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Controlling the Flexibility of Non-Gaussian
Processes Through Shrinkage Priors

Rafael Cabral*, David Bolinf, and Havard Rue?

Abstract. The normal inverse Gaussian (NIG) and generalized asymmetric Laplace
(GAL) distributions can be seen as skewed and semi-heavy-tailed extensions of
the Gaussian distribution. Models driven by these more flexible noise distributions
are then regarded as flexible extensions of simpler Gaussian models. Inferential
procedures tend to overestimate the degree of non-Gaussianity in the data and
therefore we propose controlling the flexibility of these non-Gaussian models by
adding sensible priors in the inferential framework that contract the model to-
wards Gaussianity. In our venture to derive sensible priors, we also propose a
new intuitive parameterization of the non-Gaussian models and discuss how to
implement them efficiently in Stan. The methods are derived for a generic class of
non-Gaussian models that include spatial Matérn fields, autoregressive models for
time series, and simultaneous autoregressive models for aerial data. The results
are illustrated with a simulation study and geostatistics application, where priors
that penalize model complexity were shown to lead to more robust estimation
and give preference to the Gaussian model, while at the same time allowing for
non-Gaussianity if there is sufficient evidence in the data.
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1 Introduction

Gaussian processes are the most common class of models to describe spatial and tem-
poral dependence in Bayesian hierarchical models. Due to their well-established theory,
flexibility, and practicality, Gaussian processes are also a fundamental building block
in spatial and temporal statistics. However, additional flexibility is needed in several
applications, and Gaussian processes are replaced by more flexible non-Gaussian Lévy
processes (Ken-Iti, 1999). In this paper, we study processes driven by generalized hyper-
bolic (GH) noise, more specifically the normal inverse Gaussian (NIG) and generalized
asymmetric Laplace (GAL) subfamilies, which contain the Gaussian distribution as a
particular case and are semi-heavy-tailed.
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1.1 Literature review

Autoregressive processes with GH innovating terms are discussed in Ghasami et al.
(2020) and can model extreme market movements not captured by the Gaussian model
(Dhull and Kumar, 2021). Bibby and Sgrensen (2003) presented more sophisticated
models for financial time series, namely stochastic processes whose marginal distribu-
tions or the distributions of increments (or both) are generalized hyperbolic, including
classical diffusion processes and stochastic volatility models (Barndorff-Nielsen, 1997;
Barndorff-Nielsen and Shephard, 2001, 2002). The empirical distributions of the log-
returns of financial time series are too heavy for satisfactory fitting by normal densities,
and the GH distribution can better capture the stylized features of financial data.

In the field of spatial statistics, Bolin (2014) provided a class of non-Gaussian random
fields with Matérn covariance function, constructed as solutions to stochastic partial
differential equations (SPDEs) driven by Generalized Hyperbolic noise. The previous
models were applied in the context of geostatistics (Wallin and Bolin, 2015), joint mod-
eling of multivariate random fields (Bolin and Wallin, 2020), and to model continuously
repeated measurement data collected longitudinally (Asar et al., 2020), where the non-
Gaussian models led to improved predictive power in datasets where there were sharp
spikes or jumps in the observed data that the Gaussian models oversmoothed.

The aforementioned papers performed parameter estimation of non-Gaussian mod-
els via likelihood maximization techniques or by the method of moments. Bayesian
estimation was carried out for the same geostatistical framework of Wallin and Bolin
(2015) by Walder and Hanks (2020). A Bayesian framework has also been considered
for stochastic volatility models (Xie and Shen, 2021; Nakajima and Omori, 2012), for
a vector of autoregressive processes (Karlsson et al., 2021), and GARCH models (De-
schamps, 2012), and all previously cited papers utilized the generalized hyperbolic skew
Student’s t (GHSST) distribution for the driving noise. In the same papers, a gamma
prior was chosen for the leptokurtosis parameter and a normal prior for the skewness
parameter of the GHSST distribution. There was no principled motivation for the use
of these priors other than mathematical or computational convenience, and the gamma
prior places 0 mass at the base Gaussian model, thus forcing overfitting of the data
(Simpson et al., 2017).

1.2 Motivation and contributions

Here we present the layout of the paper and highlight what are its main contributions
to the literature on non-Gaussian processes from a Bayesian perspective. We find in
the current literature challenges when it comes to model interpretability, sensible prior
selection, and ease of implementation which we address next.

Parameterization and interpretability: Parameterizations of the NIG and GAL dis-
tributions involve 4 parameters that are used to regulate the mean, variance, skewness,
and kurtosis of the distribution. However, the parameterizations are not themselves
property-based leading to a difficult interpretation of the parameters. This also presents
a difficulty when constructing priors for the parameters, since, for instance, the mean
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Figure 1: The box plots show the posterior means of the leptokurtosis parameter 7
for i.i.d. Gaussian simulated data with sample sizes of n = 50,100,200 with penalized
complexity (PC) and uniform (Uni) priors, repeated over 1000 experiments. The right
plot shows the right tail of the symmetric NIG PDF for several values of 7.

and variance will depend not only on the location and scale parameter but also on the
other parameters. In Section 2 we provide a property-based parameterization of the
NIG and GAL distributions that preserves the mean and covariance structure of the
Gaussian model.

Priors that avoid overfitting and lead to a robust estimation: Figure 1 shows posterior
means of the leptokurtosis parameter n of the NIG distribution when fitting i.i.d. stan-
dard Gaussian data. These were obtained by numerical integration of the unnormalized
m(nly) o I1; mn1c (yiln)m(n), where mxic is the probability density function (PDF) of
the standardized and symmetric NIG distribution of Subsection 2.1. The Gaussian and
Cauchy distributions are limit distributions when  — 0 and  — oo, respectively. If we
use a uniform prior for small samples the results suggest the necessity of a non-Gaussian
model when the simpler Gaussian model should be the preferred one. We should prefer
the Gaussian model not only for parsimony’s sake but also because for Gaussian sim-
ulated data, the expected predictive performance will be the highest for the Gaussian
model if a strictly proper scoring rule is used to evaluate the predictive accuracy (Gneit-
ing and Raftery, 2007). The tendency to overestimate the degree of non-Gaussianity in
the data is more severe when a non-Gaussian model is added as a latent component in a
hierarchical model and can be prevalent even for samples sizes of 500, as our simulation
study in Section 5 shows. This issue motivates an inferential framework that contracts
non-Gaussian models towards Gaussianity in the absence of sufficient evidence of non-
trivial leptokurtosis or asymmetry. In Section 3 we construct prior distributions for the
skewness and leptokurtosis parameters of the NIG and GAL distribution based on the
penalized complexity (PC) priors principled approach of Simpson et al. (2017).

Many models, one framework: We presented in the previous subsection a wide range
of models, defined in discrete or continuous space, for time series or spatial data. We
unify these models into a single generic class, which we examine in Section 2. We also
offer in Section 4 a set functions for the Stan platform (Stan Development Team, 2020)
that allow a straightforward implementation of these models.

Bayesian analysis: A simulation study is conducted to compare the PC priors with
other priors choices in Section 5, and the developed methods are applied to two spatial
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datasets in Section 6. The analysis showed that the PC priors achieve the sought con-
traction towards the Gaussian model when there is not enough convincing evidence in
the data of non-Gaussianity and lead to more robust estimation.

Finally, Section 7 contains a summary and discussion of future work and possible
extensions.

2 A flexible extension of Gaussian models

The GH distribution (Barndorff-Nielsen, 1978) can be conveniently represented as a
variance mixture of normal distributions, where the mixing distribution is a general-
ized inverse Gaussian (GIG) random variable. If a random variable A follows the GH
distribution, then it has the following hierarchical representation

AV ~N(u+ BV, V), V ~GIG(A, 8, /a2 — 5?), (1)

where 4, pu, and 3 are scale, location, and skewness parameters, respectively, while « and
A are two shape parameters. The constraints on these parameters are found in Barndorff-
Nielsen et al. (2012). The GH distribution includes many widely used distributions as
special cases, including the Gaussian, t-Student, Cauchy, NIG, and GAL distributions.
The NIG subclass is obtained by setting A = —1/2, leading to an inverse Gaussian (IG)
mixing distribution. The PDF of a NIG distribution is

/52 _ 2
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where K () is the modified Bessel function of the second kind of order A. On the other
hand, the GAL subclass is obtained from the limit § — 0, leading to a gamma mixing
variable and the PDF
(a2 - Bg))\ 1
Ao Bp)=——"2 ey} K, 1 (alz — pl)ePEH),
fashanbon) = 0 Sl = i (el )

As a necessary step in building explicable priors, in the following Subsections 2.1
and 2.2 we present a standardized parameterization of the NIG and GAL distributions
which also aims to achieve an orthogonal interpretation of the parameters. Then in
Subsection 2.3, we define the distribution of multivariate models that are driven by
NIG or GAL noise.

2.1 Standardized parameterization (7, ()

In the previous parameterization (A, , 8, 9, ), the location (1) and scale (§) parameters
do not correspond to the mean and standard deviation of the distribution. For the NIG
distribution setting u = 0 and § = 1 leads to E[A] = £/(—a? + B2) and V[A] =
a?/(a?— 52)3/ 2. and so the mean and variance depend on the degree of asymmetry and
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Table 1: Parameters of the GH distribution, skewness (S), excess kurtosis (EK) for the
GAL and NIG special cases, where 6 = 1/(y/1 + 1n¢?).

leptokurtosis of the distribution. There are alternative parameterizations of the GH
distribution in the literature (Paolella, 2007; Prause et al., 1999), including location-
scale invariant ones, but these continue to not be property-based.

As in Niekerk and Rue (2021) we posit that when constructing priors the mean
and the standard deviation should be fixed, instead of location and scale parameters.
This not only eases interpretation but also allows assigning the priors for the mean
and scale of the Gaussian model in non-Gaussian models, which is very convenient
when implementing these non-Gaussian models in practice (otherwise reasonable priors
for the location and scale would have to depended on « and (). Table 1 shows the
conversion between the standardized parameterization and the more conventional one
in eq. (1), along with some relevant moments (consider for now h = 1). The variance-
mean mixture representation belonging to this parameterization is

o 1 _Jea (NIG)
A N(WC(V ) _anzv),v {Gammaw—an—l) can). @

A location and scale parameter can be added by the usual transformation m + oA,
and the mean and variance will be m and o2, regardless of the other parameters’ value.
The parameter 7 is related to the degree of non-Gaussianity since A converges to a
Gaussian random variable when n — 0, and as we increase 7, the excess kurtosis increase.
The parameter ( is related to the asymmetry of the random variable since A is symmetric
when ¢ = 0, and when ¢ > 0, it is skewed to the right. Here and henceforth, we will make
use of the notions of “base model”, “flexible model” and “flexibility parameter” defined
in Simpson et al. (2017). We see the non-Gaussian model parameterized by (n,¢) as a
flexible extension of the base Gaussian model since it contains the Gaussian model as a
special case (when n = ¢ = 0) and deviations from the Gaussian model are quantified
by the parameters n and ¢ to which we refer as flexibility parameters. The densities
of the NIG and GAL distributions with the previous parameterization are displayed in
Figure 2. We observe that the larger the value of 7, the larger the asymmetry induced
by the same value of the parameter (.

2.2 Standardized and orthogonal parameterization (n*, (*)

There is still some confounding between 7 and ( in the standardized parameterization
since the excess kurtosis increases with (, so a prior for n derived for a symmetric model
may not shrink the models towards Gaussianity as much as we anticipate if the data is
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Figure 2: Density of the NIG (top) and GAL (bottom) distributions in log scale for
different values of n and ¢ with ¢ =1 and h = 1.

asymmetric. Thus, we need to associate n with some interpretable model property and
then guarantee that the property is invariant with the second flexibility parameter. This
will also allow using the PC prior of 1, which is derived in Section 3 for the symmetric
case, in asymmetric data.

We find the kurtosis to be hard to interpret (it is not clear what an increase in
kurtosis of 1 means in practice) and so we prefer to associate n with the likelihood of
large events. For the NIG distribution this probability can be approximated by P(|A| >
x) oc 2732 exp(—n~Y2€n1cx) for large © (Hammerstein, 2016). The dependency of this
probability with the skewness parameter ( comes through the rate {x7a:

Enic =1+ — [¢vn(1 + 3n),

which is equal to 1 in the symmetric case (¢ = 0). We require the probability P(JA| > x)
to be invariant with the skewness parameter, at least for large x. This can be achieved
by the parameter transformations n* = nf&%c and ¢* = (/7. The same transformation
applies for the GAL distribution where one should take

€aaL = V1 + Cn(v/2 + Cn — [Clvn).

We note that these transformations on the flexibility parameters do not affect the
mean (0) and the variance (1) of the standardized parameterization. The quantity &
is also related to the excess kurtosis, namely EKurt[A] ~ 9/¢2, for both the NIG and
GAL distributions. Therefore, by guaranteeing that P(]A| > x) is invariant with ¢* for
large x, we also guarantee that the kurtosis of the noise (and the process’ marginal
distributions) remains approximately the same for different values of ¢*, leading to a
more orthogonal interpretation of the parameters.
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2.3 Multivariate models driven by non-Gaussian noise

Let x“ be a random vector that follows a multivariate Gaussian distribution with di-
mension n, mean m, and precision matrix Q = ¢ 2DTD. It can be expressed through

D(x% —m) L7, (3)

where Z = [Zy,...,Z,]T is a vector of i.i.d. standard Gaussian variables. When x¢

is derived from a process defined in continuous space, one usually has Z; g N(0, h;)

for some predefined constant h,; (for instance, the distance between locations in an
autoregressive process), and so the precision matrix is Q = o 2D diag(h)~'D. The
non-Gaussian extension for x consists in replacing the driving noise distribution:

D(x —m) L 5A, (4)

where A = [Ay,...,A,]T is a vector of independent and standardized NIG or GAL
random variables that depend on parameters n and (. Using the parameterizations in
Subsections 2.1 and 2.2 for A, the non-Gaussian random vector x has the same mean
and covariance matrix as the Gaussian random vector x& but with more flexible sample
path properties and marginal distributions whose kurtosis and skewness are regulated by
the flexibility parameters n and ¢. Appendix B of the Supplementary Material (Cabral
et al., 2022a) contains more properties about non-Gaussian models defined via eq. (4). It
is important to mention that these models are not uniquely specified by their covariance
or precision matrices but through the matrix D. In Section 4 we show that many of
the non-Gaussian models mentioned in the Introduction belong to the generic class of
models defined by eq. (4).

A variance-mean mixture representation of the non-Gaussian random vector x is
obtained by considering the random vector V = [Vi, ..., V,]T and the predefined vector
h = [hy,...,h,]7T, containing the mixing distributions and some predefined constants,
respectively. In the standardized parameterization it is:

o2

o
m4 —— e
( V1+ 1+¢?n
IG(hi,n~1h2) (NIG Noise)
Gamma(h;n~1,n~!) (GAL Noise).

x|V ~N (D7 }(V —h) Dldiag(V)DT> ,

()

‘/i z%j.

To broaden the applicability of the multivariate model x to data measured at ir-
regularly spaced locations or time intervals, we need to consider the predefined vector
h. Take, for instance, a continuous Gaussian random walk of order 1 (RW1) process
evaluated at locations x1,xs,... with distances h; = x;41 — x;. In this situation, the
model is defined by the increments x;; 1 — x; following a normal distribution with mean
0 and variance h;o? (Rue and Held, 2005). Therefore, a larger distance between ob-
servations will lead to a noise Gaussian distribution with increased variance. A similar
transformation applies when we discretize a NIG or GAL continuous process, but the
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increased distance between locations will not only change the variance to h;o? but also
will the shape of the distribution. This is a standard result from the theory of Lévy pro-
cesses, where the new densities are found by raising the NIG and GAL characteristic
functions to the power h; and then taking the inverse-Fourier transform (see Appendix
A of the Supplementary Material and Barndorff-Nielsen et al. (2012)). The variables
A; will share the o, n and ¢ parameters, but h; will generally be unique to each noise
variable (see Table 1). If the observations are measured at equally spaced locations we
set h to be a vector of ones.

3 Contraction towards Gaussianity

Our goal is to control the flexibility of non-Gaussian models and shrink the model
towards Gaussianity if there is insufficient evidence in the data of excess kurtosis and
asymmetry. One natural and simple way to achieve this contraction is by adding in the
inferential framework priors for the flexibility parameters n and ¢ that give preference
to the Gaussian model.

The prior distributions derived next are applicable to a large variety of models and
can be easily added to pre-existing model implementations. We will make use of the
penalized complexity (PC) priors methodology of Simpson et al. (2017). The approach
consists of setting an exponential distribution on the unidirectional distance d(-), mea-
suring the added complexity of the more flexible model, with respect to the base model.
The measure of complexity is based on the Kullbeck-Leibler divergence (KLD), and
d(n) = /2KLD(n(x|n) || 7(x|n = 0)). PC priors give preference to the simpler model
and tend to avoid overfitting by default because the mode of the prior distribution is
located at the base (Gaussian) model: 7(n) = 6|d’(n)| exp (—0d(n)). The previous prior
is defined up to a rate parameter  which needs to be calibrated (see Subsection 3.3).

Remark 1. An important feature of the class of non-Gaussian models that we are
studying, which are obtained by replacing Gaussian white noise with more flexible alter-
natives, is that from an information-theoretic perspective, the deviation from the Gaus-
sian model only depends on the flexible noise and does not depend on the covariance
structure encoded by the matriz D. This may not seem obvious at first, since different
choices for the matriz D lead to different sample path behaviors and marginal properties
(see Figure 4). However, if we construe the density of the non-Gaussian random vector
as linearly transformed NIG or GAL densities x = m + oD~ 1A, and similarly for the
Gaussian random vector xX¢ = m + oD ~VZ, this property follows directly from the well
know invariance of the KLD under monotonic transformations:

KLD(x || x9)=KLD(m+cD 'A || m+cD~'Z)=KLD(A || Z) =Y KLD(A; || Z:).

i=1

The previous property implies that the distribution of the PC prior does not de-
pend on D, o, or m and is therefore applicable to any non-Gaussian model that can
be expressed via eq. (4). Thus, without loss of generality, we consider in this section
processes with 0 mean (m = 0) and driving noise with unit variance (¢ = 1). In the
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Figure 3: KLD computed by numerical integration for & = 1 in log-log scale. The plot
on the left shows KLD(n,¢ = 0) for NIG and GAL noise, and the plot on the right
shows K LD((|n) for three fixed values of n for NIG noise.

following subsection, we derive the PC prior of 5 for the symmetric case (¢ = 0), and
then in Subsection 3.2, we find the PC prior of ¢ conditioned on 7.

3.1 PC prior distribution for the first flexibility parameter

The non-Gaussian extension presented in Subsection 2.3 preserves the mean and covari-
ance structure of x, so we can assume that both the flexible and base models have the
same scale parameter o and the same spatial (or temporal) range parameter, such as
the parameter x in the Matérn model of eq. (7). These parameters cancel out when com-
puting KLD(x || x%) as seen in Remark 1, and therefore KLD(x || x%) only depends
on 1 and h. The non-Gaussian noise A; can follow either a NIG or a GAL distribution,
and for both cases, KLD(A; || Z;), which should be seen as a function of 7, behaves
quadratically near the base model (see Figure 3 (a)). In the symmetric case the pa-
rameterizations (1, = 0), and (n*,¢* = 0) are equivalent, therefore the same prior
distribution is assigned for n and n*.

Theorem 3.1. Let D be a n X n non-singular matriz. Also, let the flexible model x
with density w(x|n, ¢, h) be defined by Dx = A, where A is a vector of independent NIG
or GAL noise defined in Subsection 2.1. Then, for small n, the KLD is

3 (=1
KLD ((xln, ¢ =0) || 700dn=0.¢=0) ) = == <Z h—) 7+ 00,
i=1 "%
where 7 (x|n = 0,¢ = 0) is the density of the base Gaussian model.

Proof. See Appendix D of the Supplementary Material. O

We are mostly interested in penalizing the added complexity of the more flexible non-
Gaussian model in a neighborhood around the base Gaussian model, and as suggested
by Simpson et al. (2017), a Taylor expansion around the base model is done, and the
second order expansion is used as the measure of added complexity.



1232 Controlling the Flexibility of Non-Gaussian Processes

Corollary 3.1.1. The distance measure is d(n) = /2K LD(n) < n and so the PC prior
for n and n* will follow an exponential distribution with some rate parameter 0,. We
note that this PC prior induces a LASSO (L-1) style penalty on the parameter n (and
n*), since logm(n) = —0,n + const.

3.2 PC prior distribution for the second flexibility parameter

We derive in this subsection the PC prior for the second flexibility parameter. As seen
in Section 2.1, the impact of the parameter ¢ on the NIG and GAL distributions depend
on the value of 7 (if n = 0, then ¢ has no impact). Therefore, we derive the PC prior for
¢ conditionally on 7, and consider that the base model is a non-Gaussian model driven
by symmetric noise A°Y™ (with parameters  and ¢ = 0), and the flexible model x is
driven by asymmetric noise A (with parameters n and ¢). In Figure 3 (b), we show the
KLD between the NIG noises A; and Afym for several values of i and (.

A Taylor expansion around 1 = 0 and ¢ = 0 yields a quadratic dependency with 7
which is only accurate when 7 is very close to 0:

KLD(A; || AZY™) = (3n%/(4hs) + O(*))¢? + O(¢H).

Therefore, we use the following upper bound of the KLD as a measure of added com-
plexity, which provides a more reasonable approximation.

Theorem 3.2. Under the same conditions of Theorem 3.1, we have for NIG driving
noise

KLD( w(x|n,¢) || 7™ (xln.¢ = 0) ) < Znc*.

This inequality also holds for GAL driving noise when n < min;—;___» h;.
Proof. See Appendix D of the Supplementary Material. O

If we use the previous upper bound as a measure of complexity, the distance d(()
is \/2KLD(() o /n|¢| and by setting an exponential distribution on d(¢) with rate
parameter 6., the density of (| is found to be

7(Cn) = S0cyTexp (—0cVc. (©

Corollary 3.2.1. With the standardized and orthogonal parameterization (n*,(*), the
skewness parameter is (* = \/n¢ and so KLD < n¢*?/2. We then have d(¢) o |C*| and
the PC prior for (* is a Laplace distribution with rate parameter 0. This prior also acts
as a LASSO (L-1) penalty on the estimation of ¢*, since logw(¢*) = —0¢|¢*| + const.

3.3 Calibration of the PC priors

In line with the weakly informative prior framework of Simpson et al. (2017) and Gelman
et al. (2017), the calibration of the PC priors, i.e, the choice of 6, and 6., is based on
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the user defining the prior probabilities P(n* > U,) = «a, and P(|¢*| > U¢) = o
and in turn the calibration parameters are 6, = —log(a,)/U, and 6, = —log(ac)/Us.
Of course, sensible choices for the upper-tail values U and probabilities o must come
from an understating of how different values of n* and ¢* impact the process. This
understanding can be informed by, for instance, plotting sample paths of the process
for increasing values of n* (see Figure 4), stopping when we observe unreasonably large
spikes or jumps, at n* = U,,, and then setting a low probability that n, > U,, say equal
to 0.01. A similar procedure can be applied when calibrating the PC prior of ¢*, but
one should look for asymmetries in the number of large jumps or spikes, for instance
for positive *, there should be more positive jumps than negative jumps.

More interpretable distribution features can be used in the calibration, such as the
probability that large marginal events occur (larger than 3 times the marginal standard
deviation, for instance) which increase with 1. However, deriving these probabilities for
new models can be unhandy, since the marginal distributions do not have a closed-form
PDF's or CDFs. Nevertheless, we pursue this path in Appendix E of the Supplementary
Material to calibrate the PC prior of n for Matérn and OU processes.

3.4 Comparison with other prior distributions

For the GHSST distribution (subclass of the GH distribution) seen in Subsection 1.1, the
flexibility parameters are v and 3, the base model corresponds to v — oo and S = 0 and
gamma and normal priors are commonly chosen, respectively. In our parameterization,
this would suggest an inverse gamma distribution for 7 since the base model is at n — 0,
and a normal prior for . An inverse gamma prior decays slower to 0 as 1 increases (see
Figure 5), and it has no mass at the base model (7 = 0), so it acts as a repellent from
the simpler Gaussian model, having the opposite effect that we necessitate. Also, a
Gaussian prior for ¢ may not achieve as much contraction as the prior in eq. (6), which
follows a Laplace distribution for a fixed value of 7, and it does not take into account
that the asymmetry induced by a particular value of ¢ increases with 7.

The Fisher information matrix does not seem to be available in closed form which
makes the use of the Jeffreys priors for the flexibility parameters impractical for the
class of models defined by eq. (4). Figure 5 shows a numerical approximation of the
Jeffreys prior density for 7, based on the univariate pdf of the NIG distribution. It has
the mode at the base model, but unlike the PC priors, which decay exponentially, it is
almost flat.

4 Many models, one framework

Our general model in eq. (4) contains a wide variety of non-Gaussian models as special
cases that allow departures from Gaussianity within realizations. Here, we review some
non-Gaussian models defined in discrete and continuous space and present a set of
functions for Stan that allow an easy and efficient implementation of these models.
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4.1 Models defined on discrete space

A Gaussian autoregressive process (AR) of order 1 assumes that /1 — p?z; and the
differences {x;11 — pz;, i > 1} follow independent Gaussian white noise N(0,?) and
|p| < 1. If we assume that the differences instead are non-Gaussian white noise, we obtain
the linear system Dypix = A, where Dyag; = (d;;) € R™*" with d1; = /1 — p?,
di;—1 = —p,d;; =1for i > 1, and the other matrix elements are 0. Likewise, the matrix
D for higher-order AR processes is a lower triangular Toeplitz matrix containing the
autoregression coefficients. A vector of autoregressive processes with no intercept also
has a representation Dy arx = A when extending the model to non-Gaussianity, by
stacking the multivariate time series into a single vector x. To fit areal data Walder and
Hanks (2020) proposed a simultaneously autoregressive (SAR) model driven by non-
Gaussian noise that also can be represented by eq. (4) for an appropriately specified
matrix D.

4.2 Models defined on continuous space

A famous class of processes in spatial statistics are stationary Gaussian processes with
Matérn covariance functions (Matérn, 1960). Gaussian processes with this covariance
function can be obtained as solutions of the SPDE:

(k%2 = A)*?X (s) = oW(s), se€RY, (7)

where  is a spatial range parameter, A =3, 0? /022 is the Laplace operator, o > d/2
is a smoothness parameter, and WW(s) is a Gaussian white noise process (Whittle, 1963).
The approximation to discrete space in (Lindgren et al., 2011) uses the finite element
method (FEM) to the stochastic weak formulation of the previous SPDE. It begins by
expressing the process X (s) as a weighted sum of basis functions, X (s) = Y, wii(s),
and it was shown that the weights w = [w1, ..., w,]T follow the system Dw = Z, where
the predefined vector h of Section 2.3 has elements h; = [, t(fils)ds. The random field
X (s) evaluated at locations sy, ss, ... composes the vector x = [X(s1), X (s2),...]7 and
it is given by the linear combination x = Aw, where A is the projector matrix with
elements A;; = 1;(s;). Building the matrices D and A may seem hard at first since
it involves the finite element method, but these can be easily built with the functions
inla.mesh.2D, inla.mesh.fem and inla.spde.make.A in the R package INLA, and the user
only needs to supply the location of the observations and some tuning parameters for
the discretization mesh (Bakka et al., 2018).

Bolin (2014) extended the previous results to Type-G Matérn random fields by
replacing the Gaussian noise process W(s) with a non-Gaussian noise process A(s). As
discussed in (Wallin and Bolin, 2015), for SPDE models, the increments need to be
closed under convolution, and so we can only consider the NIG and GAL subclasses of
the GH distribution. It was shown that the stochastic weights now follow the system
Dw = A, where the matrix D is the same as in the Gaussian case seen before.

Table 2 lists differential operators associated with several stochastic processes and
Figure 4 contains their sample paths, obtained by the SPDE approach, considering a
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Model | CRW1 Oou CRW2 Matérn o« = 2
D Oy K+ O 0? k? — 0?

Table 2: Differential operators associated with different models.

Simulation parameters: c=1; n=1e-06;7=0 Simulation parameters:g=1; n=1;7=0
NIG noise NIG noise
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Figure 4: Noise and sample paths of several models for 7 = 10~° (left) and n = 1 (right),
forc=1and { =0.

Gaussian noise process (left panel) and a NIG noise process (right panel). The charac-
terization of the marginal distributions is in Appendix C of the Supplementary Material.
Matérn and Ornstein-Uhlenbeck (OU) processes are widely used in applications. The
continuous random walk model of order 2 (CRW2) is also known as an integrated Brow-
nian motion process, and it has been used by Diggle et al. (2014), and Zhu and Dunson
(2017). Whenever the noise takes an extreme value (for instance, near location 0.8),
the CRW1 and OU processes will exhibit a distinct jump, and the RW2 and Matérn
processes will exhibit a kink (discontinuity in the first derivative).

4.3 Implementation in Stan

Estimating non-Gaussian models defined by Dx = A in the Stan platform (Stan De-
velopment Team, 2020) can be done by declaring the random vectors x and V with
the hierarchical representation of eq. (5). However, the dimension of V is the same as
the dimension of x, which can be very large in some applications, and since V needs
to be estimated, one can expect long sampling times. We can integrate out the mixing
variables V; in eq. (5) to reduce the dimension of the parameter space being explored
in Stan, which can lead to a significant speedup. Note that x = D7!A and if D is
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non-singular, then the multivariate transformation method yields:

m(x) = [D| [ wa, (Dx]5), (8)

i=1
where 7y, is the PDF of a NIG or GAL distribution.

The Stan function nig-model returns the log-likelihood of a NIG model based on
eq. (8) using the standardized and orthogonal parameterization and it is implemented in
github.com/rafaelcabral96/nigstan. The declaration of x takes the following form:

X ~ nig_model(D, etas, zetas, h, 1)
etas ~ exp(theta_eta)
zetas ~ double_exponential(0,1.0/theta_zeta)

where the last argument of nig_model is an integer with value 1 if the log-determinant of
D should be computed (if D depends on parameters), or 0 otherwise. The last two lines
are the declaration of the PC priors for n* and ¢*. A location and scale parameter can
be added by the usual transformation m + ox. We can fit all models in Subsections 4.1
and 4.2 in Stan using the nig_model function by specifying the appropriate matrix D.
Contrary to the hierarchical representation in eq. (5), if we work with eq. (8) there is
no need to estimate the auxiliary random vector V and invert the matrix D, and thus
sampling times of hours can be reduced to minutes. The results in the following sections
were obtained via this implementation. We demonstrate in more detail how Stan can be
used to fit non-Gaussian models for several applications in rafaelcabral96.github.
io/nigstan/. Unfortunately, it is currently not possible to implement models driven
by GAL noise in Stan based on eq. (8), since modified Bessel functions of the second
kind with fractional order are currently not available in Stan.

5 Simulation studies

To study how the priors on the flexibility parameters perform under different conditions,
we consider two simulation sets. In the first, we investigate if the posterior distributions
of n* and (* are close to the true values of these parameters used to simulate the sample
paths. We verify the contraction towards Gaussianity induced by the PC priors and the
ability to allow for non-Gaussianity when the latent field is significantly non-Gaussian.
For the second simulation set, we check how sensitive the posterior distributions of n*
and (* are to irregularities in the data for different choices of priors. The R scripts can
be found in the Supplementary Material (Cabral et al., 2022Db).

5.1 Implementation details

The following simulation settings were considered. The response is y; ~ N(x;,0.7),
where x is non-Gaussian latent field x, defined by eq. (4) with mean m = 0. The model
parameters are {o,n*,(*} and the matrix D was chosen so that x corresponds to a
Matérn model (with @ = 2 and k = 0.2) as in Subsection 4.2. We fit the model to
simulated data with parameters as shown in Table 3. We considered sample sizes n
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Figure 5: Prior distributions for the two flexibility parameters in log-log scale (we only
plot for positive values of ¢*).

chosen from {50, 100, 500, 1000} for the first simulation set and n = 500 for the second
simulation set.

The prior distribution for ¢ is IGamma(l,1) and we consider several prior con-
figurations for the flexibility parameters n* and ¢*: PC1: n* ~ exp(6, = 30), and
¢* ~ Laplace(f: = 13); PC2: n* ~ exp(#, = 2.3), and (* ~ Laplace(f; = 1);
IG1/N1: n* ~ IGamma(2,0.1), and ¢* ~ N(0,0.3); IG2/N2: n* ~ IGamma(2,0.43),
and ¢* ~ N(0,1); Jeffrey: n* follows the Jeffrey prior computed numerically, and
¢* ~ Uni(-50,50) Uniform: n* ~ Uni(0,50), and ¢* ~ Uni(—50, 50);

The models were fitted in Stan with the cmdstanr interface (Gabry and Cesnovar,
2021), and N = 200 replications were run for each scenario, prior distribution, and
sample size. Each replication consisted of 1000 warmup iterations and 1000 sampling
iterations. The IG1 and IG2 priors for n* were chosen so that they would have the same
mean as the PC1 and PC2 priors, and therefore they could potentially achieve the same
level of contraction to the Gaussian model. Likewise, the variances of the N1 and N2
priors assigned to (* are the same as the variances of the PC1 and PC2 priors for (*.
These prior distributions are plotted in Figure 5.

5.2 Results

Figure 6 shows the posterior means and widths of the credible intervals for the pa-
rameters n* and (*. For brevity, we only show the results of scenarios 1 and 3 and
for the sample sizes of 50, 100, and 1000. The remaining figures can be found in Ap-
pendix F of the Supplementary Material. For sample sizes up to 500 we see a positive
bias in the estimation of n* when using the uniform or Jeffreys priors, namely we
have posterior means larger than 1, indicating a clear departure from Gaussianity in

Scenarios Simulation set 1 Simulation set 2
Scenario 1 o =1,n* = (* =0 (Gaussian) Gaussian with no jumps
Scenario 2 oc=1,n=2"=0 Gaussian with two jumps of size 25
Scenario 3 c=1,n=5=1 Gaussian with two jumps of size 50

Table 3: Parameters of the simulated data for each simulation set and scenario.
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Figure 6: Histograms of the posterior means (top) and widths of the posterior credi-
ble intervals (bottom) for n* (left) and ¢* (right) and for different sample sizes, prior
configurations, and scenarios of the simulation set 1.

the latent field, where there is none. The posterior means of n* are smaller when uti-
lizing the PC priors compared to the Jeffrey priors. The reason for this is that near
the base model the PC prior can be seen as a tilted Jeffrey priors (Simpson et al.,
2017), m(n*) = I(n*)'/? exp(—0,m(n*)), where I(n*) is the Fisher information, and
m(n*) = fon VI(s)ds.

The differences in the posterior means of 7* between the PC priors and the Inverse
Gamma priors are not substantial because the IG priors were scaled so they would have
the same mean as the PC priors. Although the posterior credible intervals of n* (based
on the 5% and 95% quantiles often have smaller widths when utilizing the PC priors,
compared to the IG priors, which is partly because the IG priors are more “spread out”
(see Figure 5). The PC and IG priors for n* lead to posterior means that are closer to 0,
which are more consistent between replications and with smaller widths for the credible
intervals). Similar observations apply for the posterior inferences of ¢*.

5.3 Additional simulation studies

The results of simulation set 2 can be found in Appendix F of the Supplementary
Material. The PC priors led to an estimation that is less sensitive to jumps in the
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Figure 7: Measurements of temperature (left) and pressure (right) data subtracted by
their sample means with the FEM mesh on the background.

processes than the other priors. Overall, the two simulation studies suggest that the PC
priors perform well in a variety of scenarios, leading to a more robust estimation with
regards to irregularities in the data and giving preference to the Gaussian model, while
at the same time allowing for non-Gaussianity if there is enough support in the data.

6 Application

In this section, we illustrate the impact of the PC priors on a geostatistics application
and how they achieve the sought contraction towards the Gaussian model when there
is not enough convincing evidence in the data of non-Gaussianity. The R scripts can be
found in the Supplementary Material (Cabral et al., 2022b).

6.1 Dataset and model implementation

Figure 7 shows temperature and pressure measurements at 157 different locations in
the North American Pacific Northwest, where the sample mean was subtracted from
the data in both cases. Bolin and Wallin (2020) considered a Gaussian model for the
temperature data, while the pressure data appeared to have some localized spikes and
short-range variations, which were better captured with a non-Gaussian NIG model.

We consider the geostatistical modelling paradigm of Wallin and Bolin (2015) where
the field of interest X(s) is observed at N locations si,...,Sy, generating observations
Y1, -- -, YN, that follow y = Ax-+e€, where A is the projector matrix. The vector € is i.i.d.
Gaussian noise with variance o2 and x is a non-Gaussian random field (Dx = oxA),
where D is obtained by the FEM approximation on the Matérn SPDE with o = 2 (see
Subsection 4.2). We only considered non-Gaussian models with NIG driving noise. The
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Prior choice 1 (conservative) Prior choice 2 (near-uniform)
Temperature Pressure Temperature Pressure
o 0.79 (0.67, 0.93)  63.00 (54.59, 72.46) _0.79 (0.68, 0.94) 62.52 (54.74, 71.07)
oo 8.25 (6.25, 10.64) 336.77 (257.84, 427.72) 10.19 (2.09, 7.20) 469.34 (325.10, 649.12)
k 0.93 (0.60, 1.32) 0.37 (0.25, 0.50) 1.11 (0.78, 1.51) 0.50 (0.35, 0.66)
n* 0.21 (0.02, 0.55) 2.04 (0.70, 4.05) 4.35 (1.02, 10.70)  22.01 (5.91, 48.22)
C* 0.02 (—0.11, 0.16) —0.01 (—0.11, 0.10) 0.09 (—0.27, 0.46) —0.25 (—0.69, 0.19)

Table 4: Posterior means and 95% credible intervals of the Matérn SPDE model param-
eters driven by NIG noise for the two datasets and prior choices.

mesh used for the FEM approximation is shown in Figure 7, and it was built with the
inla.mesh.2d function of the R-INLA package (Rue and Martino, 2007) and consisted
of 394 nodes. The models were again implemented in Stan with the cmdstanr interface,
and 4 parallel chains were run with 500 warmup iterations and 1000 sampling iterations.

The PC priors of n* and (* are exponential and Laplace, respectively, and to study
the impact of different calibration choices for the priors on the posterior inferences,
we assigned two sets of PC priors. The first set was calibrated by choosing a,, = 0.01
and P(|¢*] > 0.3) = 0.01, a conservative choice which should lead to a significant
contraction, where a, is the likelihood of having twice as much large jumps in the process
compared to the Gaussian process (see Appendix E of the Supplementary Material).
For the second set we chose a;, = 0.95 and P(|¢*| > 4) = 0.01, leading to near-uniform
priors. We refer to each model as M pc and My p;f, respectively. There were no warning
messages in the Stan program output, and the diagnostics indicated a good mixing,
namely a split-R smaller than 1.05 for the model parameters and large effective sample
sizes. We also tried uniform priors for n* and ¢*, but the chains did not converge.

6.2 Estimation results

Table 4 shows that the posterior means of n* and (* are closer to 0 for the first set of
conservative PC priors, compared to the second set of near-uniform priors. The posterior
credible intervals of ¢* include the value 0, so a symmetric model seems adequate for
both datasets. The posterior means and standard deviations of the field X (s) are plotted
in Figure 8 in a prediction grid consisting of 100000 nodes for the M pc model. We can
observe a smoother field for the temperature data and several localized spikes for the
pressure data.

To compare the performance of the models we performed a leave-one-out cross-
validation (loocv) study. We also compared the two non-Gaussian models we fitted
before (Mpc and Mypir) with a Gaussian model for the latent vector x (Mgauss)-
Performing a loove study for non-Gaussian models by refitting a Stan model at every
held-out observation can be very expensive. The computation of the loocv estimates
is made efficient in Stan through the loo package (Vehtari et al., 2017), however, the
loo function released several warnings that the approximated loo estimates were not
reliable. Instead, we performed a pseudo loocv study similar to the ones performed
in Bolin and Wallin (2020) and Bolin and Kirchner (2020), which assumes that the
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Figure 8: Plots related to temperature and pressure data are on the left and right,
respectively. Plots (a)-(b) show the posterior means and plots (c)-(d) show the standard
deviations of the latent field X (s) for the first set of conservative PC priors.

posterior distributions of the parameters when removing observation ¢, 7(0|y_;), is equal
in distribution to w(8y), where 8 = (0, 0y, k,n*,(*). Still, the posterior distribution of
the latent field x and of the mixing variables V is affected when removing an observation
from the dataset.

We computed the mean squared error (MSE), mean absolute error (MAE), and
continuously ranked probability score (CRPS) of Gneiting and Raftery (2007) between
the observed data y; and the held-out predictions for each observation ¢ = 1,...,157,
and then averaged the results. We show these results in Table 5. The NIG model with
near-uniform priors had a higher MSE and CRPS than the Gaussian model for the tem-
perature data, so a very flexible non-Gaussian model for the temperature data did not
translate into higher predictive performance. If we look at the MSE and MAE estimates,
the NIG model with PC priors had the best predictive power for both datasets, while
the CRPS estimates indicate that the NIG model with near-uniform priors performed
the best for the pressure data. These results suggest that the NIG model with PC priors
did not overfit the data and had the highest predictive power if we use the posterior
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Data Model MSE MAE CRPS
Gaussian 4.477 1.506 0.859

Temperature NIG with PC priors 4.331 1.471 0.856
NIG with Unif. priors 4.881 1.491 0.863

Gaussian model 24036.848 98.647  54.893

Pressure NIG model with PC priors 20246.371 87.207 53.339
NIG model Unif. priors 21155.342 87.743  52.887

Table 5: Mean squared error (MSE), mean absolute error (MAE), and continuously
ranked probability score (CRPS) for the leave-one-out cross-validation predictions.

mean of the latent field X(s) as a spatial predictor.

7 Conclusions and discussion

There is a need for an inferential framework that shrinks models driven by non-Gaussian
noise towards Gaussianity in order to avoid overfitting and considering a non-Gaussian
model when there is not enough evidence in the data for asymmetry and leptokurtosis.
We have proposed achieving this contraction by selecting weakly informative priors that
penalize deviations from the simpler Gaussian model, quantified by the KLD. With an
appropriate parameterization of the non-Gaussian models, this approach leads to priors
that behave essentially like a LASSO penalty on the non-Gaussian flexibility parameters.

The processes presented in this paper are more flexible, while at the same time
being tractable, and are an attractive inherently robust alternative to Gaussian processes
when the adequacy of the Gaussianity assumption is questionable. Barndorff-Nielsen and
Blaesild (1981) suggested that the GH distribution is well-qualified for robustness studies
when the deviation from Gaussianity is in the form of asymmetry and leptokurtosis,
and work is currently being done to investigate the robustness properties of this more
general class of models.

Future work also includes approximating these non-Gaussian models in the INLA
framework (Rue and Martino, 2007). A direct implementation of these models in INLA
is not possible because INLA is only feasible for latent Gaussian models with up to 20
hyperparameters. If we condition the non-Gaussian vector x on the mixing variables V;,
we obtain a latent Gaussian model but the number of the mixing variables V;, which
would be hyperparameters in INLA, is larger than 20 in almost all applications.

Supplementary Material

Supplementary material for “Controlling the flexibility of non-Gaussian processes through
shrinkage priors” (DOL 10.1214/22-BA1342SUPPA; .pdf). The Supplementary Mate-
rial contains the proofs of the theorems, more properties of the non-Gaussian vector x
and process X (t), and additional tables and simulation figures.

Supplementary code for “Controlling the flexibility of non-Gaussian processes through
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shrinkage priors” (DOIL: 10.1214/22-BA1342SUPPB; .zip). This supplementary file con-
tains the R code of the motivation example in section 2, simulation study of section 5,
and the application in section 6.
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