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Erratum: The remainder in the renewal theorem*

Ron Doney'

Abstract

We point out an error in "The remainder in the renewal theorem", and show that the
result is essentially correct in two important special cases.
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The main result in [1] claims that in a renewal process S = (S,,,n > 0) whose step
distribution F has finite mean m and whose tail F is regularly varying with index —o
with « € (1,2), the renewal function U has the following asymptotic behaviour:

W(z):=U(x) —m™*! x(l + ®(y))dy « m as x — oo. (0.1)
0 _
Here 9
_ _(1-28T(1-8)
B—a—l,ca— F(Q—Qﬁ) )
and

F(y)

Ba) = [ o)y, with o) = =2, y =0 0.2)
Since ® € RV (—f) the RHS of (0.1) € RV (1—27), so this is a substantial improvement on
the previously known result that W (z) = o( fom ®(y)dy), particularly for the case 3 > 1/2.

If I is non-lattice, it is natural for ¢ to be involved, since it is the stationary density
for the overshoot process of S, which fact is used in [1] to derive the following relation.
First write ¢, for the convolution ¢ * ¢ and define real-valued functions g and G on [0, co)
by

9(y) = 26(y) — P2(y),
Gy) = / g(2)dz, so that G(0) = 1.
)
Then the relation
W)= [ G- U, 0.3)
(0,z)
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which is (2.4) in [1], is key to the results therein. (Note that our W is denoted by m~'V
in [1].) The second crucial fact is that although G is the difference of two functions
which are both in RV (—f), it is in RV (—27), and actually

G(2) (1-2)T(1 - B)*

M T Te-29)

DN

Unfortunately there are mistakes in the proof of (0.1) for the case o € (3/2,
Specifically on P5, L9 of [1], it is claimed that having fixed zy > 0 such that g*(z) :=
—g(z) > 0 for x > x, then given € > 0 we can find x; > xg with

1

| @a-naw < == [ G- gy 0.5)

where G*(z) := —G(z). But on [0, 0] we have no control over the sign of G*, so this
statement cannot be justified. It is also unclear how Lemma 2.1 can be applied, since the
condition fooo Q(y)dy = oo fails for o > 3/2. A final error is that it is implicitly assumed in
[1] that in the lattice case ¢ is a stationary density, but of course this is wrong: actually
{é¢(n),n € Z} is a stationary mass function.

Nevertheless the claimed result (0.1) is essentially correct in the two most important
situations. In the lattice case the last mentioned error necessitates a slight change in
the definition of W, (see (1.1) below and compare the LHS of (0.1)), but then we are
able to give a simple argument to show that (0.1) holds with this new definition. In
the absolutely continuous case, under a minor technical assumption we show that (0.1)
follows, after some manipulation and use of (0.3), from a stronger result for the density
of U which is established in [2].

1 Lattice case

In this section we assume that F' is carried by Z and has period 1, and we specify
that the renewal function U and its modification W are given for > 0 by

[«] [x]
Uz) =Y u(r), W(z) =U(z) —m " (>_(1+2(s)), (1.1)

r=0 s=0

where u(r) = > 0" P(S, = r). We start from the observation that the distribution with
mass function
P(X >n) F(n)

¢(n): = 7n:Oa1a25"'
m m

is stationary for the overshoot process. @ is the tail function of this discrete distribution,
SO
®(z) = d(n) = Z p(m)forn<zx<n+1,n=0,1,2,---.
m=n+1

With this definition it is clear that W is piece-wise constant, and it follows that (0.1) will
hold in general if it holds as * — oo through the integers, and we will now establish this.

Again the functions g and G are defined by g(n) = 2¢(n) — ¢2(n), n = 0,1,2,--- where
$2(n) is the discrete convolution Y ; ¢(r)¢(n — r) and for z > 0

Glx)= > g(m)=3G(x]). (1.2)

m=[z]+1
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The stationarity of ¢ gives > o U(r)¢(n — r) = m~'(n + 1), and then

S UMdan—1) = S UMY d(s)dn—r—s)
0 r=0 s=0
= Y 6(s)> dn—r—s)U(r)
s=0 r=0
= mflng(s)(n—k 1—s)=m'(n+1- Z@(s))
s=0 5=0
So . .
S UEgn—r)=m™ (n+1+) B(s)),
0 s=0
then

and summation by parts gives

n

W(n) = Z u(r)G(n —r). (1.3)

0

This is the discrete analogue of (0.3). Next we see that the proof in [1] of (0.4) is
also Valid in this lattice case, with minor changes. Finally when 5 > 1/2 the condition

fo y)dy = 0 also holds, but because of (1.2) it is equivalent to
0 —
> G(m)=0. (1.4)
m=0

It is straightforward to see that the results in Theorem 1.1 of [1] when 3 < 1/2 hold
in this lattice case with x restricted to the integers, and we now show that the same is
true when 3 > 1/2. Recalling that ¢, < 0 in this case, so that G*(n) = —G(n) is positive
for all large n, we assume we know that

|Z — Up_r)G(r)| = o(nG*(n)) as n — oo. (1.5)
Then (1.3) and (1.4) give
W(n) = unZG + o(nG* (n))

|ca|n®(n)?
m(28—1)

which is the required result. Next suppose that with A,, := u,, — u,,_1 we have nA,, — 0
as n — oo. For any fixed 0 € (0,1) we can bound the LHS of (1.5) by S; + S2 + S5, where

= —ZG* )+ o(nG*(n)) «

n+1

n n

= _ . a3 < rari
Sio= =l 3 [GFm)<e 3] G(m),
n(1-4) n(1-4)
n(1-9) n(1-5)
S2= e fun = el > GHm) =o(1). Y GF(m),
néd nd
ns o n nd o m
S3 = |ZG*(m) Z A7.| :0(1)Z|G*(m)|gZO(nG*(n)).
0 n—m-+1 0
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Then (1.5) follows by letting n — oo and then § — 0. The fact that nA,, — 0 can be seen
by an application of the Riemann-Lebesgue Lemma: we have the inversion formula

Ap=> P(Sp=n)=PSn=n-1) =

0

0 - ™ _ Lit\,—itn

ZQL/ ()™ e™ " (1 — &)t 1/ (Sl T
0

or ). 1=p(t)

Integrating by parts and noting that since everything is periodic with period 27 the
contribution from the end points cancel, gives

21N, = %/W e~ £ (t)dt, with (1.7)
SO it 1\a/ it A
A = i = 1)p'(t) — (1 = p(t)) (1.8)

(1=p(t))?
Known results (see e.g. [3]) give the asymptotic behaviour of j(¢t) and p'(t) as |t| — 0

and from them we see that | f1]| is regularly varying as |¢{| — 0 with index a — 2 > —1. We
deduce that f; is integrable over [—, 7] and the result follows.

Remark 1.1. Alternatively, we could appeal to a stronger result on the asymptotic
behaviour of A,, in [4], but the proof there uses Banach Algebra techniques.

1.1 The absolutely continuous case

Assuming that F has a density f and the characteristic function p(t) = E(e*X) is such
that [p(¢)|" is integrable for some b > 1, Isozaki [2] has used an inversion theorem to find
an asymptotic estimate of the density u of the renewal measure. This estimate, which is
actually valid in the random walk case whenever E|X|? < co for some v € (3/2,2), when
specialised to the renewal case becomes

N
u(z) = ij(x) + %(1 + ®(x) + G(x)) + &(z), where e(x) = o(z™ ) asx — c0. (1.9)

Here N is the smallest integer > b+ 1, f; is the density of S, and it is necessary to
check, by integration by parts, that the function denoted by r; in [2] agrees with our
m~'G. Integrating (1.9) and noting that [;" f;(y)dy =1+ o(z'~7) for 1 < j < N gives

Uz) = %(m—k/o §(y)dy+/0 G(y)dy)+C+o(x' ™), where C = N+/O e(y)dy. (1.10)

By the same argument as used in [1] the existence of the v-th moment implies that
J;° G(y)dy = 0, so we can replace [; G(y)dy by [° G*(y)dy, and we also know, from our
relation (0.3) and the key renewal theorem, that

1 < __
W(z) - — G(y)dy =0,
@ [ G
which means that C = 0. Then the estimate (1.10) reduces to
1 [
W(z) = %/ G*(y)dy + o(z' ), (1.11)

and this is valid whenever the y-th moment exists, for some v € (3/2,2). In particular
under our assumption of asymptotic stability with index o € (3/2,2), we can choose any
v = a — § with ¢ sufficiently small that 1 —v =6 — § < 1 — 20 and v > 3/2. Then (0.1)
follows, since we know the first term dominates the RHS of (1.11) and we can read off
its asymptotic behaviour from (0.4).
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