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Abstract

By investigating McKean-Vlasov SDEs, the order preservation and positive correlation
are characterized for nonlinear Fokker-Planck equations. The main results recover the
corresponding criteria on these properties established in [3, 5] for diffusion processes
or linear Fokker-Planck equations.
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1 Introduction

Based on [5], complete criteria have been established in [3] for the order preservation
and positive correlation for diffusion processes corresponding to linear Fokker-Planck
equations, where the order preservation links to comparison theorem in the literature of
SDEs, and the positive correlation arises from statistics is known as Fortuin–Kasteleyn–
Ginibre (FKG) inequality due to [4]. In the present paper we aim to extend these criteria
to nonlinear Fokker-Planck equations associated with McKean-Vlasov SDEs.

In this paper, we aim to extend the above results to nonlinear Fokker-Planck equations
on the Wasserstein space P2 = {µ ∈ P : µ(| · |2) <∞}, a space of probability measures
on Rd with second moment. Under the Wasserstein distance

W2(µ, ν) := inf
π∈C(µ,ν)

(∫
Rd×Rd

|x− y|2π(dx,dy)

) 1
2

,

P2 is a Polish space., where C(µ, ν) is the space of all couplings of µ and ν. Consider the
following time-distribution dependent second order differential operators

Lt,µ := tr{a(t, ·, µ)∇2}+ b(t, ·, µ) · ∇, L̄t,µ := tr{ā(t, ·, µ)∇2}+ b̄(t, ·, µ) · ∇, (1.1)

where a = (aij)1≤i,j≤d, ā = (āij)1≤i,j≤d, b = (bi)1≤i≤d, b̄ = (b̄i)1≤i≤d are continuous on
[0,∞)×Rd × P2. The nonlinear Fokker-Planck equations for L and L̄ are formulated as

∂tµt = L∗t,µtµt, ∂tµ̄t = L̄∗t,µ̄t µ̄t, t ≥ s. (1.2)
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Order preservation and positive correlations

We call (µt, µ̄t)t≥s ∈ C([s,∞);P2)×C([s,∞);P2) a solution to (1.2), if for any f ∈ C∞0 (Rd),

µt(f) = µs(f) +

∫ t

s

µr(Lr,µrf)dr, µ̄t(f) = µs(f) +

∫ t

s

µ̄r(L̄r,µ̄rf)dr, t ≥ s.

To characterize (1.2) using McKean-Vlasov SDEs, we make the following assumption.

(A) b, b̄, a, ā are continuous on [0,∞)×Rd × P2, a and ā are positive definite,

µ
(
|b(t, ·, µ)|+ ‖a(t, ·, µ)‖

)
:=

∫
Rd

(
|b(t, ·, µ)|+ ‖a(t, ·, µ)‖

)
dµ

is locally bounded in (t, µ) ∈ [0,∞) × P2, and there exits an increasing function
K : [0,∞)→ [0,∞) such that b, b̄, σ :=

√
2a and σ̄ :=

√
2ā satisfy

max
{

2〈b(t, x, µ)− b(t, y, ν), x− y〉+ ‖σ(t, x, µ)− σ(t, x, ν)‖2HS ,

2〈b̄(t, x, µ)− b̄(t, y, ν), x− y〉+ ‖σ̄(t, x, µ)− σ̄(t, x, ν)‖2HS
}

≤ K(t)(|x− y|2 +W2(µ, ν)2), t ≥ 0, x, y ∈ Rd, µ, ν ∈ P2,

(1.3)

where ‖ · ‖HS stands for the Hilbert-Schmidt norm of a matrix ·.

Consider the distribution dependent SDEs

dXt = b(t,Xt,LXt)dt+
√

2a(t,Xt,LXt)dWt,

dX̄t = b̄(t, X̄t,LX̄t)dt+
√

2ā(t, X̄t,LX̄t)dWt,
(1.4)

where Wt is a d-dimensional Brownian motion on a complete filtration probability space
(Ω,Ft,P), and Lξ denotes the distribution of a random variable ξ.

According to [13], (A) implies the strong and weak well-posedness of (1.4) for initial
distributions in P2; that is, for any s ≥ 0 and any Fs-measurable (Xs, X̄s) with µ :=

LXs , µ̄ := LX̄s ∈ P2, the (1.4) for t ≥ s has a unique strong solution (Xt, X̄t)t≥s as well as
a unique weak solution with initial distributions (µ, µ̄) at times s, such that

P ∗s,tµ := LXt , P̄ ∗s,tµ̄ := LX̄t for µ = LXs , µ̄ = LX̄s (1.5)

are continuous in P2 with respect to t ≥ s. Therefore, by the superposition principle
in [1], (A) implies that (µt, µ̄t)t≥s := (P ∗s,tµ, P̄

∗
s,tµ̄)t≥s is the unique solution of (1.2) with

(µs, µ̄s) = (µ, µ̄).
We will also consider the order preservation and positive correlations for

Λsµ := L(Xt)t≥s , Λ̄sµ̄ = L(X̄t)t≥s
, s ≥ 0, µ, µ̄ ∈ P2.

Unlike in the setting of standard Markov processes, due to the non-linearity these
properties for (Λsµ, Λ̄sµ̄) do not imply by their time-marginals (P ∗s,tµ, P̄

∗
s,tµ̄)t≥s.

In Section 2, we state our main results on the order preservation for (P ∗s,t, P̄
∗
s,t) and

(Λs, Λ̄s), as well as on the positive correlations for Λs. To prove these results, in Section
3 we extend the main results of [3] to the time inhomogeneous setting which are also
new in the literature. Finally, the main results are proved in Section 4.

2 Main results

We first define the order preservation and positive correlations in the present setting.
We denote x ≤ y for x := (xi)1≤i≤d, y := (yi)1≤i≤d ∈ Rd if xi ≤ yi for any 1 ≤ i ≤ d.
Let Bb(Rd) be the set of all bounded measurable functions on Rd. Consider the class
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Order preservation and positive correlations

of bounded measurable increasing functions: Ub :=
{
f ∈ Bb(Rd)

∣∣f(x) ≤ f(y) for x, y ∈
Rd with x ≤ y

}
, and the family of probability measures of positive correlations: P+ :={

µ ∈ P|µ(fg) ≥ µ(f)µ(g) f, g ∈ Ub
}
. If µ ∈ P+, then µ is said to satisfy the FKG

inequality. Moreover, we write µ � ν for any two probability measures µ, ν ∈ P, if
µ(f) ≤ ν(f) holds for any f ∈ Ub(Rd). Note that definitions of P+ and µ � ν do not
change if we replace Bb(Rd) by Ckb (Rd) for k ∈ Z+ ∪ {∞}, where C0

b (Rd) = Cb(R
d)

denotes the set of all bounded continuous functions on Rd, while when k ≥ 1 the class
Ckb (Rd) consists of bounded functions on Rd having bounded derivatives up to order k.
For any ξ, η ∈ Cs := C([s,∞);Rd), we denote ξ ≤ η if ξt ≤ ηt for all t ≥ s. For any two
probability measures Φ1,Φ2 on the path space Cs, we denote Φ1 � Φ2 if Φ1(F ) ≤ Φ2(F )

holds for any bounded increasing function F on Cs. Similarly, let Ps+ denote the set
of probability measures on Cs satisfying the FKG inequality for bounded increasing
functions on Cs.

Definition 2.1. Let t ≥ s ≥ 0 and let (Ps,t, P̄
∗
s,t) be in (1.5).

(1) We write P̄ ∗s,t � P ∗s,t, if P̄ ∗s,tµ � P ∗s,tν holds for any µ, ν ∈ P2 with µ � ν.

(2) We write Λ̄s � Λs, if Λ̄sµ � Λsν holds for any µ, ν ∈ P2 with µ � ν.

(3) We write P ∗s,t ∈ P+ if P ∗s,tP+ ⊂ P+; and Λs ∈ Ps+ if Λsµ ∈ Ps+ holds for all µ ∈ P+.

Obviously, Λ̄s � Λs for all s ≥ 0 implies P̄ ∗s,t � P ∗s,t for all t ≥ s ≥ 0, but the inverse
may not be true in the nonlinear setting. Similarly, Λs ∈ Ps+ implies P ∗s,t ∈ P+ for any
t ≥ s but the inverse may not be true.

2.1 Order preservation

The following result provides sufficient conditions for the order preservation.

Theorem 2.1. Assume (A) and the following two conditions:

(1) For any 1 ≤ i ≤ d and s ≥ 0, b̄i(s, x, ν) ≤ bi(s, y, µ) holds for x ≤ y with xi = yi and
ν � µ;

(2) a = ā, and for any 1 ≤ i, j ≤ d, s ≥ 0 and µ ∈ P2, aij(s, x, µ) depends only on xi and
xj .

Then Λ̄s � Λs for all s ≥ 0. Consequently, P̄ ∗s,t � P ∗s,t for t ≥ s.
The next two results include necessary conditions for the order preservation, which

are weaker than the sufficient ones given in Theorem 2.1. However, they coincide with
the sufficient conditions and hence become sufficient and necessary conditions when
b(t, x, µ) and a(t, x, µ) do not depend on µ. Indeed, when the coefficients do not depend
on the distribution, we may take ν = δx and µ = δy for x ≤ y with xi = yi in Theorem
2.2 (i), and with xi = yi, xj = yj in Theorem 2.2(ii), such that these necessary conditions
coincide with the sufficient ones in Theorem 2.1.

For any µ ∈ P and I ⊂ {1, · · · , d}, let µI(A) := µ({x ∈ Rd : xI ∈ A}), A ∈ B(R#I)

be the marginal distribution of µ with respect to components indexed by I, where #I

denotes the number of elements in I. In particular, we simply denote µi = µ{i}

Theorem 2.2. Assume (A) and if Λ̄s � Λs for all s ≥ 0, then the following conditions
hold:

(i) for any ν � µ with νi = µi, 1 ≤ i ≤ d, there exists a coupling π ∈ C(ν, µ) with
π
(
{x ≤ y}

)
= 1 such that

b̄i(s, x, ν) ≤ bi(s, y, µ), s ≥ 0, (x, y) ∈ suppπ.

Consequently, b̄i(s, x, µ) ≤ bi(s, x, µ) for s ≥ 0, x ∈ Rd, µ ∈ P2.
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Order preservation and positive correlations

(ii) for any ν � µ with νij = µij , 1 ≤ i, j ≤ d, there exists a coupling π ∈ C(ν, µ) with
π
(
{x ≤ y}

)
= 1 such that

āij(s, x, ν) = aij(s, y, µ), s ≥ 0, (x, y) ∈ suppπ.

Consequently, a(s, x, µ) = ā(s, x, µ) for any s ≥ 0, x ∈ Rd, µ ∈ P2.

Since Λ̄s � Λs implies P̄ ∗s,t � P ∗s,t, conditions in the following result are also necessary
for Λ̄s � Λs.

Theorem 2.3. Assume (A). If P̄ ∗s,t � P ∗s,t for t ≥ s ≥ 0, then

(i) For any s ≥ 0 and 1 ≤ i ≤ d, ν(b̄i(s, ·, ν)) ≤ µ(bi(s, ·, µ)) holds for ν � µ with νi = µi.

(ii) For any s ≥ 0 and 1 ≤ i, j ≤ d, āij(s, x, δx) = aij(s, x, δx) holds and aij(s, x, δx)

depends only on xi and xj .

2.2 Positive correlations

We first present sufficient conditions for the positive correlations.

Theorem 2.4. Assume (A). If

(1) For any s ≥ 0 and 1 ≤ i ≤ d, bi(s, x, ν) ≤ bi(s, y, µ), for ν � µ, x ≤ y with xi = yi,

(2) For any 1 ≤ i, j ≤ d, aij ≥ 0, and for any µ ∈ P+, aij(s, x, µ) depends only on xi and
xj ,

then Λs ∈ Ps+, and consequently, P ∗s,t ∈ P+ for any t ≥ s ≥ 0.

Theorem 2.5. If Λµs ∈ Ps+ for s ≥ 0 and µ = µ{ij} × µ{ij}c ∈ P+, then

(1) For any s ≥ 0, 1 ≤ i, j ≤ d, aij(s, x, δx) ≥ 0 and aij(s, x, µ) depends only on xi and
xj .

(2) For any s ≥ 0, 1 ≤ i ≤ d and f ∈ Ub independent on xi,

µ(bi(s, ·, µ)f) ≥ µ(f)µ(bi(s, ·, µ)).

When σ and b do not depend on the distribution, by taking µ and ν being Dirac
measures we see that conditions in Theorems 2.4 and 2.5 coincide each other so that
they become sufficient and necessary for the positive correlations.

3 Time-inhomogeneous diffusion processes

Consider the time-dependent second order diffusion operators: for t ≥ 0 and x ∈ Rd,

Lt :=
1

2
tr{a(t, x)∇2}+ b(t, x) · ∇, L̄t :=

1

2
tr{ā(t, x)∇2}+ b̄(t, x) · ∇. (3.1)

where a = (aij), ā = (āij), b = (bi), b̄ = (b̄i) are continuous in [0,∞) × Rd. Assume that
the martingale problems associated with (Lt)t≥0 and (L̄t)t≥0 are well-posed so that
there exist unique time-inhomogeneous diffusion processes (Xs,t)t≥s≥0 and (X̄s,t)t≥s≥0

corresponding to (Lt)t≥0 and (L̄t)t≥0, respectively. Let (Ps,t)t≥s≥0 and (P̄s,t)t≥s≥0 be the
Markov semigroups generated by (Xx

s,t){ij} × µ{ij}c and (X̄x
s,t){ij} × µ{ij}c with the initial

value Xs,s = X̄s,s = x, respectively, i.e.,

Ps,tf(x) = Ef(Xx
s,t), P̄s,tf(x) = Ef(X̄x

s,t), f ∈ Bb(Rd). (3.2)

It is well known that for any f ∈ C∞0 (Rd)

d

ds
Ps,tf(x) = −Ps,tLsf,

d

dt
Ps,tf(x) = LtPs,tf, t ≥ s ≥ 0. (3.3)
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For any x, y ∈ Rd with x ≤ y, f ∈ Ub and t ≥ s ≥ 0, if P̄s,tf(x) ≤ Ps,tf(y), we call Ps,t
preserving order, written as P̄ ∗s,t � P ∗s,t, where for any µ ∈ P, P ∗s,tµ, P̄

∗
s,tµ ∈ P is given by

(P ∗s,tµ)(f) := µ(Ps,tf), (P̄ ∗s,tµ)(f) := µ(P̄s,tf), f ∈ Bb(Rd).

Moreover, we denote P ∗s,t ∈ P+ if P ∗s,tP+ ⊂ P+.
For any µ ∈ P, let Λsµ and Λ̄sµ be the distributions of the processes starting at µ

from time s generated by L and L̄ respectively. By the standard Markov property we see
that P̄ ∗s,t � P ∗s,t for t ≥ s ≥ 0 if and only if Λ̄s � Λs for s ≥ 0, while P ∗s,t ∈ P+ for t ≥ s is
equivalent to Λs ∈ Ps+.

Theorem 3.1. P̄ ∗s,t � P ∗s,t for t ≥ s ≥ 0, equivalently Λ̄s � Λs for s ≥ 0, if and only if the
following conditions hold:

(1) For any s ≥ 0 and 1 ≤ i ≤ d, b̄i(s, x) ≤ bi(s, y) for x ≤ y and xi = yi.

(2) For any s ≥ 0 and 1 ≤ i, j ≤ d, āij = aij and aij(s, x) only depends on xi and xj .

Theorem 3.2. P ∗s,t ∈ P+ for t ≥ s, equivalently Λs ∈ Ps+ for s ≥ 0, if and only if the
following conditions hold:

(1) For any s ≥ 0 and 1 ≤ i ≤ d, bi(s, x) ≤ bi(s, y) for x ≤ y and xi = yi;

(2) For any s ≥ 0 and 1 ≤ i ≤ d, aij ≥ 0 and aij(s, x) ≥ 0 depends only on xi and xj .

Proof of Theorem 3.1. (a) We first prove the necessity. For any t ≥ s ≥ 0 and x ∈ Rd, let
Λxs (resp. Λ̄xs ) be the distribution of the Lt-diffusion (resp. L̄t-diffusion) process on the
path space Cs := C([s,∞);Rd) starting from x at time s.

For x ∈ Rd and 0 ≤ s0 ≤ s1 < s2 < · · · < sn, let Λxs0,s1,··· ,sn be the marginal distribution
of Λxs0 at the time sequence (s1, · · · , sn), which can be expressed via the Markov property
as below

Λxs0,s1,··· ,sn(dy1,dy2, · · · ,dyn) = Ps0,s1(x,dy1)Ps1,s2(y1,dy2) · · ·Psn−1,sn(yn−1,dyn).

Then, by an inductive argument, together with the Markov property of the associated
Markov process, P̄ ∗s,t � P ∗s,t implies Λ̄xs ≤ Λys (i.e., Λ̄xs (f) ≤ Λys(f) for any f ∈ Ub ∩ Cs).
Therefore, there exists a coupling Px,ys ∈ C(Λ̄xs ,Λys) such that

Px,ys
(
(ξ, η) ∈ Cs × Cs : η � ξ

)
= 1. (3.4)

Let (Ω,F ,P) = (Cs × Cs,B(Cs × Cs),Px,ys ) with the natural filtration (Ft)t≥s induced by
the coordinate process (ξt, ηt)t≥s solving{

dξt = b(t, ξt)dt+ σ(t, ξt)dB1
t , ξs = y

dηt = b̄(t, ηt)dt+ σ̄(t, ηt)dB2
t , ηs = x

(3.5)

for some d-dimensional Brownian motions (B1
t )t≥s and (B2

t )t≥s, and some measurable
mappings σ, σ̄ : [s,∞)×Rd → Rd⊗Rd with a = σσ∗, ā = σ̄ σ̄∗. Then, from (3.4), we have
ξt ≥ ηt, Px,ys -a.s., for all t ≥ s.

Let x ≤ y with xi = yi. Since ξt ≥ ηt, Px,ys -a.s., and (ξs)i = (ηs)i due to xi = yi, we
derive from (3.5) that∫ t

s

(
bi(r, ξr)− b̄i(r, ηr)

)
dr ≥

∫ t

s

〈
σ̄i·(r, ξr),dB

2
r

〉
−
∫ t

s

〈
σi·(r, ξr),dB

1
r

〉
,

where σi· means the i-th row of σ. Taking conditional expectation Px,ys0 (·|Fs0) on both
sides yields ∫ t

s

E
((
bi(r, ξr)− b̄i(r, ηr)

)
|Fs
)
dr ≥ 0, t ≥ s.
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This implies the assertion (1) by taking the continuity of bi, b̄i and (ξ·, η·) into account.
Let x ≤ y with (xi, xj) = (yi, yj). Then, by using ξt ≥ ηt,Px,ys0 -a.s., again, we have∫ t

s0

bk(s, ξs)ds+

∫ t

s0

〈
σk·(s, ξs),dB

1
s

〉
≥
∫ t

s0

b̄k(s, ηs)ds+

∫ t

s0

〈
σ̄k·(s, ηs),dB

2
s

〉
, k = i, j. (3.6)

Note that as t ↓ s0,

1√
t− s0

(∫ t

s0

〈
σi·(s, ξs),dB

1
s

〉
,

∫ t

s0

〈
σj·(s, ξs),dB

1
s

〉)−−−−→
weakly N

(
0,

(
aii(s, y) aij(s, y)

aji(s, y) ajj(s, y)

))
=:µ,

1√
t− s0

(∫ t

s0

〈
σ̄i·(s, ξs),dB

2
s

〉
,

∫ t

s0

〈
σ̄j·(s, ξs),dB

1
s

〉)−−−−→
weakly N

(
0,

(
āii(s, y) āij(s, y)

āji(s, y) ājj(s, y)

))
=: µ̄.

Then (3.6) implies µ̄ � µ. Similarly, µ � µ̄. Therefore, we have µ = µ̄ so that a = ā. For
the assertion that aij depends only on xi and xj of (2), it can be proven by following
exactly the arguments of [3, Lemmas 2.1 & Lemma 2.3].

(b) Following exactly the arguments of [3, Lemma 2.4, 2.5 & Theorem 1.3] with
replacing time homogeneous semi-group Pt by time inhomogeneous semi-group Ps,t, we
prove the sufficiency by the following Theorem 3.3 on the monotonicity.

Theorem 3.3. P ∗s,t is monotone, i.e., P ∗s,tµ � P ∗s,tν with µ � ν for t ≥ s ≥ 0, provided the
following two conditions hold:

(1′) bi(s, ·) is smooth, bi(s, x) ≤ bi(s, y) with x ≤ y and xi = yi;
(2′) aij(s, ·) is smooth, aij(s, x) depends only on xi and xj .

Proof. As in [3], by an approximation argument we assume that (a, b) ∈ C∞b ([0, T ]×Rd)
for any T > 0. To prove Ps,tf ∈ Ub for t ≥ s and f ∈ Ub, it suffices to show

∇Ps,tf(x) ≥ 0, t ≥ s, f ∈ Ub ∩ C∞b (Rd)

since Ub ∩ C∞b (Rd) is dense in Ub. Below, we assume f ∈ Ub ∩ C∞b (Rd). Let us,t =

Ps,tf, t ≥ s. Then by (3.3), we have

∂tus,t = Ltus,t, t ≥ s, us,s = f.

Taking the partial derivative w.r.t. the k-th component (i.e., ∂k) on both sides yields

∂t(∂kus,t) = ∂k∂tus,t = Lkt (∂kus,t) +
d∑
j=1

αkj(t, ·)∂jus,t, (3.7)

where Lkt := Lt +
∑d
j=1

[
(1 − δjk

2 )∂kajk(t, ·)
]
∂j + ∂kbk(t, ·), αkj(t, ·) := (∂kbj(t, ·))I{k 6=j}.

Since Lkt is a time-inhomogeneous Schrödinger operator, it generates a positivity-
preserving semigroup

(
T ks,t
)
t≥s. So, the operator L̃t :=

(
Lkt
)

1≤k≤d defined on C2
(
Rd;Rd

)
by L̃tV :=

(
Lkt Vk

)
1≤k≤d generates a positivity preserving semigroup Ts,t :=

(
T ks,t
)

1≤k≤d,

t ≥ s. Let Dr =
(
αkj(r, ·)1≤k,j≤d

)
and Vs,t = ∇Ps,tf = ∇us,t. Then (3.7) implies

∂tVs,t = L̃tVs,t +DtVs,t, t ≥ s, Vs,s = ∇f.

This, together with Duhamel’s formula, gives

Vs,t = Ts,tVs,s +

∫ t

s

Tr,tDrVs,rdr, t ≥ s.

Since Vs,s = ∇f ≥ 0 and Ts,t, Dr are positivity preserving, this implies Vs,t = ∇Ps,tf ≥
0.

Proof of Theorem 3.2. Theorem 3.2 can be proved using the same arguments in [5,
Proposition 4.1] by combining Theorem 3.1 and 3.3. So, we omit the details to save
space.
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4 Proofs of Theorems 2.1-2.5

Proof of Theorem 2.1. Since P̄ ∗s,tν and P ∗s,tµ are marginal distributions at time t of Λ̄sν

and Λsµ, P̄ ∗s,t � P ∗s,t for t ≥ s follows from Λ̄s � Λs. Therefore, to obtain the desired
assertion, it is sufficient to show Λ̄sν � Λsµ. Below, we set µ, ν ∈ P2 with ν � µ. For any
T > s, set

Pν,µs,T :=
{

(µ(1), µ(2)) ∈ C([s, T ];P2 × P2) : µ
(1)
t � µ

(2)
t , t ∈ [s, T ], µ(1)

s = ν, µ(2)
s = µ

}
,

which is a complete metric space under the metric for λ > 0,

ρλ
(
(µ(1), µ(2)), (µ̃(1), µ̃(2))

)
:= sup

t∈[s,T ]

e−λt
{
W2(µ

(1)
t , µ̃

(1)
t ) +W2(µ

(2)
t , µ̃

(2)
t )
}
.

For any (µ(1), µ(2)) ∈ Pν,µs,T , consider the following time-dependent SDEs:{
dX(1),µ(1)

t = b̄(t,X
(1),µ(1)

t , µ
(1)
t )dt+ σ̄(t,X

(1),µ(1)

t , µ
(1)
t )dWt t ≥ s, X

(1),µ(1)

s = ξ ∼ ν,
dX(2),µ(2)

t = b(t,X
(2),µ(2)

t , µ
(2)
t )dt+ σ(t,X

(2),µ(2)

t , µ
(2)
t )dWt t ≥ s, X

(2),µ(2)

s = η ∼ µ,
(4.1)

where σ =
√

2a and σ̄ =
√

2ā, and ξ ∼ ν means Lξ = ν. Define the mapping on Pν,µs,T by

H
(
(µ(1), µ(2))

)
(t) =

(
L
X

(1),µ(1)

t

,L
X

(2),µ(2)

t

)
, t ≥ s. (4.2)

Since µ
(1)
t � µ

(2)
t , by Theorem 3.1 the conditions in Theorem 2.1 imply L

X
(1),µ(1)

[s,T ]

�

L
X

(2),µ(2)

[s,T ]

, so that H : Pν,µs,T → P
ν,µ
s,T . By Itô’s formula and the assumption (A), it is easy

to see that H is contractive under the metric ρλ for large enough λ > 0, so that it has a
unique fixed point and hence the proof is finished.

Proof of Theorem 2.2. Let s ≥ 0 and ν � µ with νi = µi. By Λ̄s � Λs, we have Λ̄sν � Λsµ.
According to [8, Theorem 5], there exists Ps ∈ C(Λ̄sν,Λsµ) such that

Ps
(
{(ξ, η) ∈ Cs × Cs : ξt ≥ ηt, t ≥ s}

)
= 1. (4.3)

Since Λ̄sν and Λsµ are solutions to the martingale problems associated with the operators
L̄ and L in (1.1), respectively, according to the superposition principle (see [12]), we
have L(ξ,η) = Ps, where (ξt, ηt) solves{

dξt = b̄(t, ηt,Lηt)dt+ σ̄(t, ηt,Lηt)dB1
t , t ≥ s,

dηt = b(t, ξt,Lξt)dt+ σ(t, ξt,Lξt)dB2
t , t ≥ s,

(4.4)

for some 2d-dimensional Brownian motions (B1
t , B

2
t )t≥s on the probability space (Cs ×

Cs,B(Cs × Cs), {Ft}t≥s,Ps), where {Ft}t≥s is induced by (ξt, ηt)t≥s.
Since L(ξ,η) = Ps satisfying (4.3), we have ξt ≥ ηt for all t ≥ s. Moreover, note that

L(ξs,ηs) ∈ C(ν, µ) and νi = µi imply ξis = ηis. Thus, we find Ps-a.s.∫ t

s

b̄i(r, ξr, µ
(1)
r )dr+

∫ t

s

σ̄i·(r, ξr, µ
(1)
r )dB1

t ≤
∫ t

s

bi(r, ηr, µ
(2)
r )+

∫ t

s

σi·(r, ηr, µ
(2)
r )dB1

t , t ≥ s.
(4.5)

Taking conditional expectation with respect to Fs, we drive∫ t

s

E
(
b̄i(r, ξr, µ

(1)
r )|Fs

)
dr ≤

∫ t

s

E
(
bi(r, ηr, µ

(2)
r )|Fs

)
dr, t ≥ s.
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By the continuity of b̄ and b and µ(1)
r → ν, µ

(2)
r → µ weakly as r ↓ s, we obtain

b̄i(s, ξs, ν) ≤ b̄i(s, ηs, ν), t ≥ s, Ps − a.s.

Consequently, letting π := L(ξs,ηs) ∈ C(ν, µ), we have π
(
{x ≤ y}

)
= 1 and

b̄i(s, x, ν) ≤ bi(s, y, µ), (x, y) ∈ suppπ.

Thus, the first assertion of (i) holds true. Hence, for ν = µ, π({x ≤ y}) = 1 implies
x = y, π − a.s. Whence, we have

b̄i(s, x, µ) ≤ bi(s, x, µ), x ∈ suppµ.

In general, for any x ∈ Rd, let µε = (1− ε)µ+ εδx. It is easy to see that x ∈ suppµε. Thus
applying (4) with µε replaced by µ yields

b̄i(s, x, µε) ≤ bi(s, x, µε), s ≥ 0, ε > 0.

Consequently, the second assertion in (i) follows by taking ε ↓ 0.
Below we assume ν � µ with νij = µij so that νi = µi, νj = µj . Thus, we deduce

from (4.5) that for any ε ∈ [0, 1],∫ t

s

[
εb̄i(r, ξr, µ

(1)
r ) + (1− ε)b̄j(r, ξr, µ(1)

r )
]
dr+

∫ t

s

[
εσ̄i·(r, ξr, µ

(1)
r ) + (1− ε)σ̄j·(r, ξr, µ(1)

r )
]
dB1

r

≤
∫ t

s

[
εb̄i(r, ηr, µ

(2)
r ) + (1− ε)b̄j(r, ηr, µ(2)

r )
]
dr

+

∫ t

s

[
εσ̄i·(r, ηr, µ

(2)
r ) + (1− ε)σ̄j·(r, ηr, µ(2)

r )
]
dB2

r

Dividing both side by 1√
t−s and letting t ↓ s, we find

N
(
0, ε2āii(s, ξs, ν) + 2ε(1− ε)āij(s, ξs, ν) + (1− ε)2ājj(s, ξs, ν)

)
≤ N

(
0, ε2aii(s, ηs, µ) + 2ε(1− ε)aij(s, ηs, µ) + (1− ε)2ajj(s, ηs, µ)

)
.

By the symmetry of centred normal distribution, this further implies

ε2āii(s, ξs, ν) + 2ε(1− ε)āij(s, ξs, ν) + (1− ε)2ājj(s, ξs, ν)

= ε2aii(s, ηs, µ) + 2ε(1− ε)aij(s, ηs, µ) + (1− ε)2ajj(s, ηs, µ), ε ∈ [0, 1].

Consequently, dividing by ε2 on both sides yields

āij(s, ξs, ν) = aij(s, ηs, µ), Ps − a.s., (4.6)

which gives for π = L(ξs,ηs) ∈ C(ν, µ),

āij(s, x, ν) = aij(s, y, µ), (x, y) ∈ suppπ, s ≥ 0.

Thus, by the approximation trick above, we can obtain the second assertion in (ii).

Proof of Theorem 2.3. Due to P̄ ∗s,t � P ∗s,t, we have LX̄s,t = P̄ ∗s,tν � P ∗s,tµ = LXs,t for
ν � µ. Therefore, in particular for f(x) = xi ∈ U , we obtain

E(X̄s,t)i ≤ E(Xs,t)i.

Since νi(f) = µi(f), we then deduce from (4.4) with ξt and ηt replaced by Xs,t and X̄s,t

in (4.1) that ∫ t

s

E(b̄i(s, X̄s,r,LX̄s,r ))dr ≤
∫ t

s

E(bi(s,Xs,r,LXs,r ))dr.
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Dividing by t− s on both side followed by t ↓ s, we get (i).
Since P̄ ∗s,tµ ≤ P ∗s,tµ, for f ∈ Ub ∩ C∞b (Rd), we have µ(L̄s,µf) ≤ µ(Ls,µf). In particular,

taking µ = δx yields L̄s,δxf(x) ≤ Ls,δxf(x). With this at hand, we can get the assertion
(ii) by following exactly the argument of [3, Lemma 3.4].

To prove Theorems 2.4 and 2.5, we first present some lemmas.

Lemma 4.1. Let µ = 1
2 (µ(1) + µ(2)), where µ(1), µ(2) ∈ P+ such that µ(1) � µ(2). Then,

µ ∈ P+.

Proof. Let f, g ∈ Ub. By µ(1) � µ(2), we have
(
µ(1)(f) − µ(2)(f)

)(
µ(1)(g) − µ(2)(g)

)
≥ 0.

That is,

2
(
µ(1)(f)µ(1)(g) + µ(2)(f)µ(2)(g)

)
≥
(
µ(1)(f) + µ(2)(f)

)(
µ(1)(g) + µ(2)(g)

)
.

Combining this with µ(i)(fg) ≥ µ(i)(f)µ(i)(g) due to µ(i) ∈ P+ for i = 1, 2, we obtain

µ(fg) =
1

2

(
µ(1)(fg) + µ(2)(fg)

)
≥ 1

4

(
µ(1)(f) + µ(2)(f)

)(
µ(1)(g) + µ(2)(g)

)
= µ(f)µ(g).

Lemma 4.2. Suppose that (P ∗s,t)t≥s preserves positive correlations and let µ be in
Lemma 4.1. Then, for f, g ∈ Ub ∩ C∞b (Rd) with µ(fg) = µ(f)µ(g), we have

2
(
µ(1)(Ls,µ(fg)) + µ(2)(Ls,µ(fg))

)
≥
(
µ(1)(Ls,µ(f)) + µ(2)(Ls,µ(f))

)(
µ(1)(g) + µ(2)(g)

)
+
(
µ(1)(Ls,µ(g)) + µ(2)(Ls,µ(g))

)(
µ(1)(f) + µ(2)(f)

)
.

(4.7)

2
(
µ(1)(Γ1(f, g)) + µ(2)(Γ1(f, g))

)
≥
(
µ(2)(Ls,µ(g))− µ(1)(Ls,µ(g))

)(
µ(1)(f)− µ(2)(f)

)
+
(
µ(2)(Ls,µ(f)) + µ(1)(Ls,µ(f))

)(
µ(1)(g)− µ(2)(g)

)
,

(4.8)

where Γ1(f, g) := Ls,µ(fg)− fLs,µg − gLs,µf = 〈a(t, ·, µ)∇f,∇g〉.

Proof. By a direct calculation, we see that (4.7) is equivalent to (4.8). So, it suffices
to prove (4.7). From Lemma 4.1, we have µ ∈ P+. Since (P ∗s,t)t≥s preserves positive
correlations, we have

(P ∗s,tµ)(fg) ≥ (P ∗s,tµ)(f)(P ∗s,tµ)(g), t ≥ s, f, g ∈ Ub ∩ C∞b (Rd).

This, together with µ = 1
2 (µ(1) + µ(2)), yields

2
(
(P ∗s,tµ

(1))(fg)+(P ∗s,tµ
(2))(fg)

)
≥
(
(P ∗s,tµ

(1))(f)+(P ∗s,tµ
(2))(f)

)(
(P ∗s,tµ

(1))(g)+(P ∗s,tµ
(2))(g)

)
.

Combining this with µ(fg) = µ(f)µ(g) we derive

2

t− s
(
(P ∗s,tµ

(1))(fg) + (P ∗s,tµ
(2))(fg)− (µ(1))(fg) + (µ(2))(fg)

)
≥ 1

t− s
{(

(P ∗s,tµ
(1))(f) + (P ∗s,tµ

(2))(f)
)(

(P ∗s,tµ
(1))(g) + (P ∗s,tµ

(2))(g)
)

−
(
µ(1)(f) + µ(2)(f)

)(
µ(1)(g) + µ(2)(g)

)}
.

Consequently, the assertion (4.7) follows by taking t ↓ s.

Lemma 4.3. If (P ∗s,t)t≥s preserves positive correlation, then aij(s, x, δx) ≥ 0 for any
s ≥ 0, x ∈ Rd.
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Proof. By Lemma 4.2 with µ(1) = µ(2) = δx, for any f, g ∈ Ub ∩ C∞b (Rd),

Ls,δx(fg)(x) ≥ {fLs,δxg + gLs,δxf}(x), s ≥ 0.

By choosing f, g ∈ Ub ∩ C∞b (Rd) such that f(z) = zi − xi and g(z) = zj − xj holds in a
neighbourhood of x, we obtain aij(t, x, δxu) ≥ 0.

Lemma 4.4. Let µ(1) := µ
(1)
i × µ

(1)
{i}c and µ(2) := µ

(2)
i × µ

(2)
{i}c with µ(1)

i = µ
(2)
i , where µ(1)

i ,

µ
(2)
i , µ(1)

{i}c , µ
(2)
{i}c ∈ P+. If (P ∗s,t)t≥s preserves positive correlation, then µ(1)(bi(t, ·, µ(1))) ≤

µ(2)(bi(t, ·, µ(2))).

Proof. Since µ(1)
i , µ(2)

i , µ(1)
{i}c , µ

(2)
{i}c ∈ P+, we deduce µ(1), µ(2) ∈ P+. For given i and k 6= i,

take f, g ∈ Ub ∩ C∞b (Rd) such that in a neighbourhood of x,

f(z) = zi −
∫
R

rµ
(1)
i (dr), g(z) =

h(zk)
1+h(zk) − µ

(1)( h
1+h )

µ(2)( h
1+h )− µ(1)( h

1+h )
,

where h ∈ C∞(R;R+) is an increasing function. Since µ(fg) = µ(f) = 0 and µ =

(µ(1) + µ(2))/2, Lemma 4.2 with the above defined f and g implies µ(1)
(
bi(t, ·, µ(1))

)
≤

µ(2)
(
bi(t, ·, µ(2)

)
.

Proof of Theorem 2.4. Since P̄ ∗s,tµ is the marginal distributions of Λsµ at time t, Λs ∈ P+

implies P ∗s,t ∈ P+ for t ≥ s. So, it suffices to prove Λs ∈ Ps+. We only need to prove
that for any µ0 ∈ P+ and T > s ≥ 0, the marginal distribution Λs,Tµ0 of Λsµ0 on
Cs,T := C([s, T ];Rd) satisfies

(Λs,Tµ0)(FG) ≥ (Λs,Tµ0)(F )Λs,T (G) (4.9)

for any bounded increasing functions F,G on Cs,T . To achieve this, let

D+ =
{
ν ∈ C([s, T ];P2(Rd)) : νs = µ0, νt ∈ P+, t ∈ [s, T ]

}
,

which is a Polish space under the metric for λ > 0 :

W2,λ(µ, ν) := sup
t∈[s,T ]

(e−λtW2(µt, νt)). (4.10)

For ν ∈ D+ and bνt (x) := bt(x, νt), σ
ν
t (x) :=

√
2at(x, νt), consider the time-dependent SDE

dXν
t = bνt (Xν

t )dt+ σνt (Xν
t )dWt, t ∈ [s, T ], Xν

s = Xs ∼ µ0, (4.11)

By µ0 ∈ P+ and conditions (1)-(2), Theorem 3.2 implies

D+ 3 ν 7→ Φ(ν) ∈ D+; (Φ(ν))t := LXνt , t ∈ [s, T ].

By Itô’s formula and (1.3), it is easy to see that Φ is contractive under the complete
metric

W2,λ(ν1ν2) := sup
t∈[s,T ]

(
e−λtW2

(
ν1
t , ν

2
t

))
on D+, so that it has a unique fixed point ν ∈ D+. Thus, Λs,Tµ0 := L(Xνt )t∈[s,T ]

with
νt = LXνt ∈ P+, t ∈ [s, T ]. Therefore, by applying Theorem 3.2 to the diffusion process
generated by Lt with coefficients (bν , aν), we conclude that the present conditions (1)
and (2) imply (4.9) as desired.
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Proof of Theorem 2.5. Consider the decoupled SDE

dXx,µ
s,t = b(t,Xx,µ

s,t , P
∗
s,tµ)dt+ σ(t,Xx,µ

s,t , P
∗
s,tµ)dWt, t ≥ s, Xx,µ

s,s = x, (4.12)

where P ∗s,tµ is the marginal distribution of Λs at the time t. For x ∈ Rd, let Λx,µs = LXx,µ
[s,∞)

.

Then for any ν ∈ P, Λν,µs :=
∫
Rd

Λx,µs ν(dx) is the law of Xν,µ
[s,∞) with initial distribution ν.

Noting that Λµs = Λµ,µs = LXµ
[s,∞)

, by Λµs ∈ Ps+ we obtain

Λµs (FG) ≥ Λµs (F )Λµs (G), F,G ∈ U(Cs), µ ∈ P+. (4.13)

For γ ∈ Cs, let F (γ) = f(γs) with 0 ≤ f ∈ U(Rd). Then (4.13) becomes

Λν,µs (G) ≥ Λµ,µs (G), G ∈ U(Cs),

where ν(dx) := f(x)µ(dx)
µ(f) . That is, Λν,µs ≥ Λµ,µs . Then there exit πs ∈ C(Λν,µs ,Λµ,µs ) and

Brownian motions B1
t and B2

t on (Ω,Ft,P) := (Cs, σ(γr : r ∈ [s, t]), πs) such that{
dξt = b(t, ξt, P

∗
s,tµ)dt+ σ(t, ξt, P

∗
s,tµ)dB1

t , Lξs = ν, t ≥ s
dηt = b(t, ηt, P

∗
s,tµ)dt+ σ(t, ηt, P

∗
s,tµ)dB2

t , Lηs = µ, t ≥ s.
(4.14)

satisfy πs(ξ ≥ η) = 1.

For any increasing 0 ≤ f ∈ Ub, which does not depend on xi, xj , we have ν := fdµ
µ(f)

with µ = µ{ij} × µ{ij}c such that νij = µij . Thus, ξis = ηis, ξ
j
s = ηjs. So,

ξkt − ηkt =

∫ t

s

(
bk(r, ξr, P

∗
s,rµ)− bk(r, ηr, P

∗
s,rµ)

)
dr

+

∫ t

s

〈
σk·(r, ηr, P

∗
s,rµ),dB1

t

〉
−
∫ t

s

〈
σk·(r, ηr, P

∗
s,rµ),dB2

t

〉
≥ 0, k = i, j.

(4.15)

Thus, by following the argument to derive (4.6), we have

aij(s, ξs, µ) = σi·(s, ξs, µ)σi·(s, ξs, µ) = σi·(s, ηs, µ)σj·(s, ηs, µ) = aij(s, ηs, µ).

This, together with ν = fdµ
µ(f) , Lξs = ν and Lηs = µ, leads to∫

f(x)aij(s, x, µ)µ(dx) = µ(f)Eaij(s, ξs, µ)

= µ(f)Eaij(s, ηs, µ) = µ(f)

∫
aij(s, x, µ)µ(dx).

(4.16)

Let g be a function such that µ(fg) = µ(f)µ(g). Then for f(x) = IA(xk : k 6= i, j) with
A ∈ B(R(d−2)), we obtain

Eµ(IAg) =

∫
Rd
IA(x)g(x)µ(dx) = µ(A)µ(g).

Now, by the definition of conditional expectation we get Eµ
(
g|xk : k 6= i, j

)
= µ(g), which

obviously implies that g depends only on xi, xj . Thus, (4.16) yields the first assertion.

Dividing by t − s on both side of (4.15) and taking t → s, we get Ebi(s, ξs, µ) ≥
Ebi(s, ξs, µ). This, together with ν = fdµ

µ(f) , Lξs = ν and Lηs = µ, leads to the second
assertion.
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