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Goodness-of-fit (GoF) testing is ubiquitous in statistics, with direct ties to
model selection, confidence interval construction, conditional independence
testing, and multiple testing, just to name a few applications. While testing
the GoF of a simple (point) null hypothesis provides an analyst great flexibil-
ity in the choice of test statistic while still ensuring validity, most GoF tests
for composite null hypotheses are far more constrained, as the test statistic
must have a tractable distribution over the entire null model space. A notable
exception is co-sufficient sampling (CSS): resampling the data conditional on
a sufficient statistic for the null model guarantees valid GoF testing using any
test statistic the analyst chooses. But CSS testing requires the null model to
have a compact (in an information-theoretic sense) sufficient statistic, which
only holds for a very limited class of models; even for a null model as simple
as logistic regression, CSS testing is powerless. In this paper, we leverage the
concept of approximate sufficiency to generalize CSS testing to essentially
any parametric model with an asymptotically efficient estimator; we call our
extension “approximate CSS” (aCSS) testing. We quantify the finite-sample
Type I error inflation of aCSS testing and show that it is vanishing under
standard maximum likelihood asymptotics, for any choice of test statistic.
We apply our proposed procedure both theoretically and in simulation to a
number of models of interest to demonstrate its finite-sample Type I error
and power.

1. Introduction. Suppose we observe data X belonging to some sample space X , and
would like to test whether it comes from some parametric null model {Pθ : θ ∈ �}, where
� ⊆ R

d , versus a more complex (usually higher-dimensional) model. This problem of so-
called “goodness-of-fit” (GoF) testing is one of the most fundamental in statistics, with a
vast literature exhibiting applications and theoretical and methodological development. We
pause here to highlight a few of the many areas of statistics to which GoF testing is directly
applicable, including some problems that are not obviously or commonly associated with
GoF.

PROBLEM DOMAIN 1 (Standard goodness-of-fit testing). GoF testing is commonly used
to test a postulated model or distributional property, often as a precursor to further sta-
tistical analysis that assumes the postulated model/property to be correct. Such null mod-
els/properties include standard distributional families, nonparametric properties such as sym-
metry or log-concavity, time-series properties such as stationarity, and relational properties
such as independence.

PROBLEM DOMAIN 2 (Model selection). GoF testing can also be used to select a best-
fitting model through simultaneously testing a family of models. For instance, this could be

Received January 2021; revised February 2022.
MSC2020 subject classifications. Primary 62F03; secondary 62B05.
Key words and phrases. Goodness-of-fit test, approximate sufficiency, co-sufficiency, conditional randomiza-

tion test, model-X, conditional independence testing, high-dimensional inference.

2514

https://imstat.org/journals-and-publications/annals-of-statistics/
https://doi.org/10.1214/22-AOS2187
http://www.imstat.org
mailto:rina@uchicago.edu
mailto:ljanson@fas.harvard.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


APPROXIMATE CO-SUFFICIENT SAMPLING 2515

choosing a sparse model in regression, selecting the number of clusters or principle compo-
nents in unsupervised learning, or identifying change points in a time series.

PROBLEM DOMAIN 3 (Confidence interval construction). Suppose the data X is dis-
tributed according to a known model {Pγ,θ : (γ, θ) ∈ � × �}, where � ⊆ R

m and � ⊆ R
d ,

and the goal is to construct a confidence region for γ in the presence of the nuisance param-
eter θ . If for any γ0, we can construct a GoF test for the null model {Pγ0,θ : θ ∈ �}, then the
set of γ0 at which we fail to reject the test constitutes a valid confidence region.

PROBLEM DOMAIN 4 (Conditional independence testing). In many regression and
graphical modeling problems, the primary question of interest is whether a given triple of
random variables (X,Y,Z) satisfies conditional independence, that is, Y ⊥⊥ X|Z. If X|Z is
distributed according to a known model {Pθ(·|Z) : θ ∈ �}, then testing conditional indepen-
dence can be formulated as a GoF test where {Pθ(·|Z) : θ ∈ �} is the null model for X|Z,Y .
(Note that, when we apply a GoF test to the conditional independence problem in this way,
we implicitly treat Y and Z as fixed, and check for goodness-of-fit of X’s conditional model.)

PROBLEM DOMAIN 5 (Multiple testing). In multiple testing, the goal is to reject a subset
of a fixed family of null hypotheses. When each hypothesis test is a GoF test (i.e., its null
is lower-dimensional than its alternative), testing any intersection of null hypotheses (i.e.,
testing the “global null” for any subset of hypotheses) constitutes a GoF test as well, and
combining such intersection GoF tests through a closed testing procedure [38] produces a
subset to reject that controls the familywise error rate.

The key challenges of any GoF testing problem are to find a test that is valid, in that it con-
trols the Type I error at a prespecified significance level, and that is powerful, in that it rejects
the null model as often as possible when it does not hold. For parametric null models (the
focus of this paper), there are many existing methods for testing GoF, with canonical choices
including the popular score, likelihood ratio, and Wald tests. The standard approach for these
tests and many others is to prescribe a test statistic (chosen to be powerful under a given
alternative model) and derive a (often asymptotic) null distribution for it. Such tests require
certain regularity conditions on the alternative model (in order to construct a well-behaved
test statistic) and on the null model (in order to establish the validity of the null distribution
for the test statistic) that are generally quite similar to those needed for the maximum likeli-
hood estimator under both the null and alternative to be asymptotically normal. While these
tests are extremely popular and have been fruitfully applied through much of the history of
statistics to many problems, the regularity assumptions placed on the alternative distribution
in particular limit the ability to fully leverage domain knowledge to maximize the statistical
power. To elaborate, consider the following cases which often arise in practice when applying
parametric GoF tests.

• Some prior information is available about the relative plausibility of different regions of the
alternative model. Ideally we would like to incorporate this prior information into our test
statistic in order to maximize power (e.g., through a test statistic derived from Bayesian in-
ference), but standard GoF tests only provide the null distribution for a test statistic which
is determined by the entire alternative space, and give little flexibility to incorporate prior
knowledge into that test statistic while still retaining a valid null distribution. An extreme
case would be when certain regions of the alternative are known to be completely im-
plausible, that is, we would like to remove them from the alternative model entirely, yet
removing them from the model would violate the regularity conditions required for the al-
ternative model. For example, we may know that under the alternative some k-dimensional
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parameter has at most d < k nonzero entries, but we do not know which ones. Such a sparse
alternative model would violate the usual assumption that the parameter space is convex,
forcing one to ignore the sparsity and instead operate under (and hence, derive a test statis-
tic from) the larger, mostly implausible, k-dimensional alternative model. As we see in the
next scenario, if k is too large, even this route is not feasible.

• The alternative model is high- or even infinite-dimensional. Since standard GoF tests treat
their prescribed test statistics as fixed in the asymptotic regime in which they prove va-
lidity, those test statistics can only be designed to be powerful against fixed- (and finite-)
dimensional alternatives. If we have a high-dimensional alternative (i.e., whose dimension
is not assumed negligible relative to the sample size, which includes any nonparametric
alternative), we would ideally like to choose a test statistic which changes with the sample
size to be powerful against a sequence of alternatives which changes as the sample size
grows asymptotically. But standard GoF tests cannot accommodate such a choice, forcing
one to instead operate under a fixed-dimensional alternative that may represent a vanishing
fraction of plausible alternatives, or a very coarse approximation to the space of realistic
alternatives.

The common thread in these cases is that the test statistic that would be most powerful to
use given the domain knowledge at hand is not accompanied by theoretical guarantees or any
known (exact or approximate) null distribution. In our simulations in Section 4, we will study
some examples where standard tests can be applied (and will compare aCSS to the score test
for those examples), and others where, as in the scenarios above, standard tests cannot be
applied and thus a more flexible method like aCSS is necessary.

However, constructing a valid test around an arbitrary test statistic T (X) is possible only
in very limited settings. In particular, if � is simple, that is, it contains only a single point
so that there are no unknown/nuisance parameters in the null model, then any test statistic
T (X)’s null distribution can be arbitrarily well approximated computationally by repeatedly
independently sampling copies X̃ of X from the null distribution and recomputing the same
test statistic on the copies. To be concrete, if the statistic T (X) is chosen such that larger (pos-
itive) values are seen as evidence against the null, we can draw M i.i.d. copies X̃(1), . . . , X̃(M)

from the null distribution, and define a (discretized) p-value

(1.1) pval = pvalT
(
X, X̃(1), . . . , X̃(M)) = 1

M + 1

(
1 +

M∑
m=1

1
{
T

(
X̃(m)) ≥ T (X)

})
,

which is guaranteed to satisfy P(pval ≤ α) ≤ α under the null, for any predefined rejection
level α.

More generally, when � is not a singleton set (i.e., the null hypothesis is composite), in
principle we can still construct a p-value of the form (1.1) as long as we are able to sample a
set of copies X̃(1), . . . , X̃(M) of X so that X, X̃(1), . . . , X̃(M) are exchangeable under the null.
We emphasize that this exchangeability property continues to enable the analyst to use any
desired test statistic T (X), as the validity of the p-value is unaffected. Of course, to achieve
high power, we should aim to choose a function T (X) that is likely to be large under the
alternative hypothesis. Note that we absorb everything that is not X into the definition of
the function T , for example, for testing conditional independence X ⊥⊥ Y |Z as in Problem
Domain 4, T can depend arbitrarily on Y and Z as well (since, after conditioning on Y and
Z, they are treated as fixed and nonrandom).

To summarize, we have seen that

the problem of GoF testing with arbitrary test statistics can be reduced to

one of sampling copies of X that are exchangeable under the null.
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These copies X̃(1), . . . , X̃(M) then act as a “control group” for the real data X, and we can
compare the real statistic T (X) against the “control group” values T (X̃(m)) to test the null.
Of course, aside from the setting of a simple null, sampling exchangeable copies is not nec-
essarily a straightforward task. In particular, in order to have power, we must ensure our null-
exchangeable copies do not remain exchangeable under the alternative; for instance sampling
X̃(1) = · · · = X̃(M) = X trivially satisfies the exchangeability property under the null, but also
under any alternative, and hence clearly equation (1.1) produces a useless p-value of 1 with
probability 1 (for any choice of T ).

One way to sample exchangeable copies when � is composite is by conditioning on a suf-
ficient statistic S(X) for θ , since then by definition the conditional distribution X|S(X) does
not depend on θ . By drawing the copies X̃(m) from this conditional distribution, we achieve
exchangeability of X, X̃(1), . . . , X̃(M) (more concretely, X and its copies are i.i.d. conditional
on S(X)). This approach is known as co-sufficient sampling (CSS) [42]. However, this ap-
proach is viable in only a limited range of settings. In particular, many null models do not
admit a compact (in an information-theoretic sense) sufficient statistic, meaning any suffi-
cient statistic for the null model will remain sufficient for many alternative models as well.
In such cases, which we term degenerate, CSS testing runs into the problem described at the
end of the preceding paragraph—the copies X̃(m) will still be exchangeable with X under the
alternative, resulting in a powerless test. This situation arises quite often, and we will give a
number of common examples shortly in Section 1.2.

As an alternative approach, we might consider the parametric bootstrap [19], where after
estimating the true parameter θ via some estimator θ̂ (e.g., the maximum likelihood estimate),
the copies X̃(1), . . . , X̃(M) are sampled from Pθ̂ . While this widely used approach often works
well in practice, the parametric bootstrap does not create exchangeable copies of the data, and
is not guaranteed to achieve the desired Type I error level when paired with an arbitrary test
statistic T —in fact, it may even lead to substantial error inflation. To take a simple example,
consider a Gaussian linear regression setting where Pθ is given by the distribution X ∼N (θ ·
Z, Id), where Z ∈ R

n is a fixed covariate. Suppose we are interested in testing whether X in
fact has more dependence with another covariate Y ∈ R

n, and so our test statistic is given by

T (X) = (X�Y)2

(X�Z)2 .

Figure 1 compares the parametric bootstrap against co-sufficient sampling (full details for
this simulation are given in Appendix E in the Supplementary Material [5]). The results
show that CSS results in a uniform distribution of p-values, while the parametric bootstrap
results in a highly nonuniform distribution, and could lead to substantially inflated Type I
error. Therefore, we would instead prefer to extend the CSS framework in order to enjoy
theoretically guaranteed error control.

1.1. Our contribution. In this paper, we demonstrate how to escape the problem of zero
power in the degenerate setting, by introducing a new generalization of CSS testing that
conditions only on an approximately sufficient statistic [28, 29, 44]. We call such a test an
“approximate co-sufficient sampling” test. This paper makes four main contributions:

1. We propose approximate co-sufficient sampling (aCSS), which samples approxi-
mately exchangeable copies of the data by conditioning on an approximately sufficient statis-
tic and plugging in a consistent estimator for the unknown parameter.

2. Under weak conditions closely resembling those for standard maximum likelihood
asymptotics, we provide a finite-sample upper-bound for the total variation (TV) distance
from exchangeability of our aCSS samples.
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FIG. 1. Comparison of the parametric bootstrap versus CSS, in a Gaussian linear model example where the
null hypothesis is true. We can see that CSS yields uniformly distributed p-values, but the parametric bootstrap
does not, resulting in an inflated Type I error rate. (See Section 1 for details.)

3. We show that the aforementioned TV bound translates directly to a bound on the
Type I error inflation of an aCSS test that holds uniformly over the choice of test statistic,
and we apply this bound to a number of important models to prove the inflation vanishes
asymptotically as the sample size approaches infinity.

4. We provide general algorithms for aCSS and demonstrate their use in a series of
simulations that exhibit the validity and power of aCSS testing.

1.2. Applications. The problem of zero power for CSS testing arises surprisingly often—
while we call such settings “degenerate”, they are not extreme cases but rather constitute a
large portion of common statistical models of interest. To illustrate this, we will consider the
following settings in which CSS testing is powerless, while aCSS testing can still be quite
powerful and remains asymptotically valid for any test statistic. (Our theoretical results later
on will quantify its finite-sample Type I error.)

MODEL CLASS 1 (Data with associated covariates). Suppose X = (X1, . . . ,Xn) where
the Xi’s are independent, and each Xi has an associated covariate Zi (i.e., the null distri-
bution of each Xi depends on this Zi). In this setting, the distribution of X (i.e., the joint
distribution of X1, . . . ,Xn) will often have the data X itself as a minimal sufficient statistic.
This is even true when Xi |Zi follows logistic regression: for generic values of the Zi’s (e.g.,
if each Zi ∈ R

d is drawn from some continuous distribution), the minimal sufficient statistic
is equivalent to X itself because the value of Z�X ∈ R

d determines X ∈ {0,1}n uniquely, and
hence is sufficient under any alternative as well (and hence any CSS test must be powerless).
This problem class applies not just for GoF testing for conditional models for X (including
the logistic model), but also for conditional independence testing as described in Problem
Domain 4.

MODEL CLASS 2 (Curved exponential families). Consider a null model that is a curved
exponential family, that is, a full-rank k-parameter exponential family with an added con-
straint that reduces the dimension of the parameter space to some d < k and is nonlinear in
the canonical parameters. In this setting, the minimal sufficient statistic is generally the same
as that for the unconstrained (full-rank) exponential family. This means that any CSS test
must be powerless against any alternative that lies in the larger exponential family, for ex-
ample, if we want to test whether the parameter constraint holds or not. A classical example
is the Behrens–Fisher problem of testing equality of (unknown) means between independent
normal samples having different (unknown) variances: any CSS test will be powerless for
every alternative pair of means and variances. The same issue arises in, for example, the
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study of contingency tables (where the canonical family is multinomial and the null hypoth-
esis imposes a constraint on its probabilities), and spatial and time-series models (where the
null hypothesis imposes a spatial or temporal structure on the canonical parameters of an
exponential family).

MODEL CLASS 3 (Heavy-tailed models). Many heavy-tailed models are not exponential
families and do not admit compact sufficient statistics. For instance, the Cauchy location
family’s minimal sufficient statistic is given by the order statistics. Any CSS test of this null
is therefore powerless against any i.i.d. alternative, since the order statistics are sufficient for
this alternative as well. As another example, the Student’s t scale family’s minimal sufficient
statistic is the order statistics of the absolute values, so any CSS test for it must be powerless
against any i.i.d. symmetrical alternative.

MODEL CLASS 4 (Models with latent variables). Many popular models capture domain-
specific properties through latent variables. In such models, if we condition on the latent
variable, then the data often comes from a well-behaved distribution with compact minimal
sufficient statistic. However, when the latent variable is unobserved, we are forced to per-
form inference unconditionally, and the unconditional model rarely has a compact minimal
sufficient statistic. Examples include hidden Markov models, mixture distributions, data with
missing values, errors-in-variables models, and factor models.

Later on in Section 4, we will return to Model Classes 1, 2, and 3 and give concrete
examples of models where aCSS can be applied. We leave Model Class 4 for future work.

1.3. Related work. GoF testing dates back to the very early days of the field of statis-
tics, and the literature even on just parametric GoF is far too numerous to cite. Instead, we
focus our literature review on the subfield of CSS testing, which distinguishes itself within
the broader field of parametric GoF testing by guaranteeing Type I error control with any
test statistic under a parametric null model, the potential advantages of which have been de-
scribed earlier in this section (though see [23] for a recent work on GoF testing in generalized
linear models that allows a fair degree of test statistic flexibility). In fact, some of the most
foundational nonparametric tests can be thought of as CSS tests, including the permutation
test (conditions on the order statistics for an i.i.d. null). The formal idea of a CSS test seems
to date back to at least [6], although the value of sufficient statistics for GoF testing in the
presence of nuisance parameters has also been used in many other ways, for example, [8,
18, 27] decompose the data into a minimal sufficient statistic and an ancillary statistic and
construct a GoF test based on the parameter-free distribution of the ancillary statistic.

CSS testing has gained substantial interest in the last 30 years, though with a focus on
nondegenerate hypothesis testing settings [1, 2, 9, 13, 15, 20, 21, 33–37, 39, 41, 42]. Our work
differs from the existing work in CSS testing by allowing for degenerate (and nondegenerate)
models by conditioning only on an approximately sufficient statistic. Similar techniques have
been used to obtain exact confidence intervals in the presence of nuisance parameters [32],
again in nondegenerate settings. As an example, [25, 40] study conditional independence
testing of X ⊥⊥ Y |Z where X|Z follows a logistic regression model and Z is discrete; logistic
regression is degenerate when Z has a continuous distribution but nondegenerate when Z is
discrete.

For conditional independence testing (Problem Class 4), in the setting where H0 is a simple
null hypothesis (i.e., X|Z has a known distribution), [14] study procedures of the form (1.1)
under the name “conditional randomization test”; their work also constructs the model-X
knockoffs framework for simultaneously testing multiple conditional independence hypothe-
ses (i.e., variable selection in a multivariate regression). This construction provides an exact



2520 R. F. BARBER AND L. JANSON

“swap-exchangeability” property that enables variable selection, that is, simultaneous con-
ditional independence testing of many covariates when the multivariate covariates X come
from a nondegenerate model, and leads to exact false discovery rate control [4]. Generaliz-
ing to the setting where H0 is not simple, [22] construct model-X knockoffs [14] conditional
on a sufficient statistic, retaining the exact “swap-exchangeability” property and exact false
discovery rate control; we can think of this as a knockoffs-analogue of CSS testing.

Moving beyond CSS testing, we are only aware of a few works which take a similarly
approximate approach to that of the present paper. First, the most related to our approach
is the work of [31], where they mention the possibility of an aCSS-type test to solve the
Behrens–Fisher problem (i.e., testing for a difference of means between two Gaussian sam-
ples, described above in Model Class 2), but conclude that such an approach would be compu-
tationally intractable; they instead propose a heuristic sampling procedure which they support
with simulations but no theory. Second, [16, 24] focus on parametric likelihood-based testing
in the presence of nuisance parameters, but study the case where the nuisance parameters
are orthogonal or asymptotically orthogonal to the parameter of interest. Third, approximate
Bayesian computation, also known as likelihood-free inference, conducts Bayesian inference
conditional on a compact nonsufficient statistic, but for computational, as opposed to statisti-
cal reasons, since in the Bayesian framework there is no statistical downside to conditioning
on as much as possible (see, e.g., [26] for such a paper that explicitly addresses the role of
sufficiency). Finally, another related Bayesian approach is the conditional predictive p-value
method of [7], where to sample new copies of X, they need to specify a prior on the unknown
parameter θ ; uncertainty about the correct prior motivates their proposed method, which es-
sentially replaces the prior on θ with the posterior distribution of θ given some approximately
sufficient statistic S(X), to reduce the impact of a potentially misspecified prior.

1.4. Notation. We will write ‖·‖ to denote the usual Euclidean (�2) norm on vectors,
and to denote the operator norm (i.e., spectral norm) on matrices. For a matrix M , λmax(M)

denotes its largest eigenvalue in the positive direction. We write (x)+ to denote max{x,0}.
We will write Eθ and Pθ to denote expectation or probability taken with respect to X ∼ Pθ ,
where the parametric family {Pθ : θ ∈ �} is our null model.

2. Method. The goal of approximate co-sufficient sampling is to generate copies
X̃(1), . . . , X̃(M) of the observed data X such that if the null hypothesis

(2.1) H0 : X ∼ Pθ for some θ ∈ �

is true, then the random variables X, X̃(1), . . . , X̃(M) are approximately exchangeable. Re-
calling the p-value defined in (1.1), we can then test the null hypothesis using any desired test
statistic T (X). The choice of statistic is completely unconstrained, and this flexibility enables
us to design very powerful tests in many settings. Note that, although this flexibility allows
us to design any form of function T , T itself (as a function, i.e., before seeing its argument)
cannot depend on X. For example, if T (X) uses X to tune parameters in a neural network and
then computes a statistic of that neural network applied to X, then T (X̃(m)) cannot compute
a statistic on the same (X-tuned) neural network applied to X̃(m), but must use X̃(m) to tune
the parameters of a new neural network and compute a statistic of that (X̃(m)-tuned) neural
network applied to X̃(m).

To quantify our goal of generating approximately exchangeable copies of the data, we
begin by defining a “distance to exchangeability”:

DEFINITION 1. For any integer k ≥ 1 and any set of random variables A1, . . . ,Ak with
a joint distribution, define

dexch(A1, . . . ,Ak) = inf
{
dTV

(
(A1, . . . ,Ak), (B1, . . . ,Bk)

) : B1, . . . ,Bk are exchangeable
}
.
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Here dTV denotes the total variation distance, and the infimum is taken over all sets of k

random variables B1, . . . ,Bk with an exchangeable joint distribution.

Of course, if A1, . . . ,Ak are exchangeable, then dexch(A1, . . . ,Ak) = 0. When we say
informally that variables A1, . . . ,Ak are “approximately exchangeable”, we mean that the
distance to exchangeability is small.

Now we will see how this distance dexch relates to the problem of testing the null hypothe-
sis (2.1) ([10] use a similar argument in a permutation test setting). Fix a threshold α ∈ [0,1]
and a function T : X → R (the test statistic). For any exchangeable random variables
(B0, . . . ,BM), by definition of exchangeability we have P(pvalT (B0,B1, . . . ,BM) ≤ α) ≤ α,
and therefore,

P
(
pvalT

(
X, X̃(1), . . . , X̃(M)) ≤ α

) ≤ α + dTV
((

X, X̃(1), . . . , X̃(M)), (B0,B1 . . . ,BM)
)
.

Taking an infimum over all exchangeable distributions on (B0,B1 . . . ,BM), we have shown
that

P
(
pvalT

(
X, X̃(1), . . . , X̃(M)) ≤ α

) ≤ α + dexch
(
X, X̃(1), . . . , X̃(M))

under the null hypothesis H0.
Therefore, we can see that, if we are able to construct copies of the data such that

dexch(X, X̃(1), . . . , X̃(M)) is small, then we can construct an approximately valid test of H0
using any desired test statistic T . From this point on, then, our task is to determine how we
can use approximate sufficiency to generate such copies.

2.1. Overview. Consider any function S = S(X) of the data, which is sufficient under
the null hypothesis that X ∼ Pθ for some θ ∈ �. Let P(·|s) be the conditional distribution of
X given S = s (sufficiency of S(X) ensures that this distribution does not depend on θ ). As
described in Section 1, the co-sufficient sampling (CSS) method operates by drawing copies
from this conditional distribution. That is, the joint distribution of the data and the copies,
under the CSS method, is given by⎧⎪⎪⎨⎪⎪⎩

X ∼ Pθ0,

S = S(X),

X̃(1), . . . , X̃(M) | X,S
iid∼ P(·|S),

where θ0 is the unknown true parameter. Clearly, the real and fake data X, X̃(1), . . . , X̃(M)

are i.i.d. conditional on S, and are therefore exchangeable, meaning that the X̃(m)’s provide
a valid “control group” for the real data X regardless of the unknown θ0.

As discussed above, this framework is limited to only certain specific models, since many
common models are “degenerate” (such as the model classes described in Section 1.2), where
any sufficient statistic S = S(X) reveals so much information about X that it leads to a com-
pletely powerless procedure against the alternative hypothesis of interest. We can instead
consider statistics S = S(X) that are not sufficient, but are approximately sufficient, mean-
ing that the distribution Pθ(·|S) is approximately unaffected by the value of θ—more con-
cretely, if we can estimate θ with a consistent estimator θ̂ , then we only need to ensure that
Pθ̂ (·|S) ≈ Pθ(·|S). In fact, for many settings, maximum likelihood estimation is known to
provide an asymptotically sufficient statistic [28, 29, 44]. Thus, we can take S = S(X) to
simply be θ̂MLE(X), or more generally, any other estimator of θ0 that is asymptotically suffi-
cient.

In this setting, we write Pθ0(·|θ̂ ) to denote the conditional distribution of X|θ̂ when the
data is distributed as X ∼ Pθ0 and we calculate θ̂ = θ̂MLE(X). Of course, we cannot draw
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the copies from this distribution since θ0 is unknown, but if θ̂ = θ̂MLE(X) is approximately
sufficient, then the distribution Pθ0(·|θ̂ ) should depend only slightly on θ0. In particular, we
will use θ̂ itself as a plug-in estimate for θ0, leading to the joint model⎧⎪⎪⎨⎪⎪⎩

X ∼ Pθ0,

θ̂ = θ̂MLE(X),

X̃(1), . . . , X̃(M) | X, θ̂
iid∼ Pθ̂ (·|θ̂ ).

These copies form an approximately valid control group as long as Pθ̂ (·|θ̂ ) ≈ Pθ0(·|θ̂ ).
In our aCSS algorithm, we will replace the deterministic step θ̂ = θ̂ (X) with a randomized

estimator (essentially, adding a small random perturbation into the likelihood maximization
problem). Adding noise is beneficial for computational reasons, since the set of x ∈ X whose
MLE is exactly equal to θ̂MLE(X) may be a challenging set to sample from. For certain
examples, adding noise can also be beneficial from the statistical point of view, as for, for
example, the logistic regression setting, described in Model Class 1, where conditioning on
the exact MLE, θ̂MLE(X), may lead to a zero-power scenario. (We will discuss the role of
σ further in Section 3.3 below.) In addition, we will also allow adding a twice-differentiable
regularization function R(θ) to the likelihood maximization problem, for instance R(θ) ∝
‖θ‖2 for ridge regression, which may be beneficial in some applications.

Informally, our proposed aCSS algorithm takes the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

X ∼ Pθ0,

W ∼N
(

0,
1

d
Id

)
,

θ̂ = θ̂ (X,W) = arg min
θ∈�

{− logf (X; θ) +R(θ) + σW�θ
}
,

X̃(1), . . . , X̃(M) | X, θ̂
iid∼ Pθ̂ (·|θ̂ ),

where again Pθ0(·|θ̂ ) denotes the conditional distribution of X|θ̂ when the data is distributed
as X ∼ Pθ0 , and Pθ̂ (·|θ̂ ) is a plug-in estimate.

However, in many settings the penalized negative log-likelihood may not be strongly con-
vex, or might even be nonconvex, in which case we will need to modify this procedure—
while it is the case that, in many statistical problems, many tools exist that are likely to find
the (perturbed) MLE with high probability (e.g., by carefully choosing a good initialization
point), we will need to account for the fact that finding the global optimum is not guaranteed.
Furthermore, in order to construct the copies X̃(1), . . . , X̃(M), we are implicitly assuming that
we are able to generate i.i.d. samples from the conditional distribution of X|θ̂ . In practice,
sampling directly from this density may be impossible, so we may need to turn to techniques
such as Markov chain Monte Carlo (MCMC), which can introduce dependence between the
samples. Our next task, then, is to develop a more general and rigorous form of this simple
algorithm, so that we can provide a practical method that can be deployed in a broad range
of settings.

2.2. Algorithm for approximate co-sufficient sampling. In this section, we will formally
define our aCSS algorithm. Below, we define our noisy estimator θ̂ (Section 2.2.1), calculate
the conditional distribution of X|θ̂ (Section 2.2.2), and describe how to sample the copies
X̃(1), . . . , X̃(M) from the estimated conditional distribution (Section 2.2.3).

2.2.1. Sampling the estimator. Recall that the estimator θ̂ is intended to be approximately
equal to the MLE, even though it includes a regularization function and a random perturbation
into the likelihood maximization problem. Writing

L(θ;x) = − logf (x; θ) +R(θ),
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consider the optimization problem

(2.2) arg min
θ∈�

L(θ;X,W) where L(θ;x,w) = L(θ;x) + σw�θ,

where W ∼ N (0, 1
d

Id) is independent Gaussian noise, σ > 0 determines the noise level of
the random perturbation, and R : � → R is a twice-differentiable regularization function. In
order to accommodate the penalized and unpenalized estimators with a single unified pre-
sentation, we can view the unpenalized version as a special case by simply taking R(θ) ≡ 0.
(This type of randomly perturbed log-likelihood was previously studied by [43], with the dif-
ferent aim of enabling selective inference on a high-dimensional parameter θ . In their work,
the object of interest is the distribution of θ̂ , to enable inference on θ0, whereas in our setting
θ0 is essentially a nuisance parameter.)

In the general setting where the negative log-likelihood might be nonconvex, the optimiza-
tion problem (2.2) may be challenging—in particular, in the presence of nonconvexity, how
would we find a global minimizer, and is a global minimizer even guaranteed to exist? In
many settings, any available algorithm would only be able to guarantee that we find a first-
order stationary point to (2.2) (if it even converges at all). To address this, we modify our
procedure to allow θ̂ to only usually be a well-behaved local optimum of (2.2). This enables
aCSS to draw on the vast literature on optimizing penalized maximum likelihoods. Although
the random perturbation by W makes (2.2) slightly nonstandard for penalized maximum like-
lihood, the perturbation is linear in θ and hence has no impact on Hessians or convexity and
only adds a fixed, trivially computable constant vector to the gradient. Thus, although large
linear perturbations can “tip over” an otherwise well-behaved basin of attraction, our the-
ory will ensure this never happens asymptotically and in practice one can always choose σ

small enough to make this astronomically unlikely; see Appendix D.1 in the Supplemen-
tary Material for a more detailed discussion. In summary, we expect that any algorithm that
empirically often (it need not be provably often) finds a local optimum for the unperturbed
penalized maximum likelihood problem will suffice with almost no modification to solve
(2.2) for the purposes required by the theory in this paper.

In particular, we will define θ̂ to be any measurable function mapping a (data, noise) pair
(x,w) to an estimate, that is,

θ̂ : X ×R
d → �,

and we will later assume this map is likely to return a strict second-order stationary point
(SSOSP) of the minimization problem (2.2). Here we say that θ is a SSOSP of L(θ;x,w) if
two conditions are satisfied:

• θ is a first-order stationary point (FOSP) of L(θ;x,w), meaning that ∇θL(θ;x,w) = 0 or
equivalently w = −∇θL(θ;x)

σ
.

• The objective function is strictly convex at θ , that is, ∇2
θL(θ;x,w) � 0 or equivalently

∇2
θL(θ;x) � 0.

We should think of θ̂ (x,w) as the output of some optimization algorithm, such as gradient
descent, being run to convergence on the minimization problem (2.2).

From this point on, abusing notation, depending on context we may write θ̂ to denote the
map θ̂ : X ×R

d → �, or may also write θ̂ to denote θ̂ (X,W), the random variable obtained
by applying this map to the data.

2.2.2. Calculating the distribution conditioned on the estimator. Our next step is to cal-
culate the conditional distribution of X|θ̂ , where θ̂ = θ̂ (X,W) for random Gaussian noise
W ∼ N (0, 1

d
Id). As it turns out, it is generally not possible to do this exactly—in the rare
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degenerate case where θ̂ (X,W) may fail to find a SSOSP of the optimization problem (2.2),
we do not know the distribution of θ̂ |X and therefore cannot calculate the distribution of X|θ̂ .
We will avoid this degeneracy by conditioning on the event that θ̂ (X,W) returns a SSOSP.

First, we assume some standard conditions on the parametric family, and a differentiability
condition on the model and the regularization function (we will also assume implicitly that all
the functions defined so far, namely, θ̂ , p, L and its derivatives, are measurable with respect
to νX × Leb or νX or Leb, as appropriate).

ASSUMPTION 1 (Regularity conditions). The family {Pθ : θ ∈ �} and regularization
function R(θ) satisfy:

• � ⊆ R
d is a convex and open subset;

• For each θ ∈ �, Pθ has density f (x; θ) > 0 with respect to the base measure νX ;
• For each x ∈ X , the function θ �→ L(θ;x) = − logf (x; θ) + R(θ) is continuously twice

differentiable.

We are now ready to calculate the conditional distribution of X|θ̂ .

LEMMA 1. Suppose Assumption 1 holds. Fix any θ0 ∈ �, and let (X, θ̂) be drawn from
the joint model

(2.3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X ∼ Pθ0,

W ∼ N
(

0,
1

d
Id

)
,

θ̂ = θ̂ (X,W).

Suppose the event that θ̂ is a SSOSP of L(θ;X,W) has positive probability.
Then, conditional on this event, the conditional distribution of X|θ̂ has density

(2.4) pθ0(·|θ̂ ) ∝ f (x; θ0) · exp
{
−‖∇θL(θ̂;x)‖2

2σ 2/d

}
· det

(∇2
θL(θ̂;x)

) · 1x∈Xθ̂

with respect to the base measure νX , where

(2.5) Xθ = {
x ∈X : for some w ∈ R

d , θ = θ̂ (x,w) is a SSOSP of L(θ;x,w)
}
.

The proof of this lemma is given in Appendix A.2. For intuition, we can consider the terms
appearing in the calculation (2.4): the first term f (x; θ0) expresses the original distribution of
X (before conditioning), the second term exp{. . . } comes from the density of the multivariate
normal distribution of W , the third term det(. . . ) arises from a change-of-variables calculation
when we move from the joint distribution of (X,W) to that of (X, θ̂), and the final term 1x∈Xθ̂

handles potential technical issues such as failure to find a SSOSP. In particular, the form of
the second term is due to our choice of the multivariate normal distribution for the noise W ; if
we instead chose a different noise distribution, the results of this lemma would still hold if we
make the appropriate changes to this second term (and the method would yield the same types
of theoretical results as long as the distribution of W is continuous, supported everywhere on
R

d , and has similar concentration properties for ‖W‖). In this work, we choose a multivariate
normal distribution since the outcome of the procedure will therefore be invariant to rotations
of the parameter space �; in settings where the choice of the basis for � is meaningful (e.g.,
we expect sparsity), it may be interesting to instead consider a nonrotationally invariant noise
distribution.
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2.2.3. Sampling the copies. We next need to specify how to sample the copies X̃(1), . . . ,

X̃(M). Below we describe several different approaches—which one we use will depend on
the computational complexity of the problem at hand.

2.2.3.1. The i.i.d. sampling case. In order to construct copies X̃(1), . . . , X̃(M) that are ex-
changeable with the data X, we would like to sample the copies X̃(1), . . . , X̃(M) i.i.d. from
the density pθ0(·|θ̂ ), which by Lemma 1 specifies the exact conditional distribution of X|θ̂ .
Since θ0 is unknown we will use θ̂ as a plug-in estimator. Our procedure is the following:
after observing the data X,

(2.6)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Draw W ∼ N

(
0,

1

d
Id

)
and define θ̂ = θ̂ (X,W).

If θ̂ is a SSOSP of L(θ;X,W), then draw X̃(1), . . . , X̃(M) iid∼ pθ̂ (·|θ̂ ),

otherwise return X̃(1) = · · · X̃(M) = X.

Here our estimated density for the conditional distribution of X|θ̂ is given by

(2.7) pθ̂ (x|θ̂ ) ∝ f (x; θ̂ ) · exp
{
−‖∇θL(θ̂;x)‖2

2σ 2/d

}
· det

(∇2
θL(θ̂;x)

) · 1x∈Xθ̂

with respect to the base measure νX . (Lemma 2, in Appendix B.3 in the Supplementary
Material, will verify that this expression indeed defines a valid density.)

Of course, in order to implement the sampling algorithm given in (2.6), we are implicitly
assuming that it is computationally feasible to generate i.i.d. samples from pθ̂ (·|θ̂ ). To avoid
making this assumption, we next consider a more general framework.

2.2.3.2. The MCMC sampling case. In the general case where sampling directly from
pθ̂ (·|θ̂ ) may not be possible, we can instead use MCMC or any other strategy that ensures
exchangeability. To be concrete, we will consider two schemes from [11] for constructing the
copies with MCMC sampling. Given θ̂ , let �(·;x) be any collection of transition distribu-
tions, such that the density pθ̂ (·|θ̂ ) defines a stationary distribution. Assume that � defines a
reversible Markov chain. Given �, we define two different schemes for generating the copies.
(See Figure 2 for an illustration of these schemes.)

• Hub-and-spoke sampler. Given X and θ̂ , we sample the copies as follows:
– Initialize at X, and run the Markov chain for L steps to define the “hub” X̃∗.
– Independently for m = 1, . . . ,M , initialize at X̃∗ and run the Markov chain for L steps

to define the “spoke” X̃(m).

FIG. 2. Left: the hub-and-spoke sampler. Right: the permuted serial sampler. In both diagrams, each thick black
line represents running the reversible Markov chain for L steps.
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• Permuted serial sampler. Given X and θ̂ , we sample the copies as follows:
– Draw a uniform permutation π on {0, . . . ,M} and find m∗ ∈ {0, . . . ,M} such that

π(m∗) = 0.
– Initialize at X, and run the Markov chain for Lm∗ steps, stopping every Lth step to

define the copies X̃(π(m∗−1)), . . . , X̃(π(0)).
– Independently, initialize at X, and run the Markov chain for L(M − m∗) steps, stopping

every Lth step to define the copies X̃(π(m∗+1)), . . . , X̃(π(M)).

Later on, we will give concrete examples of how to implement these sampling schemes for
specific models.

2.2.3.3. A unified definition. To generalize our various options (i.i.d. sampling, hub-and-
spoke MCMC sampling, and permuted serial MCMC sampling), we will write P̃M(·;X, θ̂)

to denote the distribution of the collection of copies (X̃(1), . . . , X̃(M)) conditional on X and θ̂ .
For all three cases, our aCSS procedure for sampling the copies is the following:

(2.8)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Draw W ∼ N

(
0,

1

d
Id

)
and define θ̂ = θ̂ (X,W).

If θ̂ is a SSOSP of L(θ;X,W), then draw
(
X̃(1), . . . , X̃(M)) ∼ P̃M(·;X, θ̂),

otherwise return X̃(1) = · · · X̃(M) = X.

In the i.i.d. sampling case, P̃M(·;X, θ̂) is simply equal to sampling from the product den-
sity pθ̂ (·|θ̂ ) × · · · × pθ̂ (·|θ̂ ), and therefore depends on θ̂ but not on X, while for the two
MCMC samplers, there is dependence between the data and the copies even after condition-
ing on θ̂ (although, if the chain length L is sufficiently long, we would expect this dependence
to be weak). Despite this dependence, all three of these sampling schemes satisfy the follow-
ing exchangeability condition: for all θ ∈ � with νX (Xθ ) > 0,

(2.9)
If X ∼ pθ(·|θ) and

(
X̃(1), . . . , X̃(M)) | X ∼ P̃M(·;X,θ), then

the random vector
(
X, X̃(1), . . . , X̃(M)) is exchangeable.

Note that P̃M(·;X,θ) replaces all instances of θ̂ in the definition of P̃M(·;X, θ̂) with θ ’s.
Of course, it may be of interest to examine other sampling schemes, aside from the three
described above. Our theoretical results below apply to any algorithm of the form (2.8) as
long as the distribution P̃M for drawing the copies is chosen to satisfy (2.9).

3. Theoretical results. In this section, we present our main result, proving a bound on
the excess Type I error of any aCSS testing procedure.

3.1. Main result: Type I error bound. Before presenting the theorem, we will need a few
more assumptions on the model and on the noisy estimator θ̂ . First, we need to assume that θ̂

is (typically) an accurate estimator of the unknown true θ0, and that θ̂ will (typically) return
a SSOSP for the optimization problem (2.2).

ASSUMPTION 2. For any θ0 ∈ �, the estimator θ̂ : X ×R
d → � satisfies

(3.1) P
(∥∥θ̂ (X,W) − θ0

∥∥ ≤ r(θ0), and θ̂ (X,W) is a SSOSP of L(θ;X,W)
) ≥ 1 − δ(θ0),

where the probability is taken with respect to the distribution (X,W) ∼ Pθ0 ×N (0, 1
d

Id).

For many parametric families, the maximum likelihood estimator (or a penalized MLE) is
typically shown to satisfy this type of condition with r(θ0) = Õ(n−1/2) (here Õ(·) denotes
that the scaling holds up to powers of logn). This assumption has essentially the same flavor,
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except that our estimator θ̂ is a random perturbation of the penalized MLE. We discuss this
assumption in more detail in Appendix C in the Supplementary Material.

Next, we place some assumptions on the derivatives of the log-likelihood. Let H(θ;x) =
−∇2

θ logf (x; θ) and let H(θ) = Eθ0[H(θ;X)] (in particular, H(θ0) is the Fisher informa-
tion).

ASSUMPTION 3. For any θ0 ∈ �, the expectation H(θ) exists for all θ ∈ B(θ0, r(θ0)) ∩
�, and furthermore

(3.2) Eθ0

[
sup

θ∈B(θ0,r(θ0))∩�

r(θ0)
2 · (λmax

(
H(θ) − H(θ;X)

))
+
]
≤ ε(θ0)

and

(3.3) Eθ0

[
exp

{
sup

θ∈B(θ0,r(θ0))∩�

r(θ0)
2 · (λmax

(
H(θ;X) − H(θ)

))
+
}]

≤ eε(θ0).

Here r(θ0) is the same constant as appears in Assumption 2 (which, as mentioned above,
will scale as r(θ0) = Õ(n−1/2) in many settings). To interpret our assumption, we note that
assumptions of the form ∥∥H(θ;X) − H(θ)

∥∥ =OP
(
n1/2)

are standard for establishing classical results such as asymptotic normality of the MLE; even
with a bound as weak as r(θ0) = o(n−1/4), this type of assumption will immediately imply
that the first bound (3.2) holds. However, this type of condition is not quite sufficient for the
theoretical arguments we need to establish, and we instead need the condition (3.3), which
implies the same rate of convergence but with stronger control of the tails.

With our assumptions in place, we state the main result, which bounds the distance to
exchangeability—and therefore, the Type I error—of any aCSS procedure.

THEOREM 1. Suppose Assumptions 1, 2, and 3 all hold. After observing the data X,
suppose we run the aCSS algorithm (2.8), where the distribution P̃M is chosen to satisfy (2.9).
Then, if X ∼ Pθ0 for some θ0 ∈ �, the copies X̃(1), . . . , X̃(M) are approximately exchangeable
with X, satisfying

dexch
(
X, X̃(1), . . . , X̃(M)) ≤ 3σ · r(θ0) + δ(θ0) + ε(θ0).

In particular, this implies that for any predefined test statistic T : X → R and rejection
threshold α ∈ [0,1], the p-value defined in (1.1) satisfies

P
(
pvalT

(
X, X̃(1), . . . , X̃(M)) ≤ α

) ≤ α + 3σ · r(θ0) + δ(θ0) + ε(θ0).

The proof of this theorem is given in Appendix A.1.

3.2. The asymptotic view. The theoretical guarantee given in Theorem 1 is nonasymp-
totic, but it typically implies asymptotic control of the Type I error. In particular, in many
standard settings where the observed data arises from an independent sample of size n,
the terms r(θ0), δ(θ0), and ε(θ0) are all vanishing, and in particular we will expect to see
r(θ0) = Õ(n−1/2). Thus, if we choose noise level σ � na for some a < 1

2 , this will lead to
asymptotic Type I error control, that is, P(pval ≤ α) = α + o(1).

Furthermore, the Type I error bound in Theorem 1 gives insight into the role of approx-
imate (or asymptotic) sufficiency in the method— θ̂ (X,W) is essentially a MLE (assum-
ing σ = o(n1/2) as before)—this is because the size of the perturbation of the negative
log-likelihood, ‖∇θL(θ;X,W) − ∇θL(θ;X)‖ = σ‖W‖ = o(n1/2), is vanishing relative to
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‖∇θL(θ0;X)‖ � n1/2. Thus under standard assumptions, θ̂ (X,W) is asymptotically efficient,
and inherits the asymptotic sufficiency properties of the MLE. At a high level, this means that
the distributions pθ0(·|θ̂ ) of X|θ̂ and pθ̂ (·|θ̂ ) of X̃(m)|θ̂ are asymptotically equal (i.e., the total
variation distance between them is vanishing), leading to asymptotic exchangeability between
X and its copies, and consequently an asymptotic Type I error bound at the nominal level α

as shown in Theorem 1.

3.3. Choosing σ . It may seem odd that we have advocated for σ > 0 and yet the Type 1
error bound in our main result gets worse as σ increases. Indeed, increasing σ will generally
degrade the Type 1 error of aCSS testing due to the fact that, as σ is increased, the method
moves farther from conditioning on a sufficient statistic. And in fact, taking the limit as σ → 0
in Theorem 1 gives the tightest possible Type 1 error bound (only Assumption 2 depends on
σ , and in general we would expect it to be even more plausible for smaller σ ). In addition,
as discussed in Section 2.2.1 as well as in the Supplementary Material (see Appendix D.1),
increasing σ can decrease the probability of finding an SSOSP for the optimization (2.2),
which will not negatively impact the Type 1 error, but will decrease the power of the test by
increasing the probability of returning a p-value of 1. However, despite these two downsides,
there are two critical reasons why it is advantageous, and arguably necessary, to take σ > 0,
and this is why we allow for it in Theorem 1.

First, note that if we took σ = 0, aCSS would need to sample from a distribution supported
on a level set of the MLE function of X. This level set is a low-dimensional (and hence
measure-zero) subset of X , and thus it is generally computationally intractable to sample
from exactly. There is some work on sampling a random variable conditional on the value
of a function of it (e.g., [17]), but only in very limited settings. Thus in most applications of
aCSS, we are not aware of a computationally tractable approach that does not take σ > 0.
Once we accept that σ > 0 is computationally necessary, the choice of its value modulates a
power–computation trade-off within the MCMC samplers we propose in this paper, that is,
for any value of σ > 0, higher power comes at the cost of more computation, and the value of
σ determines this trade-off curve. Increasing σ improves the entire trade-off curve, making
it easier to achieve higher power with less computation, but comes at the potential cost of
higher Type I error as reflected in the bound of Theorem 1. This trade-off is discussed more
in Appendix D.2 in the Supplementary Material, but essentially as σ approaches zero, it will
take increasingly many MCMC steps (and associated computation) for the sampler to move
“away” from the original X towards conditional independence. The more the sampler can
move “away” from X, the higher the power of aCSS testing will tend to be, since a small
p-value is obtained exactly when X stands out among the sampled copies.

Second, for models in which the MLE is sufficient for θ as well as for the parameters
in a higher-dimensional supermodel of {Pθ : θ ∈ �} (e.g., in the logistic regression example
the MLE is equivalent to X itself and thus is sufficient for all the parameters in any model),
taking σ = 0 would lead to a completely powerless test for all alternatives in that supermodel.
Exactly how large σ needs to be to break this degeneracy will likely need to be worked out
on a case-by-case basis, and we defer a general treatment to future work. However, we see in
Section 4 that for the logistic regression setting, described in Model Class 1, we can easily
achieve high power with a σ value that is still sufficiently small to have no visible impact on
the Type 1 error.

4. Examples. To provide further insight into the generality and practicality of aCSS
testing, we establish that the necessary assumptions hold for four specific models. Example 1
(generalized linear models with canonical parameters) is an example of a regression model
containing data with associated covariates, as discussed in Model Class 1. Example 2 (the
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Behrens–Fisher problem) and Example 3 (a Gaussian spatial process) are both examples of
curved exponential families, discussed earlier in Model Class 2. Example 4 (a multivariate t
distribution) is a heavy-tailed model, and is thus an instance of Model Class 3.

In each case, we will see that the assumptions of Theorem 1 are satisfied with r(θ0) =
Õ(n−1/2), and with vanishing δ(θ0) and ε(θ0). In particular, choosing a noise level σ �
na for any a < 1

2 is sufficient to ensure that the Type I error is asymptotically bounded by
the nominal level α. We will then show simulation results for each of the four examples in
Section 4.5 below.

4.1. Canonical generalized linear models (GLMs).

EXAMPLE 1. We begin with the setting of a generalized linear model (GLM) with canon-
ical parameters. Consider a logistic regression model with covariates Zi ∈ R

d associated with
each Xi ∈R, so that

f (x; θ) =
n∏

i=1

(
eZ�

i θ

1 + eZ�
i θ

)xi ·
(

1

1 + eZ�
i θ

)1−xi

,

parametrized by θ ∈ � = R
d . (We interpret f (x; θ) as a density with respect to the base

measure νX on X = R
n that places mass 1 on each point x ∈ {0,1}n.) We can rewrite this in

the notation of a generalized linear model (GLM),

f (x; θ) = exp

{
x�Zθ −

n∑
i=1

log
(
1 + eZ�

i θ )},

where Z ∈ R
n×d is the matrix with rows Zi . As discussed above, for X ∼ Pθ , the random

vector S(X) = Z�X ∈ R
d provides a sufficient statistic; however, if the rows Zi are in general

position, then Z�X will determine X ∈ {0,1}n uniquely, meaning that X is no longer random
after we condition on S(X) = Z�X. In other words, co-sufficient sampling (CSS) would lead
to zero power, and we therefore need to turn to aCSS testing.

More generally, we can consider any canonical GLM, of the form

f (x; θ) = exp

{
x�Zθ −

n∑
i=1

a
(
Z�

i θ
)}

,

with respect to some base measure νX = μ × · · · × μ on X = R
d , where μ is a measure on

R. The function a is known as the partition function, and is strictly convex on its domain,
which must be an open subset of R. As for logistic regression, Z�X is a sufficient statistic
for X ∼ Pθ , but in the case of a discrete distribution (e.g., Poisson), CSS will again lead to
zero power and so we should instead consider aCSS.

Suppose that the sample size n tends to infinity, while the parameter θ0 is held constant
(in particular, this implies that dimension d is held constant—we leave the high-dimensional
setting for future work). For this example, and all the others below, we will consider the
unpenalized version of the method, that is, R(θ) ≡ 0. Assume the covariates are entrywise
bounded, that is, maxi,j ‖Zij‖∞ is bounded by a constant, and 1

n
Z�Z � λ0Id for a posi-

tive constant λ0. We treat the covariates as fixed (i.e., the theory holds conditional on the
covariates). Then, as we will show in Appendix C in the Supplementary Material, for an
appropriately chosen initial estimator this example satisfies Assumptions 1, 2, and 3 with
r(θ0) = Õ(n−1/2), δ(θ0) = O(n−1), and ε(θ0) = 0.
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4.2. The Behrens–Fisher problem.

EXAMPLE 2. Next, we consider the classical example of the Behrens–Fisher problem.
Consider data

X
(0)
1 , . . . ,X

(0)

n(0)

iid∼ N
(
μ(0), γ (0)), X

(1)
1 , . . . ,X

(1)

n(1)

iid∼ N
(
μ(1), γ (1)),

with the two samples drawn independently. We are interested in testing the null hypoth-
esis H0 : μ(0) = μ(1), and therefore the family of distributions can be parameterized by
θ = (μ, γ (0), γ (1)) ∈ � = R × R+ × R+ ⊆ R

3, yielding a family {Pθ : θ ∈ �} where Pθ

has density

f (x; θ) = f
(
x; (μ,γ (0), γ (1)))

=
n(0)∏
i=1

1√
2πγ (0)

e−(X
(0)
i −μ)2/2γ (0) ·

n(1)∏
i=1

1√
2πγ (1)

e−(X
(1)
i −μ)2/2γ (1)

with respect to the Lebesgue measure on X =R
n(0)+n(1)

.
This problem is an example of a curved exponential family (Problem Domain 2), for

which the larger model is parametrized by (μ(0), γ (0),μ(1), γ (1))—note that the constraint
μ(0) = μ(1) is a nonlinear constraint once we transform to the canonical parameters, which
are given by (γ (�))−1μ(�), (γ (�))−1 for each � ∈ {0,1}. For this problem, under the null model
(i.e., parametrized by θ = (μ, γ (0), γ (1))), the minimal sufficient statistic is nonetheless four-
dimensional—for example, the sample means and sample standard deviations of {X(0)

i } and

of {X(1)
i } form a minimal sufficient statistic. Of course, this statistic is also sufficient for the

larger alternative model (where μ(0) �= μ(1)); once we condition on this sufficient statistic,
the remaining randomness in the data carries no information about the parameters μ(0) and
μ(1). Therefore, CSS would lead to a completely powerless procedure, and we instead turn
to aCSS. (As mentioned earlier in Section 1.3, [31] mention the possibility of, but do not
pursue, an aCSS-like procedure for this specific example.)

Suppose that the sample size n tends to infinity, while the parameter θ0 is held constant and

the ratio max{n(0),n(1)}
min{n(0),n(1)} is bounded by a constant. Then, as we will show in Appendix C in the

Supplementary Material, for an appropriately chosen initial estimator this example satisfies
Assumptions 1, 2, and 3 with r(θ0) � Õ(n−1/2), δ(θ0) � O(n−1), and ε(θ0) = Õ(n−1).

4.3. A Gaussian spatial process.

EXAMPLE 3. For our next example, we will work in a dependent data setting—unlike
the other three examples, we do not have independent observations. Our model is a Gaussian
spatial process. Suppose that X ∈ R

n is distributed according to a multivariate Gaussian,

X ∼ N (0,�θ),

where the covariance matrix �θ is parametrized by a scalar θ ∈ R. Specifically, we will
consider a spatial Gaussian process where

(�θ)ij = exp{−θ · Dij },
where (Dij ) ∈ R

n×n is a pairwise distance matrix among n spatial points. In other words,
we can think of the observation Xi as corresponding to a location zi ∈ R

k for some ambient
dimension k, and the correlation between Xi and Xj is a decaying function of the distance
between locations zi and zj , that is, Dij = ‖zi − zj‖. We assume that the distances Dij are
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known, and the parameter θ ∈ � = (0,∞) ⊆ R is the only unknown. This example, like
Example 2, is an instance of a curved exponential family. In this case, the larger model is
given by X ∼ N (0,�−1), where the inverse covariance � is the canonical parameter. The
nonlinear constraints introduced by the spatial model take the form

(Dij )
−1 log

(
�−1)

ij = (Dk�)
−1 log

(
�−1)

kl

for all indices i, j , k, � (since the expression on each side of this equation should be equal to
the same value θ ). As in Example 4, the minimal sufficient statistic for our curved exponential
null model is the same as that for the larger exponential family—in this case, it is given by the
(uncentered) sample covariance—and therefore CSS would result in a powerless procedure
for testing against any mean-zero multivariate Gaussian alternative.

Now we turn to aCSS for this example. In this setting, the distribution Pθ has density

f (x; θ) = 1

(2π)n/2 det(�θ)1/2 e−x��−1
θ x/2,

with respect to the Lebesgue measure on R
n. The negative log-likelihood θ �→ − logf (x; θ)

is therefore nonconvex, due to the nature of the map θ �→ �θ .
It is known, however, that in the special case where the locations zi are on a regular integer

lattice, standard results such as asymptotic normality of the MLE can be obtained [3], and so
we will work in this setting. Consider the integer grid {z1, . . . , zn} = {1, . . . ,N}k , where n =
Nk . As above, the distances Dij are given by ‖zi − zj‖. Suppose that the grid size N tends to
infinity, while the dimension k and the parameter θ0 are held constant. Then, as we will show
in Appendix C in the Supplementary Material, for an appropriately chosen initial estimator
this example satisfies Assumptions 1, 2, and 3 with r(θ0) = Õ(n−1/2), δ(θ0) = O(n−1), and
ε(θ0) = Õ(n−1/2).

4.4. The multivariate t distribution with unknown covariance.

EXAMPLE 4. Our last example will demonstrate that our methodology can be applied
even in settings where the data is extremely heavy-tailed—specifically, the multivariate t
distribution. We consider a setting with n i.i.d. draws from a zero-mean multivariate t distri-
bution,

Xi
iid∼ tγ

(
0, θ−1),

where θ−1 ∈ R
k×k is an unknown covariance matrix while γ > 0 is the known degrees-of-

freedom parameter. (Breaking with standard notation, we will use a lowercase θ to denote a
matrix parameter, to agree with our notation throughout this paper.) Our family of distribu-
tions is therefore given by {Pθ : θ ∈ �}, where � ⊆ R

k×k is the set of positive definite k × k

matrices. We can view � as a convex open subset of Rd with d = k(k+1)
2 , by considering the

upper triangle of a positive definite matrix θ . The density is

f (x; θ) =
n∏

i=1

ck,γ det(θ)1/2(γ + x�
i θxi

)− γ+k
2 ,

with respect to the Lebesgue measure on X = (Rk)n, where ck,γ depends only on the dimen-
sion k and the degrees-of-freedom parameter γ , and not on the unknown parameter θ . Unlike
a GLM, we cannot write the log-density logf (x; θ) in the form (function of x)·(function
of θ ). In fact, we can see that, up to permutation and/or multiplication by −1 of the data
points i = 1, . . . , n, the data X itself is a minimal sufficient statistic for θ , so there is no
sufficient statistic that would not essentially fully specify the data. Thus for instance, CSS
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testing would be powerless against any i.i.d. alternative that is invariant to reflection through
the origin. However, the approximate sufficiency framework is well suited for this example.

Suppose that the sample size n tends to infinity, while the degrees-of-freedom parameter
γ and the unknown matrix parameter θ0 are held constant (in particular, this implies that
the dimension k is held constant—we leave the high-dimensional setting for future work).
Then, as we will show in Appendix C in the Supplementary Material, for an appropriately
chosen initial estimator this example satisfies Assumptions 1, 2, and 3 with r(θ0) = Õ(n−1/2),
δ(θ0) =O(n−1), and ε(θ0) = Õ(n−1/2).

4.5. Simulations. We now demonstrate the performance of aCSS for each of the four
examples described above; code to reproduce the simulations is available at https://rinafb.
github.io/code/aCSS.zip. We will first show two examples in Section 4.5.1 with relatively
simple parametric alternative models, for which competing methods exist; in these examples,
we will see aCSS testing is as powerful as the most powerful established method, namely, the
score test. Then, in Section 4.5.2, we will consider two more complex examples exhibiting
alternative models which elude standard approaches, and for which we are unaware of any
existing test that would be powerful; we will see that aCSS testing can be powerful in such
settings through the choice of a relatively sophisticated test statistic that fully leverages the
particular alternative model.

For both types of examples, we will also see that the aCSS test is empirically valid (the
rejection probability is almost exactly the nominal level α = 0.05 under the null hypothesis)
and that it has only slightly less power than an oracle method—this oracle method is given
extra information about the distribution that reduces the composite null to a simple null, and
computes a p-value (1.1) by applying the same statistic function T as aCSS to M copies X̃(m)

drawn independently (unconditionally) from that simple null.

4.5.1. Simulations with a parametric alternative. We use Examples 2 (Behrens–Fisher)
and 4 (multivariate t) to demonstrate similar power between the aCSS test and the score test
under parametric alternatives. The results, plotted in Figure 3, show the aCSS tests have very
similar power to both the oracle and score tests. The simulation setups for the two examples
are summarized below; the choice of the proposal distributions for the MCMC samplers, and
chain lengths L, are described in detail in Appendix D in the Supplementary Material.

FIG. 3. Power of the aCSS test compared to an unconditional oracle that knows the (simple) null hypothesis,
and compared also to the score test, for the two examples discussed in Section 4.5.1. The aCSS test controls the
Type I error at the nominal 5% level (dotted line) under the null (represented by 0 on the x-axis in each plot), and
has very similar power to the oracle and score test under the alternatives. Each point represents 500 independent
replications, with the maximum standard error ≈ 2% and the standard error at the left edge of each plot (under
the null) below 1%.

https://rinafb.github.io/code/aCSS.zip
https://rinafb.github.io/code/aCSS.zip
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4.5.1.1. Example 2 (Behrens–Fisher). For the Behrens–Fisher example, the alternative
model is as described in Section 4.2 but with (μ(0),μ(1), γ (0), γ (1)) unconstrained in
R×R×R+ ×R+.

• To generate the data, we take n(0) = n(1) = 50, μ(0) = 0, γ (0) = 1, γ (1) = 2, and μ(1) ∈
{0,0.1,0.2, . . . ,1} (with μ(1) = 0 corresponding to the case where the null hypothesis
holds).

• The test statistic T (used both for aCSS and for the oracle) is given by the absolute differ-
ence in sample means between the two halves of the data.

• aCSS is run with the hub-and-spoke sampler with parameters σ 2 = 1 and M = 500. The
oracle method is given all parameter values except for μ(1), so that the null μ(1) = 0 is
simple.

4.5.1.2. Example 4 (multivariate t). For the multivariate t example, the alternative model
is as described in Section 4.4 but with the degrees-of-freedom parameter γ unknown and
unconstrained (aside from being positive).

• To generate the data, we let n = 100, θ0 =
(

1 −0.5
−0.5 2

)
, and γ = 2 be the assumed degrees

of freedom under the null hypothesis (“d.f.null”). The distribution of the data is given by
td.f.(0, θ−1

0 ), where the degrees of freedom “d.f.” is taken from {2,4,6,8,10}. Therefore
d.f. = 2 represents the case where the null is true, and d.f. − d.f.null measures the deviation
from the null hypothesis.

• The test statistic T (used both for aCSS and for the oracle) is chosen to be the same as for
the score test.

• aCSS is run with the hub-and-spoke sampler with parameters σ 2 = 1 and M = 100. The
oracle method is given all parameter values except for γ , so that the null γ = 2 is simple.

4.5.2. Simulations without a parametric alternative. We use Examples 1 and 3 to demon-
strate the power of aCSS testing under more complex alternative models for which no exist-
ing methods (including the score test) are suitable. The results, plotted in Figure 4, show the
aCSS tests have very similar power to the oracle. For the four examples, the settings of the
simulation are as follows. In each case, the choice of the proposal distribution for the MCMC
sampler, and chain length L, are described in detail in Appendix D in the Supplementary
Material.

FIG. 4. Power of the aCSS test compared to an unconditional oracle that knows the (simple) null hypothesis,
for the two examples discussed in Section 4.5.1. The aCSS test controls the Type I error at the nominal 5% level
(dotted line) under the null (represented by 0 on the x-axis in each plot), and has very similar power to the oracle
and score test under the alternatives. Each point represents 500 independent replications, with the maximum
standard error ≈ 2% and the standard error at the left edge of each plot (under the null) below 1%.
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4.5.2.1. Example 1 (logistic regression). For the logistic regression example, we use aCSS
to test a conditional independence hypothesis, so there is a response variable Y that, under
the alternative, changes the conditional distribution of X|Z given in Section 4.1. Y is drawn
from a nonparametric model which is well approximated by a single index model, but does
not exactly follow this model.

• To generate the data, we take n = 100, and X|Z follows 5-dimensional logistic regression
with coefficient vector θ0 = 0.2 ·1. Y ’s conditional distribution is given by Y |(Z,X = 0) =
f0(g0(Z)+β�

0 Z)+N (0,1) and Y |(Z,X = 1) = f1(g1(Z)+β�
1 Z)+N (0,1). We choose

f0 = f1 = t �→ t +0.5t3, g0 = g1 = z �→ 0.5
∑5

j=1(zj )+, β0 = c ·e1, and β1 = c ·e5, where
c ∈ {0,0.1,0.2, . . . ,1} indicates the signal strength (with c = 0 corresponding to the null
hypothesis). The nonlinearity of g0 and g1 means that the single index model does not
exactly describe the conditional distribution of Y .

• The test statistic T (used both for aCSS and for the oracle) is computed by estimating the
coefficient vector on Z in a single index model via sliced inverse regression [30] separately
on the data sets {(Yi,Zi) : Xi = 0} and {(Yi,Zi) : Xi = 1}, respectively (though recall that
the single index model does not strictly hold for either data set), and then computing the
angle between these estimated coefficient vectors.

• aCSS is run with the hub-and-spoke sampler with parameters σ 2 = 10 and M = 500. To
implement the oracle method in this example, the oracle is given the distribution of X|Z,
that is, the true coefficient vector θ0 for the logistic regression model; under the null hy-
pothesis, X|Z,Y follows the same distribution as X|Z, and thus the oracle is given full
knowledge of the distribution of X|Z,Y under the null.

4.5.2.2. Example 3 (Gaussian spatial). For the Gaussian spatial process example, we take
a 2-dimensional 10×10 integer lattice {1, . . . ,10}2 for the spatial points.

• The distribution of the data is as described in Example 3 with the exception that there exists
a line L bisecting the lattice, and for two points i and j whose positions (zi and zj , respec-
tively) are on opposite sides of L, instead of their covariance being given by e−θ0‖zi−zj‖,
it is instead given by (1 − c)e−θ0‖zi−zj‖. For instance, the data points could come from
soil samples, and L might be a possible geological ridge reducing the dependence between
points on either side of it. In our experiments, θ0 = 0.2, L is horizontal with intercept 5.5 so
that 50 of the lattice points lie below it and the other 50 lie above it, and c ∈ {0,0.2, . . . ,1}
is an anisotropy parameter, with c = 0 indicating an isotropic spatial process so that the
null hypothesis holds.

• The test statistic T (used both for aCSS and for the oracle) is computed as follows. We first
compute a threshold kernel matrix � ∈R

n×n with entries �i,j = e−|Xi−Xj |1‖zi−zj‖=1 and
then use � as the kernel matrix for spectral clustering with two clusters. Denoting the two
clusters as S and Sc, the value of T is then computed as the normalized negative sum of
kernel distances between the two groups:

−
(

1∑
i∈Sc,j∈S∪Sc �i,j

+ 1∑
i∈S,j∈S∪Sc �i,j

) ∑
i∈S,j∈Sc

�i,j .

• aCSS is run with the hub-and-spoke sampler with parameters σ 2 = 1 and M = 100. The
oracle method is given θ0, L, and the functional form for � in terms of c, so that the null
c = 0 is simple.

5. Discussion. Approximate co-sufficient sampling offers a new framework for infer-
ence on goodness-of-fit and related problems such as conditional independence testing and
inference on target parameters, under mild assumptions on a composite null model. In this



APPROXIMATE CO-SUFFICIENT SAMPLING 2535

section, we will first revisit the construction of aCSS to develop a deeper intuition for the
ideas behind the method, and will then examine some open questions and directions that
remain.

5.1. The importance of conditioning: Comparison to the parametric bootstrap. Here we
return to the construction of the aCSS method, with new insights obtained from the proof
of our main result, Theorem 1. In particular, why is it important to condition on θ̂ when we
sample the copies?

In the construction of aCSS, after conditioning on θ̂ , we sample copies X̃(m) that are ap-
proximately exchangeable with X as long as it holds that pθ̂ (·|θ̂ ) ≈ pθ0(·|θ̂ ). This is because,
conditional on θ̂ , the copies are sampled from the density pθ̂ (·|θ̂ ), while the unknown true
null density of X|θ̂ is instead pθ0(·|θ̂ ); we simply use θ̂ as a plug-in estimator of θ0 to define
the distribution from which we sample the copies. In our proofs, we saw that aCSS leads to
asymptotically valid tests as long as dTV(pθ0(·|θ̂ ), pθ̂ (·|θ̂ )) is vanishing.

It is tempting to ask whether the same idea can be used without conditioning on θ̂ . That is,
since the true data is distributed as X ∼ Pθ0 under the null, can we plug in θ̂ for θ0 and sam-
ple the copies X̃(m) from Pθ̂ ? In fact, this nonconditional version of the procedure is simply
recovering the parametric bootstrap—and, as we observed in Section 1, the parametric boot-
strap may result in inflated Type I error rates in certain settings, depending on the test statistic
T that we use. This is because, in general, it will not be the case that dTV(Pθ0,Pθ̂ ) is vanish-
ing, even for θ̂ chosen to be the MLE, and therefore, if we define the copies X̃(1), . . . , X̃(M)

by sampling (unconditionally) from Pθ̂ , rather than from the conditional distribution estimate
pθ̂ (·|θ̂ ), it will generally be the case that, for some adversarially chosen test statistic T (X),
we may have Type I error that exceeds the nominal level α by a nonvanishing amount.

5.2. Can we condition on less information?. More generally, what if we consider condi-
tioning on a different statistic S = S(X) (or a perturbed version S = S(X,W)), which con-
tains strictly less information about the data X than the (perturbed) MLE θ̂? Of course, the
above unconditional distribution is simply the extreme case of this idea, since it conditions
on no information at all. Can we choose S so that it reveals less information about X and
thus yields potentially higher power against the alternative, while still retaining approximate
validity of our test? To run such a test, we would need to sample the copies from the plug-in
estimated distribution Pθ̂ (·|S) rather than the true conditional null distribution Pθ0(·|S) of
X|S, and in order for the copies to be approximately exchangeable with X under the null,
we will need this plug-in estimate to be accurate, that is, Pθ̂ (·|S) ≈ Pθ0(·|S)—in other words,
S needs to be (approximately) sufficient. As discussed earlier in Section 3.2, the perturbed
MLE θ̂ is asymptotically sufficient under standard conditions; since θ̂ has the same dimen-
sion d as the true parameter θ0, it is clear that it is also (asymptotically) a minimal sufficient
statistic. Therefore, if we choose to condition on any other statistic S, if S contains strictly
less information about the data X than θ̂ , the approximate validity of aCSS would no longer
hold.

5.3. Open questions. Given our new framework for inference via approximate co-
sufficient sampling, many open questions remain regarding the properties of this framework,
and the settings in which it can be applied.

1. Power. How does the choice of statistic T interact with the aCSS framework, to offer
the best possible power? In particular, might it be the case that the choice of T that is most
powerful under an aCSS test is not the same as the T that is most powerful for an oracle test
(with a known point null hypothesis, i.e., θ0 known)?
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2. Computation. Are there particular algorithms that enable efficient sampling of the
copies X̃(m), or are there statistics T that allow us to calculate T (X̃(m)) without needing
to fully observe X̃(m)—for example, through leveraging symmetries in the model and the
conditional distribution?

3. Additional models. In addition to the examples described in this paper, can the aCSS
framework be applied to similar problems such as noncanonical generalized linear models,
low-rank regression, or rank-based data? Moving to more challenging settings, does the aCSS
framework extend to latent variable models, errors-in-variables models, or models with miss-
ing data?

4. Broader settings. Can aCSS be applied in a nonparametric setting (perhaps with con-
straints on the statistics T allowed)? Is aCSS robust to model misspecification?

5. Relaxing regularity conditions and extending to high dimensions. Can aCSS be ap-
plied in settings where the null model is d-dimensional, but cannot be represented as a convex
and open subset of Rd? For instance, we may have sparsity constraints (with the parameter
space given by all s-sparse vectors in R

p) or rank constraints (with the parameter space con-
sisting of all matrices with rank at most r in R

a×b). It would appear that any extension of
aCSS testing to high dimensions would require incorporating some such low-dimensional
structure, in order to ensure the existence of a nondegenerate approximately sufficient statis-
tic, as well as a consistent estimator θ̂ .

APPENDIX A: PROOFS OF MAIN RESULTS

Before presenting the proofs of our theoretical results, we first establish some notation that
we will use throughout these proofs. Let

�SSOSP = {
(x,w) ∈ X ×R

d : θ̂ (x,w) is a SSOSP of L(θ;x,w)
}
,

and let

�SSOSP = {
(x, θ) ∈ X × � : x ∈ Xθ

}
,

where Xθ is defined as in (2.5). The following lemma (proved in Appendix B.1 in the Sup-
plementary Material) establishes a bijection between these sets:

LEMMA 2. Under Assumption 1, the map

ψ : (x,w) �→ (
x, θ̂(x,w)

)
defines a bijection between �SSOSP and �SSOSP, with inverse

ψ−1 : (x, θ) �→
(
x,−∇θL(θ;x)

σ

)
.

A.1. Proof of Theorem 1. Define P ∗
θ0

to be the distribution of (X,W) ∼ Pθ0 ×
N (0, 1

d
Id) conditional on the event (X,W) ∈ �SSOSP. (If this event has probability 0 then

the theorem holds trivially, so we can ignore this case.) Consider the joint distribution

Distrib. (a):

⎧⎪⎪⎨⎪⎪⎩
(X,W) ∼ P ∗

θ0
,

θ̂ = θ̂ (X,W),

X̃(1), . . . , X̃(M)|X, θ̂ ∼ P̃M(·;X, θ̂),

which is clearly equivalent to the aCSS procedure (2.8) if we condition on the event (X,W) ∈
�SSOSP. On the other hand, on the event that (X,W) /∈ �SSOSP, then by definition we set
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X̃(1) = · · · = X̃(M) = X, and so exchangeability can only be violated on the event �SSOSP.
Therefore, we have

(A.1)
dexch

(
X, X̃(1), . . . , X̃(M))

≤ dexch
(
Distribution of X, X̃(1), . . . , X̃(M) under Distrib. (a)

)
.

(We formalize this intuition in Lemma 1 in Appendix B.2 in the Supplementary Material.)
Next, let Q∗

θ0
be the marginal distribution of θ̂ (X,W) under (X,W) ∼ P ∗

θ0
, and define

Distrib. (b):

⎧⎪⎪⎨⎪⎪⎩
θ̂ ∼ Q∗

θ0
,

X|θ̂ ∼ pθ0(·|θ̂ ),

X̃(1), . . . , X̃(M)|X, θ̂ ∼ P̃M(·;X, θ̂),

where pθ0(·|θ̂ ) is defined as in Lemma 1. By definition of Q∗
θ0

, together with Lemma 1, we

can see that the joint distribution of (X, X̃(1), . . . , X̃(M)) under Distrib. (b), is equal to its joint
distribution under Distrib. (a), and therefore

dexch
(
X, X̃(1), . . . , X̃(M)) ≤ dexch

(
Distribution of X, X̃(1), . . . , X̃(M) under Distrib. (b)

)
.

Finally, we define another distribution,

Distrib. (c):

⎧⎪⎪⎨⎪⎪⎩
θ̂ ∼ Q∗

θ0
,

X|θ̂ ∼ pθ̂ (·|θ̂ ),

X̃(1), . . . , X̃(M)|X, θ̂ ∼ P̃M(·;X, θ̂).

(As mentioned earlier, Lemma 2 in Appendix B.3 in the Supplementary Material will verify
that the density pθ̂ (·|θ̂ ) exists almost surely over θ̂ .) Since P̃M(·;X,θ) was constructed to
satisfy (2.9), it holds that under Distrib. (c), the random variables (X, X̃(1), . . . , X̃(M)) are
exchangeable (in fact, they are exchangeable conditional on θ̂ ). Therefore, by definition of
dexch, we have

dexch
(
Distribution of X, X̃(1), . . . , X̃(M) under Distrib. (b)

) ≤ dTV
(
Distrib. (b),Distrib. (c)

)
,

and comparing the definitions of Distrib. (b) and Distrib. (c), it is easy to verify that

dTV
(
Distrib. (b),Distrib. (c)

) = EQ∗
θ0

[
dTV

(
pθ0(·|θ̂ ), pθ̂ (·|θ̂ )

)]
.

Combining everything, we have shown that the aCSS procedure (2.8) satisfies

(A.2) dexch
(
X, X̃(1), . . . , X̃(M)) ≤ EQ∗

θ0

[
dTV

(
pθ0(·|θ̂ ), pθ̂ (·|θ̂ )

)]
.

We next need to bound this expected total variation.
We begin with the well-known expression for total variation distance between two densi-

ties g, h, which is given by dTV(g,h) = Eg[(1 − h(X)
g(X)

)+]. Therefore,

(A.3) EQ∗
θ0

[
dTV

(
pθ0(·|θ̂ ), pθ̂ (·|θ̂ )

)] = EQ∗
θ0

[
Epθ0 (·|θ̂ )

[(
1 − pθ̂ (X|θ̂ )

pθ0(X|θ̂ )

)
+

]]
.

Recalling the definitions (2.4) and (2.7) (and noting in particular that these two densities have
the same support by definition), after calculating normalizing constants we can verify that

(A.4)
pθ̂ (x|θ̂ )

pθ0(x|θ̂ )
=

f (x;θ̂ )
f (x;θ0)

Epθ0 (·|θ̂ )[ f (X;θ̂ )
f (X;θ0)

]
.
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Next, we take a Taylor series for the function θ �→ logf (X; θ). For any x, θ we can calculate

log
(

f (x; θ0)

f (x; θ)

)
= (θ0 −θ)�∇θ logf (x; θ)+

∫ 1

t=0
(1− t) ·(θ0 −θ)�∇2

θ logf (x; θt )(θ0 −θ)dt,

where we write θt = (1 − t)θ0 + tθ . Therefore, for any x, x′ we have

f (x′;θ)
f (x′;θ0)

f (x;θ)
f (x;θ0)

= exp
{

log
(

f (x; θ0)

f (x; θ)

)
− log

(
f (x′; θ0)

f (x′; θ)

)}

= exp
{
−(θ0 − θ)�

(∇θ logf
(
x′; θ) − ∇θ logf (x; θ)

)
−

∫ 1

t=0
(1 − t) · (θ0 − θ)�

(∇2
θ logf

(
x′; θt

) − ∇2
θ logf (x; θt )

)
(θ0 − θ)dt

}
= exp

{
(θ0 − θ)�

(∇θL
(
θ;x′) − ∇θL(θ;x)

)
+

∫ 1

t=0
(1 − t) · (θ0 − θ)�

(
H

(
θt ;x′) − H(θt ;x)

)
(θ0 − θ)dt

}
≤ exp

{
(θ0 − θ)�

(∇θL
(
θ;x′) − ∇θL(θ;x)

)
+ 1

2
sup

t∈[0,1]
(θ0 − θ)�

(
H

(
θt ;x′) − H(θt ;x)

)
(θ0 − θ)

}
,

where the inequality holds since
∫ 1
t=0(1 − t) · h(t)dt ≤ ∫ 1

t=0(1 − t)dt · supt∈[0,1] h(t) =
1
2 supt∈[0,1] h(t) for any function h : R → R. For any θ ∈ B(θ0, r(θ0)) ∩ �, it therefore holds
that, for all x, x′,

f (x′;θ)
f (x′;θ0)

f (x;θ)
f (x;θ0)

≤ exp
{
r(θ0)

(∥∥∇θL
(
θ;x′)∥∥ + ∥∥∇θL(θ;x)

∥∥)

+ r(θ0)
2

2
sup

θ ′∈B(θ0,r(θ0))∩�

λmax
(
H

(
θ ′;x′) − H

(
θ ′;x))}

≤ exp
{
�1(x, θ) + �′

1
(
x′, θ

)}
,

where we define

�1(x, θ) = r(θ0)
∥∥∇θL(θ;x)

∥∥ + r(θ0)
2

2
sup

θ ′∈B(θ0,r(θ0))∩�

(
λmax

(
H

(
θ ′) − H

(
θ ′;x)))

+,

and

�′
1(x, θ) = r(θ0)

∥∥∇θL(θ;x)
∥∥ + r(θ0)

2

2
sup

θ ′∈B(θ0,r(θ0))∩�

(
λmax

(
H

(
θ ′;x) − H

(
θ ′)))

+.

Applying this calculation with x′ = X, we obtain

f (x;θ)
f (x;θ0)

Epθ0 (·|θ)[ f (X;θ)
f (X;θ0)

] =
(
Epθ0 (·|θ)

[ f (X;θ)
f (X;θ0)

f (x;θ)
f (x;θ0)

])−1
≥ 1

Epθ0 (·|θ)[e�′
1(X,θ)] · e�1(x,θ)
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for all x and for all θ ∈ � such that ‖θ − θ0‖ ≤ r(θ0). Returning to (A.3) and (A.4) above,
and defining Eball to be the event that ‖θ̂ − θ0‖ ≤ r(θ0), we therefore have

EQ∗
θ0

[
dTV

(
pθ0(·|θ̂ ), pθ̂ (·|θ̂ )

)]
= EQ∗

θ0

[
Epθ0 (·|θ̂ )

[(
1 − pθ̂ (X|θ̂ )

pθ0(X|θ̂ )

)
+

]]

≤ PQ∗
θ0

(
Ec

ball
) +EQ∗

θ0

[
Epθ0 (·|θ̂ )

[
1Eball ·

(
1 − pθ̂ (X|θ̂ )

pθ0(X|θ̂ )

)
+

]]

≤ PQ∗
θ0

(
Ec

ball
) +EQ∗

θ0

[
Epθ0 (·|θ̂ )

[
1 − 1

Epθ0 (·|θ̂ )[e�′
1(X,θ̂)] · e�1(X,θ̂)

]]

≤ PQ∗
θ0

(
Ec

ball
) +EQ∗

θ0

[
Epθ0 (·|θ̂ )

[
�1(X, θ̂)

] + 1 − 1

Epθ0 (·|θ̂ )[e�′
1(X,θ̂)]

]
,

where the last step holds since 1 − ab ≤ (1 − a) + (1 − b) ≤ log(1/a) + (1 − b) for any
a, b ∈ (0,1]. (Note that, in the next-to-last line, the two random variables X appearing in
the denominator are different—they are sampled independently conditional on θ̂ from the
distribution pθ0(·|θ̂ ).)

Next, recall that by Lemma 1 together with the definition of Q∗
θ0

, the joint distribution of
(X, θ̂) in this calculation above (i.e., θ̂ ∼ Q∗

θ0
and X|θ̂ ∼ pθ0(·|θ̂ )), is equivalent to the joint

distribution of (X, θ̂(X,W)) when (X,W) ∼ P ∗
θ0

. Therefore, our calculation above can be
rewritten as follows (where we also apply Jensen’s inequality to the last term):

EQ∗
θ0

[
dTV

(
pθ0(·|θ̂ ), pθ̂ (·|θ̂ )

)] ≤ PP ∗
θ0

(
Ec

ball
) +EP ∗

θ0

[
�1

(
X, θ̂(X,W)

)]
+

(
1 − 1

EP ∗
θ0

[e�′
1(X,θ̂(X,W))]

)
.

Next, let

�2(x,w) = r(θ0)σ‖w‖ + r(θ0)
2

2
sup

θ∈B(θ0,r(θ0))∩�

(
λmax

(
H(θ) − H(θ;x)

))
+,

and

�′
2(x,w) = r(θ0)σ‖w‖ + r(θ0)

2

2
sup

θ∈B(θ0,r(θ0))∩�

(
λmax

(
H(θ;x) − H(θ)

))
+,

and observe that �1(x, θ̂(x,w)) = �2(x,w) and �′
1(x, θ̂(x,w)) = �′

2(x,w) for all (x,w) ∈
�SSOSP, since 0 = ∇θL(θ̂(x,w);x,w) = ∇θL(θ̂(x,w);x) + σw for all (x,w) in this set by
definition. Therefore, since (X,W) ∈ �SSOSP almost surely under P ∗

θ0
by definition, we have

EQ∗
θ0

[
dTV

(
pθ0(·|θ̂ ), pθ̂ (·|θ̂ )

)] ≤ PP ∗
θ0

(
Ec

ball
) +EP ∗

θ0

[
�2(X,W)

]
+

(
1 − 1

EP ∗
θ0

[e�′
2(X,W)]

)
.

Now let ESSOSP be the event that (X,W) ∈ �SSOSP. Recall that P ∗
θ0

is the joint distribu-

tion of (X,W) ∼ Pθ0 × N (0, 1
d

Id) conditional on ESSOSP. Therefore, we can write this as
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follows where we now take all probabilities and expectations with respect to (X,W) ∼
Pθ0 ×N (0, 1

d
Id):

EQ∗
θ0

[
dTV

(
pθ0(·|θ̂ ), pθ̂ (·|θ̂ )

)]
≤ P

(
Ec

ball|ESSOSP
) +E

[
�2(X,W)|ESSOSP

] +
(

1 − 1

E[e�′
2(X,W)|ESSOSP]

)

≤ P(Ec
ball ∩ ESSOSP) +E[�2(X,W)]

P(ESSOSP)
+

(
1 − P(ESSOSP)

E[e�′
2(X,W) · 1ESSOSP]

)

≤ P(Ec
ball ∩ ESSOSP) +E[�2(X,W)]

P(ESSOSP)
+

(
1 − 1 − P(Ec

SSOSP)

E[e�′
2(X,W)] − P(Ec

SSOSP)

)

≤ P(Ec
ball ∩ ESSOSP) +E[�2(X,W)] + logE[e�′

2(X,W)]
P(ESSOSP)

,

where the next-to-last step holds since �′
2(X,W) ≥ 0 by definition, and the last step holds

since 1− 1−a
b−a

≤ 1−1/b
1−a

≤ log(b)
1−a

for all a ∈ [0,1) and b ≥ 1. Finally, we apply our assumptions.
By Assumption 2, we have P(Eball ∩ ESSOSP) ≥ 1 − δ(θ0), and so

P
(
Ec

ball ∩ ESSOSP
) ≤ δ(θ0) − P

(
Ec

SSOSP
)
.

Next,

E
[
�2(X,W)

] = E
[
r(θ0)σ‖W‖] +E

[
r(θ0)

2

2
sup

θ∈B(θ0,r(θ0))∩�

(
λmax

(
H(θ) − H(θ;X)

))
+
]

≤ 1

2
logE

[
e2r(θ0)σ‖W‖] + ε(θ0)

2
,

where the last step holds by Jensen’s inequality for the first term and by the bound (3.2) in
Assumption 3 for the second term. And, by Cauchy–Schwarz,

logE
[
e�′

2(X,W)] ≤ 1

2
logE

[
e2r(θ0)σ‖W‖] + 1

2
logE

[
e
r(θ0)

2 supθ∈B(θ0,r(θ0))∩�(λmax(H(θ;X)−H(θ)))+]
≤ 1

2
logE

[
e2r(θ0)σ‖W‖] + ε(θ0)

2
,

where the last step holds by the bound (3.3) in Assumption 3. Finally, since W ∼ N (0, 1
d

Id)

we know that E[et‖W‖] ≤ et+t2/2d for any t > 0 (see, e.g., [12], Theorem 5.5). Therefore,

logE
[
e2r(θ0)σ‖W‖] ≤ 2σ · r(θ0) + 2σ 2 · r(θ0)

2

d
≤ 3σ · r(θ0),

where the last step holds since d ≥ 1 and we can assume 2σ · r(θ0) ≤ 1 (as otherwise, the
result of the theorem holds trivially). Combining everything, we have

EQ∗
θ0

[
dTV

(
pθ0(·|θ̂ ), pθ̂ (·|θ̂ )

)] ≤ 3σ · r(θ0) + δ(θ0) + ε(θ0) − P(Ec
SSOSP)

1 − P(Ec
SSOSP)

.

Since total variation distance is bounded by 1, trivially we can relax this to

EQ∗
θ0

[
dTV

(
pθ0(·|θ̂ ), pθ̂ (·|θ̂ )

)] ≤ 3σ · r(θ0) + δ(θ0) + ε(θ0).

Returning to (A.2), we see that the aCSS procedure (2.8) satisfies

dexch
(
X, X̃(1), . . . , X̃(M)) ≤ 3σ · r(θ0) + δ(θ0) + ε(θ0),

as desired.
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A.2. Proof of Lemma 1. Consider the joint distribution (X,W) ∼ Pθ0 ×N (0, 1
d

Id) con-
ditioned on the event that (X,W) ∈ �SSOSP, which is assumed to occur with positive proba-
bility. The joint density of (X,W), after conditioning on this event, is therefore proportional
to the function

(A.5) gθ0(x,w) = f (x; θ0) · exp
{
−d

2
‖w‖2

}
· 1(x,w)∈�SSOSP,

with respect to the measure νX × Leb. We will consider the induced joint distribution of
(X, θ̂(X,W)), and will calculate its joint density.

Define ψ and ψ−1 as in Lemma 2. Fix any measurable subset A ⊆ �SSOSP. Then, writing
ψ−1(A) = {(x,w) ∈ �SSOSP : ψ(x,w) ∈ A} ⊆ �SSOSP,

P
((

X, θ̂(X,W)
) ∈ A

) = P
(
(X,W) ∈ ψ−1(A)

) =
∫
ψ−1(A) gθ0(x,w)dνX (x)dw∫
X×Rd gθ0(x

′,w′)dνX (x′)dw′ ,

where the probability is taken with respect to (X,W) ∼ Pθ0 ×N (0, 1
d

Id) conditioned on the
event that (X,W) ∈ �SSOSP. (Note that, since gθ0 is proportional to a density on (X,W) with
respect to νX × Leb, this implies that the denominator

∫
X×Rd gθ0(x

′,w′)dνX (x′)dw′ in the
last expression above must be finite and positive.)

From this point on, the result essentially follows from a change-of-variables calculation,
under the transformation θ = θ̂ (x,w). However, with our weak assumptions, we cannot as-
sume standard conditions (such as, e.g., the support of θ̂ |X being an open subset of Rd—
it may even be the case that this set does not contain any open subset), so we will need
to be careful. Fixing any x ∈ X , a change-of-variables calculation, proved formally in Ap-
pendix B.4 in the Supplementary Material, establishes that∫

�
exp

{
− d

2σ 2

∥∥∇θL(θ;x)
∥∥2

}
· det

(∇2
θL(θ;x)

) · 1(x,θ)∈A∩�SSOSP dθ

= σd
∫
Rd

exp
{
− d

2σ 2

∥∥∇θL
(
θ̂ (x,w);x)∥∥2

}
· 1(x,θ̂(x,w))∈A · 1(x,w)∈�SSOSP dw(A.6)

= σd
∫
Rd

exp
{
−d

2
‖w‖2

}
· 1(x,θ̂(x,w))∈A · 1(x,w)∈�SSOSP dw

= σd
∫
Rd

exp
{
−d

2
‖w‖2

}
· 1(x,w)∈ψ−1(A)∩�SSOSP

dw,(A.7)

where the second step uses the fact that w = −∇θL(θ̂(x,w);x)
σ

for any (x,w) ∈ �SSOSP by the
SSOSP conditions, and the last step applies the definition of ψ as in Lemma 2. Now define
the function

hθ0(x, θ) := f (x; θ0) exp{− d
2σ 2 ‖∇θL(θ;x)‖2} · det(∇2

θL(θ;x)) · 1x∈Xθ

σ d
∫
X×Rd gθ0(x

′,w′)dνX (x′)dw′

on (x, θ) ∈ X × �. We then have

P
((

X, θ̂(X,W)
) ∈ A

)
=

∫
ψ−1(A) gθ0(x,w)dνX (x)dw∫
X×Rd gθ0(x

′,w′)dνX (x′)dw′

=
∫
X

∫
Rd f (x; θ0) · exp{−d

2 ‖w‖2} · 1(x,w)∈ψ−1(A)∩�SSOSP
dw dνX (x)∫

X×Rd gθ0(x
′,w′)dνX (x′)dw′ by (A.5)
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=
∫
X f (x; θ0)

∫
� exp{− d

2σ 2 ‖∇θL(θ;x)‖2} · det(∇2
θL(θ;x)) · 1(x,θ)∈A∩�SSOSP dθ dνX (x)

σ d
∫
X×Rd gθ0(x

′,w′)dνX (x′)dw′

by (A.7)

=
∫
A

hθ0(x, θ)dνX (x)dθ,

where the last step holds since 1x∈Xθ = 1(x,θ)∈�SSOSP for all (x, θ), by definition of �SSOSP.
Therefore, this calculation establishes that, conditional on the event that θ̂ (X,W) is a SSOSP
of L(θ;X,W), the joint distribution of (X, θ̂(X,W)) has density hθ0(x, θ) with respect to
the base measure νX × Leb.

Finally, since hθ0(x, θ) is the joint density of (X, θ̂) = (X, θ̂(X,W)), we therefore see that
X|θ̂ has conditional density equal to

hθ0(x, θ̂)∫
x′ hθ0(x

′, θ̂)dνX (x′)
∝ f (x; θ0) exp

{
− d

2σ 2

∥∥∇θL(θ̂;x)
∥∥2

}
· det

(∇2
θL(θ̂;x)

) · 1x∈Xθ̂
,

which verifies the desired expression (2.4).
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SUPPLEMENTARY MATERIAL

Additional proofs and computational details (DOI: 10.1214/22-AOS2187SUPP; .pdf).
The Supplementary Material contains Appendices B–E. Appendix B contains additional
proofs supporting our main results, Appendix C contains proofs for the examples, Ap-
pendix D provides computational and implementation details for the aCSS algorithm and
for our examples in particular, and Appendix E provides details for Figure 1 comparing CSS
with the parametric bootstrap.
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