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Abstract

We point out an error in "The remainder in the renewal theorem", and show that the
result is essentially correct in two important special cases.
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The main result in [1] claims that in a renewal process S = (Sn, n ≥ 0) whose step
distribution F has finite mean m and whose tail F is regularly varying with index −α
with α ∈ (1, 2), the renewal function U has the following asymptotic behaviour:

W (x) := U(x)−m−1
∫ x

0

(1 + Φ(y))dy v
|cα|xΦ(x)2

m|2β − 1|
as x→∞. (0.1)

Here

β = α− 1, cα =
(1− 2β)Γ(1− β)2

Γ(2− 2β)
,

and

Φ(x) =

∫ ∞
x

φ(y)dy, with φ(y) =
F (y)

m
, y ≥ 0. (0.2)

Since Φ ∈ RV (−β) the RHS of (0.1) ∈ RV (1−2β), so this is a substantial improvement on
the previously known result that W (x) = o(

∫ x
0

Φ(y)dy), particularly for the case β > 1/2.
If F is non-lattice, it is natural for φ to be involved, since it is the stationary density

for the overshoot process of S, which fact is used in [1] to derive the following relation.
First write φ2 for the convolution φ ∗ φ and define real-valued functions g and G on [0,∞)

by

g(y) = 2φ(y)− φ2(y),

G(y) =

∫ ∞
y

g(z)dz, so that G(0) = 1.

Then the relation

W (x) =

∫
[0,x)

G(x− y)U(dy), (0.3)
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which is (2.4) in [1], is key to the results therein. (Note that our W is denoted by m−1V
in [1].) The second crucial fact is that although G is the difference of two functions
which are both in RV (−β), it is in RV (−2β), and actually

lim
x→∞

G(x)

Φ(x)2
= cα =

(1− 2β)Γ(1− β)2

Γ(2− 2β)
. (0.4)

Unfortunately there are mistakes in the proof of (0.1) for the case α ∈ (3/2, 2).
Specifically on P5, L9 of [1], it is claimed that having fixed x0 > 0 such that g∗(x) :=

−g(x) > 0 for x > x0, then given ε > 0 we can find x1 > x0 with∫ x

x1

G∗(x− y)dU(y) ≤ 1 + ε

m

∫ x

x1

G∗(x− y)dy, (0.5)

where G∗(z) := −G(z). But on [0, x0] we have no control over the sign of G∗, so this
statement cannot be justified. It is also unclear how Lemma 2.1 can be applied, since the
condition

∫∞
0
Q(y)dy =∞ fails for α > 3/2. A final error is that it is implicitly assumed in

[1] that in the lattice case φ is a stationary density, but of course this is wrong: actually
{φ(n), n ∈ Z} is a stationary mass function.

Nevertheless the claimed result (0.1) is essentially correct in the two most important
situations. In the lattice case the last mentioned error necessitates a slight change in
the definition of W , (see (1.1) below and compare the LHS of (0.1)), but then we are
able to give a simple argument to show that (0.1) holds with this new definition. In
the absolutely continuous case, under a minor technical assumption we show that (0.1)
follows, after some manipulation and use of (0.3), from a stronger result for the density
of U which is established in [2].

1 Lattice case

In this section we assume that F is carried by Z and has period 1, and we specify
that the renewal function U and its modification W are given for x ≥ 0 by

U(x) =

[x]∑
r=0

u(r), W (x) = U(x)−m−1(

[x]∑
s=0

(1 + Φ(s)), (1.1)

where u(r) =
∑∞

0 P (Sn = r). We start from the observation that the distribution with
mass function

φ(n) =
P (X > n)

m
=
F (n)

m
, n = 0, 1, 2, · · ·

is stationary for the overshoot process. Φ is the tail function of this discrete distribution,
so

Φ(x) = Φ(n) =
∑

m=n+1

φ(m) for n ≤ x < n+ 1, n = 0, 1, 2, · · · .

With this definition it is clear that W is piece-wise constant, and it follows that (0.1) will
hold in general if it holds as x→∞ through the integers, and we will now establish this.

Again the functions g and G are defined by g(n) = 2φ(n)−φ2(n), n = 0, 1, 2, · · · where
φ2(n) is the discrete convolution

∑n
0 φ(r)φ(n− r) and for x ≥ 0

G(x) =
∑

m=[x]+1

g(m) = G([x]). (1.2)
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The stationarity of φ gives
∑n

0 U(r)φ(n− r) = m−1(n+ 1), and then

n∑
0

U(r)φ2(n− r) =

n∑
r=0

U(r)

n−r∑
s=0

φ(s)φ(n− r − s)

=

n∑
s=0

φ(s)

n−s∑
r=0

φ(n− r − s)U(r)

= m−1
n∑
s=0

φ(s)(n+ 1− s) = m−1(n+ 1−
n∑
s=0

Φ(s)).

So
n∑
0

U(r)g(n− r) = m−1(n+ 1 +

n∑
s=0

Φ(s)),

then

W (n) = U(n)−
n∑
0

U(r)g(n− r),

and summation by parts gives

W (n) =

n∑
0

u(r)G(n− r). (1.3)

This is the discrete analogue of (0.3). Next we see that the proof in [1] of (0.4) is
also valid in this lattice case, with minor changes. Finally when β > 1/2 the condition∫∞
0
G(y)dy = 0 also holds, but because of (1.2) it is equivalent to

∞∑
m=0

G(m) = 0. (1.4)

It is straightforward to see that the results in Theorem 1.1 of [1] when β ≤ 1/2 hold
in this lattice case with x restricted to the integers, and we now show that the same is
true when β > 1/2. Recalling that cα < 0 in this case, so that G∗(n) = −G(n) is positive
for all large n, we assume we know that

|
n∑
0

(un − un−r)G(r)| = o(nG∗(n)) as n→∞. (1.5)

Then (1.3) and (1.4) give

W (n) = un

n∑
0

G(r) + o(nG∗(n))

=
1

m

∞∑
n+1

G∗(r) + o(nG∗(n)) v
|cα|nΦ(n)2

m(2β − 1)
,

which is the required result. Next suppose that with ∆n := un − un−1 we have n∆n → 0

as n→∞. For any fixed δ ∈ (0, 1) we can bound the LHS of (1.5) by S1 + S2 + S3, where

S1 = max
n(1−δ)≤m≤n

|un − un−m|.
n∑

n(1−δ)

|G∗(m)| ≤ c
n∑

n(1−δ)

G∗(m),

S2 = max
nδ≤m≤n(1−δ)

|un − un−m|.
n(1−δ)∑
nδ

|G∗(m)| = o(1).

n(1−δ)∑
nδ

G∗(m),

S3 = |
nδ∑
0

G∗(m)

n∑
n−m+1

∆r| = o(1)

nδ∑
0

|G∗(m)|m
n

= o(nG∗(n)).
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Then (1.5) follows by letting n→∞ and then δ → 0. The fact that n∆n → 0 can be seen
by an application of the Riemann-Lebesgue Lemma: we have the inversion formula

∆n =

∞∑
0

P (Sm = n)− P (Sm = n− 1) =

∞∑
0

1

2π

∫ π

−π
p̂(t)me−itn(1− eit)dt =

1

2π

∫ π

−π

(1− eit)e−itndt
1− p̂(t)

. (1.6)

Integrating by parts and noting that since everything is periodic with period 2π the
contribution from the end points cancel, gives

2π∆n =
1

n

∫ π

−π
e−itnf1(t)dt, with (1.7)

f1(t) =
i(eit − 1)p̂′(t)− eit(1− p̂(t))

(1− p̂(t))2
. (1.8)

Known results (see e.g. [3]) give the asymptotic behaviour of p̂(t) and p̂′(t) as |t| → 0

and from them we see that |f1| is regularly varying as |t| → 0 with index a− 2 > −1. We
deduce that f1 is integrable over [−π, π] and the result follows.

Remark 1.1. Alternatively, we could appeal to a stronger result on the asymptotic
behaviour of ∆n in [4], but the proof there uses Banach Algebra techniques.

1.1 The absolutely continuous case

Assuming that F has a density f and the characteristic function p̂(t) = E(eitX) is such
that |p̂(t)|b is integrable for some b ≥ 1, Isozaki [2] has used an inversion theorem to find
an asymptotic estimate of the density u of the renewal measure. This estimate, which is
actually valid in the random walk case whenever E|X|γ <∞ for some γ ∈ (3/2, 2), when
specialised to the renewal case becomes

u(x) =

N∑
1

fj(x) +
1

m
(1 + Φ(x) +G(x)) + ε(x), where ε(x) = o(x−γ) as x→∞. (1.9)

Here N is the smallest integer ≥ b + 1, fj is the density of Sj , and it is necessary to
check, by integration by parts, that the function denoted by r1 in [2] agrees with our
m−1G. Integrating (1.9) and noting that

∫ x
0
fj(y)dy = 1 + o(x1−γ) for 1 ≤ j ≤ N gives

U(x) =
1

m
(x+

∫ x

0

Φ(y)dy+

∫ x

0

G(y)dy)+C+o(x1−γ), where C = N+

∫ ∞
0

ε(y)dy. (1.10)

By the same argument as used in [1] the existence of the γ-th moment implies that∫∞
0
G(y)dy = 0, so we can replace

∫ x
0
G(y)dy by

∫∞
x
G∗(y)dy, and we also know, from our

relation (0.3) and the key renewal theorem, that

W (x)→ 1

m

∫ ∞
0

G(y)dy = 0,

which means that C = 0. Then the estimate (1.10) reduces to

W (x) =
1

m

∫ ∞
x

G∗(y)dy + o(x1−γ), (1.11)

and this is valid whenever the γ-th moment exists, for some γ ∈ (3/2, 2). In particular
under our assumption of asymptotic stability with index α ∈ (3/2, 2), we can choose any
γ = α − δ with δ sufficiently small that 1 − γ = δ − β < 1 − 2β and γ > 3/2. Then (0.1)
follows, since we know the first term dominates the RHS of (1.11) and we can read off
its asymptotic behaviour from (0.4).
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