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Abstract

We study the large-time and small-time asymptotic behaviors of the spectral heat
content for time-changed stable processes, where the time change belongs to a large
class of inverse subordinators. For the large-time behavior, the spectral heat content
decays polynomially with the decay rate determined by the Laplace exponent of the
underlying subordinator, which is in sharp contrast to the exponential decay observed
in the case when the time change is a subordinator. On the other hand, the small-time
behavior exhibits three different decay regimes, where the decay rate is determined
by both the Laplace exponent and the index of the stable process.
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1 Introduction

The spectral heat content measures the total heat that remains on a domain Ω ⊂ Rd

whose initial temperature is one with Dirichlet boundary condition. The spectral heat
content for Brownian motions has been studied intensively in the past few decades.
Recently, there have been growing interests in studying the spectral heat content
for jump processes, which is defined by replacing the Brownian motions with other
jump processes and putting the zero exterior condition outside Ω in order to take into
account the fact that jump processes could exit the domain by jumping into Rd \ Ω.
In [1, 2, 4, 6, 8, 9, 10], the spectral heat content for stable processes and other Lévy
processes are studied for both subordinate killed processes and killed subordinate
processes. In particular, in [10], the two-term asymptotic expansion for the spectral heat
content for isotropic stable processes on bounded C1,1 open sets was investigated.

The main purpose of this paper is to study the large-time and small-time asymptotic
behaviors of the spectral heat content for time-changed stable processes of the form
Y ◦ E = {YEt

}t≥0, where the outer process Y = {Yt}t≥0 is an isotropic stable process
and the inner process (or the time change) E = {Et}t≥0 belongs to a large class of
inverse subordinators. In general, the large-time and small-time asymptotics for the
spectral heat content provide both spectral information of the underlying process and
geometric information of the domain. Indeed, for Brownian motions, the large-time
decay rate of the spectral heat content is determined by the principal eigenvalue of the
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Spectral heat content for time-changed stable processes

infinitesimal generator of the associated killed Brownian motions. On the other hand,
as for the small-time behavior, the spectral heat content for Brownian motions on a
smooth domain admits an asymptotic expansion, with the coefficients of the expansion
containing geometric characteristics of the domain Ω, such as the area, perimeter and
mean curvature.

The main results of this paper are Theorems 1.1 and 1.2 below, which provide the
large-time and small-time asymptotic behaviors of the spectral heat content QY ◦E

Ω (t) for
time-changed isotropic stable processes of the form Y ◦ E. Note that throughout the
paper, the symbol f(t) ∼ g(t) means f(t)/g(t) → 1 as t→ ∞ or t ↓ 0, depending on which
asymptotic behavior is being considered.

Theorem 1.1. Let Ω ⊂ Rd be a bounded open set. Let Y be an isotropic stable process
and {(λYn , ψY

n )}∞n=1 be the eigenpairs of the infinitesimal generator for the associated
killed process. Let E be the inverse of a subordinator whose Laplace exponent φ is
regularly varying at 0+ with index β ∈ [0, 1). Suppose Y and E are independent. Then

QY ◦E
Ω (t) ∼ φ(1/t)

∞∑
n=1

(∫
Ω
ψY
n (x)dx

)2
λYn Γ(1− β)

as t→ ∞.

Theorem 1.2. Let Ω ⊂ Rd be a bounded C1,1 open set if d ≥ 2 or a bounded open
interval if d = 1. Let Y be an isotropic stable process of index α ∈ (0, 2). Let E be the
inverse of a subordinator whose Laplace exponent φ is regularly varying at ∞ with index
β ∈ (0, 1). Suppose Y and E are independent. Then as t ↓ 0,

|Ω| −QY ◦E
Ω (t) ∼



|∂Ω|E[Z(α)

1 ]Γ(1 + 1/α)

Γ(1 + β/α)
[φ(1/t)]−1/α if α ∈ (1, 2),

|∂Ω|
πΓ(1 + β)

[φ(1/t)]−1 lnφ(1/t) if α = 1,

Perα(Ω)

Γ(1 + β)
[φ(1/t)]−1 if α ∈ (0, 1).

Detailed information about the notations used in the theorems, including Z
(α)

1 and
Perα(Ω), appears in the preliminary section, Section 2.

Theorem 1.1 is established in Section 3. To the authors’ knowledge, this is the very
first paper in the literature that establishes the large-time behavior of the spectral heat
content for time-changed processes with the time changes being inverse subordinators.
Moreover, the result turns out to be very different from the case when the time changes
are subordinators themselves. Indeed, as Proposition 3.1 shows, if the time-change is
given by a subordinator, then the spectral heat content exhibits an exponential decay
and the decay rate is determined by φ(λY1 ), where φ is the Laplace exponent of the
subordinator and λY1 is the principal eigenvalue of the infinitesimal generator for the
associated killed process. In contrast, in the case of an inverse subordinator, Theorem 1.1
indicates that the spectral heat content exhibits a polynomial decay and the information
about all the eigenpairs {(λYn , ψY

n )}∞n=1 appears in the limit. In fact, the large-time
behavior of the spectral heat content can be derived in a much more general setting; one
can replace the isotropic stable process Y with any Lévy process whose associated killed
process has transition density with representation of the form (2.3) (see Remark 3.3,
item 4) for details).

Section 4 is devoted to the derivation of Theorem 1.2. We assume that the domain Ω

is a bounded C1,1 open set if d ≥ 2 or a bounded open interval if d = 1 so that we can
use a recent result [10, Theorem 1.1] or [1, Theorem 1.1] on the spectral heat content
for isotropic stable processes.
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Spectral heat content for time-changed stable processes

The short-time behavior of the spectral heat content for time-changed Brownian
motions, where the time change is given by an inverse subordinator (as opposed to a
subordinator), was first studied in [6]. This current paper can be regarded as a natural
continuation of the investigation carried out in [6] since Brownian motions are stable
processes with index α = 2 (and they are the only stable processes with continuous
sample paths). However, let us stress again that Theorem 1.1 on the large-time behavior
is completely new, and our approach for proving the theorem is significantly different
from those in [6]; in particular, we resort to the double Laplace transform of the inverse
subordinator E (see Lemma 3.1). Moreover, even for the small-time behavior, replacing
Brownian motions with stable processes has generated a new difficulty that was not
present in [6]. Indeed, when the stability index is α = 1, though the exact asymptotic
behavior of the function t 7→ E[Et ln(1/Et)] is needed, a standard argument based on
the Tauberian theorem together with the monotone density theorem is not directly
applicable since the function x 7→ x ln(1/x) is not monotone. We will overcome this
difficulty by introducing a monotonized function V (x) of x ln(1/x) (see (4.1) for the
definition) and showing that the error induced by the introduction of V (x) is negligible
in Proposition 4.1.

Before closing this section, let us briefly explain why it is worth investigating pro-
cesses involving inverse subordinators. First, time-changed Brownian motions with time
changes being inverse subordinators naturally appear in the context of subdiffusions,
where the particles diffuse at a slower pace than the usual Brownian particles. Moreover,
over the past few decades, the time-changed Brownian motions and their various gener-
alizations, including time-changed Lévy processes, time-changed fractional Brownian
motions, and solutions of stochastic differential equations driven by such time-changed
processes, have been widely studied due to a number of practical applications arising
in physics, biology, hydrology, finance, etc. (see e.g. [7, 12] and references therein).
One of the focuses of these investigations is to identify the governing equations for the
time-changed processes. In particular, it is known that, when the outer process Y is a
Lévy process and the independent time change E is an inverse stable subordinator with
index β ∈ (0, 1), then the governing equation for the time-changed Lévy process Y ◦ E
is the partial differential equation ∂βt u(t, x) = Axu(t, x), with Ax being the infinitesimal
generator of Y acting on x and ∂βt denoting the Caputo fractional derivative of order β
acting on t. Theorems 1.1 and 1.2 to be established in this paper are valuable since they
provide more information about the nature of such time-changed Lévy processes.

2 Preliminaries

Let Y = {Yt}t≥0 be an isotropic stable process of stability index α ∈ (0, 2] with càdlàg
paths, the characteristic function of which is given by E[eiξYt ] = e−t|ξ|α , ξ ∈ Rd. When
α = 2, Y is a Brownian motion whose sample paths are continuous, whereas for α ∈ (0, 2),
Y is a pure-jump process.

Let Ω be a bounded open set in Rd. The spectral heat content QY
Ω (t) for the stable

process Y on Ω at time t is defined by

QY
Ω (t) =

∫
Ω

Px(τ
Y
Ω > t)dx, (2.1)

where τYΩ = inf{t > 0 : Yt /∈ Ω} is the first exit time of Y from Ω. Let pY (t, x, y)
be the transition density for Y . By Fourier inversion, pY (t, x, y) = pY (t, y − x) =

(2π)−d
∫
Rd e

−i〈ξ,y−x〉e−t|ξ|αdξ. In particular,

pY (t, x, y) ≤ (2π)−d

∫
Rd

e−t|ξ|αdξ =
ωd

α
Γ(d/α)t−d/α,
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where ωd = 2πd/2

Γ(d/2) . Let Y Ω = {Y Ω
t }t≥0 be the killed process defined by Y Ω

t = Yt if

t < τYΩ and Y Ω
t = ∂ if t ≥ τYΩ , where ∂ is a cemetery state. The transition density

pY,Ω(t, x, y) for Y Ω is given by pY,Ω(t, x, y) = pY (t, x, y) − rYΩ (t, x, y), where rYΩ (t, x, y) =

E[pY (t − τYΩ , YτY
Ω
, y); τYΩ ≤ t]. In particular, pY,Ω(t, x, y) ≤ pY (t, x, y) ≤ ωd

α Γ(d/α)t−d/α.

Hence, the semigroup defined by TY,Ω
t f(x) := Ex[f(Y

Ω
t )] for f ∈ L2(Ω) is a Hilbert–

Schmidt operator, and there exist pairs {(λYn , ψY
n )}∞n=1 of eigenvalues and eigenfunctions

(or eigenpairs in short) such that

0 < λY1 < λY2 ≤ · · · ≤ λYn → ∞ (2.2)

and

pY,Ω(t, x, y) =

∞∑
n=1

e−λY
n tψY

n (x)ψY
n (y). (2.3)

Due to the identity Px(τ
Y
Ω > t) =

∫
Ω
pY,Ω(t, x, y)dy, the spectral heat content for Y has

the alternative representation

QY
Ω (t) =

∞∑
n=1

e−λY
n t

(∫
Ω

ψY
n (x)dx

)2

. (2.4)

Now we state a recent result from [1, 10] about the two-term small-time asymptotic
behavior of QY

Ω (t), where the open set Ω ⊂ Rd when d ≥ 2 is assumed to be C1,1; i.e., its
boundary can be locally represented as the graph of a C1 function whose gradient is
Lipschitz. Define

fα(t) =


t1/α if α ∈ (1, 2),

t ln(1/t) if α = 1,

t if α ∈ (0, 1),

and cα =


E[Z

(α)

1 ]|∂Ω| if α ∈ (1, 2),
|∂Ω|
π

if α = 1,

Perα(Ω) if α ∈ (0, 1).

(2.5)

Here, |∂Ω| is the perimeter of Ω if d ≥ 2 or |∂Ω| = 2 if d = 1 (in which case, Ω is a

bounded open interval), Z
(α)

t = sups≤t Z
(α)
s stands for the running supremum of a one-

dimensional symmetric α-stable process {Z(α)
t }t≥0, and Perα(Ω) =

∫
Ω

∫
Ωc

c(d,α)
|x−y|d+α dydx is

the α-fractional perimeter of Ω.

Theorem 2.1. ([1, Theorem 1.1] and [10, Theorem 1.1]) Let Ω ⊂ Rd be a bounded C1,1

open set if d ≥ 2 or a bounded open interval if d = 1. Let Y be an isotropic stable process
of index α ∈ (0, 2). Let fα(t) and cα be defined as in (2.5). Then

|Ω| −QY
Ω (t) ∼ cαfα(t) as t ↓ 0.

The main object of study in this paper is the spectral heat content for time-changed
isotropic stable processes. More precisely, let Y be the isotropic stable process discussed
above, and let D = {Dt}t≥0 be an independent subordinator (one-dimensional Lévy
process with nondecreasing càdlàg paths starting from 0). Let φ denote the Laplace
exponent of D, so that

E[e−λDt ] = e−tφ(λ) = exp

(
−t

∫ ∞

0

(1− e−λx)ν(dx)

)
, λ, t > 0, (2.6)

with the Lévy measure ν satisfying
∫∞
0

(1 ∧ x)ν(dx) < ∞. Throughout the paper, we
assume that the Lévy measure is infinite; i.e., ν(0,∞) = ∞, which is equivalent to
saying that φ(λ) → ∞ as λ → ∞. The Laplace exponent φ is strictly increasing since
φ(λ2)−φ(λ1) =

∫∞
0

(e−λ1x− e−λ2x)ν(dx) > 0 whenever 0 < λ1 < λ2. Moreover, φ(0+) = 0,
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and φ is a Bernstein function; i.e., (−1)nφ(n) ≤ 0 for all integers n ≥ 1. Now, let
E = {Et}t≥0 be the inverse of D defined by

Et = inf{u > 0 : Du > t}, t > 0.

The condition that the Lévy measure ν is infinite implies that D has strictly increasing
paths with jump times being dense in (0,∞) (see [11, Theorem 21.3]). This in turn
implies that the sample paths of the inverse E are continuous, nondecreasing, and
starting from 0. The spectral heat content QY ◦E

Ω (t) for the time-changed isotropic stable
process Y ◦ E is defined by

QY ◦E
Ω (t) = E[QY

Ω (Et)]. (2.7)

We assume that the Laplace exponent φ of the subordinator D is regularly varying
with index β at ∞ or at 0; i.e., for each a > 0, φ(aλ)

φ(λ) → aβ as λ → ∞ or as λ ↓ 0. Let

Rβ(∞) and Rβ(0
+) denote the classes of regularly varying functions with index β at

∞ and at 0, respectively. Any function f ∈ Rβ(∞) or f ∈ Rβ(0
+) can be rewritten

as f(λ) = λβ`(λ) with some slowly varying function ` ∈ R0(∞) or ` ∈ R0(0
+) (see [3,

Theorem 1.4.1]). By the Tauberian theorem, the condition that φ ∈ Rβ(∞) or φ ∈ Rβ(0
+)

determines the behavior of the subordinatorD at 0 or∞. Examples of Laplace exponents
include φ(λ) = λβ with β ∈ (0, 1), which belongs to Rβ(∞) ∩ Rβ(0

+) and corresponds
to a β-stable subordinator, and φ(λ) = (λ + κ)β − κβ with β ∈ (0, 1) and κ > 0, which
belongs to Rβ(∞) ∩R1(0

+) and corresponds to a tempered stable subordinator.

3 The large-time behavior

This section studies the large-time asymptotic behavior of the spectral heat content
for time-changed stable processes when the time change is given by either a subordinator
D with infinite Lévy measure or its inverse E. In either case, φ denotes the Laplace
exponent of the underlying subordinator D. The main assumption of this section is:

φ ∈ Rβ(0
+) with β ∈ [0, 1) and Ω is a bounded open set.

We first discuss the case of an inverse subordinator E. Our argument relies on two
lemmas. The first lemma concerns the exact expression of the double Laplace transform
of E, while the second concerns the spectral heat content QY

Ω (t) for the stable process Y
at t = 0. For the remainder of the paper, let the expression Lt[f(t)](s) denote the Laplace
transform of a function f whenever it exists; i.e., Lt[f(t)](s) =

∫∞
0
f(t)e−stdt.

Lemma 3.1 ([5, Lemma 2]). Let E be the inverse of a subordinator D with Laplace
exponent φ. Then for any fixed a > 0, the Laplace transform of the function t 7→ E[e−aEt ]

exists and is given by

Lt

[
E[e−aEt ]

]
(s) =

φ(s)

s

1

φ(s) + a
, s > 0.

Lemma 3.2. Let Ω be a bounded open set. Let Y be an isotropic stable process and
{(λYn , ψY

n )}∞n=1 be the eigenpairs of the infinitesimal generator for the associated killed
process. Then the map t 7→ QY

Ω (t) is right-continuous at 0. Furthermore,

QY
Ω (0

+) = |Ω| =
∞∑

n=1

(∫
Ω

ψY
n (x)dx

)2

.

Proof. By the right-continuity of the sample paths of Y , limt↓0Px(τ
Y
Ω > t) = Px(τ

Y
Ω > 0)

= 1 for all x ∈ Ω. Since |Ω| < ∞, it follows from representation (2.1) and the
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dominated convergence theorem that limt↓0Q
Y
Ω (t) = |Ω|. On the other hand, since

the function t 7→ e−λY
n t increases as t decreases for any fixed n, the monotone con-

vergence theorem applied to the alternative representation of QY
Ω (t) in (2.4) yields

limt↓0Q
Y
Ω (t) =

∑∞
n=1

(∫
Ω
ψY
n (x)dx

)2
. This completes the proof. 2

Proof of Theorem 1.1. By (2.4) and (2.7),

QY ◦E
Ω (t) = E[QY

Ω (Et)] =

∞∑
n=1

E[e−λY
n Et ]

(∫
Ω

ψY
n (x)dx

)2

, (3.1)

where the expectation and summation signs are interchangeable since the integrand is
nonnegative. Express φ ∈ Rβ(0

+) as φ(s) = sβ`(s) using some ` ∈ R0(0
+). By Lemma 3.1

and the fact that φ(0+) = 0,

Lt

[
E[e−λY

n Et ]
]
(s) =

φ(s)

s

1

φ(s) + λYn
∼ `(s)

s1−β

1

λYn
as s ↓ 0. (3.2)

It follows from Karamata’s Tauberian Theorem [3, Theorem 1.7.1] that
∫ t

0
E[e−λY

n Eu ]du ∼
t1−β`(1/t)
λY
n Γ(2−β)

as t→ ∞, and hence, by the monotone density theorem ([3, Theorem 1.7.2]),

E[e−λY
n Et ] ∼ t−β`(1/t)

λYn Γ(1− β)
=

φ(1/t)

λYn Γ(1− β)
as t→ ∞. (3.3)

In particular, for n = 1, there existsM > 0 such that
∣∣[φ(1/t)]−1E[e−λY

1 Et ]− 1
λY
1 Γ(1−β)

∣∣ < 1

for all t > M . Then it follows from (2.2) that for all t > M and n ≥ 1,

[φ(1/t)]−1E[e−λY
n Et ]

(∫
Ω

ψY
n (x)dx

)2

<

(
1 +

1

λY1 Γ(1− β)

)(∫
Ω

ψY
n (x)dx

)2

.

The latter is summable due to the assumption that |Ω| <∞ and Lemma 3.2; therefore,
the dominated convergence theorem together with (3.1) and (3.3) yields

lim
t→∞

[φ(1/t)]−1QY ◦E
Ω (t) =

∞∑
n=1

(
∫
Ω
ψY
n (x)dx)2

λYn Γ(1− β)
,

as desired. 2

We now turn our attention to the case when the time-change is a subordinator
D independent of the isotropic stable process Y . The spectral heat content for the
time-changed stable process Y ◦D on a bounded domain Ω is defined by

QY ◦D
Ω (t) = E[QY

Ω (Dt)].

Note that QY ◦D
Ω (t) corresponds to the spectral heat content for subordinate killed stable

processes. The large-time behavior of this quantity is given by the following proposition.

Proposition 3.1. Let Ω ⊂ Rd be a bounded open set in Rd. Let Y be an isotropic
stable process and {(λYn , ψY

n )}∞n=1 be the eigenpairs of the infinitesimal generator for the
associated killed process. Let D be a subordinator with Laplace exponent φ. Suppose Y
and D are independent. Then

lnQY ◦D
Ω (t) ∼ −tφ(λY1 ) as t→ ∞.
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Proof. By representations (2.4) and (2.6), the spectral heat content QY ◦D
Ω (t) can be

re-expressed as

QY ◦D
Ω (t) =

∞∑
n=1

E[e−λY
n Dt ]

(∫
Ω

ψY
n (x)dx

)2

=

∞∑
n=1

e−tφ(λY
n )

(∫
Ω

ψY
n (x)dx

)2

,

where the expectation and summation signs are interchangeable since the integrand is
nonnegative. Since the Laplace exponent φ is strictly increasing and the eigenvalues
{λYn } satisfy (2.2), it follows that 0 < φ(λY1 ) < φ(λY2 ) ≤ · · · . This together with the above
representation of QY ◦D

Ω (t) yields the desired conclusion. 2

Remark 3.3. 1) Theorem 1.1 shows that QY ◦E
Ω (t) exhibits a polynomial decay as t→ ∞,

which is in sharp contrast to an exponential decay for QY ◦D
Ω (t) indicated by Proposi-

tion 3.1. Moreover, the information about all the eigenpairs {(λYn , ψY
n )}∞n=1 appears in

the limiting expression for QY ◦E
Ω (t), whereas only λY1 plays a major role in the large-time

behavior of QY ◦D
Ω (t). The difference between the decay rates of QY ◦E

Ω (t) and QY ◦D
Ω (t) can

be ascribed to the fact the introduction of the inverse subordinator E as a time change
makes the heat particles diffuse at a slower pace than those with the subordinator D
incorporated as a time change.

2) The decay rate of QY ◦E
Ω (t) is determined by the Laplace exponent φ of D through

the condition φ ∈ Rβ(0
+), β ∈ [0, 1). For example, if φ(λ) is given by φ(λ) = λa + λb with

0 ≤ a < b ≤ 1, which implies that the time change E is given by the inverse of the sum of
independent stable subordinators with different indices a and b, then since φ(λ) ∼ λa as
λ ↓ 0, the large-time asymptotic behavior of QW◦E

Ω (t) is given by a constant multiple of
t−a.

3) Theorem 1.1 does not include the case when β = 1 since the argument given
in (3.1)–(3.2) would fail if β = 1. We believe that the case when β = 1 gives an
exponential decay rather than the polynomial decay. In fact, if the time change is
given by Et = t, in which case φ(λ) = λ ∈ R1(0

+), then Proposition 3.1 implies that
lnQY

Ω (t) ∼ −tλY1 as t→ ∞.
4) Theorem 1.1 and Proposition 3.1 are stated with the outer process Y taken to be

an isotropic stable process; however, similar statements actually hold for much more
general outer processes. In fact, as long as the killed process associated with Y has
transition density with representation of the form (2.3), the proofs given to Theorem 1.1
and Proposition 3.1 continue to work.

4 The small-time behavior

This section is devoted to the analysis of the spectral heat content for time-changed
stable processes Y ◦ E as t ↓ 0. The main assumption of this section is:

φ ∈ Rβ(∞) with β ∈ (0, 1) and

Ω is a bounded C1,1 open set if d ≥ 2 or a bounded open interval if d = 1.

Our argument builds upon [6, Propositions 2.2 and 4.2] and the ideas presented in their
proofs. However, they do not immediately yield Theorem 1.2 when the stability index
of Y is α = 1. More precisely, the threshold case α = 1 requires the analysis of the
small-time behavior of E[Et ln(1/Et)], but as the map x 7→ x ln(1/x) is not monotone, the
method of finding the asymptotic behavior based on Karamata’s Tauberian theorem and
the monotone density theorem is not directly applicable. To overcome this difficulty, let
us introduce the following monotonized function V (x) of x ln(1/x):

V (x) = x ln(1/x)1{0<x≤e−1} + e−11{x>e−1}, x > 0. (4.1)
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Clearly, V (x) is nondecreasing on (0,∞) and it agrees with x ln(1/x) when 0 < x ≤ e−1.
To establish the small-time behavior of E[Et ln(1/Et)], we need two lemmas below.

Note that throughout this section, the notation E[X;A] is often used to represent the
expectation E[X1A].

Lemma 4.1 ([6, Equations (4.11) and (4.6)]). Let E be the inverse of a subordinator D
with Laplace exponent φ ∈ Rβ(∞) with β ∈ (0, 1). Then for any p > 0 and δ > 0, there
exist constants c1, c2 > 0 and functions `1, `2 ∈ R0(0

+) such that

− lnP(Et > δ) = − lnP(Dδ < t) ∼ c1t
− β

1−β `1(t) as t ↓ 0; (4.2)

− lnE[Ep
t ;Et > δ] ∼ c2t

− β
1−β `2(t) as t ↓ 0. (4.3)

Lemma 4.2. Let E be the inverse of a subordinator D with Laplace exponent φ ∈ Rβ(∞)

with β ∈ (0, 1). Let the function V (x) be defined as in (4.1). Then

E[V (Et)] ∼
1

Γ(1 + β)
[φ(1/t)]−1 lnφ(1/t) as t ↓ 0.

Proof. By [6, Equation (4.5)], for any fixed u > 0, the Laplace transform of t 7→ P(Et > u)

is given by

Lt[P(Et > u)](s) =

∫ ∞

0

e−stP(Du < t)dt =
e−uφ(s)

s
. (4.4)

Define
g(t) = E[Et ln(Et);Et ≤ e−1].

Then since d
du (u lnu) = 1 + lnu,

g(t) =

∫ e−1

0

(x lnx)P(Et ∈ dx) =

∫ e−1

0

(∫ x

0

(1 + lnu)du

)
P(Et ∈ dx)

=

∫ e−1

0

(
(1 + lnu)

∫ e−1

u

P(Et ∈ dx)

)
du =

∫ e−1

0

(1 + lnu)P(u < Et ≤ e−1)du,

where the Fubini Theorem is applicable since lnx + 1 < 0 for all x ∈ (0, e−1]. By the
identity P(u < Et ≤ e−1) = P(Et > u) − P(Et > e−1) and formula (4.4), the Laplace

transform of g(t) is calculated as Lt[g(t)](s) =
1
s

∫ e−1

0
(1 + lnu)

(
e−uφ(s) − e−e−1φ(s)

)
du. By

integration by parts and change of variables via v = uφ(s),

Lt[g(t)](s) =
1

s

([
u lnu

(
e−uφ(s) − e−e−1φ(s)

)]e−1

0

+ φ(s)

∫ e−1

0

(u lnu)e−uφ(s) du

)
=

1

s

∫ e−1φ(s)

0

v

φ(s)
ln

(
v

φ(s)

)
e−v dv

=
1

sφ(s)

∫ e−1φ(s)

0

(v ln v)e−v dv − lnφ(s)

sφ(s)

∫ e−1φ(s)

0

ve−v dv

=: I1(s)− I2(s).

Since φ(s) ∈ Rβ(∞) with β > 0, it follows from [3, Proposition 1.3.6 (v)] that
lims→∞ φ(s) = ∞, and hence,

lim
s→∞

sφ(s)

lnφ(s)
I2(s) =

∫ ∞

0

ve−v dv = 1.

On the other hand, since
∫∞
0
v| ln v|e−v dv <∞, it follows that

lim sup
s→∞

∣∣∣∣ sφ(s)lnφ(s)
I1(s)

∣∣∣∣ ≤ lim sup
s→∞

1

lnφ(s)

∫ e−1φ(s)

0

v| ln v|e−v dv = 0.
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Spectral heat content for time-changed stable processes

Therefore,

Lt[g(t)](s) ∼ − lnφ(s)

sφ(s)
as s→ ∞. (4.5)

Now, note that E[V (Et)] = −g(t) + e−1P(Et > e−1). Then by (4.4) and (4.5),

Lt[E[V (Et)]](s) ∼
lnφ(s)

sφ(s)
=

lnφ(s)

`(s)
s−(1+β) as s→ ∞,

where we expressed φ(s) as φ(s) = sβ`(s) for some ` ∈ R0(∞). By Karamata’s Tauberian

Theorem [3, Theorem 1.7.1], the latter yields
∫ t

0
E[V (Eu)]du ∼ lnφ(t−1)

`(t−1)
t1+β

Γ(2+β) as t ↓ 0.

Since V is nondecreasing, so is the function t 7→ E[V (Et)], and the desired conclusion
now follows from the monotone density theorem [3, Theorem 1.7.2]. 2

The above two lemmas allow us to establish the small-time asymptotic behavior of
the function E[Et ln(1/Et)], which is needed to deal with the threshold case α = 1.

Proposition 4.1. Let E be the inverse of a subordinator D with Laplace exponent
φ ∈ Rβ(∞) with β ∈ (0, 1). Then

E[Et ln(1/Et)] ∼
1

Γ(1 + β)
[φ(1/t)]−1 lnφ(1/t) as t ↓ 0.

Proof. The definition of V (x) in (4.1) yields

E[Et ln(1/Et)] = E[V (Et)]− e−1P(Et ≥ e−1) + E[Et ln(1/Et);Et ≥ e−1].

This together with Lemma 4.2 implies that the desired result follows upon show-
ing that both P(Et ≥ e−1) and E[Et ln(1/Et);Et ≥ e−1] decay at a rate faster than
[φ(1/t)]−1 lnφ(1/t) decays. However, since [φ(1/t)]−1 lnφ(1/t) has a polynomial decay
due to the condition φ(s) ∈ Rβ(∞), it suffices to prove that both P(Et ≥ e−1) and
E[Et ln(1/Et);Et ≥ e−1] decay at least exponentially as t ↓ 0. Now, (4.2) immedi-
ately yields an exponential decay of P(Et ≥ e−1). On the other hand, in terms of
E[Et ln(1/Et);Et ≥ e−1], choose a constant c3 > 0 such that | lnx| ≤ c3x for all x > e−1,
so that ∣∣E[Et ln(Et);Et > e−1]

∣∣ ≤ c3E[E
2
t ;Et > e−1].

Since the right-hand side decays exponentially due to (4.3), the left-hand side decays at
least exponentially. This completes the proof. 2

Proof of Theorem 1.2. By [6, Proposition 4.2], for any fixed p > 0 and δ > 0,

E[Ep
t ] ∼ E[E

p
t ;Et ≤ δ] ∼ Γ(p+ 1)

Γ(pβ + 1)
[φ(1/t)]−p as t ↓ 0.

This yields the following statement in the case when α ∈ (0, 1) ∪ (1, 2):

E[fα(Et);Et ≤ δ] ∼ E[fα(Et)] ∼

{
Γ(1+1/α)
Γ(1+β/α) [φ(1/t)]

−1/α if α ∈ (1, 2),
1

Γ(1+β) [φ(1/t)]
−1 if α ∈ (0, 1),

(4.6)

where fα(t) is defined in (2.5). On the other hand, application of (4.3) and Proposition 4.1
yields

E[fα(Et);Et ≤ δ] ∼ E[fα(Et)] ∼
1

Γ(1 + β)
[φ(1/t)]−1 lnφ(1/t) if α = 1. (4.7)
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In particular, expressions (4.6) and (4.7) show that regardless of the value of α ∈ (0, 2),

E[fα(Et);Et ≤ δ1] ∼ E[fα(Et);Et ≤ δ2] for any δ1, δ2 > 0. (4.8)

Moreover, expressions (4.2), (4.6) and (4.7) together imply that

P(Et > δ) = o(E[fα(Et);Et ≤ δ]) for any δ > 0. (4.9)

Applying the argument given in the proof of [6, Proposition 2.2], one can verify that
Theorem 2.1 and the two statements (4.8) and (4.9) together imply

|Ω| −QY ◦E
Ω (t) ∼ cαE[fα(Et);Et ≤ δ]

for any δ > 0, where cα is defined in (2.5). This is equivalent to the conclusion of
Theorem 1.2. 2

Remark 4.3. Suppose for simplicity that the time change E in Theorem 1.2 is given by
the inverse of a stable subordinator with index β ∈ (0, 1). Then, the rate function for the
decay of |Ω| −QY ◦E

Ω (t) as t ↓ 0 is given by
tβ/α if α ∈ (1, 2),

tβ ln(1/t) if α = 1,

tβ if α ∈ (0, 1).

Comparing this with the statement of Theorem 2.1, one can observe that the short-time
decay rate for |Ω|−QY ◦E

Ω (t) is faster than that for |Ω|−QY
Ω (t), regardless of the values of

the indices α ∈ (0, 2) and β ∈ (0, 1). This makes sense since, even though the introduction
of the inverse stable subordinator E makes the heat particles diffuse at a slower rate in
large time, they actually diffuse at a faster rate near t = 0, and thus, more heat particles
exit the domain Ω in short time.
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