point process. Moreover,
conditionally on the concave majorant K, the process K − B is a concatenation of
independent Brownian excursions between the vertices of K, where t is a vertex of K if
K(t) = B(t), or equivalently if K ′(t+) < K ′(t−) where K ′ is the right-hand derivative of
K.

In the tradition of convex analysis, working with either positions or slopes gives
two dual perspectives of a convex function. In our setting, we can either consider the
concave majorant at a fixed time t > 0, or we can fix a slope µ > 0 and consider the
concave majorant at the random time σµ := argmax+

t≥0{B(t)− µt}. These two points of
view offer complementary information about the concave majorant, as discussed further
in the literature cited above.

Before stating our main results, let us introduce some notation

Notation 1.1. For a random variable X taking values in Rd, with a probability density
with respect to Lebesgue measure on Rd, we denote that probability density function
by fX . Similarly, for two random variables X and Y both taking values in Euclidean
spaces (not necessarily of the same dimension), the notation fX|Y=y(·) is used to denote
a regular conditional probability density of X given Y = y.

For a, b > 0, let βa,b denote a random variable with the beta(a, b) density

fβa,b(u) =
Γ(a+ b)

Γ(a)Γ(b)
ua−1(1− u)b−11{0<u<1}

where Γ is the Gamma function. For k ∈ N, we denote by χ2
k a random variable with the

chi-squared(k) or gamma(k/2, 1/2) distribution of the sum of squares of k independent
standard Gaussian variables, and write χk for the positive square root of χ2

k, with chi(k)

distribution. Finally, φ is the probability density and Φ̄ is the right-tail probability of a
standard normal random variable:

φ(x) =
1√
2π

exp

(
−x

2

2

)
, Φ̄(x) =

∫ ∞
x

φ(t)dt , x ∈ R.

For µ ∈ R, we use the notation (Bµ(t) := B(t) + µt)t≥0 for a Brownian motion with drift
parameter µ and unit variance parameter. For each level y > 0 and drift µ > 0, define
the first and last passage times

Tµ,y := inf{t > 0 : Bµ(t) = y} and Gµ,y := sup{t > 0 : Bµ(t) = y}.

So Tµ,y has the inverse Gaussian distribution with parameters (µ, y), whereas Gµ,y has
the size-biased inverse Gaussian distribution with parameters (µ, y). Their respective
densities are denoted by fµ,y and f∗µ,y and given by

fµ,y(t) := fTµ,y (t) =
y√

2πt3
exp

(
− (y − µt)2

2t

)
1{t>0}

and
f∗µ,y(t) := fGµ,y (t) =

µ

y
t fµ,y(t).

For each µ ≥ 0, the three-dimensional Bessel process with drift µ is the unique diffusion
with the same law as the radial part of a three-dimensional Brownian motion with drift
of magnitude µ. We denote this diffusion by BESr(3, µ) if it is started at position r at
time 0. A three-dimensional Bessel bridge W on an interval [0, a] such that W (0) = x

and W (a) = y has the law of a three-dimensional Bessel process with drift 0 started at x
at time 0 and conditioned to take value y at time a (the conditioning is in the sense of
regular conditional probability). We refer to [19][Chapter 3,6,11] for further information
about these processes, which appear in some of our statements and proofs.
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Markovian structure in the concave majorant of Brownian motion

1.1 Fixed time analysis

For t > 0, let (Gt, Dt) be the left-hand and right-hand vertices of the segment of
K straddling t. For fixed t > 0, we almost surely have 0 < Gt < t < Dt. Define
I(t) = K(t)− tK ′(t) to be the intercept at 0 of the line extending this segment. As the
process (K,B) enjoys Brownian scaling, we can restrict discussion to the time t = 1, as
in the following proposition, which gives the joint density of different quantities related
to the Brownian motion and its concave majorant at time t = 1.

Proposition 1.1. The density function of (K ′(1), I(1),K(1)−B(1), 1
G1
, D1) is

f5(a, b, y, v, w) =

√
2

π3(v − 1)3(w − 1)3
ab(wv − 1)×

exp

(
−1

2

(
b2w + 2ab+ a2v + y2 wv − 1

(v − 1)(w − 1)

))
1{w,v>1}1{a,b,y>0}

In particular, the following marginals take simpler forms.

• The joint density of (K ′(1), I(1),K(1)−B(1)) at (a, b, y) is

f3(a, b, y) = 4y(a+ b+ y)φ(a+ b+ y)1{a,b,y>0}

• The conditional density of D1 − 1 at t given (K ′(1) = a, I(1) = b,K(1)− B(1) = y)

is given by

g(t) =
a

a+ b+ y
fa,y(t) +

b+ y

a+ b+ y
f∗a,y(t)

where fa,y and f∗a,y are respectively the inverse Gaussian and size-biased inverse
Gaussian densities with parameters (a, y).

Remark 1.2. Some of these identities are implicit in the work of Groeneboom [12] in
his proofs using probability estimates of events about the position of Brownian bridges
relative to deterministic line, and some projections of these identities appear also in
Carolyn and Dykstra [7], but we give here a simpler proof via the Poisson description.

A straightforward consequence of the above proposition is that

2K(1)−B(1)
d
=χ5 (1.1)

which coincides with the one-dimensional marginal at time 1 of a five-dimensional Bessel
process. Moreover, by integration it is easy to see that the joint density of the pair
(K(1),K(1)−B(1)) is equal to

f(K(1),K(1)−B(1))(k, y) = 4ky(k + y)φ(k + y)1{k,y>0}

and so the pair (K(1),K(1) − B(1)) is exchangeable. This observation is reminiscent
of the counterpart process (2M(t) − B(t))t≥0, where M is the running maximum of B
defined as

M(t) = max
0≤s≤t

B(s)

Indeed, by results of [20, 17] we have that

2M(1)−B(1)
d
=χ3

and that the pair (M(1) − B(1),M(1)) is exchangeable. More is known actually, the
process (2M(t)−B(t))t≥0 has the law of the radial part of a three-dimensional Brownian
motion. This observation led us to naturally consider the following conjecture:
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Figure 1: Paths of b,k and 2k − b (in pointwise increasing order)

Conjecture 1.3. The process (2K(t)−B(t))t≥0 has the law of the radial part of a five-
dimensional Brownian motion

By well known properties of the usual time inversion map from Brownian and Bessel
processes to corresponding bridges, discussed in [3], our conjecture that 2K − B has
the same distribution as a five dimensional Bessel process is equivalent to the following
conjecture regarding the least concave majorant k of b, a standard Brownian bridge
of length 1 from 0 to 0: that 2k − b has the the same distribution as a five dimensional
Bessel bridge of length 1 from 0 to 0. See Figure 1 for the path of a Brownian bridge b,
its concave majorant k and the reflected process 2k − b.

It is tempting to claim that the three-dimensional process (K ′(t),K(t), B(t))t≥0 is
Markovian. However this assertion turns out to be false. Indeed, from Proposition 1.1 it
is not hard to see that D1 is not conditionaly independent of G1 given (K ′(1),K(1), B(1)).
Together with the fact that G1 is measurable with respect to σ{B(u),K(u);u ≤ 1}
and D1 is measurable with respect to σ{B(u),K(u);u ≥ 1}, this implies that the pro-
cesses (K ′(u),K(u), B(u))u≥1 and (K ′(u),K(u), B(u))u≤1 are not conditionally indepen-
dent given (K ′(1),K(1), B(1)). Nonetheless, a Markovian structure is present if we
include the next vertex of the concave majorant after time t, as indicated in the following
theorem:

Theorem 1.2. The process

(Ψ(t) := (K ′(t),K(t),K(t)−B(t), Dt − t), t ≥ 0)

is a time-homogenous Markov process. Its semi-group Pt((a, k, y, w), ·) is given as follows

• If t < w, then Pt((a, k, y, w), ·) has the law of

(a, k + at, Z(t), w − t)

where Z is a three-dimensional Bessel bridge between (0, y) and (w, 0).
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Markovian structure in the concave majorant of Brownian motion

• If t ≥ w, then Pt((a, k, y, w), ·) has the law of

(a− C ′(t− w), k + at− C(t− w), R(t− w)− C(t− w), DR
t−w − (t− w))

where R is a BES0(3, a), C its convex minorant and DR
u is the first vertex of C after

time u.

Similarly to Proposition 1.1, the following proposition gives the joint law of the
Bessel process with drift and its convex minorant at a fixed time, which completes the
description of the law of the Markov process Ψ.

Proposition 1.3. Fix µ > 0. Let (R(t))t≥0 be a BES0(3, µ) and (C(t))t≥0 its convex
minorant. Let (Gt, Dt) be the left-hand and right-hand vertices of C straddling t. Then
for (α, u, x, l, y) such that 0 < l

µ < u < t < x+ u, y > 0 and 0 < α < µ, we have

P[C ′(t) ∈ dα,Gt ∈ du,Dt −Gt ∈ dx,R(Gt) ∈ dl, R(t)− C(t) ∈ dy] =

2
φ((µ− α)

√
x)

σt(x, u)3
√
x
hµ,µ−α (u, µu− l) y2φ

(
y

σt(x, u)

)
dαdudxdldy

where σt(x, u) :=
√

(t−u)(x+u−t)
x , and

P[C ′(t) ∈ dα,Gt = 0, Dt −Gt ∈ dx,R(Gt) = 0, R(t)− C(t) ∈ dy] =

2
φ((µ− α)

√
x)√

x

(
1− α

µ

)
y2

σt(x, 0)3
φ

(
y

σt(x, 0)

)
dαdxdy

The function ha,b is given by the following expression

ha,b(s, z) =
2b

a
E

[(√(
a− z

s

)(z
s
− b
)
− V√

s

)2

+

]
φ( z√

s
)

√
s

1{bs≤z≤as}

for 0 < b < a and where V
d
=N (0, 1) is a standard normal random variable.

1.2 Fixed slope analysis

Working in terms of slopes, we present here some distributional identities which
emerge from study of the path of the Brownian motion and its concave majorant on
[0, σµ] for a fixed slope µ > 0. Let

· · · < τµ,1 < τµ,0 := σµ < τµ,−1 < τµ,−2 < · · · (1.2)

be an enumeration of the vertices of K. By Brownian scaling, we can limit ourselves to
the case µ = 1. Define

τn := τ1,n and κn := B(τn) and ρn := κn −
∆κn
∆τn

τn (1.3)

where ∆xn = xn − xn−1 for any sequence (xn)n∈N. The following theorem states a
non-trivial identity in distribution which comes from an analysis of Markovian behavior
of the faces of K[0,σ1], in the same vein as [15][Corollary 3].

Theorem 1.4. The following map on (0,∞)3 × (0, 1)

(t, r, q, u) 7→
(
u2(t+ q), u(1− u)(t+ q) + ur,

r2q

t(t+ q)
,

r

r + (1− u)(t+ q)

)
is one-to-one and preserves the law of

(χ2
3β

2
1,2, χ

2
3β1,2(1− β1,2), χ2

1, U)
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where βa,b is beta(a, b) and U
d
=β1,1 is uniform [0, 1], with χ3, β

2
1,2 and U independent. As

a consequence, both the sequences
(
ρn√
τn

)
n≥0

and
(
κn√
τn

)
n≥0

are stationary. Moreover,

the former sequence is a Markov chain while the latter sequence is not Markov.

We finish this section by showing that a random scaling of the path of B on [0, σµ]

produces processes that are absolutely continuous with respect to the three-dimensional
Bessel process. Let us introduce first some notation

Notation 1.4. Let us denote by M the Mill’s ratio function defined as

M(x) :=
Φ(x)

φ(x)
.

For a non-negative continuous function f defined on [0, 1], define its minslope as

M(f) = inf
0<u≤1

f(u)

u

Moreover, let B(f) be the last time f reaches its minslope, i.e

B(f) := sup{t ∈ (0, 1] :
f(t)

t
= M(f)}

We have the following theorem

Theorem 1.5. Let µ > 0, and define Bµ(t) := B(t)−µt. Define the two pseudo-meanders

(B̃me(u), 0 ≤ u ≤ 1) :=

(
B−µ(σµ)−B−µ((1− u)σµ)

√
σµ

, 0 ≤ u ≤ 1

)
and

(B̂me(u), 0 ≤ u ≤ 1) :=

(
B(σµ)−B((1− u)σµ)

√
σµ

, 0 ≤ u ≤ 1

)
Then both B̃me and B̂me are both absolutely continuous with respect to BES0(3) with

Radon-Nidokym derivative given respectively by 2M(B̃me(1))

B̃me(1)
and 2M(B̂me)

B̂me(1)
.

Remark 1.5. The term pseudo-meander is inspired from related processes called
pseudo-bridges that were introduced in [6] and generalized in [14]. In the latter case,
the change of measure is given by a power of the local time for either a Brownian or
recurrent Bessel bridge.

2 Fixed time analysis

We recall the main results of Groeneboom in his study of the concave majorant of
Brownian motion. We define first the following process

τa := σ 1
a

= argmax+

{
t ≥ 0 : B(t)− t

a

}
, a > 0.

The process τ encodes all the information about the concave majorant K. The following
result of Groeneboom gives a full description of the law of τ . We have

Theorem 2.1 ([12], Theorem 2.1). The process τ is pure-jump with independent nonsta-
tionary increments. In particular, the Poisson point process of jumps

H := {(r,∆τr) : ∆τr > 0}

has intensity measure absolutely continuous with respect to Lebesgue measure with
density

ρ(r, t) =
1

r2
√
t
φ

(√
t

r

)
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The concave majorant K of B is constructed from τ as a concatenation of increasing
linear segements with slopes 1/r and durations ∆τr for (r,∆τr) ∈ H. The joint law of K
and B is fully described in the following theorem which is also due to Groeneboom.

Theorem 2.2 ([12], Theorem 2.2). The standard linear Brownian motion B can be
decomposed into the process τ and independent Brownian excursions. More pre-
cisely, conditionally on the process τ , the vertical distance of the Brownian motion
to the concave majorant (K(t)− B(t))t≥0 is a succession of independent Brownian ex-
cursions, i.e for any measurable enumeration (Ti)i∈Z of jump times of τ , depending
only on the process τ , the process (K(t) − B(t))Ti≤t≤Ti+1

has the same distribution as

(
√
Ti+1 − Tiei

(
t−Ti

Ti+1−Ti

)
)Ti≤t≤Ti+1

, where (ei)i∈Z is an i.i.d sequence of standard Brown-

ian excursions on [0, 1].

Combining these two results we can give a quick proof of Proposition 1.1

Proof of Proposition 1.1. Let S(1) := 1
K′(1) denote the passage time across the level 1 for

the process τ . Fix 0 < u < 1 < u+ x and s, z > 0, then we have

P[S(1) ∈ ds,G1 ∈ du,D1 −G1 ∈ dx,B(G1) ∈ dz] =

P[B(τs−) ∈ dz, τs− ∈ du,H ∩ (s, s+ ds)× (x, x+ dx) 6= ∅] + o(dsdudxdz) =

P[B(τs) ∈ dz, τs ∈ du]ρ(s, x)dsdx+ o(dsdudxdz)

as P[τs− = τs] = 1 and (B(τs−), τs−) is measurable with respect to H ∩ (0, s) × R. The
joint density of (B(τs), τs) = (B(σ 1

s
), σ 1

s
) is known from Williams path decomposition (see

[23][Theorem 2.1]). Hence, using the fact that K(1)−B(G1) = K ′(1)(1−G1), we have
that I(1) := K(1)−K ′(1) = B(G1)−K ′(1)G1. Hence, by a standard change of variables
we get the joint density of (K ′(1), I(1), 1

G1
, D1). Finally, using Theorem 2.2 we get that

(K(1)−B(1)|G1 = u,D1 = v)
d
=
√
v − u e

(
1− u
v − u

)
d
=

√
(1− u)(v − 1)

v − u
χ3

Putting all this together gives the five-dimensional density. The sub-marginals are easily
obtained by integrating out the remaining variables.

Remark 2.1. By invariance of the law of (B,K) under time-inversion, we know that

(I(1),K ′(1),K(1)−B(1),
1

G1
, D1)

d
= (K ′(1), I1,K(1)−B(1), D1,

1

G1
),

which can easily be checked from the joint density.

Recall that a three-dimensional Bessel process with drift µ > 0 is the law of the Brow-
nian motion with drift µ conditioned to stay positive. By Williams path decomposition, it
is also the law of the post-σµ process (µt−B(σµ + t) +B(σµ))t≥0 (see [23]). Combining
this observation with Theorem 2.1 gives the following Poisson description of the convex
minorant of a three-dimensional Bessel process with drift.

Proposition 2.3. Let (R(t))t≥0 be a three-dimensional Bessel process with drift µ > 0.
The convex minorant C of R is a concatenation of increasing segments with slopes less
than µ. The set of pairs of slopes and time spacings of C is a Poisson point process G
with intensity measure of density with respect to the Lebesgue measure given by

g(α, t) =
φ
(√
t(µ− α)

)
√
t

1{0<α<µ}

Moreover, conditionally on C, the process R− C is again a succession of independent
Brownian excursions between the vertices of C.
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Markovian structure in the concave majorant of Brownian motion

Before establishing the analogue of Theorem 1.1 for the three-dimensional Bessel
process with drift, we will give an explicit formula for the density of the increments of
the zenith process (σµ, Bµ(σµ))µ>0 studied by Çinlar [10]. While the Laplace transform
of the increment (σb − σa, B(σb) − B(σa)) for a > b is straightforward from Williams
path decomposition, inverting it is not obvious, as remarked by Çinlar [10], who gave a
formula via convolutions of measures. We have the following theorem whose proof is
inspired by some of Groeneboom’s computations.

Theorem 2.4. Fix 0 < b < a, and define the function ha,b on (0,∞)2 by

ha,b(s, z) =
2b

a
E

[(√(
a− z

s

)(z
s
− b
)
− V√

s

)2

+

]
φ( z√

s
)

√
s

1{bs≤z≤as}

where V is standard normal. Then the random variable (σb − σa, B(σb) − B(σa)) has
density ha,b on (0,∞)2 and has a point mass in (0, 0) of probability b

a .

Before proving Theorem 2.4, we recall the following lemma which gives an estimate
on the probability that a Brownian bridge crosses a deterministic line. We quote it from
[13][Page 183]

Lemma 2.5. Let B a standard linear Brownian motion, and fix 0 < s < t. Moreover, let
a, b, x, y ∈ R. Then

P[∃u ∈ (s, t) : B(u) > au+ b|B(s) = x,B(t) = y] = exp

(
−2

(as+ b− x)+(at+ b− y)+

t− s

)
Proof of Theorem 2.4. Fix 0 < t1 < t2 and let h > 0, we will investigate the probability
of the event

A := {σa ∈ (t1, t1 + h), σb ∈ (t2, t2 + h)}

Let us denote µ1 := a and µ2 := b, the event A can be rewritten as

A = {(∀s ≥ 0) B(s)− µis < sup
ti≤u≤ti+h

(B(u)− µiu) for i = 1, 2}

Define Bti,h = supti≤u≤ti+h(B(u)−B(ti)). We will condition on the value of the random
variables {B(ti), B(ti+h), Bti,h, i = 1, 2}. In particular, we wish to compute the following
regular conditional probability

P[A|B(ti) = xi, B(ti + h)−B(ti) = Yi(h), Bti,h = Mi(h)]

where xi, Yi(h),Mi(h) are fixed real numbers. From the definition of σa and σb, this
probability is equal to zero unless we have that x1 + b(t2 − t1) < x2 < x1 + a(t2 − t1). By
introducing the point t0 that is the location of the intersection point of the two lines with
slope a (resp. b) passing through (t1, x1) (resp. (t2, x2))

t0 =
(x2 − bt2)− (x1 − at1)

a− b
∈ (t1, t2) (2.1)

Then A can be expressed as

A =

2⋂
i,j=1

{∀z ∈ Jji : Bz − µiz < sup
ti≤u≤ti+h

(Bu − µiu)} =:

2⋂
i,j=1

Ai,j

with

J1
1 = (0, t1), J2

1 = (t1 + h, t0), J1
2 = (t0, t2), J2

2 = (t2 + h,+∞)
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By further conditioning (in the sense of regular conditional probability) on the value of
B(t0), i.e on the event

D = {B(t0) = x,B(ti) = xi, B(ti + h)−B(ti) = Yi(h), Bti,h = Mi(h) for i = 1, 2}

We have that

P[A|D] =

2∏
i,j=1

P[Ai,j |D]

by the independence of increments of the Brownian motion. Now, it is easy to see that

Bti,h +B(ti)− µi(ti + h) ≤ sup
ti≤u≤ti+h

(B(u)− µiu) ≤ Bti,h +B(ti)− µiti

Hence

ri,j(h) := P[∃z ∈ Jji : Bz − µiz > Bti,h +B(ti)− µiti|D] ≤ P[Ac
i,j |D] ≤

P[∃z ∈ Jji : Bz − µiz > Bti,h +B(ti)− µi(ti + h)|D] =: ri,j(h)

Now using Lemma 2.5, we have that

r1,1(h) = exp

(
−2

(M1(h) + x1 − at1)+M1(h)

t1

)
and

r1,1(h) = exp

(
−2

(M1(h) + x1 − a(t1 + h))+(M1(h)− ah)+

t1

)
Hence, by Taylor expansion it follows that

P[Ac
1,1|D] = 1− 2M1(h)(x1 − at1)+

t1
+ F1,1(h,M1(h)2)

where F1,1 is a deterministic function with |F1,1(x, y)| ≤ K1,1(|x| + |y|) for a positive
constant K1,1. Similarly, we find that

P[Ac
1,2|D] = 1− 2(M1(h)− Y1(h))(x1 − x0 − a(t1 − t0))+

t0 − t1
+ F1,2(h, (M1(h)− Y1(h))2)

and

P[Ac
2,1|D] = 1− 2M2(h)(x2 − x0 − b(t2 − t0))+

t2 − t0
+ F2,1(h,M2(h)2)

and
P[Ac

2,2|D] = 1− 2b(M2(h)− Y2(h)) + F2,2(h, (M2(h)− Y2(h))2)

with all the Fi,j ’s deterministic verify |Fi,j(x, y)| ≤ Ki,j(|x|+|y|) for some positive constant
Ki,j > 0. Hence by multiplying all these terms together we get

P[A|D] = 16
M1(h)(M1(h)− Y1(h))M2(h)(M2(h)− Y2(h))

t1(t0 − t1)(t2 − t0)

×(x1 − at1)+(x1 − x0 − a(t1 − t0))+(x2 − x0 − b(t2 − t0))++

G(h,M1(h)2,M2(h)2, (M1(h)− Y1(h))2), (M2(h)− Y2(h))2)

where G is a deterministic function of 5 variables such that

|G(x1, x2, x3, x4, x5)| ≤ K
5∑

i,j=1

|xi|
√∏
k 6=i,j

|xk| (2.2)
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Markovian structure in the concave majorant of Brownian motion

for K a positive constant. Now, let us integrate first with respect to the value of B(t0).
The distribution of B(t0) given that B(t1) = x1 and B(t2) = x2 is that of

(t2 − t0)x1

t2 − t1
+

(t0 − t1)x2

t2 − t1
+ σV

where:

σ2 =
(t0 − t1)(t2 − t0)

t2 − t1
> 0

and V
d
=N (0, 1). After integration and using the expression of t0 from (2.1), we get that

P[A|C] =
16bM1(h)(M1(h)− Y1(h))M2(h)(M2(h)− Y2(h))

t1(t2 − t1)
(x1 − at1)+

×E[((a− b)σ − U)
2
+] +G(h,M1(h)2,M2(h)2, (M1(h)− Y1(h))2, (M2(h)− Y1(h))2)

Finally, we can integrate with respect to (M1(h), Y2(h),M2(h), Y2(h)). Since it can be
easily seen that

E

[
Bti,h

(
sup

ti≤u≤ti+h
(B(u)−B(ti + h))

) ∣∣∣∣∣B(t1) = x1;B(t2) = x2

]
=
h

2
+ o(h)

using the joint law of (B(h),max0≤u≤hB(u)), and the fact that

E[G(h,M1(h)2,M2(h)2, (M1(h)− Y1(h))2)] = O(h
5
2 )

from (2.2), we get that

P[A|Bt1 = x1, Bt2 = x2] =
4b(x1 − at1)+

t1(t2 − t1)
E[((a− b)σ − V )

2
+]h2 + o(h2)

By multiplying by the joint density of (B(t1), B(t2)) we get that the joint density of
(σa, σb, B(σa), B(σb)) at (t1, t2, x2, x1) is equal to

f(σa,σb,B(σa),B(σb))(t1, t2, x1, x2) = 4b

(
x1

t1
− a
)

+

×

E

[(√
(y − b)(a− y)− V√

t2 − t1

)2

+

]
× 1{b≤y≤a}

φ
(
x1√
t1

)
φ
(
x2−x1√
t2−t1

)
√
t1(t2 − t1)

where y := x2−x1

t2−t1 . By an obvious change of variable, we see that (σa, B(σa)) and
(σb − σa, B(σb)−B(σa)) are independent (as predicted by Williams path decomposition),
and that the density of the latter pair is exactly ha,b that is stated in the Theorem. Here,
we use Corollary 2.1 from [12], which stipulates that the two functions

t 7→ 2a2E

[(
X

a
√
t
− 1

)
+

]
and

t 7→ 2b

a− b
E

(√( Y√
t
− b
)(

a− Y√
t

)
− Z√

t

)2

+

1{b≤ Y√
t
≤a}


are densities, where X,Y, Z are three independent standard normal random variables.
It also follows from here that the density ha,b is defective as∫

(0,∞)2
ha,b(s, z)dsdz = 1− b

a
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Markovian structure in the concave majorant of Brownian motion

To conclude the proof, it suffices to notice that

P[σb = σa, B(σb) = B(σa)] = P[σb = σa]

= P

[
no jumps for the process τ in

(
1

a
,

1

b

)]
=
b

a

as the number of jumps τ on any interval (x, y) is a Poisson random variable with mean
log( yx ) from [12][Theorem 2.1].

The proof of Proposition 2.3 is now straightforward and goes as follows.

Proof of Proposition 2.3. By Williams path decomposition, the process R has the same
distribution as

(R̃(t) := µt−B(σµ + t) +B(σµ))t≥0

whose convex minorant C̃ is given by C̃(t) = µt−K(σµ+ t)+K(σµ). Hence, when u, l > 0

then the event
{C̃ ′(t) ∈ dα,Gt ∈ du,Dt −Gt ∈ dx, R̃(Gt) ∈ dl}

is the same as

{The process τ has a jump in

(
1

µ− α
,

1

µ− α
+

dα

(µ− α)2

)
of size in dx,

σµ−α − σµ ∈ du, µ(σµ−α − σµ)− (B(σµ−α)−B(σµ)) ∈ dl}

As we take the restriction of τ on ( 1
µ ,∞). This latter probability is equal to

ρ

(
1

µ− α
, x

)
dxdα

(µ− α)2
P[σµ−α − σµ ∈ du, µ(σµ−α − σµ)− (B(σµ−α)−B(σµ)) ∈ dl]

which by Theorem 2.4 gives the density

ρ

(
1

µ− α
, x

)
dxdα

(µ− α)2
hµ,µ−α(u, µu− l)dudl

Finally, using the fact that conditionally on C, R− C is distributed as a concatenation of
Brownian excursions between the vertices of C, we get that

(R(t)− C(t)|(Gt, Dt) = (x, x+ u))
d
=σt(x, u)χ3

gives the desired density. The case when u = 0 follows similarly.

We finish this section now by proving Theorem 1.2, which follows from the description
of Groeneboom in Theorem 2.2 and the independence of increments of the pure-jump
Markov process τ .

Proof of Theorem 1.2. Let us fix t > 0, and enumerate the standard Brownian excursions
that constitute the path of K −B such that e0 is the one corresponding to the interval
[Gt, Dt], the excursions {ei : i ≥ 1} the ones to the right of Dt, and {ei : i ≤ −1} the ones
to the left of Gt. The process (Ξ(u) : u ≥ t) is measurable with respect to the σ-algebra
generated by

{Ξ(t),e0(u)
u∈[ t−Gt

Dt−Gt
,1]}

∨
{ei, i ≥ 1}

∨
{(τu+St − τSt)u≥0}

where St = 1
K′(t) = inf{u > 0 : τu > t} the first passage level across t. Whereas, the

process (Ξ(u) : u ≤ t) is measurable with respect to

{Ξ(t),e0(u)
u∈[0, t−GtDt−Gt ]

}
∨
{ei, i ≤ −1}

∨
{(τu)u≤St}
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Markovian structure in the concave majorant of Brownian motion

Using the fact that (t, τt)t≥0 is a strong Markov process, and the independence of
increments of τ , we have that conditionally on St, the process (τu+St − τSt)u≥0 and
(τu)u≤St are independent. Moreover, by the Markov property of e0 and the form of its
transition function, it is not hard to see that Ξ is a time-homogenous Markov process.
The description of its semigroup is given by the two cases; In the first case when the
time increment is smaller than the remaining time until the next vertex Dt− t, this is just
a restating of the fact that the distribution of a standard Brownian excursion conditioned
on having a specific value at a point in the interior of [0, 1] is just a concatenation of
two three-dimensional Bessel bridges. The second part follows from Williams path
decomposition, as conditionally on Ξ(t), the process (K ′(t)u−B(u+Dt) +B(Dt))u≥0 is
a three-dimensional Bessel process with drift K ′(t).

3 Fixed slope analysis

We give in this section the proofs of the two independent results in Theorems 1.4
and 1.5. But first, let us recall some previous results from [15] regarding a sequential
description of the faces of Brownian paths. We start with a definition

Definition 3.1. We say that a sequence of random variables (τn, ρn)n≥0 satisfies the
(τ, ρ)-recursion if for all n ≥ 0

ρn+1 = Unρn and τn+1 =
τnρ

2
n+1

τnZ2
n+1 + ρ2

n+1

where (Un, Zn)n≥0 is an i.i.d sequence with common law U([0, 1])⊗N (0, 1), and indepen-
dent of (τ0, ρ0).

We have the following theorem from [15]

Theorem 3.2 ([15],Corollary 20). Let (B(t))t≥0 be a standard linear Brownian motion.
Fix r > 0, set ρ0 := r and let ρ1 > ρ2 > · · · > 0 be the intercepts at 0 of the linear
segments of the concave majorant of (B(t), 0 ≤ t ≤ Tr) where Tr := inf{t ≥ 0 : B(t) = r}
and let τ0 := Tr > τ1 > · · · > 0 denote the decreasing sequence of times t such that
(t, B(t)) is a vertex of the concave majorant of (B(t), 0 ≤ t ≤ Tr). Then, the sequence of
pairs (τn, ρn)n≥0 follows the (τ, ρ)-recursion.

Let us now prove Theorem 1.4

Proof of Theorem 1.4. Recall that τ0 := σ1, ρ0 := B(τ0)−τ0, and the sequence (τn, ρn)n≥0

is defined in equations (1.2) and (1.3). Let (Mn := ∆κn
∆τn

)n≥1 be the decreasing sequence
of slopes of K that are greater than 1. By Groeneboom Poisson description in Theorem

2.1, it follows that the point process of inverse slopes
(

1
Mn

)
n≥1

is a Poisson point process

on (0, 1) with intensity measure of density dr
r with respect to the Lebesgue measure. It

follows thus easily by the stick-breaking description that there exists a sequence (Ûn)n≥1

of i.i.d uniform random variables on [0, 1] such that

Mn =

n∏
i=1

Ûi

Furthermore, conditionally on the sequence (Mn)n≥1, the sequence of time-spacings

(∆τn)n≥1 is distributed as ( Q̂nM2
n

)n≥1 where (Q̂n)n≥1 is an i.i.d sequence of random vari-

ables with law χ2
1, that is independent of the sequence (Ûn)n≥1. This follows from the

fact that the time-spacing corresponding to an inverse slope r has density t→ 1
r
√
t
φ
(√

t
r

)
,
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Markovian structure in the concave majorant of Brownian motion

which is the density of r2χ2
1. Thus, as

τ1 =

∞∑
j=2

∆τj =

∞∑
j=2

Q̂i
M2
i

, and κ1 =

∞∑
j=2

Q̂i
Mi

it follows that

(τ1,∆τ1, κ1,∆κ1)
d
= (U2τ0, U

2Q,Uκ0, UQ)

where the pair (U,Q) is independent of (τ0, κ0) and has law U([0, 1])⊗ χ2
1. In fact, we can

say more, if we define the variables

τ̃0 =
(∆κ1)2

(∆τ1)2
, κ̃0 =

∆κ1

∆τ1
κ1, Ũ =

∆τ1
∆κ1

, Q̃ =
(∆κ1)2

∆τ1
(3.1)

Then

(τ̃0, κ̃0, Ũ , Q̃)
d
= (τ0, κ0, U,Q)

Similarly we define ρ̃0 := κ̃0 − τ̃0. Now we move on to find the second identity in
distribution. From Williams path decomposition, it is clear that

(B−1(t), 0 ≤ t ≤ σ1|σ1 = τ0, B−1(σ1) = ρ0)

has the same distribution as a Brownian first passage bridge from (0, 0) to (τ0, ρ0). Hence,
by applying Theorem 3.2 the sequence (τn, ρn)n≥0 follows the (τ, ρ)-recursion. Thus we
can write

ρn+1 = Un+1ρn, τn+1 =
τnρ

2
n+1

τnQn+1 + ρ2
n+1

where (Un, Qn)n≥0 is an i.i.d sequence of common law U([0, 1]) ⊗ χ2
1 independent of

(τ0, ρ0). Now, by using the equalities in (3.1), we see that

(τ0, ρ0, U1, Q1) = h(τ̃0, ρ̃0, Ũ , Q̃)
d
=h(τ0, ρ0, U,Q)

which proves the first part. Finally, it suffices to notice that

ρ2
1

τ1
= Q1 +

U2
1 ρ

2
0

τ0
=
ρ̃0

2

τ̃0

d
=
ρ2

0

τ0
and that

ρ2
n+1

τn+1
= Qn+1 +

U2
n+1ρ

2
n

τn

for all n ≥ 0 to see that ( ρn√
τn

)n≥0 is a stationary Markov chain. On the other hand, we
also have the identity

κ2
1

τ1
=
κ̃0

2

τ̃0

d
=
κ2

0

τ0

Now, by the same reasoning as before, conditioning on the slopes (Mn)n≥0, we obtain
the following identity in law

(τn+1,∆τn+1, κn+1,∆κn+1)
d
=

(
U2τn
M2
n

,
U2Q

M2
n

,
Uκn
Mn

,
UQ

Mn

)
where on the right-hand side (Mn, τn, κn) is independent of (U,Q). It follows easily
that ( κn√

τn
)n≥0 is stationary, while clearly being non-Markovian from the (τ, ρ)-recursion

equalities.

We finish this section now by proving the Theorem 1.5 about the pseudo-meanders.
We prove the statement for each of the meanders separately.
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Proof of Theorem 1.5 for B̃me. From Williams path decomposition we know that

(B−µ(t), 0 ≤ t ≤ σµ|σµ = T,B−µ(σµ) = y)

has the same distribution as a Brownian first passage bridge from (0, 0) to (T, y). Hence,
using the representation of first passage bridges in terms of three-dimensional Bessel
bridges (See [5]), and Brownian scaling, we have that(

B̃me(u), 0 ≤ u ≤ 1|σµ = T,B−µ(σµ) = y
)

d
=(

BES0(3)(t), 0 ≤ t ≤ 1|BES0(3)(1) =
y√
T

) (3.2)

Hence(
B̃me(u), 0 ≤ u ≤ 1|B̃me(1) = r

)
d
=
(
BES0(3)(t), 0 ≤ t ≤ 1|BES0(3)(1) = r

)
(3.3)

It follows thus that the law of B̃me is absolutely continuous with respect to the law of
BES0(3). From Williams path decomposition, we have that

(µ2σµ, µB(σµ))
d
= (χ2

3β
2
1,2, χ

2
3β1,2) (3.4)

where on the right hand side χ3 and β1,2 are independent. Hence, it follows that

B̃me(1)
d
=χ3(1− β1,2), and hence its density is equal to

fB̃me(1)(t) = 4tΦ(t), t > 0

The Radon Nikodym derivative then follows from dividing this last density by 2t2φ(t); the

density of BES0(3)(1)
d
=χ3.

Before proving the second part of Theorem 1.5 for the second meander, we will prove
the following lemma

Lemma 3.3. Let R be a three-dimensional Bessel bridge from (0, 0) to (1, r), and let
0 ≤ m ≤ r, then for all k ≥ 0, we have

(R(u) + ku, 0 ≤ u ≤ 1|M(R) = m)
d
= (W (u), 0 ≤ u ≤ 1|M(W ) = m+ k)

where W is a three-dimensional Bessel bridge from (0, 0) to (1, r + k).

Proof. The key idea is to provide a path decomposition of the Bessel bridge at the time
it reaches its minslope. For that purpose, we use an argument of time-inversion. We
introduce the process Y defined as

Y (t) := (1 + t)R

(
1

1 + t

)
, t ≥ 0

Y is a BESr(3) (a three-dimensional Bessel process started at r). Let S := argmint≥0Y (t)

and ζ = inft≥0 Y (t). By Williams path decomposition of a Bessel process when it reaches
its ultimate minimum (see [23]), we have that given {ζ = m}, the two processes

(X1(t) := Y (S + t)− ζ, t ≥ 0) and (X2(t) := Y (t), 0 ≤ t ≤ S)

are independent, with X1 is a BES0(3), while X2 is a Brownian motion started at r and
killed when it first hits m. As

B(R) =
1

1 + S
and M(R) = ζ
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By conditioning further on {S = T}, the law of X1 remains that of BES0(3), whereas
X2 has now the law of a first passage bridge between (0, r) and (T,m), and by using
the theorem in the introduction of [5], we get that given {S = T, ζ = m}, X2 −m is a
three-dimensional Bessel bridge from (0, r −m) to (T, 0). Hence given {S = T, ζ = m} =

{B(R) = β,M(R) = m} where β = 1
1+T , we have that

(R(s)−ms, 0 ≤ s ≤ β|B(R) = β,M(R) = m) =(
sX1

(
β − s
βs

)
, 0 ≤ s ≤ β|S = T, ζ = m

)
(3.5)

However, by the path transformation that maps the Bessel processes to Bessel bridges
(see the end of [18]), the process on the right-hand side of (3.5) is a Brownian excursion
of length β. Similarly, we have that

(R(s+ β)−R(β)−ms, 0 ≤ s ≤ 1− β(R)|B(R) = β,M(R) = m) =(
(s+ β)X2

(
1− β − s
s+ β

)
, 0 ≤ s ≤ 1− β|S = T, ζ = m

)
(3.6)

and the law of the right-hand side process is that of a Bessel bridge between (0, 0) and
(1− β, r −m). Applying this path decomposition to both the processes R and W we get
that

(R(u) + ku, 0 ≤ u ≤ 1|M(R) = m,B(R) = β)
d
=

(W (u), 0 ≤ u ≤ 1|M(W ) = m+ k,B(W ) = β)
(3.7)

To finish our proof, it suffices to prove that:

(B(R)|M(R) = m)
d
= (B(W )|M(W ) = m+ k)

However by referring to the time-inversion argument using Y and its path decomposition,
proving this assertion is the same as showing that the distribution of the hitting time of a
BM started at r (resp. r + k) of the level m (resp. m+ k) are the same, which is true.

We can now finish the proof of Theorem 1.5

Proof of Theorem 1.5 for B̂me. By definition we have that

B̌me(u) = B̃me(u) + µ
√
σµu, 0 ≤ u ≤ 1

Let us condition on the value of {B−µ(σµ), σµ,M(B̂me)}, we have then that

(B̌me(u), 0 ≤ u ≤ 1|B−µ(σµ) = y, σµ = T,M(B̂me) = m) =

(B̃me(u) + µ
√
Tu, 0 ≤ u ≤ 1|B−µ(σµ) = y, σµ = T,M(B̃me) = m− µ

√
T )

Using the equality in law in (3.3), we deduce that

(B̌me(u), 0 ≤ u ≤ 1|B−µ(σµ) = y, σµ = T,M(B̂me) = m)
d
=

(Y (u) + µ
√
Tu, 0 ≤ u ≤ 1|Y (1) =

y√
T
,M(Y ) = m− µ

√
T )

where Y
d
= BES0(3). Using now Lemma 3.3, we have that

(B̌me(u), 0 ≤ u ≤ 1|B−µ(σµ) = y, σµ = T,M(B̂me) = m)
d
=

(Y (u), 0 ≤ u ≤ 1|Y (1) =
y√
T

+ µ
√
T ,M(Y ) = m)
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Now, since B̂me(1) = y√
T

+ µ
√
T given that {B−µ(σµ) = y, σµ = T}, we deduce that

(B̌me(u), 0 ≤ u ≤ 1|B̂me(1) = r,M(B̂me) = m)
d
=

(Y (u), 0 ≤ u ≤ 1|Y (1) = r,M(Y ) = m)

Hence, B̂me is absolutely continuous with respect to the law of the three-dimensional
Bessel process on [0, 1]. To find the expression of the Radon-Nikodym it suffices the
compute the ratio of both the joint densities of (B̂me(1),M(B̂me)) and (Y (1),M(Y )). First,
see that from the arguments of the proof of the first part of Theorem 1.5, given that
Y (1) = r, M(Y ) has the same distribution as the infimum of a BESr(3) which is uniform
on [0, r], hence (

Y (1),
M(Y )

Y (1)

)
d
= (χ3, U) (3.8)

where χ3 and U are independent, with U ∼ U([0, 1]). On the other hand, from (3.2),
we have that given (σµ, B−µ(σµ)), B̃me is a Bessel bridge between (0, 0) and (1, B̌me) =

(1,
B−µ(σµ)√

σµ
), hence by using the observation in (3.8), we get that Uµ := M(B̃me)

B̃me(1)
is inde-

pendent from (σµ, B−µ(σµ)) and is uniform on [0, 1], however

M(B̂me) = M(B̃me) + µ
√
σµ = Uµ

B−µ(σµ)
√
σµ

+ µ
√
σµ = Uµ

B(σµ)
√
σµ

+ µ
√
σµ(1− Uµ)

Using the factorization of Proposition in (3.4), we get that:

M(B̂me) = Uµχ3 + (1− Uµ)χ3β1,2 and B̂me
1 = χ3

where all the random variables appearing are independent, thus(
B̂me

1 ,
M(B̂me)

B̂me
1

)
= (χ3, β1,2(1− Uµ) + Uµ)

d
= (χ3, β2,1)

Dividing the joint densities of those two pairs gives us the expression desired of the
density of B̂me with respect to Y .

4 2K −B conjecture

As pointed out in the introduction, the processes 2K −B and BES0(5) have the same
one-dimensional marginal distribution at each time t ≥ 0, that is the distribution of

√
tχ5.

Not only that, these two processes share some more common properties, such as having
the same quadratic variation, and being invariant under both Brownian scaling and time
inversion. The hope behind the previous Markovian analysis was to use the process Ψ

and the theory of Markov functions (see [20]) to show that these two processes were
identical in law. However, the complexity of the transition probabilities of the process
Ψ makes checking the intertwining condition a very complicated task. The following
proposition further support the conjecture 1.3 by showing that, in some sense, the
processes 2K −B and BES0(5) have locally the same law.

Proposition 4.1. Let ϕ be a twice continuously differentiable function with compact
support on (0,∞), and z > 0 then

lim
h↓0

1

h
(E[ϕ(2K(1 + h)−B(1 + h))− ϕ(2K(1)−B(1))|2K(1)−B(1) = z]) =

2

z
ϕ′(z) +

1

2
ϕ′′(z)

EJP 27 (2022), paper 57.
Page 16/21

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP769
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Markovian structure in the concave majorant of Brownian motion

Proof. By conditioning on the value of the 4-tuple (K ′(1),K(1),K(1) − B(1), D1 − 1) =

(a, k, y, ω) where D1 is the first vertex of K after time 1. We need to find

lim
h↓0

1

h

∫
(E[ϕ(2K(1 + h)−B(1 + h))− ϕ(2K(1)−B(1))∣∣∣K ′(1) = a,K(1) = k,K(1)−B(1) = y,D1 − 1 = ω)×

P(K ′(1) ∈ da,K(1)−B(1) ∈ dy,D1 − 1 ∈ dω|2K(1)−B(1) = z)])

with k = z − y. By Theorem 1.2, we have an explicit description of the semi-group of the
process Ψ. In particular, its transition probabilities have a simpler form for short times
(before encountering the next vertex of the concave majorant). More precisely, we have
that the law of the process

(K(1 + u)−B(1 + u), 0 ≤ u ≤ ω|(K ′(1),K(1),K(1)−B(1), D1 − 1) = (a, k, y, ω)) (4.1)

is that of a three-dimensional Bessel bridge from (0, y) to (ω, 0). We denote the process
in (4.1) by Z. By the space-time transform that maps Bessel bridges to Bessel processes,
the process Z has the same distribution as

(Z(u), 0 ≤ u ≤ ω)
d
= (
√
ω
(

1− u

ω

)
R

(
u

ω − u

)
, 0 ≤ u ≤ ω)

where R is a three-dimensional Bessel process started from y√
ω

at time zero. As K is

linear on the interval [1, 1 + ω], it follows that conditionally on

A := {K ′(1) = a,K(1) = k,K(1)−B(1) = y,D1 − 1 = ω}

we have the following equality in law

(2K(1 + u)−B(1 + u), 0 ≤ u ≤ ω)
d
= (k + au+

√
ω
(

1− u

ω

)
R

(
u

ω − u

)
, 0 ≤ u ≤ ω)

Hence for h small enough, we have

E[ϕ(2K(1 + h)−B(1 + h))|A] =

E

[
ϕ

(
k + ah+

√
ω

(
1− h

ω

)
R

(
h

ω − h

))
|R(0) =

y√
ω

]
However, almost surely

ϕ

(
k + ah+

√
ω

(
1− h

ω

)
R

(
h

ω − h

))
− ϕ

(
k +
√
ωR

(
h

ω − h

))
=(

a− 1√
ω
R

(
h

ω − h

))
hϕ′(ξh)

for a random ξh such that∣∣∣∣ξh − (k +
√
ωR

(
h

ω − h

))∣∣∣∣ ≤ (a− 1√
ω
R

(
h

ω − h

))
h

Hence ξh → k + y = z almost surely as h→ 0. Hence we have that

E[ϕ(2K(1 + h)−B(1 + h))|A] =

E

[
ϕ

(
k +
√
ωR

(
h

ω − h

))
|R(0) =

y√
ω

]
+
(
a− y

ω

)
ϕ′(z)h+ o(h)

(4.2)
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The error is controlled by the fact that ϕ has a compact support, and the stochastic
continuity of the Bessel process R. Now, the Bessel process R is known to verify the
following SDE

dR(t) = dβ(t) +
dt

R(t)

where β is a Brownian motion. Hence, by Itô formula for any C2 function ψ, we have

dψ(R(t)) = ψ′(R(t))dβ(t) +

(
ψ′(R(t))

R(t)
+

1

2
ψ′′(R(t))

)
dt

Hence

ψ

(
R

(
h

ω − h

))
− ψ(R(0)) =

∫ h
ω−h

0

ψ′(R(s))dβ(s) +

∫ h
ω−h

0

(
ψ′(R(s))

R(s)
+

1

2
ψ′′(R(s))

)
ds

By taking the expectation, we get that

E

[
ψ

(
R

(
h

ω − h

))
|R(0) =

y√
ω

]
= ψ

(
y√
ω

)
+
h

ω

ψ′
(

y√
ω

)
y√
ω

+
1

2
ψ′′
(

y√
ω

)+O(h2)

Now, by taking ψ(·) = ϕ(k +
√
ω × ·), we get

E

[
ϕ

(
k +
√
ωR

(
h

ω − h

))
|R(0) =

y√
ω

]
= ϕ(z) +

h

ω

(
ω
ϕ′(z)

y
+

1

2
ωϕ′′(z)

)
+O(h2)

which can be simplified to

E

[
ϕ

(
k +
√
ωR

(
h

ω − h

))
|R(0) =

y√
ω

]
= ϕ(z) + h

(
ϕ′(z)

y
+

1

2
ϕ′′(z)

)
+O(h2) (4.3)

Hence from (4.2) and (4.3), we get

E[ϕ(2K(1 + h)−B(1 + h))|A] = ϕ(z) + h

((
a+

1

y
− y

ω

)
ϕ′(z) +

1

2
ϕ′′(z)

)
+O(h2)

To finish the proof, we need thus to evaluate

E

[
K ′(1) +

1

K(1)−B(1)
− K(1)−B(1)

D1 − 1

∣∣∣2K1 −B1 = z

]
Now, from Proposition 1.1, we have that the joint density of (K ′(1),K(1)−K ′(1),K(1)−
B(1)) at (a, b, y) is given by

f(K′(1),K(1)−K′(1),K(1)−B(1))(a, b, y) = 4y(a+ b+ y)φ(a+ b+ y)1a,b,y>0

It follows then that the joint density of (K ′(1),K(1) − B(1), 2K(1) − B(1)) at (a, y, z) is
given by

f(K′(1),K(1)−B(1),2K(1)−B(1))(a, b, z) = 4yzφ(z)1a+y<z,a,y>0

By integrating out separately both y and a, we get that

f(K′(1),2K(1)−B(1))(a, z) = 2(z − a)2zφ(z)10<a<z

and

f(K(1)−B(1),2K(1)−B(1))(y, z) = 4y(z − y)zφ(z)10<y<z
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Markovian structure in the concave majorant of Brownian motion

However, it was shown that the density of 2K(1)−B(1) is that of χ5, i.e f2K(1)−B(1)(z) =
2
3z

4φ(z). Hence,

fK′(1)|2K(1)−B(1)=z(a) = 3
(z − a)2

z3
10<a<z

and

fK(1)−B(1)|2K(1)−B(1)=z(y) =
6y(z − y)

z3
10<y<z

Thus

E[K ′(1)|2K(1)−B(1) = z] =
z

4
and E

[
1

K(1)−B(1)
|2K(1)−B(1) = z

]
=

3

z

However, from Proposition 1.1, we have that the density of D1 − 1 at ω given that
(K ′(1),K(1)−B(1), 2K(1)−B(1)) = (a, y, z) is

a(y + (z − a)ω)√
2πω3z

exp

(
− (y − aω)2

2ω

)
and as the joint density of (K ′(1),K(1) − B(1)) at (a, y) given that 2K(1) − B(1) = z is
equal to

f(K′(1),K(1)−B(1))|2K(1)−B(1)=z(a, y) =
6y

z3
1a+y<z,a,y>0

then the density of (K ′(1),K(1)−B(1), D1 − 1) at (a, y, ω) given that 2K(1)−B(1) = z is
given by

f(K′(1),K(1)−B(1),D1−1)|2K(1)−B(1)=z(a, y, ω) =
6ay(y + (z − a)ω)√

2πω3z4
exp

(
− (y − aω)2

2ω

)
To finish the proof, we just need to evaluate the following integral∫ ∫ ∫

6ay2(y + (z − a)ω)√
2πω5z4

exp

(
− (y − aω)2

2ω

)
1y+a<z,y,a,ω>0dydadω

By integrating out first with respect to ω we get the expression∫ z

0

da

∫ z−a

0

(
6a

z4
+

6ay

z3

)
dy

which is easily seen to give the value

1

z
+
z

4

This ends the proof.

Remark 4.1. It is well known that the generator of BES0(5) is given by the differential

operator 2
z
d
dz + 1

2
d2

dz2 . Hence, the only remaining part of the conjecture that is left to prove
is to show that 2K − B is a Feller process (a Markov process with sufficiently regular
semigroups). As was pointed out in the discussion prior to the statement of Proposition
4.1, applying the theory of Markov functions on the process Ψ and the projection map
π : (a, k, y, ω) 7→ k + y is challenging due to the complicated form of the semigroup of
Ψ. The second part of the semigroup (after the next vertex of the concave majorant)
that involves the convex minorant of the three-dimensional Bessel process with drift,
is particularly involved as is seen from the densities in Proposition 1.3. In theory, one
should be able to express the joint law of (2K(s)−B(s), 2K(t)−B(t)) for any s < t as a
six-dimensional integral from the results of Theorem 1.2 and Proposition 1.3, but this
seems out of reach of our computational expertise.
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Markovian structure in the concave majorant of Brownian motion

Another difficulty that arises in trying to prove the Markovian property is the filtering
problem associated with the canonical filtration of the process 2K −B. Indeed, given
the σ-algebra generated by {2K(u)− B(u) : u ≤ t}, it is not clear at all how to extract
any information on either the path of B or K on [0, t], this is mainly due to the fact that
K depends on the whole path of B and the algebraic structure of the linear combination
2K −B. In comparison, the 2M −B statement can be proved by using the fact that the
map

Φ : C∞([0,∞))→ C∞([0,∞))

f 7→ Φ(f)(t) = 2 max
0≤s≤t

f(s)− f(t)

where C∞([0,∞)) is the space of continuous functions on [0,∞) such that supt≥0 f(t) =

+∞, admits an inverse given by

Φ−1 : C∞([0,∞))→ C∞([0,∞))

f 7→ Φ(f)(t) = 2 inf
s≥t

f(s)− f(t)

We refer the reader to [19][Theorem 3.5] for details about the proof. Unfortunately,
such an inversion is not possible in the 2K − B setting, and so it is not clear what
part of the information is lost when we go from the filtration {K(u), B(u) : u ≤ t} to
{2K(u) − B(u) : u ≤ t}. One approach to analyze 2K − B is to look for a filtration
(Gt)t≥0 in which this process is a semi-martingale with a manageable decomposition.
One candidate would be the following

Gt := Ft
∨
{K(u) : u ≥ 0} for t ≥ 0

where (Ft)t≥0 is the canonical Brownian filtration. In this filtration, K is an adapted and
continuous increasing process, and K − B is a concatenation of Brownian excursions
whose lengths are determined by K. Hence, both K−B and 2K−B are semi-martingales
in this filtration. However, it does not seem easy to settle wether or not 2K−B is Markov
from this perspective, and one would perhaps need to consider a more subtly enlarged
filtration instead of (Gt)t≥0 above.
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