
The Annals of Probability
2023, Vol. 51, No. 4, 1193–1248
https://doi.org/10.1214/22-AOP1616
This research was funded, in whole or in part, by [University of Bristol]. A CC BY 4.0 license is applied to this article arising from this submission, in accordance with
the grant’s open access conditions.

SECULAR COEFFICIENTS AND THE HOLOMORPHIC MULTIPLICATIVE
CHAOS

BY JOSEPH NAJNUDEL1,a, ELLIOT PAQUETTE2,b AND NICK SIMM3,c

1School of Mathematics, University of Bristol, ajoseph.najnudel@bristol.ac.uk
2Department of Mathematics and Statistics, McGill University, belliot.paquette@mcgill.ca

3Department of Mathematics, University of Sussex, cn.j.simm@sussex.ac.uk

We study the secular coefficients of N × N random unitary matrices UN

drawn from the Circular β-Ensemble which are defined as the coefficients of
{zn} in the characteristic polynomial det(1 − zU∗

N). When β > 4, we obtain
a new class of limiting distributions that arise when both n and N tend to
infinity simultaneously. We solve an open problem of Diaconis and Gamburd
(Electron. J. Combin. 11 (2004/06) 2) by showing that, for β = 2, the mid-
dle coefficient of degree n = �N

2 � tends to zero as N → ∞. We show how
the theory of Gaussian multiplicative chaos (GMC) plays a prominent role
in these problems and in the explicit description of the obtained limiting dis-
tributions. We extend the remarkable magic square formula of (Electron. J.
Combin. 11 (2004/06) 2) for the moments of secular coefficients to all β > 0
and analyse the asymptotic behaviour of the moments. We obtain estimates on
the order of magnitude of the secular coefficients for all β > 0, and we prove
these estimates are sharp when β ≥ 2 and N is sufficiently large with respect
to n. These insights motivated us to introduce a new stochastic object associ-
ated with the secular coefficients, which we call Holomorphic Multiplicative
Chaos (HMC). Viewing the HMC as a random distribution, we prove a sharp
result about its regularity in an appropriate Sobolev space. Our proofs expose
and exploit several novel connections with other areas, including random per-
mutations, Tauberian theorems and combinatorics.
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1. Introduction. Let β > 0 be a fixed parameter, and consider the joint distribution on
N points

(1.1) CβEN(ϑ1, . . . , ϑN) ∝ ∏
1≤k<j≤N

∣∣eiϑk − eiϑj
∣∣β,

where ϑj ∈ [0,2π) for all j = 1, . . . ,N . This is known as the circular β-ensemble. When
β = 2, this distribution arises as the law of the eigenvalues of a Haar distributed unitary
matrix and is better known as the CUE (circular unitary ensemble). When β �= 2, it also
arises from the eigenvalue distribution of certain random matrix models; see, for example,
[38]. Therefore, it makes sense to consider the characteristic polynomial

(1.2) χN(z) =
N∏

j=1

(
1 − ze−iϑj

)
which would have the representation det(1−zU∗

N) if {eiϑj : 1 ≤ j ≤ N} were the eigenvalues
of a matrix UN .

The goal of this paper is to formulate and solve a new class of probabilistic and combinato-
rial questions associated with such characteristic polynomials. Our main quantities of interest
will be the so-called secular coefficients, defined most simply as the coefficients c

(N)
n in the

expansion of (1.2) in its Fourier basis,

(1.3) χN(z) =
N∑

n=0

c(N)
n zn.

In a remarkable paper [19], Diaconis and Gamburd studied these coefficients in the β = 2
setting. They showed that the joint moments of {c(N)

n }n≥1 are related to the enumeration of
combinatorial objects known as magic squares—integer valued square matrices with pre-
scribed row and column sums. For example, when N ≥ nk, the moment E(|c(N)

n |2k) is equal
to the number of k × k magic squares whose rows and columns all sum up to n. In general,
combinatorial results on magic squares imply that this quantity has order n(k−1)2

as n → ∞,
with a multiplicative constant given by the volume of the kth Birkhoff polytope. The determi-
nation of these volumes remains a well-studied and challenging problem in the combinatorics
community. They have been explicitly computed only for k ≤ 10, and this has required the
use of high-performance computers; see [10, 12, 18] for this and other perspectives, and for
number theoretical applications, see [17, 37].

Given the rich combinatorial structure associated with the moments of c
(N)
n , there is a

natural probabilistic question that comes to mind: Is there a commensurately richly structured
probabilistic object to which c

(N)
n converges as N → ∞? What if N and n tend to infinity
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together, in a suitable way? This problem is mentioned in the same paper of Diaconis and
Gamburd (see the discussion below Proposition 4 of [19]); however to our knowledge the
answer has remained out of reach conjecturally or otherwise, now for almost 15 years. The
purpose of this paper is to begin closing this gap, particularly in the general context of the
β-ensembles (1.1).

There is one exception where a limiting distribution for c
(N)
n can be obtained with relative

ease, namely, when the index n remains finite and we let the matrix size N → ∞, as discussed
in [19] for β = 2. By the Newton formula, which relates the elementary and power sum
symmetric functions, each c

(N)
n has a finite polynomial dependence on the first n power traces,

pk := Tr(Uk
N), via

(1.4) c(N)
n = 1

n! det

⎛⎜⎜⎜⎜⎜⎜⎝
p1 1 0 . . . 0
p2 p1 2 . . . 0
...

...
...

. . .
...

pn−1 pn−2 pn−3 . . . n − 1
pn pn−1 pn−2 . . . p1

⎞⎟⎟⎟⎟⎟⎟⎠ .

The distributional convergence of these power traces was famously studied by Diaconis and
Shahshahani [20] for β = 2 and by Jiang and Matsumoto [33] for general β > 0; see also
[15]. These authors show that for any fixed n we have the joint convergence in law

(1.5)
{
Tr

(
Uk

N

)}n
k=1

d−→
√

2

β
{√kNk}nk=1, N → ∞,

where {Nk}nk=1 are i.i.d. standard complex normal random variables, that is, the real and
imaginary parts of Nk are independent normal random variables such that

(1.6) E(Nk) = 0, E
(
N 2

k

) = 0, and E
(|Nk|2) = 1.

Therefore, (1.5) implies that, for fixed n, the sequence of random variables c
(N)
n converges

as N → ∞ to a limit random variable cn. Furthermore, each cn is explicitly characterized
through a polynomial dependence on a family of i.i.d. Gaussian random variables via formu-
las (1.5) and (1.4).

In contrast, the situation where the degree n → ∞ turns out to be much more challenging.
The two Theorems below address this situation; see the subsequent sections for further results
and discussion.

THEOREM 1.1. Let N = Nn be a sequence such that N → ∞ as n → ∞ and such that
n/N → 0. Let Z denote a standard complex normal random variable and E(1) denote the
standard exponential random variable with parameter 1, sampled independently. Then, for
any β > 4, we have the convergence in distribution

(1.7)
c
(N)
n√

E(|c(N)
n |2)

d−→
n→∞

ZE(1)
− 1

β√
�(1 − 2

β
)
,

where �(z) is the Gamma function.

A quick computation shows that the right-hand side of (1.7) has finite moments of order
2k if and only if 2k

β
< 1. In fact, apart from the complex Gaussian Z , the right-hand side of

(1.7) can be identified as the square root of the total mass of Gaussian multiplicative chaos
(GMC) on the unit circle; see Section 1.3. Our proof makes explicit use of the second moment
method (k = 2 in this context), and this gives rise to the restriction β > 4 in the statement of
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Theorem 1.1. This is known as the L2-phase in GMC theory. It is natural to expect that (1.7)
persists to any β > 2 and even the critical case β = 2 after suitably renormalizing on both
sides of (1.7).

At the level of tightness, we are able to remove the restriction on β , and our results hold for
any β > 0. We can also relax the condition n/N → 0 stated in Theorem 1.1. As an example
we have the following particular case that resolves a problem of Diaconis and Gamburd [19]
on the middle secular coefficient, defined by setting n = �N

2 �.

THEOREM 1.2. Let β = 2, and set wN = log(1 + N)−1/4. Then we have that {c(N)

�N
2 �/

wN }N≥1 is a tight family of random variables. In particular, c
(N)

�N
2 �

d→ 0 as N → ∞. More

generally, when nN → ∞ in such a way that 2nN ≤ N , we have c
(N)
nN

d→ 0 as N → ∞.

Note that Theorem 1.2 holds despite the fact that E(|c(N)
n |2) = 1 identically. A similar

phenomenon has been observed in a number theoretical context, namely, in the theory of ran-
dom multiplicative functions and “better than square root cancellation” [29]. In the regime
0 < β < 2, we will establish a similar class of tightness results which show that the nor-

malization
√
E(|c(N)

n |2) overestimates the correct order of magnitude for the coefficients; see
Section 1.5.

1.1. The holomorphic multiplicative chaos. Statistical properties of random matrix char-
acteristic polynomials have attracted considerable interest recently, in large part due to an
intimate relationship to logarithmically correlated Gaussian fields and Gaussian multiplica-
tive chaos (GMC); see [22] and [52] for general background on these topics. The connection
to characteristic polynomials of random matrices arose quite recently in an influential work
of Fyodorov, Hiary and Keating [24, 25]. In particular, the attempts to prove the conjectures
in [24, 25], which are still unresolved in full generality, have motivated a number of recent
studies on characteristic polynomials of random matrices; for a nonexhaustive list, see, for
example, [1, 11, 14, 15, 43, 49, 50, 58], and also on various parallel questions concerning
the Riemann zeta function [2, 3, 48, 53]. For some general connections between GMC and
random matrices, see [16]. We will show how the GMC theory also plays a prominent role in
the analysis of the secular coefficients c

(N)
n in (1.3).

To describe formally how a log-correlated Gaussian field can arise from the characteristic
polynomial (1.2), we expand the logarithm as

(1.8) logχN(z) = −
∞∑

k=1

zk

k
Tr

(
U−k

N

)
.

By the convergence (1.5), we can identify a candidate limiting Gaussian field by replacing

the power traces Tr(U−k
N ) with

√
2
β

√
kNk , where Nk are i.i.d. standard complex Gaussian

variables, as in (1.6), and for the sake of simplicity, we ignore the minus sign in (1.8), noting
the rotational invariance of each Nk . Now, let GC be the Gaussian analytic function on the
unit disc D,

(1.9) GC(z) =
∞∑

k=1

zk

√
k
Nk,

so that we expect χN(z) to be close to e

√
2
β
GC(z) in a suitable sense. The covariance of the

field GC follows from the simple i.i.d. structure of the variables Nk as

E
[
GC(w)GC(z)

] = 0 and E
[
GC(w)GC(z)

] = − log(1 − wz)
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from which it follows that G = 2
GC and H = 2�GC are identically distributed Gaussian
fields with

(1.10) E
[
G(w)G(z)

] = −2 log |1 − wz| and E
[
G(w)H(z)

] = −2 Arg(1 − wz),

where we take the principal branch of the argument. In particular, when defined on the unit
circle |z| = |w| = 1, the real-valued field G is a prototypical example of a log-correlated
Gaussian field (see, e.g., [32] where it first appeared explicitly).

For trigonometric polynomials φ, if we let z �→ φ(z) for z ∈D be the continuous harmonic
extension to D, we can define the random distribution

(1.11) (HMCθ , φ) := lim
r→1

1

2π

∫ 2π

0
e
√

θGC(reiϑ )φ(rϑ)dϑ,

which we will call the holomorphic multiplicative chaos or HMC, where from now on we
will adopt the notation

(1.12) θ := 2

β
.

For the moment we comment that, for trigonometric polynomials, the existence of this limit is
trivial and is sufficient to uniquely define the HMC. In particular, if we take φ(ϑ) = einϑ for
n ∈ N0, then, using analyticity and Cauchy’s theorem, the limit is just the nth coefficient in
the power series expansion of e

√
θGC(z) at z = 0. We define for n ∈ N0 the Fourier coefficient

of the HMC

(1.13) cn := (
HMCθ , ϑ �→ einϑ )

.

Equivalently, the coefficients cn can be extracted from a generating function by the formula

(1.14) cn = [
zn]

e
√

θGC(z) = [
zn]

exp

(√
θ

∞∑
k=1

zk

√
k
Nk

)
,

where the notation [zn]h(z) denotes the coefficient of zn in the power series expansion of
h(z) around the point z = 0. We could as well define this for n ∈ Z, but for negative integers,
this would be 0.

The HMC is in some sense the distributional limit of the characteristic polynomial χN

inside the unit circle. The following result is obtained by combining the equation (7.2), given
below, Proposition 3.1 of [15] and the fact that 	N−1/	

∗
N−1 a.s. converges uniformly to zero

on compact subsets of the open unit disc which is a consequence of [54], Theorem 1.7.4.

THEOREM 1.3. For any β > 0, it is possible to define χN and the field GC on a single
probability space in such a way that, for any r ∈ (0,1),

sup
|z|≤r

∣∣χN(z) − e
√

θGC(z)
∣∣ a.s.−→
N→∞ 0.

The convergence also holds in Lp for any p ≥ 1.

Then as a corollary of Theorem 1.3 and Cauchy’s integral formula, on the probability space
therein, each c

(N)
n

a.s.−→
N→∞ cn. We shall continue to refer to {cn} as the secular coefficients of the

HMCθ .
While HMCθ is uniquely determined by its Fourier coefficients and exists for all θ > 0,

we will characterize its regularity in the Sobolev sense. We define the Sobolev norms for any
s ∈ R on the trigonometric polynomials on T by

(1.15) ‖f ‖2
Hs = ∑

n∈Z

(
1 + n2)s ∣∣f̂ (n)

∣∣2, where f̂ (n) = 1

2π

∫ 2π

0
f

(
eiϑ )

e−inϑ dϑ.
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The Sobolev spaces Hs for s ∈ R are the closures in the space of distributions of the trigono-
metric polynomials on T under these norms. For any s ∈ R, the norms defined in (1.15) are
well defined for all functions f ∈ L2, with the understanding that they may be infinite, and
for s ≥ 0, the space Hs is precisely the subspace of L2 for which ‖ · ‖Hs < ∞. The for-
mulas for the norms (1.15) extend generally to the space of distributions on T by replacing
f̂ (n) := (f,ϑ �→ einϑ). For any s ∈ R, the pair Hs and H−s are dual spaces with respect to
the natural inner product on T.

THEOREM 1.4. Define

sθ :=
⎧⎪⎨⎪⎩

−θ

2
if θ ≤ 1,

−√
θ + 1

2
if θ > 1.

Then, for any θ > 0, HMCθ is in Hs almost surely for any s < sθ , and it is almost surely not
in Hs for any s > sθ .

PROOF. See Section 6. �

We remark that, in the variable θ = γ 2

4 , this Theorem states that HMCθ is in Hs , provided
that

(1.16) −2s + 1 >

⎧⎪⎨⎪⎩1 + γ 2

4
γ < 2,

γ γ > 2.

The threshold on the right-hand side of (1.16) is familiar from the study of the free energy in
various other log-correlated models (see, e.g., [23]).

1.2. The combinatorial structure of the moments. We begin by discussing the moments
of the secular coefficients. As we already mentioned, when β = 2 (or θ = 1), Diaconis and
Gamburd [19] characterize these moments in terms of the enumeration of magic squares. We
will state a result that generalizes this characterization to arbitrary β > 0.

DEFINITION 1.5. A magic square of size k with row sums μ = (μ1, . . . ,μk) and column
sums ν = (ν1, . . . , νk) is a k × k matrix A with entries in N0 and with the property that

k∑
j=1

Aij = μi, i = 1, . . . , k,

k∑
i=1

Aij = νj , j = 1, . . . , k.

(1.17)

Throughout the article we will use the notation Magμ,ν to denote the collection of all such
k × k magic squares. We recall that nonnegative integer vectors μ are called compositions in
the combinatorics literature, while the entries μ1, . . . ,μk are known as parts. In what follows,
for a general real parameter θ > 0 and n ∈ N, we define

(1.18)
(
n + θ − 1

n

)
= �(n + θ)

�(θ)�(n + 1)
.
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THEOREM 1.6. Let μ and ν be any compositions with k parts. Then, for any k ∈ N and
θ > 0, we have

(1.19) E

(
k∏

j=1

cμj
cνj

)
= ∑

A∈Magμ,ν

∏
1≤i,j≤k

(
Aij + θ − 1

Aij

)
.

We give the proof in Section 2 and, furthermore, provide a combinatorial connection to
Jack functions. When β = 2 (θ = 1), the right-hand side of (1.19) reduces to the cardinality
of Magμ,ν , recovering the result of [19] in the particular case N = ∞. Choosing the column
and row sums all to equal n, we obtain an expression for the absolute 2kth moments

(1.20) E
(|cn|2k) = ∑

A∈Magπ,π

∏
1≤i,j≤k

(
Aij + θ − 1

Aij

)
,

where π is the composition in which n appears k times, that is, Magπ,π is the set of all magic
squares of size k × k with all row and column sums equal to n. We note the special case

(1.21) E
(|cn|2) =

(
n + θ − 1

θ − 1

)
∼ 1

�(θ)
nθ−1.

It turns out it is possible to use this formula and (1.20) to probe asymptotic behaviour of the
moments. We have the following theorem.

THEOREM 1.7. For any positive integer k and any θ > 0 so that θk < 1,

(1.22) lim
n→∞

E(|cn|2k)

E(|cn|2)k = �(1 − kθ)

�(1 − θ)k
k!

PROOF. See Section 2. �

It is a simple computation, recalling that θ = 2
β

, that the moments on the right-hand side of
(1.22) are precisely those of the limiting distribution in Theorem 1.1. We mention in passing
that besides magic squares, which play an important role in describing HMCθ , the Ewens
sampling formula, which defines a classical distribution on random permutations, plays a
prominent role in our analysis; see Section 3 for details.

1.3. From magic squares back to multiplicative chaos. Theorem 1.7 is strongly remi-
niscent of the freezing transition observed for moments of random energy models [23] (c.f.
Remark 2.4 for the behavior of a moment above the critical threshold). Indeed, in [23] it is
shown that the Morris integral,

(1.23)
�(1 − kθ)

�(1 − θ)k
= 1

(2π)k

∫
[0,2π ]k

∏
1≤a<b≤k

∣∣eiϑa − eiϑb
∣∣−2θ

dϑ,

describes the appropriately rescaled moments of the partition function of the logarithmically
correlated random energy model on the unit circle in the high temperature phase; see [23] for
details.

The presence of the Morris integral in Theorem 1.7 is, moreover, indicative that the theory
of Gaussian multiplicative chaos will be relevant here. There is a substantial literature on this
random measure (see [52] for a general overview), but we will be concerned only with the
following specific instance: for θ ∈ (0,1),

(1.24) GMCθ (dϑ) := lim
r→1

(
1 − r2)θ ∣∣e√

θGC(reiϑ )
∣∣2 dϑ = lim

r→1

(
1 − r2)θ

e
√

θG(reiϑ ) dϑ.
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The existence of this limit as a random measure is shown1 in [34] where the convergence is
shown to hold in Lq for any 0 < q < 1 (c.f. [15], Proposition 3.1). Moreover, it is shown in
[51] that the total mass of this particular random measure has law characterized by the natural
analytic continuation of the Morris integral, that is, for any p > 0 with pθ < 1,

(1.25) E(Mθ )
p = �(1 − pθ)

�(1 − θ)p
, where Mθ := 1

2π

∫ 2π

0
GMCθ (dϑ),

with the sense of the limit being an in-probability, weak-* convergence.
We briefly summarize some of the qualitative properties of the GMC. The regime θ ∈

(0,1) is typically referred to as the subcritical phase of the GMCθ . The limiting measure is
supported on a set of Hausdorff dimension 1−θ . This result is well known in the literature on
GMC; see [52], though for the model discussed here, see [15]. The subset (0, 1

2) is sometimes
referred to as the L2 phase, on account of the mass Mθ gaining a finite second moment (and
indeed Theorem 1.7 applies as well).

The L2 phase is technically simpler to manage and has been the setting for some of the
first convergence results of β = 2 characteristic polynomials and powers thereof to the GMC
[11, 58]. For a power of the modulus of the CUE (β = 2) characteristic polynomial, this
has been improved to the whole subcritical phase in [49]. For general β > 0, to the authors’
knowledge there are no convergence results of this type, except when the characteristic poly-
nomial is regularized at some small scale; see [42]. Also for an object closely related to the
characteristic polynomial, convergence to the GMC was established in [15] for general β ≥ 2.

The value θ = 1 is the critical temperature at which it is possible to establish (1.24) under
an additional logarithmic renormalization,

(1.26) GMC1(dϑ) := lim
r→1

√
log

1

1 − r2

(
1 − r2)

eG(reiϑ ) dϑ,

with the limit again holding in Lq for any 0 < q < 1. As for the subcritical case (1.24), this
convergence follows from [34], Theorem 1.3, and Appendix B. This measure is known to
have Hausdorff dimension 0 and is nonatomic, as proved in [15]. We note, in contrast, that
HMCθ is well defined as a random distribution on the unit circle for all θ > 0 (and indeed on
a single probability space), regardless of the phase of the associated GMC.

Returning to consideration of Theorem 1.7, we see that there is a factor of k! beyond
the Morris integral term. This strongly suggests a limiting factorization into independent
random variables, where the additional factor can be interpreted as the moments of a standard
complex normal random variable k! = E(|Z|2k). We show this is indeed the case in the L2

phase. The theorem that follows shows this more precisely.

THEOREM 1.8 (L2-phase). For any 0 < θ < 1
2 , we have the convergence in distribution

(1.27)
cn√

E(|cn|2)
d−→

n→∞
√
MθZ,

where Z and Mθ are independent, Z is standard complex normal and Mθ has law (1.25).

PROOF. See Sections 3–5. �

We expect this result to persist to all 1
2 ≤ θ < 1 and also to θ = 1 (the critical temperature)

subject to a different normalization. While we do not show this convergence in distribution

1The Gaussian field used in [34], equation (6.1), contains a constant term in its Fourier series definition in
comparison to our field G. This turns out not to affect the convergence results of [34]; see Appendix B
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for θ ≥ 1
2 , we give a sharp estimate for the order of magnitude of the coefficient for larger θ

(see Lemma 7.5 and Theorem 1.11).
By the mentioned work [51], the limiting random variable Mθ , appearing on the right-

hand side of (1.27), can be given an explicit characterization. For any θ < 1, it is known that
we have the equality in law

(1.28) Mθ
d= 1

�(1 − θ)
E(1)−θ ,

where E(1) is an exponential random variable with parameter 1. Formula (1.28) was initially
conjectured by Fyodorov and Bouchaud in [23] and proved quite recently in [51] using tech-
niques of Liouville conformal field theory; see also [15] for an alternative proof. Using the
explicit formula (1.28), we see that Theorem 1.8 is the particular case N = ∞ of our earlier
stated Theorem 1.1.

1.4. The mass of the chaos. We note that the presence of the mass of the chaos in the sec-
ular coefficients could potentially be anticipated. On the one hand, by the generating function
(1.14) and Parseval’s identity, we have

∞∑
n=0

|cn|2r2n = 1

2π

∫ 2π

0
e
√

θG(reiϑ ) dϑ.(1.29)

On the other hand, by (1.24) and (1.26) for all 0 < θ ≤ 1,

(1.30) L(r, θ)
(
1 − r2)θ ∞∑

n=0

|cn|2r2n p−→
r→1

Mθ , L(r, θ) :=
⎧⎪⎨⎪⎩

√
log

1

1 − r2 if θ = 1,

1 else.

So in a suitably averaged sense, the squared modulus of the secular coefficients gives the total
mass of the chaos in the subcritical and critical phases. In comparison, Theorem 1.8, shows
that each individual coefficient {cn} already contains much of the information about the mass
of the GMC.

We also detour briefly to mention that from (1.30), it is possible to derive other approxi-
mations to the total mass. One, which will be important here, is

(1.31) Mθ,n := (
√

logn)1{θ=1} �(θ + 1)

nθ

n∑
q=0

|cq |2.

If the convergence in (1.30) were almost sure, the Hardy–Littlewood Tauberian theorem
would immediately imply that Mθ,n converges almost surely to Mθ . We show in Theo-
rem A.2 in the Appendix that this Tauberian theorem generalizes to the setting of conver-
gence in probability, and the following is an immediate consequence of (1.29), (1.30) and
Theorem A.2.

LEMMA 1.9. For any 0 < θ ≤ 1, we have the convergence in probability to the total mass

(1.32) Mθ,n
p−→

r→∞Mθ , n → ∞.

1.5. The secular coefficients of CβE. Some of what we have proved for the HMC coef-
ficients {cn} adapt or transfer to the secular coefficients {c(N)

n } of N × N random matrices,
as defined in (1.3). In particular, when n → ∞ and N → ∞ in such a way that n/N → 0,
Theorem 1.8 transfers directly to {c(N)

n }.
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THEOREM 1.10 (L2-phase for slowly growing n). Let N = Nn be chosen in such a way
that n/N → 0 as n → ∞. Recalling the notation θ := 2

β
, for any 0 < θ < 1

2 , we have the
convergence in distribution

(1.33)
c
(N)
n√

E(|c(N)
n |2)

d−→
n→∞

√
MθZ,

where Z and Mθ are independent, Z is standard complex normal and Mθ has law (1.25).

PROOF. See Section 7. �

We remark that by formula (1.28), Theorem 1.10 is simply a restatement of Theorem 1.1,
but we have included it here for added clarity in the context of GMC theory. Let us discuss
the necessity of the condition n/N → 0 as n → ∞ appearing in Theorem 1.10. The normal-
ization constant E(|c(N)

n |2) is known explicitly, due to [27] who obtain for any θ > 0,

(1.34) E
(∣∣c(N)

n

∣∣2) =
(
N

n

)
�(n + θ)�(N − n + θ)

�(θ)�(N + θ)
.

We remark in passing that, to our knowledge, the work [27] was likely the first explicit inves-
tigation of secular coefficients in the literature. From (1.34) we observe two possible types of
asymptotics. If N grows with n at a fast enough rate that n/N → 0 as n → ∞, then

(1.35) E
(∣∣c(N)

n

∣∣2) ∼ 1

�(θ)
nθ−1, n → ∞

which matches the asymptotic (1.21). When, however, n = κN with 0 < κ < 1, the asymp-
totics contain an additional prefactor

(1.36) E
(∣∣c(N)

�κN�
∣∣2) ∼ (1 − κ)θ−1

�(θ)
nθ−1, N → ∞.

This hints that these higher degree coefficients could display a different limiting behavior.
On the other hand, we show that the order of magnitude of these secular coefficients is no

larger than that of cn.

THEOREM 1.11 (Order estimate). The orders of magnitudes of the secular coefficients
can be estimated as follows:

• (Subcritical case) For any θ ∈ (0,1), the families{
c(N)
n /n(θ−1)/2 : n,N ∈ N,N ≥ 2n

}
and

{
n(θ−1)/2/c(N)

n : n,N ∈ N,N ≥ 2n
}

are tight.
• (Critical case) If θ = 1, the family{

c(N)
n /

(
log(1 + n)

)−1/4 : n,N ∈ N,N ≥ 2n
}

is tight, and if N0(n) is a sequence such that

N0(n)

n
√

logn(log logn)
−→
n→∞ ∞,

then {(
log(1 + n)

)−1/4
/c(N)

n : n,N ∈ N,N ≥ N0(n)
}

is tight.
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• (Supercritical case) For any θ ∈ (1,2), there are constants uθ , vθ > 0 so that the family{
(c(N)

n /
(
n

√
θ−1(

log(1 + n)
)− 3

4

√
θ+vθ

) : n,N ∈ N,N ≥ nuθ
}

is tight.

PROOF. See Theorems 7.6 and 8.2. �

We make similar statements for cn for any θ > 0 in Lemma 7.5 and Theorem 8.1—in
particular, the bounds we establish are consistent with Theorem 1.8 extending to all θ ∈ (0,1].
For θ > 1, we do not have any expectation for the value of uθ , for which we give an explicit
value in Theorem 7.6, to be sharp. In contrast, we may reasonably conjecture the correct
value for vθ = 0; see Remark 7.4 for further discussion.

1.6. Discussion. We have analyzed a random distribution, the HMC, which can be con-
sidered as a large-N limit of the characteristic polynomials χN of the CβE. This limiting
process exists for all θ > 0, and we have given the distributional convergence of the Fourier
coefficients of this Schwartz distribution.

The HMCθ , in the case θ = 1 (β = 2) has appeared explicitly in the work of [53], Ap-
pendix C, where it is shown that HMC1 is in H−s for all s > 1

2 and the characteristic poly-
nomial of the CUE converges to it in law as a random element of H−s for any s > 1

2 . The
focus of [53] is rather more related to a local scaling of the characteristic polynomial; see
especially [53], Theorem 1.3. Therein, the authors show there exists a sequence δN → 0 and
a random Schwartz distribution η on R so that

χN

(
eiδNx)

e−YN
d−→

N→∞η(x),

where YN is a complex Gaussian variable having a nontrivial dependence on χN . The pro-
cesss η can be formally understood as

η(x) = exp
(∫ ∞

0

e−2πixu

√
u

dBC
u

)
for a complex Brownian motion BC. It is also shown that this chaos appears as the limit
of a randomized model of the Riemann ζ -function. The process η is a possible candidate
for definition of HMCθ on the real line when θ = 1, and could also be a type of local scaling
limit of HMCθ in a suitable vanishing window of ϑ . It can also be noted that logη(x) appears
closely related to the H = 0 fractional Brownian motion of [26].

In the vein of possible scaling limits of HMCθ , we also mention the recent work of [57].
They introduce the stochastic zeta function as a limit of characteristic polynomials of the
circular β-ensembles. As these characteristic polynomials are explicitly related to the HMCθ

(see Section 7 and (7.2)), the stochastic zeta function can be viewed as the microscopic scal-
ing limit of a random-matrix regularization of HMCθ (note that the stochastic zeta function
is a limit of (χN : N ∈ N) (7.2) and not (	∗

N : N ∈ N) (7.1)).
Another class of related objects which have been considered are the complex multiplicative

chaoses. For example, consider the random distribution CGMCθ , given (hypothetically) by

(1.37) (CGMCθ , φ) = lim
r→1

1

2π

∫ 2π

0
e
√

θ/4(G1(re
iϑ )+iG2(re

iϑ ))φ(ϑ)dϑ,

where G1 and G2 are i.i.d. copies of G from (1.10). This roughly fits within the frameworks of
[41] and [40], although the technical assumptions on the manner of regularization of G(eiϑ)

are not precisely the same. We comment that in the language of [41] that CGMCθ would
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be in Phase I for θ ∈ (0,1), in Phase II for θ > 1 and at the triple point for θ = 1. We
mention briefly that there is other related work on complex multiplicative cascades [8, 9] and
imaginary chaoses in [6, 36].

When θ < 1, an adaptation of [41], Theorem 3.1, would show the limit in (1.37) exists, and
so the CGMCθ is well defined.2 We note that, for θ ≥ 1, [41], Conjectures 5.2,5.3, suggest
that an additional logarithmic normalization is required for convergence, analogously to log-
arithmic factors needed for convergence of the critical GMC. Indeed, in work of [30, 46] (see
also [31]), an analogous statement is proven for a complex random energy model built from
branching processes. Note this in constrast to HMCθ which requires no further normalization
to converge for any θ > 0.

Because the correlations are relatively weak between the real and imaginary parts of the
field which define HMCθ , we expect that some results carry to HMCθ from the theory of the
complex multiplicative chaoses, for example the multifractality for θ < 1, q < 1,

E
[∣∣(CGMCθ ,1

{|ϑ | ≤ r
})∣∣q] ∼

r→0
Cqr

q−θq2
,

(see [41], Theorem 3.6, [7], and see also the related work on the regularity of the complex
Gaussian multiplicative chaoses in [35]). We expect the same to hold for HMCθ .

QUESTION 1.12. For θ < 1, q < 1, does it hold that

E
[∣∣(HMCθ ,1

{|ϑ | ≤ r
})∣∣q] ∼

r→0
Cqrq−θq2

?

We conclude by mentioning some unsolved questions on the properties of HMCθ . We
have considered the L2-phase of θ , that is, θ < 1

2 . We assume that Theorem 1.10 generalizes
without alteration to θ ∈ (0,1), the L1-phase and in addition to the critical value θ = 1 after
introducing an appropriate logarithmic factor.

QUESTION 1.13. Show that Theorem 1.8 generalizes to all θ ∈ (0,1) and that it can be
adapted to hold at the critical point θ = 1.

For supercritical θ > 1, it is reasonable to assume that there is still distributional conver-
gence of cn, but the exact form of the limit is unclear.

We have also shown distributional convergence of the secular coefficients c
(N)
n when

n/N → 0 in the L2-phase. This relies on making a comparison between cn and c
(N)
n which

is weaker when n/N → c ∈ (0,1). So we pose the following question.

QUESTION 1.14. What is the distributional limit of c
(N)
n /

√
E(|c(N)

n |2) in the subcritical
(or even L2) phase when n/N → c ∈ (0,1) as N → ∞?

One feature of the secular coefficients c
(N)
n is that they may be expressed as combinations

of certain conditional expectations of cn and cN−n+1 (see (7.12)). Beyond this, it would be
interesting to know the joint behavior of the secular coefficients {cn}.

QUESTION 1.15. For θ ∈ (0,1), to what does (n(1−θ)/2cn+m : m ∈ Z) converge as n →
∞ in the sense of finite-dimensional marginals?

2From the theory in [9], using the series truncation regularization in place of the harmonic regularization, the
existence of the limit follows.
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We conclude with one final question of a metamathematical nature. For r ∈ (0,1), the
function ϑ �→ e

√
θGC(reiϑ ) from [0,2π) to C can be seen, after suitable normalization, as

the (random) wave function of the position of a particle which lives on [0,2π). Then, if one
makes a quantum measurement of the position of the particle, the outcome of the measure-
ment is distributed according to the (random) probability measure with density

ϑ �→ e
√

θG(reiϑ )∫ 2π
0 e

√
θG(reiϑ ) dϑ

with respect to the Lebesgue measure on [0,2π). Now, if we are in the subcritical or the
critical phases (θ ≤ 1), and if we take the limit r → 1, we see that

ϑ �→ e
√

θGC(eiϑ ) = ∑
n≥0

cne
niϑ

can be formally seen as the wave function of a particle such that a quantum measurement
gives an outcome distributed according to the (random) probability measure GMCθ /Mθ .
Formally, this wave function is an eigenfunction for the operator

�(ϑ) �→ 1

i

d�(ϑ)

dϑ
−

√
θ

i

dGC(eiϑ)

dϑ
�(ϑ)

= 1

i

d�(ϑ)

dϑ
−

( ∞∑
k=1

√
kθeiϑkNk

)
�(ϑ).

Multiplying by the adjoint, we formally get a self-adjoint operator for which HMCθ/
√
Mθ is

an eigenstate. However, the physical meaning of this operator is unclear to us. A discussion on
the problem of a massless two-dimensional Dirac fermion in a static random magnetic field
is provided by Carpentier and Le Doussal in [13] (see Section VI.A.), where the exponential
of a Gaussian logarithmically correlated field is involved in the wave functions which are
obtained.

1.7. Organization. The structure of this paper is as follows. In Section 2 we compute the
joint moments of the secular coefficients {cn}, which we express in terms of magic squares.
We then relate these to Jack functions and compute their asymptotics, proving Theorems 1.6
and 1.7. In Section 3 we make a connection between the moments of the secular coefficients
and the Ewens sampling formula. We then review known estimates of the Ewens sampling
formula.

In Sections 4, 4.2, 5 and 5.2, we prove Theorem 1.8. We do this by ultimately using the
martingale central limit theorem. However, cn itself is not suitable for a direct application. So
in Section 4, we find a related random variable c̃

(δ)
n which is a close approximation to cn and

whose Doob martingale with respect to a natural filtration has easily understood increments.
In Section 4.2, we give the proof of this normal approximation for c̃

(δ)
n and then a proof

of Theorem 1.8, contingent on showing the bracket process of the Doob martingale for c̃
(δ)
n

stabilizes in the n → ∞ followed by δ → 0 limit. In Section 5 we compute moments of
secular coefficients with restricted cycle count, whose meaning will become apparent, and
finally in Section 5.2, we prove the convergence needed to complete the proof of Theorem 1.8.

In Section 6 we prove Theorem 1.4 on the regularity of HMCθ . In Section 7 we give
the precise connection between the characteristic polynomial χN and HMCθ . We also show
Theorems 1.10 and 1.11. Finally in Section 8, we prove the sharpness of the estimates in
Section 7 in the regime θ ∈ (0,1].
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2. Moments of the secular coefficients. The purpose of this section will be to prove
Theorems 1.6 and 1.7 on the moments of cn for general β > 0. We also discuss combinatorial
properties of the moments and their relation to Jack functions.

PROOF OF THEOREM 1.6. Recall from (1.14) that cn can be extracted from a generating
function according to the formula

(2.1) cn = [
zn]

exp

(√
θ

∞∑
j=1

Nj√
j
zj

)
.

Denoting the left-hand side of (1.19) as R(k)
(μ,ν), we have

(2.2) R(k)
(μ,ν) = [

z
μ1
1 . . . z

μk

k w
ν1
1 . . .w

νk

k

]
E

(
F (k)(�z, �w)

)
,

where

(2.3) F (k)(�z, �w) = exp

(√
θ

k∑
r=1

∞∑
j=1

(Nj√
j
zj
r + Nj√

j
wj

r

))
.

A simple Gaussian computation using independence of the family {Nk}∞k=1 shows that

(2.4) E
(
F (k)(�z, �w)

) =
k∏

r1,r2=1

1

(1 − zr1wr2)
θ
.

Expanding (2.4) with the Newton binomial formula, we obtain

k∏
r1,r2=1

1

(1 − zr1wr2)
θ

= ∑
A

k∏
i,j=1

(
Aij + θ − 1

θ − 1

)

×
k∏

i=1

z

∑k
j=1 Aij

i

k∏
j=1

w

∑k
i=1 Aij

j ,

(2.5)

where the sum runs over the set of all k×k matrices A whose entries are nonnegative integers.
Equating coefficients according to (2.2) fixes the row and column sums appearing in (2.5) and
completes the proof of the Theorem. �

We remark that Diaconis and Gamburd [19] prove this result specifically for the coeffi-
cients c

(N)
n with θ = 1, related to random unitary matrices. In contrast to the above com-

putation, they exploited the known orthogonality of the Schur functions and explicit results
associated with the RSK correspondence. When N = ∞, their result recovers ours for the
coefficients cn with θ = 1, but if θ �= 1, their result is distinct from ours. Despite this, in
the following we discuss an interpretation of our result for general θ > 0 in terms of Jack
functions (which extend the Schur functions to any θ > 0).

2.1. Connection to Jack functions. We briefly recall some symmetric function notation.
We follow [55] and [45] for all notational conventions. We refer the reader to [55] for a
concise reminder of the definitions.

Let � be the algebra of all symmetric formal power series in a countably infinite family
of indeterminates. For any partition λ we let pλ be the power sum symmetric function, eλ be
the elementary symmetric function, and mλ be the monomial symmetric function.

For any partition λ = (1m1,2m2,3m3, . . . ), we let

zλ = 1m1 · 2m2 · 3m3 · · ·m1!m2!m3! · · · .
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We also define �(λ) to be the length of a partition. We define an inner product on � by

〈pλ,pμ〉 = 1λ=μzλθ
�(λ).

The Jack functions {P θ
λ } form another basis �, which can be uniquely defined by (c.f. [55],

Theorem 1.1):

1. 〈P θ
λ ,P θ

μ〉 = 0 if λ �= μ.
2. Expanding the Jack function into monomial basis,

P θ
λ = ∑

uλμ(α)mμ,

all nonzero coefficients uλμ(α) satisfy μ ≤ λ where ≤ is the dominance ordering (also known
as the “natural ordering” in [45], p.6).

3. The leading coefficient uλλ = 1.

When θ = 1, the Jack polynomials coincide with the Schur polynomials, which we denote by
sλ.

For any symmetric functions p, g, we define another inner product

(2.6) 〈p,g〉n = 1

Zn,β

∫
T

p(x)g(x)
∏
i �=j

|xi − xj |1/θ dx,

that is to say integration against the circular–β ensemble. Here we have specialized the func-
tions p and g by sending all xj = 0 for j > n. The Zn,β is the usual normalization so that
〈1,1〉 = 1. Then, for any symmetric functions, 〈p,g〉n → 〈p,g〉 as n → ∞ (see the discus-
sion below (10.38) in [45]). Furthermore, one has that the polynomials {P θ

λ : �(λ) ≤ n} are
orthogonal with respect to 〈·, ·〉n [45], (10.36).

The Kostka numbers Kλμ can be defined as

sλ = ∑
μ

Kλμmμ.

As a corollary (apply the ω involution to [56], Corollary 7.12.4)

eμ = ∑
λ

Kλ′μsλ.

Then it is possible to generalize these coefficients to the Jack setting by defining them as the
unique coefficients so that, for all partitions μ,

(2.7) eμ = ∑
λ

Kθ
λ′μP θ

λ .

The proof of [19] exploited an identity for the Kostka numbers which follows from the RSK
bijection (see [56], Section 7.11). This is given by∑

λ

KλμKλν = |Magμ,ν |;

see [56], Corollary 7.12.3.
As a corollary of Theorem 1.6, we get a new proof of this fact as well as a generalization

to all θ . We mention that these connection coefficients are useful for the exact evaluation of
some moments of β-ensembles [47].

THEOREM 2.1. ∑
λ

Kθ
λ′μKθ

λ′ν
〈
P θ

λ ,P θ
λ

〉 = ∑
A∈Magμ,ν

∏
i,j

(
θ + Aij − 1

Aij

)
.
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PROOF. Recall χN is the characteristic polynomial of a circular-β random matrix, and
so

χN(t) =
N∑

k=0

ek(λ)tk,

with λ distributed as CβE. Then from Theorem 1.3,

E
(
eμ(λ)eν(λ)

) → E

∞∏
j=1

c
μj

j cj
νj .

On the other hand,

E
(
eμ(λ)eν(λ)

) = 〈eμ, eν〉N → 〈eμ, eν〉,
and hence by (2.7) and Theorem 1.6∑

λ

Kθ
λ′μKθ

λ′ν
〈
P θ

λ ,P θ
λ

〉 = ∑
A∈Magμ,ν

∏
i,j

(
θ + Aij − 1

Aij

)
.

The normalization constant 〈P θ
λ ,P θ

λ 〉 is given in [45], (10.16). �

2.2. Asymptotics of the moments. In this subsection we will give the proof of Theo-
rem 1.7. It is instructive to begin with a particular case, so we first discuss the case of the
fourth moment, or k = 2 in Theorem 1.7. Then we show how to generalize the approach to
all positive integers k.

EXAMPLE 2.2. Using Theorem 1.6, we can, for instance, take k = 2, μ1 = μ2 = n and
ν1 = ν2 = n with all other exponents equal to zero. In this case one is summing over all
2 × 2 magic squares whose row and column sums are equal to n. Such magic squares are
parameterized by a single variable (denoted here j ), and Theorem 1.6 yields

(2.8) E
(|cn|4) =

n∑
j=0

(
j + θ − 1

θ − 1

)2 (
n − j + θ − 1

θ − 1

)2

.

When θ = 1, the right-hand side of (2.8) is given by n + 1 (the number of 2 × 2 magic
squares), as obtained in [19]. For general θ > 0, we can compute the asymptotics as n → ∞
from the sum representation (2.8) as follows.

LEMMA 2.3. For any 0 < θ < 1/2, we have the following:

(2.9)
E(|cn|4)
E(|cn|2)2 ∼ 2

�(1 − 2θ)

�(1 − θ)2 , n → ∞,

where we recall the normalization

(2.10) E
(|cn|2) =

(
n + θ − 1

θ − 1

)
∼ 1

�(θ)
nθ−1.

PROOF. Fix 0 < δ < 1, and split the sum in (2.8) according to whether j ≤ �δn�, �δn� +
1 ≤ j ≤ n − �δn� − 1 or n − �δn� ≤ j ≤ n, denoting each sum S1, S2 or S3, respectively.
Then in the sum S1, the term n − j is always large so that the second binomial coefficient is
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uniformly bounded by cδ,θn
θ−1 for some constant cδ,θ > 0. Applying dominated convergence

then gives

lim
n→∞

S1

(E(|cn|2))2 =
∞∑

j=0

(
j + θ − 1

θ − 1

)2

lim
n→∞

(
n − j + θ − 1

θ − 1

)2

(
n + θ − 1

θ − 1

)2(2.11)

=
∞∑

j=0

(
j + θ − 1

θ − 1

)2

(2.12)

= �(1 − 2θ)

�(1 − θ)2 ,(2.13)

where in (2.13) we used Lemma C.1. An identical argument holds for the sum S3 (by sym-
metry of j → n− j ), and this gives the factor 2 in (2.9). The sum S2 is negligible: the second
binomial coefficient is still bounded by cθ,δn

θ−1, which gives the same order of magnitude,
but now both the upper and lower limits of the sum are growing. Since (2.12) converges, we
have that n−2(θ−1)S2 → 0. This completes the proof of the Lemma. �

REMARK 2.4. When θ ≥ 1/2, this argument breaks down because the sum in (2.13)
is divergent which leads to slightly different asymptotic behaviour. When θ > 1/2, the sum
S2 can be approximated by a Riemann integral which now gives the main contribution: As
n → ∞, we have

E
(|cn|4)|θ>1/2 ∼ n4(θ−1)+1 1

�(θ)4

∫ 1

0
x2(θ−1)(1 − x)2(θ−1) dx

= n4(θ−1)+1 �(2θ − 1)2

�(4θ − 2)�(θ)4

(2.14)

and conversely note that this integral becomes divergent when θ ≤ 1/2, with the leading
power of n matching at the transition θ = 1/2. In the case θ = 1/2, one can show that

(2.15) E
(|cn|4)|θ=1/2 ∼ 2

π2

logn

n
, n → ∞.

The fact that the argument leading to (2.9) can be generalized to all higher moments is the
subject of the next result.

THEOREM 2.5. Let k be a positive integer such that kθ < 1. Then

lim
n→∞

E(|cn|2k)

(E(|cn|2))k = k!�(1 − kθ)

�(1 − θ)k
.

PROOF. Recall from Theorem 1.6

(2.16) E
(|cn|2k) = ∑

A∈Magπ,π

∏
i,j

(
θ + Aij − 1

Aij

)
,

where π is the partition which has k parts of length n. In particular, the magic squares Magπ,π

are k × k and have all row and column sums equal to n. Fix a δ > 0. Let Eδ,n ⊂ Magπ,π be
those magic squares in which there is a row i for which there are two j so that Aij > δn. We
claim that

(2.17)
∑

A∈Eδ,n

∏
i,j

(
θ + Aij − 1

Aij

)
= o

(
nk(θ−1)).

We shall return to this point, but for the moment we give the proof contingent on (2.17).
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Note that, for δ sufficiently small, each A ∈ Magπ,π \ Eδ,n has in each row exactly one
entry with size larger than n(1 − kδ). Again for δ sufficiently small, this implies that each
column additionally has exactly one such entry. Thus, for any such A there is a k × k permu-
tation matrix P , the support of which coincides with the entries of A larger than n(1 − kδ).

So for each permutation σ , we can define Sσ ⊂ Magπ,π \ Eδ,n as those magic squares A

for which Aij ≥ n(1 − kδ) for some i, j if and only if j = σ(i). For δ sufficiently small, we,
moreover, have that {Sσ : σ is a permutation of [k]} is a partition of Magπ,π \ Eδ,n.

For any A ∈ Sσ , we may make a uniform estimate (over Sσ )∏
i,j

(
θ + Aij − 1

Aij

)
= ∏

j=σ(i)

{(
θ + n − 1

n

) (
1 + O(δ)

)}
· ∏
j �=σ(i)

{(
θ + Aij − 1

Aij

)}
.

Now, by permuting the rows of the magic squares, we can bijectively map Sσ to SId. More-
over, permuting the rows of a magic square does not alter the weight of the filling in the
display above, and we can, therefore, conclude, using (2.17),

E
(|cn|2k) = k! ∑

A∈SId

{(
θ + n − 1

n

) (
1 + O(δ)

)}k

· ∏
i �=j

{(
θ + Aij − 1

Aij

)}
+ o

(
nk(θ−1)).(2.18)

Let Hk be the k × k nonnegative integer matrices A in which for each 1 ≤ i ≤ k∑
j

Aij = ∑
j

Aji .

We claim that

(2.19)
∑

A∈Hk

∏
i �=j

(
θ + Aij − 1

Aij

)
= �(1 − kθ)

�(1 − θ)k
.

From the Newton binomial formula, we have that, for {zi} and {yj } in the unit disk,

∏
i �=j

(
1

1 − ziyj

)θ

= ∑
(μj ),(νj )∈Nk

∏
j

z
μj

j yj
νj ·

{ ∑
A∈Mag0,μ,ν

∏
i �=j

(
θ + Aij − 1

Aij

)}
,

where Mag0,μ,ν ⊂ Magμ,ν have 0 on the diagonal. Hence, on setting zj = reiωj and yj =
reiωj for r ∈ (0,1) and averaging over all ωj , we have

1

(2π)k

∫ ∏
i �=j

(
1

1 − r2e
√−1(ωi−ωj )

)θ

dω

= ∑
(μj )∈Nk

r2
∑

μj ·
{ ∑

A∈Mag0(μ,μ)

∏
i �=j

(
θ + Aij − 1

Aij

)}
.

This integral on the left-hand side is convergent on sending r → 1, and, moreover, gives
exactly the Morris integral (1.23). The right-hand side, meanwhile, converges to the left-hand
side of (2.19) which completes the proof of (2.19).

As (2.19) is convergent, it follows from dominated convergence that

lim
n→∞n−k(θ−1)

∑
A∈SId

∏
i=j

{(
θ + n − 1

n

)}
· ∏
i �=j

{(
θ + Aij − 1

Aij

)}
= �(1 − kθ)

�(1 − θ)k�(θ)k
.
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Hence, on combining this with (2.18) and sending δ → 0, we conclude that

lim
n→∞n−k(θ−1)

E
(|cn|2k) = k!�(1 − kθ)

�(1 − θ)k�(θ)k
.

Finally we turn to the proof of (2.17). By the Birkhoff–von Neumann theorem, the doubly
stochastic matrices are the convex hull of the permutation matrices. It follows that, for every
A ∈ Magπ,π , there is a permutation σ such that each entry of Aiσ(i) has size at least n/k!
Hence, by symmetry (c.f. the argument above (2.18)) we can restrict the sum in (2.17) to
those A ∈ Eδ,n whose every diagonal entry is at least n/k!. Denote this subset of Eδ,n by
E′

δ,n. In short, we have the bound

∑
A∈Eδ,n

∏
i,j

(
θ + Aij − 1

Aij

)
≤ k! ∑

A∈E′
δ,n

∏
i

{
Cθ

(
n

k!
)θ−1} ∏

i �=j

{(
θ + Aij − 1

Aij

)}

for some absolute constant Cθ . Hence, once more using the absolute convergence of (2.19)
and dominated convergence, (2.17) follows. �

3. The Ewens sampling formula. In this section we describe a connection between
secular coefficients and random permutations that we believe is interesting in its own right.
While detailing this, we shall revise some of the key results about random permutations, as
these will be useful in the subsequent sections.

The secular coefficients defined in (1.13) can be given the following explicit formula:

(3.1) cn = ∑
�m∈Sn

n∏
k=1

Nmk

k

mk!
(

θ

k

)mk/2
.

The summation is over the set Sn of all compositions of n, that is, �m = (m1,m2, . . . ,mn) is
such that each mk is a nonnegative integer satisfying

(3.2)
n∑

k=1

kmk = n.

From (3.1) we have that cn is measurable with respect to Gn := σ {N1, . . . ,Nn}. So, going
forward, we will make use of the filtration G = (Gn : n ∈ N).

Taking the L2-norm of (3.1) gives

(3.3) E
(|cn|2) = ∑

�l∈Sn, �m∈Sn

n∏
k=1

E(Nmk

k Nk
lk
)

mk!lk!
(

θ

k

)(mk+lk)/2
,

where we used independence of the family {Nk}∞k=1 to take the expectation inside the product.
Next, applying the Gaussian formula

(3.4) E
(
Nmk

k Nk
lk ) = 1mk=lk (mk)!

implies that the compositions in the sum (3.3) must coincide in order to give a nonzero term.
This gives

(3.5) E
(|cn|2) = ∑

�m∈Sn

n∏
k=1

1

mk!
(

θ

k

)mk

.

Given a permutation σ on n symbols, we can characterize it using its cycle structure
(m1, . . . ,mn), where mj denotes the number of cycles in σ having length j and

∑n
j=1 jmj =

n. The summation in (3.5) is well known in the theory of random permutations where it ap-
pears as the normalizing factor for the Ewens sampling formula.
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DEFINITION 3.1. The Ewens sampling formula is a probability distribution on cycle
counts �M(n) = (M1, . . . ,Mn) given by

(3.6) P
( �M(n) = �m) = 1∑n

k=1 kmk=n(
n + θ − 1

θ − 1

) n∏
k=1

(
θ

k

)mk 1

mk! .

The fact that (3.6) is normalized gives the explicit form of the sum in (3.5),

(3.7) E
(|cn|2) =

(
n + θ − 1

θ − 1

)
.

In general, if we restrict the summation in (3.1) to a subset P ⊂ Sn and denote this cn,P , an
identical computation holds. This yields the fundamental correspondence

(3.8) E
(|cn,P |2) =

(
n + θ − 1

θ − 1

)
P

( �M(n) ∈ P
)
,

where on the left-hand side of (3.8) the expectation is taken over the Gaussian random vari-
ables in (3.1), while on the right-hand side �M follows the Ewens sampling formula in (3.6)
with parameter θ .

We can also use the Ewens sampling formula to describe conditional expectations of |cn|2.
In analogy with (3.3), for q ≤ n,

(3.9) E
(|cn|2 | Gq

) = ∑
�l∈Sn, �m∈Sn

n∏
k=1

E(Nmk

k Nk
lk | Gq)

mk!lk!
(

θ

k

)(mk+lk)/2
.

The only nonzero pairs (�l, �m) in this sum have mk = lk for k > q , and this allows us to greatly
simplify this expression. Let us define

(3.10) cn,q = ∑
(mk):1≤k≤q∑q

k=1 kmk=n

q∏
k=1

θmk/2

mk!kmk/2N
mk

k .

REMARK 3.2. This (3.10) is a special case of cn,P (c.f. (3.8)) in which P are those
partitions with no parts greater than q . This is also equivalent to setting the Gaussians Nk = 0
for all k > q in the sum (3.1). In particular, cn,q is Gq–measruable.

In terms of (3.10), we can, therefore, give the sum formula by partitioning (3.9) according
to r = ∑q

k=1 kmk . Note that when r ≥ n−q , we have no way to complete the partition, except
by choosing all larger mk = 0, and so

E
(|cn|2 | Gq

) = |cn,q |2 +
n−q−1∑

r=0

|cr,q |2 ∑
(mk):q<k≤n∑n−q−1

k=q+1 kmk=n−r

n∏
k=q+1

θmk

mk!kmk
.

Note that we may have no mk > 0 for k > n − r in the inner sum, and so using (3.6),

E
(|cn|2 | Gq

) = |cn,q |2 +
n∑

r=0

|cr,q |2
(
n − r + θ − 1

θ − 1

)
P

[
M

(n−r)
j

= 0, for all 1 ≤ j ≤ q
]
.

(3.11)

We note that sum need only run to n − q , as the probability therein is 0 for larger r . We will
do an asymptotic analysis of this conditional expectation in Section 7.1.
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3.1. Properties of the Ewens sampling formula. We remark that the case θ = 1 in (3.6)
corresponds to the uniform measure on the set of all permutations, while the general case
θ > 0 corresponds to a tilting of the uniform measure. For any θ > 0, a wealth of results
are known concerning statistical properties of the cycle counts; see the text [5] from which
we will borrow from repeatedly in what follows. The main point exploited in [5] is that,
apart from the indicator function, (3.6) is a conditional joint law of n independent random
variables (Z1, . . . ,Zn), where each Zk is Poisson distributed with parameter θ/k. Therefore,
statistics of the cycle counts can be reduced to studying the independent random variables
(Z1, . . . ,Zn) paired with the condition that T0n = n where T0n = ∑n

j=1 jZj . We will refer to
this as the conditioning relation.

In fact, the random variable T0n and its limiting distribution play an important role in what
follows, and we record some of the key results about it from [5].

LEMMA 3.3. Suppose that r = rn ∈N satisfies r/n → y ∈ (0,∞) as n → ∞. Then

(3.12) lim
n→∞nP(T0n = r) = pθ(y),

where pθ(y) is an (explicit) probability density function satisfying the following properties:

1. An explicit formula at y = 1,

(3.13) pθ(1) = e−γEθ

�(θ)
,

where γE is the Euler–Mascheroni constant.
2. Rapid decay at y = +∞,

(3.14) supy≥npθ (y) ≤ θn

n!
3. The derivative identity, for x /∈ {0,1}

(3.15)
d

dx

[
x1−θpθ (x)

] = −θx−θpθ (x − 1).

PROOF. These are proved in [5], Section 4, using size biasing techniques. �

We will also make use of the following finite n uniform bound.

LEMMA 3.4 (Lemma 4.12(i) in [5]). If 0 ≤ θ ≤ 1, then

(3.16) maxk≥0P(T0n = k) ≤ e−θh(n+1),

where h(n + 1) is the harmonic number

(3.17) h(n + 1) =
n∑

j=1

1

j
.

Now, let L(n) denote the length of the longest cycle. This quantity is closely related to the
distribution of T0n, because by the conditioning relation

P
(
L(n) ≤ r

) = P
({Mr+1 = 0} ∧ . . . ∧ {Mn = 0})

= P
({Zr+1 = 0} ∧ . . . ∧ {Zn = 0}|T0n = n

)
= P

({Zr+1 = 0} ∧ . . . ∧ {Zn = 0})P(T0r = n)

P(T0n = n)
.

(3.18)

Now, Lemma 3.3 gives the following, as quoted in [5], Lemma 4.23, and attributed to King-
man (1977).
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LEMMA 3.5. As n → ∞, we have the convergence in distribution n−1L(n) d−→ L(∞),
where L(∞) is a random variable with distribution function Fθ given by

(3.19) Fθ(x) = eγEθxθ−1�(θ)pθ (1/x) for all x ∈ (0,1].

We also need a tail bound that controls the probability that the largest cycle is unusually
small.

LEMMA 3.6. For any θ > 0, there is a constant cθ > 0 so that

P
(
L(n) ≤ n/ logn

) ≤ n−cθ log logn.

PROOF. Using (3.18) and the convergence of P(T0n = n), there is some constant Cθ so
that, for any r ∈ N,

P
(
L(n) ≤ r

) ≤ P(T0r = n)

P(T0n = n)
≤ CθP(T0r = n).

When r is much smaller than n, this probability becomes very small. Using standard concen-
tration results for functionals of Poisson fields (see [59], Proposition 3.1, or [44]), there is a
constant Cθ sufficiently large that, for all t > 0 and all r ∈N,

P(T0r > rt) ≤ exp
(
− t

4
log

(
1 + t

Cθ

))
.

The proof follows by taking r = �n/ logn� and t = �logn�. �

To analyze (3.11), we will also need information on the shortest cycle S(n) in a Ewens
distributed permutation. From the asymptotic independence of the cycle counts in a Ewens
permutation, one expects P(S(n) > q) → e−θh(q+1) as n → ∞. We will make use of a
nonasymptotic bound that has this behavior.

LEMMA 3.7. For all θ > 0, there is a constant Cθ > 0 so that, for all n,q ∈ N,

P
(
S(n) > q

) ≤ 1(
q − 1 + θ

θ

) ≤ Cθe
−θh(q+1).

PROOF. We use the Feller description of the Ewens sampling formula, which we now
describe. Let ξ1, ξ2, ξ3, . . . be independent Bernoulli variables having parameter

P(ξj = 1) = θ

θ + j − 1
, for all j ∈ N.

For any n, define a spacing of length � in the vector

(1, ξn, ξn−1, . . . , ξ3, ξ2,1)

as a pair {k, k + �}, where ξk = ξk+� = 1 and ξj = 0 for all j with k < j < k + �. In the case
k+� = n+1, we instead use 1 in place of ξk+�. The Feller description of the Ewens sampling
formula (see [4], Section 3) states that the random vector (#{spacings of length �}|1 ≤ � ≤ n)

has the same distribution as ( �M(n)
� |1 ≤ � ≤ n).
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In particular, we have the inequality

P
[
S(n) > q

] ≤ P[ξk = 0, for all 2 ≤ k ≤ q]

=
q∏

k=2

(
1 − θ

θ + k − 1

)

= �(q)�(θ + 1)

�(θ + q)

= 1(
q − 1 + θ

θ

) .

To derive the final inequality, using second line of the display above and bounding
q∏

k=2

(
1 − θ

θ + k − 1

)
≤ exp

(
−

q∑
k=2

θ

θ + k − 1

)
≤ exp

(−θh(q)
)
.

On replacing h(q) by h(q + 1), we only decrease the bound by a factor at most eθ , and hence
the claimed bound following with Cθ = eθ . �

4. Martingale approximation and convergence. We begin this section by finding an
approximate martingale structure in the sum (3.1). This opens the possibility of applying a
central limit theorem for martingales, and we explain why this is relevant for our proof of
Theorem 1.8. The results on permutations in the previous section will be used to arrive at the
martingale approximation, as we now show.

4.1. Martingale approximation. Given a composition m, we define

(4.1) ν(m) := max{k = 1, . . . , n | mk ≥ 1}.
If the mk are interpreted as cycle counts, the quantity ν(m) is the length of the largest cycle
in the corresponding permutation. Given δ > 0, consider permutations whose largest cycle is
smaller than �δn�,

(4.2) Pδ := {
m ∈ Sn | ν(m) < �δn�}

.

We will show that the contribution of Pδ to the sum in (3.1) can be neglected for large n and
small δ. In the sum over the remaining terms P c

δ , we define another negligible set, the set of
all compositions where there are multiple longest cycles of the same length,

(4.3) R := {m ∈ Sn | mν(m) ≥ 2}.
We define c̃

(δ)
n to be the sum over compositions whose largest cycle is greater than �δn�, and

where there is only one such largest cycle, in other words c̃
(δ)
n := cn,P c

δ ∩Rc . We have

(4.4) cn = c̃(δ)
n + cn,Pδ + cn,P c

δ ∩R,

and summing over the possible lengths of the longest cycle, we can decompose the sum as

(4.5) c̃(δ)
n =

n∑
q=�δn�

Nq

√
θ

q
cn−q,q−1,

where cn−q,q−1 are as in (3.10). Note that cn−q,q−1 only depends on the first q −1 Gaussians.

Consequently, c̃
(δ)
n is a martingale with respect to the filtration G = (σ {N1, . . . ,Nn} : n ∈N).
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LEMMA 4.1 (Martingale approximation). Let 0 < δ < 1, and assume θ ∈ [0,1]. Then
cn is well approximated by the martingale c̃

(δ)
n , given by (4.5), in the following sense. After

proper normalization the error terms cn,Pδ and cn,P c
δ ∩R in (4.4) have L2-norm satisfying

lim
δ→0

lim
n→∞

E(|cn,Pδ |2)
E(|cn|2) = 0,(4.6)

E(|cn,P c
δ ∩R|2)

E(|cn|2) = Oδ

(
n−θ )

, n → ∞.(4.7)

Taken together, using (4.4), we have

(4.8) lim
δ→0

lim
n→∞

E(|cn − c̃
(δ)
n |2)

E(|cn|2) = 0.

PROOF. By the correspondence (3.8), we have

(4.9)
E(|cn,Pδ |2)
E(|cn|2) = P

(
L

(n)
1 < �δn�)

,

where the right-hand side is the probability that the longest cycle is bounded by �δn�. By
Lemma 3.5 we have

(4.10) lim
n→∞P

(
L

(n)
1 < �δn�) = eγEθ δθ−1�(θ)pθ (1/δ),

and the fast decay (3.14) gives

(4.11) lim
δ→0

lim
n→∞P

(
L

(n)
1 < �δn�) = 0

which proves statement (4.6). For (4.7) we have

P
(
P δ ∩ R

) =
n∑

q=�δn�
P

({mq ≥ 2} ∧ {
ν(m) = q

})

=
n∑

q=�δn�
P

({mq ≥ 2} ∧ {mq+1 = 0} ∧ . . . ∧ {mn = 0})

=
n∑

q=�δn�

∞∑
�=2

P
({Zq = �} ∧ {Zq+1 = 0} ∧ . . . ∧ {Zn = 0})

× P(T0(q−1) = n − q�)

P(T0n = n)
,

(4.12)

where in the last step we employed the conditioning relation and we interpret contributions
to the sum above as zero, whenever q� > n. In order to bound the quantities above, first take
r = n in (3.12) to see that P(T0n = n) ∼ n−1pθ(1). By Lemma 3.4 we have

(4.13) P(T0(q−1) = n − q�) ≤ e−θh(q),

while

(4.14) P
({Zq+1 = 0} ∧ . . . ∧ {Zn = 0}) = e−θh(n+1)+θh(q+1).

A simple bound on the harmonic number gives e−θh(n+1) ≤ cθn
−θ for some positive constant

cθ . Combining these facts gives, for some other constant cθ , the bound

(4.15) P
(
P δ ∩ R

) ≤ n1−θ cθ

n∑
q=�δn�

P(Zq ≥ 2) = Oδ

(
n−θ )

, n → ∞,
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where we used that P(Zq ≥ 2) ∼ θ2

2q2 as q → ∞. This completes the proof of the martingale
approximation. �

4.2. Martingale central limit theorem. Having demonstrated the martingale approxima-
tion, in this section we will discuss the type of central limit theorems we can apply. In the
following we will give a proof of Theorem 1.8, contingent on a certain L2 estimate that will
be dealt with separately in a later section.

To recap, Lemma 4.1 states that if we define increments

(4.16) Zn,q := 1√
E(|cn|2)

Nq

√
θ

q
cn−q,q−1,

then the quantity

(4.17)
c̃
(δ)
n√

E(|cn|2)
=

n∑
q=�δn�

Zn,q

is a good approximation of the normalized coefficient cn/

√
E(|cn|2). Now, we see by con-

struction (recalling Remark 3.2) that cn−q,q−1 only depends on the first q − 1 Gaussians and
this implies that the random variables Nq and cn−q,q−1 are independent. We have

(4.18) E(Zn,q |Gq−1) = 0,

in other words Zn,q are the increments of a martingale with respect to the filtration generated
by the first q − 1 Gaussians.

In order to get convergence in distribution of c̃
(δ)
n (and, therefore, of cn), we will apply

a central limit theorem for martingales. The majority of these limit theorems rely to a large
extent on the analysis of a quantity known as the bracket process (sometimes also referred to
as the conditional variance [28]). In our setting it is given by

Mθ,δ,n :=
n∑

q=�δn�
E

(|Zn,q |2|Gq−1
) = 1

E(|cn|2)
n∑

q=�δn�

θ

q
|cn−q,q−1|2.(4.19)

A key hypothesis usually involves showing that this type of quantity converges in probability
to a constant as n → ∞. An interesting feature here is that Mθ,δ,n will not have a deter-
ministic limit, and so we need a sufficiently general form of the martingale CLT that allows
for fluctuations in the limit n → ∞ of the bracket process. These limiting fluctuations will
be described in terms of the total mass of Gaussian multiplicative chaos and are ultimately
responsible for the structure of the distribution given in Theorem 1.8. The appropriate CLT is
the following.

THEOREM 4.2 (Martingale Central Limit Theorem—Section 3.2 in [28]). Let {Xn,q}nq=1
for n ≥ 1 be an array of real-valued martingale increments with respect to a filtration Fn,q

indexed by q . Define the random variables

νn :=
n∑

q=1

E
(
X2

n,q | Fn,q−1
)
,(4.20)

ξn :=
n∑

q=1

E
(
X2

n,q1|Xn,q |>ε | Fn,q−1
)
.(4.21)
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Suppose we have the convergence in probability νn
p−→ ν, where ν is an a.s. finite random

variable, and ξn
p−→ 0. Then we have the convergence in distribution

(4.22)
n∑

q=1

Xn,q
d−→ √

νNR, n → ∞,

where NR is a standard (real) Gaussian, independent of ν.

Note that [28] only deals with real-valued random variables, while (4.16) are complex.
Although it is probably straightforward to generalise their result to the complex case, for our
particular problem the simple i.i.d. structure of the real and imaginary parts of Nq allows us
to apply Theorem 4.2 directly.

COROLLARY 4.3. Suppose we have the convergence in probability of the quantity de-
fined in (4.19),

(4.23) Mθ,δ,n
p−→ ν, n → ∞,

where ν is a.s. finite and

(4.24)
1

E(|cn|2)2

n∑
q=�δn�

θ2

q2E|cn−q,q−1|4 → 0, n → ∞.

Then it follows that we have the convergence in distribution,

(4.25)
c̃
(δ)
n√

E(|cn|2)
d−→ √

νN1, n → ∞,

where N1 is a standard complex Gaussian, independent of ν.

PROOF. For any pair (a, b) ∈ R
2, consider the real-valued martingale

(4.26)
c̃n,a,b√
E(|cn|2)

:= 1√
E(|cn|2)

(
a Re

(
c̃(δ)
n

) + b Im
(
c̃(δ)
n

)) =
n∑

q=�δn�
Xn,q

with filtration generated by the real and imaginary parts of N1, . . . ,Nq−1 and, by (4.16),
increments given by

(4.27) Xn,q = 1√
E(|cn|2)

√
θ

q

(
a Re(Nqcn−q,q−1) + b Im(Nqcn−q,q−1)

)
.

We will now check the conditions of Theorem 4.2. A straightforward computation using

E(N 2
q ) = E(Nq

2
) = 0 and E(|Nq |2) = 1 shows that

(4.28) νn :=
n∑

q=�δn�
E

(
X2

n,q |Gq−1
) = a2 + b2

2
Mθ,δ,n.

So (4.23) implies that

(4.29) νn
p−→ a2 + b2

2
ν.

For the Lindeberg-type condition, we have the bound

(4.30) X2
n,q1|Xn,q |>ε ≤ 1

ε2 |Xn,q |4 ≤ (a2 + b2)2

ε2 |Zn,q |4,
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where the last inequality follows from Cauchy–Schwarz. By (4.24) we have

(4.31) E|ξn| ≤ 2θ2 (a2 + b2)2

E(|cn|2)ε2

n∑
q=�δn�

E(|cn−q,q−1|4)
q2 → 0

which implies ξn
p−→ 0. Now, Theorem 4.2 applies and shows that we have the convergence

in distribution

c̃n,a,b√
E(|cn|2)

d−→ √
ν

√
a2 + b2

2
NR

d= √
ν

(
a
N

(1)
R√
2

+ b
N

(2)
R√
2

)
,

(4.32)

where NR, N
(1)
R

and N
(2)
R

are independent and identically distributed standard (real) Gaus-

sians. This establishes the joint convergence of the real and imaginary parts of c̃
(δ)
n to the

appropriate limit and concludes the proof of (4.25). �

We start by checking the Lindeberg condition (4.24) which is relatively straightforward.

LEMMA 4.4 (Lindeberg condition). The condition (4.24) is satisfied for any 0 < θ < 1.

PROOF. Recalling the explicit normalization (1.21) for E(|cn|2), we have

θ2(
n + θ − 1

θ − 1

)2

n∑
q=�δn�

E(|cn−q,q−1|4)
q2

≤ θ2(
n + θ − 1

θ − 1

)2

�δn�2

n∑
q=0

E
(|cq |4)

= θ2(
n + θ − 1

θ − 1

)2

�δn�2

n∑
k=0

(
k + θ − 1

θ − 1

)2 n−k∑
q=0

(
q + θ − 1

θ − 1

)2

≤ θ2(
n + θ − 1

θ − 1

)2

�δn�2

(
n∑

k=0

(
k + θ − 1

θ − 1

)2)2

.

(4.33)

To obtain the first inequality above, we used that E(|cn−q,q−1|4) ≤ E(|cn|4). This follows
from an explicit computation of E(|cn−q,q−1|4) using (3.4): since one obtains a sum involving
only positive terms, we get the bound in terms of (2.8) by removing the cycle constraint.
Alternatively, one can obtain this bound by comparing the explicit moment formulas (2.8)
and (5.1). The middle equality uses (2.8) and reorders the sum. Now, consider the final sum
in (4.33). If θ < 1/2, it converges as n → ∞ by Lemma C.1. Then by Stirling’s formula, the
n-dependent part of the expression behaves as

(4.34)
1(

n + θ − 1
θ − 1

)2

n2

∼ n−2θ 1

�(θ)
, n → ∞
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which tends to zero as n → ∞. If θ ≥ 1/2, the sum is divergent as n → ∞. To estimate its
order we replace the summand with its asymptotic behaviour which is proportional to k2(θ−1)

as k → ∞. Substituting this into the sum, we obtain a bound of order log2(n)/n if θ = 1/2
and of order n2(θ−1) if θ ∈ (1/2,1). In each case (4.24) follows. �

Verifying (4.23) and identifying the limit ν turns out to be more difficult. It will turn out
that Mθ,δ,n has a similar behaviour to the quantity Mθ,n, defined in (1.31), premultiplied by
a certain explicit constant Cδ . To see how this constant arises, we begin with the following
warm up exercise.

LEMMA 4.5. Consider the quantity Mθ,δ,n defined in (4.19), and set

(4.35) Cδ := θ

∫ 1

δ
(1 − x)θ−1

P

(
L(∞) ≤ x

1 − x

)
dx

x
,

where L(∞) is the limiting random variable from Lemma 3.5. Then we have

(4.36) lim
n→∞E(Mθ,δ,n) = Cδ.

Furthermore, the constant Cδ can be explicitly computed as

(4.37) Cδ = 1 − �(θ)eγEθ δθ−1pθ(1/δ)

and satisfies the bound

(4.38) Cδ = 1 + O(δ), δ → 0.

PROOF. By the correspondence (3.8), we have the identity

E
(|cn−q,q−1|2) = ∑

(mk):1≤k≤q−1∑q−1
k=1 kmk=n−q

q−1∏
k=1

θmk

mk!kmk

=
(
n − q + θ − 1

θ − 1

)
P

(
L(n−q) ≤ q − 1

)
,

(4.39)

where L(n−q) is the longest cycle in a Ewens distributed random permutation of length n−q .
Furthermore, in the regime of interest, q = �δn�, . . . , n so that q and n − q are proportional
to n. In this regime Lemma 3.5 applies: if q/n → x ∈ (δ,1), then

(4.40) lim
n→∞P

(
L(n−q) ≤ q − 1

) = P

(
L(∞) ≤ x

1 − x

)
,

and consequently, the expectation of Mθ,δ,n converges to a Riemann integral,

lim
n→∞E(Mθ,δ,n) = lim

n→∞
θ

n

n∑
q=�δn�

E(|cn−q,q−1|2)(
n + θ − 1

θ − 1

)
q
n

= lim
n→∞

θ

n

n∑
q=�δn�

(
n − q + θ − 1

θ − 1

)
(
n + θ − 1

θ − 1

) P(L(n−q) ≤ q − 1)
q
n

= θ

∫ 1

δ
(1 − x)θ−1

P

(
L(∞) ≤ x

1 − x

)
dx

x

= Cδ.

(4.41)



SECULAR COEFFICIENTS AND THE HOLOMORPHIC MULTIPLICATIVE CHAOS 1221

To compute Cδ , we express the probability in the integrand of (4.35) in terms of the function
pθ(y) and use the properties in Lemma 3.3. We have

Cδ = θ�(θ)eγEθ
∫ 1

δ
xθ−2pθ(1/x − 1) dx

= �(θ)eγEθ
∫ 1/δ

1
θx−θpθ (x − 1) dx

= −�(θ)eγEθ
∫ 1/δ

1

d

dx

(
x1−θpθ (x)

)
dx

= �(θ)eγEθpθ (1) − �(θ)eγEθ δθ−1pθ(1/δ).

(4.42)

The identity (4.37) now follows from the explicit formula pθ(1) = e−γEθ /�(θ), and the lim-
iting behaviour Cδ = 1 + O(δ) follows from the rapid decay in (3.14). �

We will now describe how these ideas lead to the proof of Theorem 1.8. In the following
sections, we will generalise the argument of Lemma 4.5 to show that, for any 0 < θ < 1

2 , we
have

(4.43) lim
n→∞E

(|Mθ,δ,n − CδMθ,n|2) = 0,

allowing us to replace the convergence in probability of Mθ,δ,n with that of CδMθ,n in
(1.31). For the latter the appropriate limit is given in Lemma 1.9, and combined with (4.43),
this implies that

(4.44) Mθ,δ,n
p−→ CδMθ , n → ∞

which is the identification of ν. Now, the martingale central limit theorem of Corollary 4.3
gives a limiting distribution for c̃

(δ)
n ,

(4.45)
c̃
(δ)
n√

E(|cn|2)
d−→ √

CδMθN1 n → ∞.

The proof of Theorem 1.8, contingent on (4.43), now follows from a standard approximation
argument.

PROOF OF THEOREM 1.8 ASSUMING (4.43). Let us define the appropriately normalized
version of cn as

(4.46) ĉn := cn√
E(|cn|2)

.

The joint characteristic functions of the real and imaginary parts of ĉn and the proposed
limiting random variable are

	n(s, t) := E
(
eis Re(ĉn)+it Im(ĉn)),

	(s, t) := E
(
eis Re(

√
MθN1)+it Im(

√
MθN1)

)
.

(4.47)

For our martingale approximation c̃
(δ)
n , similarly, we define

(4.48) ˆ̃c(δ)
n := c̃

(δ)
n√

E(|cn|2)
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and the corresponding characteristic functions

	̃n,δ(s, t) := E
(
eis Re( ˆ̃c(δ)

n )+it Im( ˆ̃c(δ)
n )),

	̃δ(s, t) := E
(
eis Re(

√
CδMθN1)+it Im(

√
CδMθN1)

)
.

(4.49)

Then we have ∣∣	n(s, t) − 	(s, t)
∣∣ ≤ ∣∣	n(s, t) − 	̃n,δ(s, t)

∣∣ + ∣∣	̃n,δ(s, t) − 	̃δ(s, t)
∣∣

+ ∣∣	̃δ(s, t) − 	(s, t)
∣∣.(4.50)

By the convergence in distribution (4.45), the term |	̃n,δ(s, t) − 	̃δ(s, t)| → 0 as n → ∞,
while by the asymptotics (4.38) we have |	̃δ(s, t)−	(s, t)| → 0 as δ → 0. A standard bound
on the exponential function (see Lemma A.3) gives the inequality

(4.51)
∣∣	n(s, t) − 	̃n,δ(s, t)

∣∣ ≤ (|t | + |s|)√
E

(∣∣ĉn − ˆ̃c(δ)
n

∣∣2)
.

By Lemma 4.1 the expression on the right-hand side of (4.51) tends to zero in the limit
n → ∞ followed by δ → 0. This implies that |	n(s, t) − 	(s, t)| → 0 as n → ∞, and the
statement of Theorem 1.8 follows. �

5. Convergence of the bracket process and the proof of L2-convergence. The goal
of this section will be to verify (4.43). To do this, we will need to calculate some higher
moments of secular coefficients with a cycle constraint, namely, of the cn,q defined in (3.10).
Then we use these results to analyze the second moment in (4.43).

5.1. Moments of secular coefficients with a cycle constraint. The following Lemma gen-
eralises the second moment formula (4.39) and the magic square formula (1.19).

LEMMA 5.1. Let m be a positive integer, and assume without loss of generality that the
positive integers q1 ≤ · · · ≤ qn are ordered. Recall that L

(n)
1 is the longest cycle of a random

permutation of length n under the Ewens measure (3.6). Then we have

(5.1) E

(
m∏

i=1

|cni,qi
|2

)
= ∑

A∈Mag�n,�n

m∏
l1,l2=1

(
Al1,l2 + θ − 1

θ − 1

)
P

(
L

(Al1,l2 )

1 ≤ ql1∧l2

)
,

where we used the notation l1 ∧ l2 := min(l1, l2).

PROOF. The strategy of the proof is very similar to that of Theorem 1.6. By definition
(3.10) the coefficients cn,q can be extracted from a generating function

(5.2) cn,q = [
zn]

exp

(√
θ

q∑
k=1

Nk√
k
zk

)

so that the left-hand side of (5.1) is [zn1
1 . . . z

nm
m w1

n1 . . .wm
nm]E(F

(m)
�q (�z, �w)), where

(5.3) F
(m)
�q (�z, �w) := exp

(√
θ

m∑
i=1

( qi∑
k=1

Nk√
k
zk
i + Nk√

k
wi

k

))
.

Using that q1 ≤ · · · ≤ qm, we can rearrange the summation (interchange the i and k indices)
using the identity

(5.4)
m∑

i=1

qi∑
k=1

ak,i =
m∑

i=1

qi∑
k=qi−1+1

m∑
r=i

ak,r
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valid for arbitrary ak,i where we set q0 := 0. Then, using independence, we get

E
(
F

(m)
�q (�z, �w)

) =
m∏

i=1

E

(
exp

(√
θ

qi∑
k=qi−1+1

m∑
r=i

(Nk√
k
zk
r + Nk√

k
wr

k

)))

= exp

(
θ

m∑
i=1

qi∑
k=qi−1+1

m∑
l1,l2=i

(zl1wl2)
k

k

)

=
m∏

l1,l2=1

exp

(
θ

ql1∧l2∑
k=1

(zl1wl2)
k

k

)
,

(5.5)

where to obtain the last line, we again rearranged the sums using the identity

(5.6)
m∑

i=1

qi∑
k=qi−1+1

m∑
r1,r2=i

ak,r1,r2 =
m∑

r1,r2=1

qr1∧r2∑
k=1

ak,r1,r2,

valid for arbitrary ak,r1,r2 . Now, to pick out coefficients, we expand each exponential in (5.5)
using

exp

(
θ

ql1∧l2∑
k=1

(zl1wl2)
k

k

)

=
∞∑

Al1,l2=0

(zl1wl2)
Al1,l2

∑
(mk):1≤k≤ql1∧l2∑ql1∧l2
k=1 kmk=Al1,l2

ql1∧l2∏
k=1

(
θ

k

)mk 1

mk!

=
∞∑

Al1,l2=0

(zl1wl2)
Al1,l2

(
Al1,l2 + θ − 1

θ − 1

)
P

(
L

(Al1,l2 )

1 ≤ ql1∧l2

)
.

(5.7)

Inserting this into (5.5) leads to the representation (5.1). �

For the proof of (4.43), we will need the case m = 2, corresponding to fourth moments
of the secular coefficients and involving sums over 2 × 2 magic squares (in analogy with
Example 2.2). Let us assume that q1 ≤ q2. Then (5.1) implies that

E
(|cn1,q1 |2|cn2,q2 |2

)
=

n1∧n2∑
k=0

(
k + θ − 1

θ − 1

)2

P
(
L

(k)
1 ≤ q1

)2

×
(
n1 − k + θ − 1

θ − 1

)
P

(
L

(n1−k)
1 ≤ q1

) (
n2 − k + θ − 1

θ − 1

)
P

(
L

(n2−k)
1 ≤ q2

)
.

(5.8)

5.2. The L2-phase and proof of (4.43). We recall the definition of the two quantities,

Mθ,n := �(θ + 1)

nθ

n∑
q=0

|cq |2,(5.9)

Mθ,δ,n := 1(
n + θ − 1

θ − 1

) n∑
q=�δn�

|cn−q,q−1|2 θ

q
(5.10)
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and the deterministic constant

(5.11) Cδ := θ

∫ 1

δ

(1 − x)θ−1
P(L

(∞)
1 ≤ x/(1 − x))

x
dx.

Our goal is to prove (4.43) for any 0 < θ < 1/2. The condition θ < 1/2 is a technical
requirement in the proof to ensure the convergence of the infinite sum

(5.12)
∞∑

k=0

(
k + θ − 1

θ − 1

)2

= E
(
M2

θ

) = �(1 − 2θ)

�(1 − θ)2

or, equivalently, existence of the second moment of the total mass. For a proof of this identity,
see Lemma C.1.

THEOREM 5.2 (L2-convergence). Fix 0 < θ < 1
2 and δ > 0. Then the following limit

holds:

(5.13) lim
n→∞E

(|Mθ,δ,n − CδMθ,n|2) = 0.

PROOF. We start by expanding the square in (5.13) and endeavour to compute the three
terms S1,n := E(M2

θ,δ,n), S2,n := E(M2
θ,n) and S3,n := E(Mθ,δ,nMθ,n). It is clearly suf-

ficient to show that the limit of each of these quantities exists and is given by the second
moment of the total mass, up to the appropriate factor of Cδ . It will be convenient to abbrevi-
ate

(5.14) Pn,k := P
(
L

(n)
1 ≤ k − 1

)
as the probability that the longest cycle in a Ewens distributed random permutation of size n

is less than or equal to k − 1.
Starting with the second moment of Mθ,δ,n in (5.10), we have

(5.15) S1,n = θ2(
n + θ − 1

θ − 1

)2

n∑
q1=�δn�

n∑
q2=�δn�

E(|cn−q1,q1−1|2|cn−q2,q2−1|2)
q1q2

.

Because of the obvious symmetry in q1 and q2, it will be convenient to consider the contri-
bution of such sums on the region q1 ≤ q2, which we denote S1,n(q1 ≤ q2) and similarly for
the other sums. Applying (5.8) and interchanging the order of summation, we obtain

S1,n(q1 ≤ q2) =
n∑

q1=�δn�

n∑
q2=q1

n−q2∑
k=0

(
k + θ − 1

θ − 1

)2

P 2
k,q1

θ2

q1q2

1(
n + θ − 1

θ − 1

)2

×
(
n − q1 − k + θ − 1

θ − 1

)
Pn−q1−k,q1

×
(
n − q2 − k + θ − 1

θ − 1

)
Pn−q2−k,q2 .

(5.16)

To estimate the sum (5.16) as n → ∞, the idea is to treat k as fixed while q1 and q2 are
large, applying dominated convergence to bring the limit n → ∞ inside the sum over k.

As in (4.41), the sums over q1 and q2 will always be treated as Riemann sum approxima-
tions. For S1,n(q1 ≤ q2), the double sum over q1 and q2 is symmetric (we can assume that
P 2

k,q1
= 1 for fixed k and n large enough, since q1 ≥ �δn�, which is larger than k), and we

can write it as 1
2 times the square of the same sum appearing in (4.41) (neglecting for now
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the diagonal q1 = q2, see below). This immediately yields the limit as 1
2C2

δ . By symmetry the
same reasoning and limiting value applies to the sum with q1 ≥ q2. Assuming we can apply
dominated convergence to the sum over k, we get

(5.17) lim
n→∞S1,n = C2

δ

∞∑
k=0

(
k + θ − 1

θ − 1

)2

= C2
δE

(
M2

θ

)
,

as required.
Now, we will justify the dominated convergence by finding a uniform and summable bound

in (5.16). Notice that the sums over q1 and q2 are uniformly bounded by

θ2

�δn�2
(
n + θ − 1

θ − 1

)2

n−k∑
q1=�δn�

n−k∑
q2=q1

(
n − q1 − k + θ − 1

θ − 1

) (
n − q2 − k + θ − 1

θ − 1

)

= θ2

�δn�2
(
n + θ − 1

θ − 1

)2

n−�δn�−k∑
q1=0

(
q1 + θ − 1

θ − 1

) (
q1 + θ

θ

)
,

where we used the binomial sum identity (C.4). The final expression can be bounded uni-
formly by extending the summation to q1 = n and noting that the summand is of order q2θ−1

1
as q1 → ∞. If we took just the terms where q2 = q1, we would have the bound

θ2(
n + θ − 1

θ − 1

)2

1

�δn�2

n−k∑
q1=�δn�

(
n − q1 − k + θ − 1

θ − 1

)2

≤ θ2(
n + θ − 1

θ − 1

)2

1

�δn�2

n−�δn�∑
q1=0

(
q1 + θ − 1

θ − 1

)2

→ 0, n → ∞.

(5.18)

This justifies overcounting terms, where q2 = q1, and completes the proof of (5.17).
Now, we consider the second moment E(M2

θ,n). Again using (5.8) in the unconstrained
case (or (1.19)), we obtain

S2,n = �(θ + 1)2

n2θ

n∑
q1=0

n∑
q2=0

q1∧q2∑
k=0

(
k + θ − 1

θ − 1

)2

×
(
q1 − k + θ − 1

θ − 1

) (
q2 − k + θ − 1

θ − 1

)
.

(5.19)

An application of Lemma C.2 shows that the contribution to (5.19) from the region q1 ≤ q2
is equal to

S2,n(q1 ≤ q2) = �(θ + 1)2

n2θ

n∑
q1=0

q1∑
k=0

(
k + θ − 1

θ − 1

)2

(5.20)

×
(
q1 − k + θ − 1

θ − 1

) ((
n − k + θ

θ

)
−

(
q1 − k + θ − 1

θ

))
.(5.21)

Interchanging the summation and summing over q1, again using Lemma C.2, we obtain

S2,n(q1 ≤ q2) = �(θ + 1)2

n2θ

n∑
k=0

(
k + θ − 1

θ − 1

)2 (
n − k + θ

θ

)2

(5.22)
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− �(θ + 1)2

n2θ

n∑
k=0

(
k + θ − 1

θ − 1

)2 n−k∑
q1=0

(
q1 + θ − 1

θ − 1

) (
q1 + θ − 1

θ

)
.(5.23)

By dominated convergence, the first term (5.22) converges to E(M2
θ ), where a suitable bound

is obtained by noticing that the second binomial coefficient is decreasing in k. For the second
term (5.23), a uniform upper bound is obtained by summing up to q1 = n and noting that
the summand is of order q2θ−1

1 with a corresponding sum of order n2θ as n → ∞. Then
dominated convergence implies that (5.23) has a limit given by

∞∑
k=0

(
k + θ − 1

θ − 1

)2

lim
n→∞

�(θ + 1)2

n2θ

n−k∑
q1=0

(
q1 + θ − 1

θ − 1

) (
q1 + θ − 1

θ

)

=
∞∑

k=0

(
k + θ − 1

θ − 1

)2

lim
n→∞

θ

n2θ

n∑
q1=1

q2θ−1
1

= 1

2

∞∑
k=0

(
k + θ − 1

θ − 1

)2

= 1

2
E

(
M2

θ

)
.

(5.24)

An analogous computation shows that the contribution to (5.19) from the diagonal q1 = q2 is
order O(n−1). By symmetry in q1 and q2, we obtain

(5.25) lim
n→∞S2,n =

∞∑
k=0

(
k + θ − 1

θ − 1

)2

= E
(
M2

θ

)
.

It remains to consider the mixed term E(Mθ,δ,nMθ,n) denoted S3,n. By definition we have

S3,n = E(Mθ,δ,nMθ,n)

= �(θ + 1)

nθ

1(
n + θ − 1

θ − 1

) n∑
q1=0

n∑
q2=�δn�

E
(|cq1 |2|cn−q2,q2−1|2) θ

q2
.(5.26)

We split this up as two sums, one for values of q1 = 0, . . . , n − q2 and one for values of
q1 = n − q2 + 1, . . . , n. Interchanging the order of summation, the first sum gives

S3,n(q1 ≤ n − q2)

= �(θ + 1)

nθ

(
n + θ − 1

θ − 1

) n−�δn�∑
k=0

n−k∑
q2=�δn�

n−q2∑
q1=k

(
k + θ − 1

θ − 1

)2

× P 2
k,q2

(
q1 − k + θ − 1

θ − 1

) (
n − q2 − k + θ − 1

θ − 1

)
Pn−q2−k,q2

θ

q2
.

(5.27)

The sum over q1 in (5.27) is handled with Lemma C.2, and we have

S3,n(q1 ≤ n − q2)

= �(θ + 1)

nθ

(
n + θ − 1

θ − 1

) n−�δn�∑
k=0

n−k∑
q2=�δn�

(
k + θ − 1

θ − 1

)2

× P 2
k,q2

(
n − q2 − k + θ

θ

) (
n − q2 − k + θ − 1

θ − 1

)
Pn−q2−k,q2

θ

q2
.

(5.28)
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Now, we look at the contribution to S3,n indexed by q1 = n − q2 + 1, . . . , n. This gives

S3,n(q1 > n − q2)

= �(θ + 1)

nθ

(
n + θ − 1

θ − 1

) n∑
q2=�δn�

n∑
q1=n−q2+1

n−q2∑
k=0

(
k + θ − 1

θ − 1

)2

× P 2
k,q2

(
q1 − k + θ − 1

θ − 1

) (
n − q2 − k + θ − 1

θ − 1

)
Pn−q2−k,q2

θ

q2
.

(5.29)

Summing over q1 with Lemma C.2 and interchanging the order of summation gives the iden-
tity

S3,n(q1 > n − q2) = �(θ + 1)

nθ

(
n + θ − 1

θ − 1

) n−�δn�∑
k=0

n−k∑
q2=�δn�

(
k + θ − 1

θ − 1

)2

P 2
k,q2

×
((

n − k + θ

θ

)
−

(
n − q2 − k + θ

θ

))

×
(
n − q2 − k + θ − 1

θ − 1

)
θ

q2
Pn−q2−k,q2 .

(5.30)

Combining with (5.28) yields a cancellation, and we are left with the identity

S3,n =
n−�δn�∑

k=0

n−k∑
q2=�δn�

(
k + θ − 1

θ − 1

)2

P 2
k,q2

× �(θ + 1)

(
n − k + θ

θ

)
nθ

(
n − q2 − k + θ − 1

θ − 1

)
(
n + θ − 1

θ − 1

) Pn−q2−k,q2

θ

q2
.

(5.31)

As in the treatment of (5.16) (see also (4.41)), for n → ∞ and fixed k, the kth term of (5.31)
is approximated by a Riemann integral and Pk,q2 = 1. Applying dominated convergence then
gives the limit as n → ∞ of (5.31) as CδE(M2

θ ), as required. For a suitable dominating

function, note that apart from the factor
(
k+θ−1
θ−1

)2, the kþterm in (5.31) is uniformly bounded
by

θ

�δn��(θ + 1)

(
n − k + θ

θ

)
nθ

n−k∑
q2=�δn�

(
n − q2 + θ − 1

θ − 1

)
(
n + θ − 1

θ − 1

)(5.32)

≤ θ

�δn��(θ + 1)

(
n + θ

θ

)
nθ

(
n − �δn� + θ

θ

)
(
n + θ − 1

θ − 1

) ,(5.33)

where we used Lemma C.2 and monotonicity of the binomial coefficients as a function of k.
The final bound is independent of k and bounded in n. This shows that

(5.34) lim
n→∞S3,n = Cδ

∞∑
k=0

(
k + θ − 1

θ − 1

)2

= CδE
(
M2

θ

)
,
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as required. Putting all three limits for the moments together completes the proof of the
theorem. �

6. Regularity of the holomorphic multiplicative chaos. We have to determine, for s ∈
R, if the series

(6.1) As,θ :=
∞∑

n=0

(
1 + n2)s |cn|2

is convergent. We will study the cases θ ≤ 1 and θ > 1 separately.

6.1. Subcritical and critical cases, θ ∈ (0,1]. By (1.21) we have that E[|cn|2] ≤ Cθ(1 +
n)θ−1 for some constant Cθ > 0, and then

E[As,θ ] ≤ Cθ

∞∑
n=0

(1 + n)2s+θ−1

which is finite as soon as s < −θ/2. Hence, HMCθ is a.s. in Hs for all s < −θ/2. Notice that
this reasoning remains true in the supercritical phase, but the bound −θ/2 is not optimal for
this phase. Let us now show that HMCθ is a.s. not in H−s for s > −θ/2.

By Parseval’s identity, for 1/2 < r < 1,

∞∑
n=0

|cn|2r2n = 1

2π

∫ 2π

0
e
√

θG(reiϑ ) dϑ.(6.2)

For any s < 0, the map x �→ x2sr−2x from (0,∞) to R has a logarithmic derivative 2s/x −
2 log r , and then it reaches its minimum at x = s/ log r . Hence, for all n ≥ 1,(

1 + n2)s
r−2n ≥ 2sn2sr−2n ≥ 2s(s/ log r)2sr−2s/ log r ≥ Cs | log r|−2s,

where Cs > 0 depends only on s. Hence, for all r ∈ (1/2,1), shrinking Cs , as needed to
account for n = 0 term and the 2π ,

(6.3) As,θ ≥
∞∑

n=0

(
1 + n2)s

r−2nr2n|cn|2 ≥ Cs

| log r|2s

∫ 2π

0
e
√

θG(reiϑ ) dϑ.

Now, it is proven in [34] that, for θ ∈ (0,1], the quantity

(
1 − r2)θ ∣∣log

(
1 − r2)∣∣(1/2)1θ=1

∫ 2π

0
e
√

θG(reiϑ ) dϑ

converges in probability to the total mass of the GMCθ , when r goes to 1, and then converges
a.s. to a nonzero limit along a subsequence. Since for s ∈ (−θ/2,0),

| log r|−2s(
1 − r2)−θ ∣∣log

(
1 − r2)∣∣−(1/2)1θ=1

tends to infinity, when r → 1, we deduce that As,θ is a.s. infinite.

6.2. Super-critical case, θ > 1. Let us prove that HMCθ is a.s. in Hs for all s < −√
θ +

1/2. One checks that, up to a positive multiplicative constant Cs depending only on s, if we
set u∗

n = �log(2 + n)/ log 2�

As,θ/Cs ≤
∞∑

n=0

22su∗
n
(
1 − 2−u∗

n
)2n|cn|2 ≤

∞∑
u=1

22su
∞∑

n=0

(
1 − 2−u)2n|cn|2.
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Hence, As,θ is bounded, up to a constant depending on s, by

∞∑
u=1

22su
∫ 2π

0
e
√

θG((1−2−u)eiϑ ) dϑ.

We have that G((1 − 2−u)eiϑ) is a centered Gaussian variable with variance

−2 log
(
1 − (

1 − 2−u)2) = −2 log
(
21−u − 2−2u) = 2u log 2 +O(1).

Hence, for u large enough, the probability that G((1 − 2−u)eiϑ) ≥ 2u log 2 + 10 logu is
dominated by

P

[
N (0,1) ≥ 2u log 2 + 10 logu√

2u log 2 +O(1)

]
≤ e

− (2u log 2+10 logu)2

4u log 2+O(1)

≤ e
− 4u2(log 2)2+40u(log 2)(logu)

4u log 2+O(1)

≤ e−(u log 2+10 logu)(1+O(1/u)) = O
(
2−uu−10)

.

By Borel–Cantelli lemma, we have, almost surely,

sup
ϑ∈2πZ/2u

G
((

1 − 2−u)
eiϑ ) ≤ 2u log 2 + 10 logu

for u large enough. We let Gu be the event the previous display holds. In order to prove that
As,θ is a.s. finite, it is then sufficient to show that

∞∑
u=1

22su
∫ 2π

0
e
√

θG((1−2−u)eiϑ )1{Gu}dϑ < ∞

almost surely. It is then enough to have

∞∑
u=1

22su
∫ 2π

0
E

[
e
√

θG((1−2−u)eiϑ )1Gu

]
dϑ < ∞.

We let χ(u,ϑ) be a multiple of (2π)/2u minimizing its distance to ϑ . Using a change of
measure formula, we can bound the expectation inside the integral by

E
[
e
√

θG((1−2−u)eiϑ )1Gu

]
≤ E

[
e
√

θG((1−2−u)eiϑ )1G((1−2−u)eiχ(u,ϑ))≤2u log 2+10 logu

]
= E

[
e
√

θG((1−2−u)eiϑ )]
P

[
G̃

((
1 − 2−u)

eiχ(u,ϑ)) ≤ 2u log 2 + 10 logu
]
.

Here G̃((1− 2−u)eiχ(u,ϑ)) is the Gaussian variable obtained from G((1− 2−u)eiχ(u,ϑ)) after
changing the underlying probability measure by a density proportional to e

√
θG(1−2−u)eiϑ ).

By Girsanov’s theorem this change of measure introduces a drift

Cov
(
G

((
1 − 2−u)

eiχ(u,ϑ)),√θG
((

1 − 2−u)
eiϑ )) = −2

√
θ log

∣∣1 − (
1 − 2−u)2

eiv
∣∣,

where

|v| = ∣∣χ(u,ϑ) − ϑ
∣∣ ≤ 2π/2u = O

(
2−u)

.

Hence, ∣∣1 − (
1 − 2−u)2

eiv
∣∣ =O

(
2−u)
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which implies

Cov
(
G

((
1 − 2−u)

eiχ(u,ϑ)),√θG
((

1 − 2−u)
eiϑ )) ≥ √

θ
(
2u log 2 +O(1)

)
.

We then get, for u large enough depending on θ ,

E
[
e
√

θG((1−2−u)eiϑ )1G((1−2−u)eiχ(u,ϑ))≤2u log 2+10 logu

]
≤ E

[
e
√

θG((1−2−u)eiϑ )]
× P

[
G

((
1 − 2−u)

eiχ(u,ϑ)) + √
θ

(
2u log 2 +O(1)

) ≤ 2u log 2 + 10 logu
]
.

≤ eθ(u log 2+O(1)) · e−(2u(
√

θ−1) log 2+O(logu))2/2(2u log 2+O(1))

≤ eθ(u log 2+O(1)) · e−(u(
√

θ−1)2 log 2+O(
√

θ(logu)))(1+O(u−1))

≤ Cθ2u(θ−(
√

θ−1)2)umθ = Cθ2u(2
√

θ−1)umθ

for Cθ,mθ > 0 depending only on θ . Hence,
∞∑

u=1

22su
∫ 2π

0
E

[
e
√

θG((1−2−u)eiϑ )1G((1−2−u)eiχ(u,ϑ))≤2u log 2+10 logu

]
dϑ < ∞

as soon as 2s + 2
√

θ − 1 < 0, which implies that, for θ > 1, HMCθ is a.s. in Hs for all
s < −√

θ + 1/2.
On the other hand, we have seen from (6.3)

As,θ ≥ Cs

| log r|2s

∫ 2π

0
e
√

θG(reiϑ ) dϑ.

for all r ∈ (1/2,1). Since G is the real part of a holomorphic function, it is harmonic on the
unit disc, and then by Jensen’s inequality, for all ϑ0 ∈ R,

e
√

θG(r2eiϑ0 ) ≤ 1

2π

∫ 2π

0
e
√

θG(rei(ϑ0+ϑ))Pr(ϑ) dϑ,

where Pr is the Poisson kernel

Pr(ϑ) = ∑
p∈Z

r |p|eipϑ .

The Poisson kernel is bounded by (1 + r)/(1 − r), and then

2e

√
θ supϑ0∈R G(r2eiϑ0 ) ≤ sup

ϑ0∈R
1

2π

∫ 2π

0
e
√

θG(rei(ϑ0+ϑ))Pr(ϑ) dϑ

≤ 1 + r

2π(1 − r)

∫ 2π

0
e
√

θG(reiϑ ) dϑ.

Hence, using (6.3), there is a constant Cs > 0 so that, for any r ∈ (1
2 ,1),

As,θ ≥ Cs(1 − r)1−2se
√

θ supϑ∈R G(r2eiϑ ).

With probability going to 1, when r → 1, the maximum of the logarithmically correlated
field G(r2eiϑ) is larger than 2 log(1/(1 − r)) − 10 log(log(1/(1 − r))) (using the results of
[21] on a net of �1/(1 − r)� equally spaced points of the circle of radius r2: notice that we do
not need to control G between the points of the net because we are considering lower bounds
of the maximum), and then As,θ is bounded from below by (1− r)1−2s−2

√
θ log(1/(1− r))mθ

for mθ depending only on θ . For s > −√
θ + 1/2, the bound tends to infinity, when r → 1,

which shows that HMCθ is a.s. not in Hs .
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7. The circular β-ensemble. In this section we develop some of the properties of the
secular coefficients of CβE {c(N)

n }. We begin by recalling the Verblunsky coefficients, which
will allow us to formulate the exact relationship, due to [38]. We let {αn : n ∈ N0} be inde-
pendent complex random variables on the unit disk, with each αn rotationally invariant in law
and |αn|2 distributed like Beta(1,

β(n+1)
2 ). The Szegő recurrence is, for all N ≥ 0,

(7.1)
(
	N+1(z)

	∗
N+1(z)

)
:=

(
z −αN

−αNz 1

) (
	N(z)

	∗
N(z)

)
,

{
	0(z) ≡ 1,

	∗
N(z) = zN	N(1/z),

where 	∗
N and 	N are polynomials of degree at most, N . Note that 	∗

N and 	N are related by
being reversals of one another, in that their vector of coefficients is reversed and conjugated.
Now, we give the connection to the CβE characteristic polynomial, as defined in (1.2), due
to [38]. We let η be uniformly distributed random variable on the unit circle independent of
{αn : n ∈N0}. The characteristic polynomial χN has the distribution of

(7.2) χN(z) = 	∗
N−1(z) − ηz	N−1(z).

From [15], Proposition 3.1, we have almost sure convergence as N → ∞ of 	∗
N(z) to a

process 	∗∞(z) on the unit disk uniformly on compact sets. Moreover, this limit is none

other than the log-Gaussian process e
√

θGC(z). In [15], Proposition 3.1, the following uniform
estimate is also proven:

(7.3) E
∣∣	∗

N(z)
∣∣p ≤ (

1 − |z|2)−θp2/4 for all z ∈ D,p > 0,N ∈ N.

We let F be the filtration F = (FN := σ(α0, . . . , αN−1) : N ≥ 0). Then the process
{	∗

N(z)} is adapted to F and, moreover, is a complex martingale. We now define Mn,N

as the coefficient of degree n of the polynomial 	∗
N . By Cauchy’s theorem and the bound

(7.3), we have that

(7.4) Mn,N = 1

2πi

∮
	∗

N(z)z−n−1 dz,

for a fixed simple closed contour enclosing 0 in the unit disk, and that (Mn,N)N≥0 forms a
uniformly integrable martingale adapted to FN . Hence, we have the representation

Mn,N = E[cn | FN ] a.s.−→
N→∞ cn.

Using the Szegő recurrence (7.1) and (7.4), we have the identity

(7.5)
Mn,N+1 = Mn,N − αN

1

2πi

∮
	N(z)z−n dz

= Mn,N − αNMN−n+1,N .

We will let Bn,N be the bracket process of Mn,N , that is, for n ≥ 1, and for any N ≥ n − 1,

(7.6)

Bn,N :=
N−1∑

j=n−1

E
[|Mn,j+1 − Mn,j |2 | Fj

]

=
N−1∑

j=n−1

|Mj−n+1,j |2E(|αj |2) =
N−1∑

j=n−1

|Mj−n+1,j |2
1 + 1

θ
(j + 1)

.

Here we can notice that Mn,n−1 = 0, since 	∗
n−1 is a polynomial of degree, at most, n − 1.
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LEMMA 7.1. For any θ > 0, there exists a constant Cθ > 0 such that the following holds.
For N ≥ n ≥ 1, we have E|Mn,N |2 = E(Bn,N), and

E|Mn,N |2 ≤ Cθ

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(N − n + 1)θ

n
if θ < 1,

(N − n + 1)

n

(
1 + max

(
log

(
n

N − n + 1

)
,0

))
if θ = 1,

nθ

n
log

(
1 + (N − n + 1)

n

)
if θ > 1.

Moreover, for all n,N1,N2 ∈ N such that 1 ≤ 3n/2 ≤ N1 < N2, we have

E|Mn,N2 − Mn,N1 |2 = E(Bn,N2 −Bn,N1) ≤ Cθn
θ

(
1

N1
− 1

N2

)
.

This holds with N2 = ∞ as well; in which case Mn,N2 = cn and 1/N2 := 0.

PROOF. We have that Mn,N2 is bounded in Lp for all p by (7.3) and (7.4). Hence, the
N2 = ∞ case follows from uniform integrability and taking N2 → ∞. Hence, it suffices to
show only the case of N2 < ∞. Also, it follows the bracket process is uniformly bounded in
Lp for all p from the Burkholder–Davis–Gundy inequalities. For j = n − 1, we have

|Mj−n+1,j |2 = |M0,n−1|2 = 1

since the constant term of 	∗
n−1 is equal to 1. Hence, for N ≥ n ≥ 1, we can write

Bn,N = 1

1 + n
θ

+
N−1∑
j=n

|Mj−n+1,j |2
1 + 1

θ
(j + 1)

.

Recall that, for j ≥ n, by the definition of the bracket given in (7.6), k �→ |Mj−n+1,k|2 −
Bj−n+1,k is again a martingale, starting at zero for k = j − n, and hence

(7.7) EBn,N = 1

1 + n
θ

+
N−1∑
j=n

EBj−n+1,j

1 + 1
θ
(j + 1)

.

We may develop this equation to produce

(7.8)

EBn,N = 1

1 + n
θ

+
N−1∑
j=n

1

1 + 1
θ
(j + 1)

(
1

1 + j−n+1
θ

+
j−1∑

k=j−n+1

EBk−(j−n+1)+1,k

1 + 1
θ
(k + 1)

)

= 1

1 + n
θ

+
N−1∑
j=n

1

(1 + 1
θ
(j + 1))(1 + j−n+1

θ
)

+
N−1∑
j=n

n−1∑
k=1

1

1 + 1
θ
(j + 1)

EBk,k+j−n

1 + 1
θ
(k + j − n + 1)

.

Using uniform integrability of the bracket, we have, for any k ≥ 0,

EBk,∞ = E|ck|2.
Let us now prove the estimate of E|Mn,N |2 = EBn,N given in the lemma. We have

(7.9)

EBn,N ≤ 1

1 + n
θ

+
N−1∑
j=n

1

(1 + 1
θ
(j + 1))(1 + j−n+1

θ
)

+
N−1∑
j=n

n−1∑
k=1

1

1 + 1
θ
(j + 1)

E|ck|2
1 + 1

θ
(k + j − n + 1)

.
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Since j ≥ n and E[|ck|2] is dominated by kθ−1, EBn,N is bounded, up to a constant depend-
ing only on θ , by

1

n

(
1 +

N−1∑
j=n

1

j − n + 1
+

N−1∑
j=n

n−1∑
k=1

kθ−1

k + j − n + 1

)
.

For N = n, we immediately deduce a bound of order 1/n (the sums are empty) which is
enough for our purpose. We can then assume N ≥ n + 1, and in this case, we have

(7.10)
1

n

N−n∑
j=1

n−1∑
k=0

(1 + k)θ−1

k + j
≤ 1

n

N−n∑
j=1

n−1∑
k=0

(1 + k)θ−1

max{j,1 + k} .

If j ≤ n, the inner sum can be estimated as

∑
0≤k≤j−1

(1 + k)θ−1

j
+ ∑

j−1<k≤n−1

(1 + k)θ−2 ≤

⎧⎪⎪⎨⎪⎪⎩
Cθj

θ−1 if θ < 1,

1 + log(1 + n/j) if θ = 1,

Cθn
θ−1 if θ > 1,

where Cθ > 0 is some sufficiently large constant. If j > n, the inner sum of (7.10) is∑
0≤k≤n−1

(1 + k)θ−1

j
≤ Cθn

θ

j

for some Cθ > 0 sufficiently large. Summing in j , we get from (7.10) and the bounds just
established, that, for θ < 1,

1

n

N−n∑
j=1

n−1∑
k=0

(1 + k)θ−1

k + j
≤ Cθ

n

(
(N − n + 1)θ + nθ log

(
1 + N − n + 1

n

))
which is dominated by (N − n + 1)θ/n. For θ > 1, we get

1

n

N−n∑
j=1

n−1∑
k=0

(1 + k)θ−1

k + j
≤ Cθ

n

(
nθ−1(

(N − n + 1) ∧ n
) + nθ log

(
1 + N − n + 1

n

))
,

a domination by nθ−1 log(1 + N−n+1
n

). For θ = 1, we get a domination by

1

n

N−n∑
j=1

n−1∑
k=0

(1 + k)θ−1

k + j
≤ Cθ

n

N−n∑
j=1

(
1 + max

(
0, log

n

j

))
.

For 1 ≤ N − n ≤ n, this quantity is, at most,

n−1(
(N − n)(1 + logn) − log

(
(N − n)!))

≤ n−1(
(N − n)(1 + logn) − (N − n) log(N − n) + (N − n)

)
≤ n−1(N − n)

(
2 + log

(
n/(N − n)

))
,

and then we have, for all N ≥ n + 1, a domination by

n−1(N − n)
(
1 + max

(
0, log

(
n/(N − n)

)))
.

We have now proven the first part of the lemma. For the second part, we observe that, under
the assumptions of the lemma,

(7.11)

E(Bn,N2 −Bn,N1) ≤
N2−1∑
j=N1

n−1∑
k=1

1

1 + 1
θ
(j + 1)

E(|ck|2)
1 + 1

θ
(k + j − n + 1)

+
N2−1∑
j=N1

1

1 + 1
θ
(j + 1)

1

1 + j−n+1
θ

.
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We can estimate for some constant Cθ > 0,

E(Bn,N2 −Bn,N1) ≤ Cθ

N2∑
j=N1

n−1∑
k=1

1

1 + 1
θ
(j + 1)

kθ−1

1 + 1
θ
(k + j − n + 1)

+
N2−1∑
j=N1

1

1 + 1
θ
(j + 1)

1

1 + j−n+1
θ

.

If N1 ≥ 3n/2, we have that j − n ≥ j/3, and then the sum of the terms corresponding to a
given value of j is dominated by nθ/j2 which proves the second part of the lemma. �

Having an estimate on the secular coefficients of 	∗
N−1, we may use (7.2) to relate c

(N)
n to

cn. Recasting (7.2) in terms of coefficients,

(7.12) c(N)
n = Mn,N−1 − ηMN−n,N−1.

We deduce the following estimates relating the secular coefficients of CβE to the coefficients
of the HMC.

LEMMA 7.2. There is constant Cθ so that, for all n,N ∈ N with 1 ≤ n ≤ N/2,

E
∣∣cn − c(N)

n

∣∣2 ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Cθn
θ

N
if θ < 1,

Cθn log(N/n)

N
if θ = 1,

Cθn

N2−θ
if θ > 1.

PROOF. Using (7.12),

E
∣∣cn − c(N)

n

∣∣2 = E|cn − Mn,N−1|2 +E|MN−n,N−1|2.
We have N ≥ 2n and then N − 1 ≥ 3n/2 (except for n = 1 and N = 2, in which case the
lemma is obvious for a suitable value of Cθ ). Hence, by Lemma 7.1 we have, after increasing
the constant Cθ if needed,

E|cn − Mn,N−1|2 ≤ Cθn
θ

N
,

and

E|MN−n,N−1|2 ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Cθn
θ

N
if θ < 1,

Cθn log(N/n)

N
if θ = 1,

Cθn

N2−θ
if θ > 1.

This latter part dominates the contribution |MN−n,N−1|2 in all cases. �

From this point the proof of Theorem 1.10 is a simple corollary.

PROOF OF THEOREM 1.10. Under the assumption that n/N → 0,(
E

∣∣cn − c(N)
n

∣∣2)
n1−θ → 0 as n → ∞,

and so we conclude from Slutsky’s theorem, (1.34) and Theorem 1.8 that the desired distri-
butional convergence holds. �
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7.1. Fractional moments. In this section we prove Theorem 1.11. We define wn as

(7.13) wn = n(θ−1)/2, wn = (
log(1 + n)

)− 1
4 or wn = n

√
θ−1(logn)−

3
4

√
θ ,

in the cases θ ∈ (0,1), θ = 1 or θ > 1, respectively.
We recall for convenience (3.11) and recall that S(n) is the shortest cycle in a Ewens dis-

tributed permutation of n symbols (c.f. Lemma 3.7),

E
(|cn|2 | Gq

) = |cn,q |2 +
n∑

r=0

|cr,q |2
(
n − r + θ − 1

θ − 1

)
P

[
S(n−r) > q

]
.

Using Lemma 3.7, we have a uniform bound

(7.14) E
(|cn|2 | Gq

) ≤ |cn,q |2 + Cθn
θ−1Fq where Fq :=

∞∑
r=0

|cr,q |2e−θh(q+1).

Using Parseval’s identity and (5.2),

(7.15)
∞∑

r=0

|cr,q |2 = 1

2π

∫ 2π

0
e
√

θGq(eiϑ ) dϑ, where Gq(z) = 2

q∑

k=1

zkNk√
k

.

Moreover, the normalizing constant e−θh(q+1) is such that Fq has expectation 1, and Fq is
thus an approximation to the mass of the chaos for θ < 1.

LEMMA 7.3. Let wn, as in (7.13). If θ ∈ (0,1), then

E
[
nθ−1Fn/w

2
n

] = 1

for all n ≥ 1. If θ = 1, then, for p ∈ (0,1),

sup
{
E

[(
Fn/w

2
n

)p] : n ∈ N
}
< ∞.

Finally, if θ > 1, there exists uθ > 0, depending only on θ , such that{
(logn)−2vθ nθ−1Fn/w

2
n : n ∈ N

}
is tight.

PROOF. For θ ∈ (0,1), the lemma means that Fn has expectation 1, as remarked before.
For θ = 1, the lemma follows from [34], Theorem 1.3. For θ > 1, we use the same ingredients
as those considered in the proof of regularity of the supercritical HMC. The convergence is
obtained by bounding the expectation, after restricting it to the event that Gn(e

iϑ) ≤ 2 logn+
10 log logn for all ϑ ∈ 2πZ/n, whose probability goes to 1 when n → ∞ (by a simple union
bound). Using Girsanov’s theorem, we get, for n ≥ 2 and |ϑ − ϑ ′| =O(1/n), that

E
[
e
√

θGn(eiϑ )1
Gn(eiϑ ′

)≤2 logn+10 log logn

]
= eθ(logn+O(1))

P
[
Gn

(
eiϑ ′) + Cov

(
Gn

(
eiϑ ′)

,
√

θGn

(
eiϑ )) ≤ 2 logn + 10 log logn

]
= (

O
(
nθ ))

P
[
Gn

(
eiϑ ′) ≤ 2(1 − √

θ) logn + 10 log logn + cθ

]
for some cθ ∈ R depending only on θ , since, from the fact that ϑ and ϑ ′ are close to each
other, the covariance between Gn(e

iϑ ′
) and Gn(e

iϑ) is equal to 2 logn +O(1). Hence, since
θ > 1,

(7.16) E
[
e
√

θGn(eiϑ )1
Gn(eiϑ ′

)≤2 logn+10 log logn

] ≤ Cθn
θ−(1−√

θ)2
(logn)μθ



1236 J. NAJNUDEL, E. PAQUETTE AND N. SIMM

for Cθ,μθ > 0, depending only on θ . Taking ϑ ′ ∈ 2πZ/n, depending only of ϑ and n in such
a way that |ϑ − ϑ ′| = O(1/n), and integrating in ϑ , we deduce

E
[
nθ−1Fnw

−2
n 1supϑ ′∈2πZ/n Gn(eiϑ ′

)≤2 logn+10 log logn

]
≤ C′

θn
θ−1n−θnθ−(1−√

θ)2
(logn)

3
2 θ+μθ n−2

√
θ+2 = C′

θ (logn)
3
2 θ+μθ

for C′
θ > 0. This proves the lemma with 2vθ = 3

2θ + μθ . �

REMARK 7.4. While beyond the scope of what we do here, the optimal power is uθ = 0;
in which case the statement would be{

nθ−1Fn/w
2
n : n ∈ N

}
is a tight family. Indeed, as a consequence of [21], the maximum of Gn(e

iϑ) on the lattice
2πZ/n is, at most, 2 logn − 3

2 log logn + y with a probability controlled uniformly in n by
y. Moreover, one can establish (and herein lies the technical work) that the random walk
(G2k (eiϑ ) : k < log2 n) stays below 2(k log 2 − 3

4 logk) + (k(log2 n − k)/ log2 n)1/10 + y for
all lattice ϑ again, except with a probability that can be made small in y uniformly in n. On
this good event, G(n, y), it is now possible to show, using the appropriate ballot theorem, that
for θ > 1, for |ϑ − ϑ ′| = O(1/n) and for k ∈ [0,

√
logn]

E

[
e
√

θGn(eiϑ )1
{
Gn

(
eiϑ ′) −

(
2 logn − 3

4
log logn

)
− y ∈ [−k,−k − 1]

}
1

{
G(n, y)

}]

≤ Cθ,ye
√

θ(2 logn− 3
2 log logn−k) × kek

n
,

the first term being the contribution of e
√

θGn(eiϑ ), which is essentially deterministic on the
event, and the second term being the probability of the Gaussian ends in the claimed window.
Note that the ballot theorem is needed to kill the factor of (logn)3/2 that would otherwise
result from the Gaussian tail. As θ > 1, we can sum this contribution in k. We also need to
control the contribution of ϑ at which Gn(e

iϑ) ≤ 2 logn − √
logn, which can be done using

the same Girsanov argument as in (7.16), and we arrive at

E

[∫ 2π

0
e
√

θGn(eiϑ ) dϑ1
{
G(n, y)

}]
≤ Cθ,ye

√
θ(2 logn− 3

2 log logn)

n
.

This would lead to uθ = 0.
Note this is optimal, as can be seen from the contribution of a O(1/n) window of the

global maximum of Gn(e
iϑ).

LEMMA 7.5. If θ ∈ (0,1), then

sup
{
E

(|cn/wn|2) : n ∈ N
}
< ∞.

If θ = 1, and p ∈ (0,1), then

sup
{
E

(|cn/wn|2p) : n ∈ N
}
< ∞.

Finally, if θ > 1, there exists vθ > 0, depending only on θ , such that{
(cn/wn)(logn)−vθ : n ∈ N

}
is tight.
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PROOF. The case θ ∈ (0,1) is already proven before. Moreover, using (4.39) and
Lemma 3.6, we know that, for n ≥ 3,

(7.17) max
1≤q<n/ logn

E|cn,q |2 ≤ max
1≤q<n/ logn

Cθn
θ−1

P
(
L(n−q) ≤ q

) ≤ n−ω(n),

where ω(n) → ∞, as n → ∞.
We now use (7.14) for qn = �n/ logn� when n ≥ 3,

E
(|cn|2 | Gqn

) ≤ |cn,qn |2 + Cθn
θ−1Fqn.

For θ = 1, we take p ∈ (0,1) and get, using Hölder’s inequality for exponent 1/p > 1 and
subadditivity of the pth power,

E
(|cn|2p | Gqn

) ≤ [
E

(|cn|2 | Gqn

)]p ≤ |cn,qn |2p + (C1Fqn)
p,

which implies

E
(|cn|2p) ≤ E

(|cn,qn |2p) +E
(|C1Fqn |p

)
from (7.17), and conclude

E
(|cn/wn|2p) ≤ O

(
n−pω(n)/w2

n

) +E
(∣∣C1Fqn/w

2
n

∣∣p)
.

We then use Lemma 7.3 to complete the proof, taking into account the fact that wn = (log(1+
n))−1/4 is equivalent to wqn when n goes to infinity. When θ > 1, we write

E
(
min

(
1,

∣∣cnw
−1
n (logn)−vθ

∣∣2) | Gqn

) ≤ w−2
n (logn)−2vθ |cn,qn |2

+ min
(
1,Cθw

−2
n (logn)−2vθ nθ−1Fqn

)
.

Since wn/wqn and nθ−1/qθ−1
n are equivalent up to powers of logn (depending on θ ) when

n → ∞ and logn is equivalent to logqn, we deduce from Lemma 7.3 that

w−2
n (logn)−2vθ nθ−1Fqn

p−→
r→∞ 0

for any vθ sufficiently large. Then

E
[
min

(
1,Cθw

−2
n (logn)−2vθ nθ−1Fqn

)] −→
n→∞ 0,

as soon as vθ is large enough. Since E[|cn,qn |2] decreases to 0 faster than any power of n, we
have

E
[
w−2

n (logn)−2vθ |cn,qn |2
] −→

n→∞ 0,

and then

E
[
min

(
1,

∣∣cnw
−1
n (logn)−vθ

∣∣2)] −→
n→∞ 0

which implies that ∣∣cnw
−1
n (logn)−vθ

∣∣ p−→
r→∞ 0. �

We deduce the following result on the secular coefficients of CβE.

THEOREM 7.6. If θ ∈ (0,1), then

sup
{
E

(∣∣c(N)
n /wn

∣∣2) : n ∈ N,N ≥ 2n
}
< ∞.
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If θ = 1, and p ∈ (0,1), then

sup
{
E

(∣∣c(N)
n /wn

∣∣2p) : n ∈N,N ≥ 2n
}
< ∞.

Finally, if θ ∈ (1,2), there exists vθ , v
′
θ > 0 depending only on θ so that with N0(n) =

n
3−2

√
θ

2−θ (logn)v
′
θ , for all δ > 0,

sup
N≥N0(n)

P
[(

c(N)
n /wn

)
(logn)−vθ ≥ δ

] −→
n→∞ 0.

PROOF. Let us first suppose that θ ≤ 1: we may assume p ∈ (1/2,1), when θ = 1, by
Hölder’s inequality. For r ≥ 1 and any k,n ∈ N, we have from Jensen’s inequality

E|Mn,k|r = E
∣∣E(cn | Fk)

∣∣r ≤ E
(|cn|r)

.

Hence, recalling (7.12), for any p ≥ 1,(
E

∣∣c(N)
n

∣∣r)1/r ≤ (
E

(|cn|r))1/r + (
E

(|cN−n|r))1/r
.

We can now conclude the proof from Lemma 7.5, taking r = 2 for θ ∈ (0,1) and r = 2p ∈
(1,2) for θ = 1: notice that wN−n ≤ wn since θ ≤ 1 and N ≥ 2n.

Let us now suppose that θ ∈ (1,2). In this case, because of Lemma 7.5, it is sufficient to
prove that

sup
N≥N0(n)

E
[∣∣cn − c(N)

n

∣∣2w−2
n (logn)−2vθ

] −→
n→∞ 0.

For suitable v′
θ , this is a consequence of the bound

E
[∣∣cn − c(N)

n

∣∣2] ≤ Cθn/N2−θ

given by Lemma 7.2. �

REMARK 7.7. In the supercritical phase, we compare cn with c
(N)
n by using the L2 norm,

which is expected not to be optimal, since the L2 norm of cn does not gives its correct order
of magnitude. Hence, we expect that the exponent (3 − 2

√
θ)/(2 − θ) can be improved.

8. Sharpness of the tightness. We have seen that (cn(logn)−vθ /wn)n≥1 is a tight family
for random variables for θ > 0 for some vθ > 0, depending only on θ , which can be taken
equal to 0 for θ ∈ (0,1]. Moreover informally, cn has order, at most, wn, up to a logarithmic
factor. It is natural to ask if this bound is optimal or if cn has a smaller order of magnitude. In
the following section, we show that cn is no smaller than wn in order of magnitude (i.e., that
wn/cn is tight) when θ ∈ (0,1].

THEOREM 8.1. For all θ ∈ (0,1] and all u ∈ C such that |u| = 1, one has

sup
n≥1

P
[∣∣
(ucn)

∣∣/wn ≤ δ
] −→

δ→0
0.

PROOF. Since the law of cn is rotational invariant in distribution, we can assume u = 1.
We have the following equality:

cn = cn,�n/2� +
� n

2 �−1∑
q=0

Nn−qθ
1/2

√
n − q

cq,
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and then, since (Nn−q)0≤q<n/2 are independent of cn,�n/2� and (cq)0≤q<n/2,

cn
d= cn,�n/2� +N

(� n
2 �−1∑
q=0

|cq |2θ
n − q

)1/2

,

where N is a standard complex Gaussian independent of the other variables which are in-
volved in the formula. Hence, by the fact that the law of 
(N ) has a bounded density with
respect to the Lebesgue measure,

P
[∣∣
(cn)

∣∣/wn ≤ δ | G�n/2�
] ≤ Cδwn

(� n
2 �−1∑
q=0

|cq |2θ
n − q

)−1/2

,

for some constant C > 0, which implies

(8.1) P
[∣∣
(cn)

∣∣/wn ≤ δ
] ≤ E

[
min

(
1,Cδwn

(� n
2 �−1∑
q=0

|cq |2θ
n − q

)−1/2)]
.

Recalling (1.31), there is a constant cθ > 0 so that, for all n > 2 and with n0 = �n
2� − 1,

n0∑
q=0

|cq |2θ
n − q

≥ θ

n

n0∑
q=0

|cq |2 ≥ cθ (
√

logn)−1{θ=1}nθMθ,n0 .

The expression Mθ,n0 is an approximation to the total mass. By Lemma 1.32 this converges
in probability as n → ∞ to a multiple of Mθ . In particular,{(� n

2 �−1∑
q=0

|cq |2θ
n − q

)−1/2

wn : n ∈ N

}

is tight (recall when θ ∈ (0,1), wn = nθ−1 and when θ = 1, wn = (log(1 + n))−1/4). Using
(8.1),

P
[∣∣
(cn)

∣∣/wn ≤ δ
] ≤ Cδ1/2 + P

((� n
2 �−1∑
q=0

|cq |2θ
n − q

)−1/2

wn ≥ δ−1/2

)
.

The tightness property above shows that

sup
n≥1

P
[∣∣
(cn)

∣∣/wn ≤ δ
] −→

δ→0
0

which completes the proof. �

We deduce a similar result for the secular coefficients c
(N)
n when N is sufficiently large

with respect to n.

THEOREM 8.2. Let θ ∈ (0,1], u ∈ C on the unit circle, and let ϕ be any function from
N to R such that ϕ(n) ≥ 2 for all n ≥ 1, ϕ(n) tends to infinity with n, and for θ = 1,
ϕ(n)/(

√
logn(log logn)) tends to infinity with n. Then

sup
n≥1,N≥nϕ(n)

P
[∣∣
(

uc(N)
n

)∣∣/wn ≤ δ
] −→

δ→0
0.
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PROOF. We assume u = 1. We know that, for all ε > 0, there exists δ > 0 depending
only on ε and θ , such that, for n ≥ 1,

P
[∣∣
(cn)

∣∣/wn ≤ 2δ
] ≤ ε.

Now,

P
[∣∣
(

c(N)
n

)∣∣/wn ≤ δ
] ≤ P

[∣∣
(cn)
∣∣/wn ≤ 2δ

] + P
[∣∣cn − c(N)

n

∣∣/wn ≥ δ
]
,

and then, using Lemma 7.2 and Markov’s inequality,

P
[∣∣
(

c(N)
n

)∣∣/wn ≤ δ
] ≤ ε + δ−2Cθw

−2
n nθ/N

for θ ∈ (0,1) and

P
[∣∣
(

c(N)
n

)∣∣/wn ≤ δ
] ≤ ε + δ−2C1w

−2
n n log(N/n)/N

for θ = 1. Hence,

P
[∣∣
(

c(N)
n

)∣∣/wn ≤ δ
] ≤ ε + δ−2Cθn/N ≤ ε + δ−2Cθ/ϕ(n)

for θ ∈ (0,1) and N ≥ nϕ(n), and

P
[∣∣
(

c(N)
n

)∣∣/wn ≤ δ
] ≤ ε + δ−2C1

(
log(1 + n)

)1/2 log(N/n)(n/N)

≤ ε + 2δ−2C1
(
log(1 + n)

)1/2(
log

(
ϕ(n)

))
/ϕ(n)

for θ = 1 and N ≥ nϕ(n). The factor 2 comes from the fact that ϕ(n) ≥ 2 by assumption and
(loga)/a ≤ 2(logb)/b for a ≥ b ≥ 2. For θ ∈ (0,1), we have

δ−2Cθ/ϕ(n) −→
n→∞ 0

since ϕ(n) → ∞. For θ = 1, we have

min
(
ϕ(n),2 + logn

)
/
(√

logn(log logn)
) −→

n→∞ ∞,

and then (
log(1 + n)

)1/2(
log

(
ϕ(n)

))
/ϕ(n)

≤ 2
(
log(1 + n)

)1/2 log
(
min

(
ϕ(n),2 + logn

))
/min

(
ϕ(n),2 + logn

)
,

≤ 2
(
log(1 + n)

)1/2 log(2 + logn)/min
(
ϕ(n),2 + logn

)
tends to zero, when n goes to infinity, which implies

2δ−2C1
(
log(1 + n)

)1/2(
log

(
ϕ(n)

))
/ϕ(n) −→

n→∞ 0.

Since we take δ depending only on ε and θ , we deduce that there exists n(ε, θ) ≥ 1 such that,
for all n ≥ n(ε, θ),

δ−2Cθ/ϕ(n) ≤ ε

if θ ∈ (0,1), and

2δ−2C1
(
log(1 + n)

)1/2(
log

(
ϕ(n)

))
/ϕ(n) ≤ ε

if θ = 1. This gives, in any case,

P
[∣∣
(

c(N)
n

)∣∣/wn ≤ δ
] ≤ 2ε

for n ≥ n(ε, θ), N ≥ ϕ(n). Now, for N ≥ n ≥ 1, c
(N)
n is an elementary symmetric function of

random points on the unit circle whose joint distribution is absolutely continuous with respect
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to the distribution of N i.i.d., uniform points on the unit circle. For N = n, |c(N)
n | is equal to

1 and then different from 0. For N > n, if we fix N − 1 of the N points on the circle, we
have that c

(N)
n is an affine function of the last point, and then the conditional probability that

c
(N)
n = 0 vanishes as soon as one of the two coefficients of this affine function is nonzero.

Taking the constant coefficient, which is the nth symmetric function of the N − 1 points
which have been fixed, we deduce, by induction on N , that P[c(N)

n = 0] = 0 for all N ≥ n ≥ 1.
Since the law of c

(N)
n is rotationally invariant, we have that P[
(c

(N)
n ) = 0||c(N)

n |] = 0 when
|c(N)

n | �= 0, and then P[
(c
(N)
n ) = 0] = 0 since |c(N)

n | is almost surely different from zero.
Moreover, we know that 
(cn) �= 0 almost surely: since c

(N)
n converges to cn in law for n

fixed and N → ∞, we have that, for each n ≥ 1, (wn/|
(c
(N)
n )|)N≥n is a tight family of

real-valued random variables.
Hence, for each n ≥ 1, there exists δn > 0, depending only on n, ε and θ , such that

sup
N≥n

P
[∣∣
(

c(N)
n

)∣∣/wn ≤ δn

] ≤ 2ε.

Let us define

δ0 := min
(
δ, min

1≤n<n(ε,θ)
δn

)
.

We have that δ0 > 0 depends only on ε and θ , and that

sup
n≥1,N≥nϕ(n)

P
[∣∣
(

c(N)
n

)∣∣/wn ≤ δ0
] ≤ 2ε,

which implies

lim sup
δ→0

sup
n≥1,N≥nϕ(n)

P
[∣∣
(

c(N)
n

)∣∣/wn ≤ δ
] ≤ 2ε.

By letting ε → 0, we are done. �

APPENDIX A: TAUBERIAN THEORY

Recall that a function L : [0,∞) → R is called slowly varying if it is measurable, eventu-
ally positive and satisfies

L(λu)/L(u) → 1 as u → ∞ for all λ > 0.

The principal examples of such functions are logarithms, iterated logarithms and powers
thereof. These functions have many useful analytic properties (see [39], Section IV.2, for
details). Such functions appear frequently in Tauberian theory and, in particular, in the fol-
lowing.

THEOREM A.1 (Karamata–Hardy–Littlewood Tauberian Theorem [39], IV.1.1). Let∑∞
k=0 akz

k converge for |z| < 1. Suppose that, for some number θ ≥ 0 and some slowly vary-
ing function L, we have the limit from below

(A.1) lim
z→1− L

(
1

1 − z

)
(1 − z)θ

∞∑
k=0

akz
k = M.

Then, subject to the condition

(A.2) L(k)kak ≥ −Ckθ , k ≥ 1,

it follows that

(A.3) lim
n→∞

L(n)�(θ + 1)

nθ

n∑
k=0

ak = M.
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We need to justify this in a probabilistic situation.

THEOREM A.2. Fix θ > 0 and a slowly varying function L, and suppose for simplicity
that {ak}∞k=0 are a family of nonnegative random variables such that the series

∑∞
k=0 akz

k

converges almost surely for |z| < 1. Suppose further that we have the convergence in proba-
bility

(A.4) L

(
1

1 − z

)
(1 − z)θ

∞∑
k=0

akz
k p−→

z→1−
M

with M < ∞ almost surely. Then it follows that

(A.5)
L(n)�(θ + 1)

nθ

n∑
k=0

ak
p−→

n→∞M.

PROOF. Let us define

(A.6) Xn = L

(
1

1 − e−1/n

)(
1 − e−1/n)θ ∞∑

k=0

akg
(
e−k/n)

,

where

(A.7) g(x) =
{

0 0 ≤ x < 1/e,

1 1/e ≤ x ≤ 1.

If we can show that Xn
p−→n→∞ M/�(θ + 1), we will have proved the result, because

Xn�(θ + 1) is equivalent to the left-hand side of (A.5) when n → ∞. To do this, we con-
struct polynomial approximations of g and bound from above and below. It is important to
note that the construction of the polynomials is deterministic and does not depend on the
random coefficients ak .

For any polynomial P without constant term, it is a direct computation using (A.4), using
additivity of convergence in probability and using the definition of slow variation, that

(A.8) L

(
1

1 − e−1/n

)(
1 − e−1/n)θ ∞∑

k=0

akP
(
e−k/n) p−→

n→∞
M

�(θ)

∫ ∞
0

tθ−1P
(
e−t )dt.

We claim that, for any ε > 0, we can find polynomials P ±
ε (x) on [0,1] without constant term

such that g(x) ≤ P +
ε (x) (and P −

ε (x) ≤ g(x)) and that P +
ε (x)−g(x) (and g(x)−P −

ε (x)) are
both small. Since the coefficients ak are nonnegative, this allows us to sandwich Xn via

(A.9) X−
n,ε ≤ Xn ≤ X+

n,ε,

where

(A.10) X±
n,ε := L

(
1

1 − e−1/n

)(
1 − e−1/n)θ ∞∑

k=0

akP
±
ε

(
e−k/n)

.

Now, by (A.8) we have X±
n,ε

p−→ X±
ε , where

X±
ε = M

�(θ)

(∫ ∞
0

tθ−1g
(
e−t )dt ± c±(ε)

)
= M

�(θ + 1)

(
1 ± θc±(ε)

)(A.11)
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and

(A.12) c±(ε) =
∫ ∞

0
tθ−1∣∣P ±

ε

(
e−t ) − g

(
e−t )∣∣dt.

We claim that P ±
ε (x) can be chosen so that 0 ≤ c±(ε) ≤ cθε for some absolute constant cθ

and so limε→0 c±(ε) = 0. This is enough to show convergence in probability of Xn to the
limit X = M/�(θ + 1), as we now demonstrate. By (A.9) we have, for any δ > 0,

P
(|Xn − X| > δ

) ≤ P
(∣∣X+

n,ε − X
∣∣ > δ

) + P
(∣∣X−

n,ε − X
∣∣ > δ

)
≤ P

(∣∣X+
n,ε − X+

ε

∣∣ + ∣∣X+
ε − X

∣∣ > δ
)

+ P
(∣∣X−

n,ε − X−
ε

∣∣ + ∣∣X−
ε − X

∣∣ > δ
)

≤ P
(∣∣X+

n,ε − X+
ε

∣∣ > δ/2
) + P

(∣∣X+
ε − X

∣∣ > δ/2
)

+ P
(∣∣X−

n,ε − X−
ε

∣∣ > δ/2
) + P

(∣∣X−
ε − X

∣∣ > δ/2
)
.

(A.13)

Since X±
n,ε

p−→n→∞ X±
ε , two of the terms in the final inequality above vanish in the limit

n → ∞ for any fixed ε. For the remaining terms, note that by definition

(A.14)
∣∣X±

ε − X
∣∣ = c±(ε)M/�(θ)

so that in the limit ε → 0 we have, using the almost sure finiteness of M ,

(A.15) P
(∣∣X±

ε − X
∣∣ > δ/2

) = P(M > δ�(θ)/
(
2c±(ε)

) → 0.

The existence of the approximating polynomials is classical, but for completeness we give
the argument. We begin by sandwiching g(x) by the continuous function h±

ε (x) where h±
ε (x)

is equal to g(x) outside [1/e∓ε,1/e] and is linear inside the interval. Then by the Weierstrass
approximation theorem, we get polynomials P ±

ε (x)/x such that

(A.16)
∣∣∣∣h±

ε (x)

x
± ε − P ±

ε (x)

x

∣∣∣∣ ≤ ε, 0 ≤ x ≤ 1.

Then P +
ε (x) ≥ h+(x) ≥ g(x) and P −

ε (x) ≤ h−(x) ≤ g(x). Now, we can bound c±(ε) using

(A.17) c±(ε) ≤
∫ ∞

0
tθ−1∣∣P ±

ε

(
e−t ) − h±(

e−t )∣∣dt +
∫ ∞

0
tθ−1∣∣h±(

e−t ) − g
(
e−t )∣∣dt.

The substitution x = e−t shows that

c±(ε) ≤
∫ 1

0

(− log(x)
)θ−1 |P ±

ε (x) − h±(x)|
x

dx

+
∣∣∣∣ ∫ 1/e

1/e±ε

(− log(x)
)θ−1 |h±(x) − g(x)|

x
dx

∣∣∣∣.
(A.18)

The integrand in the second term of (A.18) is uniformly bounded, so the integral is bounded
by a constant times the length of the integration interval which is ε. By (A.16) the first term
in (A.18) is bounded by

(A.19) 2ε

∫ 1

0

(− log(x)
)θ−1

dx = 2ε�(θ),

and so |c±(ε)| ≤ cθε, as desired. �



1244 J. NAJNUDEL, E. PAQUETTE AND N. SIMM

LEMMA A.3. Let Z1 = X1 + iY1 and Z2 = X2 + iY2 be complex valued random vari-
ables with characteristic functions

	Z1(s, t) = E
(
eisX1+itY1

)
,

	Z2(s, t) = E
(
eisX2+itY2

)
.

(A.20)

Then

(A.21)
∣∣	Z1(s, t) − 	Z2(s, t)

∣∣ ≤ (|s| + |t |)√
E

(|Z1 − Z2|2)
.

PROOF. This follows from the standard inequality |eix − 1| ≤ |x| valid for any real num-
ber x. We have∣∣	Z1(s, t) − 	Z2(s, t)

∣∣ ≤ E
(∣∣eisX1+itY1 − eisX2+iY2

∣∣)
= E

(∣∣eis(X1−X2)+it (Y1−Y2) − 1
∣∣)

≤ E
(∣∣s(X1 − X2) + t (Y1 − Y2)

∣∣)
≤ |s|E(|X1 − X2|) + |t |E(|Y1 − Y2|)
≤ |s|

√
E

(|X1 − X2|2) + |t |
√
E

(|Y1 − Y2|2)
≤ (|s| + |t |)√

E
(|Z1 − Z2|2)

. �

APPENDIX B: THE CONVERGENCE RESULT OF JUNNILA AND SAKSMAN

The goal of this Appendix is to show that the convergence results (1.24) and (1.26) are
simple consequences of those obtained in [34].

COROLLARY B.1. Let 0 < θ ≤ 1. The following limit exists in Lq for any 0 < q < 1,

(B.1) GMCθ (dϑ) := lim
r→1

Lθ(r)
(
1 − r2)θ

e
√

θG(reiϑ ) dϑ,

where

(B.2) Lθ(r) =
⎧⎪⎨⎪⎩

1 0 < θ < 1,√
log

(
1

1 − r2

)
θ = 1.

PROOF. The proof of this convergence was established in [34] but for a slightly modified
field containing an additional constant Gaussian, say G0(e

iϑ) = A0 + G(eiϑ) where A0 is
a centered real-valued Gaussian with fixed variance σ 2 independent of the rest of the field
G(eiϑ). Now, consider approximating measures

(B.3) μ
(r)
0 (dϑ) = Lθ(r)e

√
θG0(re

iϑ )− θ
2 Var(G0(re

iϑ ))(dϑ),

and similarly, construct μ(r)(dϑ) from G(reiϑ). Then by construction and using (1.10), the
two measures differ by a random multiplicative constant independent of the regularization,

(B.4) μ(r)(dϑ) = Kμ
(r)
0 (dϑ),

where K = e−(
√

θA0−θ σ2
2 ). By [34] we have that μ

(r)
0 (dϑ) converges to a limit μ0(dϑ) in Ls

for any 0 < s < 1.
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Fix any 0 < δ < 1. Then by Hölder’s inequality,

E
(∣∣μ(r)(dϑ) − Kμ0(dϑ)

∣∣δ)
(B.5)

= E
((

K
∣∣μ(r)

0 (dϑ) − μ0(dϑ)
∣∣)δ)

(B.6)

≤ E
(
Kδp) 1

pE
(∣∣μ(r)

0 (dϑ) − μ0(dϑ)
∣∣δq) 1

q ,(B.7)

where the exponents p and q are chosen so that p > 1
1−δ

, since K has all moments, and

1 < q = 1
1− 1

p

< 1
δ
, in particular, δq < 1 and so letting r → 1,

(B.8) E
(∣∣μ(r)

0 (dϑ) − μ0(dϑ)
∣∣δq) 1

q → 0.

This means that our measure μ(r)(dϑ) converges as r → 1 to GMCθ (dϑ) = Kμ0(dϑ) in Lδ

for any 0 < δ < 1. �

APPENDIX C: BINOMIAL SUMS

LEMMA C.1. For any 0 < θ < 1
2 , we have

(C.1)
∞∑

k=0

(
k + θ − 1

θ − 1

)2

= �(1 − 2θ)

�(1 − θ)2 .

PROOF. We have the generating function

(C.2)
∞∑

k=0

(
k + θ − 1

θ − 1

)
zk = (1 − z)−θ , |z| < 1

so that by Parseval’s theorem

(C.3)
∞∑

k=0

(
k + θ − 1

θ − 1

)2

= 1

2π

∫ 2π

0

∣∣1 − eiν1
∣∣−2θ

dν1.

Now, the right-hand side of (C.3) coincides with that of (C.1) by taking k = 2 in the Morris
integral (1.23) and using rotational invariance in the ν2 coordinate. �

LEMMA C.2. Let a and b be nonnegative integers such that b ≥ a, c and d complex
numbers such that

d /∈ C \ {−1,−2,−3, . . . } and a + c − d /∈ C \ {−1,−2,−3, . . . }.
Then

(C.4)
b∑

q=a

(
q + c

d

)
=

(
b + c + 1

d + 1

)
− 1{a + c − d �= 0}

(
a + c

d + 1

)
.

PROOF. This follows from summing the binomial coefficient identity

(C.5)
(
q + c

d

)
=

(
q + c + 1

d + 1

)
−

(
q + c

d + 1

)
,

from q = a to q = b, so that the sum telescopes and gives the right-hand side of (C.4).
We justify (C.5), as we consider nonintegral parameters. Recall that the Gamma function

�(x) has poles in the complex plane at {0,−1,−2,−3, . . . }. The identity (C.5) holds, pro-
vided none of the Gamma functions (c.f. (1.18)) in the expansions(

q + c

d

)
= �(q + c + 1)

�(d + 1)�(q + c − d + 1)
and

(
q + c

d + 1

)
= �(q + c + 1)

�(d + 2)�(q + c − d)
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have a pole. Note that, as q ranges over {a, a + 1, . . . , b}, the conditions in statement of the
lemma are necessary and sufficient.

Finally, if a + c = d , then the q = a term in the sum is exceptional in that(
a + c

d

)
= 1 =

(
a + c + 1

d + 1

)
.

Thus, we use this in place of (C.5) so that the lower boundary term from the telescoping
series vanishes. �
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