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A Multi-Armed Bayesian Ordinal Outcome
Utility-Based Sequential Trial with a Pairwise

Null Clustering Prior∗

Andrew Chapple†, Yussef Bennani‡, and Meredith Clement§

Abstract. A multi-armed trial based on ordinal outcomes is proposed that lever-
ages a flexible non-proportional odds cumulative logit model and numerical utility
scores for each outcome to determine treatment optimality. This trial design uses
a Bayesian clustering prior on the treatment effects that encourages the pairwise
null hypothesis of no differences between treatments. A group sequential design is
proposed to determine which treatments are clinically different with an adaptive
decision boundary that becomes more aggressive as the sample size or clinical sig-
nificance grows, or the number of active treatments decreases. A simulation study
is conducted for 3 and 5 treatment arms, which shows that the design has supe-
rior operating characteristics (family wise error rate, generalized power, average
sample size) compared to utility designs that do not allow clustering, a frequentist
proportional odds model, or a permutation test based on empirical mean utilities.
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1 Introduction

COVID-19 quickly became a global pandemic in early 2020, with extensive spread seen
in Europe, South America, Asia, and the United States. Early on in the pandemic, there
were no known effective therapies for the disease. Several therapies were thought to
be potentially beneficial based on in vitro studies, including Hydroxychloroquine (Yao
et al. (2020), Liu et al. (2020)) and chloroquine, with or without Azithromycin, and
Lopinavir/Ritonavir (Chu et al. (2020)). Due to COVID-19’s devastating clinical conse-
quences for patients as well as the tremendous strain on the healthcare system, quickly
determining an effective treatment was imperative. In March, 2020, researchers at the
University Medical Center (UMC) in New Orleans, LA, wanted to test two readily avail-
able therapies: (1) Hydroxychloroquine and (2) Hydroxychloroquine + Azithromycin
versus (3) standard supportive care to determine if either of these treatments could
provide a first step towards global recovery from the pandemic.

The trial (NCT # 04344444) was planned as a large-scale phase III trial with a max-
imum of 600 patients (ClinicalTrials.gov (2020)). Inclusion criteria included a positive
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COVID-19 test, onset of symptoms less than 7 days of trial enrollment, oxygen satu-
ration above 94 %. Patients who were pregnant, lactating, or under 18 were excluded
from the trial. Patients who used Hydroxychloroquine or Azithromycin were also ex-
cluded, in addition to patients who needed ICU care, and those who could not take oral
medication or provide consent. Patients receiving the Hydroxychloroquine only treat-
ment would receive 400 mg orally on day 1 of enrollment followed by 200 mg per day
on days 2 through 5. Patients receiving Hydroxychloroquine and Azithromycin would
receive 500 mg of Hydroxychloroquine on day 1 followed by 250 mg of Azithromycin on
days 2 through 5. Patients receiving placebo would only receive standard therapy for
COVID-19 patients at that time. To optimize benefit to study subjects, the researchers
at UMC wanted to quickly eliminate the placebo arm during the course of enrollment
if either of the treatments showed benefit in patients.

The researchers at UMC explained the various potential patient ordinal outcomes for
COVID-19 patients after treatment. These potential day 14 outcomes included death,
need for mechanical ventilation, continued hospitalization with or without supplemental
oxygen, and discharge from care with or without supplemental oxygen. This outcome is
ordinal in nature, since at day 14 of COVID-19 course the patients potential outcomes
in terms of optimality are ordered as death < on mechanical ventilation < hospital-
ized with supplemental oxygen < discharged with supplemental oxygen < hospitalized
without supplemental oxygen < discharge without supplemental oxygen. The research
clinicians felt that a patient requiring supplemental oxygen at day 14 may indicate that
their condition could worsen in the future, so a hospitalized patient not on oxygen was
preferred over a discharged patient on oxygen. This ordinal outcome was the primary
outcome of the trial.

They wanted to account for this ordinal outcome in making treatment decisions,
which was used as the primary outcome in the proposed trial (no secondary outcomes,
including safety outcomes, were considered in adaptive decision making). Ordinal out-
comes provide greater power to determine a treatment difference compared to binary
ones, due to a greater level of granularity. For example, if we only examine whether or
not a patient dies from COVID-19, we would be missing out on determining if a treat-
ment also increases the probability of a hospital discharge. This ordinal scale is similar
to the 8-point WHO clinical progression scale, which was published after this trial was
designed (Marshall and et al (2020)). In order to determine treatment optimality from
this ordinal outcome, numerical utilities on the range of [0, 100] were elicited from clini-
cians for each potential outcome. These ordinal outcomes were scored based on clinical
benefit to the patient. Without the use of utilities, a non-proportional odds model will
not produce statistics summarizing overall treatment benefit as the parameters char-
acterize distributions on each ordinal outcome category but not overall clinical benefit
(Murray et al. (2018)). Utility (optimality) scores have been used in various trials since
being introduced by Thall and Cook (2004) via the Efftox design. While they are not
the most popular approach, real-world trials have been conducting using several trial
approaches (Hoftsetter (2020), Amsbaugh and et al (2019), Shah et al. (2015), Brock
et al. (2017), Murray et al. (2016)).

Using utilities, a treatment improvement can be seen solely through a decrease in the
probabilities of poor events or even an increase in discharge probabilities, regardless of
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whether all outcome probabilities are shifted in a single direction. For example, if fewer
patients are placed on ventilators for a given treatment arm in the 14 days following hos-
pital admission, this is a treatment benefit - regardless of change in day 14 death prob-
abilities. This is a highlighted benefit of using numerical utilities in categorical/ordinal
outcomes, as it may pick up on on-proportional shifts in outcome probabilities. These
trial goals motivated a multi-armed utility-based group sequential trial based on ordinal
outcomes that could repeatedly remove ineffective treatment arms at various interim
analyses until trial completion or a set of treatments was declared optimal.

Multi-armed multi-staged trials (MAMS) are especially useful in quickly sorting
through new potential therapies for COVID-19 or other pandemics. Multi-armed trials
have been used for over half a century, with Dunnett (1955) providing test statistic
corrections to give desired type I errors. Thall et al. (1989) extended multi-armed trials
of experimental agents against a control to a two-staged design, where at the first stage
the trial is stopped for futility or an optimal experimental therapy is selected.

In the second stage, the chosen optimal therapeutic is compared against historical
results from a control. If the therapeutic is deemed effective, a randomized comparison
of the chosen treatment and control is conducted in phase III. Since then there have been
a myriad of MAMS trials that extends the two stage approach to multiple sequential
looks. Stallard and Todd (2003) discuss a design strategy that is similar to Thall et al.
(1989) and discuss design considerations for these trials. Our design differs from the
MAMS trials described above in that all treatment arms including the control, can be
dropped at various interim looks. Likewise a set of treatments, potentially including
the control, can be declared equally optimal and graduated to larger-scaled trials. This
was the desire of the research team in order to give needed treatments to COVID-19
patients as soon as possible. However, the design could be adjusted to either only allow
dropping a control at later interim looks or to keep the control arm enrolling throughout
the trial, similar to other MAMS trials. In general, this design can be used in settings
where all treatments are experimental so being able to drop all treatments will allow
the trial to better explore promising treatments based on early data.

Lastly, we introduce a Bayesian clustering prior on the treatment specific marginal
outcome probabilities that a priori favors pairwise null hypotheses. Simulation studies
show this novel clustering prior reduces family-wise error rates (by .25-.5), improves
the generalized power (by .05-.20), and reduces the needed sample size (by 100-200 pa-
tients) for the trial compared to a typical exchangeable prior. Compared to a frequentist
proportional odds model, the proposed clustering prior had a better controlled family
wise error rate and average sample sizes by 200-300. When a true proportional odds
relationship held, the clustering design had a slight decrease in generalized power (0 and
.04) compared to the proportional odds model. However, when the proportional odds
truth did not hold, the clustering design had an increase in generalized power of .09 and
.23 for 3 and 5 treatments, respectively, which represents a drastic improvement while
still maintaining lower sample sizes. The proposed design shows general superiority to a
permutation based method based on empirical mean utilities. These results are shown
in Figures 3 and 4, and in Tables 2, S1.

These posterior mean treatment specific marginal probabilities of each outcome are
then used to compute mean utility scores for each treatment, which is the weighted sum
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of each outcome’s marginal probabilities times it’s numerical utility score. The posterior
distributions of the mean utility score for each treatment are used to make decisions to
(1) drop a treatment for inferiority or (2) declare a set of treatments equally optimal.
We propose a multi-armed randomized group sequential trial that monitors ordinal
categorical outcomes for each patient, stops inferior treatment arms and stops the trial
to declare an optimal treatment or set of optimal treatments when one is found.

To facilitate trial conduct, covariate adjustment was preferred over stratification
based on patient covariates. The proposed method uses Bayesian methods similar to
Harrell and Lindsell (2020) to adjust for the effect of age, Charleston Comorbidity Index
(CCI) (Charlson et al. (1987)), and initial condition when estimating the probabilities
of each outcome for a given treatment. Our approach differs in that we assume a non-
proportional odds model with clustering induced on marginal treatment effects after
covariate adjustment. We investigate whether this covariate adjustment is necessary via
simulation study. The assumed structure produces a Multi-Armed Bayesian Ordinal
Utility Sequential Trial, which we call MABOUST, that can be used to effectively weed
out inferior treatment arms and determine an optimal set of treatments.

The remainder of this manuscript proceeds as follows. Section 2 discusses the sta-
tistical model used and the priors placed on the parameters, while Section 3 explains
the decision making process used for stopping rules in the trial. Section 4 includes a
simulation study of the design for 3 and 5 treatment arms for a factorial of designs
with levels related to whether covariates were adjusted for, and whether pairwise null-
clustering was used. The simulation study conducted with 3 treatments was actually
used in planning the proposed trial. In addition, we simulate the proposed design under
a frequentist proportional odds model and a permutation test based on empirical mean
utilities for comparison. Functions needed to implement or simulate the trial design are
provided in the R package MABOUST , which is discussed in detail in the supplemental
materials (Chapple et al., 2022). Section 5 ends with a discussion of the method and its
other possible uses.

2 Models, Priors, and Posterior Sampling

In this section we outline the statistical model assumed for the ordinal outcome variable
and treatment/covariate relationship. We discuss how marginal quantities of interest are
determined after covariate adjustment which are then used in trial decision making. We
discuss the prior distributions assumed on the treatment vectors, which have a so-
called House-Party-Prior that favors pairwise null hypotheses between all considered
treatments.

2.1 Statistical Model

Consider an categorical outcome Y that takes on values j = 1, . . . , J and a randomized
patient treatment assignment Ti which takes values 1, . . . ,K. The goal is to determine
which of the K treatments, or sets of K treatments, is optimal in terms of the J patient
outcomes. To determine which of the K treatments are optimal, we potentially adjust
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the treatment effect estimates by a vector of additional patient covariates, XXXi, that
are known to affect the outcome probabilities. For trials involving COVID-19, these
factors include Charleston Comorbidity Index (CCI), age group in decades, and an
initial categorical condition upon arrival into the hospital. These were factors that the
trial physicians wanted adjustment for, with age being dichotomized into decades to
reflect the way that outcome data was reported in Louisiana (Whitfield and Swenson
(2020)). We assume a cumulative logistic regression model:

logit(P [Yi ≤ j|Ti = k,XXXi, {θθθk}Kk=1,βββ]) = θk,j +XXXiβββ (1)

where θk,j is the kth treatment effect on the cumulative probability of observing Y ≤ j.
This implies that the vectors θθθk = (θk,1, . . . , θk,J−1) represent the marginal effects of
treatment k, after adjusting for additional patient covariatesXXXi.XXXi should be specified
so that increased values are associated with poorer patient outcomes, and we enforce
this into the model by assuming that a priori each entry of the vector βββ < 0, which
forces probabilities of Y = j to be higher for lower values j and increased XXXi.

While we model logit(P [Yi ≤ j|Ti,XXXi, {θθθk}Kk=1,βββ]) and obtain posterior samples
for {θθθk}Kk=1 and βββ our interest lies in the quantity logit[P [Yi ≤ j|Ti, {θθθk}Kk=1] which is
the probability of each outcome for a given treatment, marginalizing over the covariate
space XXXi. We estimate this marginal probability via the quantity P [Yi = j|Ti = k] =
logit−1(θk,j) − logit−1(θk,j−1). When j = J , logit−1(θk,j) is replaced by 1, and when
j = 1 logit−1(θk,j−1) is replaced by 0.

2.2 Prior Distributions

Since we are going to test whether a given treatment arm is inferior repeatedly through-
out the trial design, we will constrain the prior distribution on each θθθk vector to favor
the null hypothesis of no treatment difference, using a Bayesian clustering prior similar
to that described in Chapple and Thall (2018) and Chapple (2021). This introduces dis-
crete random latent parameters ζ1, . . . , ζK that take on values of 1, . . . ,K where ζk = ζl
for some l �= k indicates that treatments k and l are identical in terms of the ordinal
outcome Y . Let I[ζk = l] denote the indicator that treatments k and l are equivalent.
We assume a spike-and-slab type prior of the form:

θθθk|ζk ∼ I[ζk = k]πk(θθθk) +
∑
l �=k

I[ζk = l]δθθθl
(θθθk) , (2)

where δθθθl
(·) represents the dirac probability measure at θθθl and πk(·) is an unspecified

prior distribution on treatment k. This implies that when ζk = l, the parameter vectors
of treatments k and l are clustered together, i.e. θθθk = θθθl, with θθθl able to move freely
in posterior sampling and θθθk moving along with it. For the purposes of this study, we
assume that the priors are equal for all K treatments, i.e. πk(·) = π(·)∀k, and place
flat priors on the vector θθθk with the restriction that θk,j < θk,j+1 for all k and j. This
implies that the conditional prior distribution on θθθk given ζk = k

θθθk|ζk = k ∝
J−1∏
j=1

I[θk,j < θk,j+1].
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Other priors could be used in place of the non-informative flat prior, so long as this
ordinal restriction holds, because without this it is possible that there will be estimated
probabilities of Y = j that are negative. Similarly, treatment-specific priors can be
used if treatments target the disease in different manner. This could be used to guide
the trial early on based on clinical or published experience with each treatment. We
note that this idea is similar to that discussed for prognostic patient subgroups (instead
of treatment groups) in Chapple and Thall (2018) and Chapple (2021). For the March
2020 trial planned at UMC, there was hesitancy to impose differential priors on the
treatment groups to avoid influencing adaptive decision making. To ensure that a priori
this configuration favors the pairwise null hypothesis of no treatment difference, we
assume that

P [ζk �= k] = pζ = 1− P [ζk = k],

for all treatments. Like Chapple and Thall (2018), we define a set S = {l : ζl = l}
which is used to define the conditional distribution of ζk|ζk �= k. The probability that
ζk = l ∈ S is equal to one divided by the cardinality of S for any element in the set.
This implies that the prior probability that all treatments are equal is pK−1

ζ since for
example, this indicates that treatments 2,. . . , K are clustered on treatment 1. Since
all prior distributions for each treatment are equal, this logic can be applied similarly
to any other treatment to cluster on. When K = 5 and pζ = .9, this probability is
about .65 indicating that the prior that at least 2 treatments are different is .35. This
favors the global null. Marginally, decreasing the probability pγ should increase the
familywise type I error rate and also the power to drop the most inferior treatments.
We explore decreasing pγ to values of .75 and .5 (equally likely that treatments are
equal or unequal in utility) via simulation in terms of these operating characteristics.
In general, our simulation results favor using pγ = .9 to reduce familywise type I error
rates.

2.3 Prior Features and Differences From Other Clustering Priors

Here we briefly discuss some features of the prior distribution described above, which
we fondly call a house-party-prior . This name fittingly characterizes how the prior acts
in sampling. Consider a neighborhood with K houses, each with one family. If a family
k is home, then ζk = k, and they would be welcome to company. But if that family is
at another house, i.e. ζk �= k, that family would not invite other families to their home
since they are away. Consider another hypothetical scenario for this analogy, where
several families have gone to family m’s home, i.e. ζm = m (family m is home) and
ζk = m for several choices of k which also implies that θθθk = θθθm for those families. If at
a given iteration of MCMC, ζl = l and we propose setting ζl �= l, we note that the set
S is now smaller than K − 1 since several families are over at house m. This in turn
makes it more likely that family l will also go to house m and join their cluster, setting
θθθl = θθθm. This latter feature favors one global cluster if evidence is starting to mount
that the number of clusters is small in the MCMC. The priors on (ζ1, . . ., ζK) and hence
θθθ1, . . ., θθθK behave exactly like this real-life example.

In previous uses of this prior distribution, each set of parameters indexed by k had
their own unique prior distribution (Chapple and Thall (2018) Chapple (2021)). In the
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house-party-prior analogy, different homes might have different amenities (TVs, snacks,
dogs, etc) so if two families are clustered together in house k instead of house m, their
posterior experience would differ based on the prior settings of each house. MABOUST
uses the same prior for each treatment group, so this aspect of the prior configuration
does not come into play for this manuscript.

One might ask why this house-party-prior is favorable compared to assuming a finite
mixture model or Dirichlet prior. A finite mixture model with K latent classes would
produce the clusters of treatment effects, but these effects would not be exactly equal and
would vary according to the prior for that latent cluster. It is also not possible to set up
dirac measures in the finite mixture where parameters in the same latent distribution are
clustered together. It would be possible to make components of the mixture distribution
dirac measures, but these would need to be set on specific numerical values rather than
other treatment based parameter vectors. The proposed pairwise null clustering method
allows for fully continuous posterior samples of each θk while also favoring clustering
truly pairwise null treatment effects together, and also favoring a global null when only
one cluster exists.

2.4 Posterior Sampling

We obtain the posterior distribution parameter vector
(
{θθθk, ζk}Kk=1,βββ

)
through Markov

Chain Monte Carlo (MCMC) sampling with Metropolis-Hastings Steps. For each it-
eration of the MCMC, we propose adjusting the clustering structure {θθθk, ζk}Kk=1 by
randomly choosing a value of k updating each θθθk|ζk. When ζk = k, we propose cluster-
ing θθθk with some randomly chosen m in the random set S and setting ζk = m. When
ζk = m, θθθk = θθθm, and we propose setting ζk = k and unclustering θθθk by randomly
adjusting one element, under the constraint that θk,j < θk,j+1 for all j. These moves
are accepted with probability proportional to the likelihood ratio times the prior ratio
for ζk, since the prior on θθθk is flat. Within each iteration, we also sample θθθk|ζk = k and
βββ using adaptive Metropolis-Hastings, centered around the previous values, where the
entry-specific proposal variance parameters are doubled (halved) if the acceptance rate
for every 100 iterations is above .2 (below .6). This is done until half of the MCMC
iterations are completed. For θθθk, normal proposal distributions are used, while for βββ,
we generate our proposal from a log-normal distribution with mean log(−βββ). We ap-
propriately adjust the acceptance probability for entries of βββ using the proposal ratio,
due to it’s non-symmetry.

This sampling structure guarantees that the model adheres to the cumulative logit
model assumptions, while borrowing strength across treatment groups for better esti-
mation of these probabilities - through adaptive clustering and the covariate effects βββ.
When two treatment vectors are not clustered, borrowing can occur through adjust-
ment for additional covariates, but we do not explore methods where treatment effects
borrow hierarchically instead of via adaptive clustering. Code is produced in c++ to
encourage computational speed. 2,000 iterations of the MCMC produced satisfactory
trace plots of the parameter vector entries, indicating convergence, and were able to
accurately approximate the true probabilities of each event for simulated data of size
200.
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3 Decision Making

Rather than assuming proportional odds treatment effects, like several other authors
including Harrell and Lindsell (2020), we flexibly estimate the probabilities of each
outcome j and use a numerical utility score for each outcome j to determine a mean
score of each treatment. We do this because a utility score makes it easy to compare
different treatments numerically under a non-proportional odds model. Formally, let Uj

denote elicited utility scores obtained from clinicians for outcome j, with U1 = 0 and
UJ = 100. For all other outcomes, it should be the case that Uj−1 < Uj < Uj+1, i.e.
that the utility score increases with j - which reflects better outcomes.

Eliciting the utility scores U1, . . . , UJ was done by first meeting with team clinicians
and determining the ordinal outcome structure to be used for the trial. While eliciting
these outcomes, the team statistician encouraged clinicians to think about how they
would score these ordinal outcomes in terms of relative clinical benefit, under the re-
striction that Uj−1 < Uj . The clinicians met as a group until they agreed on a scoring
system.

Two of the authors, Dr. Bennani and Dr. Clement took the lead on establishing these
scores based on their clinical experience as infectious disease physicians and experience
treating COVID-19 patients early on in the pandemic. After establishing their own
scores, they had a series of meetings discussing their personal scoring system until they
reached a consensus. If there was a firm difference in opinions for a given Uj the score
was set as the average score between their two scoring systems. Afterwards, this scoring
system was presented to all other team clinicians for final approval. This process took
under 4 days in total to establish a final scoring system.

Given estimated marginal probabilities P [Yi = j|Ti = k, {θθθk}Kk=1] for a single group
trial, we can obtain a mean utility score for treatment k by computing:

Ū(k) =

J∑
j=1

UjP [Yi = j|Ti = k, {θθθk}Kk=1]. (3)

Where P [Yi = j|Ti = k, {θθθk}Kk=1] are determined using the estimated cumulative
regression model for P [Yi ≤ j|Ti = k, {θθθk}Kk=1]. Since we are using a Bayesian approach,
we can obtain a posterior distribution of the mean utility scores Ū(k)|Dn for each
k = 1, . . . ,K, which we will use in decision making throughout the trial. Here Dn =
{Yi, Ti,XXXi}ni=1 is the dataset of patients after n patients have been enrolled in the trial.

We will make M interim looks throughout the trial, after n = n1, . . . , nM patients
have had their outcomes evaluated. For our proposed design, this sequence of interim
looks was predetermined by clinicians, but it could have been optimized based on design
operating characteristics (OCs). Our goal is to stop a treatment k if any other treatment
l has a clinically meaningful improvement in terms of mean utility, arbitrarily denote
Δ > 0, over treatment k. We will stop treatment k after n patients are enrolled into the
study if:

max
l �=k

P [Ū(l) > Ū(k) + Δ|Dn] > c(n,Δ, J,An),
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where An denotes the set of active treatments after enrolling n patients are enrolled
and c(n,Δ, J,An) > 0 is a decreasing boundary function as n and Δ increase and as
the number of active treatments (denoted |An|) decreases. If the posterior probability
that any treatment l �= k has a utility higher than k by at least Δ > 0 is sufficiently
high, we will stop treatment arm k. Under this framework, It’s possible to stop multiple
treatment arms at each interim analysis - if several treatments are showing futility
compared to a promising therapy. If all but one treatment has been stopped, the trial
ends and the last remaining treatment is declared superior. For the cutoff function, we
assume that:

c(n,Δ, J,An) = γ0 + exp

(
−γ1Δ− γ2

n

J |An|

)
,

where γ0, γ1, γ2 > 0 are design parameters that are calibrated to obtain desired type I
error probabilities and power under a wide variety of simulation scenarios. This function
approaches γ0 as Δ, n increase and |An|, J decrease. This decreasing decision boundary
is necessary due to the conservative nature of the pairwise null clustering prior on the
treatment effect vectors. By clustering the treatment specific parameters that govern the
multinomial distribution, this prior also clusters the utilities which makes stopping for
a utility difference less likely, which happens with a non-negligible posterior probability
when two treatments have true utilities that are close to each other but not equal.

This gives us additional flexibility to test multiple increasing values of Δ, since
the evidence required to declare a treatment inferior will decrease as Δ increases. A
vector ΔΔΔ of increasing clinical significance could be constructed to facilitate operating
characteristics. In the trial at UMC, ΔΔΔ = (2.5, 5, 10, 15, 20) was chosen. The decreasing
nature of the function c(·) is constructed to require less evidence for stopping a treatment
for a utility improvement of 10 compared to a minor improvement of 2.5. These choices
represent small, moderate, and large utility increases on the [0, 100] range of plausible
values. Additionally, we impose a stopping rule for utility equivalency (i.e. for futility)
between the active treatments An in a trial after the first interim look based on the
criterion

min
l,k∈An

P [|Ū(l)− Ū(k)| < min(ΔΔΔ)|Dn] > c(n,min(ΔΔΔ), J,An)

This implies that if the posterior probability that all active treatments have utili-
ties within min(ΔΔΔ) of each other is high, that the trial will be stopped early and the
treatments An will be declared equally optimal in terms of their effect on the ordinal
patient outcome. Figure 1 displays three possible trial replicates under the proposed
stopping rules with M = 5 interim looks, K = 3 treatments, and a single value of ΔΔΔ
to test (i.e. a 1-vector). Here Pk denoting the posterior probability that treatment k is
inferior to the best performing treatment, and PFut denoting the posterior probability
that all treatments in An have mean utilities within min(ΔΔΔ). CΔ denotes c(n,Δ, J,An)
for a given J , n, and An at that point in the trial.

In the first trial replication, treatments 2 and 3 are declared optimal and the trial is
stopped at look 4. In the second trial replication, all treatments are continued at the first
interim look and at the second interim look, both treatments 1 and 2 are declared inferior
to treatment 3, ending the trial. In trial replication 3, all treatments are continued until
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the final interim decision, when treatment 1 is stopped due to inferiority. The probability
PFut is then computed only for treatments 2 and 3. Since this value is < cΔ, we do not
declare treatments 2-3 to be different in terms of mean utility.

m cΔ P1 P2 P3 PFut Comment
1 .99 1.00 0 .85 – Drop treatment 1
2 .97 – 0 .75 .2 Continue with treatments 2,3
3 .87 – 0 .2 .5 Continue with treatments 2,3
4 .75 – 0 .05 .95 Stop Trial, Declare

treatments 2-3 optimal

m cΔ P1 P2 P3 PFut Comment
1 .99 .90 .75 0 – Continue all treatments
2 .97 .99 .98 0 0 Stop trial and declare

treatment 3 to be optimal

m cΔ P1 P2 P3 PFut Comment
1 .99 .7 0 .85 – Continue all treatments
2 .97 .65 0 .75 0 Continue all treatments
3 .87 .69 0 .70 0 Continue all treatments
4 .75 .5 0 .45 0 Continue all treatments
5 .65 .7 0 .33 .55 Treatment 1 is stopped

PFut is calculated based on
|An| = 2, trial ends.

Figure 1: Three possible trial results for M = 5 interim decisions and K = 3 treatments,
and a single value of ΔΔΔ to test. Pk is the posterior probability that treatment k ismin(ΔΔΔ)
inferior to the most superior treatment and PFut is the posterior probability that all
active treatments are min(ΔΔΔ) optimal.

The MABOUST design requires the trial statistician to work with the trial team to
specify 5 different sets of parameters.

• n1, .., nM : The sample sizes for each interim look.

• ΔΔΔ: The set of clinical improvements to try.

• (γ0, γ1, γ2): the parameter vector used to determine the cutoff function c(·).

• pζ : The prior probability of a pairwise null hypothesis. Setting pζ = 0 indicates
that no clustering will take place.

• Whether or not covariates will be adjusted for in the analysis.
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We recommend setting pζ = .9, γ0 = .5, and γ1, γ2 < .2. These parameter settings
decrease the likelihood of a type I error. We explore how different choices of γ1, γ2 affect
operating characteristics in the simulation study. Simulation results show that covariate
adjustment does not affect trial accuracy, but does lead to trials with smaller sample
sizes. This reduces the decision-making from clinicians to only consider choices for ΔΔΔ
and n1, . . . , nM in most cases.

The Bayesian approach in particular makes it easier to control family-wise error
rates by using Bayesian clustering. This is shown in our simulation study where we
compare the proposed clustering approach to a frequentist proportional odds approach,
a Bayesian model without clustering, and a model that uses permutation tests and
empirical outcome frequencies. MABOUST with pairwise-null clustering reduces the
probability of type I errors across these multiple pairwise comparisons.

4 Simulation Study

To show the potential benefit of various aspects of MABOUST, we investigate the op-
erating characteristics of 4 modeling schemes: (1) clustering and covariate adjustment,
(2) no clustering and covariate adjustment, (3) clustering and no covariate adjustment,
and (4) no clustering or covariate adjustment. We also compare each of the 4 explored
methods to a frequentist approach that assumes a proportional odds model and a per-
mutation test based on empirical mean utilities. We set pζ = .9 as described in Section 2
to encourage the pairwise null hypothesis between each set of two treatments. When
we do not allow clustering treatment effects, we set pζ = 0 and compare operating
characteristics to when clustering is allowed.

4.1 Simulation Parameters and Operating Characteristics of
Interest

We simulate trial replications for 1,000 randomly generated scenarios for 3 and 5 treat-
ments with truly proportional odds and non-proportional odds treatment-outcome re-
lationships. For the 3-treatment trial, we make sequential decisions after 100, 200, 400,
and 600 patients are enrolled. This was the proposed group sequential decision structure
of the trial to be conducted at UMC. For 5 treatment groups, we make interim decisions
after 200, 400, 600, 800, 1000 patients are enrolled in the trial. We planned our maxi-
mum sample sizes for the two trials by allotting 200 patients per treatment, which we
felt could adequately explore the 6 ordinal outcomes, particularly for events that might
have true probabilities of occurrence that are < .05. As stated in Section 3, we use a
utility improvement grid of ΔΔΔ = (2.5, 5, 10, 15, 20) and set (γ0, γ1, γ2) = (.5, .05, .05). In
the bottom row of Figure 2, display the cutoff functions over the sample sizes from 0
to 1000 for the chosen ΔΔΔ values (including 0 for declaring an optimal set), and 3 and 5
treatments.

The two cutoff decision boundary plots are shown on the scale of n = 0 to n = 1000,
which reflects the group sequential boundaries for the planned 5-armed MABOUST
trial. We show this size for both, because the set of active treatments An are used in the
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decision boundary function c(n,Δ, J,An). If a 5-armed trial is reduced to 3 treatments
through stopping two arms for inferiority, the boundaries will thereafter resemble the
decision cutoffs for 3 treatments - unless another treatment is stopped thereafter. By
setting γ0 = .5, we must have that c(n,Δ, J,An) ≥ .5 for all function values. However,
note that the decision boundaries for the 3-armed design converge to .5 much quicker
than those for 5 treatments. This aspect of the trial is a novel proposal in multi-armed
designs and allows for more aggressive decision making as the trial hones in on optimal
therapies. We argue that this boundary decrease is justified, because we have already
ruled out several treatments as optimal by this time. We also like to note that with
increasing Δ, the curves shift downwards. With Δ = 0, which is used in determining
whether the trial should stop and declare a set of treatments equally optimal, the
decision boundary is 1 (permitting no stopping) until n = 300 for a 3-armed trial and
n ≈ 500 for a 5-armed trial. After treatments are dropped from the design this decision
becomes easier due to decreased futility boundaries.

We compare our proposed Bayesian method to a frequentist proportional odds (PO)
cumulative logistic regression model. For the PO model, we perform pairwise hypothesis
tests for each pair of treatments, testing whether the proportional odds effect is at least
1.05. This reflects an increase of 5%, which is similar to min(ΔΔΔ) = 2.5 for an average
utility value of 50. We drop a treatment if the p-value for testing any pairwise hypothesis

is less than .05
M

(
K
2

)−1
which should have a type I error rate below .05 due to Bonferroni

correction. If all pairwise p-values for testing whether the PO effect is 1.05 is above
.50 for all An, we stop the trial and declare all treatments equally optimal. This setup
creates a similar version of the decision structure used for MABOUST.

We also compare MABOUST to a permutation based method using empirical utili-
ties. We first calculate the pairwise difference in mean utilities between each treatment
pair, and use permutation tests to establish pairwise p-values testing whether each
treatment are min(ΔΔΔ) equivalent. Formally, using the empirical probabilities of each
treatment/outcome combination, calculate the mean utilities Ūk and Ūl, and calculate
a test statistic Ūk − Ūl − min(ΔΔΔ). If this number is > 0, (indicating treatment k has
superiority over treatment l), we permute data 1,000 times between treatments k and l,
computing Ūk−Ūl−min(ΔΔΔ) each time using the permuted empirical treatment/outcome
probabilities. We calculate the permutation test p-value as the proportion of times where
our observed test statistic Ūk − Ūl − min(ΔΔΔ) is bigger than the permuted values. We
stop enrolling patients in a treatment arm if this permutation p-value is less than the
same threshold used for the proportional odds model, which are Bonferroni-adjusted to
ensure type I error control across multiple pairwise comparisons and interim looks.

For operating characteristics (OCs) of each design, we explore: The familywise type
I error rate, FWER, which is the probability of declaring a treatment l inferior, when
|UTrue

l −maxk U
True
k | < min(ΔΔΔ). We also report the generalized power, GP . This is the

probability that we correctly decide on the inferiority of every treatment based on the
smallest value of Δ considered. For example, if U true

1 = 45, U true
2 = 53 and U true

3 = 51,
the correct decision is to stop treatment arm 1 for inferiority and continue the entire
trial until the end or treatments 2 and 3 have been declared equally optimal. We record
the probability of dropping truly min(ΔΔΔ) inferior treatments and display the average
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probability of making a correct decision about a treatment in supplemental table 1.
Lastly, we record the average sample size of the trial, n̄, and show average sample size
standard deviations along with .25, .75 quantiles in supplemental table 1.

For the remainder of this section we describe the simulation methods used to generate
realistic ordinal outcome probabilities, based on clinical research in COVID-19 patients.
We list the trial parameters γγγ in this subsection and discuss graphically how the decision
boundaries behave for various n, Δ and An. We then describe simulation results for a
3- and 5-armed MABOUST clinical trial under the 4 considered model settings and
discuss sensitivity of the results to various design parameter changes.

4.2 Scenario Generation

Since we randomly generate a large set of scenarios under instead of examining 8-10
different choices, we avoid arbitrary choices that might show our method is particu-
larly effective compared to the PO model. We simulate 1,000 replications of the trial
under 1,000 randomly generated scenarios, where several treatments may have identical
outcome probabilities.

Table 1 displays the outcome structure and elicited utility scores for each outcome
in each scenario, and the trial being conducted at UMC. We also display two probability
ranges, RRR1 = (R11, . . . , R1J) which denotes the plausible range of probabilities for each
outcome for a generic treatment, and RRR2 = (R21, . . . , R2J) which denotes the plausible
range of probabilities for each outcome for particularly frail or strong patients. We
generate random scenarios under true proportional odds and truly non-proportional
odds relationships. For each randomly generated scenario, we do the following:

1. Randomly generate the number of clusters of equivalent treatments from a discrete
uniform distribution on 1, . . . ,K.

2. Based on the randomly chosen number of clusters, randomly assign treatment
labels 1, . . . ,K to each cluster.

3. For each treatment k = 1, . . . ,K, randomly generate the true probabilities of each
outcome πk

j = P [Yi = j|Ti = k], ensuring that πk
j ∈ R1j , and that πk

1+. . .+πk
J = 1.

Assign all marginal probabilities for a treatment l clustered with treatment k
equal, i.e. (πl

1, . . . , π
l
J ) = (πk

1 , . . . , π
k
J). This ensures that all marginal probabilities

of each outcome for the K treatments fall in the range of possible outcomes.
For example, it’s unrealistic to expect a miracle cure, where the probability of
event 6 (Discharge) is .95 or a terrible treatment with the probability of event
0 (Death or ECMO) of .9. These probabilities give us the true values of θk,j =
logit(πk

1 + . . .+ πk
j ).

For simulation scenarios generated under the proportional odds relationship, the
values π1

1 , . . . , π
1
J are randomly generated according to the above procedure. Then

we randomly generate proportional odds effects γk ∼ U [−1, 1]. New marginal
cumulative probabilities P [Yi ≤ j|Ti = k] are calculated for treatment k using the
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randomly generated values of P [Yi ≤ j|Ti = 1] and γk via

logit[P [Y ≤ j|Ti = k, γk] = logit[P [Y ≤ j|Ti = 1] + γk,

and these probabilities are transformed to obtain (πk
1 , . . . , π

k
J ) which are then

checked to see if each πk
j ∈ R1j . If not, the value of γk is discarded due to leading

to an implausible outcome structure in COVID-19. Afterwards, based on the ran-
domly generated clustering configuration, some γk values are set to 0 and others
are set to γl for some l �= k �= 1. This gives the frequentist proportional odds
model a fair chance to compete with MABOUST, which assumes an NPO model,
and also allows us to explore the robustness of each method to these assumptions.

4. Randomly generate, βββ, the effect of xxxi on outcome given treatment Ti. This is
done by proposing a candidate vector βββ where each entry is randomly generated
from a uniform distribution from −2 to 0, which implies that increased values of
xxxi are associated with poorer outcomes. This is done by using the true values of
{{θk,j}Jj=1}Kk=1 and generating probabilities for 10,000 randomly chosen xxxi and Ti

vectors, i.e.

logit[P [Y ≤ j|Ti = k,XXXi, {θθθk}Kk=1,βββ] = θk,j +XXXiβββ.

Finally, we check if all probabilities P [Y = j|Ti,XXXi, {θθθk}Kk=1,βββ] ∈ R2j , which
implies that all hypothetical patients generated in the study will have reasonable
probabilities of each outcome.

5. Given the values {{θk,j}Jj=1}Kk=1, θθθ, calculate the true values of Ū(1), . . . , Ū(K)
and simulate 1,000 trial replications - including stopping treatments after n1, . . . ,
nM patients are enrolled. We will keep track of the OCs described above.

The ranges R1 are used to specify true probabilities for each treatment, without
considering covariate effects, for use in simulation. All generated true probabilities of
outcome j and treatment k must fall in the range R1,j to be admissible. The ranges
R2 are used to calibrate the true effect of XXXi on these probabilities. Given XXXi, all
generated true probabilities of outcome j and treatment k must fall in the range R2,j

to be admissable. This determines possible values used for βββ. For the UMC trial, we
have that XXXi = {Agei, CCIi, Oi}. Here Agei is the numerical age group of patient i
{0− 30, 30− 40, 40− 50, 50− 60, 60− 70, 70− 80, 80+} with these outcomes generated
with probability {.11, .16, .18, .20, .18, .17} which reflects empirical probabilities of each
age group seen in Louisiana on April 12th (Whitfield and Swenson (2020)). We number
these age groups from 1 to 7.

CCIi is the modified Charleston Comorbidity Index (CCI) excluding age and in-
cluding obesity and smoking status as an extra point added to the score. The individ-
ual CCIi scores were generated from a Poisson distribution with mean 2, which gave
probabilities of the scores {0, 1, 2, 3, 4, 5+} of {.14, .27, .27, .18, .09, .05} which reflects
probabilities seen by the clinicians on the study. Finally Oi = 1, 2, 3 denotes the disease
severity of each patient when they enroll in the study, as definite in order by events
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(5) Hospitalization without supplemental oxygen, (3) Hospitalization with other sup-
plemental oxygen, and (2) Hospitalized, on high flow oxygen therapy or non-invasive
mechanical ventilation. The probabilities of each enrollment outcome were assumed to
be .5, .4, .1, respectively to reflect the decreased likelihood that a patient will immedi-
ately need higher flow oxygen upon arrival. These probabilities were based on reporting
outcomes in COVID-19 patients in an early study (Wang et al. (2020)) and determined
from discussions of Dr. Clement, Dr. Bennani, and Julio Figueroa from Touro Medical
Center. The elicited values shown in Table 1 reflect a clinicians opinion on relative
patient clinical benefit for each outcome, which reflect patient disease courses that were
studied early in the pandemic.

Outcome # Uj R1 R2 Description
1 0 .10-.35 0-.50 Death, on ECMO or invasive mechanical ven-

tilation
2 35 .10-.30 0-.50 Hospitalized, on high flow oxygen therapy
3 65 .40-.70 0-.8 Hospitalization with other supplemental oxy-

gen
4 75 0-.10 0-.45 Discharge with supplemental oxygen
5 85 .10-.30 0-.45 Hospitalization without supplemental oxygen
6 100 0-.10 0-.30 Discharge without supplemental oxygen

Table 1: Possible patient outcomes, utility scores for each outcome, and a range of
plausible true probabilities.

The second column of Table 1 assigns a numerical utility score, denoted Uj for each
outcome j, to each patient outcome, with 0 being the lowest and 100 being the highest.
The goal will be to find the treatment with the highest mean utility score, as defined
by (3). The distribution of these randomly generated marginal utilities based on the
probability ranges R1, R2, and the utilities Uj are shown in Figure 2 (top left). The
randomly generated βββ values associated with age and CCI are plotted in a scatterplot
in the top right of Figure 2.

First we note that the majority of the simulated true utility values under this struc-
ture fall between 42 and 52, constituting a 10 point difference in utilities. The histogram
sizes for randomly drawn utilities in the range 40-42 and 52-58 and are about half that
as those between 42-52, with a very small amount of simulated utilities being ≥ 60 or
< 40.

The top right of Figure 2 shows that as the age effect increases, the oxygen effect must
decrease for the simulation scenario to be grounded in possible reality. This is because
increasing either of these variables, where age groups are numbered from 1,. . . ,8 and
oxygen status is numbered 1, 2, 3, will drastically increase the true probability of death
of mechanical ventilation for a hypothetical patient. Given that R2j = 0− .50, it is not
permitted that the probability of death/ECMO is above .50 for any patient, regardless
of treatment status or covariates. While we do not plot the randomly drawn coefficients
here for the CCI effect on the ordinal outcome, we note that there are similar shapes
when comparing CCI to age group and O2 status.
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Figure 2: Simulation Scenario Settings. Top Left: Marginal distribution of randomly
generated utilities according to Table 1. Top Right: Effect sizes on age and O2 status
for randomly generated scenarios according to Table 1. Bottom Left: Cutoffs for interim
decisions for K = 3. Bottom Right: Cutoffs for interim decisions for K = 5.

4.3 Results for 3 Treatment Arm

For three subgroups, we mimicked the trial design proposed for conduct at UMC medi-
cal center. Figure 3 displays the average operating characteristics of the 4 MAOBUST
designs considered for proportional odds (top) and non-proportional odds (bottom)
data generation structures. We also show the average operating characteristics for the
frequentist proportional odds model and the permutation test based on empirical prob-
abilities. We examine overall trends, as well as average operating characteristics when
1, 2, or 3 null clusters are present. Note that even when none of the treatment-outcome
relationships are identical (3 null clusters), we could have true utilities that do not differ
by min(ΔΔΔ) = 2.5. Within each null cluster grouping, we display in order:

• The frequentist proportional odds results.

• The permutation test results that uses empirical utilities.
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Figure 3: 3-armed design operating characteristics for the 4 MABOUST settings con-
sidered and the PO simulation truth (top) and NPO simulation truth (bottom). For
each operating characteristic shown, the average across 1,000 simulations is reported
for each bin. Here the number of null clusters refers to the number of treatment groups
that have a true utility distances above min(ΔΔΔ) = 2.5 of each other. The probability
of dropping the worst treatment displays the average probability of dropping the treat-
ment with the smallest utility, given there exists a treatment with an improvement of
at least min(ΔΔΔ) = 2.5 exists.

• MABOUST with clustering (pζ = .9) and covariate adjustment.

• MABOUST without clustering and covariate adjustment.

• MABOUST with clustering (pζ = .9) and no covariate adjustment.

• MABOUST without clustering and no covariate adjustment.
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We first turn our attention to the proportional odds simulation truths in Figure 3,
which are represented by the top 4 graphs. These overall numerical results are also
shown in Table 2. Overall, for a proportional odds truth, the average generalized power
(top left) is .69 for the PO model and .56 for the permutation model. This is compared
to .65 for the MABOUST design with clustering and adjustment and .64 for clustering
without adjustment. MABOUST designs without clustering had average generalized
power of .49 and .48, which was much less desirable - most likely due to high family
wise error rates (FWER) of .43 and .44 for adjustment and non-adjustment models,
respectively. Average generalized power was .02 higher when only one null-cluster was
present for MABOUST with clustering compared to the PO model, but was lower than
the permutation method by .02. FWER was well controlled by the PO method (average
of .05) and the two MABOUST designs with clustering (.01 each), it was slightly higher
in the permutation model (.07).

The permutation and PO methods also had higher probabilities of dropping the
worst treatment when there is a clear improvement (.37) compared to .14 for MABOUST
with clustering and .81 for MABOUST without clustering. This latter value should not
be interpreted as favoring MABOUST without clustering, since the FWER for both
of these are above .40, which is unacceptable. When the data truly has a proportional
odds treatment-outcome structure, the PO and permutation methods provide slight im-
provements in terms of generalized power and a doubling in the probability of dropping
inferior treatments. However, the average sample size is drastically lower for MABOUST
with clustering (417.9) vs it’s frequentist competitors (587 and 593, respectively). Sup-
plemental table 1 displays the average standard deviations of the trial sample size along
with .25 and .75 quantiles. The .25 and .75 quantiles on the trial sample size were much
lower for MABOUST with clustering (400 and 408) than for the frequentist compara-
tors (≥ 593 and 600) which is also reflected in a larger average standard deviation for
MABOUST with clustering (56 and 85) compared to the frequentist methods (45 and
30). The correct decision percentages (i.e. average % of correct treatment conclusions
across trials) are also shown in this table, which show a gain of about .04 for the PO
model compared to the two MABOUST clustering approaches.

For non-proportional odds simulation truths, MABOUST with clustering has higher
average generalized power (.71 for both adjustment schemes) compared to the propor-
tional odds model (GP = .62) and the permutation test (GP = .43). The standard
deviations of these generalized powers are also lower for MABOUST than it’s competi-
tors (.32 vs ≥ .39). The MABOUST designs that do not allow clustering performed
more poorly than the PO model, with an average GP = .55, .56. This further illustrates
the strength of the pairwise clustering in MABOUST, which is the biggest innovation
presented in this manuscript. Consistently, the MABOUST designs with clustering out-
performed the PO and Permutation based alternatives, with an improvement in GP of
at least .04 for 1 null-cluster, .11 for 2 null-clusters, and .19 for 3 null-clusters (i.e. all
different treatment-outcome relationships). The standard deviations on the generalized
power across these null-cluster subsets are also smaller for MABOUST than for the PO
model, indicating a more consistent performance in terms of generalized power across
these random scenarios.
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Average FWER rates for the PO and Permutation models were .06 and .08, respec-
tively, compared to .01 for the MABOUST clustering designs. The MABOUST designs
that did not allow clustering had terrible type I error control with FWER rates of
.42 and .43, respectively, and are not shown in Figure 3. FWER for MABOUST was
controlled below .05 for simulation truths with varying numbers of null-clusters. The
probability of dropping the worst treatment (when one exists, i.e. has a utility at least
2.5 less than the optimal treatment) was also consistently higher for MABOUST with
clustering (.61, .62) than for the PO and Permutation models (.47, .47). This probability
was much higher for MABOUST without pairwise-null clustering (.88, .88), but this is
coupled with a FWER that is too high to recommend using this design. MABOUST with
clustering had higher probabilities of dropping the worst treatment for true maximum
utility differences of (2.5, 5], (5, 10], and 10+.

Lastly, the average trial sample size across these randomly generated scenarios was
much lower for MABOUST designs with clustering (451.6, 451.8) compared to the PO
model (579.1) and permutation model (585.6). Average standard deviations and .25, .75
quantiles are shown in supplemental table 1 across the random scenarios. The average
.25 quantile, and .75 quantiles were all lower for MABOUST with clustering compared
to the PO and permutation models. For the standard deviations, MABOUST had higher
values (64,65) compared to the PO and permutation tests (53 and 37). This is likely
due to MABOUST’s average sample size of 451, which is much lower than the average
sample sizes for the other methods that are at least 580, and the fact that the maximum
trial sample size allowed is 600. The correct decision percentage is about .04 higher than
the PO model under the NPO simulation truth (supplemental table 1).

Collectively, these results suggest that MABOUST without clustering is an un-
reliable method in K = 3 treatments due to unreasonably high FWER. However,
MABOUST with clustering provides an improvement in generalized power under the
non-proportional odds truth (.09) that is higher than this loss in the proportional odds
truth (.04). Across both the proportional and non-proportional odds simulation truths,
MABOUST with clustering produces smaller average sample sizes and .25, .75 quan-
tiles of average sample sizes. The type I error rate is also well controlled. Adjusting for
covariates did not seem to make a difference in the two MABOUST models in terms of
generalized power or average sample size, but produced a smaller sample size standard
deviation.

4.4 Results for 5 Treatment Arms

Figure 4 displays the average operating characteristics across 1,000 randomly gener-
ated scenarios with K = 5 treatments. Results for truly proportional odds treatment-
outcome relationships are shown in the top 4 plots, while results for non-proportional
odds relationships are shown in the bottom 4 plots.

For K = 5 and a true proportional odds relationship, the average generalized power
for both the PO model and MABOUST with clustering and covariate adjustment are
both .47. GP = .46 for MABOUST without covariate adjustment. Similar to K =
3, MABOUST without clustering performs poorly with GP = .24, .23 and FWER of
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.62, .63 for the methods with and without covariate adjustment, respectively. FWER
was higher, on average for the PO and permutation models (.08 and .11, respectively),
which were also reflected by higher standard deviations of FWER (.11 for both). FWER
was much better controlled for the MABOUST designs with clustering (.03 each, with
a standard deviation of .04). Overall 81.6% of scenarios for clustering MABOUST with
covariate adjustment (83% without adjustment) had FWER < .05 compared to 66%
for the PO model and 31.2% for the permutation method. The probability of dropping
the worst treatment (when one exists) was still higher for PO models (.34) than for
MABOUST with clustering (.17). Here with K = 5, the high FWER rate for PO
and permutation models despite Bonferroni indicate superiority of MABOUST, since
generalized powers are similar.

MABOUST with clustering had an overall improvement in average sample sizes
(596.8 and 592.3) compared to the PO and permutation models (997.7 and 997.3). The
average .25 and .75 quantiles for trial sample size (shown in supplemental table 1) were
also lower for MABOUST with clustering and adjustment (479 and 661) compared to
the PO model (999 and 1000) and permutation model (998 and 1000). Interestingly,
when covariate adjustment was not done, MABOUST with clustering had higher aver-
age .25 and .75 quantiles of trial sample size (759 and 970). This is the first suggestion
presented that covariate adjustment can be helpful in terms of operating characteris-
tics when MABOUST with clustering is used. Average standard deviations of the trial
sample size reflect these quantiles for MABOUST (> 160 for all 4 approaches). The PO
and permutation models have lower average sample size deviations (15 and 12), which
reflects the .25 and .75 quantiles being close to the maximum sample size of 1,000. De-
spite similar generalized power, average correct decision rates were higher for the PO
model (.76) than the two MABOUST models with clustering (.73). When weighing the
generalized power, correct decision rates, FWER, and trial sample sizes, MABOUST
with clustering provides an improvement for K = 5 when compared to the PO and
permutation models when the data generation structure truly has a proportional odds
treatment-outcome relationship.

Looking across simulations based on the number of null-clusters, we see that the
generalized power is higher with 1, 2, and 3 null clusters compared to the PO model,
but is slightly lower for 4 and 5 null-clusters. Average FWER is controlled for 1,2,3,
and 4 null-clusters for MABOUST with clustering. There is a higher average FWER
for the PO model with 4 null-clusters. Clustering MABOUST’s average sample size was
consistently the lowest across any number of null-clusters. MABOUST with clustering
did suffer when the largest utility difference was greater than 10 in terms of dropping
the worst treatment (.49 and .45) versus the PO model and permutation model (.83
each).

The bottom of Figure 4 displays the results for non-proportional odds treatment-
outcome structures. Here MABOUST with clustering provides a drastic improvement
in average generalized power (.62 and .61) compared to the PO model (.39) and per-
mutation model (.25). MABOUST with clustering also had better control of average
FWER (.06 and .06) compared to the PO model (.12) and the permutation model
(.14). MABOUST without clustering again produced high average FWER (.56 and .57)
making these approaches impractical in modern research.
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Figure 4: 5-armed design operating characteristics for the 4 MABOUST settings con-
sidered and the PO simulation truth (top) and NPO simulation truth (bottom). For
each operating characteristic shown, the average across 1,000 simulations is reported
for each bin. Here the number of null clusters refers to the number of treatment groups
that have a true utility distances above min(ΔΔΔ) = 2.5 of each other. The probability
of dropping the worst treatment displays the average probability of dropping the treat-
ment with the smallest utility, given there exists a treatment with an improvement of
at least min(ΔΔΔ) = 2.5 exists.

The average probability of dropping the worst treatment was also higher for
MABOUST with clustering (.82 and .81) compared to the PO and permutation models
(both .52). Average mean trial sample size was lower for MABOUST (690 for both)
compared to the PO and permutation models (990 each). This is again reflected in
supplemental table 1 by lower average .25 and .75 quantiles of trial sample size, and
a higher average sample size standard deviation. Similar to results for proportional



540 MABOUST

odds treatment-outcome relationships, the average .25 and .75 sample size quantiles
were lower for the models that used covariate adjustment (564 and 810) compared to
MABOUST without covariate adjustment (685 and 906).

Across varying numbers of null-clusters, MABOUST with clustering had higher gen-
eralized power than the PO model. It also had lower average FWER, higher average
probabilities of dropping an inferior treatment and lower average sample size. The per-
mutation method had higher generalized power than MABOUST (.22 compared to .11)
with 2 null clusters, but also had higher FWER (.2 vs .11). The results for K = 5 paint
a stronger picture for the relative OCs improvement of MABOUST with clustering com-
pared to the PO and permutation models, whether or not the true treatment-outcome
relationship was proportional odds.

4.5 Sensitivity to γγγ, Utility Choice, and pζ

In this section, we investigate sensitivity of MABOUST results to several design parame-
ter choices, with average operating characteristics reported in Table 2 and supplemental
table 1. These include γγγ, which governs the adaptive decision boundary for MABOUST,
pζ which is the pairwise null clustering probability, and a different utility function. For
a differing utility function, we set utilities for events 1, . . . , J to be 100 ∗ (j− 1)/(J − 1)
for j = 1, . . . , J which mimics a utility function that only uses the outcome indices but
is scaled to 0, 20, 40, 60, 80, 100 so that the previous choice of ΔΔΔ is applicable, instead of
needing to shift this to the 1-6 range. The permutation test that uses empirical utility
values also has sensitivity explored to this choice, listed as U2 PERM in Table 2.

We investigate choices of pζ = .5 and pζ = .75 for the MABOUST design to deter-
mine how this hyperparameter, which governs conservativeness of the design in terms
of pairwise comparisons, affects overall operating characteristics. Here a smaller value
of pγ indicate a decreased probability a priori of a pairwise-null relationship for any
two treatments. Noting that the design vector γγγ = (γ0, γ1, γ2) may have an effect on
operating characteristics, we explored how various adjustments to γ1 and γ2 changed
results for MABOUST. Since γγγ is used in the decision boundary function:

c(n,Δ, J,An) = γ0 + exp

(
−γ1Δ− γ2

n

J |An|

)
,

increased values of γ1 will allow for easier stopping for larger tested values of Δ. In-
creased values of γ2 will allow for easier stopping as the trial enrolls more patients (i.e.
n increases) or reduces the number of active treatments |An|. The boundary function
above also controls the likelihood of stopping a trial early for futility, and declaring
treatments equally optimal - so increased values of γ1, γ2 may increase the likelihood of
a type I error, while also increasing the likelihood of stopping for equivalency.

The results of the sensitivity analysis for testing γ1 = .05, .10 and γ2 = .05, .10
are shown in Table 2. We did not vary γ0 since even though c(n,Δ, J,An) is used
solely for a boundary function, stopping one treatment for inferiority if max

l �=k
P [Ū(l) >

Ū(k) +min(ΔΔΔ)|Dn] < .50 seemed unethical. If we can’t demonstrate a min(ΔΔΔ) utility
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Setting Generalized Power FWER P[Dropping Worst] Nbar
PO: 3 Treatments

γγγ = (.05, .05) (.65,.49,.64,.48) (.01,.01,.43,.44) (.14,.12,.81,.81) (418,417,550,549)
γγγ = (.05, .10) (.64,.30,.64,.29) (.02,.02,.67,.68) (.14,.13,.89,.89) (403,403,434,436)
γγγ = (.10, .05) (.65,.45,.64,.44) (.01,.01,.48,.49) (.14,.13,.83,.83) (414,413,531,530)
γγγ = (.10, .10) (.64,.29,.64,.28) (.02,.02,.68,.69) (.14,.13,.89,.89) (402,402,420,422)

pζ = .75 (.67,–,.67,–) (.03,–,.03,–) (.26,–,.26,–) (448,–,448,–)
pζ = .50 (.69,–,.68,–) (.07,–,.07,–) (.43,–,.43,–) (506,–,506,–)

PO .69 .05 .37 587
Perm .56 .07 .01 593
U2 (.67,.52,.66,.51) (.01,.01,.4,.41) (.14,.12,.81,.81) (416,415,552,552)

U2 Perm .58 .07 0 594
PO: 5 Treatments

γγγ = (.05, .05) (.47,.24,.46,.23) (.03,.03,.62,.63) (.17,.15,.91,.90) (597,592,851,852)
γγγ = (.05, .10) (.44,.15,.44,.15) (.04,.04,.71,.71) (.13,.12,.95,.95) (439,437,612,614)
γγγ = (.10, .05) (.46,.21,.45,.2) (.03,.03,.65,.66) (.16,.14,.92,.92) (521,517,796,797)
γγγ = (.10, .10) (.44,.15,.44,.14) (.04,.04,.71,.71) (.13,.12,.95,.95) (432,431,572,573)

pζ = .75 (.5,–,.49,–) (.09,–,.09,–) (.38,–,.38,–) (770,–,770,–)
pζ = .50 (.48,–,.47,–) (.23,–,.23,–) (.61,–,.61,–) (890,–,890,–)

PO .47 .08 .31 998
PERM .39 .11 997
U2 (.5,.25,.49,.23) (.03,.03,.6,.61) (.17,.15,.91,.91) (563,559,850,850)

U2 Perm .42 .11 0 998
NPO: 3 Treatments

γγγ = (.05, .05) (.71,.56,.71,.55) (.01,.01,.42,.43) (.62,.61,.88,.88) (452,452,529,528)
γγγ = (.05, .10) (.69,.41,.69,.40) (.02,.02,.64,.65) (.62,.61,.93,.93) (410,411,413,414)
γγγ = (.10, .05) (.71,.53,.71,.52) (.01,.01,.46,.47) (.63,.62,.90,.89) (442,442,507,507)
γγγ = (.10, .10) (.69,.4,.69,.39) (.02,.02,.65,.66) (.62,.61,.93,.93) (407,408,399,400)

pζ = .75 (.75,–,.74,–) (.03,–,.03,–) (.72,–,.72,–) (473,–,473,–)
pζ = .50 (.75,–,.74,–) (.08,–,.08,–) (.79,–,.79,–) (505,–,505,–)

PO .62 .06 .47 579
PERM .43 .08 .01 586
U2 (.72,.58,.71,.56) (.01,.01,.38,.39) (.6,.6,.87,.86) (452,452,535,536)

U2 Perm .45 .08 0 589
NPO: 5 Treatments

γγγ = (.05, .05) (.62,.39,.61,.38) (.06,.06,.56,.57) (.82,.81,.96,.96) (690,691,785,786)
γγγ = (.05, .10) (.54,.31,.54,.30) (.08,.08,.65,.66) (.74,.73,.98,.98) (510,511,563,565)
γγγ = (.10, .05) (.6,.37,.6,.36) (.07,.07,.59,.59) (.8,.79,.97,.97) (632,632,728,729)
γγγ = (.10, .10) (.54,.30,.53,.30) (.09,.09,.66,.66) (.73,.72,.98,.98) (495,496,526,527)

pζ = .75 (.65,–,.64,–) (.12,–,.12,–) (.89,–,.89,–) (759,–,759,–)
pζ = .50 (.60,–,.59,–) (.24,–,.24,–) (.93,–,.93,–) (801,–,801,–)

PO .39 .12 .52 989
PERM .25 .14 990
U2 (.61,.38,.6,.37) (.06,.06,.56,.56) (.79,.78,.96,.96) (682,684,792,793)

U2 Perm .26 .14 0 995

Table 2: Average operating characteristics across 1,000 randomly generated scenarios.
Generalized Power = average probability of making all comparative treatment decisions
correctly, FWER = average family wise type I error rate, P[Dropping Worst] = average
probability of dropping the a truly suboptimal treatment, Nbar = average mean trial
sample size. We report this for the PO (PO) and Permutation models (PERM and U2

PERM), and for different MABOUST designs based on γγγ = (γ1, γ2), pζ , and a different
utility choice U2. For MABOUST designs, we report the OCs, in order, for designs that
cluster and adjust, don’t cluster but adjust, cluster but don’t adjust, and neither cluster
nor adjust. Blanks −− exist for pζ = .75 and pζ = .5 since this parameter only explores
MABOUST with clustering.
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improvement is more probable than not based on the data, we should not make decisions
regarding dropping treatments.

Table 2 displays the average operating characteristics for each of the adjustments
to design considerations for MABOUST, permutation tests, and additionally displays
the numerical results for the PO method. Within all rows related to design changes for
MABOUST, we list the operating characteristics in parentheses (in order) for MABOUST
(1) with clustering and adjustment, (2) without clustering and adjustment, (3) with
clustering but no adjustment, and (4) without clustering and no adjustment. Since we
have already demonstrated that MABOUST without clustering produces unreasonably
high FWER and low generalized power, we focus discussion on the 1st and 3rd entries
of each operating characteristic for each design parameter shift. We do not list values of
(2) and (4) for different choices of pζ since this choice only effects MABOUST designs
where clustering is allowed.

Generalized power for different choices of γγγ and MABOUST clustering models did
not change by more than .02 for all simulation truths except for K = 5 treatments
and an NPO truth. Here the generalized power was .62 for (γ1 = .05, γ2 = .05) but
dropped to .54 when γ2 = .10 was used. This is partially reflected in the change in
average FWER, which went from .06 for the displayed results in Figures 3 and 4 to .09
for an aggressive choice of (γ1 = .10, γ2 = .10). Increasing γ1 to .10 resulted in a smaller
average sample sizes, which was more apparent for K = 5 than K = 3.

Decreasing pζ increased the average FWER in each K and PO/NPO relationship
group. This was drastic for K = 5 treatments and pζ = .5 which increased FWER to
.23 and .24, respectively, for PO and NPO simulation truths. This prior setting equally
favors pairwise null and alternative hypotheses. For pζ = .75, these rates were .07 and
.12 for K = 5 treatments, but were controlled below the .05 level for K = 3 treatments.
Decreasing pζ was associated with an increase in the probability of dropping a truly
inferior treatment, but results for generalized power were mixed - which relates to
both null and alternative conclusions about treatment comparisons. Decreasing pζ also
resulted in larger average sample sizes for each K and simulation truth, likely due to a
decreased chance of stopping the trial early and declaring a set of treatments equally
optimal.

Lastly, adjustments in the utility structure (U2 and U2 PERM) to reflect the ordinal
outcome labels did not have a large effect on generalized power, FWER, or probability of
dropping the worst treatment (maximum difference of .03, and in both directions). The
effect of changing the utilities on average sample size was also not drastic (maximum
difference of 30). Similar results were seen for the permutation test and a different utility
function. Taken together these results indicate that the utility function has less of an
impact on operating characteristics shown in Table 2 than the choice of γγγ and pζ .

Supplemental table 1 displays how the average trial standard deviations and .25,
.75 quantiles vary for different design choices. We see that in general, the choice of
γγγ does not have a large impact on the quantiles for 3 treatments, but has a sizable
impact for K = 5 treatments, with (γ1, γ2) = (.10, .10) producing the smallest values
of these quantiles, and (γ1, γ2) = (.05, .10) producing the second smallest. Recall that
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γ2 is related to current trial sample size and the set of active treatments, whereas γ1
is related to values of Δ tested. Smaller pζ led to increased sample size quantiles for
K = 3, 5 and both PO and NPO truths, likely due to a deceased prior probability of
clustering and hence stopping to declare a set of treatments equally optimal. Quantiles
of sample sizes did not change much for the different choice of utilities for MABOUST
or the permutation test. Standard deviation values in this table reflect general shifts in
these quantiles.

We recommend pζ = .9 to keep FWER rates and average sample size low, and
(γ2 = .05) to give a better generalized power. The choice of γ1 had less of an impact
than these two parameters. However, we suggest that the trial statistician simulate
operating characteristics under various plausible simulation truths before conducting a
trial, which can better calibrate the choices of pζ and γγγ. The insensitivity of the results
to the choice of the utility function is positive, as this suggests that clinicians can build
this function to reflect clinical benefit for patients.

5 Discussion

We proposed a Multi-Armed Bayesian Ordinal Outcome Utility-based Sequential Trial
(MABOUST) that repeatedly makes interim decisions to remove inferior treatment arms
if another arm provides a clinically relevant improvement in patient outcomes, and also
declare a set of treatments equally optimal. An ordinal outcome approach was used
similar to Murray (2018) that uses utilities to take an ordinal outcome and reduce it to
a single optimality score, via utilities. This approach differs in that marginally for each
treatment a flexible non-proportional odds approach is used to estimating the outcome
probabilities for each treatment, which also allows better estimation of the utilities. By
using the Bayesian pairwise null house-party-prior , we avoided the need for a baseline
treatment group, and controlled family wise error rates across 1,000 randomly generated
scenarios for 3 and 5 treatments.

Under non-proportional odds simulation truths, this design outperforms a frequen-
tist proportional odds model, a permutation based utility method, and a Bayesian utility
based design that does not allow clustering. The design also performs relative to the
proportional odds model in accuracy when the data generation scheme truly is pro-
portional odds, with a reduced average sample size. We should note that an adaptive
decision boundary was not used for the proportional odds or permutation tests, and
could be explored in future studies. One benefit of the utility based approach is the
translatability of a proportional (or non-proportional) odds treatment effect into a nu-
merical score which might be better understood by clinicians - and improve the outreach
of MABOUST. We explored covariate adjustment in this context, which did lead to
a decrease in average trial sample size and .25, .75 quantiles, suggesting that covariate
adjustment might give a better chance of stopping the trial early, without decreasing
overall accuracy.

Sensitivity of the operating characteristics were explored for MABOUST based on
the choice of γγγ which characterises the adaptive decision boundary and pζ which is the
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pairwise-null prior clustering probability. Choices of pζ < .9 resulted in increased family-
wise error rates, which shows that a conservative choice is needed for the clustering
prior to be effective. Increasing γ2, which is related to trial sample size and number
of active treatments, also increases FWER and the probability of dropping inferior
treatments. Changes in the choice of the utility function did not have a drastic change
on MABOUST’s operating characteristics, which means that clinicians can choose a
utility function that reflects their perceived patient impact of each outcome.

The primary novelty of this paper is proposing a Bayesian clustering prior on the
treatment specific ordinal outcome parameters - which encourages the pairwise hypoth-
esis of no difference between each treatment and reduces towards the global null of no
treatment difference. This Bayesian house-party-prior has been used for subgroup spe-
cific parameters in the past, but has yet to be used to actively encourage a conservative
group sequential design in terms of pairwise comparisons. We also proposed stopping
rules that weed out ineffective treatments repeatedly if any other treatment provides a
clinically relevant improvement in comparison, rather than stopping the loser or grad-
uating the winner. Sets of optimal treatments might advance to public usage through
a futility rule, which stops sets of treatments if they are equally optimal in terms of
clinical significance. This rule is actively encouraged by the Bayesian clustering prior.
Finally, this design proposes a dynamic decision boundary which is a function of the
current sample size, set of active treatments in the trial, and a cascade of increasing
clinically relevant improvements in true mean utility.

This design gives researchers a way to search through several treatments with ordinal
outcomes and eventually determine a set of optimal treatments. While the motivation
of this trial was COVID-19 related, this structure could be applied to many areas in
medicine. For example, in pregnant mothers, this ordinal scale could be incorporated
via extremely premature, premature, term, and late-term deliveries. Similarly, after a
total knee replacement with a novel knee implant - one might ask patients to rate the
difference they are experiencing in terms of pain after 5 months - which is ordinal.
We provide user friendly R code in the package MABOUST found on CRAN. In the
supplemental material, we provide detailed instructions to use functions needed to make
interim decision, simulate proposed trials, and generate sets of random scenarios that
are grounded in clinical reality - much like what was done for the COVID-19 trial at
UMC. Unfortunately that trial was stopped due to lack of enrollment, but MABOUST
could be used for other sets of drugs even in a multi-institutional setting. This might
allow a faster resolution of this pandemic by considering a more sophisticated outcome
structure, statistical model, and group sequential multi-armed decision-making.

Supplementary Material

Supplemental Material for ’A Multi-Armed Bayesian Ordinal Outcome Utility-Based
Sequential Trial with a Pairwise Null Clustering Prior’
(DOI: 10.1214/22-BA1316SUPP; .pdf). A detailed description of how to use the pack-
age MABOUST and supplemental operating characteristics table is available with this
paper.

https://doi.org/10.1214/22-BA1316SUPP
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