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Bayesian Optimal Experimental Design for
Inferring Causal Structure

Michele Zemplenyi∗ and Jeffrey W. Miller†

Abstract. Inferring the causal structure of a system typically requires interven-
tional data, rather than just observational data. Since interventional experiments
can be costly, it is preferable to select interventions that yield the maximum
amount of information about a system. We propose a novel Bayesian method for
optimal experimental design by sequentially selecting interventions that minimize
the expected posterior entropy as rapidly as possible. A key feature is that the
method can be implemented by computing simple summaries of the current pos-
terior, avoiding the computationally burdensome task of repeatedly performing
posterior inference on hypothetical future datasets drawn from the posterior pre-
dictive. After deriving the method in a general setting, we apply it to the problem
of inferring causal networks. We present a series of simulation studies, in which we
find that the proposed method performs favorably compared to existing alterna-
tive methods. Finally, we apply the method to real data from two gene regulatory
networks.

Keywords: optimal experimental design, active learning, graphical models.

1 Introduction

Inferring the causal structure of a set of related variables is key to understanding how a
system works. By interpreting directed edges as implying causal relationships, a causal
network model extends standard (non-causal) graphical models by specifying the distri-
bution of the data when one or more variables are manipulated (Pearl, 2000). A large
body of work exists on learning the structure of graphical models from observational
data, that is, data passively collected without any experimental intervention performed
on the system under study; see Daly et al. (2011) for a comprehensive review. However,
typically, observational data alone can only reveal the structure of a graphical model
up to the Markov equivalence class containing the true data-generating graph (Verma
and Pearl, 1991). To fully determine the structure of a causal network without making
additional assumptions about specific functional model classes and error distributions,
interventional data are needed to resolve the directionality of uncompelled edges (Peters
et al., 2011). Interventional data result from experiments in which one or more nodes
have been actively manipulated, for example, by activating or inhibiting the expression
of a gene in a model organism (Sachs et al., 2005; Nagarajan et al., 2013).

Crucially, different intervention experiments yield different amounts of information
about the causal structure. Thus, since experiments are often expensive and time-
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consuming, it is advantageous to select interventions that provide the maximum amount
of information. Optimal experimental design (OED) methods, also referred to as active
learning algorithms, attempt to optimize this experiment selection process by providing
a means of evaluating which experiments should be performed next given the current
state of knowledge. From the Bayesian perspective, a naive approach would be as fol-
lows: for each candidate experiment, generate hypothetical datasets from the posterior
predictive, perform posterior inference on each dataset, and compute a functional of
the posterior that summarizes the amount of information gained. Averaging over many
datasets would yield an estimate of the posterior expected amount of information gain
for each candidate experiment. However, this naive approach would involve an inordi-
nate amount of computation.

In this article, we develop a novel Bayesian OED technique that is principled and
computationally tractable. Roughly speaking, we consider the asymptotic information
gain that each experiment would yield in the limit of infinitely many replicates, as a
proxy for the expected gain from finitely many replicates. Under fairly general condi-
tions, in this limit, the posterior is simply obtained by restricting the current posterior
to a subset of the parameter space. Thus, it turns out that the reduction in entropy
can be easily computed using samples from the current posterior, without generating
or performing inference on any hypothetical datasets. This leads to a vast reduction in
the computational burden required to select experiments.

Based on this principle, we introduce a class of entropy-based criteria for determining
the optimal intervention to perform in the next experiment. After the selected experi-
ment is performed and new experimental data is obtained, we update the posterior on
graphs and use it to select the next experiment. To sample from the posterior distribu-
tion over graphs, we employ an existing Markov chain Monte Carlo (MCMC) algorithm
with efficient dynamic programming-based proposals (Eaton and Murphy, 2007a). By
iterating between experimentation and analysis in this cyclical fashion, we focus the
data collection efforts in a way that reduces posterior uncertainty as rapidly as possible.
We compare our method to other active learning and structure learning approaches in
the context of several simulated datasets, as well as real data from a Perturb-seq dataset
(Dixit et al., 2016) and the Sachs cell-signaling network, a commonly studied bench-
mark in the causal network literature (Sachs et al., 2005; Eaton and Murphy, 2007b;
Cho et al., 2016; Ness et al., 2018).

The article is organized as follows. In Section 2, we derive our general criterion for
selecting optimal experiments. In Section 3, we apply our general criterion to causal
network models. In Section 4, we lay out the overall proposed framework, along with
implementation details about the entropy-based criteria and the MCMC algorithm.
Section 5 discusses related previous work on OED and active learning methods. In Sec-
tion 6, we present a collection of simulation studies. Section 7 contains an application to
the Perturb-seq dataset generated by Dixit et al. (2016). We conclude with a brief dis-
cussion of our findings and directions for further research. Additional results, including
an extensive analysis of the Sachs network, can be found in the Supplementary Material
(Zemplenyi and Miller, 2022).
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2 General criterion

In this section, we derive our general criterion for selecting optimal experiments. Readers
less familiar with the optimal experimental design literature may find the intuition
provided in Section A of the Supplementary Material (Zemplenyi and Miller, 2022)
helpful before proceeding.

2.1 Preliminaries

Suppose (θ, ν) ∼ π, X1, . . . , XN |θ, ν ∼ Pθ,ν i.i.d., and f(θ) is a function of θ with the
following three properties.

Condition 2.1.

(a) θ ⊥⊥ X1:N | f(θ),

(b) f(θ) is identifiable, in the sense that there is a function g such that g(Pθ,ν) = f(θ)
almost surely, and

(c) f(θ) can only take one of finitely many values.

In an experimentation context, θ is a parameter of interest, ν is a nuisance parameter,
π is the prior, f(θ) is the answer to a research question f (for example, is a certain
hypothesis true), and X1:N = (X1, . . . , XN ) are data from N replicates of an experiment
performed to obtain information about f(θ). The nuisance parameter ν is sometimes
needed for the i.i.d. assumption to hold. The interpretation of Condition 2.1(a) is that
if we know the true answer to the research question f , then the experiment provides no
additional information about θ. Condition 2.1(b) means that the answer f(θ) is uniquely
determined by the distribution of Xn, and thus, in the limit as N → ∞, f(θ) can be
recovered from X1, . . . , XN .

For the causal network models that we consider in subsequent sections, θ is a directed
acyclic graph and f is a set-valued function corresponding to an equivalence class of
graphs. First, however, we consider a general model and any f satisfying Condition 2.1.

2.2 Approximate information gain

The entropy of a random variable Y is defined as H(Y ) := −
∫
p(y) log p(y)dμ(y) where

p(y) is the density of Y with respect to some dominating measure μ, or more succinctly,
H(Y ) = −E(log p(Y )). Similarly, H(Y |Z) = −E(log p(Y |Z)), where the expectation is
over the joint distribution of Y and Z; thus, unlike the conditional expectation E(Y |Z),
the conditional entropy H(Y |Z) is not a random variable.

By standard properties of entropy, since f(θ) is a function of θ, the posterior entropy
is

H(θ | X1:N ) = H(θ | f(θ), X1:N ) +H(f(θ) | X1:N ).
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By Condition 2.1(a), H(θ | f(θ), X1:N ) = H(θ | f(θ)). Further, H(θ | f(θ)) = H(θ) −
H(f(θ)) again using that f(θ) is a function of θ. By Conditions 2.1(b) and 2.1(c), we
have H(f(θ) | X1:N ) → 0 as N → ∞, because the posterior on f(θ) is guaranteed
to concentrate at a single value (Doob, 1949; Miller, 2018); see Lemma B.1 of the
Supplementary Material (Zemplenyi and Miller, 2022) for details. Thus, we have the
following result.

Theorem 2.2. If (θ, ν) ∼ π, X1, . . . , XN |θ, ν ∼ Pθ,ν i.i.d., and f(θ) satisfies Condi-
tion 2.1, then

H(θ | X1:N ) −−−−→
N→∞

H(θ)−H(f(θ)). (1)

In other words, when N is sufficiently large, the difference between the prior en-
tropy H(θ) and the posterior entropy H(θ|X1:N ) is approximately equal to H(f(θ)).
Put another way, the information gained—in terms of the reduction in entropy—is ap-
proximately equal to the entropy of the answer f(θ) under the prior. Thus, to estimate
the information to be gained by a particular question f , we need only work with the
prior — not the posterior θ|X1:N for a yet unobserved dataset X1:N .

2.3 Selection of experiments using approximate information gain

To apply this result to select experiments, suppose that instead of π(θ, ν) being the prior,
π(θ, ν) is the current posterior given all the data from any previous experiments. Let E
denote a set of possible experiments. For each experiment e ∈ E , let Xe

1 , . . . , X
e
N |θ, ν ∼

P e
θ,ν i.i.d. be hypothetical random data from N replicates of experiment e. Suppose

fe(θ) satisfies Condition 2.1 above.

Then p(θ | Xe
1:N ) ∝ p(Xe

1:N | θ)π(θ) is the posterior distribution of θ given the
new data Xe

1:N as well as data from any previous experiments. The expected posterior
entropy of θ after experiment e is then

H(θ | Xe
1:N ) =

∫
H(θ | Xe

1:N = xe
1:N ) p(xe

1:N ) dxe
1:N (2)

where p(xe
1:N ) is the posterior predictive distribution for experiment e given the data

from previous experiments. We would like to choose e to minimize the expected posterior
entropy H(θ | Xe

1:N ). However, approximating H(θ | Xe
1:N ) via Monte Carlo is computa-

tionally intensive, since for every e, it would typically involve (i) simulating T hypothet-

ical datasets xe,1
1:N , . . . , xe,T

1:N from the posterior predictive p(xe
1:N ), (ii) approximating the

resulting new posteriors, p(θ | Xe
1:N = xe,t

1:N ) for t = 1, . . . , T , for example, by running T

MCMC chains, and (iii) approximating the entropy H(θ | Xe
1:N = xe,t

1:N ) for t = 1, . . . , T ,

in order to form a Monte Carlo approximation H(θ | Xe
1:N ) ≈ 1

T

∑T
t=1 Ĥ(θ | Xe

1:N =

xe,t
1:N ) using (2).

In contrast, the computation is vastly simplified using the approximation in (1).
First, note that by (1),

H(θ | Xe
1:N ) ≈ H(θ)−H(fe(θ)). (3)
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Since H(θ) does not depend on e, this implies that minimizing H(θ | Xe
1:N ) is approxi-

mately equivalent to maximizing H(fe(θ)). Further, since H(fe(θ)) depends only on π
and fe (and not on P e

θ,ν or Xe
1:N ), it is often relatively easy to approximate H(fe(θ))

using posterior samples θ1, . . . , θT . Specifically, we can generate a single set of samples
θ1, . . . , θT from the current posterior π, and then for each potential experiment e ∈ E ,
compute

H(fe(θ)) = −
∑
y

p(fe(θ) = y) log p(fe(θ) = y) ≈ −
∑
y

p̂e(y) log p̂e(y) (4)

where p̂e(y) :=
1
T

∑T
t=1 1

(
fe(θt) = y

)
and 1(·) is the indicator function. In (4), the sum

is over all values y in the range of fe. Thus, our proposed method of choosing e is as
follows.

1. Generate samples θ1, . . . , θT from the current posterior π.

2. Compute p̂e(y) =
1
T

∑T
t=1 1

(
fe(θt) = y

)
for each candidate experiment e.

3. Select the experiment e with the largest value of ĥe := −
∑

y p̂e(y) log p̂e(y).

Note that, equivalently, ĥe = −
∑

A∈Ae
π̂(A) log π̂(A) where π̂ = 1

T

∑T
t=1 δθt and Ae is

the partition of θ-space induced by fe, since p̂e(y) = π̂(A) where A = {θ : fe(θ) = y}.
Therefore, we can interpret ĥe as an approximation to the current posterior entropy of
the partition induced by fe.

It is important to note that although our criterion is motivated by the asymptotics
as the number of replicates goes to ∞, it accounts for finite sample uncertainty due
to the fact that the posterior π quantifies our uncertainty in θ based on finitely many
previous experiments and finitely many replicates of each previous experiment. Also, a
further advantage of our approach is that f(θ) often takes a small number of values,
such as two for a binary function, and thus, H(f(θ)) is often much easier to estimate
from samples than H(θ | Xe

1:N ) or even H(θ).

3 Criterion for causal network models

In this section, we apply our general criterion to the setting of causal network models.
First, we define the model we will use and provide some intuition for partitions of graph
space that are informed by interventional experiments.

3.1 Causal network models

We use the standard causal network model specification, which we review here. Note
that it is common to refer to these models as “Bayesian networks” (Pearl, 2000), but
we avoid this term because the Bayesian aspect of our methodology comes from the use
of posterior distributions to quantify uncertainty, rather than from features inherent to
the model itself.
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All graphical models use nodes to represent random variables and edges to represent
the probabilistic relationships among nodes. In contrast to traditional graphical models,
which only specify the joint distribution in the observational setting, a causal network
model also specifies the joint distribution when one or more nodes are manipulated. To
represent this causal structure, it is standard to use a directed acyclic graph (DAG)
along with the conditional probability distribution (CPD) of each node given the values
of its parent nodes. The directed edges in this structure represent cause and effect
relationships between parent and child nodes. We refer to a DAG topology along with
all the CPDs as a causal network model. Our assumptions implicitly entail the causal
Markov, causal sufficiency, and causal faithfulness conditions, as well as the assumption
of no selection bias, all of which are common in the causal structure learning literature.

In a causal network model, the graph topology and the CPDs can be viewed as
specifying an algorithm for generating data under manipulation of the nodes. Here, we
assume interventions that assign some subset of nodes to values that may be fixed or
random, but are independent of all other nodes. Thus, when intervening on node i,
we effectively sever all incoming edges to node i. The data generating process under
such an intervention can be described as follows: each manipulated node is set to its
assigned value and each non-manipulated node is drawn from its CPD, proceeding
in an ordering of the nodes that ensures parents are drawn before their children. In
the observational setting (that is, when no nodes are manipulated), this reduces to
the usual graphical model specification; that is, the joint distribution of the nodes
V = (X1, . . . , XV ) factors as p(X1, . . . , XV | β, G) =

∏V
i=1 p(Xi | Xpa(i), βi, G) where

G is the graph topology and βi contains the parameters of the CPD for Xi. However,
the algorithmic nature of the causal network also specifies that, when some subset of
nodes S is independently manipulated, the joint distribution is p∗(X1, . . . , XV | β, G) =∏V

i=1 p(Xi | Xpa(i), βi, G)1(i �∈S)p∗(Xi | β∗
i )

1(i∈S) where p∗(Xi | β∗
i ) is the distribution

of Xi when intervening on node i. Here, we define β := (β1, . . . , βV , β
∗
1 , . . . , β

∗
V ).

For a dataset D =
(
(X1,n, . . . , XV,n) : n = 1, . . . , N

)
consisting of N samples of the

V nodes under interventions on subsets S1, . . . , SN , respectively, the marginal likelihood
is

p∗(D|G) =

∫
p∗(D|β,G) p(β|G) dβ (5)

=

∫ ( N∏
n=1

p∗(X1,n, . . . , XV,n | β, G)
)
p(β|G) dβ (6)

= p∗O(D|G)p∗S(D) (7)

where

p∗O(D|G) =

V∏
i=1

∫ ( N∏
n=1

p(Xi,n | Xpa(i),n, βi, G)1(i �∈Sn)
)
p(βi|G) dβi (8)

p∗S(D) =

V∏
i=1

∫ ( N∏
n=1

p∗(Xi,n | β∗
i )

1(i∈Sn)
)
p(β∗

i ) dβ
∗
i . (9)



M. Zemplenyi and J. W. Miller 935

When p(βi|G) and p(β∗
i ) are conjugate priors, these integrals can be computed in closed

form. Since p∗S(D) does not provide any information about G, it is often omitted, how-
ever, we include it for theoretical purposes.

In this paper, we consider both categorical CPDs with Dirichlet priors and Gaussian
CPDs with Gaussian-Wishart priors for which the marginal likelihoods p∗(D | G) can
be computed in closed form. Specifically, in the categorical case we assume that the
CPD of each node is

p(Xi = k | Xpa(i) = j, βi, G) = βijk (10)

for i ∈ {1, . . . , V }, j ∈ {1, . . . , qi}, and k ∈ {1, . . . , ri}. Here, j enumerates the pos-
sible joint states of Xpa(i), and we abuse notation slightly by writing Xpa(i) = j
to mean that Xpa(i) takes the jth possible state. We use the BDeu Dirichlet prior,
βij ∼ Dirichlet(αij) with αijk = 1/(riqi), following standard practice in the categorical
setting (Heckerman et al., 1995; Cooper and Yoo, 1999; Eaton and Murphy, 2007a).
Similarly, for the interventions, we assume p∗(Xi = k | β∗

i ) = β∗
ik and for simplicity,

β∗
i ∼ Dirichlet(1/ri, . . . , 1/ri).

The BDeu prior has the favorable property of likelihood equivalence, which we use
in Section 4.2 (Buntine, 1991; Heckerman et al., 1995). For the Dirichlet-Categorical
case with BDeu prior,

p∗O(D | G) =

V∏
i=1

qi∏
j=1

Γ(αij)

Γ(αij +Nij)

ri∏
k=1

Γ(αijk +Nijk)

Γ(αijk)
(11)

where Γ is the gamma function, Nijk =
∑N

n=1 1(i 	∈ Sn, Xpa(i) = j, Xi,n = k) is the
number of samples in which node Xi is observed (not manipulated) to have state k
when its parents have state j, Nij =

∑ri
k=1 Nijk, and αij =

∑ri
k=1 αijk.

In the Gaussian case, we assume that the CPD for each node is

p(xi | xpa(i), βi, G) = N
(
xi

∣∣ mi +
∑

j∈pa(i)γijxj , σ
2
i

)
(12)

where N(xi | μ, σ2) is the density of a Gaussian with mean μ and variance σ2 > 0. The
local parameters are βi = (mi, γi, σ

2
i ), where γi = (γij : j ∈ pa(i)). Following standard

practice in the Gaussian case, we use the BGe Gaussian-Wishart prior; for details on
this prior and marginal likelihood, see Geiger and Heckerman (2013, 1999, 1994).

The method we propose can be used with other CPDs as well, so long as the marginal
likelihood can be computed or approximated in a computationally tractable way.

3.2 Intuition for partitions of graph space

In this section, we illustrate examples of partitions that intervention experiments induce
over a space of graphs. For expository purposes, suppose the true graph G is known to
be one of the four graphs shown in Figure 1; this example is inspired by an example
from Pournara and Wernisch (2004). In general, the set of graphs under consideration,
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Figure 1: Top panel: Graphs in G. Middle panel: Partition induced by intervening on A.
The manipulated node is shown in black while descendants of the manipulated node
are shaded grey. Bottom panel: Partition induced by intervening on C.

G, would consist of all possible DAGs on nodes {A,B,C,D} rather than just these four
graphs.

First, consider what features of a graph a single node intervention on node e could
help reveal. For example, we can expect an intervention on A to have observable down-
stream effects on at least some of the descendants of A, but it would not affect any
ancestors of A. Therefore, intervening on A should give us information about which
nodes are descendants of A. Thus, one possible choice for fe(G) is the set of descen-
dants of the manipulated node. Since fe(G) induces a partition of the set of graphs, we
refer to it as a partition scheme.

To select which node to manipulate, we compare the information each candidate
intervention is expected to yield with respect to a given partition scheme. Suppose A
is manipulated. Figure 1 shows the partition of graphs according to the descendants of
A; that is, G and G′ are in the same part if fe(G) = fe(G

′). In the first three graphs,
A has no descendants, whereas in the last graph, {B,C,D} are all descendants of A.
Thus, as long as intervening on A has an effect on one or more descendants, we could
distinguish whether G ∈ {G1, G2, G3} or G = G4 after sufficiently many replicates of
the intervention on A. Meanwhile, if node C is manipulated, a different partition over
G is induced since C has a different pattern of descendant sets than A; see Figure 1.

In general, an intervention partitions the set of graphs into equivalence classes such
that (i) the graphs in each class are indistinguishable with respect to this intervention
(corresponding to Condition 2.1(a)), and (ii) graphs in different classes are distinguish-
able (corresponding to Condition 2.1(b)). For the Dirichlet-Categorical model that we
use, the equivalence classes induced by the likelihood have an elegant graph-based char-
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acterization; see Section 4.2. However, we have also found several other partition schemes
to be useful in practice; see Section 4.1.

After an intervention is performed, the generated data provide evidence to suggest
which parts of the partition are compatible with the experimental data — specifically,
parts that are more compatible with the data will have higher posterior mass. Roughly
speaking, we would like to choose an experiment that narrows down the set of compatible
graphs as much as possible. For instance, in the toy example in Figure 1, intervening
on C is preferable to intervening on A, since C induces a finer partition of G. However,
in general it is also important to consider the posterior probability of the graphs given
the data from any previous experiments, since there is no point in finely partitioning
regions of the space with very low probability. To make this precise, we apply our general
entropy-based criterion from Section 2 to the causal network setting, as described next.

3.3 Applying the experiment selection criterion to causal networks

Specializing from the general setting of Section 2 to the case of causal networks, we define
the unknown parameter of interest to be θ := G and let fe(G) be a partition scheme,
where here fe is a set-valued function. Further, in the Dirichlet-Categorical case, we
define ν := β, that is, the nuisance parameter ν is the collection of CPD parameters β.
Our goal is to perform experiments that make the posterior on graphs concentrate at
the true graph as quickly as possible. We quantify concentration using the entropy of
the posterior on graphs, H(G), where G is distributed according to the posterior given
all experiments so far. Thus, we wish to perform experiments that minimize H(G).

In many cases, inferring the entire graph G is overly ambitious. For instance, if the
number of nodes is even moderately large, the number of possible graphs is extremely
large, making it infeasible to infer G completely. However, often, one only needs to infer
a specific feature of G, such as whether node X1 is an ancestor of node X2, or whether
X3 mediates the effect of X1 on X2. In such cases, one can instead define θ to be a
function of G, say, θ := ϕ(G) and focus on minimizing H(ϕ(G)) rather than H(G).

To prioritize experiments, we apply the general criterion derived in Section 2. Specif-
ically, given samples G1, . . . , GT from the current posterior, we choose the next experi-
ment e to maximize

ĥe = −
∑
y

p̂e(y) log p̂e(y) (13)

where p̂e(y) =
1
T

∑T
t=1 1(fe(Gt) = y). Thus, we choose the intervention that maximizes

the posterior entropy (under the current posterior) of the partition induced by fe. If
Condition 2.1 is satisfied, then this minimizes the approximate expected entropy of
the new posterior given the additional data from the experiment. Meanwhile, if Condi-
tion 2.1 is not fully satisfied, then this approach is not guaranteed to reduce the entropy
optimally, but is still a sensible way of choosing interventions that quickly reduce the
entropy.
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4 Practical implementation of the method

In this section, we provide practical details on implementing the criterion in Section 3.3,
including specifics regarding partition schemes, equivalence classes of graphs, sampling
from the posterior on graphs, and an overall algorithm.

4.1 Partition schemes

In the context of graphs, Condition 2.1(a) is that given fe(G), the graph G is condi-
tionally independent of data from experiment e, and Condition 2.1(b) is that fe(G)
is identifiable with respect to the distribution of the data under experiment e. Condi-
tion 2.1(c) is always satisfied since there are finitely many graphs G.

While in theory we use Condition 2.1 to justify the method, in practice Condi-
tions 2.1(a) and 2.1(b) are not strictly necessary. Recall that the optimality theory is
based on the expected information gain from asymptotically many replicates of the next
selected experiment. Thus, in practice, it may be possible to obtain excellent perfor-
mance using a partition scheme that violates Condition 2.1(a) or 2.1(b). Consequently,
we define a variety of partition schemes here, and we empirically compare their perfor-
mance in Section 6.

We consider experiments e that intervene on a single node, and for brevity we use e
to denote the manipulated node. Consider the following partition schemes.

1. Markov equivalence class (MEC): fe(G) equals the Markov equivalence class of
graphs when intervening on node e ∈ V ; see Section 4.2.

2. Child Set (CS): fe(G) equals the set of children of node e ∈ V .

3. Descendant Set (DS): fe(G) equals the set of descendants of node e ∈ V .

4. Parent Set (PS): fe(G) equals the set of parents of node e ∈ V .

We also consider the following slightly different approach.

5. Pairwise Child (PWC): Maximize
∑

v∈V H(fe,v(G)) where fe,v(G) = 1((e, v) ∈ G)
is the indicator of whether G has an edge from e to v.

4.2 Markov equivalence classes

Two DAGs are said to be Markov equivalent if they represent the same set of condi-
tional independence relations. While all of the conditional independence relationships
entailed by a graph can be computed using the d-separation algorithm (Pearl, 1988),
the following elegant result provides a simpler way to determine whether two DAGs are
Markov equivalent based on their topology.

Theorem 4.1 (Verma and Pearl, 1991). Two DAGs G1 and G2 are Markov equivalent
if and only if they have the same skeleton and the same v-structures.
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The skeleton of a graph is its topology ignoring edge directions. A v-structure is a
triple of nodes (x, y, z) with topology x → y ← z, where there is no edge connecting x
and z. In general, observational data alone cannot distinguish between Markov equiv-
alent graphs unless one assumes specific error distributions or functional model classes
(Peters et al., 2011). A rich literature exists on Markov equivalence; see, for example,
Andersson et al. (1997) and Chickering (1996).

While Markov equivalent graphs represent the same conditional independence rela-
tionships, they differ in the causal relationships they encode since it is the direction of
arrows, not just the skeleton, that is important for causal interpretation. Interventions
can help distinguish among graphs in the same Markov equivalence class. However,
even after an intervention is performed, some graphs may still be indistinguishable.
Hauser and Bühlmann (2012a) consider performing a sequence of interventions, and
they provide a generalization of Theorem 4.1 that characterizes the equivalence classes
of graphs that are indistinguishable with respect to the whole sequence of interven-
tions.

For our approach, however, we only need to consider the partition induced by a sin-
gle candidate intervention (rather than the whole sequence of interventions), since the
information from previous interventions is already represented in the posterior distribu-
tion. Thus, for our approach, a natural choice of partition scheme is to define fe(G) to be
the Markov equivalence class of Ge, where Ge is the DAG obtained from G by removing
all edges from pa(e) to e. This is referred to as the “MEC” scheme in Section 4.1.

Following the notation of Sections 2 and 3, we write PG,β for the distribution of
(X1, . . . , XV ) given graph G and CPD parameters β = (β1, . . . , βV , β

∗
1 , . . . , β

∗
V ). Define

βe to be a modified copy of β in which β∗
e takes the place of βe and βe1 takes the place

of β∗
e . Thus, when intervening on node e, the distribution can be written as PGe,βe .

Consider a sequence of interventions in which a single node is manipulated at a
time. For instance, suppose we have performed Nk replicates intervening on node ik
for k = 1, . . . ,K, and we are considering intervening on node i′ for the next set of N ′

replicates. The joint model is then

(G, β) ∼ π

Xe
1 , . . . , X

e
N | G, β i.i.d. ∼ PGe,βe for (e,N) ∈ {(i1, N1), . . . , (iK , NK), (i′, N ′)}

(14)

where PG,β is the categorical model, π(β|G) is the BDeu-based prior defined in Sec-
tion 3.1, and π(G) is an arbitrary prior on DAGs.

Theorem 4.2. Under the joint model in (14), if fe(G) is the Markov equivalence class
of Ge then

Xi′

1:N ′ ⊥⊥ G | fi′(G), fi1(G), . . . , fiK (G).

Theorem 4.3. Assume the joint model in (14), and let D = (Xi1
1:N1

, . . . , XiK
1:NK

) denote
the data observed so far. If fe(G) is the Markov equivalence class of Ge then there is a
function g such that g(PGi′ ,βi′ ) = fi′(G) almost surely when (G, β) ∼ p(G, β | D).
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Now, to employ Theorem 2.2, observe that under the model in (14), if we condition
on D then we obtain the following model:

(G, β) ∼ p(G, β | D)

Xi′

1 , . . . , X
i′

N |G, β i.i.d. ∼ PGi′ ,βi′ .

This follows the form of the abstract model in Section 2, with appropriate notational sub-
stitutions. As above, let fe(G) be the Markov equivalence class of Ge. Condition 2.1(a) is
that Xi′

1:N ′ ⊥⊥ G | fi′(G) in this conditional model given D, or equivalently, Xi′

1:N ′ ⊥⊥ G |
fi′(G), D under the joint model in (14). By Theorem 4.2,Xi′

1:N ′ ⊥⊥ G | fi′(G), fi1(G), . . . ,

fiK (G), so we can expect that Xi′

1:N ′ ⊥⊥ G | fi′(G), D holds approximately when
N1, . . . , NK are sufficiently large, since D = (Xi1

1:N1
, . . . , XiK

1:NK
) and Xik

1:Nk
pertains

to fik(G). Condition 2.1(b) is that there exists g such that g(PGi′ ,βi′ ) = fi′(G) almost
surely when (G, β) ∼ p(G, β | D), which is precisely what Theorem 4.3 shows. Finally,
Condition 2.1(c) is that fi′(G) takes finitely many values, which is true since there are
only finitely many graphs G on V nodes.

Therefore, Theorem 2.2 indicates that selecting the next intervention using the strat-
egy in Section 2.3 with fe(G) chosen to be the Markov equivalence class of Ge is a
natural choice to optimally reduce entropy, under the asymptotic approximation that
the number of replicates in each experiment is sufficiently large.

4.3 Sampling from the posterior distribution on graphs

A large body of work exists on MCMC methods for sampling from p(G|D). This is
a challenging task since the number of DAGs increases super-exponentially with the
number of nodes and the posterior on graphs is often highly multi-modal. Some have
proposed searching the space of graphs using local proposals that add, delete, or reverse
edges at random (Madigan et al., 1995) and others have improved chain mixing by
sampling over the space of node orderings (Friedman and Koller, 2003; Ellis and Wong,
2006). We use a clever MCMC algorithm developed by Eaton and Murphy (2007a) that
uses dynamic programming (DP) to construct proposals. This method explores the
space of DAGs using a Metropolis-Hastings algorithm with a proposal distribution that
is a mixture of local moves (edge deletions, additions, or reversals) and a global move
that proposes a new graph in which an edge exists between two nodes with probability
equal to the exact marginal posterior edge probability, computed using DP.

Key to the DP algorithm’s ability to compute exact marginal posterior edge prob-
abilities is the assumption of a “modular prior” over structures. Rather than directly
specifying a prior over DAGs, a modular prior requires specifying a prior over node
orderings and a prior that gives weight to sets of parents (and not to their relative
order). Together these terms define a joint prior over graphs and orders. Defining the
prior in this way allows the contribution to the marginal likelihood for nodes with the
same parent sets to be cached and re-used for efficient exact computation, regardless
of the orderings of the parents; see Koivisto (2006) for details of the DP algorithm and
see Koivisto and Sood (2004), Friedman and Koller (2003), and Ellis and Wong (2006)
for further discussion of priors on orderings and graphs.
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A modular prior tends to favor graphs that are consistent with more orderings,
such as fully disconnected graphs and tree structures. In fact, the modular prior fa-
vors tree structures over chains even if the two structures are Markov equivalent.
For instance, tree structure 1 ← 2 → 3 has higher prior probability than the chain
1 → 2 → 3 under a modular prior since the tree structure is consistent with two node
orderings (Eaton and Murphy, 2007a). While one may want to use a uniform prior
over DAGs in the absence of prior knowledge, Ellis and Wong (2006) and Eaton and
Murphy (2007a) show how a uniform prior over orderings and flat prior over parent
sets together encode a highly nonuniform prior over DAGs. The hybrid MCMC-DP
approach that we use (Eaton and Murphy, 2007a) overcomes this limitation of the
DP algorithm. With MCMC-DP, we can use an arbitrary prior on graphs and draw
valid samples from p(G|D), while benefiting from a fast, data-driven proposal distri-
bution to help traverse the DAG space. We implemented our method in MATLAB
(version 2017a) and we use the BDAGL package (Eaton and Murphy, 2007a) to sam-
ple from p(G|D) using the MCMC-DP algorithm. Source code is available online at
https://github.com/mzemplenyi/OED-graphical-models.

4.4 Overall algorithm

The inputs to our proposed algorithm are (i) a set of candidate experiments E , (ii) a
mechanism for generating i.i.d. samples (X1, . . . , XV ) from Pe,0, the true distribution
under experiment e ∈ E , and (iii) a partition scheme fe(G) for each experiment e ∈ E .
For the first experiment, we generate observational data by not intervening on any
nodes. Each subsequent experiment sets a single node from E to a fixed value. The
algorithm proceeds as follows. Let D denote the collection of data from the experiments
so far.

1. Obtain posterior samples from π(G) = p(G|D) and approximate the posterior
entropy, H(G).

2. Check the stop criteria. Stop the algorithm if either:

(a) H(G) falls below a given entropy tolerance threshold, or

(b) the maximum number of allowed experiments has been reached.

Otherwise, continue.

3. For each e ∈ E , enumerate the partition over the sampled graphs induced by e and
calculate ĥe, the approximate posterior entropy over the partition (13).

4. Select the experiment e that maximizes ĥe as the next intervention experiment to
perform.

5. Generate data for experiment e: draw N i.i.d. samples from Pe,0.

6. Combine the new data with the existing data and repeat from the beginning.

https://github.com/mzemplenyi/OED-graphical-models
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For computational efficiency, note that in step 3, it is only necessary to consider those
parts A in the partition Ae that contain one or more posterior samples. Since it is
not necessary to consider all parts in the partition, this can provide a computational
advantage in cases where there are an intractable number of parts.

5 Previous work

Previously proposed methods for learning causal network models from observational
and interventional data in the non-OED setting typically fall into one of two categories:
(1) constraint-based methods, such as the PC-algorithm (Spirtes et al., 2001), that test
for conditional independence constraints in the data and select models that match those
constraints, and (2) score-based methods, wherein the space of structures is searched for
ones that are most supported by the data, as quantified by scores such as the Bayesian
marginal likelihood or BIC. More recently, OED methods, also referred to as active
learning methods, have been developed for both approaches.

He and Geng (2008), Eberhardt (2008), and Hauser and Bühlmann (2012b) pro-
pose constraint-based active learning methods that first use observational data or prior
knowledge to construct a partially directed acyclic graph (PDAG), also called an es-
sential chain graph. They then use graph-theoretic results to select the interventions
required to orient all edges in the essential chain graph, using variations on criteria
that generally seek to minimize the number of undirected edges in the post-intervention
equivalence class of graphs. These algorithms take as a starting point a known obser-
vational essential graph, which would require infinite observational data in principle,
and in practice is estimated from finite observational data. However, they often do not
perform as well in finite sample settings where estimation errors introduced in the initial
chain graph can lead to an incorrectly estimated DAG. Hauser and Bühlmann (2012a)
demonstrate that, in the finite sample setting, estimation errors can be reduced by us-
ing interventional data to refine not only the directionality of uncompelled edges in the
chain graph (as done by He and Geng), but also the skeleton of the chain graph.

Tong and Koller (2001) and Murphy (2001) develop score-based active learning
methods for Bayesian networks. They use MCMC to sample from the space of node
orderings (Tong and Koller) or graphs (Murphy) along with a decision-theoretic frame-
work to select interventions. Both methods are computationally expensive since they
involve computing the predictive density for each sampled graph subject to each pos-
sible intervention. Other methods forgo the predictive sampling step and instead use
selection criteria with lower computational burdens. Pournara and Wernisch (2004)
consider the equivalence classes of high-scoring networks (determined by a greedy hill-
climbing search) and select interventions that tend to partition transition sequence
equivalence classes into smaller and smaller subclasses. Li and Leong (2009) propose a
‘non-symmetrical entropy’ criterion closely related to Tong and Koller’s loss function,
but use the DP algorithm rather than MCMC to calculate edge probabilities between
nodes. Cho et al. (2016) adapt the active learning framework of Murphy (2001) to the
Gaussian Bayesian network setting. Ness et al. (2018) use a Bayesian framework that al-
lows one to directly encode prior causal knowledge about each edge, which then induces
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a prior over graphs. Their method, bninfo, takes a set of highly scoring PDAGs and
returns the minimally sized batch of interventions that is expected to correctly orient
the greatest number of edges; this method shares elements of both the score-based and
constraint-based methods.

The previous work that is most similar to ours is the method of Almudevar and
Salzman (2005), who explore the performance of an entropy-based criterion that uses
the idea of partitioning the space of graphs to minimize the entropy on the posterior
on graphs. While our method is based on a similar theoretical justification as that of
Almudevar and Salzman (2005), we generalize the approach to a large class of parti-
tion schemes and we improve performance by using a more efficient MCMC procedure.
Further, in contrast to the limited simulation study of Almudevar and Salzman (2005),
we provide a more extensive set of empirical results on a wide variety of networks, we
compare with other leading algorithms, and we make our software publicly available.

For a comprehensive review of optimal experimental design methods for other mod-
els, including Boolean networks and differential equation models, see Sverchkov and
Craven (2017).

6 Simulation results

In this section we first evaluate the performance of our OED method under various
partition schemes. Then we compare our method to other causal structure learning
methods in both discrete and Gaussian settings. Throughout, we evaluate performance
using the following metrics:

1. Mean Hamming distance: After each experiment, we calculate the posterior prob-
ability of an edge between nodes Xi and Xj via:

p(i → j | D) =
∑

G∈Si→j

p(G|D) (15)

where Si→j is the set of graphs containing the edge i → j. We then construct
the median probability graph, defined as the graph containing only those edges
for which p(i → j | D) ≥ 0.5 (Castelletti et al., 2018; Peterson et al., 2015). The
Hamming distance between the median probability graph and the ground truth
network is equal to the number of false detected edges (false positives) and missing
edges (false negatives) in the median probability graph. We then take the average
of this distance over all simulations.

2. Mean true positive rate (TPR): After each experiment, we calculate the proportion
of correctly detected edges present in the median probability graph among the
edges in the ground truth network. We then find the average of this proportion
over all simulations.

3. Mean true negative rate (TNR): After each experiment, we calculate the pro-
portion of correctly detected non-edges present in the median probability graph



944 Bayesian Optimal Experimental Design

Figure 2: Left: Structure of 10-node network. Right: Structure of Asia network as defined
by the Bayesian Network Repository available in the bnlearn R package (Scutari, 2010).

among the non-edges in the ground truth network. We then find the average of
this proportion over all simulations.

4. Mean false discovery rate (FDR): After each experiment, we calculate the propor-
tion of false positive edges out of the sum of the false positive and true positive
edges present in the median probability graph. We then find the average of this
proportion over all simulations.

For all figures, error bars represent the standard error of the mean over 50 simulations.

6.1 Comparison of partition schemes

Our first simulation study compared the five different ways, defined in Section 4.1, to
partition graphs sampled from the posterior p(G|D). We randomly generated a discrete
graph with 10 binary nodes and generated observational and intervention samples from
this ground truth network; see Figure 2 for the graph’s structure.

For each partition scheme, we ran nsims = 50 simulations wherein each simulation
consisted of a series of nexp = 7 experiments. For the first experiment, we generated
nobs = 1000 observational samples to form the initial dataset D. For each of the six
subsequent experiments, we generated nintv = 1000 additional intervention samples and
appended them to D, where the manipulated node was selected via our entropy-based
selection criterion based on the partition scheme under consideration. After generating
data for each experiment, we used MCMC-DP to draw 250,000 posterior samples from
p(G|D), discarded the first 150,000 samples as burn-in, and used the remaining 100,000
samples for posterior inference. We used a uniform prior over graphs and did not allow
a node to be manipulated more than once. In addition to the five partition schemes,
we also evaluated a “random learner” that randomly selected the next node to be
manipulated, rather than using an entropy criterion.
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Figure 3: Mean Hamming distance and mean TPR for five entropy-based OED meth-
ods (each using a different partition scheme) and the random learner on a 10-node
binary network. Settings: nsim = 50, nexp = 7, nobs = 1000, nintv = 1000. MEC =
Markov equivalence class; CS = child set; DS = descendant set; PS = parent set; PWC
= pairwise child; R = random learner. See Section E of the Supplementary Material
(Zemplenyi and Miller, 2022) for accompanying graphs of false discovery rate and true
negative rate.

Figure 3 shows the mean Hamming distance and mean TPR for the five entropy-
based methods and the random learner on the 10-node network. FDR and TNR results
can be found in Section E of the Supplementary Material (Zemplenyi and Miller, 2022).
Each of the entropy-based methods performed better than the random learner according
to all metrics. For this network, the entropy-based methods all performed similarly. We
found this to be the case in simulations using other randomly generated networks as
well.

The benefit of an entropy-driven experimental design method over randomly selected
interventions is evident from Figure 3. To fall within a given mean Hamming distance
from the true graph required far fewer interventions using the OED methods compared
to the random learner.

Sensitivity analysis varying the intervention sample size

Since the justification for our proposed criterion is based on the asymptotics as nintv

goes to infinity, we ran a sensitivity analysis varying nintv to assess performance in small
sample size settings. Using the 10-node binary network, the MEC partition scheme, and
the random learner as a baseline, we ran simulations for nintv ∈ {20, 50, 200, 1000}
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Figure 4: Sensitivity analysis varying the number of intervention samples (nintv) on
the 10-node binary network. Mean Hamming distance and mean TPR are displayed
for the Markov equivalence class (MEC) partition method. The random learner (R) is
included for comparison at the highest and lowest nintv levels. Settings: nsim = 50,
nexp = 7, nobs = 1000, nintv ∈ {20, 50, 200, 1000}. Curves for the random learner at
nintv ∈ {50, 200} are omitted here for the sake of visual clarity, but can be found in
Section C of the Supplementary Material (Zemplenyi and Miller, 2022).

(Figure 4). As expected, the network is learned less accurately with fewer interven-
tion samples, but even when using the fewest intervention samples (nintv = 20), our
approach provides significant improvement over the random baseline. Thus, while the
optimality theory underlying the method is based on the expected information gain
from asymptotically many replicates of the next selected experiment, this sensitivity
analysis suggests that our approach performs well even when a practically reasonable
number of replicates of the next experiment are actually done.

6.2 Comparison with other methods

We compared our OED algorithm to two other OED methods, as well as the state-of-
the-art greedy equivalence search (GES) (Chickering, 2002) and greedy interventional
equivalence search (GIES) (Hauser and Bühlmann, 2012a) structure learning methods.

The first OED method is proposed by Li and Leong (2009) and also uses an entropy-
based criterion. In fact, what Li and Leong refer to as their non-symmetrical entropy
criterion for selecting interventions is equivalent to the pairwise child (PWC) entropy
criterion described in Section 4.1. The difference between the methods, however, is
that Li and Leong (2009) do not use MCMC to sample from the posterior on graphs.
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Rather, they evaluate their criterion using exact edge probabilities computed using a
DP algorithm (Koivisto, 2006); see Section 4.3 for details on the DP algorithm and its
assumptions. We refer to the method of Li and Leong as “DP” in subsequent figures.

The second OED method, “bninfo” (Ness et al., 2018), evaluates the expected causal
information gain of candidate interventions and outputs a minimally sized batch of in-
terventions expected to maximize that gain. Ness et al. (2018) define causal information
gain as the increase in correctly oriented edges in the causal network. Their algorithm
constructs the recommended batch of interventions one node at a time, in descend-
ing order of expected causal information gain. In order to compare our method with
bninfo, for a given causal network, we took the sequence of interventions that bninfo
recommended and used MCMC-DP to sample from the posterior distribution on graphs
between each recommended intervention. This allowed us to construct the median prob-
ability graph and calculate the Hamming distance and TPR after each intervention that
bninfo recommended. Note that Ness et al. (2018) provide a way to encode prior knowl-
edge on each edge in the graph, but to facilitate comparison with the other methods,
we use a uniform prior on the graph topology. Ness et al. (2018) implemented bninfo for
discrete settings so we do not include bninfo in our analysis of networks with continuous
data.

While the GES and GIES algorithms are not OED methods, they can serve as helpful
comparisons for structure learning. GES is a score-based algorithm that estimates the
Markov equivalence class of a DAG using observational data, while GIES estimates
the interventional Markov equivalence class of a DAG using both observational and
interventional data. They are both implemented in the ‘pcalg’ R package (Kalisch et al.,
2012) for Gaussian settings so we do not include them for comparison in our analysis
of discrete data networks.

Asia network

We first assessed performance of the various methods on the Asia network, a commonly
used network with eight binary nodes first described by Lauritzen and Spiegelhalter
(1988) (Figure 2). We used the conditional probability table provided by the bnlearn R
package to generate observational and interventional data (Scutari, 2010).

Figure 5 compares the performance of our method (using the MEC partition scheme),
DP, bninfo, and the random learner. For this simulation study we used the following
settings: nsim = 50, nexp = 9, nobs = 300, nintv = 300. For the MCMC methods,
we drew 250,000 samples, discarded the first 150,000 samples, and used the remaining
100,000 samples for inference. For the sake of clarity, we omitted the other partition
schemes since they performed similarly to the MEC partition scheme.

After the first intervention experiment, the four methods performed nearly iden-
tically. The methods then diverged at experiment three, with the random learner and
bninfo lagging behind MEC and DP. Note that the maximum batch size of interventions
recommended by bninfo across the simulations consisted of seven nodes, so the bninfo
results in Figure 5 only extend to the eighth experiment (the observational experiment
followed by seven interventions). For the other methods, by the ninth experiment, all
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Figure 5: Mean Hamming distance and mean TPR on the eight-node Asia network with
the following settings: nsim = 50, nexp = 9, nobs = 300, nintv = 300. MEC = our
method with MEC partition scheme; DP = dynamic programming method of Li and
Leong (2009); bninfo = method of Ness et al. (2018); R = random learner. See Section E
of the Supplementary Material (Zemplenyi and Miller, 2022) for accompanying graphs
of false discovery rate and true negative rate.

eight nodes had been manipulated since we did not allow for repeat interventions. Thus,
it makes sense that the MEC and random learner results align by the last experiment;
they have each sampled the same data, albeit in different orders. Even though the DP
method had also sampled intervention data for all nodes by the ninth experiment, it
does not converge with the other methods because the DP method uses a different prior
over graphs (a non-uniform prior induced by its modular joint prior over node ordering
and parent sets as described in Section 4.3).

Gaussian setting

Figure 6 shows MEC, DP, GES, GIES, and random learner performance on a randomly
generated 11-node Gaussian causal network. The GES algorithm of Chickering (2002)
performs structure learning solely using observational data, so its results are limited to
the first experiment. The GIES algorithm proposed by Hauser and Bühlmann (2012a)
extends GES to perform structure learning from a mix of observational and interven-
tional data, but does not recommend the optimal next intervention to perform as OED
methods do. Thus, to compare the structure learning abilities of GIES vs MEC over
the course of a sequence of experiments, we first ran MEC to obtain a recommended se-
quence of interventions, and then provided the same set of interventional data to GIES
at each step.
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Across the six experiments, MEC, DP, and the random learner all had a lower Ham-
ming distance than GIES, including at the initial experiment when only observational
data was used to infer the network structure. GIES’s higher Hamming distance was
driven primarily by a high false discovery rate; whereas in terms of TPR, GIES outper-
formed MEC, DP, and the random learner. On balance, MEC (our method) appears to
have the best performance overall, when considering the three metrics as a whole.

Effect of network topology on inference

Next, we explored the effect of network topology on performance of MEC, PWC, DP,
bninfo, and the random learner. Here, as in Section 6.1, “PWC” refers to using our OED
method with the PWC partition scheme. We include PWC for direct comparison with
the DP method in order to illustrate how two methods that employ the same entropy
criterion for selecting interventions—but differ in how posterior edge probabilities are
calculated (see Section 4.3)—may perform differently depending on network topology.
We considered two eight-node networks, one with a chain structure and one with a tree
structure (Figure 7). For the chain network, the DP method performed worse than all
methods, including PWC and the random learner, whereas for the tree network, all
OED methods performed equally well. The poor DP performance for the chain network
is a result of the non-uniform prior over graphs that the DP algorithm uses to achieve
its computational efficiency, as described in Section 4.3. The full results for the chain
and tree networks can be found in Section D of the Supplementary Material (Zemplenyi
and Miller, 2022).

7 Application to gene expression data

OED methods for graphical models are often developed with the goal of inferring bio-
logical networks, such as gene regulatory networks or cell-signaling networks. Especially
in light of recent advances in the precision of gene-editing technologies, the ability
to iterate between experimentation and analysis by adaptively selecting experiments
is a promising avenue for reconstructing biological networks. We applied our method
to two datasets generated from biological networks: the Sachs dataset (Sachs et al.,
2005) and a subset of the Perturb-seq dataset from Dixit et al. (2016). We provide the
Perturb-seq results here, and we have placed the Sachs network results in Section F of
the Supplementary Material (Zemplenyi and Miller, 2022). The Sachs network presents
particular challenges—likely due to cycles existing in the true network that violate the
causal Markov assumption—leading to difficulties for many structure learning methods
including our own (Cho et al., 2016; Ness et al., 2018; Sverchkov and Craven, 2017;
Wang et al., 2017).

Here, we present the results of applying our method, as well as the DP, GES, and
GIES methods, to the Perturb-seq genetic screening data. We focused our analysis on
a network composed of 14 transcription factors highlighted in Figure 4B of Dixit et al.
(2016) that are involved in regulating various cell programs including antiviral response,
T-cell activation, and mitochondrial function. Wang et al. (2017) also studied this set



950 Bayesian Optimal Experimental Design

Figure 6: Comparison of the MEC, DP, GIES, GES, and random learner methods on
a randomly generated 11-node Gaussian causal network. Settings: nsim = 50, nexp =
6, nobs = 50, nintv = 50. MEC = our method with MEC partition scheme; DP =
dynamic programming method; GIES = Greedy Interventional Equivalence Search; GES
= Greedy Equivalence Search; R = random learner.

of transcription factors in their work introducing the interventional greedy sparsest
permutation (IGSP) structure learning algorithm. To facilitate comparison with the
results of the IGSP algorithm, we followed the example of Wang et al. (2017) and
restricted our analysis to 992 observational samples and 13,435 interventional samples
collected under eight gene interventions for the 14 measured transcription factors.
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Figure 7: Topology for the eight-node chain structure (left) and eight-node tree structure
(right). The results for the chain and tree networks can be found in Section D of the
Supplementary Material (Zemplenyi and Miller, 2022).

While in some well-studied cases there is a consensus network that can serve as
a benchmark, there is not yet an established benchmark network for these 14 tran-
scription factors. Thus, since we cannot calculate performance metrics (such as Ham-
ming distance) relative to a consensus network, we instead benchmark each method
against itself. More precisely, for each method, we define the benchmark graph to be
the median probability graph estimated by that method when run on all of the obser-
vational and interventional data. Performance metrics are computed relative to these
method-specific benchmarks. This approach allows us to visualize the relative rates of
information accumulation for each method, even in the absence of a common consensus
network.

Figure 8 shows that the MEC and DP methods perform comparably on all diag-
nostics and both significantly outperform the random learner in terms of Hamming
distance, TPR, and FDR. As in Figure 6, we ran the GIES algorithm using the se-
quence of interventions recommended by MEC. This sequence of interventions, par-
ticularly the first intervention, results in a rapid improvement in GIES’s performance
relative to its benchmark. We exclude GES from the comparison since, for this setting
in which each method serves as its own benchmark, the GES algorithm would show no
improvement. For example, GES would arrive at its own benchmark and have a Ham-
ming distance of 0 after using all observational data for structure learning from the first
experiment.

Section G of the Supplementary Material (Zemplenyi and Miller, 2022) displays
the adjacency matrices estimated by the MEC, DP, GIES, and IGSP methods using all
observational and interventional samples, as well as the GES adjacency matrix estimated
from all observational data. MEC and DP are most similar in terms of their estimated
network structures. GIES also exhibits strong similarity to MEC and DP, particularly
with respect to the parent-child relationships of transcription factors Junb, Nfkb1, Rel,
Spi1, and Stat1. Comparing the GIES and GES adjacency matrices illustrates how
augmenting observational data with interventional data can dramatically change the
estimated network. The network estimated by IGSP (which we adapt from the results
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Figure 8: Diagnostics comparing MEC, DP, and GIES performance on the 14-gene
Perturb-seq dataset relative to the random learner. The median probability graph at-
tained by each method after all observational and interventional data has been used
serves as the benchmark network for each method.

shown in Wang et al., 2017) is much more sparse than the networks estimated by MEC,

DP, and GIES. IGSP suggests a network primarily composed of three disconnected tree

structures with Cebpb, Nfkb1, and Stat1 as parent nodes each regulating many child

nodes.
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8 Conclusion

We presented a novel Bayesian OED methodology for optimizing the experiment selec-
tion process in a computationally tractable way. The core of the method is a criterion
for selecting the experiment that is expected to yield the greatest reduction in posterior
entropy. We found that the method efficiently infers causal relationships in networks
with various topologies, with the greatest gains in information coming from the first few
optimally chosen interventions. We provided a theoretical justification for using Markov
equivalence classes as the choice of partition in our method, and in simulations, we
found that this entropy criterion generally performs well empirically.

Currently, our method is limited to networks with less than 20 nodes due to the
computational limits of the DP-based MCMC proposals. Scaling up posterior inference
methods to work on larger networks is an area for future work.

The difficulty that many OED and active learning methods, including our own, have
in inferring the Sachs network (see Section F of the Supplementary Material (Zemplenyi
and Miller, 2022)) suggests that additional research is needed on ways of relaxing the
acyclicity assumption and being more robust to model misspecification in general. Ad-
ditionally, the OED and active learning fields would benefit from additional datasets
similar in nature to the Perturb-seq and Sachs datasets with a mix of observational and
intervention data. These will be helpful for evaluating and comparing OED methods. As
recent advances in gene-editing technologies make targeted interventions more feasible,
we expect these types of datasets will become more widely available, and the demand
for OED methods in the biological sciences will grow in tandem.

Supplementary Material

Supplementary Material for “Bayesian optimal experimental design for inferring causal
structure” (DOI: 10.1214/22-BA1335SUPP; .pdf). Supplement includes theoretical re-
sults, intuition for the general criterion, sensitivity analyses, additional results and di-
agnostics for the analyzed networks, and an application to the Sachs network.
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