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Abstract

We investigate the compact interface property in a recently introduced variant of
the stochastic heat equation that incorporates dormancy, or equivalently seed banks.
There individuals can enter a dormant state during which they are no longer subject
to spatial dispersal and genetic drift. This models a state of low metabolic activity as
found in microbial species. Mathematically, one obtains a memory effect since mass
accumulated by the active population will be retained for all times in the seed bank.
This raises the question whether the introduction of a seed bank into the system leads
to a qualitatively different behaviour of a possible interface. Here, we aim to show
that nevertheless in the stochastic heat equation with seed bank compact interfaces
are retained through all times in both the active and dormant population. We use
duality and a comparison argument with partial functional differential equations to
tackle technical difficulties that emerge due to the lack of the martingale property of
our solutions which was crucial in the classical non seed bank case.
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1 Introduction and main result

One of the simplest spatial models for the evolution of the frequency of a bi-allelic
population under the influence of random genetic drift is given by

∂tu(t, x) =
∆

2
u(t, x) +

√
u(t, x)(1− u(t, x))Ẇ (t, x), (1.1)

where W = (W (t, x))t≥0,x∈R is a Gaussian white noise process. This equation is called
the stochastic heat equation with Wright-Fisher noise introduced by Shiga in [16]. Here,
u(t, x) models the frequency of one of the two types at space time point (t, x) ∈ [0,∞[×R.
Heuristically, one can interpret the model as individuals migrating among a continuum
of colonies in a diffusive way. Moreover, reproduction is subject to random genetic drift
with variance u(t, x)(1− u(t, x)).

This model has been studied extensively in the past (see e.g. [12] and [19]). Re-
markably, it turns out that the so called compact interface property distinguishes the
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The compact interface property

stochastic model from the deterministic heat equation. More precisely, define for a
function f : R→ R with 0 ≤ f(x) ≤ 1 for all x ∈ R, f(x)→ 1 as x→ −∞ and f(x)→ 0 as
x→∞ the left and right edge as follows:

L(f) = inf{x ∈ R| f(x) < 1},
R(f) = sup{x ∈ R| f(x) > 0}.

We then say that Equation (1.1) exhibits the compact interface property if for some initial
condition 0 ≤ u(0, ·) ≤ 1 with L(u(0, ·)) > −∞ and R(u(0, ·)) <∞ it follows that

L(u(t, ·)) > −∞,
R(u(t, ·)) <∞

for all t > 0 almost surely. For Equation (1.1) this was shown in [19]. However, the
property has also been studied in the context of super Brownian motion (cf. [10]) and
more general equations such as the symbiotic branching model (see [17]). In contrast,
for a solution ũ of the deterministic heat equation with the same initial condition u(0, ·)
we have

L(ũ(t, ·)) = −∞, R(ũ(t, ·)) =∞.

Biologically, this can be interpreted as a finite zone to which the entire interaction
between the two types is confined to.

Recently, in the context of microbial species, an additional evolutionary mechanism
in the form of dormancy, or equivalently seed banks, has raised considerable attention
in population genetics (see e.g. [11], [18]). Mathematically, this mechanism has been
incorporated into the classical (non-spatial) Wright Fisher model and investigated in [2]
and [3]. There, dormancy and resuscitation are modeled in the form of classical migration
between an active and an inactive state. Corresponding discrete-space population
genetic models have also very recently been introduced in [9].

For the case of a continuous spatial structure, the following system of SPDEs was
established in [5] to allow individuals to retreat into a seed bank, where spatial dispersal
and random genetic drift are absent:

∂tu(t, x) =
∆

2
u(t, x) + c(v(t, x)− u(t, x)) +

√
u(t, x)(1− u(t, x))Ẇ (t, x),

∂tv(t, x) = c′(u(t, x)− v(t, x)). (1.2)

Here, c, c′ > 0 are the seed bank migration rates. This equation admits unique in law
weak solutions when started from Heaviside initial conditions and satisfies a moment
duality to a system of “on/off” coalescing Brownian motions. This object is a coalescing
Brownian motion where spatial movement and coalescence can be switched on and off
at rates c′ and c, respectively.

Moreover, note that the following reformulation of Equation (1.2) as a stochastic
partial delay differential equation is crucial in both proofs and heuristic considerations:

∂tu(t, x) =
∆

2
u(t, x) + c

(
e−c

′tv(0, x) + c′
∫ t

0

e−c
′(t−s)u(s, x) ds− u(t, x)

)
+
√
u(t, x)(1− u(t, x))Ẇ (t, x),

v(t, x) = e−c
′tv(0, x) + c′

∫ t

0

e−c
′(t−s)u(s, x) ds. (1.3)

We now investigate whether in this seed bank model the compact interface property
still holds. Note that from the Delay Equation (1.3) it immediately follows that the
interface of the dormant component v is increasing in time. One may think of this
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as a memory effect introduced by the seed bank since mass the active population u

accumulated is retained through all times. This is in stark contrast to the classical
non seed bank case where the interface can shrink and move freely in space and time.
Similarly, this memory effect leads to an upwards drift for the active component u, albeit
the situation is less clear compared to the dormant population due to the presence of
the noise. Intuitively, this would then suggest that the interface becomes larger after the
introduction of a seed bank – raising the question whether it becomes too large to retain
its compactness.

In this paper, we show that this is indeed not the case and the compact interface
property holds at all times, almost surely. As a byproduct we will also provide on/off
versions of well-known statements such as the Feynman-Kac formula.

For the proof of the main result we use a comparison argument with determinis-
tic differential equations originating from the theory of super Brownian motion as in
[19], [7] and [8]. Note however that their arguments rely heavily on the fact that the
corresponding SPDE solutions are martingales. This is not true in our case due to the
presence of the seed bank drift term. For the stochastic F-KPP Equation this was tackled
in [13] by using the Girsanov theorem for SPDEs. Since the seed bank drift term does
not satisfy the prerequisites of said theorem, we resort to duality and comparison with
a partial functional differential equation instead of a classical PDE to overcome these
difficulties.

The following theorem is the main result of this paper:

Theorem 1.1. Let u0 = v0 = 1]−∞,0] and (u, v) be the solution of Equation (1.2) with
c, c′ > 0 corresponding to these initial conditions. Then, almost surely, we have

L(u(t, ·)) > −∞, L(v(t, ·)) > −∞,
R(u(t, ·)) <∞, R(v(t, ·)) <∞,

for all t ≥ 0.

The result of this paper seems to open up some interesting and challenging lines of
further research.

For example, in [4] and [19] it was shown that the interface of the classical stochastic
heat equation and the symbiotic branching model have non-trivial scaling limits. This
raises the question whether this remains true for the stochastic heat equation with seed
bank and how the limit compares to the previous ones. However, we would like to point
out that showing tightness for Equation (1.2) – even in a weaker topology like the Meyer
Zheng topology – seems to be more challenging than in the previous cases due to the
lack of the martingale property for the solutions.

Moreover, it seems to be natural to investigate the extension of the main result to
the stochastic F-KPP Equation with seed bank. This would enable more in-depth study
of the“right marker speed” limt→∞R(u(t, ·))/t which was shown to exist and be strictly
positive for the classical stochastic F-KPP Equation in [6].

2 The stochastic heat equation with seed bank

We recall some basic results regarding Equation (1.2) from [5]. The proofs and
further additional motivation may be found there as well.

Theorem 2.1. Let u0 = v0 = 1]−∞,0]. Then, there exists a weak solution (u, v) of
Equation (1.2) with u(t, ·) ∈ C(R, [0, 1]) and v(t, ·) ∈ B(R, [0, 1]) for all t > 0, almost
surely. This solution is unique in law and has the following integral representation:

u(t, x) = Gtu0(x) + c

∫ t

0

∫
R

G(t− s, x, y)(v(s, y)− u(s, y)) dxds
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+

∫ t

0

∫
R

G(t− s, x, y)
√
u(s, y)(1− u(s, y))W (dx,ds), (2.1)

v(t, x) = v0(x) + c′
∫ t

0

u(s, x)− v(s, x) dx. (2.2)

Here, G(t, x, y) = 1√
2πt

exp
(
− (x−y)2

2t

)
is the heat kernel for t ≥ 0 and x, y ∈ R and (Gt)t≥0

denotes the heat semigroup given by

Gtf(x) =

∫
R

G(t, x, y)f(y) dx

for f ∈ B(R) and x ∈ R.

As mentioned earlier, this equation is dual to a process which is defined as follows:

Definition 2.2. We denote by M = (Mt)t≥0 an on/off coalescing Brownian motion

taking values in
⋃
k∈N0

(
R× {a,d}

)k
and starting at M0 = ((x1, σ1), · · · , (xn, σn)) ∈(

R× {a,d}
)n

for some n ∈ N. Here, the marker a (resp. d) means that the corresponding
particle is active (resp. dormant). The process evolves according to the following rules:

• Active particles, i.e. particles with the marker a, move in R according to indepen-
dent Brownian motions.

• Pairs of active particles coalesce according to the following mechanism:

– We define for each pair of particles labelled (α, β) their intersection local time
Lα,β = (Lα,βt )t≥0 as the local time of Mα −Mβ at 0 which we assume to only
increase whenever both particles carry the marker a.

– Whenever the intersection local time exceeds the value of an independent
exponential clock with rate 1/2, the two involved particles coalesce into a
single particle.

• Independently, each active particle switches to a dormant state at rate c by switch-
ing its marker from a to d.

• Dormant particles do not move or coalesce.

• Independently, each dormant particle switches to an active state at rate c′ by
switching its marker from d to a.

Moreover, denote by I = (It)t≥0 and J = (Jt)t≥0 the (time dependent) index set of active
and dormant particles of M , respectively, and let Nt be the random number of particles
at time t ≥ 0 so that Mt = (M1

t , · · · ,M
Nt
t ).

Next, we recall a moment duality between the solution to Equation (1.2) and the
previously defined on/off coalescing Brownian motion M = (Mt)t≥0.

Theorem 2.3. Let (u, v) be a solution to the system (1.2) with initial conditions u0, v0 ∈
B(R). Then, we have for any initial state M0 = ((x1, σ1), · · · , (xn, σn)) ∈

(
R× {a,d}

)n
,

n ∈ N and t ≥ 0

E

∏
β∈I0

u(t,Mβ
0 )
∏
γ∈J0

v(t,Mγ
0 )

 = E

∏
β∈It

u0(Mβ
t )
∏
γ∈Jt

v0(Mγ
t )

 .
Finally, we provide a delay representation of the v component in terms of the u

component, which will become useful later on.

Theorem 2.4. Let (u, v) be a solution to the system (1.2) with initial conditions u0, v0 ∈
B(R). Then, we have

v(t, x) = e−c
′tv0(x) + c′e−c

′t

∫ t

0

ec
′su(s, x) ds.
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3 Proof of Theorem 1.1

Proposition 3.1. Let (u, v) be a solution of (1.2) with initial conditions u0 = v0 = 1]−∞,0].
Then, for all t > 1, there exists a map η(t, b) integrable in b on [0,∞) such that

P

(
sup

0≤s≤t
sup

x∈[b,∞[

u(s, x) > 0

)
≤ η(t, b)

for all b ≥ 0.

Remark 3.2. We note that the preceding result and Theorem 1.1 may also be shown
for more general initial conditions u0, v0 satisfying R(u0), R(v0) ≤ 0 with little additional
effort. For simplicity and brevity we focus only on the Heaviside case in what follows.

Proof. The proof follows the general structure of [19, Proposition 3.2] and [13, Lemma
2.6]. Let b > 0 be arbitrary but fixed. We begin by taking some bounded ψ ∈ L2(R)∩C1(R)

such that 0 ≤ ψ ≤ 1 and {x : ψ(x) > 0} = (0,∞). Moreover, define ψb(x) := ψ(x− b) and
the stopping times

τb := inf{t ≥ 0: ∃x ≥ b/2 s.t. u(t, x) ≥ 1/2},
σb := inf{t ≥ 0: 〈u(t, ·), ψb〉 > 0}.

The main idea is to show that, for each t > 0, there exists some map η(t, b) with the
aforementioned properties such that

P(σb ≤ t) ≤ η(t, b).

Then, the statement of the proposition follows immediately.
Next, fix t > 1, λ > 0 and apply Ito’s formula to see that for 0 ≤ s ≤ t

exp

(
−〈u(s, ·), hλ(s, ·)〉 − 〈v(s, ·), kλ(s, ·)〉 − λ

∫ s

0

〈u(r, ·), ψb〉dr
)

= exp
(
−〈u0, h

λ(0, ·)〉 − 〈v0, k
λ(0, ·)〉

)
+

∫ s

0

exp

(
−〈u(s′, ·), hλ(s′, ·)〉 − 〈v(s′, ·), kλ(s′, ·)〉 − λ

∫ s′

0

〈u(r, ·), ψb〉dr

)
×
(
〈u(s′, ·),−∆

2 h
λ(s′, ·)− ∂s′hλ(s′, ·)− λψb〉 − c〈v(s′, ·)− u(s′, ·), hλ(s′, ·)〉

−〈v(s′, ·), ∂s′kλ(s′, ·)〉 − c′〈u(s′, ·)− v(s′, ·), kλ(s′, ·)〉

+
1

2
〈u(s′, ·)(1− u(s′, ·)), (hλ(s′, ·))2〉

)
ds′ +Hs

= exp
(
−〈u0, h

λ(0, ·)〉 − 〈v0, k
λ(0, ·)〉

)
+

∫ s

0

exp

(
−〈u(s′, ·), hλ(s′, ·)〉 − 〈v(s′, ·), kλ(s′, ·)〉 − λ

∫ s′

0

〈u(r, ·), ψb〉dr

)

×
〈
−1

4
u(s′, ·) +

1

2
u(s′, ·)(1− u(s′, ·)), (hλ(s′, ·))2

〉
ds′ +Hs. (3.1)

Here, H is a continuous local martingale and we choose (hλ, kλ) = (hλ(s, ·), kλ(s, ·))0≤s≤t
as the time reversed versions1 of the solution (φλ, ϕλ) = (φλ(s, ·), ϕλ(s, ·))0≤s≤t to the
system of PDEs given by

∂sφ
λ(s, x) =

∆

2
φλ(s, x)− 1

4
(φλ(s, x))2 + c′ϕλ(s, x)− cφλ(s, x) + λψb(x),

1This means that we set hλ(s, x) = φλ(t− s, x) and kλ(s, x) = ϕλ(t− s, x) for (s, x) ∈ [0, t]×R.
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∂sϕ
λ(s, x) = cφλ(s, x)− c′ϕλ(s, x) (3.2)

on [0, t] × R with initial condition φλ(0, ·) = ϕλ(0, ·) ≡ 0. By integration by parts (see
Theorem 2.4), we see that

ϕλ(s, x) = ce−c
′s

∫ s

0

ec
′s′φλ(s′, x) ds′ (3.3)

for any 0 ≤ s ≤ t and x ∈ R. Hence, substituting this into the original equation, we may
interpret Equation (3.2) as a partial functional differential equation with the same initial
condition via

∂sφ
λ(s, x) =

∆

2
φλ(s, x)− 1

4
(φλ(s, x))2

+ c

(
c′
∫ s

0

e−c
′(s−s′)φλ(s′, x) ds′ − φλ(s, x)

)
+ λψb(x). (3.4)

By Lemma 4.6, this equation has a unique positive C1,∞
b ([0, T ] × R) ∩ B([0, T ], L2(R))-

valued solution. Thus, using the square integrability of hλ, the process H = (Hs)0≤s≤t
given by

Hs =

∫ s

0

∫
R

exp

(
−〈u(s′, ·), hλ(s′, ·)〉 − 〈v(s′, ·), kλ(s′, ·)〉 − λ

∫ s′

0

〈u(r, ·), ψb〉dr

)
√
u(s′, y)(1− u(s′, y))hλ(s′, y)W (dy,ds′)

for 0 ≤ s ≤ t is actually a true martingale.
Next, consider the map ξ given by

ξ(s, x) =
α

(x− b)2
1(−∞,b)(x)

for 0 ≤ s ≤ t and α, x ∈ R. Note that the right hand side actually does not depend on s.
Then, ξ satisfies the partial functional differential inequality

∂sξ(s, x) ≥ ∆

2
ξ(s, x)− 1

4
(ξ(s, x))2 + c

(
c′e−c

′s

∫ s

0

ec
′s′ξ(s′, x) ds′ − ξ(s, x)

)
+ λψb(x)

(3.5)

outside the support of ψb on (−∞, b). Indeed, we have for x < b

∂sξ(s, x)− ∆

2
ξ(s, x) +

1

4
ξ2(s, x)− c

(
c′e−c

′s

∫ s

0

ec
′s′ξ(s′, x) ds′ − ξ(s, x)

)
− λψb(x)

=
α(α− 12)

4(x− b)4
− c(1− e−c

′s)
α

(x− b)2
+ c

α

(x− b)2

≥ 0

if α is large enough. By a comparison theorem (e.g. a slight modification of [1,
Theorem 4.II]2) and Equation (3.3), this implies that

hλ(s, x) ≤ α

(x− b)2
, (3.6)

2Note that for each λ > 0 the map hλ is uniformly bounded. Hence, for ε > 0 small enough we will have
ξ(s, x) = α

(x−b)2 ≥ hλ(s, x) on [0, t] × [b − ε, b[. Moreover, since ξ is bounded on [0, t]×] − ∞, b − ε], we

only require the Lipschitz condition on a compact interval. We can thus apply the comparison theorem on
[0, t]×]−∞, b− ε] to get (3.6).
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kλ(s, x) ≤ ce−c
′s

∫ s

0

ec
′s′ α

(x− b)2
ds′

≤ cα

c′(x− b)2
(3.7)

for all s ≤ t, x < b.
Then, on the set {σb < t ∧ τb} we have

〈u(t ∧ τb, ·), hλ(t ∧ τb, ·)〉+ 〈v(t ∧ τb, ·), kλ(t ∧ τb, ·)〉+ λ

∫ t∧τb

0

〈u(r, ·), ψb〉dr →∞

as λ→∞. This implies, since 0 ≤ u ≤ 1
2 holds on [0, τb ∧ t]× [b/2,∞[, that

P(σb ≤ t ∧ τb)

≤ lim
λ→∞

E

1− exp

(
− 〈u(t ∧ τb, ·), hλ(t ∧ τb, ·)〉 − 〈v(t ∧ τb, ·), kλ(t ∧ τb, ·)〉

−λ
∫ t∧τb

0

〈u(s, ·), ψb〉ds

)
≤ 1− E

[
exp

(
−〈u0, h

∞(0, ·)〉 − 〈v0, k
∞(0, ·)〉

)]
+ E

[∫ t∧τb

0

〈
1

4
u(s, ·)1]−∞,b/2[, (h

∞(s, ·))2

〉
ds

]

≤ 〈u0, h
∞(0, ·)〉+ 〈v0, k

∞(0, ·)〉+ E

[∫ t∧τb

0

〈
1

4
u(s, ·)1]−∞,b/2[, (h

∞(s, ·))2

〉
ds

]
.

In the penultimate inequality we used Equation (3.1) and that

1

4
u(r, x)− 1

2
u(r, x)(1− u(r, x)) ≤ 0

on [0, τb ∧ t] × [b/2,∞[. Moreover, we have set h∞ := limλ→∞ hλ and k∞ := limλ→∞ kλ.
To see that these limits exist on ] −∞, b/2] note that hλ is increasing in λ by another
application of a comparison theorem and that hλ is bounded on ]−∞, b/2] by Equation
(3.6). To get an analogous result for k∞ we may use Equation (3.3) and the dominated
convergence theorem. Thus, using (3.6), Lemma 4.5 and (3.3), we see for any b ≥ 4

√
t

and some constant C1(t) > 0 that

P(σb < t ∧ τb)

≤ C1(t)

∫ 0

−∞
exp

(
− (x− b)2

20t

)
dx+

∫ b/2

−∞

α2

(x− b)4
dx


≤ C1(t)

(
exp(−b2/20t) +

8α2

3b3

)
.

For the last inequality we also used the standard Gaussian tail bound

1√
2π

∫ ∞
x

e−y
2/2 dy ≤ e−x

2/2

x
√

2π
(3.8)

for x ≥ 0. Hence, if we now show that for some C(t) > 0

P(τb ≤ t) ≤ C(t) exp

(
−b

2

8t

)
,
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our claim is proven.

For this purpose, using Equation (2.1), we see that

P(τb ≤ t) = P

(
∃x ∈ [b/2,∞[, s ≤ t :

∫ t

0

∫
R

G(t− s, x, y)c(v(s, y)− u(s, y)) dy ds

+Gsu(0, ·)(x) +

∫ t

0

∫
R

G(t− s, x, y)
√

(1− u(s, y))u(s, y)W (ds,dy) ≥ 1

2

)

≤ P
(
∃x ∈ [b/2,∞[, s ≤ t : Gsu(0, ·)(x) +Ns(x) ≥ 1

2

)
.

Here, we set

Nt(x) :=

∫ t

0

∫
R

G(t− s, x, y)c(v(s, y) + u(s, y)) dy ds

+

∫ t

0

∫
R

G(t− s, x, y)
√

(1− u(s, y))u(s, y)W (ds,dy) (3.9)

for x ∈ R, t ≥ 0. Since Gsu(0, ·)(x) = Gs1]−∞,0](x) → 0 as x → ∞, there exists some
b0 ≥ 4

√
t such that we have

1

2
−Gsu(0, ·)(x) ≥ δ

for any 1
2 > δ > 0, b ≥ b0 and x ≥ b/2. Fix δ > 0. Then, by Lemma 4.3 and Gaussian tail

bounds, we have that

P(τb ≤ t) ≤ P(∃x ∈ [b/2,∞[, s ≤ t : Ns(x) ≥ δ)

≤ C(t, δ)

(∫
]−∞,0]

G(t, b/2, z) dz +

∫
[b/2,∞[

∫
]−∞,0]

G(t, x, z) dz dx

)

≤ C(t, δ) exp

(
−b

2

8t

)

for any b large enough and some C(t, δ) > 0 as desired.

Corollary 3.3. In the setting of Proposition 3.1 we have

E

[
sup

0≤s≤t

∣∣R(v(s, ·))
∣∣] ,E[ sup

0≤s≤t

∣∣R(u(s, ·))
∣∣] <∞

and

E

[
sup

0≤s≤t

∣∣L(v(s, ·))
∣∣] ,E[ sup

0≤s≤t

∣∣L(u(s, ·))
∣∣] <∞

for every t > 1. In particular, the statement of Theorem 1.1 holds true.

Proof. For the right edge and b large enough we have by Proposition 3.1 that

P

(
sup

0≤s≤t
R(u(s, ·)) > b

)
≤ η(t, b).
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Now, note that (1− u(t,−x), 1− v(t,−x)) also solves Equation (1.2) with initial condition
(u0, v0). Hence, we obtain

P

(
sup

0≤s≤t
R(1− u(s,−·)) > b

)
= P

(
− inf

0≤s≤t
L(u(s, ·)) > b

)
≤ η(t, b).

Since R(u(s, ·)) ≥ L(u(s, ·)) holds, we get

P

(
sup

0≤s≤t
|R(u(s, ·))| > b

)
≤ η(t, b)

which implies

E

[
sup

0≤s≤t
|R(u(s, ·))|

]
<∞.

By symmetry, we get an analogous result for the left edge.
For the v component we have by the delay representation (see Theorem 2.4) that

v(t, x) = e−c
′tv0(x) +

∫ t

0

c′e−c
′(t−s)u(s, x) ds.

Hence, we have that v(s, x) = 0 for every 0 ≤ s ≤ t and x > sup0≤s≤t |R(u(s, ·))|. This
implies

sup
0≤s≤t

R(v(s, ·)) ≤ sup
0≤s≤t

|R(u(s, ·))|.

Similarly, we have that

inf
0≤s≤t

L(v(s, ·)) ≥ − sup
0≤s≤t

|L(u(s, ·))|.

Combining the preceding two equations, we obtain the desired result for v.

4 Auxiliary results

Here, we provide all the calculations required for the preceding section.
Define for t ≥ 0 and x ∈ R the quantities

Dt(x) := c

∫ t

0

∫
R

G(t− s, x, y)u(s, y) dy ds,

Et(x) := c

∫ t

0

∫
R

G(t− s, x, y)v(s, y) dy ds,

Mt(x) :=

∫ t

0

∫
R

G(t− s, x, y)
√

(1− u(s, y))u(s, y)W (ds,dy).

Note that this implies the relation

Nt(x) = Dt(x) + Et(x) +Mt(x)

for Nt(x) as defined in Equation (3.9), t ≥ 0 and x ∈ R.

Lemma 4.1. In the setting of Proposition 3.1 we have the existence of a constant
C(p) > 0 such that

E
[∣∣Nt(x)−Nt(y)

∣∣2p] ≤ C(p)(t1/2(|x− y| ∧ t1/2)p−1 + t(t1/2|x− y| ∧ t)2p−1)
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×
∫

]−∞,0]

G(t, x, z) +G(t, y, z) dz,

E
[∣∣Nt(x)−Ns(x)

∣∣2p] ≤ C(p)(t1/2|t− s|(p−1)/2
+ t(t|t− s|)(2p−1)/2 + t|t− s|2p−1)

×
∫

]−∞,0]

G(t, x, z) +G(s, x, z) dz

for all p ≥ 1, b > 1, 0 ≤ s ≤ t and x, y ∈ [b/2,∞[.

Remark 4.2. A similar proposition can be found in [19] and [13]. However, the intro-
duction of the seed bank drift term poses technical difficulties which we tackle by using
a duality technique.

Proof. We only verify the first inequality, the second one can be completed in a similar
manner. Note that the following bound on the heat kernel is well-known for all t ≥
0 and x, y ∈ R:∫ t

0

∫
R

(G(t− s, x, z)−G(t− s, y, z))2 dz ds ≤ C(|x− y| ∧ t1/2). (4.1)

By the Burkholder-Davis-Gundy and Hölder inequality, the fact that 0 ≤ u ≤ 1 and
Equation (4.1), we get

E
[∣∣Mt(x)−Mt(y)

∣∣2p]
≤ C(p)E

(∫ t

0

∫
R

(G(t− s, x, z)−G(t− s, y, z))2u(s, z)(1− u(s, z)) dz ds

)p
≤ C(p)(|x− y| ∧ t1/2)p−1E

[∫ t

0

∫
R

(G(t− s, x, z)−G(t− s, y, z))2u(s, z) dz ds

]

≤ C(p)(|x− y| ∧ t1/2)p−1

∫ t

0

(t− s)−1/2

∫
R

(G(t− s, x, z) +G(t− s, y, z))E[u(s, z)] dz ds.

(4.2)

Now, recall that u0 = v0 = 1]−∞,0] and denote by (Bt)t≥0 an on/off and by (B̃t)t≥0 a
standard Brownian motion. Then, we have by Theorem 2.3 that

E[u(s, z)] = P(0,a)(Bs ≥ z)

=

∫ s

0

P(B̃s−r ≥ z) dPJ(r)

=

∫ s

0

∫
]−∞,0]

G(s− r, z, w) dw dPJ(r)

for s ≥ 0, z ∈ R. Here, J denotes the random time during which the on/off Brownian
motion is switched off on [0, s]. Note that this quantity is independent of the movement
of the Brownian motion B̃. Thus, by the semigroup property of the heat kernel and
Equation (4.2), we have

E
[∣∣Mt(x)−Mt(y)

∣∣2p]
≤ C(p)(|x− y| ∧ t1/2)p−1∫ t

0

(t− s)−1/2

∫
]−∞,0]

∫ s

0

(G(t− r, x, w) +G(t− r, y, w)) dPJ(r) dw ds
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≤ C(p)(|x− y| ∧ t1/2)p−1

∫ t

0

(t− s)−1/2

∫
]−∞,0]

∫ s

0

(G(t, x, w) +G(t, y, w)) dPJ(r) dw ds

≤ C(p)(|x− y| ∧ t1/2)p−1t1/2
∫

]−∞,0]

G(t, x, w) +G(t, y, w) dw,

where we also used that x, y ≥ 0 in the penultimate inequality.
Similarly, using Hölder’s inequality, Equation (4.1) and [14, Lemma 5.2] (using β = 1

and λ′ = 0 there), we obtain for some C(p) > 0

E
[∣∣Dt(x)−Dt(y)

∣∣2p]
≤ c2p

(∫ t

0

∫
R

|G(t− s, x, z)−G(t− s, y, z)|dz ds

)2p−1

E

[∫ t

0

∫
R

|G(t− s, x, z)−G(t− s, y, z)|u(s, z)2p dz ds

]

≤ C(p)(t1/2|x− y| ∧ t)2p−1E

[∫ t

0

∫
R

G(t− s, x, z) +G(t− s, y, z)u(s, z) dz ds

]

≤ C(p)(t1/2|x− y| ∧ t)2p−1t

∫
]−∞,0]

G(t, x, z) +G(t, y, z) dz.

The exact same calculation works for Et since the only difference in the duality relation
is that we start the on/off Brownian motion in the dormant state.

This enables us to obtain a bound on the size of N .

Lemma 4.3. In the setting of Proposition 3.1 we have the existence of some constant
C > 0 such that

P
(∣∣Ns(x)

∣∣ ≥ ε for some x ∈]b/2,∞[, s ∈ [0, t]
)

≤ Cε−18t29

(∫
]−∞,0]

G(t, b/2, z) dz +

∫
[b/2,∞[

∫
]−∞,0]

G(t, x, z) dz dx

)

for all t > 1, b > 2 and 1 ≥ ε > 0.

Proof. The proof is the exact same as [19, Lemma 3.1], i.e. one replaces the interval
]A,∞[ by ]b/2,∞[ and the bounds from the first half of his lemma by our bounds from
Lemma 4.1.

Lemma 4.4 (On/off Feynman-Kac). Let (φλ, ϕλ) be the solution to the PDE (3.2) and
t ≥ 0. Denote by B = (Br)r≥0 an on/off Brownian motion starting in an active state and
I ⊆ [0, t] the union of random time intervals in which the Brownian path is active. Then,
we have the stochastic representation

φλ(s, x) = E(x,a)

[∫
I∩[0,s]

λψb(Br)e
−

∫
I∩[0,r]

φλ(s−u,Bu) du dr

]

for all 0 ≤ s ≤ t and x ∈ R.

Proof. Set J = [0, t] \ I and consider for s ∈ [0, t] the quantity

M̂s = Esφ
λ(t− s,Bs)1I(s) + Esϕ

λ(t− s,Bs)1J(s),
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where

Es := exp

(
−1

4

∫
[0,s]∩I

φλ(t− r,Br) dr

)
.

Then, by applying the Ito formula on the random time intervals between jumps and
adding and subtracting the compensator of the jumps, we see

M̂s = M̂0 +

∫
[0,s]∩I

(
∆

2
φλ(t− r,Br) + φ̇λ(t− r,Br)−

1

4
φλ(t− r,Br)2

)
Er dr

+ c

∫
I∩[0,s]

(ϕλ(t− r,Br)− φλ(t− r,Br))Er dr

+ c′
∫
J∩[0,s]

(φλ(t− r,Br)− ϕλ(t− r,Br))Er dr

+

∫
J∩[0,s]

ϕ̇λ(t− r,Br)Er dr + M̃s

for s ≥ 0 and some local martingale M̃ = (M̃s)0≤s≤t. Since φλ and ϕλ are bounded and
solve the system (3.2), we see that

E(x,a)[M̂s] = E(x,a)[M̂0]− E(x,a)

[∫
[0,s]∩I

λψb(Br)Er dr

]
.

In particular, for s = t we see that

0 = E(x,a)[M̂t] = φλ(t, x)− E(x,a)

[∫
[0,t]∩I

λψb(Br)Er dr

]
since we start in an active state. This gives the desired result.

Lemma 4.5. Let (φλ, ϕλ) be the solution to the PDE (3.2) and t ≥ 0. Then, we have the
existence of a constant K > 0 such that

φλ(s, x) ≤ K

t
exp

(
− (b− x)2

20t

)

for all s ≤ t, b ≥ 4
√
t, x < b− 2

√
t and λ > 0.

Proof. This lemma is the on/off version of [7, Lemma 3.5]. Set for x < b and r ∈ (x, b)

τ := inf{t ≥ 0|Bt ≥ r},

where B = (Bt)t≥0 denotes an on/off Brownian motion started in x. Using the strong
Markov property, that the support of ψb is ]b,∞[ and Lemma 4.4, we obtain

φλ(s, x)

= E(x,a)

[∫
[0,s]∩I

λψb(Br)Er dr

]

= E(x,a)

[∫
[0,s]∩I

λψb(Br)Er dr1{τ≥s}

]
+ E(x,a)

[∫
[0,s]∩I

λψb(Br)Er dr1{τ≤s}

]

= E(x,a)

[∫
[τ,s]∩I

λψb(Br)Er dr1{τ≤s}

]
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= E(x,a)

1{τ≤s} exp

(
−
∫

[0,τ ]∩I
φλ(s− u,Bu) du

)

× E

∫
[τ,s]∩I

λψb(Br) exp

(
−
∫

[τ,r]∩I
φλ(s− u,Bu) du

)
dr

∣∣∣∣∣Fτ



= E(x,a)

1{τ≤s} exp

(
−
∫

[0,τ ]∩I
φλ(s− u,Bu) du

)

× E

∫
[0,s−τ ]∩I

λψb(Br+τ ) exp

(
−
∫

[τ,r+τ ]∩I
φλ(s− u,Bu) du

)
dr

∣∣∣∣∣Fτ



= E(x,a)

1{τ≤s} exp

(
−
∫

[0,τ ]∩I
φλ(s− u,Bu) du

)

× E

∫
[0,s−τ ]∩I

λψb(Br+τ ) exp

(
−
∫

[0,r]∩I
φλ(s− τ − u,Bu+τ ) du

)
dr

∣∣∣∣∣Fτ



≤ E(x,a)

1{τ≤s}E(Bτ ,a)

∫
[0,s−τ ]∩I

λψb(Br) exp

(
−
∫

[0,r]∩I
φλ(s− τ − u,Bu) du

)
dr




= E(x,a)[1{τ≤s}φ
λ(s− τ,Bτ )]

for any s ≤ t and λ > 0. Now, by the bound (3.6) and the observation that Bτ = r, we
have

E(x,a)[1{τ≤s}φ
λ(s− τ,Bτ )] ≤ α

(r − b)2
P(x,a)(τ ≤ s)

for some constant α > 0. Then, set

τ̃ := inf{t ≥ 0|B̃t ≥ r}

for a standard Brownian motion B̃ = (B̃t)t≥0 started in x and note that

P(x,a)(τ ≤ s) ≤ Px(τ̃ ≤ s).

Thus, using the reflection principle as in [19, Proposition 3.2], we see that

P(x,a)(τ ≤ s) ≤ Px(τ̃ ≤ s) = 2P0(B̃s ≥ r − x).

Then, assuming in addition that b ≥ 4
√
t, x ≤ b− 2

√
t and setting r = b−

√
t, we finally

obtain

φλ(s, x) ≤ K

t
P

(
B̃s ≥

b− x
2

)
≤ K

t
exp

(
− (b− x)2

20t

)
for some constant K > 0.

Lemma 4.6. Let λ > 0, b > 0, T > 0 and ψb be as in the proof of Proposition 3.1. Then,
the partial functional differential equation given by

∂sφ
λ(s, x) =

∆

2
φλ(s, x)− 1

4
(φλ(s, x))2
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+ c

(
c′e−c

′s

∫ s

0

ec
′s′φλ(s′, x) ds′ − φλ(s, x)

)
+ λψb(x) (4.3)

with initial condition φλ(0, ·) ≡ 0 has a unique C1,2
b ([0, T ]×R) ∩ B([0, T ], L2(R))-valued

positive solution.

Proof. We begin by considering the linear partial functional differential equation given
by

∂sφ
λ
1 (s, x)− ∆

2
φλ1 (s, x) = c

(
c′e−c

′s

∫ s

0

ec
′s′φλ1 (s′, x) ds′ − φλ1 (s, x)

)
+ λψb(x). (4.4)

Note that the right hand side satisfies a linear growth and Lipschitz bound. Thus, by
classical theory for Delay PDEs (see e.g. [20] or simply by Picard iteration), we obtain
global existence of a solution φλ1 taking values in C1,2

b ([0, T ]×R) ∩B([0, T ], L2(R)). Now,
choose for each λ > 0 the map φλ1 as an upper and the constant zero map (considered as
a solution of the homogeneous version of Equation (4.3)) as a lower solution. Then, [15,
Theorem 2.1]3 yields existence and uniqueness of a solution φλ to Equation (4.3) with

0 ≤ φλ(s, x) ≤ φλ1 (s, x)

for all 0 ≤ s ≤ t and x ∈ R. In particular, we also obtain that φλ takes values in the space
C1,2
b ([0, T ]×R) ∩B([0, T ], L2(R)).
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