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Abstract

We consider a branching random walk (BRW) taking its values in the b-ary rooted tree
W (i.e. the set of finite words written in the alphabet {1,...,b}, with b>2). The BRW
is indexed by a critical Galton-Watson tree conditioned to have n vertices; its offspring
distribution is aperiodic and is in the domain of attraction of a ~-stable law, v € (1, 2].
The jumps of the BRW are those of a nearest-neighbour null-recurrent random walk on
W (reflection at the root of Wi, and otherwise: probability 1/2 to move closer to the
root of W;, and probability 1/(2b) to move away from it to one of the b sites above). We
denote by Ry(n) the range of the BRW in W;, which is the set of all sites in W;, visited
by the BRW. We first prove a law of large numbers for #Rs(n) and we also prove
that if we equip Rs(n) (which is a random subtree of W;) with its graph-distance dg,
then there exists a scaling sequence (an)nen satisfying a, — oo such that the metric
space (Ry(n), a;, 1dgr), equipped with its normalised empirical measure, converges to
the reflected Brownian cactus with vy-stable branching mechanism: namely, a random
compact real tree that is a variant of the Brownian cactus introduced by N. Curien,
J-F. Le Gall and G. Miermont in [7].
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1 Introduction

Since the seventies, branching random walk (BRW) is an area of research that is inten-
sively studied and is linked to travelling wave solutions of semi-linear partial differential

*N. Torri was supported by the project Labex MME-DII (ANR11-LBX-0023-01).

TSorbonne Université and Université de Paris, CNRS, Laboratoire de Probabilités, Statistique et Modélisation,
F-75005 Paris, France. E-mail: thomas.duquesne@sorbonne-universite.fr

*Sorbonne Université and Université de Paris, CNRS, Laboratoire de Probabilités, Statistique et Modélisation,
F-75005 Paris, France. E-mail: robin.khanfir@sorbonne-universite.fr

$Sorbonne Université and Université de Paris, CNRS, Laboratoire de Probabilités, Statistique et Modélisation,
F-75005 Paris, France. E-mail: shen.lin@sorbonne-universite.fr

fUniversité Paris-Nanterre, Laboratoire MODAL'X, UMR CNRS 9023 and FP2M, CNRS FR 2036, France.
E-mail: ntorri@parisnanterre.fr


https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/22-EJP741
https://ams.org/mathscinet/msc/msc2020.html
mailto:thomas.duquesne@sorbonne-universite.fr
mailto:robin.khanfir@sorbonne-universite.fr
mailto:shen.lin@sorbonne-universite.fr
mailto:ntorri@parisnanterre.fr

Scaling limits of tree-valued BRW

equations (FKPP) or various models of statistical mechanics (Generalized random energy
model, Mandelbrot’s cascades, Gaussian free field): we refer to the book of Z. Shi [31]
for an overview of this topic; we also refer to the works of S. Gouézel, I. Huerter, S. Lalley
and T. Sellke [20, 17, 19, 16] for the study of BRW in hyperbolic spaces and to T. Liggett
[27] and to I. Benjamini and S. Miiller [4] for branching random walks on trees. In most
of the previous works, BRWs are indexed by an infinite supercritical Galton-Watson tree
(GW-trees) and questions focus on various survival events or extremal behaviours of
BRWs.

In this paper, we consider instead a BRW that takes its values in the b-ary tree W,
and that is indexed by a critical Galton-Watson tree conditioned to have n vertices. The
jumps of the BRW are those of a nearest-neighbour null-recurrent RW on W,. Namely, at
the root of W, (that is denoted by @), it is reflected and elsewhere, with probability 1/2,
it jumps to the neighbour closer to the root of W;, and with probability 1/(2b), it moves
further from the root of W, and it jumps to one of the b sites above. We study the range
Ru(n) of this BRW when n— oco. More precisely, we first show that +#R,(n) converges
in probability to a constant; this law of large numbers is the analogue of the results due
to J-F. Le Gall and L. [23, 24] who treat the cases of Z¢-valued BRWs that are indexed
by critical GW-trees conditioned to have n vertices. We then prove that Ry(n), seen
as a subtree of the b-ary tree, converges, when it is suitably rescaled, to a continuum
random tree called the reflected Brownian cactus with v-stable branching mechanism:
namely, a random compact real tree that is a variant of the Brownian cactus introduced
by N. Curien, J-F. Le Gall and G. Miermont in [7].

This limit theorem for Ry (n) is related to earlier works on scaling limits of the range
of tree-valued critical or near-critical biased random walks (RWs): in particular we
refer to D. [12] who deals with near-critical biased RWs on b-ary trees, to Y. Peres and
O. Zeitouni [30] who show that the distance to the root of a critical biased RW in a
Galton-Watson environment is diffusive, to A. Dembo and N. Sun [8] who study the cases
of critical biased RWs on N-type GW-trees, to E. Aidékon and L. de Raphélis [2] who
improve Y. Peres and O. Zeitouni’s result and who show that the range of the same RW
converges when suitably rescaled, to a variant of the Brownian CRT, and to X. Chen
and G. Miermont [6] who show that rescaled Brownian bridges and loops in hyperbolic
spaces converge to the Brownian CRT. Their work is based on a previous results due to
P. Bougerol and T. Jeulin [5]. Independently, A. Stewart shows in his PhD Thesis [32] that
the rescaled simple RW bridges on a d-regular tree (d > 3) converge to the Brownian
CRT.

Let us describe more precisely the results that we obtain. We consider a (rooted and
ordered) Galton-Watson tree T with offspring distribution u that satisfies the following:
we fix y€ (1, 2] and we assume

(Hy) : Zkem ku(k) =1,
(Hs) : u is aperiodic (namely, 4 is not supported by a proper subgroup of Z),
(H3) : Either y=2and ), .y k*u(k) <oo, or y€(1,2) and y is in

the domain of attraction of a y-stable law.

(H)

(1.1)
Note that (H;) implies that a.s. the total number of vertices #r7 is finite; (Hs) implies
that for all large enough integers n, P(#7=n)>0. We translate (Hj3) into the following
assertion: let (L, ),en be an i.i.d. sequence of ({~1}UIN)-valued random variables such
that P(L,=k)=u(k + 1), k>—1 and let X be a real random variable whose law is spec-
trally positive -stable; it is characterised by its Laplace exponent: log E[exp(—AX)]=A\",
A€[0,00). Then under (Hj), there exists a nondecreasing 7Tfl-regularly varying sequence
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(an)nen such that

[e2% (law)
(Li+...+L,—n) —— X . (1.2)

n n— 0o

As we see below, under (H), 7 behaves regularly when it is conditioned to be large:
namely, we see that suitably rescaled versions of 7 under P(-|#7 = n) converge in
distribution when n— oo.

Conveniently, we view 7 as a family tree whose ancestor is the root and where
siblings are ordered by birth-rank. The depth-first exploration of 7 is the sequence
of vertices (uy)o<r<#- that is defined recursively as follows: ug is the root and for all
keA{0,...,#7—2}, let v be the most recent ancestor of u; having at least one unexplored
child (note that possibly v=1uy); then uy4; is the unexplored child of v with least birth-
rank. Our first result is the following law of large numbers for the size of the range of
the Wy-valued 7-indexed critical branching random walk (see Sections 2 and 3 for more
precise definitions).

Theorem 1.1. Let 7 be a Galton-Watson tree with offspring distribution u that satisfies
(H). Recall that (ux)o<k<#- Stands for the depth-first exploration of 7. Conditionally
given 7, let (Y,),e, be a Wy-valued 7-indexed critical branching random walk starting at
Yroot =@. Then, there exists a constant c,,y, € (0, 00) that only depends on ;1 and b such
that

: 1 . _ _
vee (0, 00), nlgr;OP(E1rgnkaécn|#{Yul,0§l<k} — cunk| > gl#f_n) -0, (1.3)
In particular, for all € € (0,00), we get lim, o P(|2#Ry — | > | #7=n) =0, where
Ry stands for the range {Y,;v€7} of the branching random walk.

Let 7, (Yy)ver and Ry ={Y,;v€7} be as in Theorem 1.1. Observe that R, is a subtree
of W,. Our second main result is a limit theorem for rescaled versions of the metric
spaces (Ry,dgr) Where dg, stands for the graph-distance. To state it, let us first recall
a limit theorem for (7,dg.). Set Hy(7) = dg(root,uy) for all k € {0,...,#7—1}, that is
the height process of 7. Note that H(7)= (Hk(T))ke{() .4-_1) entirely codes 7. Then,

Theorem 3.1 in D. [11] asserts the following: assume (H) as in (1.1) and let (a,,) be as
in (1.2); then there is a nonnegative continuous process H = (H;)4co,1] such that

(= Hns) (T))Se[oyl] under P( - |#7=n) — H, (1.4)
weakly on C([0,1],R). When y=2, H is the normalised Brownian excursion and this
result is due to Aldous (see Theorem 23 in Aldous [3]). When v € (1,2), H is the
normalised excursion of the v-stable height process that is a local-time function of a
~-stable spectrally positive Lévy process.

The metric space that is the limit of (, aidgr) as n— oo is derived from the normalised
excursion of the v-stable height process H as follows: for all s1,82€[0, 1], we set

dH(Sl, 82) :I‘]Sl + Ifs2 -2 81/\822181231\/82 H,.
We easily check that a.s. dy is a pseudo-metric on [0, 1]. We introduce the relation ~ 5 on
[0, 1] by setting s; ~p so if and only if dy(s1, s2) =0; clearly, ~y is an equivalence relation
and the normalised ~-stable Lévy tree is taken as the quotient space Ty = [0, 1]/ ~g,
equipped with the distance induced by dy that we keep denoting dy. We denote by
pr :[0,1] — Ty the canonical projection. Note that py is continuous; therefore Ty is
compact and connected. Moreover, Ty is a real tree, namely, a metric space such that
all pairs of points are joined by a unique simple arc that turns out to be a geodesic (see
Definition 4.6 for more details). We set g :=pp(0) that is viewed as the root of Ty and
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we equip Ty with the measure py that is the image of the Lebesgue measure on [0, 1]
via py, namely, ‘[TH fdug= fol f(pu(s))ds, for all continuous f:Ty — R. The convergence
(1.4) then implies the following one.

(1, Ldge,root, im) under P(-|#r=n) —— (Tu.du,ra,1n) (1.5)
n n—oo
where m=}_ 4, stands for the counting measure on 7. Here the convergence holds

weakly on the space IM of isometry classes of pointed measured compact metric spaces
equipped with the Gromov-Hausdorff-Prokhorov distance dqyp that makes it a Polish
space, as proved in Theorem 2.5 of R. Abraham, J-F. Delmas and P. Hoscheit [1]. (See
(4.10) for a precise definition of dgxp and see (4.11) for more details.) For more details
on Lévy trees see J-F. Le Gall and Y. Le Jan [25] and D. and J-F. Le Gall [14, 13] (see also
Section 4.4).

The limit of rescaled versions of the metric spaces (Rx, dg:) is constructed as follows:
as proved in D. and J-F. Le Gall [13] (Lemma 6.4 p. 600, that is recalled in Lemma 4.32),
conditionally given H, there exists a Holder-continuous centered Gaussian process
o €Ty — W, € R whose covariance is characterised by E[|W,, — W, ]2‘ H|=dg(01,02),
for all 01,02 €Ty. Then, we set

Voi,00€TH, duw(o1,02) =W |+ |We,| — 2016%2111 J\Z]]VGL

where [o1,02] is the unique geodesic that joins oq to o9 in Ty. In Lemma 4.22, we
prove that dy w is a pseudo-metric on Tj; we then define the equivalence relation
~pgw on Ty by setting o1 ~py w o2 if and only if dg w(o1,02) =0 and we denote by
Ty w =T /~pnw the quotient metric space and we keep denoting by dy w the resulting
metric; we denote by 7y w : Ty — Ty,w the canonical projection that is continuous.
Thus Ty w is compact and connected, and (T w,dn w) is a real tree (see Section 4.6,
especially Proposition 4.34, for more properties of T ). It turns out that this kind of
spaces has been introduced in N. Curien, ].-F. Le Gall and G. Miermont [7] (see also
J.-F. Le Gall [22] for a different purpose); they coined the name Brownian cactus, so
we call (T, w,dm,w) the normalised reflected Brownian cactus with v-stable branching
mechanism. We next set rgw = mgw(rm) that is viewed as the root of T and
we equip Ty w with the measure pgw that is the image of uy via g w: namely,
fTH,WfdMHxW = fTHf(TFH’W(U)) wr(do), for all continuous f : Ty w — R. Our second
result is the following limit theorem.

Theorem 1.2. Let 7 be a Galton-Watson tree with offspring distribution u that satisfies
(H) as in (1.1). We denote bym=) . _§, the counting measure on T and we denote by
dg- the graph distance on 7. Conditionally given 7, let (Y,)ver be a Wy-valued T-indexed
critical branching random walk starting at Yyoor = @. We denote by Ry, = {Y,;v €7}
the range of Y, by m)..=%" _.0dy, the occupation measure of Y and by dg. the graph
distance on R,. We denote by (Ty,dy, T, tr) the normalised v-stable Lévy tree and
by Tuw,duw,ru,w,pa,w) the normalised reflected Brownian cactus with ~y-stable
branching mechanism as defined above. Let (a,,)ncn be as in (1.2). Then, the following

limit holds weakly on (IM, dgyp )?

((r & dgz,vo0t im) , (Ry, Amdge, @, Lml,,) ) under P(-|#7=n)

Va8t occ
(law)
— ((THadH;anuH)a (TH,WadH,WaTH,WvﬂH,W))- (1.6)

b

Moreover, denote by m2 ..

e€(0,00),

= ZzeRb 0, the counting measure on Ry; then, for all

lim P (g, (mb, tm,) >e | #7=n) =0,

occ’ p rcount
n—00 n n
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where ¢, is as in Theorem 1.1 and where di") stands for the Prokhorov distance on the
space of finite measures on (Rx, \/%dgr). It implies that the following limit holds jointly
with (1.6):

(Rb, A d,, @, tm® ) under P( ’#T:’I’L) & (TH,W7dH7WaTH,W;Cu}b-/JH,W)~

Va, 81 n count oo

Theorem 1.1 is the analogue of Proposition 5 and Theorem 7 in J-F. Le Gall and L. [24]
established for Z?-valued BRWs. Let us mention that our strategy of proof is similar: we
define a specific invariant shift for infinite tree-valued BRWs and we use the subadditive
ergodic theorem; the constant ¢, is interpreted as the probability that the invariant
BRW visits its starting point only once.

The proof of Theorem 1.2 is distinct from that of Theorem 1.1. On one hand, it relies
on general arguments on weak limits of random metrics (see Proposition 4.4). As an
application of these results, we prove that the range of critical biased RWs on N-type
supercritical GW-trees converges to the tree coded by a reflected Brownian motion (see
Corollary 4.16). This result is derived from a much more difficult result due to A. Dembo
and N. Sun [8] that asserts that the distance from the root of the RW converges, when
suitably rescaled, to a reflected Brownian motion. The same idea allows to recover
previous scaling limits for the range of RWs on supercritical GW-trees such as in D. [12]
(critical biased RWs on b-ary trees) or in E. Aidékon and L. de Raphélis [2] (biased
RWs and RWs in random environment on single-type GW-trees). We refer to the end of
Section 4.2 for more details. On the other hand, the proof of Theorem 1.2 uses limit
theorems for discrete snakes that have been obtained by S. Janson and J-F. Marckert in
[18] in the Brownian case and by C. Marzouk [29] in the stable cases.

Organization of the paper

The paper is organised as follows. In Section 2, we introduce notations on trees with
an infinite line of ancestors that constitute a natural state-space for invariant tree-valued
BRWs. In Section 3.1, we define the kinds of BRWs that we study; Section 3.2 is devoted
to metric properties of the range of the so-called free BRWs. In Section 3.3, we state a
coupling for BRWs that is a key argument in the proof of Theorem 1.1. In Section 3.4,
we prove estimates that are used mostly to prove that ¢, ;, >0. Theorem 1.1 is proved in
Sections 3.5 and 3.6. In Section 4.1, we prove general convergence results for random
metrics. In Section 4.2 we apply these results to get scaling limits for the range of RWs
on N-type GW-trees (see Corollary 4.16). In Section 4.3 we introduce snake metrics and
we prove specific results. In Sections 4.4 and 4.5, we recall definitions and properties on
stable Lévy trees and Lévy snakes. Section 4.6 is devoted to basic properties of reflected
Brownian cactuses. Theorem 1.2 is proved in Section 5.

2 Tree with a possibly infinite line of ancestors

Words. Recall that IN stands for the set of nonnegative integers {0, 1,2,...} and that
IN*=IN\{0}. Let A be a set with more than two elements that is viewed as an alphabet.
We denote by W, the finite words written with alphabet A: namely,

W, = U A" (2.1)

neN

Here, A" is taken as {@}, @ being the empty word. Let u=(ay,...,a,) € Wy be distinct
from @. We set |u|=n that is the height of u, with the convention that |&|=0. We next
set w = (ai,...,an—1) that is interpreted as the parent of u (if n= 1, then & =2). More
generally for all pe{1,...,n}, we set uj,=(a1,...,a,), with the convention: u,=@. For
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all v=(by,...,by) e Wy, we set u xv=_(aq,...,an,b1,...,by,) that is the concatenation of
u with v, with the convention that & * u=wu * @ =wu. We shall also define the most recent
common ancestor of v and v in W, as u A v=wu, =v|, where p=max{k €N : uj, =v);.}.
We shall consider three cases:
e A = IN*; in that case we use the notation U:=Wy, the letter U being for Ulam.
e A={1,...,b}, b being an integer > 2; we use the notation W, :=Wy; 1}; Wy is
the b-ary tree.
e A=[0,1]; we call Wy y; the free tree.
Definition 2.1. Rooted ordered trees can be viewed as subsets t C U that satisfy the
following.
(a) @Et.
(b) Ifuct\{@}, then % €t.
(¢) Foralluet, there exists k,(t) €IN such that ux(i) €t if and only if 1 <i<k,(t).
We denote by T the set of rooted ordered trees. O
The quantity &, (¢) is interpreted as the number of children of u and ux(4) is the i-th child
of u, 1<i<k,(t). If k,(¢t) =0, then there is no child stemming from « and assertion (c) is
empty. We next set the shift of ¢ at u by 0,t ={v €U : uxv €t} that is also a rooted ordered
tree: it is viewed as the subtree of the descendants stemming from u. Unless otherwise
specified, all the random variables that are mentioned in this paper are defined on the
same probability space (2, F, P).
Definition 2.2. We equip T with the sigma-field .% (T) generated by the sets {tcT:uct},
u€U. A Galton-Watson tree with offspring distribution i (a GW(u)-tree, for short) is a
(%, % (T))-measurable r.v. 7:Q— T that satisfies the following.
e ky(7) has law p.
e For all k> 1 such that p(k) >0, the subtrees 07, ...,0)T under P(-|kg(7) =k)
are independent with the same law as T under P. O

Recall that 7 is a.s. finite if and only if 4 is critical or subcritical: >, -, ku(k) <1.

Bilateral words. We shall consider branching random walks seen from the spatial and
genealogical position of a tagged individual. To that end, it is convenient to introduce
ordered trees that are rooted possibly at a negative generation and we also introduce
their local limits that may have an infinite line of ancestors. It is therefore convenient to
introduce words indexed by possibly negative numbers.

To simplify, we set Z_=Z\IN* and Z =7 U {—oc}. An A-bilateral word is a (possibly
infinite) sequence u = (a)k, <k<k, Where k; € (Z and ks € Z are such that ks > k; and
where a;, € A for all &y < k <ky. We denote by W4 the set of bilateral words, including
the empty word denoted by @ (if k1 > ko, then we agree on u=9). If u # &, we introduce
the following notation.

|u|— =k1, be the depth of v,

|u| = ks, be the relative height of u (note that it may take negative values),

U= (k) ky <k<k,—1 be the parent of u, (2.2)
Ul 1y 101 =(@k) by viy <k <kaAl »

end(u) = ay, ,
forall [, € % lo €7 such that [, < l5. To simplify, we also set

VieZ, U = U|(—o0,l]- (2.3)
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Let us stress that a bilateral word has at most a finite number of letters a; indexed by
positive indices, k € IN*, while it can have infinitely many letters indexed by negative
indices, k€ Z N7 _. Note that & has neither relative height nor depth. Note that if /; <k,
and k2 < lQ, then u‘(lhlz] =1U.

e Shift. For all | € Z, we denote the I-shift operator ¢;: W4 — W4 by:

oi(u) = (ak+l)k1—l<kgkrz,

Note that |¢;(u)|— =|u|-—1, that |p;(u)|=|u| — and that ¢;(@)=@2. Clearly, g0y =¢i1y,
oy is bijective and ¢; o ¢_; is the identity map.

e Concatenation. For all u=(ay)k, <k<k, € Wa and all v=(by)1<r<k, € Wa, we define

ag If k1 <k <ks,

bk}—k‘g If ko <k<ko + k3. (2.4)

u*v:(cl)kl<k§k2+k3 where Ck:{

The bilateral word u*wv is the concatenation of a bilateral word « on the left with a null
depth word v on the right. Note that |u*v|_ =|u|_, that |u*v|=|u| + |v| and that u* & =wu.

e Convergence in W,. Assume that (A4,d,) is a Polish space. We equip W, with the
following local convergence.

Let u” €Wy, peN; the sequence of words u” converges to u if |u'” |_ — |u|_ in Vi
and if for all | N and for all e €(0,1), there exists p; . €N such that for all p>p; .,
[u®|=u|, (=)V|u®|_-=(=1)V|u|- and MAX(_ 1)y |u|_<k<|u| DA (u;”), uk) <e.
It is easy to see that this convergence corresponds to a Polish metric and we equip
W, with the corresponding Borel sigma-field. Note that the shifts operators ¢; are
homeomorphisms with respect to local convergence. If A=IN*, we shall use the notation
U:=Wn-. If A={1,...,b}, we shall use the notation Wy,:=Wy; ;). Note that in these
cases, N* and {1,...,b} are equipped with the discrete topology.

Trees with infinite line of ancestors.

Definition 2.3. A non-empty subset R C W, is a subtree of W, if it satisfies the following.
(a) There exists |R|_ € 7 such that |v|-=|R|- for allve R\{@}.
(b) Forallve R\{@} such that [v|>|R|_, v €R.
(c) For allu and v in R, there exists | € Z such that u;=v); (see (2.3)). O

We call |R|_ the depth of the subtree R. If |R|_ > —o0, then (b) implies that the empty
word @ is an element of R and |R|_ 4 1=min,cp\ (2} [v|, (c) is always fulfilled since for
all [<|R|_ and allv € R, we get v;=@. If |R|_ = —o0, then @ ¢ R.

e Common ancestor. Recall from (2.3) the notation w|;. Let R C W, be a subtree as in
Definition 2.3. We define the common ancestor of u,v € R by

UNAV =Up(u,0)= Vjp(u,w) Where b(u,v):=max{l€Z : u;=uv}, (2.5)

that is well-defined thanks to Definition 2.3 (c).

e Graph distance on subtrees of W,. A subtree RC W4 as in Definition 2.3 corresponds
to the following graph-tree: its set of vertices is R and its set of edges is {{v, v };veR :
|v|>|R|_}. We easily observe that the graph distance d,; on R is given by

Ve, yeR, dg(x,y)=|z[+ |y| —2/zAy|. (2.6)

e Ordered trees with a possibly infinite line of ancestors. We next extend Definition 2.1
to ordered trees with a possibly infinite line of ancestors as follows.
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Definition 2.4. Recall the notation U:=Wy-. A subset t C U is an ordered tree (with a
possibly infinite line of ancestors) if it is a subtree of U as in Definition 2.3 satisfying (a),
(b) and (¢) with A=WN* and if it furthermore satisfies the condition that any word has a
finite number of children, that is,

(d) Yuet, k,(t)y=#{vet: v =u}<oo and {1,... k,(t)} ={end(v);vet: v =u} if k,(t)>1.
We shall consider that the singleton {@} is the only tree with one point. We denote by T
the set of ordered trees. O
For all k€ % we set Ty ={{2}} U {teT: |[t|_ =k}. Note that To=T, where T is as in
Definition 2.1 and observe that ¢_;(T)=T; when k£ > —oc.

e Lexicographical order and successor of a vertex. Let t € T. By Definition 2.3 (c), the
vertices of ¢ are totally ordered by the lexicographical order <; that is formally defined

as follows. Let u,v €t\{@}; recall from (2.5) the definition of b(u, v) and from (2.2) the
definition of end(-); then,

u <y;v ifand only if end(upp(u,v)+1) < end(Vjp(u,v)+1) - (2.7)

Note that <; actually depends on ¢: it is not defined on the whole set of bilateral words
U but only on ¢ (indeed, to define <;, branching points have to be well-defined, which
requires possibly infinite words to share a prefix). If @ €t, then o is the <;-least element
of t. We denote by <; the strict order associated with <;. We also introduce the following
related notation: for all u€t, the successor scc(u) of u is defined as the <;-least element
of {vet:u<;v} if this set is not empty, otherwise we simply take scc(u)=u.

e Subtree. Let tc T and u € t. The subtree 6,,t stemming from u is defined as follows.
O, t={veU:uxvet}, (2.8)

where we recall from (2.4) the definition of the concatenation * of a bilateral word on
the left with a null-depth word on the right. Note that |6,,¢{|— =0, namely: 0,t€T, where
T is as in Definition 2.1.

Pointed labelled trees. To deal with branching random walks, we introduce labelled
trees where the label of a vertex is viewed as its position in space. More precisely, let
(E,dg) be a Polish metric space. We define the space of pointed E-labelled trees as
follows. For all ke % we set:

Th(E)={0}U{t=(t,0;x=(2,)vet) : t€ T, 0EL, 2, €E,vet} and T (E)=|J TH(E),
keZ

where 0 stands for a cemetery point. Here, the label of v€t is z, € F that is viewed as
the spatial position of v. If there is no label, we simply write T}, and T .

e Shift operator on labelled trees. Shift operators act naturally on the space of pointed
E-labelled trees as follows: let [ € Z; we set ¢;(8) =0 and for all t=(t, o;x) € T (E)\{8},
we set

oi(t)=(@ui(t), pr(0); x0p—1), where Xxop | =(Ty_,(w))wep(t)-
e Truncation. We next define a natural truncation procedure for pointed labelled trees
along the line of ancestors of the distinguished point.
Definition 2.5. Let t= (¢, 0;x=(,)ve;) €T (E). Let pe 7 and q€ZU{oo} be such that
p<q. We define the following.
— If (p,q] N (lo|_. |o|] =0, then we set [t]7=0. We also set [9]1=0.
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— If(p,q] N (\g\_, |g|] #0, then we set [t] = (1, ¢';x") where

o' =0/(p.q); t/:{”\(nq]? vet: ”\ng\p} and a7, =y,

where v et is such that v’:v‘(pvq] and Vp=0|p (recall notation Vp from (2.3)).

We simply set [t], instead of [t];°. Ift € T} (E), then note that [t]] €T}, ,(E). We use a

similar notation for pointed trees without label. O

e Local convergence on T (E). For all t=(t, g;x), t' = (¢, ¢;x') in T (E), we first set
At ) =Lwozw.en) + Lo =00y max (1Ndp (20, 7))

with A(t,8) =1 and A(8, d) =0. We easily check that A is a metric on T (E). Then, we

define the local convergence as follows.
Let t,, = (t™, o(™;x(™) e T'(E), n € IN; the sequence (t,),>o is said to converge
locally to t = (t, g;x) € T (E) if for all e € (0,1) and all g € N, there exists n, . € N
such that for all integers n>ng., A([t(™]2_ [t]2,) <e (when there is no label, it
simply means that [t(™]? =t ).

Local convergence corresponds for instance to the following metric:

Vb, t' €TY(E), d10c(t,t') = Z 27 TA([t)7,, [6]%,)
qgelN

with d10¢(t,0) =1 and 81,.(9,9) =0. We easily check that (T*E), d1..) is Polish and we
note that shift operators are isometries.
Definition 2.6. Let (¢, 0) €T be distinct from &.

(a) We set cent(t, 0) =¢|,|(t, 0) that is the centering map: it shifts trees so that their
distinguished point is at relative height 0.

(b) We next set scc(t, o) = cent(t, scc(p)) where we recall that scc(p) stands for the
vertex of t coming next in the lexicographical order as defined by (2.7). We call
scc(-) the successor map.

(¢) Observe that there is a unique pointed tree (', ') € T' and a unique one-to-one
map :t' —{op;p<|o|} U{vet: o<, v} such that(o') = o, that is increasing with
respect to the lexicographical order and that preserves the relative height; we
set [(t,0)]T=(t', ¢') that is called the right-part of (¢, o). Intuitively, the difference
between (t', p’) and {o|,; p<|o[}U{vEt:0<;v} is that (', p') respects the convention
(¢) in Definition 2.1 we have imposed on rooted ordered trees. We also set

scct(t, 0)=[scc(t, 0)]* .

The map scct(+) is called the right-successor.
By convenience, we set cent(9) =scc(d)=scc™(9)=0. O
Note that

[cent(t, 0)] T =cent([(t,0)]T) and scc™(t, 0)=scc™([(t,0)]T) . (2.9)

Let us state a technical result about the continuity of the maps cent, [-]*, scc and scc™.
Lemma 2.7. The maps cent(-) and [-]* are locally continuous and the maps scc(-) and
scc™(+) are locally continuous at the pointed trees (t, 9) such that scc(p) # 0.

Proof. Since shift-operators are d,,.-isometries, the continuity of cent follows from
the continuity of (¢,0) — |o| that is a direct consequence of the definition of local
convergence; [-]* is locally continuous because [[t]?,]*=[[t|]"]? , and to complete the
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proof, it is then sufficient to prove that (¢, o) — (¢, scc(p)) is locally continuous at trees
such that scc(p) #o.

To that end, let (t,,0,) — (¢, 0) locally in T Set py = |scc(o)| and suppose that
o#scc(p), which implies |[pAscc(0)|=po—1. Let p€ N be such that —p<po—1<|o| +1<p;
there is n, €N such that for all n >n,, (t,,, 0),) :=[(tn, 0n)]", is equal to (¢, o') :=[(¢, 0)]",;
thus, the successor of o/, in ¢/, is equal to the successor of ¢’ in ¢#'. Consequently,
[(tn,scc(on))]”, = (t,,scc(o),)) = (', scc(o)) = [(¢, scc(0))]”,, which entails the desired
result. ]

Infinite pointed Galton-Watson trees. For all teT and for all uet, recall from (2.8)
the definition of the subtree 0,t€T.

Definition 2.8. Let (7(j, k)),>,>1 be a probability measure on the octant {(j, k) € (IN*)?:
j<k}. Let i be a probability measure on N. Let 7* = (7%, 0):QQ— T be a Borel-measurable
random pointed tree such that a.s. |¢| =0 and |7*|_= —oco0. We introduce the following
notation.

YpeN, 0(p) = 0|)—0o—p» SP={0(p);peN} and dSp={uer*\Sp: w €Sp}.

Then, T is an infinite pointed Galton-Watson tree with offspring distribution p and
dispatching measure r if the r.v. §:= (end(o(p)), ko(p+1)(7*)) o are iid. with lawr and
if conditionally given S, the subtrees (6,7 ; u€ 0Sp) are independent GW(u)-trees.
We shall deal with the following special cases that are well-defined if m,,:=), .\ ku(k)
is a finite quantity.
(i) Ifr(j, k) = p(k)/m,, for all k> j > 1, then we say that T* is an infinite pointed
GW(u)-tree (an IPGW(u)-tree for short).
(i1) Ifr(j,k)=1y=1yfi(k), for all k>j>1, where fi(k)=m; ">, p(l) for all k>1, then
we say that T* is the right part of an infinite pointed GW(u)-tree (an IPGW™ (u)-tree
for short).

Note that if T* is an IPGW(y)-tree, then [7*]1 is an IPGW (uu)-tree. O

IPGW-trees are related to GW-trees via the many-to-one principle (or the one-point
decomposition of GW-trees) that asserts the following: let u be a probability distribution
on IN such that m,, ::ZkelN ku(k) <oco. Let 7 be a GW(u)-tree and let 7* be an IPGW(u)-

tree as in Definition 2.8. Then for all Borel-measurable functions F:IN x T — [0, 00),

E[ZF(M;W(T, v))} =S mLE[F(p;[r7],)] | (2.10)

VET p>0

where we recall from Definition 2.5 the notation [7*]_, for the pointed tree 7* truncated
above the ancestor of ¢ at generation —p. Based on this identity, the following proposition
shows that IPGW trees are local limits of critical GW-trees conditioned to be large and
seen from a uniformly chosen vertex. This result is part of the folklore; its proof derives
from (2.10) and it is left to the reader.

Proposition 2.9. Let . be a probability distribution on N such that ), .\ ku(k)=1. We
assume that p is aperiodic. Let T be a GW(u)-tree; let u be uniformly distributed on the
set of vertices of 7. Let T* be an IPGW(u)-tree as in Definition 2.8. Then

cent(r,u) under P(-|#7=n) — 7"
n—00

weakly on T with respect to local convergence.

EJP 27 (2022), paper 16. https://www.imstat.org/ejp
Page 10/54


https://doi.org/10.1214/22-EJP741
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Scaling limits of tree-valued BRW

We use the previous proposition to prove the following one.

Proposition 2.10. Let ;1 be a probability measure on N such that ) ;, .\ ku(k)=1. Recall
scc(+) and scct(+) from Definition 2.6. Then, the law of IPGW(u)-trees (resp. IPGW (u)-
trees) is preserved by scc(-) (resp. by scc™(+)).

Proof. Let us first mention that a different proof of the result for scc™(-) is given in
Proposition 2 in Le Gall and L. [24]. Then, note that the result for scc+(~) is implied by
the result for scc(-) by (2.9) and since the right-part of a IPGW(u)-tree is an IPGW™ (u)-
tree. Let us prove the result for scc(+). Let 7*=(7* o) be an IPGW(u)-tree and let 7 be a
GW(u)-tree; let u be uniformly distributed on the set of vertices of 7; denote by v, the
last vertex of 7 with respect to the lexicographical order. Set u’ =scc(u) if u#wv, and
u' =g if u=w,: clearly, u’ is uniformly distributed on 7 and P(scc(u) #u'|#7=n)=1/n.
Let F: T  — [0, 00) be locally continuous and bounded. By Definition 2.6 (b), scc(r, u)=
cent (7, scc(u)). Thus,

{ E[F(scc(r, u))|#7:n} fE[F(cent(T, u’))\#T:n] | <2||F|oo /1.

First suppose that p is aperiodic. Then the previous inequality and Proposition 2.9 imply

that
lim E[F(scc(r,u))|#7=n]= lim E[F(cent(r,u))|#7=n]=E[F(T%)].

n—oo n—oo

Moreover, since it is clear that a.s. scc(p) # o, Lemma 2.7 and Proposition 2.9 entail

nh—>Holo E[F(scc(r,u))|#1=n]=E[F(scc(T*))],
which completes the proof when  is aperiodic.
Let us consider a general p. For all e€(0,1), we set p.:=cd; + (1—¢)u. Namely, p. is
a critical aperiodic offspring distribution. Let 7} be an infinite GW(y.)-tree. We easily
check that 7% — 7* locally as ¢ — 0. The local continuity of scc(-) (Lemma 2.7) entails the
desired result. |

3 Tree-valued branching random walks

3.1 Definitions

Let E be a (Polish) space of labels. Let (¢(y,dy’))ycr be a transition kernel and let w
be a Borel probability measure on E. For all pointed tree t = (¢, u) €T’ we define the law
Qwt ON T'(E) of the g-branching random walk with genealogical tree ¢ and such that w
is the law of the spatial position of the distinguished individual u.

To that end, we first assume that ¢ is finite and we introduce the following notation:
for any v,w € t, we denote by [v,w] the set of vertices on the shortest path joining
v to w in the tree t. If w # v, then we denote by " the unique v’ € [v,w] that is at
graph-distance 1 from w; we call Wwv the v-parent of w.

Then, the r.v. © = (t,u; (Y,)ver): Q=T (E) has law Q4 if

the joint law of (Y, )ver s @(dya) [ a(yse. dun), (3.1)
vet\{u}

The definition (3.1) can be extended to the case in which t is infinite. For such purpose it
is enough to note that [@]7 has law Q (4 ,))s (see Definition 2.5 for the truncation [-]9).

Let us note that

t, ——t locallyin T° = Qut, — Qut weakly on T (E).
n— o0

n—roo
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When @ =4, for some y € E, we simply write ), instead of Qs, ¢. Since y > q(y, A)
is Borel-measurable for all Borel subsets A of £, it is easy to check that y — @, + is also
Borel measurable and that Q + = [,@(dy) Qy.t.

As an immediate consequence of the definition, we also get the following: fix [ €Z

and set (¢, u) = (¢ (t), o1 (u)).
O - (t7 w (Yv)vet) has law Qm,(t,u)' then (t/, u/; (ngf,(w))wet’) has law Qw,(tgu/). (3.2)

Definition 3.1. We fix t=(t,u) €T . We shall consider mostly the four following cases.

(i) E=W,, the b-ary tree equipped with the local convergence; w =034 and q(x, dy) =
py (z,dy) where for all measurable f : W, — [0, c0),

{ %f(%) + 5 2 1<i<o fzx(i)) ifz#o
%Zlgigb f((9) ifr=9.

We denote by Q{* the law of the W;,-valued branching random walk with transition
kernel p} and with “initial” position @ in W,.

/pi(w,dy) fly) =

W

(ii) E=Wjy 1, the free tree equipped with the local convergence; w =0y and q(, dy)=
p*(x,dy) where for all measurable f : W 1) —[0, 00),

s L e

We denote by Q; the law of the W\, ;)-valued branching random walk with transition
kernel p™ and with “initial” position & in Wio,1-

/ (@, dy) f(y) =
Wy

0,1]

(iii) E =Wy :={x € W, : |z|. = —c}, equipped with the local convergence; we fix
o€ W and we take w = §, and q(x, dy) =py(x,dy) where for all x € W and for all
measurable f : Wy — [0, 00),

[ mrtadn) 1) = 1) + & 30 Sax(i) (3.3)
W' 1<i<b
We denote by @)%, the law of the W' -valued branching random walk with transition
kernel p, and with “initial” position o in W.
(iv) E:W[’(M] = {er[OJ] . |x|- = —o0}, equipped with the local convergence; we fix
o€ W[B.,l]" we take w =4, and q(x,dy) =p(z,dy), where for all x € Wy, ;; and for all
measurable f : W — 1[0, 00),

1
[ o) f0) = 15(F) + & [ as flan(s).
Wi ) 0
We denote by @), . the law of the W[B 1 -valued branching random walk with transi-
tion kernel p and with “initial” position o in W[B 3y we shall refer to this branching
random walk as the free branching random walk. O

Remark 3.2. Note that if ® = (¢, u; (X,)vet) has law Q3. (or @, .) then |®| = (¢, u;
(|Xs])ver) is a Z-valued branching random walk whose spatial motion is that of the simple
symmetric random walk. Similarly, if © has law Q" (or Q; ), then |®| is an N-valued
branching random walk whose spatial motion is that of the simple symmetric random
walk reflected at 0. O

Definition 3.3. We define the b-contraction map ®, : Wy 1 — W, as follows. For all
r€(0,00), we set [r] =min{k €Z: r <k} and by convenience we take [0] =1. Then, for
all = (ar)|z|_ <k<|z| € W(o,1), We define

(I)b(l') = ([bak]))|I|7<kS‘$| S Wb .
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The b-contraction map is measurable and preserves the depth and the relative height of
words. D

Remark 3.4. Note that ¢, transforms respectively the kernel p(z, dy) into py(z, dy) and
the kernel p* (z, dy) into py (z, dy). It naturally extends to W ;j-labelled pointed trees as
fOHOﬁS: ifO= (t, 0; (I‘U)r“et) ET.(W[O,]_]), we set (bb((—)) = (t, 0; (‘I)b(xv))vet)- Clearly, q)b((—:))
is a Wy-labelled pointed tree and we easily check that the map is measurable. Moreover,
if ® =(t, 0; (Xy)ver) has law QF (resp. Q,.) then ®,(©) has law Q7" (resp. Q%)) O

3.2 Metric properties of the range of free branching random walks

We gather basic facts about the range of a free branching random walk in terms of
the heights of the spatial positions in W ;. Let t= (t,u) €T such that |¢|_ = —oco. For
all wet, we recall that v, w] is the shortest path (with respect to the graph-distance)
that joins vertex v to vertex w. Moreover, we set [v, w[= [v, w]\{w}, Jv, w] =[v, w]\{v}
and Jv, w[=[v, v]\{v, w}; we also denote by ]| —o0, v] the lineage of v: namely, | —oo,v] =
{os1<ol}.

We next decompose a free branching random walk by first describing the heights of
the vertices as a Z-valued branching random walk (h,),c; and then explaining how to
embed (h,),c; randomly in Wfo,l]' More specifically, for all v€t, let h, €Z be such that

Yvet, |h,—hg|=1 and irﬁf Iﬁw — —00. (3.4)
wev,u [v]—=—o0
Let (Uy)yet be a family of independent r.v. that are uniformly distributed on [0, 1]. With
v E€t, we associate a spatial position in W[B 1] @s follows. Since h takes arbitrary negative
values on the lineage of v, for all integers k<h,,

there is a unique v(k) € | —oo,v] such that h, ;)= H[%il(lk) hﬂw =k > hm . (3.5)
wev(k),v v

H
Namely, {v(k); k <h,} is the set of vertices in the lineage of v where h reaches a new
infimum. In particular, note that v=v(h,). Then, we set

Yvet, X, = (Uv(k))kghy . (3.6)

By construction | X,|=h,, vet. Then, (t, u; (X,)vet) is a W[’al]-valued branching random
walk satisfying
X = X+ (Uy) if [X,|=[Xg[=1,
v < if | X,|—|Xg|=-1.

We view (X,),c: as a version of free branching random walk conditionally given the
relative heights (h,),c; of the spatial positions. The following proposition is a key point
to analyse the metric of the range of free branching random walks.
Proposition 3.5. Let t = (t,u) € T, (hy, Uy, X,)ve: be as above. Then, {X,;vet} is a
subtree OfW[BJ] as in Definition 2.3 and if we denote by dg. it graph-distance, we get
P-as. forallv,wet,  dg(Xy, Xw) = |Xo| + | Xw| — 2 m[[in \HXM . (3.7)
v’ efv,w

Proof. We fix v, w €t. By (2.6) we known that dg, (X, Xu) =|X, |+ | Xw|-2| X, A X, |. Since
t is countable, to prove (3.7) it is enough to show that a.s. [ X, A Xy, | =min, ¢y o] [hor|.
We prove it in two steps.

Step 1. Recall from (3.5) the definition of the v(k), k <h, and define similarly the
w(k), k<h,,. We then set

k =max {{<h, :v({)€]—o0,vAw]} and m =max{{<h, : w(l)€]—o0,vAw]}.
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Let us prove that k = minp, ;) h. If £ <h,, then v(k + 1) €]v A w,v] and Sk+1)e
[v A w,v]; then heg gy = hygy1)—1 =k = ming, yrep h. If £ = h,, then, by (3.5),
h, = h, ;) = ming, ,x)h and since v(k) €] — co,v A w], we also get k = ming, ,a.p h.
Similarly, we get m=minp, ,,.] h. By definition (3.6),

X, = Xv(k) * (Uv(k+1)7 BRI Uv(h,v)) and X, = Xw(m) * (Uw(m+1)7 BRI Uw(hw)) (3.8)

with the observation that X, = X, ) (resp. Xy = Xy(m)) if & =h, (resp. if m = hy).
Without loss of generality, we can assume that £k <m. Then, v(k—i)=w(k—i), for alliecIN
and

Xuw(m) = Xo) * (Uwes1ys - - Ui(m)) - (3.9)

Step 2. We conclude the proof by proving that
X, /\Xw:Xv(k) . (3.10)

Suppose first that k£ <m and that k <h,. Then w(k+1) € ][00, vAw] but v(k+1) € JvAw, v].
Thus, w(k + 1) # v(k + 1) and since the (U, ),¢: are independent with a diffuse law,
a.s. Uy(r+1) # Up(k+1)- By (3.8) and (3.9), we get (3.10). If k£ <m and k = h,, then
X=Xy and we immediately get (3.10) by (3.8) and (3.9).

Next, suppose that £ =m. Thus X,,,) = X,@x) by (3.9); if £ =m <h, A hy, then
vik+1)€]vAw,v] and w(k + 1) =w(m + 1) € Juv A w,w]; therefore w(k + 1) #£v(k + 1),
which implies that a.s. Uy k+1) # Uyr+1) @nd (3.10) consequently. If k=m and k=h,
(resp. m=hy), then X, = X,y = Xyy(m) (resp. Xy = Xoy(m) = Xyx)) and (3.8) and (3.9)
also entail (3.10). This completes the proof of (3.10). |

We shall use Proposition 3.5 under the following form.

Corollary 3.6. Let t' c T be a finite rooted ordered tree. Let (t', J; (Y,)ver) be a Wg q1-
valued branching random walk with law Qj, as in Definition 3.1 (ii). Then, a.s. for all
v,wet', we get dg (Y, Yo) =Yo| 4 [Yu| =2min ey wp [Yor|.

Proof. For all k € Z_ we set g, = (an)n<k, Where a,, =1 for all n € Z_, and we also
define t = {go*u; u e t'} U{om;k € Z_}. Then, t € T, |t|. = —oc and ¢’ = 6,,t. Let
(h!),cr be distributed as an IN-valued branching random walk whose initial position
h/, is 0 and whose transition kernel ¢(y,dy’) is that of the simple symmetric random
walk on IN reflected at 0: namely, ¢(0,dy’) =0, and q(y,dy’) = +(0y—1(dy’) + 0y+1(dy’)),
for all integers y’ > 1 (see (3.1)). We next set h, ., = h), for all v € ¢’ and h,, =k,
for all k € Z_. Clearly h satisfies (3.4). We assume that (U, ),¢; is independent from
(hy)vet and we define (X,)yet as in (3.6). For all v € ¢/, we finally set Y, = 0 ,, X oo
Then, it is easy to see that (t/, &, (Y, ),cr) has law Q. Since hy,., >0, for all vet’, we
get dgr (X posv, Xogww) = dgr (Yo, Yay) and [ X g 40| = |Yy|, for all v, w € ¢/, which implies the
desired result by (3.7). |

We next consider subranges of free branching random walks. More precisely, let
t=(t,u) €T be such that |t|. = —o0; for all v €, let h, € Z satisfy (3.4); let (U,),c; be
a family of independent r.v. that are uniformly distributed on [0, 1] and let (X, ),c: be
derived from (U, ),¢; as specified in (3.5) and (3.6). Let a C ¢t and vy € a be such that

VYoea\{v}, v €a, vis a descendent of vy (namely v =wvg*(f,,v)) and h, >h,,. (3.11)

Observe that for all v € a, X,, is a prefix of X, and it makes sense to define “the
subrange”:
R(a) = {GXUOXM vea}
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that is a subtree of W[*(‘) 1] whose elements have a null depth. We define the following.

Yv,weEt, d(v,w):thrhwa[[minh. (3.12)

Note that [v,w] C a; thus, the pseudo-metric d on a x a only depends on a and on
(h, —hy,)yca. We define the relation ~ on a by setting v ~ w if and only if d(v, w)=0 and
we introduce

T(a) =a/~, proj:a— T(a),the canonical projection, r = proj(vg) (3.13)

and we keep denoting d the (true) metric induced by d on T'(a). If t = (t,0) € T" and
(h,,U,, X,),ec: are as in Proposition 3.5, then (3.7) implies that (7'(a), d) is a graph-tree
that is isometric to the subtree R(a). More precisely, let z € T'(a) and let v, w € a such
that proj(v) = proj(w) = z; by (3.7), we get a.s. X, = X,, and it makes sense to set
Zy=0x,,X,. Then (3.7) asserts that Z : T'(a) — R(a) is an isometry:

Ve,yeT(a), d(x,y) = 2| +|Zy|-2|Z.NZy| = dge (22, Zy) (3.14)

Thus, the graph-metric of the subtree R(a) only depends on a and on (h,—h,,),ca. Next,
the conditional law of R(a) given T'(a) is characterized as follows. For all z€T'(a)\{r},
let V,, be the unique real number of [0, 1] such that

E
Zo= 7 4x(Vy) . (3.15)
We easily check the following.
Conditionally given T'(a), the V, are i.i.d. [0, 1]-uniform r.v. (3.16)

Recall from Definition 3.3 the b-contraction map ®;: Wiy ;;— Ws. Then, first note that
|Ze N Zy| <|®p(Z:) A Pop(Z,)|, where common ancestors are taken respectively in Wy y
and in W;,. Moreover, (3.16) implies that P(|®,(Z,)A®y(Z,)|—|Z.AZy| > k) <b~*, for all
k€ IN. This inequality combined with the argument of the proof of Corollary 3.6 implies
the following lemma that will be used in Theorem 1.2.

Lemma 3.7. Lettc T be a finite rooted ordered tree. Let (t, J; (Y, )vet) be a W q)-valued
branching random walk with law Q; as in Definition 3.1 (ii). Recall the b-contraction
map ®,: Wy 1) — W from Definition 3.3 and recall that (t, @, (®5(Y,))ve:) has law Q¢ as
in Definition 3.1 (7). We denote the graph distance on Wo,1; and Wy, in the same way by
dgr. Then, for all v, wct, there exists an N-valued r.v. G, ., such that

2G .10 = dgr (Xo, Xu) —dgr (Po(Xy), Pp(Xy)) and P (G > k) <b % keN. (3.17)

3.3 A coupling between W;- and W; -valued branching random walks
This section is devoted to the proof of the following proposition.
Proposition 3.8. Let t €T be a finite rooted ordered tree as in Definition 2.1 (namely,
|t|-=0). We sett=(t,@). Forallne{0,...,#t—1}, we sett,={vet: v <;v,} where
vy, is the n-th smallest vertex of t with respect to the lexicographical order <;. Then,
there exists two branching random walks ©y, = (t, @; (Y,)yet) and ©; = (t, @; (Y, )yer)
that satisfy the following.
(a) ©F is a Wy-valued branching random walk with law Q{® as in Definition 3.1 (4).
(b) op:=Yy is a Z_-indexed sequence of independent r.v. that are uniformly distributed
on{l,...,b} and conditionally given oy, ®, is a W,-valued branching random walk
with law QY , as in Definition 3.1 (iii).
(c) For all ccIN*, there exists an event B, such that P(B.)<2b~¢(#t)® and such that
on O\ B,,

vned{0,...,#t—1}, |#{Yosvet,}—#{Y,Tvet,}| < #{vet: |V,F[<c+1} . (3.18)
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Overlap of independent trees. We first prove a result concerning the overlap of
independent trees that are randomly embedded in the b-ary tree W,,. More precisely,
let (Ty,7(u)), uw € S be a finite family of rooted graph-trees (not necessarily ordered)
equipped with their graph-distance d,,. To simplify notation, we set |z|=dg, (r(u), ), for
all zeT,. Let z,y € T,; recall that [z, y] stands for the shortest path joining z to y and
that = A y is the most recent common ancestor of z and y in T, rooted at r(u). Namely,

[r(uw),z] N [r(uw),y]=[r(u),z Ay]. Let e €T, \{r(u)}; forallic{1,...,|z|} we denote by z;
the unique ancestor of = at height <. Let V', €T, u€ S be independent uniform r.v. on
{1,...,b}. Then, we define the random word:

Zt= (Vz“l, | SR Vmu‘z‘,l, Vzu)

We also set Z}f(u) = and we introduce the following random subsets of the b-ary tree
Wb:
Yu€eS, Ry := {Zg; mETu} .

For all ccIN*, we also set M. =), o #{x €Ty : [1|<c}.

Lemma 3.9. We keep the notation from above. Let ce N*. Let w, € W, u € S. Then,
there exists an event A, of probability P(A.) < b~°M? such that on Q\ A,

0< Y #he — #( |J war () < M. (3.19)

u€S uesS

Proof. Let v and v’ be distinct elements of S; let z €T, and y € T, be such that |z|=|y|=c.
We introduce the event A(z, y) = { (wu*Z)A(wy+Z2 ) € {w,+Z%, wy+Z2' } }. Note that on
Az, y), wyAwy € {w,,w, }; so without loss of generality, we can suppose that |w,| < |w,/|
and we easily check that P(A(z, y)|Z;‘/) =b~ ¢ and thus P(A(z,y)) =b~¢. We then set for
allues,

Tu(c) ={z€Ty : |z|=c} and A.= U {A(z,y); €Tu(c),y€Tw(c),u,u' €S, distinct}.

Thus, P(A.) €57 Y wesusw £Tu(@#Tu(€) < 1675(, cq #Tu(0)? < boM2.

The first inequality in (3.19) is true everywhere on ). For the second inequality in
(3.19), we argue deterministically on 2\ A.. Let u€ S. We first set R, (¢)={w, * Z*;z €
T.(c)}. Let «’ € S be distinct from u; suppose that W € R,(c) and that W’ € R,/ (¢); by
definition of A.,, W AW’ ¢ {W, W'} and 0w (wy * Ry,) N Oy (wy * Ry ) =0. Moreover, if
W, W’e R, (c) are distinct, since |W|=|W'|=c + |w,|, we also get W A W' ¢ {W, W'} and
thus Oy (w, * Ry) N Oy (w, x Ry,) =0. Consequently, on Q\A,, the subsets Oy (w, * Ry,),
W e Ry(c), ueS, are pairwise disjoint.

Now observe that (w,, * RU)\(UWeRu(c) Ow (wy* Ry)) ={wy*ZY¥; |z| < c} and note that
#({wyxZY; |w) <c}) <#({x€Ty: |z|<c}). Thus, on Q\A., we get

(5 hm)

S (R — #Haz €T, : 2] <c})

ues uesS
< D (#(w R = #({wax 2y o] <))
uesS
< Z#( U GW(wu*Ru)>

u€sS WEeR,(c)

= #(U U twwer®)) < #( U warr),

uESWER,(c) u€sS

that implies the desired result. |
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Path coupling. We first state the following elementary coupling.

Lemma 3.10. Let K :IN— N be such that K(0)=0 and K(2p+ 1)=K(2p+2)=2p+2, for
allpeWN. Let (h,),ew be a Z-valued simple symmetric random walk such that a.s. hg=0.
For all n€ N, we set I, =info<y<, hy and h;f =h,, + K(—1I,). Then, h" is an N-valued
simple symmetric random walk reflected at 0.

Proof. Forall n>1, set &, =h, —h,,_1; the r.v. are i.i.d. and uniform on {1, —1}. Observe
that hf =h, —I,, + 1{;, odq}- It is easy to check that h} , —h} =&y + Lt oy
which implies the desired result. |

The next lemma state the branching random walk version of this coupling.

Lemma 3.11. Let t €T be a rooted ordered tree as in Definition 2.1 (namely, |t|_ =0).
Let (t,&; (hy )yet) be a Z-valued branching random walk whose spatial motion is that of
a simple symmetric random walk on Z and whose initial position is hgy =0. Recall the
function K from Lemma 3.10 and set

Vuet, I,= min h, and h} =h,+K(-1,). (3.20)

u €[D,u]

Then, (t,2; (h),ec¢) is a branching random walk whose spatial motion is that of an
IN-valued simple symmetric random walk reflected at 0 and whose initial position is
h=0.
Proof. We denote by ¢, (z,dy) the transition kernel of the IN-valued simple symmetric
random walk reflected at 0: namely, ¢, (0,dy) = d1(dy) and q(z,dy) = +(0,—1(dy) +
dz41(dy)), if > 1. For all n€N, we set t,, = {uct:|u|<n} and we assume the following
property
(Pn) : the spatial motion of the branching random walk ©,, = (t|,, @; (h; )uet,,) is that
of a N-valued simple symmetric random walk reflected at 0 with initial position
h} =0.
We next set S={uct:|ul]=n+ 1} and {,=h,—h¢ forall ue S; the r.v. (§,)ucs are
independent from ©,, and they are also i.i.d. and uniform on {1, —1}; by definition of
h*, we also get hf =hi + §ulint >0y + Lt oy This entails that the rv. h, ue S are

conditionally independent given ®,, and that the conditional law of h is ¢, (hL,dy).
This shows that (P,) implies (P,+1), which recursively proves the lemma since (F) holds
true trivially. |

The coupling of ©, and ©,". Let ¢t < T be a finite rooted ordered tree as in Defini-
tion 2.1 (namely, |t|- =0). We shall use the notation t = (¢, @) for the pointed tree. We
denote by 9=(...,1,...,1) the infinite sequence of 1 indexed by Z_. Forall [€Z_, on is
the infinite sequence of 1 indexed by the integers <![. We then set

t*:{g”; lEZ,} U {Q*U; uet} )

Then we define t*:=(t*, o) €T and we observe that |t*|_ = —cc.

Let (t%, 0; (h})yet+) be a Z-valued branching random walk whose transition kernel
is that of a simple symmetric random walk on Z and whose “initial” position is h} =0.
Let (U})ver be independent r.v. that are uniformly distributed on [0,1] and that are
independent from (h}),c:+. We define (X),e+ as in (3.5) and (3.6): namely, X} =
(Uy))k<n;., where v(k) €] —oo,v], hy ;) =k and where {0 (k);k < h*} is the set of
vertices of | —oo,v] where h* reaches a new strict infimum. We set o = X that is a
Z._-indexed sequence of mutually independent r.v. that are uniformly distributed on
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[0,1]. We easily see that conditionally given o, ®* = (t* ¢; (X),et+) has law Qo ¢+ as in
Definition 3.1 (iv). Then we set the following
X=X

o*xu?

h,=h’

o*xu’

Yuet, U,=U;

o*xu’

Yu:q)b(Xu)7

and we also set ® = (¢, J; (X )uet) and O, = (¢, F; (Y, )uet ), where we recall the definition
of the b-contraction map @, from Remark 3.3. Clearly, conditionally given o, ® has law
Qo,t as in Definition 3.1 (iv) and by Remark 3.3, the conditional law of @y, is Q%, ., . as
in Definition 3.1 (i¢i). Namely, ©y, is distributed as in Proposition 3.8 (b).

Let (U] )yet be i.id. r.v. that are uniformly distributed on [0,1]. We suppose that
(U!)uet is independent from (U;),es+ (and thus from (U, )yet) and from (hf),c¢-. We next
construct ©; thanks to (U, U,, h,).c: as follows: For all uct, we define I,, and h; by
(3.20) in Lemma 3.11 and we introduce the following notation.

U ifuel,  n Sopsts
VpeN, S,={uect: —p=1I,<I = F=q v pEN Z2p+ 3.21
peN, Sp={uct: —p <Ig}, S pgsp’ Uu { U, otherwise. ( )

The (disjoint) union S is clearly a finite set, since ¢ is a finite tree. Then, (U;r Juct are
i.i.d. [0, 1]-uniform r.v. that are independent from (h;),¢;. Recall from Lemma 3.11 that
(t,7; (h)yueq) is a branching random walk whose spatial motion is that of an IN-valued
simple symmetric random walk reflected at 0 and whose initial position is hf, =0. In
particular, h >0 for all u€t. We then define (X,"),c; and (Y,),c; as follows.

e Ifh =0, then we set X,/ =Y,F =2.
e If h >1, thenforallie{l,...,h}}, we denote by u(:) is the unique v € [&, u] such

that hf <i=h} =ming, ,; h* and we set

F= (U U

[ingy) and Y.h=ay(X0). (3.22)

We set ©1 = (t,7; (X;")ues) and O = (t, D; (Y} )uer). Then, observe that ht =|X;+| and
that X7 =X « (Uj) if hf =hZ + 1 and note that X} is the parent of X if hi =h{ —1.
Thus, it proves that ©* as law Qi as in Definition 3.1 (i) and by Remark 3.3, ®; is
distributed as in Proposition 3.8 (a) (namely its law is Q;® as in Definition 3.1 (i)).

Proof of Proposition 3.8. We keep the previous notations. We fix n€{0, ..., #t—1}.
Recall that t, = {v €t : v <; v,} where v, is the n-th smallest vertex of ¢ in the
lexicographical order <, on t. Note that ¢,, € T, namely it is a rooted ordered tree with
null depth. Recall from (3.21) the definition of S. For all ue S, we set

={vet, :v:i=u*b,v and wgﬁlunv]] h,=h,}Ct and R(a,)={0x,X,;v€a,} CWjq .
Note that a,, depends on n and that if u¢¢,, then a, and R(a,) are empty. If u€t,, then
the previous definitions make sense because a,, satisfies (3.11) (with u = vp) and X, is
necessarily a prefix of X, since v is a descendent of « and I, =I,. Observe that R(a,,) is
a subtree of W, 1) as in Definition 2.3.

Recall from (3.12) the notation d(v,w)=h, + hy,—2ming, ., h, for all v,we€t, that is a
pseudo-metric on ¢. We denote by v~w the equivalence relation relation d(v,w)=0 and
asin (3.13), we set forall ue S,

T(a,) =a,/~, proj:a, — T(a,),the canonical projection, r(u)= proj(u) .

Note that T'(a,) only depends on (h, —I,),ca, and that R(a,) only depends on (h, —
I,;Uy)vea,- Let z€T(ay); by (3.7) in Lemma 3.5, for all v,w € a,, such that proj(v) =
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proj(w) ==z, we get X, =X, and it makes sense to set Z =0x, X,; then, Z*:T(a,) —
R(a,) is an isometry given in (3.14). As in (3.15), for all z€T'(a,)\{r(v)} we denote by
V¥ the unique real number of [0, 1] such that Z¥= Z¥ x (V).

Then by (3.16), for all u €S, conditionally given h, the V}*, z € T(a,) are i.i.d. [0,1]-
uniform r.v. Since the subsets (a,).cs are pairwise disjoint and since R(a,,) only depends
on (h, — I,;Uy)vea,, the (R(ay))ues are conditionally independent given h. Thus, condi-
tionally given h, the V., x€T'(a,)\{r(u)}, u€ S, are i.i.d. [0, 1]-uniform r.v.

Next observe that

{Xv;’Uth} = U Xu*(R(au)) (323)
u€S

Therefore, using (3.21) and noting that (X, ).cs only depends on h and on (U;‘”)ZGZ_
that is independent from (U, ),c:, we conclude that, conditionally given h and (X, )ucs,
the V¥, x€T(a,)\{r(u)}, u€S, are i.i.d. [0, 1]-uniform r.v. From the coupling defined in

(3.21) and (3.22) we also derive easily the following.

U{L ifue UpE]N 52p+1,

XFvet,y=| | X! u here forall uin S, X, :=
{XJ5vety} U «*(R(ay)), where for all win 5, X, {@ otherwise.

ues
(3.24)

Since the (U),)yet are independent from h and from (U, )¢+, conditionally given h and
(Ul)yes, the rv. V1, z € T(a,)\{r(v)}, v € S, are ii.d. [0,1]-uniform. Denote by ¢ the
sigma-field generated by h and by (X,,, U/ ),cs. Therefore, we have proved the following.

Conditionally given ¢, the V', z€T(a,)\{r(u)}, u€ S, are i.i.d. [0, 1]-uniform r.v.
(3.25)
Then we set

VueS, R,=Pp(R(a,)) and VeeN, M.(n)= Z #{xeT(a,) : d(r(u),z)<c} .
u€sS

Note that M.(n) <#t, <#t. By (3.25), conditionally given ¢4 we can apply Lemma 3.9 to
T,:=T(a,) and w, :=®,(X,), u€S, to get an event A.(n) such that P(A.(n)) < b~¢(#t)?
and such that on Q\A.(n),

0 #h —#{Viveta} VY m, —# (U 2u(X)x () < M)
uesS u€esS u€sS

Similarly, conditionally given ¢, we apply Lemma 3.9 to T,,:=T(a,) and to w,, :=P(X}),
u€ S, to get an event A/ (n) such that P(A.(n)) < b~¢(#t)? and such that on Q\ A (n),

0< Y #he — #{V vt} P EY S gry, — (U 9u(X0)+(RA)) < Me(n) .

uesS ueS u€esS

Then, we set B.(n) = A.(n) U AL(n); thus, P(B.(n)) < 2b~¢(#t)? and on Q\B.(n), we
get |#{Y.,;v € t,} — #{Y, ;v € t,}|] < M.(n). Now observe that if z € T(a,), then
hi =|X|=|X/|+|Z% <1+ d(r(u),z). This implies M.(n) <#{vet;|V;"|<c+1}. Thus,
on Q\B.(n), we get

[#{Y,svet,} — #{V,5vet }] < #{vet; |V, <c+ 1} .

We completes the proof of Proposition 3.8 by taking Be=Jy<,, <4 Be(n). [ |
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3.4 Estimates

The goal of this section is to establish Proposition 3.16 below. To that end, we first
state preliminary estimates. Recall that Wy = {z € W}, : |z|- = —c0}. We denote by
(Y,)new the canonical process on the space (W)™ equipped with product topology (that
is Polish) and with the corresponding Borel sigma-field. In this section, let us denote by
E, (instead of @ ) the law of a Markov chain on W with transition kernel p;, as defined
in (3.3) and whose initial position is o. The following result only contains some standard
estimates.

Lemma 3.12. Let o€ W be such that |o|=0. For all k,pe N, we set
0(p) =0||—o0,—p], SP={0(p);p€N}, ro=0 and ry 1 =inf{n>ry : Y, €Sp}. (3.26)

The following holds true.

(1) R-almost surely for all ke N, r;, <oo and there exists Z;, € N such that o(Z,)=Y;,.
Moreover, (Z;)ren is an N-valued birth-and-death Markov chain whose transition
probabilities (p(p, q))p.qcv are given as follows: for all p € IN¥,

pp,p+1)=3, plo,p—1)=5. p(p.,p)="%" (3.27)
and p(0,0) =p(0,1) =1/2. Then, Z is transient which implies that almost surely
|oAY,,| — —o0 and that (Y,,),en is transient under P,.

(i1) Forall z,ye Wy, we set Gy(z,y) =3, cn Pz (Yo =y). Then, for all pe N,
Gy(z,y) = Zplervi=lvl, (3.28)

(t43) For allye W, we set H,=inf{n€IN:Y, =y}, with the convention that inf ) =oo. For
all s€[0,00), we set g(s)=—log (1—v/1—e~25). Then, for all re Wy, E,[e s +is)] =
exp(—g(s)). Moreover, there exists a constant C' € (1,00) such that

Py-a.s. forallkeN and for all s€[0,1], E,[e s+ 7")|Z] > e CVs . (3.29)

Proof. Since under B, (|Y,|)nen is distributed as a simple symmetric random walk on
Z, we easily see that R-a.s. for all k€N, r; < co. The strong Markov property at the
stopping times r; implies that (Zx)rew is an IN-valued birth-and-death Markov chain
whose transition probabilities p(p, ¢) are given by (3.27) which easily implies that Z; — oo
which entails (7).

Let us prove (ii). For all z € Wy, we introduce the stopping times H, = inf{n € IN:
Y, =z} and H} =inf{n € N*:Y,, =z}. First observe that for all z,y € Wy, B,(H, <o0) =
P,y (H, <0o0). By adapting the argument of (7), the height of the process Y restricted
to ]| — oo, y] is a birth-and-death process with transition p(-,-) and the Gambler’s ruin
estimate implies that P, ,,(H, < c0) =bl*"¥/=Iv|. Similarly, we get F,(H; =00)=(b—1)/2b.
The Markov property at resp. H, and Hj implies resp. that Gy (z,y) = B, (H, <00)Gy(y,y)
and that Gy (y,y) =1+ F,(H; <00) Gy (y, y), which entails (3.28).

Let us prove (iii). Note that under B, (|Y,|)nen is distributed as a simple symmetric
random walk on Z with initial position |z|. Then H« is the first time (|Y},|),cn reaches
|x| —1; therefore, the law of H< does not depend on 2 and we get E,[exp(—s(Hs + 1))]=
exp(—g(s)) by well-known arguments. Next, let us work conditionally given Z; we set
=Yy, +1; on the event {Z, =Z11}, Y:O(Zk) and ry4; —r;—1 is the time at which the
shifted random walk (Y3, +14n)nen returns for the first time to ; thus, by Markov at ry,
and by the previous argument, P,-a.s. on the event {Z, =7y 11}, Eolexp(—s(rr11—1%))|Z] =
exp(—g(s)). If Zy # Zx11, then ri1 —rp = 1. Consequently, E,[exp(—s(rgr1—1k))|Z] =

exp(—g(s)liz,=z,,,y —51{z,-2,..}), which implies (3.29) because there exists C'c (1, c0)
such that g(s) < C/s for all s€0, 1] and since s<./s for all s€ [0, 1]. [ |
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Proposition 3.13. Let o€ Wy such that |o|=0. Recall that B, stands for the canonical
law of Wy -valued Markov chains with transition kernel p, defined by (3.3) and with initial
position o. Let f:[0,00) — [0, 1] be such that ) iy v/ f(p) <oo.

- D f(=lonYa))

nelN

Proof. Recall from (3.26) in Lemma 3.12 notations o(p), Sp and ry and recall from
Lemma 3.12 (i) the definition of the IN-valued birth-and-death process (Zx)ren. Let
¢ e IN*. First observe that

Z f(=loAY,]) = Z Z [(Zy) = Z (vir1—1k) f(Zk)-
0<n<ry 0<k<f rp<n<ri4 0<k<t

By the Markov property, the sequence of random times ry,; —r; are conditionally
independent given Z. Thus by (3.29) in Lemma 3.12 (ii3), there is C' € (1, 00) such that
for all s€[0,1],

o8 [e_swe |Z} _ H E[e—s(rk+1_rk)f(zk) |Z] > exp (—C’Z \/m>

0<k<? 0<k<t

exp (—C\/EZ Np\/f(p))7 where N, =#{kcN: Z,=p}. (3.30)

peEN

Y

Next observe that E,[N,| = Gy(0,0(p)) =2b/(b—1) by (3.28) in Lemma 3.12 (i¢). Set

W=>,cnf(= |); by letting £— oo in (3.30) and by Jensen’s inequality, we get
Eole™"]zexp (O3 Y EINVIG)) = exp (~C'V5 Y- VFD)) -
pEN peN
where C’ =2bC/(b—1). Since Y_ i v/f(p) <00, we get lim, o E[e*"| =1 which entails
that B -a.s. W <oo. This completes the proof of the proposition. |

Lemma 3.14. Let ;1 be a probability measure on IN such that ), ku(k) = 1. Let
T =(7,9) be a random pointed tree such that a.s. |7|- =0, kg (7)=1 and such that 01,7 is
a GW(u)-tree. Let x ¢ W and let © = (7,9 ; (X, )ve-) be a random W -valued branching
random walk that has law Q% - conditionally given T, as defined in Definition 3.1 (iii).
For all ye W we set

E(z,y) =Py ¢ {X,; ver\{@}}) . (3.31)
which turns out to be strictly positive. Then, we get 1—{(z,y) < Gy(z,y) = 2 ble vI=1vl,
Proof. By a simple union bound we first get the following.

P(ye{X,;ver\{o}} |7) SE[ Z Tix,—y} ’T:| < Z QL (Xy =1y).

ver\{ 2} ver\{e}

By definition of branching random walks, Q% .- (X, =y) = (Y}, =y), where B, stands
for the canonical law of the random walk that starts at x in W, and whose transition
kernel is p, as defined in (3.3) in Definition 3.1 (iii). Thus, P(y € {X,;ver\{g}}) <
> n>1 B[N, B.(Y,=y), where N,, =#{ve7:|v|=n}. Since the offspring distribution fx is
critical, E[N,,]=1. Therefore, recalling Lemma (3.12) (ii), we have that the right member
is smaller or equal to Gy (z,y), which concludes the proof. [ |

Lemma 3.15. Let u be a probability measure on IN such that ), -\ ku(k)=1. Let us
suppose that there exists 3 € (0, 00) such that ", .. (k) k(log k)17 < cc. Forallr€(0,1],
we set i(r) =Y, . r"1i(k + 1), where we recall that for all k € N\{0}, zi(k) stands for
> o>k H1(€). Then, there exists C3,,, € (0,00) such that

vre(0,1/2), 0<l—wp(l—r)< (3.32)
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Proof. Let Z be an IN\{0}-valued random variable distributed according to 7i. Observe
that C:=E[(log 2)'*F] =37 15 u()(log k)P <37, ) u(k)k(log k) ¥ < 0o. Then, for all
t>0 and for all 7€(0,1/2), we get

1-p(1-r) = E[(1-=(1-r)? Nz<piny] + E[(1-(1=1)" ") {z50413]
E[(log Z)'*”]

(log(1 +t))1+58 =2rt + C(log(1+ )" 7.

<1-(1-7)!'+P(Z>t+1) < 2rt+

We choose 1 +t=7"'(log1/r)~'~# and we easily get (3.32). [ ]
Proposition 3.16. Let i1 be a probability measure on IN such that
> ku(k)=1 and 3B€(1,00) such that »  k(logk)' ™ (k) <oo. (3.33)
keN keN

Let o€ Wy be such that |o| =0 and let ®:= (7%, ¢; (X,),e,+) be a Wy-valued branching
random walk whose distribution is the following: 7* = (7% ) is an IPGW* (u)-tree as in
Definition 2.8 (ii) and conditionally given 7*, ® has law @ .. as in Definition 3.1 (iii).
Then, with positive probability (X, ),e- Visits its initial position only once. Namely,

Kup =P0¢ {X,;ver™\{o}}) >0. (3.34)

Proof. Let us recall the following notation

VpEN, 0(p) = 0|1-co—p)» Yo=X,0), Sp={o(p);p€N} and dsp={uecr\Sp: u €Sp}.

By Definition 2.8 (ii) of the right part of an infinite pointed GW(u)-tree, the subtrees
(0uT")ueasp are i.i.d. GW(u)-trees and the r.v. (k,,)(7*))pen are independent, k,(7*) has
law p and for all p>1, k,(,)(7*) has law 7 that is defined by 7i(k) =), u(l), k€IN* and
71(0)=0. For all uc dSp, we define O,,:=(7,; F; (X*),e,,) as follows:

1
— 7, is the unique tree such that kg (7,) =1 and 6(1)7, =0,7" (see (2.8) for the definition
of 6,7%).
— Since % €Sp, there exists pe IN such that % = o(p) and we set X% =Y,

— Forallvel,T, X{{) Xy (recall from (2.4) the definition of the concatenation w * v).

Namely, ©,, is the restriction of the branching walk ©® to the subtree stemming from w,
including the spatial position of % . Conditionally given Y = (V}),cn and (ko(p) (7)) pen.
the branching random walks ©,,, u € JSp, are independent; moreover, conditionally given
(Yp, Tu), ©, has law Q¥ ., ; here T, stands for (7,, @) and p is such that W:g(p). Then,

for all g€ IN*, we set
Ag={o¢{Xy;ver*\{o}:|vAo|>—¢}} and H=inf{p>1:Y,=o0}.

The event A, decreases as ¢ — oo to the event that the branching walk (X, ),ec,~ only
visits o once. The previous independence properties then imply the following.

P4, |Y,7) = Lwgsq [[ Q% -lof (Xven\{o}})
u€OSp:|u|>—q
and thus P(A,;|Y,SpUdSp) = lesgy H §(Ys),0),

u€dsp:lul>—q

where we recall the notation £(z,y) from (3.31) in Lemma 3.14. Since Y and the
r.v. ko) (7*) are independent, we get

P(A,|Y) = LoqE[E(0,0) )] ] E[£(Y,,0)Fem )71y
1<p<q
= lag>p0(£(0,0)) [T 9(60%,0)),
1<p<q
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where we have set

1-¢(r)

1—7r

Vrel0,1], o(r) = Z rRu(k) and o(r)= Z Rk +1) =

kelN keN

Notice that as ¢ — oo, the event {H? > ¢} decreases to the event {H = oo}, which has
strictly positive probability by Lemma 3.12 (7). Then, we easily see that (3.34) holds true
if

> (1=9(£(;,0))) <o (3.35)

peN
But by Lemma 3.14, 1-¢(Y,,0) < i—blb‘ypm‘ since |o|=0. By (3.32) in Lemma 3.15, there
are two constants C, C’ € (0, 00) such that if —|Y, A o|>C, we get
Ca.pu < C’
(log (2526 ere) ™7 7 (1=, Ao)

1-9(§(Yp,0)) <

By Proposition 3.13 with f(z)=(1+42)"""%, if 5> 1, thenas. 3° - (1-|¥, Aof) 7' <oq,
which implies (3.35) since |Y,, A o] = —o0, as p— oo as stated in Lemma 3.12 (7). This
completes the proof of the proposition. |

We conclude this section with a general estimate for recurrent biased random walks
on a (deterministic) rooted ordered tree T that is infinite. More precisely, we fix A€ (1, 00)
and we denote by (Y,,),en the A\-biased RW whose transition probabilities are given for
all z,y€T by

P(Yop1=y|Yo=2) = sy ifz=Y andz#o, (3.36)
: —
m ].f.]f:y:@

and P(Y,,+1=y|Y,=2)=0 otherwise. Here, recall that k,(7T) is the number of children
of z in T. We also recall that |z| is the height of z in T, that x Ay is the most recent
common ancestor of z and y and that dg, stands for the graph-distance on T': dg.(z,y) =
|z + [y|=2[x Ayl

Lemma 3.17. We keep the above notations. We assume that Y is recurrent. Then, for
all £,n1,n €N such that ny <no, we get

. A—1
P (Vo | 4+ [V | =2 min Vo] = 20+ dge(Ya,, Vo)) < (n3—11)
ni<n<ng

. 37
N1 (3:37)

Proof. Forall z€ T, we set HS =inf{n € N*:Y,, =z} and 7(2) = (\+ k. (T))\~1*! if 2 # & and
(&) =kg(T). Note that 7 is an invariant measure and standard arguments on electrical
networks and random walks on graphs imply that for all distinct z,y € T, 7(z)P(H] <
Hy | Yo = y) is the effective conductance between x and y (see R. Lyons and Y. Peres
[28] p. 25). If y€ ]2, z], then it easily implies P(H2 <HZ | Yo=y)=(A—1)/(Alel=lvI+1 1),
Similarly, P(HS <HS | Yo=90) =kg(T) " (A—1)/(A*l—1). Thus, for all distinct =,y €T such
that ye[@, z],
P(H; <H3 | Yo=y) < (A-1)/(AF7¥ 1),

We next define the following sequence of stopping times (o )ren by setting o9 =0 and
op+1=Inf{n>oy : |Y,| <(|]Yo| —k—1)1} that are a.s. finite since Y is recurrent. We then
consider the (possibly empty) event Ay = {E|n€ {oky...,0k41—1} : Y, €[2, Y] and |V, | >
(4 (|Yo|—k—1)4+}. We fix z € T such that |z| > ¢+ (]z|-k—1)4, and let z,y € [@, 2] be
such that |z| =¢+ (|z]—k—1)4+ and |y| = (|z|—k—1)4. By the strong Markov property
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at time o, and by the previous inequality for hitting times we get P(Ak N{Yy= z}) <
(A—=1)/(A*~1)P(Yy = z). Since on A, we have |Yy| > ¢ + (|Yy|—k—1),, the previous
inequality implies P(A;) <(A—1)/(A\f—1).
Next observe that |Yo |+ |Y,[—2 ming<m<n [Yin|—der (Yo, Y5 ) =2(|YoAY, [-ming<m<n | Yin|)
and that
{|Y0/\Yn|— min ‘Ym‘ Zf} CAyUAU...UA,_1.
0<m<n

Thus, P(|Yy| + Y| —2ming<m<n [Yin] > 20 4 dgr (Yo, Yn)) < n(A—1)/(A*—1) and we get
(3.37) by the Markov property at time n;. |

3.5 Law invariance

In this section, we first define a successor map for W[Oyl]-labelled trees that centers
the spatial positions and the genealogical tree at the individual coming next in the
lexicographical order, generalizing Definition 2.6 for the pointed W, yj-labelled trees.
We then show that free branching random walks are invariant in law under this successor
map.

Definition 3.18. Let O =(t, 0;x=(7,),e¢) be a labelled tree in T'(W[o’l]) orin T (W).
(a) We set cent(0)=(|o(t), 010 (0); (Pla,| (To_ , ()))vew, 1)) We keep calling cent(:)
the centering map. As already mentioned, the spatial marks are also shifted.
(b) We next set scc(O)=cent(t,scc(p); x) where we recall that scc(p) stands for the
vertex of t coming next in the lexicographical order as defined by (2.7). We keep
calling scc(-) the successor map.

(c¢) Recall from Definition 2.6 (c) the right-part [(t, 0)]™ of (¢, o). To simplify the notation,
we set (', 0') =[(t, 0)]" and we recall from Definition 3.18 (c) that there exists a
unique one-to-one map 1 : t' — {g,; p < |o|} U {v €t: 0 <; v} such that (o) =
o that preserves the relative height and that is increasing with respect to the
lexicographical order; then, we set [O]T =(t', o', x' = (),)ver') Where x|, =), for
allvet’. We keep calling [O©]" the right-part of ©.

(d) We set scc™(0)=[scc(0)]"; we keep calling scc™(-) the right-successor map. O

We next explain a way to generate a free branching random walk from an i.i.d. field
that is suited to the successor map. To that end we fix t= (¢, u) €T such that |t|- = —o0.
Let o be a Z_-indexed sequence of mutually independent uniform r.v. on [0,1]. Let
® be a W{Oyl]-valued branching random walk that has conditional law @), given o as
in Definition 3.1 (iv). To simplify we denote by Q the (unconditional) law of ®. Let
€y, Uy, v € t be independent r.v. such that U, is uniformly distributed on [0, 1] and
P(e,=1)=P(e, =—1)=1/2. From the field of i.i.d. r.v. ®g:= (¢, u; (€4, Uy)vet), We NOW
explain how to construct a branching random walk that has law Q.

Recall that [v, w] stands for the shortest path (with respect to the graph-distance) that
joins v and w in ¢ (along with the previous notation [v, w[, Jv,w] and Jv, w[, introduced
at the beginning of Section 3.2). Recall also that | — oo, v] stands for the lineage of v:
namely, |00, v] ={v); ;I <|v[}. Recall from (2.5) the definition of the most recent common
ancestor v A w in ¢t. We first set

Voet, Hy=Y (—ew) + Y cu,

we [u,uAv] we [uAv,v[

with the convention that H, =0. Note that H takes arbitrary negative values on the
lineage of v. Namely H satisfies (3.4). It is easy to see that (¢, u; (H,)yet) is @ Z-valued
branching random walk whose spatial motion is that of a simple symmetric random walk
on Z and whose initial position is a.s. H, =0. Recall from (3.5) the notation v(k) for all

integers k< H,: namely, v(k) € | —oo,v] is such that H, ) =miny,c[y(k),0] Hw =k > H;J(—k)
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As in (3.6), for all v €t we set X, = (Uy(x))x<m,. We denote X, by o. It shows that
there exists a deterministic map F' such that

F(©y) := (t,u; (Xy)ver) , which has law Q. (3.38)

Let v/ €t and set F(t,u; (4, Up)ter) =: (¢, 0/, (X])ver). Then, set H, = |X]|, vet. We
deterministically check that

VYoet, H,—-H,=-H, and X, =ox |(X,). (3.39)

We next define [©¢]* as in Definition 3.18 (¢): to simplify notation, we set (¢',u/) =
[(t,u)]" and we recall from Definition 2.6 (c) that there exists a unique one-to-one map
Vit = {u),; p<|ul} U{vet:u<;v} such that ¢)(u') =u that preserves the relative height
and that is increasing with respect to the lexicographical order. Then, we simply define
[©0]T= (', v, (¢),, U})ver ) where (], U]) = (ey(v), Up(v)) for all vet’ and also set

+

§:E+(®0) = [scc(t,u); (€, Uv)vet] (3.40)

By (3.39) and since X, is a deterministic function of ((€,, Uy), w €] —o00, u] U] —o00,v]), it
is easy to check deterministically

F(scc™(©y)) = scct(F(Oy)) - (3.41)

Then, (3.2), (3.38), (3.39) and (3.41) immediately entail the following lemma.

Lemma 3.19. Lett = (t,u) €T . We assume that |t|_ = —co. Let ® = (t,u; (X,)ve;) have
law Q¢. Then scc(®) has law Qq.(v) and scc™ (©) has law Qgcc+ (t) -

The next result is the key point in the proofs of the various laws of large numbers for
the range of branching random walks that we prove in the next section.

Theorem 3.20. Let i be a probability measure on IN such that ), .\ ku(k) =1. Let
o := (Ug)rez_ be a sequence of independent uniform rv. on {1,...,b}. Let ® =
(7%, 0; (Xu)ver-) be a Wy-valued branching random walk whose distribution is the fol-
lowing: 7" =(7% p) is an IPGW'(u)-tree as in Definition 2.8 (ii) and conditionally given
7*and o, © has law (%, . as in Definition 3.1 (iii). Then
scct(©) (law) , (3.42)

where we recall that scc™ stands for the right-successor map as in Definition 3.18 (d).

Next, denote by (v, )nen the sequence of the vertices that are not direct ancestors of
o listed in the lexicographical order. Namely, vo=g, vp <;+ Unt1 and {v,;neWN}={ver:
0<,-v}. Then,

P-as. ~#{X,;1<k<n} —— cupi=P(0g{X,,;n>1}). (3.43)
n—oo

Furthermore, if u satisfies (3.33), then ¢, , > 0.

Proof. Let O := (7% 0; (¢4, Uy)ver~) be distributed as follows: conditionally given 7% &,
Uy, v €t are independent r.v. such that U, is uniformly distributed on [0,1] and ¢, is
uniformly distributed on {—1,1}. Then, we set F(®()=0"= (7% 0; (X/),e,+) as in (3.38).
Conditionally given 7% ©®’ has law Q.- and Remarks 3.3 allows to take ® =®,(®’) that
has the desired law. Lemma 3.19 combined with proposition 2.10 imply that scct (@)
has the same law as ©' and since obviously ®,(scc(®’))=scct(O), we get (3.42).

For all n>m>0, we set R, ,,(©)=#{X,,;m<k< n} and we denote by scc; the (-th
iterate of scct. Observe that R, ,,(scc) (©)) =Ry, +r,n+¢(®), with an obvious notation.
Then, the r.v. (Rm}n((-)Jr)mZnZl) satisfy Assumptions (1.7), (1.8) and (1.9) of Liggett’s
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version of Kingman’s subadditive ergodic theorem (see Theorem 1.10 in [26] p. 1280)
that asserts that there exists a [0, 1]-valued r.v. R such that Ry, (®)/n— R almost surely
(and in LY).

We next prove that R is a.s. constant. Recall from (3.40) the definition of §ET:+(@O) and
we denote by scc, the /-th iterate of scc': namely, scc; (©¢) = [(7*,v¢); (€v, Uy )ver-]™
Denote by %, the sigma-field generated by scc, (©¢). As a consequence of (3.41),
sccf (@) = ®4(F(scc) (©y)), the rv. (Rerin(®))nen are ¥;-measurable. Note that the
sigma-fields ¢, decrease in ¢. Next, we set ¥ =(,.y % that can be viewed as the tail
sigma-field of the subtrees grafted on the infinite line of ancestors; since additional marks
(€v,U,) are i.i.d., Kolmogorov’'s zero-one law applies and ¢ is P-trivial. Furthermore, the
subadditivity for the R,, ,, entail that a.s. R=lim,_, n*1R374+n(®), for all 4. Thus, R is
%-measurable which implies that it is a.s. constant.

Consequently, R=lim,_,, E[Ry »,(©)]/n. By an elementary argument,

E[Ron(("))] = Z P(X'Uk ¢ {X'Uk+1 Yoy Xvn,}) .
1<k<n

Since the law of @ is preserved by the map sce” (1), we get P(Xu, ¢ {Xu -, X, }) =
P(XQ ¢ {XU17 oo 7Xvn_k}) and thus

1 1
B[Ry (0)]= — > P(XQ¢{XU1,...,X%})“—>CM
0<k<n—1

by Cesaro. Finally, observe that ¢, > k., Where s, is defined in (3.34) in Proposi-
tion 3.16 that completes the proof of the theorem. |

3.6 Proof of Theorem 1.1

We fix v € (1,2]. Let 7 be a GW(u)-tree whose offspring distribution u satisfies (H)
in (1.1). We set 7 =(7,9). Let 0:= (Ur)rez_ be a sequence of independent uniform
rv. on {1,...,b}. Let the Wy-valued branching random walk ®,= (7, @; (Y, )e.) have
conditional law Q3 . given 7 and o as in Definition 3.1 (iii). We also introduce the
W,-valued branching random walk ©; = (7, @; (Y;}),e,) that has conditional law Q}®
given 7 as in Definition 3.1 (7). For all integers 0 <k < #, we denote

Rp(@y)=#{Y,;ver:v<, v} and Ry(O])=#{Y, ;ver:v< v}, (3.44)

where vy, stands for the k-th smallest vertex of 7 with respect to the lexicographical order
<,. Arguing as in Le Gall and L. [24], we derive the following result from Theorem 3.20.

Proposition 3.21 (adapted from Theorem 7 [24]). Let v < (1, 2] and let i satisfy (H) as
in (1.1). We keep the above notation and we recall from (3.43) the definition of ¢, , and
from (3.44) the definition of R, (®y). Then,

Ve € (0, 00), P( sup ]%}RL"U (®p) —cup nt‘ > e ’ #T:n) —0. (3.45)

te(0,1 n—00

Proof. The proof can be adapted verbatim from the way Proposition 6 and Theorem 7
pp. 284-289 in [24] are deduced from Proposition 3 and Theorem 4 pp. 280-284 in [24].
Here our Theorem 3.20 plays the role of Proposition 3 and Theorem 4 in [24] and we
only give a brief sketch of the proof. Following the same arguments as in Proposition 6
in [24], we first prove that for any fixed s€ [0, 1],

Ve € (0, 00), P(HRL”SJ(@b) — Cup ns| >e ‘ #T>n) —0.

n—oo
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From this limit and the same absolute continuity argument as in the proof of Theorem 7
of [24], we get for any fixed s€]0, 1],

Ve € (0, 00), P(HRL”SJ(@b) —cupns| > e ‘ #T:n) —0.

n— o0
We then get (3.45) thanks to the following variant of the second Dini’s theorem. |

Lemma 3.22. For allneN, let (Q,, %,, P,) be a probability space on which a nonde-
creasing right-continuous process (Xf"’)te[o,oo) is defined. Let (2(t))c[0,00) be a (deter-
ministic) continuous function. Suppose that for all t € [0, cc), the real valued r.v. X"
under P, tends to x(t) in law. Then limy, o Py (sup,c(o ) |X§") —x(t)| > ¢) =0 for all
e€(0,00) and all peN.

Proof of Lemma 3.22. We fix p€ IN. Set w,, ; =maxo<i<p2a |X,i72l),q—x(k2_q)\ foralln,qge
IN. Since the convergence in law to a constant implies the convergence in probability, we
easily get for all ¢ that lim,,_, o P,,(w,, 4 >¢) =0. Next set v, =max{|z(t)—z(s)|;s,t€[0,p]:
|s—t| <277} that tends to 0 as ¢ — oo since z is continuous. By monotonicity of Xt(n), itis
then easy to see that for all ¢t €0, p|, that \Xt(") —z(t)| <2v4 + 3wy, 4, which easily implies
the desired result. ]

End of the proof of Theorem 1.1. We keep the notation from above and recall from
(3.43) the definition of ¢, , and from (3.44) the definition of R, (©;). We now derive
Theorem 1.1 from (3.45) and Proposition 3.8 that allows to change the state space from
W, to W;,.

For all positive integers n, we set ¢, = 4log,n, L, = #{ver : |[Y,}| <c,}, N, =
#{ver: |vJ=n} and C, = Ny + N1 + ... + N,. Let (Sp)nen be a simple symmetric
random walk on Z with initial position Sy =0. By definition of ®;, for all v € 7, we get
E[f(|Y,"]) [ T]=E[f(|S}4|) | 7]. Then, for all b, € N* we get

E[L,|7] =) NiP(|Sk|<en) < G, + (b, )47, (3.46)
keN

where we have set o(p, s) =supj,, P(|Sx|k~3< s) for all pe IN* and all s€ (0, 0). Observe
that any fixed p, lims o4 o(p, s)=0. We now take b, =c?.
We next claim that for all € (0, 00),
lim P(1C,, >n|#7=n)=0. (3.47)
n—oo
Proof of (3.47). For all ¢ € (0,00) and all y € R, we set f.(y) = (1—e (|]y| —¢), ), that
is continuous and such that 1|_. 4 < f. <1[_. 2. Recall from the introduction that
(Hk)o<k<#- stands for the height process of the tree 7 and recall the convergence (1.4).
Then note that

1
%Cane < Q? = / fE(alﬁHLnsJ) ds .
0
By (1.4), Q7 under P(-|#7=n) tends in law to Q. := fol f<(Hs) ds. We recall here that

a.s. foralls € (0,1), H;>0 (see D. [11] or Section 4.4). Thus lim._,o+ Q. =0 and we get
for all ne (0, c0)

lim sup lim supP(%C’anE >n | #T:n) < limsup lim sup P(Q? >n | #T:n)
e—0+ n—oo e—=0+ n—oo
< limsupP(ngn) =0. (3.48)
e—0+

Since (ap)nen is a =t-regularly varying sequence, b,/a, — 0 and (3.48) entails
(3.47). O
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Since +C}, €(0,1], it also implies that E[£C}, |#7=n] — 0 as n — co. By (3.46) we
get lim,,_,c E[+ L, |#7=n]=0. We next apply Proposition 3.8 to c=[4log, n|+1: (3.18)
implies the following.

P( sup %|R\_nsj(®]j) —Cup ns| > 2¢ ‘ #T:n)
s€0,1]

< 2bn_1+P(%Ln>£’#T:n)+P( sup %’RLnSJ(@b)—c#’bns‘ >5‘#T:n),
s€[0,1]

which implies (1.3) in Theorem 1.1 by (3.45) since E[L L, |#7=n]—0 as n— oc. [ |

4 Snake metrics and the Brownian cactus

4.1 Pseudo-metrics on a closed interval
Definition 4.1. Let ( € (0,00). We introduce the following spaces.

(a) We denote by C([0,¢]?,R) the space of continuous functions from [0,¢]? to R that
is a Banach space when equipped with uniform norm ||-||.

(b) We denote by M([0, ¢]) the set of continuous pseudo-metrics on [0, (]. Namely, it is
the set of d€ C([0, ()%, R) such that for all s1, 52,53 €[0,],

d(s1,82)>0, d(s1,51)=0, d(s1,82)=d(s2,s1) and d(s1,s3)<d(s1,S2) + d(s2, $3).

(¢) We denote by MT([0, (]) the space of continuous pseudo-metrics d € M([0,(]) such
that for all sy, so, S3, 54 € [O, (],
d(s1,s2) + d(ss3,s4) < max (d(sl, s3) + d(s2, s4) 5 d(s1,54) + d(s2, sd)) . (4.1)
We call the latter inequality the four points inequality. O
We easily check that MT([0, ¢]) and M([0, ¢]) are closed subsets of (C([0,¢]?, R), ||-]]).
We shall need the following compactness criterion in M({[0, ¢]).
Lemma 4.2. For all n€ (0, 00) and all d€ M([0,(]), we set

qn(d) = max {d(s,s'); s,5'€[0,(] : |s—s'| < n}.

Let D be a subset of M([0,¢]). Then, the closure of D is compact if and only if
SUPgep qn(d) — 0 as n— 0+.

Proof. For all f€C([0,¢]?,R) and all n€ (0, 00), set

wy(f)=max {|f(s1,51)— f(s2,55)]; 51,582,851, 55€[0,¢] « |s1—s2|V[s) =5 < n}

that is the 7-modulus of uniform continuity of f. The Arzela-Ascoli Theorem asserts
that the closure of A C C([0,¢]? R) is ||-|-compact if and only if sup ;e 4 wy(f) = 0 as
n— 0+ and sup;c 4 [f(0,0)| <oc. The desired result follows from the easy observation
that ¢, (d) <wy(d) <2¢,(d) (here, the second inequality is a consequence of the triangle
inequality) and from the obvious fact that d(0,0) =0 for any d€D. |

This lemma immediately implies the following tightness criterion.
Proposition 4.3. Let (d,)nen be a sequence of M([0, (])-valued random variables. Their
laws are tight on (C([0,¢]?, R), ||||) if and only iflim, o4 sup,ci P (gy,(d,,) >¢) =0 for all
e€(0,00).

We now prove the following specific proposition that is used later in the proof of
Theorem 1.2.

Proposition 4.4. Let d,,,d, n€IN, be M(][0, ¢])-valued r.v. such that
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(i) d,,—d weakly on (C([0,¢]* R), [|-]|);
(14) For allneWN and for all s,s' €[0,(], a.s. df(s,s") <d,(s,s');
(19i) Forall s,s'€10,¢], |ds(s,s")—d,(s,s")]— 0 in probability.
Then, (d;,,d,,) — (d,d) weakly on (C([0,¢]% R), |I])°.
Proof. By (i) and Proposition 4.3, for all ¢ € (0, 00), lim, o sup,,c P(g,(d,) > ¢) = 0.
Since d,, and d}, are continuous, (i) actually implies that a.s. for all n € IN and for
all s,s" €[0,¢], d;(s,s") < dy(s,s’), which immediately entails ¢,(d},) < ¢,(d,). Thus,
lim, o sup,en P(gy(d},) >¢) =0, for all € € (0,00). By Proposition 4.3, the laws of the
r.v. (d},d,) are tight in C(]0,¢]?,R)? and we get the desired result because (i) and (iii)
easily entail the weak convergence of the finite dimensional marginals of (d*,d,) to

n?

those of (d,d). |

Induced metric spaces. Let de M ([0, (]). We define the relation ~4 on [0, (] as follows:
for all s1,s2 € [0,(], s1 ~q s2 if and only if d(s1,s2) = 0. Clearly ~4 is an equivalence
relation and we define the quotient space:

E;=10,¢]/~4, proj,:[0,{]— E4, the canonical projection, r4 = proj,(0).  (4.2)

We keep denoting d the metric induced by d on E,. Since d is continuous on [0, (]2, proj,
is continuous and (E,, d, r4) is a pointed compact and connected metric space. We also
equip E,; with the pushforward measure p4 of the Lebesgue measure on [0, (] via the
canonical projection: namely, for all nonnegative measurable functions f on Ejy,

¢
F(@) palde) = / F(projq(s)) ds - 4.3)
Eg4 0

Note that pq4 is a finite measure with total mass (.

Remark 4.5. Let (E4,d, 14, i1q) be the compact metric space corresponding to the pseudo-
metric d € M([0,¢]). Let a,b € (0,00). Set d'(s1,s2) = ad(s1/b,s2/b), s1,s2 € [0,b(].
Then, we easily check that d’e M([0,8(¢]) and (Eq,d’, rq, par) is isometric to (Ey, ad, 74,
biig). O
Real trees. When de MT([0,(]), the resulting space Ej, is a real tree. More precisely,
real trees are metric spaces that extend the definition of graph-trees; they are defined
as follows.

Definition 4.6. let (T, d) be a metric space; it is a real tree if and only if the following
holds true.
(a) Forany oy,02€T, there is a unique isometry f : [0,d(o1,092)]—T such that f(0)=0,
and f(d(o1,02))=02. Then, we set [o1, 03] := f([0, d(o1,02)]).
(b) For any continuous injective function g : [0,1] — T, such that g(0) = o1 and g(1) = o2,
9([0, 1)) =[o1, 02]. D
It turns out that the four points inequality is a metric characterisation of real trees.

More precisely, if (T, d) is a connected metric space, then (7', d) is a real tree if and only
if for any o1,092,03,04 € T,

d(O’l,Ug) —|—d(0'3,0'4) < (d(O’l,O'g) +d(0’2,0’4)) \Y (d(01,0'4) +d(0’2,0’3)).

We refer to Evans [15] or to Dress, Moulton and Terhalle [9] for a detailed account on
this property.

Let us introduce some notation about real trees. Let (T, d) be a compact pointed real
tree. We distinguish a point r € T" that is viewed as a root. We then define the length
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measure Length(:) on T as the one-dimensional Hausdorff measure: namely, it is the
unique Borel measure such that Length([o,0']) =d(o,0’), for all 0,0’ € T. Let us next
introduce branch points: let o1, 09, 03 € T; then the geodesic paths [o1, 03], [o1, 03] and
[o2, 03] have exactly one point in common that is called the branch point of o1, 02, 03 and
that is denoted by br (o, 02, 03); namely

{br(Ul,O'Q,O'g)} = [[0'1,0'2}} n [[0'1,0'3]] M [[0'2,03]]. (44)

If we view T as a family tree whose ancestor is r, then br(o, 02, 7) is the most recent
common ancestor of o7 and o5 and we use the following notation

o1 ANog =br(oy,09,T).
We next introduce the (extended) degree of any point ¢ €T as follows.

deg(o) is the (possibly infinite) number of connected components of the open set T\ {c}.
(4.5)
We say that ¢ is a branch point if deg(c) > 3; we say that ¢ is a leaf if deg(c) =1 and we
say that o is simple if deg(c) =2. We shall use the following notation for the set of leaves
of T’
LE(T) := {oc€T\{r} : deg(o)=1} .

Definition 4.7. Let 11 be a finite Borel measure on T'; then (T, d,r, 1) is a continuum real
tree in the sense of Aldous [3] if T' is compact and if

u is diffuse, the topological support of yu is T and p(T\L£(T)) =0 . (4.6)

Lemma 4.8. Let ( € (0,00) and d € MT([0,¢]). To simplify we denote by (T,d,r, ) the
pointed and measured compact real tree induced by the pseudo-metric d and we denote
by p:[0,¢] — T the canonical projection. We set

U={s€(0,¢): Vs'€[0,¢]\{s}, d(0,s)+d(s,s")>d(0,s)} . 4.7)

We assume that [0,¢]\U is Lebesgue-negligible. Then, T is a continuum real tree as
defined in (4.6).

Proof. By construction and since p is continuous, the topological support of ;s is T'. We
next show that p(U) CL£(T). Let s€ (0, ) be such that p(s) #r and such that deg(p(s)) > 2.
Let s’ be such that p(s’) belongs to a connected component of T\{p(s)} that does not
contain r. Then, p(s) € Jr, p(s’)[, which implies that d(p(s’),r)=d(r,p(s)) + d(p(s), p(s')),
namely, d(0,s’) =d(0,s) + d(s,s’). Thus, s ¢ U. This proves that p(U) C L£(T). Since
[0,¢]\U is Lebesgue negligible, T\Lf(T') is p-negligible.

It remains to prove that yu is diffuse. Let s€0,(]. If s¢ U, then p(s) e T\L£(T) that
is p-negligible; thus u({p(s)}) =0. Assume now that s € U and suppose that s’ is such
that d(s, s’) =0. The triangle inequality for d implies that d(0, s) =d(0,s’). Since s€ U,
we get s=s'. Thus p~*({p(s)})={s} and u({p(s)})=0, which completes the proof of the
lemma. ]
Example 4.9. (Real trees spanned by graph-trees) Let T be a discrete graph-tree with a
special vertex p viewed as a root. We denote by d,, the graph-distance on T. The real tree
spanned by T is obtained by joining neighbouring vertices of T by a unit-length segment
of the real line with its own metric. Formally, we can take T={(p, 1)} U Uven (o3 {01%(0, 1]
and for all 0= (v, s) and o’ = (v', ') in T, we set:

N dgr(v,0") + 545 =2 ifoAv ¢{v,v'},
dge(0,0") = dge(v,0) +5— 5 if v/ =vAv and v#£/,
|s — &| ifo=v/,
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where vAv’ is the most recent common ancestor of v and v’ when we view T as a family
tree whose ancestor is p. Clearly, (T, dg,) is a real tree and if we identify T with Tx{1} CT,
we easily check that Jgr extends dg,. Note that (T, JgTr) is compact if and only if T is
finite. =
Example 4.10. (Real trees coded by continuous functions) Let ¢ € (0,00) and let h :
[0,¢{] =R be continuous. For all s1, s €[0, ], we set

mp(s1,82) = inf h(s) and dp(s1,s2) = h(s1) + h(s2) — 2mp(s1, $2) - (4.8)

SE[s1/A82,51Vs2]
We easily check that d, € MT([0,¢]) and to simplify we denote by (T}, dn, T, 1un) the
induced metric space (Eg, , dp, 74, , itd, ) @s defined in (4.2) and (4.3); we also denote by
pr :[0,¢] = Tj, the canonical projection (instead of proj, ); (Th,dn, 7, i) is @ pointed
measured compact real tree that is the tree coded by the function h.
Let h':[0,(] — R be continuous. Then observe that

vs13827€[07d7 |dh(81752)_dh’(81a32)| <4 sup |h(8)—h/(8)| ) (4.9)
s€[0,(]
which shows the continuity in M'T(]0, ¢]) of the application h +— d,. O

Remark 4.11. Let (T}, dp,, rp,) be the real tree coded by the continuous function %: [0, (] —
R and the canonical projection p; as explained above. Suppose that h is nonnegative
and that ~(0)=0. Then dj (0, s)=h(s) and for all s, s2 € [0, (], we easily get mp(s1,s2) =
dn (71, pr(s1) Apn(s2)).

However, let de MT (][0, ¢]) and set h(s)=d(0, s), s€ 0, ¢] that is a continuous function.
The real tree T'=0, ]/ ~q4 is in general different from the the real tree 7}, coded by h:
namely d # dj. But let us mention that all compact real trees can be coded by (many)
continuous functions (see D. [10] for more details on the coding of real trees). O

Gromov-Hausdorff-Prokhorov metric. Let (F1,dq,r1,u1) and (Fa,ds, 2, o) be two
pointed measured compact metric spaces: here p; and o are finite measures on the
respective Borel sigma-fields of F; and E5, and r; € F; and r, € F» are distinguished
points. The pointed Gromov-Hausdorff-Prokhorov distance (the GHP-distance for short)
between F; and F; is defined by

Saw (1, Bz) =inf { 4561 (F), 62 (E2))
+ dp(1(r), 6a(r2)) + A (odi  pogy ) | (4.10)

Here, the infimum is taken over all Polish spaces (F,dg) and all isometric embeddings
¢i : E; — E, i€{1,2}; d}s stands for the Hausdorff distance on the space of compact
subsets of E (namely, 2 (K, K,) =inf{e € (0,00) : K; C K5 and K, € K}, where
A ={yc E : dg(y, A) <&} for all non-empty A C E); dProk stands for the Prokhorov
distance on the space of finite Borel measures on E (namely, d57°%(u, v) =inf{e € (0, o0):
w(K)<v(K®) 4+ ¢ and v(K) < u(K®)) 4+ ¢, VK C E compact}); for all i € {1,2}, ujo¢;
stands for the pushforward measure of y; via ¢;.

Remark 4.12. Let (E,d) be a Polish space and let a,b,c € (0,00). We denote by dpyqx
(resp. dg,..,) the Prokhorov distance on the space of finite Borel measures on (E,d)
(resp. (F,ad)) and we denote by dyaus (resp. d4,,.) the Hausdorff distance on the space of

Haus

the compact subsets of (E, d) (resp. (E, ad)). First note that df,,. = adpaus. Then, observe

Haus
that dprox (b, cit) =|b—c|u(E) and that (a A b)dprox (1, V) <dSor (bit, b)) < (a V b)dprox (1, V).
Let (E1,dy,r1, p1) and (Ea, da, r2, o) be two pointed measured compact metric spaces.
We set (E., d},r., p.) = (B, ad;,ri,bu;), ¢ € {1,2}. Then, it is easy to check that (a A

1 e D

b)dcup (Er, E2) <dcup(E1, E5) <(aV b)dcue(E1, E2). O
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Example 4.13. Let T be a finite graph-tree that is equipped with its graph distance
and with its counting measure: m = ) _.d,. Let (T, cjgr) be the compact real tree
spanned by T (see Example 4.9). We equip T with its length measure Length. Up to
obvious identifications, we can assume that T C T. Then, we easily get dyaus (T,T) <1,

dprox(m, Length) <2 and thus, deyp(T, T) <3. O

We next recall from Theorem 2.5 in Abraham, Delmas and Hoscheit [1] the following
assertions: dggp is a pseudo-metric (i.e. it is symmetric and it satisfies the triangle
inequality) and dgup(E1, E2) =0 if and only if F; and Fs are isometric, namely if and
only if there exists a bijective isometry ¢ : F; — F5 such that ¢(r;) =72 and such that
la =11 0 ¢~ 1. Denote by IM the isometry classes of pointed measured compact metric
spaces. Then, Theorem 2.5 in Abraham, Delmas and Hoscheit [1] asserts that

(IM, denp) is @ complete and separable metric space. (4.11)

Proposition 4.14. Let d,d’ e M([0,(]) and let E; and E4 be the induced pointed mea-
sured compact metric spaces as defined by (4.2) and (4.3). Then

Seup(Ea, Bar) < 3|ld—d'|| . (4.12)

Proof. We use the notation from (4.2) and we set R = {(proj (s),proj(s));s€[0,(]}
that is a relation on E;x E4 since for all x € E; and all 2’ € Ey, RN ({z} x E4) and
RN (Eq x {z'}) are not empty. By the triangle inequality for pseudo-metrics, we get

dis(R) :=sup {|d(z,y)—d'(«',y)|; (z,2"), (y,y") R} < [|d—d'| . (4.13)

We next set G=F, LI E4 that is a disjoint union, and we define a metric § on GG as follows:
0 coincides with d on E;x E; and with d’ on Ey x E4 and for all x € E; and all ' € Ey,
we set

§(z,2") = inf {d(z,y) + 3dis(R) + d(v',2'); (y,¥')ER} .

We easily check that ¢ is a separable compact metric on G. Thus, (G, d) is Polish. The in-
clusions E; — G and Ey — G are isometries and since (rq,7q4) = (proj,(0), proj, (0)) €
R, we get

6Haus(Ed7 Ed/) V (5(T‘d,7“d/) < %diS(R) s (4.14)

where du..s sStands for the Hausdorff distance of the space of compacts subsets of GG.
Let K be a closed (and thus compact) subset of G. Weset Q=FE;NK and Q'=E; NK
that are also compact subsets of G. Note that pq(K) = pqe(Q) and pg (K) = pa (Q').
We set C' = proj;'(Q), Qb = proj,(C) and C’ = proj,'(Q}). Since proj, and proj,
are continuous, C' and C’ are compact subsets of [0,¢] and @, is a compact subset of
E; . Denote by ¢ the Lebesgue measure on [0, 00). Observe that C'C C’, which implies
that uq(K) = pa(Q) =4(C) <U(C") = pa (Qp). Let 2’ € Q). There exists s € C' such that
proj,(s) =«’. But note that z :=proj,(s) € @Q and thus (z,2’) € R. Set n:= $dis(R);
then we have proved that pq(K) < pg (K") where K"={z€ G:0(z, K)<n}. Similarly,
we prove that pug (K) < pug(K") which implies that dpyox (pta, prar) <n, where dpyox stands
for the Prohorov distance on the space of finite Borel measures on (. This inequal-
ity combined with (4.14) implies that deup(Fy, Ea) < 2dis(R), which entails (4.12) by
(4.13). |

4.2 Scaling limit of the range of biased RWs on trees

Let T be an infinite rooted ordered tree. We fix A € (1, 00) and we denote by (Y, )nen
the \-biased RW on T whose transition probabilities are given by (3.36). We make T'
a real tree by joining neighbouring vertices by a line isometric to [0, 1] as explained in
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Example 4.9 and we keep denoting by (7, dg, @) the resulting rooted real tree. We also
denote simply by (Ys).c[0,0c) the continuous interpolation of Y: namely, for all nc€IN and
all s€[n,n + 1], Y; is the unique point of the line [Y;,, Y, +1] in the (spanned) real tree T'
such that dg (Y, Ys)=5—n.

Let (€(0,00). For all n€N, we then set

Rn:{yvs§ SG[O,C”]}

that is a random compact real tree. We equlp R with the occupation measure mie:

induced by the RW, namely [, f(o)m&e(d fo Ysn) ds.

Proposition 4.15. We keep the above notation. Let (a,)nen be a sequence of positive
real numbers. We assume that (Y,,)nen is recurrent, that lim,,_, a-"' logn=0 and that
there exists a continuous random process (H,)c[o,c] such that

1 (law)
(:Tndgf(@’Y"S)) - (HS)SE[O,C] (4.15)

s€[0,(] n—o00
weakly on C([0,¢],R). Then, jointly with (4.15), the following convergence

(law)
(Rn, Ld,, o, mggz) ——— (Tu.du, v, i)

holds weakly on the space of rooted measured compact metric spaces M equipped with
the Gromov-Hausdorff-Prokhorov distance. Here, (TH7 dgr, T, 1 H) stands for the real
tree coded by H as in Example 4.10.

Proof. For all s € [0,(], we set H{" = -Ldg(2,Y,,) and for all s,s" € [0,(], dn(s,s') =
H{” + H” —2min,¢sns svs] Hr'”, that is the tree pseudo-distance coded by H" as in
Example 4.10. Clearly, by (4.9), (4.15) implies that d,, —dz weakly on C([0,¢]?,R). Then
we set d (s, s") =a;, 'dgr (Yns, Yo ). Thus d, (s, s') <dn(s, s’) and by (3.37) in Lemma 3.17,
we get for all £>0 that

P(dn(s,s')—di(s,s") >¢) < P<|Y[MJ|—|—|Y[M/J|—2 min |Y;| > ean —2 + dgr (Ys), Y[M,J))
s|<k<|ns’|
A—1
< (Ins'] = [ns))— 0.

)\75‘1"_1_1 n—o00

By Proposition 4.4, (d},d,)— (du, dy) weakly on C([0,¢]?, R)?. This implies the desired
result by Proposition 4.14 and because the compact measured rooted tree induced by
the pseudo-metric d}, is isometric to (R, 7 dgr, @ ,MSer). |

We then derive from the previous proposition (the easy part) and from a result due
to A. Dembo and N. Sun [8] (the difficult part) that the scaling limit of the range of
critical biased RWs on a supercritical multi-type GW-tree is the Brownian tree. More
precisely, we consider a N-type GW-tree; for all k€ {1,..., N} we denote by u(k,-) a
probability measure on Wy ={J,cn{1,..., N}", the set of finite words written in the
alphabet {1,..., N}. For all p€ (0, 00), the p-th moment matrix M, = (my(k, £))i1<ke<n is
given by

Z Z wl,...,wn))(#{je{l,...,n}:wjzé})p.

nelN 1<wy,...,w, < <N

We assume the following.
(a) There exists pe (4,00) such that for all k,£€{1,..., N}, my(k, () <oo.
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(b) There exists an integer ny>1, such that M has only strictly positive entries.
(¢) Let A be the Perron-Frobenius eigenvalue of M;. We assume that A >1.

Let T = (T, 9, (as)zer) be a N-type GW(u)-tree. Namely, T is a random rooted or-
dered tree, a, € {1,..., N} is the type of vertex = € T and T satisfies the following
property: recall that ky(7T) is the number of children of the root and recall that for all
Je{l,...,kx(T)}, 0(;)T stands for the tree stemming form the j-th child of @ (equipped
with the types of corresponding vertices). Then, conditionally given ag, the types
(a(l), .. .,a(kz(T))) of the children of the root have conditional law p(ag,-) and con-
ditionally given (a(l), . 7a(kg(T)))' the subtrees 0(\)T,...,0, (1)) T are independent
GW(u)-trees.

Then, conditionally given T, let (Y, ),cw be the A-biased RW on T started at @ and
denote by (Y;)se[o,o0) its continuous interpolation as explained above. Under Assumptions
(a), (b) and (c) on p, Theorem 1.1 in A. Dembo and N. Sun [8] p. 3 asserts that there
exists o € (0, 00), a constant that depends only on p, such that a.s. on the non-extinction
event {|T|=o0},

(law)

— (|1Bs])
€[0,00) n—00

(rtote),
where (B;)c0,00) is @ standard linear Brownian motion such that By =0 a.s. By Proposi-
tion 4.15, we immediately get the following new result.

Corollary 4.16. We keep the notation as above. Let ( € (0,00). Let R,,={Ys; s€[0,n(]}
be the range of Y up to time n{ and let m$s. be the occupation measure of Y on R,, as
introduced before. Under Assumptions (a), (b) and (c) on u, a.s. on the event {|T|=o00},
we get

s€[0,00)

L_g @) 1 (Tip.d a1
(Rn, v gragvmocc) — (T1B)- diB|s 7B 11B]) (4.17)
weakly on the space of rooted measured compact metric spaces IM equipped with the
Gromov-Hausdorff-Prokhorov distance. Here, (T|B‘,d‘3|,r|3‘,u|3|) stands for the real

tree coded by the reflected Brownian motion (|Bs|)sc(o,¢]-

In literature, the first scaling limit for the range of tree-valued RWs appears in D. [12]:
in this paper the tree is b-ary and the RW is slightly super-critical (see Theorem 2.1
[12] p. 2224; Lemma 3.7 [12] p. 2241 also contains a local law of large numbers for
the range). When 7' is a supercritical single-type GW-tree, Y. Peres and O. Zeitouni [30]
have first proved (4.16) when the offspring distribution has exponential moments (see
Theorem 1 [30], p. 596). Then, E. Aidékon and L. de Raphélis in [2] have proved (4.16)
for supercritical single-type GW-tree under a second moment assumption and they also
proved (4.17) in these cases (Theorem 1.1 [2], p. 645). In the same article, they extend
(4.16) and (4.17) to RWs in random environment on GW-trees (see Theorem 6.1 [2],
p. 660).

4.3 Snake metrics

Snakes are path-valued processes that provide a nice parametrization of the spatial
positions of a population whose genealogy is a continuum tree and that are scaling limits
of branching random walks. Snake processes, and in particular the Brownian snake, has
been introduced by J-F. Le Gall in [21] to study fine properties of super-Brownian motion.
In this section, we first recall basic definitions on snakes, in a deterministic setting and
in dimension 1. Then, we introduce a pseudo-metric derived from a snake, we study its
continuity properties and we show that snake metrics actually yield real-trees. Finally,
we prove elementary geometric properties of such real trees that are deterministic
version of the cactus introduced by Curien, Le Gall and Miermont in [7].
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Definition 4.17. We fix ( € (0, o) and we denote by C([0, (], R) the space of the continu-
ous functions from [0, (] to R; it is a Banach space when equipped with the uniform norm
Illcc- We also denote by C, the space of continuous functions from [0,00) to R that is a
Polish space when equipped with the following metric:

Vw,w' € Co, dy(w,w’) = Z 27" 'min(1, sup |w(r)—w'(r)|) . (4.18)
nelN re(0,n]

(a) We denote by C([0,¢], Cy) the space of the &,-continuous functions from [0, (] to
Co equipped with the distance A*(w,w') =sup,¢[o ¢ du(ws(-), wi(+)), for all w,w' €
C([0,¢],Cp). We next equip the product space C([0,(],R) x C([0,(],Cy) with the
following distance: for all (h,w), (h',w") € C([0,¢],R) x C([0,¢], Co),

A((h,w), (W, w") = [|h—h'||oc + A" (w,w') .

(b) We denote by X([0,(]) the space of the R-valued snakes; namely, the space of
(h,w) € C([0,¢],R) xC([0,(], Co) that satisfy h>0, h(0)=h(¢)=0 and the following.
(b1) Forall s€[0,¢] and for all r € [h(s),00), ws(r) =ws(h(s))=:Ws.

(b2) For all s1,s2 € [0,¢] and for all r € [0,mp(s1,52)], ws, (1) = ws,(r), where we
recall from (4.8) the definition of my(s1, $2)-
We refer to (b2) as to the snake property. The function h is called the life-

time process and the function (@s)se[o,c] is called the endpoint process of the
snake. O

We easily check that (C([0,¢], Co), A*) and (C([0,¢],R)x C([0,¢], Co), A) are Polish
spaces and that 3([0, ¢]) is a A-closed subset.

The following lemma is used in the proof of Theorem 1.2.

Lemma 4.18. Let (h,w) € %([0,¢]). Forallne (0, 00), we set w,(w) =sup {6y (ws, ws); s, s’
€ [0,¢]:|s—s'| <n} and w, (@) =sup{|Ws—Wy | ; s, s €[0,(]:|s—s'| <n}. Then, w,(w) < 2w, (D).
Proof. For all s € [0,(] and for all r € [0, h(s)] set a;, =sup{s’ € [0,s] : h(s') <r} and
Bs,r=inf{s" €[s,¢]:h(s’) <r}. Then, Definition 4.17 (b2) implies that w;(r) =wy (r) for all
s'€las,r, Bs,,] and in particular, @, , =ws, , =ws(r) since r=h(as ) =h(fs,).

Next, fix s,s" €[0,(] such that |s—s'| <n. To simplify we set m =my(s,s’). Let r, €
[m, h(s)] be such that |w,(r.) —ws(m)|=max,cjm n(s) |ws(r) —ws(m)|. Suppose that s <s'
(resp. that s’ <s), then B, Bs.m €[5, 8'] (resp. as ., as.m €[, 8]) and |ws(r.) —ws(m)|=
|ws,,,, — Wa,,,| (xesp.= |Wa,,, — Wa,,,|). Thus, max,cpm,n(s) [ws(r) — ws(m)| < wy().
Similarly, max, ¢y, n(s)] |ws (1) —ws (Mm)| <w, (W). By Definition 4.17 (b2), we get w,(m) =
wg (M) and SUD,[0,00) [ws (r)—wgr ()] SMaX, ¢ m n(s)) [Ws (1) =ws (M) | +MAX, ¢ [ (57)] |Wsr ()=
wgr(m)|, which easily implies the desired result.

Definition 4.19. Let ¢ € (0, 00) and let (h, w) € 3([0,(]). Recall from (4.8) the definition
of my(-,-) and recall from Definition 4.17 (b1) the definition of @. For all s1,s2 €[0,(], we
set

My, (51, 82) :min<min{w51(7");r€ [mn(s1, s2), h(s1)]}, min{ws, (r);r e [mh(sl,SQ),h(SQ)]})
and dh,w(sh 82):’&)\51 + ’1/1}\52 — 2Mh’w(81, 82) . (419)

We call dj, ., the snake metric associated with (h,w) (see Lemma 4.22 below). O

Lemma 4.20. Let (€0, 00) and for all n €N, let (h,, w™) € 3([0,(]) that converges to
(h,w) in C([0, (], R)xC([0,(], Cy) equipped with A as in Definition 4.17 (a). Recall that ||-||
stands for the uniform norm on C([0,¢]*, R). Then, limy, o ||dp, —dp || =limp, oo [|djy, i —
dpw| =0 (see (4.8) and (4.19)).
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Proof. The first limit follows from (4.9). To prove the second one, we fix e € (0,1) and
we set a=14sup,, oy max,eo,¢] |hn(s)|. Let ny €N such that A((hy,, w™ ), (h,w)) <272,
for all n>n;. Thus, for all n>n, and for all s€]0,(],

ngn)—wsHoo:: sup |w£”)(7‘)—ws(r)\= sup |w§")(r)—ws(7‘)| <e. (4.20)
r€[0,00) rel0,a]

Fix s1, 2 €10, (] and set m,, =my,, (s1, s2) and m=my(s1, s2). By (4.20), we get

Vn>ny,Vje{l, 2},

i ™ (r) — mi (n) _
il Sl = e el = 42D

Next, for all uniformly continuous g:[0,00) = R, and for all 5 € (0,0), we use the
notation w(g,n) =sup{|g(s) —g(s')|;s,s’ €[0,00): |s—s'| <n} for the n-uniform modulus
of continuity of g. We recall that ||h—h,||co < A((hyn, w™), (h,w)). Observe that for all
j€{1,2} and all neN,

min ws; (r) — min ws, ()| < w(ws,, ||h—hnllso) - (4.22)
re[mmhn(sy-g] ) re[m,h(sJ-J)]( )’ ( 7 || || )

By the definition (4.19) of dhmw(m, by (4.20), (4.21) and (4.22), for all n>nq, we get the
following:

|dhn,w(n>(51, s2)—dn,w(s1,52) | < e+ 3w(wg,, |h—hnllso) + 3w(ws,, |A—hnllso). (4.23)

Since w is uniformly d,-continuous on [0, (], there exist o1, ...,0, € [0,¢] such that for
all s € [0,¢], there exists k € {1,...,p}, such that ||ws —wy, || < e, which implies that
|w (ws, 1) —w(we,,n)| < 26, for all e (0,00). By (4.23), it implies that

I,

S —dp || < 166 46 max w(wak, thhnHoo),
' 1<k<p

which implies limsup,, . [|dp,,, ) —dhw|| <16, for all e € (0, 00). It completes the proof
of the lemma. ]
Remark 4.21. Let (h, w) € %([0,¢]). Definition 4.17 (b) means that w is actually defined
on the real tree (Ty,dp,h, un) coded by h (as defined in Remark 4.10). Indeed, let
s1, $2 €0, ¢] be such that dj(s1, s2) =0; then h(s1)=h(s2) =mp(s1, s2) and Definition 4.17
(b) implies that ws, =ws,. Up to a slight abuse of notation, it therefore makes sense to
define w on T}, as follows: for all 0 €T}, and for all s€ [0, ¢] such that o =py(s), then

we () = ws(-) and W, = W , (4.24)

where we recall that py, : [0,(] — T} stands for the canonical projection. It is easy to
check that w: T}, — Cy is continuous. Moreover, Definition 4.17 (b) combined with the
argument of the proof of Lemma 4.18 entails the following.

VUGTh7 V’YE[[T]’HU]]’ wo’(dh<rha,}/)) = ’&)’Y :

We also get the following: let 01,02 €T}, and s1, s2 € [0, (] such that p,(s;) =0, i€{1,2};
then

My (s1,82) = min @, andthus dp ,(s1,52) = Wo, + Wy, —2 min W, . (4.25)
v€lo1,02] v€[o1,02]

Up to a slight abuse of notation, it makes sense to view M}, ,, and dj ., as continuous
functions from 7}, x T}, to R. O

EJP 27 (2022), paper 16. https://www.imstat.org/ejp
Page 36/54


https://doi.org/10.1214/22-EJP741
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Scaling limits of tree-valued BRW

Lemma 4.22. Let ( € (0,00) and let (h,w) € 3([0,¢]). Let dj ., be the associated snake
metric as in Definition 4.19. Then, dj, ,, € MT([0, ¢]). Namely, it is a continuous pseudo-
metric on [0, ] that satisfies the four points inequality (4.1).

Proof. We first prove the continuity of dj_,,. To that end, for all a,b € [0,00) and all
s€[0,¢] we set ¢y p(s) =min{ws(r);r €[a Ab,aV b]}. First note that ¢, 5(s) — dap(s')] <
SUP,c(0,avp] | Ws (1) —ws (r)|. Then, observe that for a fixed s, (a,b)— ¢,(s) is continuous.
This easily implies that (a, b, s) — @4 (s) is continuous. Therefore, d}, ,, is continuous on
[0,¢]>.

Let s1, 52, 53,54 € [0,¢]. We set X1 = My, (51, 52) + Mp (83, 54), Xo = M (s1,53) +
M, (52, 84) and Xz = My, (51, 84) + M}, (82, 83), so that dj, ., satisfies the four points
inequality (4.1) if X; > min { X, X3}, which is a consequence of

#{i€{1,2,3} : X;=min(Xy, Xo, X35)} > 2. (4.26)

To prove (4.26) it is convenient to work on (7}, dy, 7)) that is the pointed compact
real tree coded by h as explained in Example 4.10: recall that pj, : [0,00] — T}, stands
for the canonical projection and recall from (4.24) the definition of w, and w, for
all 0 € T,. For all i € {1,...,4}, we set o; = px(s;) and we recall from (4.25) that
My, (04,05) =M (s, 8;). Recall from (4.4) the definition of branch points in T},. Since
(4.26) does not depend on a specific indexation of the s;, without loss of generality we
can assume that v:=br(o1,09,03) =br(o1,09,04), that v =br(os3,04,01) =br(cs,04,09)
and that
a:=min W, <b:=min W,, d:=min W, <e:=min W, and a <d.
o€y, 01] o€y, o2] o€y, 03] o€y, o4l

We also set ¢ :=min,¢[,,,]W,. Then, X; =a+d, Xo=(aAc)+ (bAcAe)and X3 =
(anc)+(bAcAd). We have four cases to consider; (i): if c<a, then X1 =a+d > Xo=X3=2¢;
(7i): f a<c<d, then X1 =a+d>Xo=X3=0a+ (bAc); (ii): if d<c and b <d, then
X1:a+dZX2:X3:a+b; (Z’U) ldeC and dgb, then X1:X3:a+d§X2:a+(b/\C/\6).
This proves (4.26) and it completes the proof of the lemma. |
Definition 4.23. Let ( € (0, c0) and let (h,w) € 3([0,¢]). Let dy, ., be the associated snake
metric (as in Definition 4.19). Since dj ., € MT([0,(]) by Lemma 4.22, we denote by
Thw=10,¢]/~a,., the corresponding real tree and to simplify we denote by pp, ., : [0, (] —
T}, the canonical projection, by rp ., =P (0) the root of T, ., and by py, ., the measure
on T, ., induced by the Lebesgue measure on [0, (] via py, .,: namely,

¢
@) (o) = | Fonus)) ds
Thw 0
for all continuous f : T}, ,, — R. Since the pseudo-metric dy, ,, : [0, ¢]? — [0, 00) is continuous,
50 is Py and (Th ., dhw, Thow, Hhw) iS @ pointed measured compact real tree that we
call the snake tree associated with (h,w). By Lemma 4.20 and Proposition 4.14, (h,w) €
3([0,¢]) = ThweM is (A, deup)-continuous. O
Remark 4.24. Let (h,w) € X([0,¢]) and «,a,b € (0,00). For all s € [0,b(], we set
h'(s) = ah(s/b) and wi(r) = aw,s(r/a). Then (h',w’) € 3([0,b(]) and thanks to Re-
mark 4.5, we easily check that (T}, dp:, 7, ppe) is isometric to (T}, adp, 71, by ) and that
(Th’,w’a dh’,w’> Th! w', ,uh/,w/) is isometric to (T}“w, adh,w, Thaw bﬂh,w)- O
Remark 4.25. Let (h, w) € X([0,¢]); let (Th, dn, h, ptn) and (Thw, dhws Thows fh,w) be the
compact real trees coded by resp. i and (h, w) and recall that p;, and py, ,, stand for the
canonical projections from [0, (] to resp. T}, and T},,,. Observe that it actually makes
sense to define a function y : Tj, =T}, ,, by setting

Vs€[0,¢], y(pr(s)) = phw(s) - (4.27)
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It is easy to deduce from (4.25) that

i (7(0),7(0")) =Wy + Wer —2 Elﬁlin : W, (4.28)
v€lo,0’
It implies that y is continuous and surjective. Note that p; ., is the image of p; via
y. O
We next prove two results that deal with basic geometric properties of snake trees.
The first one provides conditions for a snake tree to be a continuum real tree.

Lemma 4.26. Let (h,w) € X([0,¢]). We set

aw — ;6 ¢ 7h 5 inf w, As 4.2
Un. {56[0 (' h(s)>0 and Ve€(0,h(s), _inf wy(r) <0 } (4.29)

and we assume that [0, (]\Uy ., is Lebesgue-negligible. We also assume that the tree

(Th,dp,rh, uy) coded by h is a continuum real tree as defined in (4.6). Then, the snake
tree (Thw, dhw, Th,w, Bh,w) IS also a continuum real tree.

Proof. We set V =Uj, ,, N p;, ' (L£(T})). Since [0,(]\Up,. is Lebesgue-negligible and since
T}, is a continuum real tree, [0,(]\V is Lebesgue-negligible. To conclude the proof we
are going to show that V C U, where U is defined in (4.7) with d replaced by d}, ., so
that Lemma 4.8 implies the desired result. To that end, we fix s €V and s’ € [0, (] be
distinct from s. Suppose that h(s) = my(s,s’); if there is s” € (s A s/, s V §’) such that
h(s")>mp(s,s"), then pp(s) € [r,pr(s”)[ which is impossible since py(s) has to be a leaf
of T},. Therefore, if h(s)=my(s,s’), then h(s”)=my(s,s’) for all s” €[s A s, sV §'|; thus
[s As' sV '] Cp, ' ({pn(s)}) and py, would have an atom at py(s), which is impossible
since T}, is a continuum real tree. Thus, we have proved that h(s)>my(s, s’). Therefore
MiN, ), (5,5),h(s)] Ws (1) <Ws since s €Uy, ,,. Next, we set b=min{w,(r) ;7€ [0, mx(s,s")]};
by Definition 4.17 (b), b is also equal to min{w, (r);r € [0,my(s,s')]}. We also set
a=min{w(r) ;7€ [mp(s,s’),h(s)]} and o’ =min{wy (r) ;7 € [mu(s, s’), h(s')]}. Then,

dpw(0,8) + dpw(s,8)—dnw(0,8") = 205+ 2Mp,(0,8") — 2M}, ,(0,5) — 2Mp, (s, 8")
= 20, —2a+2(a+ (bAd')—(bAa)—(aNd")).

We next check that ¢:=a + (bAd’)—(bAa)—(aAa’) > 0. Indeed, if a <d/, g= (bAa’)—(bAa) > 0;
ifb<a’<a, g=a—a' >0; ifa’ <b<a, g=a—b>0; if a’ <a<b, ¢=0. Since we have proved
that a < Wy, we get dp (0, ) + dpw(s,s’) > dnw(0,s"). This implies that V C U, which
completes the proof. |

Recall from (4.5) the definition of the degree of a point in a real tree and recall that
a point is a branch point if its degree is > 3. The following lemma provides conditions
ensuring that snake trees have only binary branch points.

Lemma 4.27. Let (h,w) € X([0,(]). Let T}, and T}, ., be the compact real trees coded by
resp. h and (h,w). Recall from Remark 4.21 that w can actually be defined on T},. Let D
be a countable dense set of points of T},. We consider two cases. In the first case, we
assume the following.

(a) wWo=0 and ws €0, 00) for all s€[0,].
(b) For all distinct o, 0’ € D such that min,c[, . W, >0, there is at most one oy € Jo, o'

such that w,, =min,c[, ] W~ and when there is one, it is never a branch point of
Ty.

Then, for all © € Tj, ,\{rhw}, deg(z) € {1,2,3}. In the second case, we assume the
following
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(a") wo=0.
(b') Forall distinct o, o’ € D, there is at most one o €]o, o'[ such that Wy, =min e[y, 1] Wy
and when there is one, it is never a branch point of T},.

Then, for all x €T}, ,,, deg(z) €{1,2,3}.

Proof. Let us consider the first case. We assume (a) and (b). We shall argue by
contradiction. To that end, suppose that xo € Tj, ,\{rn.w} is such that deg(zg) > 4.
Recall from (4.27) in Remark 4.25 the definition of the continuous surjective function
y : Tp — Thw. Then, choose z1,z2,x3 € y(D) such that ry ., 1,22, 3 are in distinct
connected components of 7}, ,\{zo}. Let g €T}, and 01,09, 03 €D be such that y(o;) =z,
1€40,1,2,3}. We first claim that for all 7, j €{1, 2, 3} distinct,

0<dpw(rhw, o) =Wy, = min w, < inf w,. (4.30)
o (h’ O) 0 v€loo0,0:] K v€loi,o4] K

Proof of (4.30). Note that y(ry) = 7,4. Since zg # 4, by (a) and (4.28), we get
0 <dpw(T0, Thw) =W, + Wy, —2ming,, .10 ="Ws,. Fix i€ {1,2,3}. Since zo € [rpw,z:[,
(428) lmphes ﬂ)\aq, = dh,w(rh,w; 1‘7> = dh,w(rh,wax()) + dh,w(IOaxi) and thus @0,, = 211)\170 +
Wy, — 2min, ¢[y,,,] W, Which implies the second equality in (4.30). We complete the
proof of (4.30) by noting that [o;, 0,] C[o0, ;] U [0, o;]. O

For all i€ {1, 2,3}, let C; be the connected component of T}, ,,\{zo} that contains z;.
By connectivity, there are 1, 72 € [01, 02] such that y(v1) =y(v2) =20 and [o;, v:[Cy 1 (C)),
i€{1,2}. Since y(v;) =0, Wy, + W, — 2Min¢[x,,~,] Wy = 0, which implies that W, = W,.
By (4.30), we get w,, =,, = min,¢[y, ,] Wy. Then Assumption (b) implies that v, =1».

We next introduce S=br(o1,02,03), the branch point of 01, 09, 05 as defined in (4.4).
Without loss of generality we can assume that v, € [o1, (] and thus v € [o1,05]. By
connectivity, there is 73 € [o1, 03] such that y(y3) =z and [o3,73[Cy~*(Cs3). It implies
that @,, = W,, =Wy, =min,¢[q, ,] Wy. Then Assumption (b) implies that y3 =7, =72. By
definition, the subsets [o;,v:[, i € {1, 2,3} are pairwise disjoints and therefore ~5 is a
branch point of T}, (it is actually br(cy, 02, 03)) such that @, =minf,, ,,] @, which is not
possible by Assumption (b). This proves the first point of the lemma by contradiction.
The exact same arguments can be used to prove the second case of the lemma. |

4.4 Stable Lévy trees

In this section that contains no new result, we briefly recall basic definitions and
properties on stable Lévy trees. Lévy trees are a class of random compact metric spaces
that have been introduced by Le Gall and Le Jan in [25] (and further studied in Le Gall
and D. [14]) as the genealogy of continuous state branching processes. Among stable
trees, Aldous’ continuum random tree corresponds to the Brownian case (see Aldous [3]
and here below). Stable trees (and more generally Lévy trees) are the scaling limit of
Galton-Watson trees as recalled in Introduction (see also below).

More precisely, let v € (1, 2] be the index of a spectrally positive stable Lévy process
X =(X)se[0,00): namely, the law of X is characterised by its Laplace exponent that is
given by

Vs,A€[0,00), El[exp(—AX,)] = exp(s\?).

Note that X is a Brownian motion when v =2 and we shall refer to this case as the
Brownian case. As shown in [25] (see also [14], Chapter 1), there exists a continuous
process H(X) = (Hs(X))se[o,00) Such that for any s € [0, c0),

1t
HS(X)ZEII_I%E ; Lirrex,<1rey dr, (4.31)
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where I stands for inf,<,<, X, and the convergence in (4.31) holds in probability. The
process H(X) is the «-stable height process. Note that in the Brownian case, H(X) is
simply the reflected Brownian motion s+ 2(X,—1?). From the scaling property of X
and from (4.31), we see that for any r € (0,00), (r"=Y/7H,,,(X))ic[0,00) has the same
distribution as H(X).

As in the discrete setting, the process H(X) encodes a family of continuum real trees:
each excursion of H(X) above 0 corresponds to an excursion of X above its infimum
(it is obvious in the Brownian case) and each excursion of H(X) above 0 corresponds
to a single continuum real tree of the family. The scaling property of H(X) yields the
following definition for the normalised excursion of H(X) that is provided in D. [11] (see
p.1005): set {1 =max{s€[0,1]: X,=1I,}, r1 =min{s€[1,00): Xy=1I,} and {; =7 —¥;. Then,
we set: )

Vse[0,1), Hyo= ¢ " Hyypug, (X)

The process H is taken as the definition of the normalised excursion of the ~v-stable
height process.

As shown in Theorem 1.4.4 in Le Gall and D. [14], for all a«€(0,1—2), P-a.s. H(X) is
a-locally Holder-continuous. Thus, the same holds true for H: namely,

for all «€(0,1—-1), a.s. H is a-Holder continuous. (4.32)

Normalised stable Lévy trees. We call normalised ~-stable Lévy tree the real tree

(Te,dp,7H, forr)

coded by the function H, as defined in (4.8). Recall from (4.9) that h+>d}, is a 4-Lipschitz
function from C([0, 1], R) to C([0,1]?,R), both equipped with uniform norms. Thus, dy is
a measurable random element of MT([0, 1]) and by Proposition 4.14, T} is a measurable
random element of the Polish space (M, dgyp) as mentioned in (4.11).

Let us briefly recall some geometric properties of 7. One can prove that a.s. Ty
is a continuum real tree (as defined in (4.6)) and that the set of its branch points is a
countable dense set; moreover we recall from Theorem 4.6 in Le Gall and D. [13] (p. 583)
the following result.

{1,2,00} ifye(1,2),

(1,2,3)  ify=2. (4.33)

Ass. for all 0 €Ty, deg(o) € A, where A, = {
The contour of a discrete trees. We briefly recall how to code discrete trees by
various functions. Let ¢ € T be a finite (rooted ordered) tree as in Definition 2.1. To
simplify, we set #t=n; since t is finite, we can list the vertices of ¢ in the lexicographical
order: uy =@ <;u; <¢...<; up—1; for all j €{0,...,n—1}, we set H;(t) = |u;| that is
the height of the j-th vertex of ¢. By convenience we also set H,(t) =0. The function
(Hx(t))o<k<n is the discrete height function of t. Note that H(t) entirely encodes ¢.

We also introduce another coding function known as the contour (or the depth-first
exploration) function of ¢t. Informally, we embed ¢ into the clockwise oriented half plane
so that order on siblings corresponds to orientation; we think of a particle that visits the
tree at unit speed, that starts at the root and that goes from the left to right, backtracking
as less as possible; we denote by v(k) the vertex visited at time k during this depth-first
exploration. The particle crosses exactly twice each edge of t: once upwards and once
downwards; so, the total time needed to go back to the root is 2n—2, that is twice the
number of edges. Namely, {(v(k),v(k +1));0<k <2n—2} ={(u, %), (&, u);uect\{2}}.
Then, for all k€{0,...,2n—2}, we set C(t)=|v(k)| and we also set Cy,,_1(t) =C3,(t)=0.
We call contour function of ¢ the linear interpolation of the Cy(t) that we still denote by
(Cs(t))sef0,2n)-
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The discrete height function and the contour function of ¢ are related as follows. For
all 0<j<n, we set b; =2j— H,;(t); we easily check that (b;) is an increasing sequence
from 0 to 2n. Moreover, for all j <n—1, observe that for all s€[b;,b; 1],

Hy(t)—(s—b;)  1fs€fbybja—1],

4.34
s=bjy1+Hjp1(t) Ifs€[bjir—1,b41] (34

a0 ={

and that Cy(t)=Hp—1(t) — (s—bp—_1) if s€[by_1, by].

The pointed measured compact real tree coded by the contour function of ¢ is
described as follows: to simplify notation, we set C; =Ca,(t), s€[0,n] and we recall from
Example 4.9 the definition of (t~, éivgtr), the compact real tree spanned by the graph-tree ¢.
It is easy to check that the pointed compact measured real tree (T¢,dc, ro, pe) coded

by C is isometric to (t,dy,, @, m) where fi=Jg + Length, where dg stands for the Dirac
mass at the root @.

We next recall the following limit theorem from D. [11] (Theorem 3.1, p. 1006).

Theorem 4.28 (Theorem 3.1 [11]). We fix v € (1,2]. Let 7 be a Galton-Watson tree
whose offspring distribution satisfies (H) as in (1.1). Then, there exists a nondecreasing
sequence of positive real numbers (a,)nen that tends to co such that

(aln HLnSJ (T> ; a%LC?"S (T))

o] under P( . ‘ #T:n)

(law)
— (HS7 Hs)sE[O,l]

n—oo

where H is the normalised excursion of the y-stable height process.

4.5 One-dimensional reflected Brownian snakes

In this section we briefly introduce normalised one-dimensional (reflected) Brownian
snake with ~-stable branching mechanism (i.e. whose lifetime process is a v-stable height
process). For more details we refer to the monograph of Le Gall and D. [14] (Chapter 4,
pp. 107-149).

Let I be an interval of R whose interior is not empty. Let (Zf)re[o,oo) be an [-valued
continuous Markov process starting at Z§ =z € . We shall restrict to the two following
cases:

e either [ is R and Z* is a Brownian motion,
e or [=[0,00) and Z” is a Brownian motion that is reflected at 0.
Recall from Definition 4.17 that C, stands for the space of continuous functions from
[0,00) to R equipped with (Polish) topology of uniform convergence on all compact
subsets. We let w e Cy be [-valued and we fix two nonnegative real numbers b>a. We
then denote by R, ;(w, dw’) the law on Cy of the process W (+) that is defined as follows:
e forall r€[0,a], W(r)=w(r);
e the process (W (a + r)),¢[0,00) has the same law as (Ziﬂ/\(?b)_a))re[o,oo)-
It is clear that (a, b, w) — R, »(w, dw’) is weakly continuous on Cj.

We next fix ¢ € (0,00) and h € C([0,¢],[0,00)) such that h(0) = h(¢) =0. Recall from
(4.8) the definition of my (-, ). It is easy to check that one defines a Cy-valued process
(Ws(+))seo,c] by specifying its finite dimensional marginals as follows:

e Wy(r)=0, r€l0,00).

e Forall 0<s;<...<s,<(, (W, )1<k<p has law

Rm;L(O,sl),h(sl)(WOa dwl)Rmh(sl,SQ),h(SQ) (wla dw2) cee Rmh,(sp_l,sp),h(sp)(wpfla dwp) . (435)
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When the Z* are Brownian motions, the resulting collection of Co-valued r.v. (W) eo,¢]
is a Brownian snake with lifetime process h and initial position 0. When the Z% are
reflected Brownian motions, W is a reflected Brownian snake with lifetime process h
and initial position 0. The following R-valued process

Vsel0,¢], W, = Wi(h(s)),

is the endpoint process of the snake W.

Remark 4.29. If (W,),c[o,¢] is @ Brownian snake with lifetime process h and initial
position 0, then clearly (|W;|),co,¢] is a reflected Brownian snake with lifetime process h
and initial position 0. O

Let us discuss the regularity of Brownian snakes. First, denote by M . ., the law on
C} defined by (4.35). Itis easy to check that (s1,. .., sp; h) €0, (]PxC([0, (], R) — ML .,
is weakly continuous on Cj. Although A is continuous, the process W may not be
continuous in general. However, the arguments used in the proof of Proposition 4.4.1 in
Le Gall and D. [14] (Chapter 4 p. 127) show that if i is Holder, then W has a continuous
modification. More precisely, for all ¢, c€ (0,00) and all a € (0, 1], denote by H&1. ([0, ¢])
the set of functions h € C(]0, ¢], [0, c0)) such that h(0)=h({)=0 and |h(s)—h(s")|<c|s—s
for all s,s’€[0,(]. From the proof of Proposition 4.4.1 in Le Gall and D. [14], we easily
get the following lemma.

Lemma 4.30. Let (< (0,00) and let h €Hol. ([0,¢]). Let (Ws)se[o,c] be a Brownian snake
(or a reflected Brownian snake) with lifetime process h and initial position 0. Then, for
allpe(1,00),

[e%
’

Vs, s €0, (], E{ sup ‘Ws(r)—Ws/(r)]p] < cpls—s'|2P/2
rel0,00)

where ¢, = (2p\/c/(p—1))PE[|Z?|?]. By Kolmogorov’s criterion, W admits a modification
that is «/2-Hélder with respect to the distance 6, on Cy (see (4.18) for the definition of
Ou)-

We now assume that h is Holder; we keep denoting W the continuous version of
the (possibly reflected) Brownian snake with lifetime process h and we briefly discuss
properties of W for later use.

First observe that a.s. (h, W) is a snake as in Definition 4.17 (b). Then, note that
for all s€[0,¢], (Ws(r))re[0,0) has the same distribution as (Z? )ref0,00), Which easily

rAh(s)
implies the following: for all bounded and measurable F':Cy— R,

¢ ¢
E{/OF(WS(.))CZS} = /OE[F((ZEM(S))TG[O;OO))} dr . (4.36)

To define the normalised (reflected) Brownian snake with y-stable branching mech-
anism, we need to shows that the law of a (reflected) Brownian snake is a Borel-
measurable function of its lifetime process. More precisely, since HOl.,([0,(]) is
a compact subset of C([0,(],[0,c0)) equipped with uniform convergence and since
HO 1,0 ([0,¢]) CHO amar s o ([0,¢]) for all 0 <o’ <« and all ¢’ > ¢ >0, the set of Holder
lifetime-functions HOl:=,.c ¢ o) Une (0,1 H81c,a([0, ¢]) is a countable union of compact
subsets and therefore a Borel subset of C([0,(],[0,00)). For all h € H6l, denote by
P, (dW) (resp. P, (dW)) the law on C([0, ), Cy) of the Brownian snake (resp. of the
reflected Brownian snake) W with lifetime-function A and initial position 0 and ex-
tend h — P, (resp. h — P;7) to C([0,¢],[0,00)) trivially by taking P, (resp. P;") equal
to the Dirac mass at the null function if & is not a Holder lifetime-function. Now re-
call that for all integers p > 1 and for all bounded continuous F : Cf — R, the map
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($15--18psh) = [ F(Wy,,...,W,, ) P,(dW) is continuous; the same holds with P;f. Since
the Borel sigma field of C([0,(],Cy) equipped with A* (as in Definition 4.17 (a)) is
generated by the finite dimensional marginals, a standard monotone class argument
implies that for all Borel subsets B of the Polish space (C([0,(],Cy),A"), the map
he C(]0,¢],[0,00))— Pn(B) €0, ) is Borel-measurable. Namely:

P,(dW) is a Borel regular kernel from C([0, (], [0, 00)) equipped with the uniform
norm to the Polish space (C([0, (], Co), A*). The same holds with P;".

Definition 4.31. Let v<(1,2]. Let H be the normalised excursion of the ~-stable height
process. Recall from (4.32) that H is a.s. Holder-continuous. Thus, it makes sense to
define the Brownian snake (resp. reflected Brownian snake) with ~y-stable branching
mechanism as the C([0,¢],R) x C([0, (], Co)-valued r.v. (H, W) whose regular conditional
distribution given H is Py (dW) (resp. Py, (dW)), as defined previously. O

Let (H,W) be a normalised Brownian snake with v-stable branching mechanism.
Recall that the real tree (Ty,dy,h, pr) coded by H is the v-stable Lévy tree. Since
a.s. (H,W)eX([0,1]), (4.24) in Remark 4.21 applies to (H,W) and it makes sense (up
to a slight abuse of notation) to define W and W on Ty . To prove geometric properties
of the v-stable (reflected) Brownian cactus, we shall need the following result that is
recalled from Lemma 6.4 in Le Gall and D. [13] (p. 600).

Lemma 4.32 (Lemma 6.4 [13]). Let (H, W) be a normalised Brownian snake with -
stable branching mechanism. Then, conditionally given H, (W,),cr, is a centered
Gaussian process whose covariance is characterised by the following:

Vo,0' €Ty, /PH(dW) (Wi = W, |* = di(0,0") . (4.37)

Moreover, for all € € (0,1/2), conditionally given H, o € Ty — W, is (3 —¢)-Hélder-
continuous.

4.6 Reflected Brownian cactus with stable branching mechanism

Definition 4.33. Let y<(1,2] and let (H, W) be a normalised Brownian (resp. reflected
Brownian) snake with vy-stable branching mechanism as in Definition 4.31. Recall
the notation X([0,1]) from Definition 4.17 (b) and recall that (H,W) € 3([0,1]). The
Brownian (resp. reflected Brownian) cactus with ~-stable mechanism is the pointed
measured compact real tree (Ty,w, du,w,7H,w, L, w) as specified in Definitions 4.19 and
4.23. O

Recall from (4.6) the definition of continuum real trees. Recall from (4.5) the definition
of the degree of a point in a real tree.

Proposition 4.34. Let y€(1,2]. Let (H,W) be a normalised Brownian (resp. reflected
Brownian) snake with «y-stable branching mechanism and let Ty the corresponding
cactus as in Definition 4.33. Then, the following holds true.

(&) Tuw,dmw,rmw, bow) is a.s. a continuum real tree.

(i7) A.s. for all x € Ty w\{ru,w}, deg(x) € {1,2,3}. Moreover, if Ty is a reflected
Brownian cactus, then deg(ry w) = oo and if Ty w is a Brownian cactus, then
deg(rpw)=1.

Remark 4.35. As recalled in (4.33), when v € (1,2), the v-stable Lévy tree Ty has
infinite branch points: namely, there is a countable dense set of points ¢ € Ty such
that deg(c) =o00. However, note that the corresponding Brownian cactus Ty w has only
binary branch points (except possibly at the root in the reflected case). O
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Remark 4.36. As already mentioned, the Brownian Cactus has been introduced by
N. Curien, J-F. Le Gall and G. Miermont in [7] to study planar maps: roughly speaking
the Brownian cactus corresponds to the case of a quadratic branching mechanism v=2
and the spatial motion of the snake is a (unreflected) linear Brownian motion. In this
case they proved much finer geometrical results: a.s. the upper-local density for typical
points is 4 (Proposition 5.1 [7] p. 364) and the Hausdorff dimension is 4 (Corollary 5.3
[7] p. 365). See also the article by J-F. Le Gall [22] where the level sets of the Brownian
cactus are studied to derive results on the Brownian maps. O

Proof of Proposition 4.34. To prove (i), we use Lemma 4.26. Indeed recall that
(Ty,dy, v, py) is a.s. a continuum real tree and recall from (4.29) the definition of
the subset Uy, C[0,1]. Recall that (Z}),¢[o,~) stands for a one-dimensional Brownian
motion (resp. reflected Brownian motion) starting at O that is independent from H. We
denote by ¢ the Lebesgue measure on [0, 1]. Then, by (4.36), conditionally given H, we
get a.s.

1
/1{H5>0} PH<V56(O,HS): inf (7)< WS) ds
0

re[Hs—e,Hg

/PH(dW)g(UH,W)

1
_ /0 11,0y P(Ve€ (0, H,) it 22 7, | H)ds =1.
Thus, a.s. £([0, 1]\Ug,w)=0 and Lemma 4.26 implies (4).

We next use Lemma 4.27 to prove (ii). Recall that (up to a slight abuse of notation)
W can be defined on Ty. We first consider th/e\ unreflected Brownian case and recall
from Lemma 4.32 that conditionally given H, (W, ),eT,, is a centered Holder-continuous
Gaussian process whose covariance is characterised by (4.37). According to Remark 4.29,
|W| is the endpoint process of the ~v-stable reflected Brownian snake. We now work
conditionally given H.

Let D be a countable dense subset of Ty. Let 0,0’ € D be distinct; denote by
¢:10,dg(0,0")] = [o,0'], the isometry such that ¢(0) = o and ¢(du(0,0’)) =0’. The
covariance of W combined with the fact that Brownian motion is reversible entails that
the process Z,.:= W,y —W,, r€[0,dr(0,0’)], has the same law conditionally given H
as a Brownian motion starting at 0: it therefore a.s. reaches its infimum at a unique
time r¢ €]0,dg (0, 0’)[ and the law of ry conditionally given H is diffuse, which entails
that a.s. ¢(r) cannot be a branch pOi/Ilt of T’y since the set of branc/}l points of Ty are
countable. The same holds true for [W| on [o, o[ 1, if inf, ¢[5,07],,, [W,]>0. Since D is

countable, it implies that conditionally given H, W satisfies Assumptions (a’) and (V') in
Lemma 4.27 and that |W| satisfies Assumptions (a) and (b) in Lemma 4.27. This lemma
then implies the first assertion of (ii).

Let us complete the proof of (ii). Recall from Remarks 4.25 that it is makes sense to
define y*: Ty — Ty jw/ by setting y* (pu(s)) =pm,jw|(s), s€[0,1]. Let 0 € Ty be such that
y*(0)#7m, w|. Then, observe that {y & [ru, o]z, : |WW| >0} has infinitely many connected
components: let v and ' be in two distinct such connected components: by (4.28)
we get dy jw|(y"(7),y" (V) = Wy + Wy = duw|(raw,y" (V) + dajw|(re,w, v (7)),
which easily implies that y™(v) and y*(v’) belong to distinct connected components of
T, jw|\{7m,w|}. It implies that a.s. deg(r g, w|) = oc.

We define similarly y: Ty — Ty,w by setting y(pu (s))=pu,w(s), s€[0,1]. Let =, 2’ and
rm,w be distinct points of Ty y and denote by z their branching point; let o and ¢’ € Ty
be such that y(o0) ==z and y(¢’) =2’ and recall that y(rg) =75 w. Then

2dg,w(rew, 2) = da,w (raw, ) +dgw(raw, ") — dgw(z,z')
by (4.28) . =5 . e . postn
v 2min W, —2 min W, —2 min W,.
v€lo,o'lTy vElra,olry vElra,o'lry
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o~

Now observe that a.s. min, [, 1,7,,]]TH/I/[7,Y and mimve[m7(,,]]THW7 are strictly negative quan-

tities and that the least of the two has to be smaller than minwe[[g_’g/]]THWV. This prove
that du w(ra,w,z) > 0 and that z and 2’ are in the same connected component of
Taw\{ru,w}. Thus, deg(rm,w)=1, which completes the proof of (ii). [ |

5 Scaling limit of the range of the BRW

5.1 Continuous interpolation of discrete snakes

We briefly devise here a natural way to embed a tree-valued branching walk into
a continuous branching motion, which takes its values in the real tree spanned by a
discrete space-tree and is indexed by the real tree spanned by a genealogical tree.

To that end, let us consider a (possibly infinite) graph tree T equipped with its graph-
distance di. T will be the space tree. We distinguish a special vertex o €T that plays the
role of a root. Here, T' can be a rooted ordered tree as in Definition 2.1 or the b-ary tree
W, or the free tree W[O,l] as introduced in (2.1). Recall from Example 4.9 the definition

of (T, CLT) of the real tree spanned by 7. We make the necessary identifications to assume
that TCT.

We first explain how to obtain a continuous interpolation of a path v(k) € T, k €
{0,...,n} (by a path, we mean a sequence of adjacent vertices). It is easy to check that
there exists a continuous map ¥:[0,7] — 7 such that o(k)=v(k) and for all 0 <k <n,

Vselk,k+1], o(s)€[v(k),v(k+1)] is such that d,L (v(k),5(s))=s—k.

The continuous path (v(s))sco,n) is the continuous interpolation of the path
(0(k)) ke 0,

We next extend this interpolation to 7T-valued branching walks. Let t €T be a finite
(rooted ordered) tree as in Definition 2.1. ¢ will be the genealogical tree. We denote

by (t, dgtr) the compact real tree spanned by t and we assume that t Ct. Let (Y, ),¢; be
a T valued branching walk indexed by ¢. Namely, forallvet, Y, €T and it satisfies the
following conditions: (a) Yz :=o; (b) if v,v" €t are neighbours, so are Y, and Y,/ in 7.
We easily check that there exists a continuous map Y :¢— 7T such that Y,=Y,, vet, by
specifying the following: for all o € there exist two neighbouring vertices v, v’ €t such
that o € [v, v']; and

Y, is the only point of [Y,, Y, ]+ such that JgTr(YU, Y,) :Jgtr(v, o). (5.1)

We next introduce the spatial contour associated with (Y,,),c;. To that end, denote by
v(k) €t, 0<k <2+4t, the sequence of vertices of ¢ visited by the contour (or the depth-first)
exploration of t as recalled in (4.34) and note that they form a path in t. We denote
by ¥ : [0, 24#t] — t its continuous interpolation. Observe that C,(t) = dt (@,0(s)), for all
s€[0,2#t], where C(t) stands for the contour function of ¢. Then, for all s€[0,2#t], we
define a continuous map V;: [0, o0) —T as follows:
{ for all r €10, Cs(t)], Vs(r):Y where o € [&,7(s)]; is such that r:jgtr(@,a)l. (5.2)
for all r € [Cy(t), 00), V(1) =Yi(s)- ’

We call (Vi(-))seo,244 the spatial contour associated with the branching walk (Y7, ).

It is easy to check here that s — Vj is continuous from [0, 2#t] to the space of T-valued

continuous functions equipped with the uniform distance. We also define its endpoint
process as follows:

Vsel0,24t], Vi = Vi(Cu(t)) . (5.3)
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We then define the continuous interpolation of the discrete snake associated with
(Y,)vet and its endpoint process by

Vse[0,24t], Wi(r) = dE(o,Vi(r)), re[0,00) and W,=dZk(o,V;). (5.4)

By Remark 5.1 below, (Wq(-))sejo,2#¢ is the continuous interpolation of the IN-valued
branching walk (dj,(0,Y,)),c;. Moreover, observe that W is a snake whose lifetime
function is the contour C(t) of ¢ as in Definition 4.17: namely, (C,(t), Ws)sc[o,241 €
3([0, 2#t]).
Remark 5.1. Let T’ be another graph-tree and let ¢: T — T’ be an adjacency-preserving
map so that the image by ¢ of a path in T is a path in 7" (for instance, T = Wio,15»
T'=W, and ¢ =, the b-contraction as in Definition 3.3; or 7" =IN and ¢(v) =dg(0,v))
Consequently, (Y,)yet := (¢(Yy))ver is @ T'-valued branching walk indexed by ¢. Then,
¢ clearly extends to a continuous map from T—T by requiring that JgTr/ (¢(0), o(u)) =
d] T(a u) for all o € [u, v]# with u and v adjacent in T'. Then, observe that the continuous
interpolation of Y’ is the image by ¢ of the continuous interpolation of Y: namely,
Y'= qb(Y). 0O
We next provide basic properties related to counting and occupation measures on
the range of Y and its interpolation Y. We first set

R={Y,;vet} and R={V,;s€[0,2#]} = {Y,;0€t}. (5.5)

Observe that R (resp. ﬁ) is a subtree of T' (resp. T) and note that R is the real tree
spanned by R. We equip R and R with the respective occupation measures m..,; and
M., Oof the endpoint process of the spatial contour v (here, the subscript cont is for
contour). Namely, for all bounded measurable f R—R,

/ fde = S f(Ti) and / f e = | 0 s (5.6)

0<k< 24t 0

We next introduce the spatial contour pseudo-distance d ., associated with Y:

V). (5.7)

<j>

VS>S/€[0a2#tL dcont(svs/) dT(

gr

Then, we easily check that dcone € MT([0, 2#¢]) and that

the corresponding pointed measured compact real tree is isometric to (R, dgr, o, rchont).

(5.8)
Lemma 5.2. We keep the above notation. We denote by dHaus the Hausdorff distance
on the compact subsets of (T dg?) and we dengte by d;gok the Iirokhorov distance on
the finite Borel measures on (T dg?). Then, dyas(R,R) < 1, dprox(Meont, Meont) < 1.
Moreover, set my.. = Zvet Jdy,, that is the occupation measure of Y. Then, we also get
dProk(mconta 2rnocc) S 1 and thllS,

Cz;rok(rﬁconta 2rnocc) S 2. (59)

Proof. Clearly, drtaus (R, R) <1. Next denote by 7 the image of the Lebesgue measure on
[0,2#t] on T'x T via the map s— (VLSJ V) By the definition (5.6), the first marginal of 7
is mcoye and the second one is M. Moreover by definition of the interpolation and of
the spatial contour d (VLS 15 V ) <1. This easily implies that dprok(mcont, Meony) < 1.

To prove (5.9), we use the following coupling: recall that (v(k))o<r<24: stands for the
contour (or depth-first) exploration of ¢ (and recall the convention v(2#t—1) =v(24#t) = ©).
For all k€{0,...,2#t—3}, we set p(k)=v(k) if |v(k)|=1+ |v(k + 1)| and p(k)=v(k + 1)
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if |[u(k + 1)| =1+ |v(k)| and we also set p(2#t—2) = p(2#t—1) =2. Note that the image
measure of the counting measure on {0,...,2#t — 1} via pis 2} ., d,, namely twice
the counting measure on ¢t and thus, the image measure of the counting measure on
{0,...,2#t—1} via Y,y is 2m,... Then, denote by w the image measure on 7' x T
of the counting measure on {0,...,2#t—1} via the map &k — (Y, (1), XA/k). We just have
proved that the first marginal of w is 2m,..; the second marginal of w is by definition
Mcone. Since Y,y is either IA/k or ‘7k+1, we get dg (Y, XA/k) < 1. This easily implies that
cﬁrok(mcont, 2m,..) <1 and (5.9) follows immediately from the previous bound. |

In the following lemma we provide bounds to compare the occupation measure
induced by the spatial contour and the counting measure on R.

Lemma 5.3. We keep the above notation. To simplify, we set n = #t and n’ = #R.
We denote by ug,u1,...,u,—1 the sequence of the vertices of t listed in the lexico-
graphical order. Let c € (0,00). We set a = maxi<i<n |[#{Yy,;;0 < j < i} —2ci| and
B=max.c (0.2 |#{Vi; 0<I<[s]}—cs|. Then,

B < a+3c+cmax Cs(t) . (5.10)
s€[0,2n]

We next denote by m oyt = erR 0., the counting measure on R and for all n€ (0, c0),
we set ¢(dcont,n) = max {deont (s, 8'); 5,8’ €[0,2n] : |s—s'| <n}, where dcony is defined by
(5.7). Then,

gl;’rok (mocca %mcount) S 1 + 2q(dcont; 4B7+1) . (511)

C

Proof. By convenience we set u,, =&. Let i€ {0,...,n—1}. Recall from the definition
of the contour function of ¢ in (4.34) that b; :=2i — |u;| =inf{k €{0,...,2n} : v(k) =wu;}.
Therefore, forall ke {b; +1,...,bi+1}, {v(1);0<l<k}={u;;0<j<i+ 1} and we get

H#{VE0<l<ky =#{Y0,;0< i <i+ 1} =#{V0,;0<j<i+1}—2c(i+1) +c(2(i +1)—k) +ck .

Note that b; <k < bi+1 implies that ‘2(2 + 1) — ]f| < 2+maX0§an |’U,j I = 2+maxs€[0’2n] C, (t)
Thus, we get

max
1<k<2n

#{‘71 ; 0§l<k} — ck‘ <a+2c+ csén[oagn] Cs(t)
which immediately implies (5.10).

We next prove (5.11). To simplify set J(k) = #{XA/Z ; 0<I<k}, forall ke{l,...,2n}
and thus = max,¢(g,2n] |J([s]) —cs|. For all i’ € {1,...,n'} we next set k(i') = inf{k €
{1,...,2n}: J(k)=4i'} and Z; = XA/,C(i/)_l. Note that the Z;; are distinct and that R =
{Z;1<i'<n'}. Forall ', 5/ €{1,...,n'}, |k(i")—k(j")| <c (2B +|i'—j'|) since J(k(i')) =1’
and J(k(j'))=4" and by definition of . Then we get the following.

AL (Zir, Z31) = doons (K(i') = 1, k(") —1) <q(deons, [K(5) = k(")) < q(deons, =LY (5.12)

Next observe that for all k(i) <k <k(i' + 1), we get J(k)=1' and

N by (5.12)
dgr (Vk—la ZJ(k)) = dcont(kflv k(ll)fl) < q(dconta k(Z/+ 1)7]@(1/)) < q(dconh Qﬁi)

(&

Thus, we have proved that

max d., (‘AﬂsJ,ZJ((s])) < q(dcont 2[3“) . (5.13)

s€(0,2n] &r ¢
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Next observe that [n'—2c¢n| </ and that
Jrs) — f— ] =Jrs) —cs — 5-(n'=2en) + -5 — [5-s].

Thus, maxse(o,2n) [/([s]) — [n's/2n]] < 14 23 and by (5.12), di (ZJ(M),ZWS/%]) <
q(dcom, 4511 ) This inequality combined with (5.13) implies that

A% (Vis), Ziwsjon1) < 20(deons, 20 . 5.14
Jmax de (Vigs Zwjan) < 20(deons, “2) (5.14)
We then denote by = the image on 7' x T of the Lebesgue measure on [0, 2n] via the map
s+ (Vis, Zinrs/2n))- The ﬁrst marginal of 7 is by definition m..,; and we easily see that

the second marginal of 7 is 2 2 M ount- By (5.14), it implies that dprox (mcone, 2L/ Mount ) <
2q(dcont, 221).  Recall from Lemma 5.2 that dprox(Meone, 2Mocc) < 1. Thus, we get
dprox (2Moce, 22 Meoynt ) <1 + 2¢(deont, 225 ), which implies (5.11) by Remark 4.12. [ |

The range of the branching random walk. We next discuss the connection between
the graph-metric of the range of branching random walks and the associated snake
metric. More precisely, let t €T be a finite (rooted ordered) tree as in Definition 2.1 and
let (Y ),ct be a Wy 1j-valued branching random walk with law Qi as in Definition 3.1
(ii). Recall from (5.5) that R ={Y,;v €t} that is a subtree of Wy, ;; as in Definition 2.3.
We denote by d, the graph distance in W ;; and we recall from Corollary 3.6 the
fundamental property that makes the range R tractable:

P-as. forall u,v€t, dg(Ya,Y,)=|Yu| +|Yy|—2 nﬁin H Ve . (5.15)
we|u,v

Next, let (z, dgtr) and (W[O 1],d) be the real trees spanned by respectlvely t and W[O 15
with a slight abuse of notation, we suppose that ¢t C ¢ and that Wi,y C W[o 1)- Let Y be
the continuous interpolation of Y in W[o,1] as defined by (5.1) (with (T, 0) = (W 1], D))
and recall from (5.5) that R= {Y,; o0 €t} is the tree spanned by R. We easily check that
(5.15) extends to R. Namely,

P-as.forallo,0'€t, d(Yy,Yy)=|Ys|+|Ye| -2 i {fq . (5.16)
s€lo,o’

Let us rewrite this formula in terms of the contour function C(¢) of ¢, the spatial
contour V, its endpoint process V as defined in (5.3), and its corresponding snake W as
defined in (5.4). To that end, first recall from (5.7) the definition of the spatial contour
pseudo-distance dc.nt and recall from (4.19) the notation Mc () w (-, ) and the definition
of the snake distance d¢ ),y associated with the snake (C(t),V). Then, (5.16) translates
into the following: P-a.s. for all sy, s2 € [0, 2#t],

deont (51, 52) = d(Vi,, Viy) = Wi, + W, — 2Me ), w(s1, 82) = dewy,w(si, s2) . (5.17)

Recall from (5.6) the definition of the occupation measure m..,; induced by the spatial
contour. Thus, (5.8) and (5.17) imply that

P-a.s. (ﬁ,cﬁ@,ﬁlcom) and (T ), ws doyws Te),ws Ho(t),w) are isometric.  (5.18)

where we recall from (4.23) that (T, do@),w, Te@),w, b, w) stands for the pointed
measured compact real tree coded by the pseudo-metric dg ), w

We next couple the free branching random walk (Y, );c; with the Wy-valued one via
the b-contraction application @, as in Definition 3.3: namely we set

Yo et, YP=®(Y,), and R,={Y};vet}.
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By Remark 3.4, Y® has law Q;® as defined in Definition 3.1 (7). Observe that R, is a
subtree of W, as in Definition 2.3. We next denote by d° the graph distance in W, and
we denote by (Wb, Jb) the real tree spanned by W,; with a slight abuse of notation, we
suppose that Wj, CWb. We extend @, as a map from W[o,u to Wb explained in Remark 5.1
and we set

Vse[0,2#41], Vre[0,Cs(t)], VP(r)=®y(Vi(r)) and VP2 =V>(Cy(t)),

S

where we recall that (Vi(:))sc0,24+] stands for the spatial contour of Y as defined in
(5.2). Note that V?=®,(V,). By Remark 5.1, it turns out that V® is the spatial contour
associated with Y®. Then, denote by ﬁb the compact real tree spanned by Ry in Wb.
Namely,

Ro={V2;5€[0,241]} =04 (R) .

~

We next extend Lemma 3.7 as follows: since (Vsb)se[o,z#t] is the continuous interpolation
of the path (va(k))ogkgg#t in Ry, we easily derive the following from (3.17).

For all sy, s9 € [0, 2#t], there exists a nonnegative r.v. G, s, such that
2Gs, 5, =d(Vs,, Vi) —d*(V2,V2) and P(Gs, 5,>2) <>, 2€[0,00) (5.19)

817

This combined with (5.18) shows that T-(;) w and R, are close in a rough sense. It turns
out that it is sufficient for the proof of Theorem 1.2.

5.2 Invariance principle for discrete snakes

In this section we recall one important result due to Marzouk (Theorem 1 [29]) that
is an invariance principle for real valued endpoint processes of discrete snakes. Here we
concentrate on the one-dimensional case but we shall need actually a slightly stronger
version that holds for path-valued snakes and not only for endpoint processes.

More precisely, let us fix v € (1,2] and let 7 be a Galton-Watson tree (as in Defini-
tion 2.2) whose offspring distribution u satisfies (H) as in (1.1). Conditionally given 7,
let (Y,)ver be a Z-valued branching random walk whose transition kernel ¢(y, dy’) is
that of the simple symmetric random walk on Z. Then recall from (5.4) the definition of
(Ws(+))se0,24), the continuous interpolation of the discrete snake (here the tree T is Z).
Then, .

Vke{0,...,2#t}, Wi =Y,u , (5.20)

where v(k) € 7, 0 < k < 247, stands for the sequence of vertices of 7 visited by the
contour (or the depth-first exploration) of 7. Then, the following result is a special case
of Theorem 1 in Marzouk [29]:

Theorem 5.4 (Theorem 1 [29]). Let, u, 7 and (an)nen be as in Theorem 4.28. Condi-
tionally given 7, let (Y,)vc- be defined as above and let (Wj,)o<k<24- be the endpoint
process of the snake associated with (Y, ),c as in (5.20). Then
(law) —
(Hsa Ws)sE[O,l}

n—oo

(a%c%s(T)a \/%TWLQMJ)SG[O | under P(-|#7=n)

where (H, W) is the normalised one dimensional Brownian snake with ~y-stable branching
mechanism and where W,=W;(H,), s€(0, 1], stands for its endpoint process.

As already mentioned this result actually holds for fairly more general spatial motions
in R?. It extends earlier results by Janson and Marckert [18] who considered snakes
whose genealogical tree are in the domain of attraction of the Brownian tree. We
refer to Marzouk [29] for more details. We next derive from Theorem 5.4 the following
proposition that holds for the path-valued continuous interpolation of the discrete snake

(WS('))se[O,Z#T]'
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Proposition 5.5. We keep the same notation and the same assumption as in Theorem 5.4.
Recall from Definition 4.17 (a) the metric A that makes the space C([0, 1], R)xC([0, 1], Cy)
Polish. Then, weakly on that space, the following convergence holds.

daw) (H,W).

(5.21)
By taking the absolute value, this results holds true for the snake reflected at 0.
Proof. Let ko =0<k; <...<k, <2#r7 be integers. Then for all j € {0,...,p—1}, set
bj=ming;<¢<k;,, Ce(7) and b, =Cy,, (7)—b;. By definition of the branching random walk
and its associated snakes, the following holds true conditionally given 7 (or C(7)).
(i) The paths S(j) := Wi, ((bj + ) ACk; (1)) = Wi, ,, (b)) .o are (conditionally)
independent.

((éCQnS(T))SE[O,l] , (\/%—nwzns(Z))Se[m]) under P - }#T:n)

n—oo

(74) The conditional law of S(j) is that of a Z-valued symmetric random walk, starting
at 0 and stopped at time b/ ;.
Next observe that (b, b, w,w’) € [0,00) x C§ — (w(r A b) + w'((r—b)1 Ab") —w'(0)),c[0,00)
is continuous (recall from Definition 4.17 that C; is equipped with the Polish topology
of the convergence on all compact subsets of times, which corresponds for instance
to the metric ¢, given in (4.18)). This combined with (¢), (i¢) and easy arguments on
linear interpolation imply that for all real numbers 0 <s; <... <s, <1, (Wé?))lgjgp
under P(-|#7=n) converges weakly to (Wj,)1<;j<, on C§, where we have set w{” ()=
an'*Wapns(-/ay), for all s€[0,1].
We next prove the tightness of the rescaled snakes. A standard argument on linear
interpolation shows that Theorem 5.4 implies that the continuous endpoint processes
w under P(- |[#7=n) converge weakly to the endpoint process W. This implies that

Vee(0,00), lim sup P(w,(W™)>¢e|#17=n)=0,
n—+p>0

where w, (W) stands for the n-uniform modulus of continuity of w over [0, 1]. We next
denote by w,(w ) the n-uniform modulus of continuity of w( with respect to the metric
d, on Cy as introduced in Lemma 4.18; this lemma asserts that w, (w®) < 2w, (Wm).
This, combined with the weak convergence of the finite dimensional marginals of w(),
entails that the laws of w( are tight on C([0, 1], Cy) and we easily get (5.21). |

5.3 Proof of Theorem 1.2

Let us fix v € (1,2] and let 7 be a Galton-Watson tree (as in Definition 2.2) whose
offspring distribution p satisfies (H) as in (1.1). Then recall from (4.34) the definition of
the contour process (Cs(7))sc0,24+) of 7. Conditionally given 7, let (Y,),e- be a Wy 1-
valued branching random walk with law Q} as in Definition 3.1 (ii). Recall from (5.2)
the spatial contour (V(-))se[o,24-] @ssociated with Y, and recall from (5.4) the definition
of (Ws('))se[ovz#T], the continuous interpolation of the discrete snake. We denote by
(7, &;Z) (W[OJ],J) and (Wb, (fivb) be the real trees spanned by respectively 7, Wy ;; and W,
we assume that 7 C 7, that Wy ;) C W[O,l] and that W, C Wb. We next couple the free
branching random walk (Y}, );c; with the Wy-valued one via the b-contraction application
®y, as in Definition 3.3: namely we set V> = ®,(Y,,) for all v € . By Remark 3.4, Y?®
has law Q;® as in Definition 3.1 (7). We also set V®=® (V) that is the spatial contour
of Y®, according to Remark 5.1. We recall the following notation R = {Yv;v € T},
Ro={YP;0e7}=B4(R), R={Vi;5€[0,2#7]} and Ry ={V>; 5[0, 2#7]} = y(R).

We trivially extend C(7) and W on [0, o0) by taking C(7) equal to 0 and by taking
W; equal to the null function for all s € [2#7, 00). Let (ay,)nen be as in Theorem 4.28. To
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simplify notation we set for all s€[0, 1],

By (5)= ot Cons(7), Wi (r) =

(é)v ref0,00) and w(= L W2ns

Observe that P(-|#7=n)-a.s. (h,, w(™)€%([0,1]) as in Definition 4.17 and we denote
by dy, and dy, ) the corresponding tree and snake pseudo-distances as defined in
resp. (4.8) and (4.19). In particular, observe that

P-a.s. for all 517526[0,00), ﬁg(‘/}Qnsla‘/}Qn@) dth(‘n (51752)

Proposition 5.5 combined with Lemma 4.20 implies that weakly on (C([0,1]2,R), ||-|)?

(dn, ,dp, wen) under P(-|#7=n) — (du,duw),

where (H, W) is the normalised one dimensional reflected Brownian snake with ~-stable
branching mechanism as in Definition 4.31 and where dy and dg w are the corresponding
tree and snake pseudo-distances.
We next set B
vs1752€[0aoo)7 d:L(81752) = \/%*ndb(vansNVanw) '

By (5.19), conditionally given 7, d},(s1, s2) <dy,, v (s1,52) and forall e€ (0, 1), a.s
P<dhn,w(’") (s1,82)—d} (s1,82)>2¢ ‘ 7') < p3TEVan |

which implies that lim,_,c P(dy,, o (51, 52) —d}(s1,52) > 26 | #7 =n) = 0. Therefore,
Proposition 4.4 applies (with d,, =d,, ) to show that (d},, d}, ) under P(-[#7=
n) converge to (dgw,duw), weakly on (C([0,1]%,R),||-|)?. Actually it is easy to see
that (dn,,d},,dy, w) under P(-|#7 = n) converges to (dg,dnw,dn,w) weakly on
(C([0, 112, R), [|-1)°.

We next recall that P(-|#7 = n)-a.s. the real tree coded by dy, is isometric to

(7, - dg, @, 11i) where fi= 64 +Length. Also recall from (5.8) that P( - |#7 =n)-a.s. the real

tree coded by d; is isometric to (Ry, A=d®, &, - mY, . ), where m}

cont 1S the occupation
measure of (178")56[0,2”], as defined in general in (5.6). Since (dy, ,d?) under P(-|#7=n)
converges to (dy, dw), weakly on (C([0,1]2,R), ||-||)?, Proposition 4.14 implies that the
pointed measured compact spaces (7, icigr?@, 1m) and (ﬁb, \/Ldb , 3-mS ) under
P(-|#1 = n) jointly converge to resp. (Tw,du,rm,pu) and (Tuw,duaw, " a,w ., La,w)
weakly on (M, §¢up)?, where Ty and Ty 1w here stand for the real trees coded by resp. H
and (H,W).

We next recall the following notation.

}: } : ==b _ b b _§ : ==b _ 1 b
m= 61)7 m - 6Yb mocc_imocca Meount™ 51’ and Meount™ #Ry Meoyns -

VET VvET TER

n?

By the inequalities specified in Example 4.13, we get dyays(7,7) <1 and dpyox(m,m) < 3.
Similarly, by Lemma 5.2 we get dyays(Rob, Rb) <1 and dprex(2m? <2. Thus,

occ) cont)

(( : dgr’g ) (Rb7 L dgryg mocc)) under P( . | #T:n)

— (T deg, v wm), Taw, daw,ra,w, baw)),
n oo
where d,, stands for both graph-tree distances in 7 and W;, to simplify notation.

We next control m®,__, in terms of m®__ thanks to Theorem 1.1 and Lemma 5.3. To that
end, we set c= Cu,b/Q where ¢, ;, is as in Theorem 1.1; we denote by ug,uy,...,ug,_1 the
vertices of 7 listed in the lexicographical order and we also set a=max<;<#r \#{Y;’j ;0<

EJP 27 (2022), paper 16. https://www.imstat.org/ejp
Page 51/54


https://doi.org/10.1214/22-EJP741
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Scaling limits of tree-valued BRW

J<i}—2ci| and f=max,e (24| |#{1A/lb; 0<Il<[s]}—ecs|. Theorem 1.1 asserts that for all
e€(0,00), P(a/n>e|#7=n) tends to 0 as n—oco. By (5.10), P(- | #7=n)-a.s.

<

S I™

can,
— hn(s) .
(o +3¢) + - Jél[%,’i ()

S|

Since (a,) is 7;1 -regularly varying, lim,,_,~ a,/n=0, which implies that P(8/n>¢e|#7=
n) tends to 0 as n— oc.

Next, we denote by dp.ox the Prokhorov distance on the space of finite measures on
(Ry, dgr) and we denote by déﬁgk the Prokhorov distance on the space of (Ry, A=d,:).
Since n~!' <ay'/” for all sufficiently large n, Remark 4.12 combined with (5.11) implies

that P(-|#7=n)-a.s.

Remark 4.12 by (5.11)
(n) (b = 1 b n_ b . * 4841
dProk (mocc7 M ount s S Van dPrOk (mocca H#Ry mcount) S an + 2q(dn7 one )a

where ¢(d¥,n) = max{d%(s,s');s, s €[0,1] : |s—s'| <n}. Since d} — dgy w weakly on
(C([0,1)%,R), ||-||) and since for all € € (0,00), lim,, o, P(3/n > ¢ |#7 =n) = 0, Proposi-
tion 4.3 implies that lim,,_,. P(g(d*, 22E) > ¢ | #7=n)=0 and thus

n’ 2nc

Vee(0,1),  lim P(d{) (M, MBy,,,) >e | #7=n)=0.

occ? count
n— oo

Then, observe that #Ry <n and that #Zf" moy .= %m‘c’oum. By Remark 4.12, we get
dlg’::lgk (C/L,bﬁgcm %m:ount) S dl(;rbgk (C/hbﬁgccv #Zfb ﬁl<§cc) + dr(’?gk (%ﬁgcm #Zfb m‘lc)oum:)
R (n) (=—b —b
§ ‘ #n . —Cub + dProk (mocc7 mcount) .

Now, recall that ¢, , =2c and that |7‘7mb —cup| < a/n. It finally implies that

n

Vee(0,1),  lim P(dS (cpnmieg, tmb ) >e | #7r=0)=0,

n— oo

which completes the proof of Theorem 1.2. |
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