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Abstract

Chase-escape is a competitive growth process in which red particles spread to adjacent
empty sites according to a rate-λ Poisson process while being chased and consumed
by blue particles according to a rate-1 Poisson process. Given a growing sequence of
finite graphs, the critical rate λc is the largest value of λ for which red fails to reach
a positive fraction of the vertices with high probability. We provide a conjecturally
sharp lower bound and an implicit upper bound on λc for supercritical random graphs
sampled from the configuration model with independent and identically distributed
degrees with finite second moment. We additionally show that the expected number
of sites occupied by red undergoes a phase transition and identify the location of this
transition.
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1 Introduction

Parasite-host models in which parasite expansion is restricted to the sites occupied by
their hosts were introduced by ecologists Keeling, Rand, and Wilson [18, 25]. The same
dynamics have been reinterpreted in a variety of applications: predator-prey systems,
rumor scotching, infection spread, and malware repair in a device network [5, 4, 8, 13].
Despite it being natural to model these applications on finite networks, there are few
rigorous results to this end. The goal of this present work is to prove that there is a
phase transition for species proliferation on sparse random graphs generated from the
configuration model.

We begin by defining chase-escape in general. Let G′ be a graph with root ρ. We
obtain G by attaching an additional vertex b to ρ. Vertices of G are in states {r, b, w}.
Pairs of adjacent vertices in states (b, r) transition to (b, b) according to a rate-1 Poisson
process. Pairs of adjacent vertices in states (r, w) transition to (r, r) according to a rate-λ
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Chase-escape on the configuration model

Poisson process with λ > 0. The initial configuration has ρ in state r, b in state b, and
all other vertices in state w. We will interchangeably refer to the vertices in states
r, b, and w as either red, blue, and white vertices, or as being occupied by red, blue
or white particles. One interpretation of these dynamics is of red (prey) being chased
and consumed by blue (predators). It is from this interpretation that the chase-escape
process earns its name.

The process fixates if at some time there are no more red vertices. Let R be the set
of sites that are at some time red and |R| denote the number of vertices in R. When G is
an infinite graph, we define the critical value

λc(G) = sup{λ : Pλ(|R| =∞) = 0}

as the fastest spreading rate at which red almost surely occupies only finitely many
vertices of G.

Increasing λ allows for more red expansion, but more expansion makes more sites
available for blue to chase red along. These offsetting factors make it difficult to couple
systems with different values of λ. For example, for any non-trivial graph with cycles, it
is not known that Pλ(|R| =∞) increases in λ.

A standing conjecture, informally attributed to Martin, is that λc(Zd) < 1 for d ≥ 2.
This was supported by simulation evidence from Tang, Kordzakhia, and Laller who
predicted that λc(Z2) ≈ 1/2 [26]. A more thorough simulation study from Kumar,
Grassberger, and Dhar provided convincing evidence that λc(Z2) = 0.49451 ± 0.00001

[22]. The authors gave further quantitative evidence which suggested that the critical
exponents for chase-escape fall in the same universality class as those of undirected
bond percolation.

Kordzakhia proved in [19] that, when G = Td is the infinite rooted d-ary tree in which
each vertex has d child vertices, we have

λc(Td) = 2d− 1− 2
√
d(d− 1) ∼ 1

4d
. (1.1)

This comes from balancing the exponential growth of paths in the trees against the
large-deviation event that red is able to survive along a fixed path (see [10] for a simple
argument). Note that (1.1) is strictly less than 1 for d > 1. Later, Bordenave generalized
the formula at (1.1) to trees with arbitrary branching number [5], which was further
refined by Kortchemski [21].

Beckman, Cook, Eikmeier, Junge, and Hernandez-Torres studied a variant of chase-
escape on Td in which red particles die at some rate [2]. Durrett, Junge, and Tang in [10]
proved that λc(Td) ≤ λc(G) for any graph G with no more than dn self-avoiding paths of
length n starting from the root. They also proved that λc(G) = 1 when G is the ladder
graph Z× {0, 1} and that red may reach infinitely sites even when it spreads at a slower
rate than blue in a modified version of chase-escape on the oriented two-dimensional
lattice with spreading rates that resemble Bernoulli bond percolation. Interpreting
chase-escape dynamics as malware spread/repair in a device network, Hinsen, Jahnel,
Cali, and Wary demonstrated a phase transition for coexistence on Gilbert graphs [13]
with a positive density of vertices blue at the onset.

We study chase-escape on sequences of graphs G = (Gn)n≥1 for which Gn has vertex
set {b, 1, . . . , n}. We identify 1 as the root and assume one edge is present between b and
1. Let Rn be the set of sites occupied by red at some time in chase-escape on Gn with b

initially blue and 1 initially red. Define

λc(G) = sup{λ : inf
δ>0

lim sup
n→∞

Pλ(|Rn| > δn) = 0}. (1.2)
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Chase-escape on the configuration model

In words, λc(G) is the largest value such that, if λ < λc(G), the probability that red
occupies a fixed fraction of the vertices of infinitely many of the Gn goes to zero. Since
Pλ(|Rn| > δn) is not known to be monotonic in λ, it is an open problem to prove that the
definition at (1.2) is equivalent to the infimum formulation

λ′c(G) = inf{λ : ∃δ, ε > 0 such that lim sup
n→∞

Pλ(|Rn| > δn) > ε}.

Nonetheless, by definition, we have λc(G) ≤ λ′c(G).
The scaling limit of chase-escape on the complete graph, known as the birth-and-

assassination process [1], was studied by Bordenave in [4]. Kortchemski later showed
that the number of remaining white sites when the process fixates is O(n1−λ) for λ ∈ (0, 1)

and O(1) for λ ≥ 1. Thus, red reaches most, if not all, of the vertices of the complete
graph for any λ > 0 [20]. Arruda, Lebensztayn, Rodrigues, and Rodríguez provided
simulation evidence in support of the conjecture that similar behavior occurs when Gn is
a dense Erdős-Rényi graph [8].

The two-type Richardson growth model is closely related to chase-escape. In this
process red and blue compete for territory on a graph with blue spreading at rate-1 and
red at rate-λ. Both colors spread only to white vertices and, upon reaching a white site,
occupy that site for all subsequent time. The process has implications for geodesics in
first passage percolation on Zd [14, 12]. Antunović, Dekel, Mossel, and Peres studied
this process on random regular graphs and proved that both red and blue occupy a
positive fraction of the vertices with positive probability only when λ = 1. Deijfen and
Van der Hofstad proved that one species dominates for the process on the configuration
model with P (D > x) ≈ x−τ+1 with τ ∈ (2, 3) [9]. There has been a recent study of a
somewhat similar competing two-type growth processes with conversion by Finn and
Stauffer [11] as well as a result by Candellero and Stauffer [7] that a related process
lacks a seemingly intuitive monotonicity property.

1.1 Results

We are interested in λc(G) when G consists of random (multi-)graphs sampled from the
configuration model with an independent and identically distributed degree sequence.
Let D be a random variable supported on the nonnegative integers and define D =

(D1, D2, . . .) to be a sequence of independent random variables with the same distribution
as D. We sample a graph Gn on the vertices 1, . . . , n by first assigning Di half-edges to
each vertex i (b receives no half-edges). If

∑n
i=1Di is odd, then we add a half-edge to

the vertex n so that there is an even number of half-edges. A matching, that pairs each
half-edge with another distinct half-edge and only uses each half-edge once, is chosen
uniformly at random from the set of all such matchings. Gn is obtained by including
an edge for each pair of matched half-edges. Note that this construction allows for the
possibility of multiple- and self-edges in Gn. We identify the root ρ with the vertex 1 and
point out that deg 1 = D1 + 1 since the blue vertex b is attached. The presence of the
extra edge at 1 and possibly at n are minor nuisances that have no significant impact as
n→∞.

Denote the joint measure for chase-escape on G by Pλ(·) and the expectation with
respect to this measure by Eλ[·]. For the probability measure and expectation of generic
random variables such as the degrees D,D1, D2, . . . we use P (·) and E[·]. We will say
that a sequence of events occurs with high probability if the probability converges to 1.

To have a phase transition for chase-escape on G, the graphs Gn must contain giant
components, i.e., connected components with a non-vanishing fraction of the vertices.
To this end, we assume that

0 < E[D(D − 2)] <∞. (1.3)
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This is a variant of the Molloy-Reed criterion for the emergence of a giant component
and was first observed in [23]. Even with a giant component, proving that red can reach
a positive fraction of that component remains a complicated question. That red is able to
do so for large enough λ and fails for small λ is our first result.

Before stating it, we introduce two important quantities:

a = (E[D2]/E[D])− 1 (1.4)

Λ := Λ(a) = 2a− 1− 2
√
a2 − a ∼ 1

4a

with the convention that Λ(∞) = 0. Graphs sampled from the configuration model are
known to be tree-like with branching number a [3]. So, the form of Λ at (1.4) matches
that of the critical value for infinite trees with a given branching number at (1.1) from
[5]. For this reason, we make the following conjecture.

Conjecture 1.1. Let λc(G) be as defined at (1.2) and Λ as defined at (1.4). Suppose that
G is sampled from the configuration model with an independent D-distributed degree
sequence satisfying (1.3). We conjecture that λc(G) = Λ.

This is discussed more in Section 1.3. Our first result is a lower bound consistent
with Conjecture 1.1 and a proof that λc(G) is finite.

Theorem 1.2. For chase-escape with the same conditions as Conjecture 1.1 it holds that

Λ ≤ λc(G) <∞.

Our second result is that a phase transition for the expected number of sites reached
by red occurs at Λ.

Theorem 1.3. Consider chase-escape with the same conditions as Conjecture 1.1. If
λ ≤ Λ, then there exists a constant C := C(Λ) independent of λ such that

sup
n≥1

Eλ[|Rn|] < C. (1.5)

If λ > Λ, then

lim
n→∞

Eλ[|Rn|] =∞. (1.6)

If E[D2] =∞ and E[D] <∞, then this result continues to hold with Λ = 0.

Notice that the phase transition is discontinuous; Eλ[|Rn|] is uniformly bounded
for all λ ≤ Λ, and diverges for larger λ. Similar behavior for the expected range was
observed for chase-escape on trees in [21]. Interestingly, the analogous phase transition
was proven to be continuous for chase-escape with death [2].

1.2 Proof overview

The lower bound on λc(G) is a relatively straightforward extension of the ideas in [10,
Corollary 1.2] which uses the fact that the configuration model is locally tree-like. We
prove Theorem 1.3 using the tree-like local structure of Gn along with a result from [5]
concerning survival of chase-escape on general trees.

The proof of the upper bound on λc(G) is inspired by the approach from [13]. We
restrict to open vertices from which red spreads to all of the neighbors before any
adjacent blue vertex overtakes the red particle there. Red spreads uninhibited between
such sites. Our argument comes down to proving that the subgraph of open vertices
and the edges between them contains a giant component with non-vanishing probability.
Establishing this is subtle because high-degree vertices, which intuitively are the most
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crucial for making the component well-connected, are less likely to be included. While
there is an extensive treatment of degree-dependent percolation in the applied literature
under the name “network robustness,” we were unable to find many rigorous results
in this area [6]. Our argument makes use of a recent criterion for a uniformly random
simple graph with a given degree distribution to contain a giant component from Joos,
Perarnau, Rautenbach, and Reed [17]. This amounts to showing that for λ large enough,
not too many vertices are deleted. So if Gn contains a giant component, then the
subgraph is likely to as well.

1.3 Future work

The most natural next step is proving Conjecture 1.1. While we do not have a
concrete bound when proving λc(G) <∞, the implicit bound in Theorem 1.2 diverges as
D becomes stochastically larger. Since Λ→ 0 as D becomes large, it would be great to
prove a universal upper bound for λc(G) that tends to zero for sparse random graphs.
This would be a worthy pursuit even for special cases such as sparse Erdős-Rényi or
random regular graphs. Our approach does not appear to extend to dense graphs where
it is natural to conjecture that λc = 0. However, to our knowledge, it is an open problem
to prove that red reaches a positive fraction of vertices on such graphs for any λ > 0.
For example, it would be nice to prove this statement on Erdős-Rényi graphs G(n, pn)

with limn→∞ npn → ∞. We believe that the value of λc is unknown for this case even
when pn ≡ p, although there have been simulation studies [8] suggesting this is true.

1.4 Organization

In Section 2 we prove the upper bound on λc from Theorem 1.2. In Section 3 we
prove upper and lower bounds on Eλ[|Rn|] to complete the proof of Theorem 1.2 and
proof of Theorem 1.3.

2 The upper bound

We begin by reducing the problem of proving λc(G) <∞ to a question about degree-
dependent percolation. As described in more detail in [10], the Markov property of
the underlying Poisson processes allows us to represent chase-escape as a collection of
independent red and blue passage times along each edge. Fix a vertex v. We imagine
that Gn has not been sampled yet so that v has Dv half-edges that will eventually be
connected to other vertices in the graph. To each half-edge, we assign outbound red
passage times (τ rv,i)

Dv
i=1 and inbound blue passage times (τ bv,i)

Dv
i=1. The τ rv,i are independent

exponential random variables with mean 1/λ and the τ bv,i are independent exponential
random variables with mean 1.

Let T rv = max1≤i≤Dv τ
r
v,i and T bv = min1≤i≤Dv τ

b
v,i. We call v open if the event

Ov =
{
T rv < T bv

}
(2.1)

occurs. In words, if v becomes red, then the red particle at v spreads to all neighbors of
v before v can be overtaken by a blue particle at any of its neighbors. Note that O1 is
slightly different from the other Ov since the presence of b ensures that deg 1 = D1 + 1.
Thus, we must include the additional passage time τ b1,b for the edge (b, 1). Similarly, we
may need to include additional passage times at n if the sum of the degrees is odd.

Let Hn be the subgraph of Gn−{b} consisting of all open vertices and edges between

open vertices. Denote the largest connected component in Hn by H(1)
n . We say that the

sequence H := (Hn)n≥1 contains a giant component if there exists δ > 0 such that

lim sup
n→∞

Pλ(|H(1)
n | > δn) > 0. (2.2)
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Lemma 2.1. If λ is such that H satisfies (2.2) for some δ > 0, then λc(G) < λ.

Proof. Disregarding the edge (b, 1), the root is indistinguishable from the other vertices.
This self-similarity ensures that

Pλ(1 ∈ H(1)
n | |H(1)

n | ≥ k) ≥ k/n. (2.3)

Moreover, if 1 ∈ H(1)
n , it follows from the definition of an open vertex that all vertices in

H
(1)
n are at some time red in chase-escape on Gn. Thus, the two random variables are

coupled so that |Rn| ≥ |H(1)
n | almost surely. Conditioning on the event |H(1)

n | ≥ δn then
applying (2.3), we may write

Pλ(|Rn| ≥ δn) ≥ Pλ(|H(1)
n | ≥ δn and 1 ∈ H(1)

n ) ≥ δPλ(|H(1)
n | ≥ δn).

So, whenever (2.2) holds, we have

lim sup
n→∞

Pλ(|Rn| > δn) ≥ δ
[

lim sup
n→∞

Pλ(|H(1)
n | > δn)

]
> 0.

We then have λc(G) ≤ λ by definition.

In light of Lemma 2.4, the upper bound on λc(G) from Theorem 1.2 follows from
finding λ and δ satisfying (2.2).

Remark 2.2. [6, 24] provided a heuristic thatH contains a giant component with positive
probability so long as∑

k>0

k(k − 1)Pλ(Ov | deg v = k)P (D = k) > ED.

Since Pλ(Ov | deg v = k)→ 1 as λ→∞, this condition holds for large enough λ by our
assumption at (1.3). Unfortunately, the heuristic does not account for the dependence in
the degree sequence for H. We must take a longer route to obtain the desired result.

The first step is observing that Hn has the law of a configuration model on a modified
degree sequence.

Lemma 2.3. Let D̂n = (D̂1, . . . , D̂n) be a sequence of degrees with

D̂i =

{
deg(i) in the subgraph Hn, if i ∈ Hn

0, if i /∈ Hn

Note that the edges from vertices in Hn to those in Hc
n are not counted in D̂i. We claim

that the law of Hn is that of a graph sampled from the configuration model with degree
sequence D̂n.

Proof. Call a vertex closed if it is not open. The open/closed status of each vertex is
locally determined by the passage times at the site. Thus, whether or not each vertex
is open is independent of the edge configuration of Gn. We begin by sampling the
passage times and labeling the vertices of Gn as open or closed. We then reveal the
edge connections for only the closed vertices in u ∈ Hc

n. After revealing this, the closed
vertices have degree D̂u = 0. The open vertices v ∈ Hn have degree D̂v equal to
Dv minus any half-edges that were revealed to be connected to closed vertices. The
remaining half-edges correspond to the connections in Hn which are yet to be revealed.
The matching between these edges is independent of the exploration of Gn to remove
closed edges. Generating Hn is thus a configuration model with degree distribution
D̂n.
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A downside of the previous construction is that the vertex degrees in D̂n are depen-
dent. Indeed, we know that with high probability

∑n
1 (Di− D̂i) is on the order of n which

imposes some structure on the D̂i. There are many theorems giving criteria for the
emergence of giant components in graphs from the configuration model [3, 23, 16]. How-
ever, these theorems assume that the empirical degree counts m(k) = |{i ≤ n : D̂i = k}|
converge. While this is likely true for D̂n, it is not so obvious how to deal with the de-
pendence. We choose to proceed in a different manner that uses a recent, rather robust
condition for giant components to exist in uniformly random simple graphs taken from
[17]. We can apply this condition since the law of the configuration model, conditioned
to be simple, and the law of uniformly sampling a simple graph with the same degree
sequence are the same, and, when D satisfies (1.3), the graphs Gn (and thus Hn) are
simple with positive probability uniformly in n [15].

We define a few important quantities. Let Dn = (D1, . . . , Dn) be a general, possibly
dependent, degree sequence. Arrange Dn in increasing order Dπ1

≤ . . . ≤ Dπn and
define the quantities

jn = min
(
{j ≤ n :

j∑
i=1

Dπi(Dπi − 2) > 0} ∪ {n}
)
, (2.4)

Sn =

n∑
i=jn

Dπi , Mn =
∑
Di 6=2

Di, and

En =
∑
i∈Hcn

Di.

Lemma 2.4. If Sn ≥ εMn from (2.4) with high probability for some fixed ε > 0, then
there exists δ > 0 such that Gn has a component containing at least δn vertices with
high probability.

Proof. This is a restatement of [17, Theorem 2] for the degree distributions we consider.

We now would like to show that the criterion in Lemma 2.4 can be applied to D̂n to
infer that H contains a giant component. We do so by showing that G contains a giant
component, and then show that the “damage” done by removing closed edges does not
impact the criterion at (2.4) in a serious way. This is done formally by controlling the
value of jn, which can be thought of as the minimum amount of Dn that must be revealed
for a Molloy-Reed-type condition to hold.

To start we need to control the left and right tails of summing order statistics as in
the definitions of jn and Sn.

Lemma 2.5. Let X1, X2, . . . be independent and identically distributed random variables
supported on the integers with finite mean µ > 0. Denote the ith order statistic of
the sub-collection X1, . . . , Xn by Xn

πi . Given ε ∈ (0, 1), there exists δ > 0 such that for
nδ = d(1− δ)ne we have

1

n

nδ∑
i=1

Xn
πi ≥ (1− ε)µ and

1

n

n∑
i=nδ+1

Xn
πi ≤ εµ with high probability. (2.5)

Proof. First we assume that P (X1 > x) > 0 for all x ≥ 0 so that X1 has unbounded
positive support. Set

M := min{x : E[X11{X1 ≤ x}] ≥ (1− ε/3)µ},
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which exists by the hypothesis that E[X1] = µ. Let 0 < p := P (X1 > M). The law of large
numbers ensures that

1

n

n∑
1

1{Xi ≤M} ≤ 1− p

2
> 0 and

1

n

n∑
1

Xi1{Xi ≤M} ≥ (1− ε/2)µ (2.6)

with high probability. Setting δ = p/2, we then have

InM := {1 ≤ i ≤ n : Xn
πi ≤M} ⊆ {1, 2, . . . , nδ}

with high probability. Since the Xn
πi are order statistics, it follows that

nδ∑
i=1

Xn
πi ≥

∑
i∈π−1(InM )

Xi =

n∑
i=1

Xi1{Xi ≤M}

with high probability. Dividing by n and applying (2.6) gives

1

n

nδ∑
i=1

Xn
πi ≥

1

n

n∑
i=1

Xi1{Xi ≤M} ≥ (1− ε/2)µ (2.7)

with high probability. The relation at (2.7) is the first part of (2.5). The second part
follows from (2.7) along with the observation, again from the law of large numbers, that

1

n

nδ∑
i=1

Xn
πi +

1

n

n∑
i=nδ+1

Xn
πi =

1

n

n∑
i=1

Xi ≤ (1 + ε/2)µ (2.8)

with high probability.
Next, suppose that M = max{x : P (X1 = x) > 0} exists for some finite M so that the

positive support of X1 is bounded. Let p = P (X1 = M) > 0. Note that if p = 1, then
the Xi’s are deterministic and the desired claim is trivial. So, suppose that 0 < p < 1

and set δ = εpµ/M . Since the mean µ of X1 is bounded by the maximum value M in the
support of X1 we have µ/M < 1. This, along with the assumption ε < 1, implies that
δ < p. Thus, the law of large numbers ensures that Xn

πi = M for all i > nδ with high
probability. Using this along with the simple observation that nδ ≥ (1− δ)n gives

1

n

n∑
i=nδ+1

Xn
πi =

1

n
(n− nδ)M ≤ δM = εpµ ≤ εµ

with high probability. This gives the second part of (2.5), from which the first part can
be derived using similar reasoning as at (2.8) except with the equality

1

n

nδ∑
i=1

Xn
πi +

1

n

n∑
i=nδ+1

Xn
πi =

1

n

n∑
i=1

Xi ≥ (1− ε)µ

with high probability.

Lemma 2.6. Let jn be as defined at (2.4). There exists α > 0 such that jn ≤ (1 − α)n

with high probability.

Proof. Let Xi = Di(Di − 2). Set E[X1] = β > 0. Lemma 2.5 ensures that there exists
α > 0 such that

d(1−2α)ne∑
i=1

Xπi ≥
β

2
n > 0

with high probability. Referring back to the definition of jn at (2.4), this ensures that
jn ≤ (1− α)n as claimed.

ECP 27 (2022), paper 29.
Page 8/14

https://www.imstat.org/ecp

https://doi.org/10.1214/22-ECP470
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Chase-escape on the configuration model

We will require a bound on En, the number of half-edges connected to Hc
n, defined at

(2.4).

Lemma 2.7. Let En be as defined at (2.4). For all ε > 0, there exists λ > 0 such that
En < εn with high probability.

Proof. Consider the event Ov from (2.1). Notice that for v 6= 1, T rv is distributed as
the maximum of Dv many independent exponential with mean λ random variables, and
T bv is distributed as the minimum of Dv many independent unit exponential random
variables. These are elementary distributions, from which it is straightforward to derive
the equality

Pλ(T rv < T bv ) =

∞∑
k=0

∫ ∞
0

(1− e−λx)kke−kx dxP (Dv = k). (2.9)

Taking λ→∞ and applying the dominated convergence theorem gives that the expres-
sion in (2.9) converges to 1. A slight modification gives the same result for v = 1.

Since ED1 <∞, Lemma 2.5 ensures that there exists δ > 0 such that

n∑
i=d(1−δ)ne

Dπi < εn (2.10)

with high probability. As explained after (2.9), let λ be such that the probability that
a vertex is open is greater than 1 − (δ/2). Further observe that the events {Ov}v∈Gn
are independent since they concern disjoint sets of the underlying independent red and
blue passage times. Thus, the number of non-open vertices is dominated by a Bin(n, δ/2)

random variable. The law of large numbers ensures that with high probability

|Hc
n| ≤ δn.

On this event and (2.10), we then have

En =
∑
v∈Hcn

Dv ≤
n∑

i=d(1−δ)ne

Dπi < εn

with high probability.

Lemma 2.8. Let D̂ be as in Lemma 2.3 and define ĵn analogously to how jn is defined at
(2.4) with D̂π̂i the ith order statistic of D̂n = (D̂1, . . . , D̂n). For λ sufficiently large, there
exists α̂ > 0 such that ĵn ≤ (1− α̂)n with high probability.

Proof. The idea of the proof is to consider the damage, i.e., worst case minimizing effects,
on
∑jn
i=1Dπi(Dπi−2) after deleting up to 2En (defined at (2.4)) half-edges to form the D̂π̂i .

We then repair that damage by extending the range of the sum to include some larger
degree terms. Such terms are available since Lemma 2.6 ensures that jn ≤ (1 − α)n

for some α > 0 and Lemma 2.7 allows us to control the number of half-edges of closed
vertices En.

To be more specific, the argument goes in four stages: Stage one shows that the
damage from removing half-edges from vertices π1, . . . , πjn is at most a constant times
DπjnEn. Stage two quantifies the repairing effect of including vertices πi for (1− α)n <

i ≤ (1 − α)n + CEn. If the first (1 − α)n + CEn vertices of π̂ are the same as the first
(1− α)n+ CEn vertices of π, that is, no vertex after i > (1− α)n+ CEn in π is permuted
to the front in π̂, then the first two stages are sufficient. In stage three we note that, the
index of the first (1− α)n+ CEn vertices could be pushed back by at most 2En. In the
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worst case, the additional vertices may have degrees D̂i = 1 (and so D̂i(D̂i − 2) = −1).
Lastly, we combine these observations and use the fact that En can be made small to
prove the claimed result. Now we provide the details.

It follows from Lemma 2.6 that there exists α > 0 such that jn ≤ (1− α)n with high
probability. As guaranteed by Lemma 2.7, let λ > 0 be such that En < (α/10)n with high
probability. The total number of half-edges removed is at most 2En where the maximum
is attained when each closed half-edge is attached to an open half-edge. We proceed by
assuming the occurrence of the event {jn < (1− α)n} ∩ {En < (α/10)n}, which has high
probability.

For each half-edge attached to vertices π1, π2 . . . , πjn , the reduction to the quantity

jn∑
i=1

Dπi(Dπi − 2) > 0 (2.11)

by removing a single half-edge attached to a vertex with degree d before the removal
occurs is d(d− 2)− (d− 1)(d− 3) = 2d− 3. As the terms are ordered by size, the maximal
reduction occurs when d = Dπjn

. Since d(d− 2) is non-positive for d = 0, 1, 2, Dπjn
≥ 3.

Since there are at most 2En edges removed, the sum (2.11) is reduced by at most

2(2Dπjn
− 3)En < (4Dπjn

− 6)
α

10
n.

Then,

jn∑
i=1

D̂πi(D̂πi−2) ≥
jn∑
i=1

Dπi(Dπi−2)− (4Dπjn
− 6)

α

10
n. (2.12)

We next consider the vertices between indices (1 − α)n and (1 − (4α/10))n. As
En < (α/10)n, there are at most 2En < (2α/10)n half-edges removed from these vertices.
Then, there are at least (6α/10)nDπjn

−(2α/10)n half-edges attached to vertices between
indices (1− α)n and (1− (4α/10))n after removal.

We lower bound the contribution of vertices between indices (1 − α)n and (1 −
(4α/10))n by constructing from scratch a degree sequence that minimizes the sum.
Each additional half-edge contributes to the sum by 2d − 3 where d is the number of
the half-edges of the vertex after the addition. Since 2d − 3 is increasing, the sum∑(1−4α/10)n
i=(1−α)n D̂πi(D̂πi − 2) is least when every half-edge is added to the vertex of the

least degree. Then, there are at least (6α/10)nDπjn
− (2α/10)n− 2(6α/10)n = (6Dπjn

−
14)(α/10)n half-edges added as the third or higher edge of their vertex, each contributing
at least 2× 3− 3 = 3 to the sum. Then,

b(1−4α/10)nc∑
i=d(1−α)ne

D̂πi(D̂πi − 2) ≥ (18Dπjn
− 42)

α

10
n. (2.13)

Finally, to account for the scenario that the last 2En edges suffer edge removal and
become degree-0 edges, for example, we need to consider the case where the first
jn edges are “pushed back”. There are at most 2En < (2α/10)n vertices after index
(1− (4α/10)n) that can be permuted to an earlier index in π̂ which could push the index
of πi back by at most (2α/10)n. In the worst case, all such vertices have degree 1 after
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edge removal. Then, by the above, (2.12), (2.13), and Dπjn
≥ 3, we have

b(1−(2α/10)n)c∑
i=1

D̂π̂i(D̂π̂i − 2)

≥
jn∑
i=1

D̂π̂i(D̂π̂i − 2) +

b(1−(4α/10))nc∑
i=d(1−α)ne

D̂πi(D̂π − 2) + (−1)(2α/10)n

≥
jn∑
i=1

Dπi(Dπi−2)− (4Dπjn
− 6)

α

10
n+ (18Dπjn

− 42)
α

10
n− 2

α

10
n

≥
jn∑
i=1

Dπi(Dπi−2) + (14Dπjn − 38)
α

10
n > 0.

Letting α̂ = α/5, it follows that ĵn ≤ (1− α̂)n with high probability.

Proposition 2.9. There exist λ, δ > 0 such that (2.2) holds.

Proof. By Lemma 2.3, the subgraph Hn is sampled from the configuration model with
degree sequence D̂n. It follows from [15] that

lim inf
n≥1

Pλ(Gn is simple) > 0.

Since the Gn are sampled independently of one another, there is almost surely a random
increasing subsequence n1, n2, . . . such that for k ≥ 1 each Gnk is simple. As Hnk is a
subgraph, the Hnk are also simple.

Lemma 2.8 implies that for λ large enough there exists α̂ > 0 with ĵnk < (1 − α̂)nk
with high probability. Since E[Di] = µ < ∞, the law of large numbers ensures that
Mnk ≤ 2µnk with high probability. Together, these observations imply

Ŝnk ≥
nk∑

i=d(1−α̂)nke

D̂π̂i ≥ 3α̂nk =
3α̂

2µ
2µnk ≥

3α̂

2µ
Mnk

with high probability. The second inequality is true because there are at most α̂nk + 1

indices and D̂π̂i ≥ 3 for all i ≥ ĵnk . Setting ε = 3α̂/(2µ) in Lemma 2.4, we conclude that

for λ large enough there exists δ > 0 such that |H(1)
nk | > δnk with high probability (as

k →∞). Since (2.2) is defined with a lim sup, a result for the subsequence is enough to
infer (2.2).

Proof of Theorem 1.2. That λc(G) <∞ follows immediately from Lemma 2.4 and Propo-
sition 2.9. That λc(G) ≥ Λ follows from (1.5), which is proven in the next section.

3 Proof of Theorem 1.3

Proof of the upper bound (1.5). We sample a graph Gn from the configuration model
with degree sequence Dn. Let Γk be the set of all vertex self-avoiding paths of length k
starting at 1 that are present in Gn. Interpret Γ0 = {1} as the path of length 0 starting
at 1. We say that red survives on a path γ ∈ Γk if, for chase-escape restricted only to the
passage times along γ, the terminal vertex of γ is eventually colored red. We emphasize
that survival along γ ignores the influence of red and blue from all edges not belonging
to γ and only depends on the passage times along γ.
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Let Ak = Ak(λ) be the event that k is ever colored red in chase-escape on the infinite
path 0, 1, 2, . . . with 0 initially blue and 1 initially red. Observe that

Pλ(red survives on a path γ of length k) = Pλ(Ak).

By [10, Lemma 2.2], for λ < 1 and all k ≥ 1.

Pλ(Ak) ≤ Cλ
(

4λ

(1 + λ)2

)k
k−3/2 (3.1)

with

Cλ =

∞∑
i=0

(2i+ 1)λi =
1 + λ

(1− λ)2
. (3.2)

For any vertex v ∈ Rn, it is required that there is a path red survives on with v the
terminal point. Hence,

|Rn| ≤
n∑
k=0

∑
γ∈Γk

1{red survives on γ}.

Taking expectation and using the fact that Γk is independent of the identically distributed
1{red survives on γ} gives

Eλ[|Rn|] ≤
∑
k=0

Eλ[|Γk|]Pλ(Ak). (3.3)

The quantity Pλ(Ak) is bounded at (3.1). A standard branching process construction
(see [3] for example) shows that the total number of paths of length k is dominated
by a branching process in which the root has D1 children and subsequent generations
have offspring distribution D∗ − 1 where D∗ is the size-biased distribution of D. Namely,
P (D∗ = i) = iP (D = i)/E[D] for i ≥ 1. One easily checks that E[D∗] = E[D2]/E[D] =

a + 1 with a defined at (1.4). It follows that Eλ[|Γk|] ≤ E[D]ak−1. Note that by the
condition at (1.3), we must have a > 1.

Applying these bounds to (3.3) yields

Eλ[|Rn|] ≤ 1 +

n∑
k=1

E[D]ak−1Cλ

(
4λ

(1 + λ)2

)k
k−3/2

≤ 1 +
E[D]Cλ

a

∞∑
k=1

(
4aλ

(1 + λ)2

)k
k−3/2. (3.4)

The value of Λ at (1.4) is the solution to aΛ/(1 + Λ)2 = 1 for which λ ≤ Λ implies(
4aλ

(1 + λ)2

)
≤ 1. (3.5)

Applying the bound at (3.5), the easily proven inequality
∑∞
k=1 k

−3/2 ≤ 3, and the
formula at (3.2) for Cλ to (3.4) gives

Eλ[|Rn|] ≤ 1 +
3E[D]

a

(
1 + λ

(1− λ)2

)
≤ 1 +

3E[D]

a

(
1 + Λ

(1− Λ)2

)
= 1 +

3E[D]2

E[D2]− E[D]

(
1 + Λ

(1− Λ)2

)
.

Setting

C = 1 +
3E[D]2

E[D2]− E[D]

(
1 + Λ

(1− Λ)2

)
gives (1.5). Note that C <∞ since a > 1 implies that Λ < 1.
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Proof of the lower bound (1.6). Let T be a random tree in which the root has a D-
distributed number of children and all other vertices have an independent (D∗ − 1)-
distributed number of vertices with D∗ the size-biased version of D. So, it is equivalent
to write a from (1.4) as a = E[D∗ − 1].

Suppose first that a <∞. Let Tm be the first m generations of the tree. It is proven
in [3, Lemma 4] that for any fixed m the subgraph Bn(1,m) of vertices within distance m
of 1 in Gn may be coupled to equal Tn with high probability. We will denote the coupling
probability measure by P. It follows from [5, Theorem 1.1] that, for chase-escape on
T , red reaches infinitely many vertices with positive probability so long as λ > Λ. In
particular, the probability that red reaches a vertex at distance m is bounded below by
some constant β > 0. Letting Cm be the event that Tm and Bn(1,m) can be coupled, we
then have

lim inf
n>0

Eλ[|Rn|] ≥ lim inf
n>0

Eλ[|Rn| | Cm]P(Cm) ≥ βmP(Cm).

As β > 0 does not depend on m and P(Cm)→ 1 as n→∞ for any fixed m, it follows that
lim infn>0 E[|Rn|] =∞.

If a =∞, then we fix L > 0 and let T L be a randomly sampled embedded tree with
truncated offspring distribution (D∗ − 1) ∧ L. Let

bL = lim sup
k>0

|Vk(T L)|1/k

be the branching number of T L. Since a = ∞ and D∗ is almost surely finite, we have
bL = E[(D∗− 1)∧L]→∞ as L→∞. Thus, for any λ > 0, we can choose L large enough
so that Λ((D∗ − 1) ∧ L) < λ, then apply [5, Theorem 1.1] and similar reasoning as the
a <∞ case to deduce that Eλ[|Rn|]→∞.
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