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Comparative evaluation of forecasts of statistical functionals relies on
comparing averaged losses of competing forecasts after the realization of the
quantity Y , on which the functional is based, has been observed. Motivated by
high-frequency finance, in this paper we investigate how proxies Ỹ for Y—
say volatility proxies—which are observed together with Y can be utilized to
improve forecast comparisons. We extend previous results on robustness of
loss functions for the mean to general moments and ratios of moments, and
show in terms of the variance of differences of losses that using proxies will
increase the power in comparative forecast tests. These results apply both to
testing conditional as well as unconditional dominance. Finally, we numeri-
cally illustrate the theoretical results, both for simulated high-frequency data
as well as for high-frequency log returns of several cryptocurrencies.

1. Introduction. Comparative evaluation of forecasts of statistical functionals is a stan-
dard issue in the realm of forecasting (Gneiting (2011)). It relies on comparing expected or
averaged losses of competing forecasts, after the realization of the quantity Y , on which the
functional is based, has been observed. The aim of this paper is to investigate how proxies
Ỹ for Y , which are observed together with Y , can be utilized to improve forecast compar-
isons in the sense that they result in the same ordering but bring an increase in the power of
comparative forecast tests.

The motivation comes mainly from high-frequency finance, where high-frequency data are
routinely used to generate forecasts—say of volatilities—also over moderate time horizons
such as daily volatilities (Corsi (2009)). Our investigation shows how high-frequency data
can be used to obtain sharper forecast evaluation. In comparative forecast evaluation, this
would mean that when comparing two forecasts of daily volatilities in terms of expected
values of loss functions, the better forecast can be determined with higher power when using
these high-frequency data in the process of forecast evaluation.

Our main point of departure was Patton (2011), who showed that using various noisy
volatility proxies, for example, based on high frequency, is valid in comparative forecast
evaluation, that is, preserves the order of the expected losses. Hansen and Lunde (2006) have
similar results, while Laurent, Rombouts and Violante (2013) provide a multivariate gener-
alization of the characterization in Patton (2011) and Koopman, Jungbacker and Hol (2005)
illustrate the use of realized measures for forecast comparisons on various observed high
frequency data sets. We are interested in the comparison of different. possibly misspecified
forecasts, in which situation Patton (2020) shows that the ranking of the forecasts may depend
on the loss function.

A very recent, related contribution is by Hoga and Dimitriadis (2022), who focus on pre-
dicting the mean, and illustrate their methods for GDP forecasts. Our contributions and their
relation to the literature can be summarized as follows:

(i) We extend the analysis from Patton (2011) and Hansen and Lunde (2006) about the
validity when using various proxies from volatilities, that is, second moments, to general
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moments and beyond to ratios of moments. We use a concept corresponding to the notion of
exact robustness from Hoga and Dimitriadis (2022), who also assume that the proxy enters
the loss difference in the same way as the original observation, and in this setting show that
only the mean allows for exactly robust loss functions.

(ii) We formally show in terms of the variance of differences of losses that using proxies
will increase the power in comparative forecast testing by decreasing the variance of loss
differences, both when testing conditional as well as unconditional dominance; see Nolde
and Ziegel (2017)) for these notions. Hoga and Dimitriadis (2022) have similar results for the
mean and focus on conditional dominance testing.

(iii) Finally, we illustrate the theoretical results for high-frequency data, both simulated as
well as related to three cryptocurrencies, using the three-zone approach from Fissler, Ziegel
and Gneiting (2016) and Nolde and Ziegel (2017). We show that the choice of the proxies,
as well as the choice of the loss function, has a pronounced effect on the comparative evalu-
ation of forecasts; using high-frequency data and the QLIKE loss substantially improves the
forecast evaluation.

The paper is structured as follows. In Section 2, we start with a motivating example; we
recall strictly consistent loss functions for statistical functionals, and introduce a dynamic
framework for forecast evaluation. Section 3 investigates the use of proxies to improve eval-
uations of forecasts of moments, and in Section 4 this is further discussed and extended to
ratios of moments. Section 6 summarizes the results of a simulation study, where we consider
comparing forecasts for second, third, and fourth moments for GARCH-type time series. In
Section 7, we provide an illustration of our methods to predicting the volatility of log-returns
of three cryptocurrencies, while a supplement contains additional numerical results.

2. Motivation and basic concepts.

2.1. Motivating examples. Let us first illustrate the use of different proxies and loss func-
tions in Diebold–Mariano (DM) tests for equal forecast performance. Consider the following
stylized scenario, where the aim is to distinguish between two competing forecasts. Observa-
tions correspond to logarithmic returns, and we assume that the true data generating process
is a simple GARCH(1,1) model. The total length of the time series is T = 1500, and we
consider rolling one-step-ahead forecasts of the conditional variance using a moving time
window, with window length T/3, resulting in n = 1000 forecasts.

There are four forecasters. The first one is lucky to use a GARCH(1,1) model for making
predictions, forecasters 2, 3, and 4 use ARCH(1), ARCH(2), and ARCH(7) models, respec-
tively. Clearly, we expect that the predictions from forecaster 1 outperform, in some sense, the
other predictions. Moreover, we would expect that the ARCH(7) model beats the ARCH(1)
and ARCH(2) models since the former should be a better approximation to a GARCH(1,1)
process. Let the forecasts of the conditional variance of logarithmic returns rt for any pair of
forecasters be denoted by x1,t and x2,t . Then our interest focuses on the null hypotheses,

H0 : Forecast x1,t predicts at least as well as forecast x2,t ,

and if H0 is rejected, then x2,t is worse than x1,t . To decide for or against H0, we use a DM
test based on the loss differences

�nL̄ = 1/n

n∑
t=1

L(x1,t , yt+1) − L(x2,t , yt+1),

where L(x, y) is some loss function, and yt+1 materializes at day t + 1. Under suitable con-
ditions, the studentized test statistic S has a limiting standard normal distribution, and H0 is
rejected for large values of S.
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To evaluate the forecasts, the mean squared error loss L(x, y) = (x −y)2, is used, together
with the squared returns ỹt = r2

t as an unbiased proxy for the true conditional variance of
logarithmic returns. The first line of the following table shows the values of the test statistic
S if the different predictions are compared to the GARCH(1,1) model. Even if the values
are positive (hence, slightly favor the GARCH model), they are nowhere near statistically
significant. The comparison of the ARCH(7) model with the other two ARCH models even
results in values close to zero:

x2,t

x1,t GARCH(1,1) ARCH(1) ARCH(2) ARCH(7)

GARCH(1,1) – 0.788 1.010 0.984
ARCH(7) −0.984 −0.193 0.152 –

Next, assume that, besides the daily returns, also 5-min returns are available for predicting
the next day’s volatility. Thus, the squared returns are replaced by the realized variances
ỹt = ∑m

i=1 r2
t,i , where rt,i are the intraday log returns. The outcomes of the DM tests for

equal predictive performance, now using the realized variances as proxies, are as follows:

x2,t

x1,t GARCH(1,1) ARCH(1) ARCH(2) ARCH(7)

GARCH(1,1) – 3.976 3.924 3.506
ARCH(7) −3.506 2.474 2.352 –

In comparison with the first table, the values in the first line are much larger, being statisti-
cally significant even on the 0.01-level, and indicating the dominance of the prediction under
the GARCH(1,1) model. The comparison of the ARCH(7) model with the other two ARCH
models favors the ARCH(7) model, at least on the 0.05-level.

Finally, the evaluator decides to replace the MSE with the QLIKE loss function L̃(x, y) =
y/x − log(y/x) − 1, and gets the following results of the corresponding DM tests:

x2,t

x1,t GARCH(1,1) ARCH(1) ARCH(2) ARCH(7)

GARCH(1,1) – 5.589 5.523 4.386
ARCH(7) −4.386 3.642 3.492 –

Now, all entries are even larger in absolute terms, and the ARCH(7) model dominates the
competing ARCH models even on the 0.01-level.

Clearly, these results are based on a specific realization of the time series. However, a
closer look at this example in Section 6 reveals that this behavior is rather typical.

As a real data example, we consider log returns of the cryptocurrency Bitcoin (BTC). We
use hourly observations from May 16, 2018, to October 27, 2021, with sample size 30264,
which corresponds to 1261 days. All prices are closing values in U.S. dollars. Returns are
estimated by taking logarithmic differences. Figure 1 shows the results of DM tests for the log
returns for different competing models, where the results are depicted using the three-zone
approach of Fissler, Ziegel and Gneiting (2016). A result marked in green indicates that the
model in the column outperforms the model in the row, a red mark indicates inferiority. The
marking is yellow if there is no significant difference between the two models. Light green,
green, and dark green indicates significance at level 0.1, 0.05, and 0.01, respectively. For
example, in the upper left panel of Figure 1, the CGARCH model outperforms the ARCH(1)
model, but none of the other models. Whereas there are only slight differences between the
use of squared returns compared to high frequency data as proxies in case of MSE, the power
of the DM tests is considerably higher by using the high frequency proxy compared to squared
returns with QLIKE loss. Moreover, there is an increase in power using the QLIKE loss
function compared to MSE. For more details, see Sections 5 and 7.
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FIG. 1. Results of DM tests for BTC log returns from May 16, 2018, to October 27, 2021, left: squared returns,
right: high frequency proxy.

2.2. Loss functions and statistical functionals. We start by recalling the concept of
strictly consistent loss (or scoring) functions; see Gneiting (2011). Let � be a class of distri-
bution functions on a closed subset D ⊂R, which we identify with their associated probabil-
ity distributions, and let T : � → R be a (one-dimensional) statistical functional (or param-
eter).

A loss function (also scoring function) is a measurable map L : R× D → [0,∞). It is in-
terpreted as the loss if forecast x is issued and y materializes. L is consistent for the functional
T relative to the class �, if

(1) for all x ∈ R,F ∈ � : EF

[
L

(
T (F ),Y

)] ≤ EF

[
L(x,Y )

]
,

and EF indicates that expectation is taken under the distribution F for Y , and we assume that
the relevant expected values are finite. Thus, the true functional T (F ) minimizes the expected
loss under F . If, in addition,

EF

[
L

(
T (F ),Y

)] = EF

[
L(x,Y )

]
implies that x = T (F ),

then L is strictly consistent for T . The functional T is called elicitable relative to the class
� if it admits a strictly consistent loss function. For several functionals such as moments,
quantiles, and expectiles, Gneiting (2011) characterizes all strictly-consistent loss functions
under some smoothness and normalization conditions; see also Steinwart et al. (2014).

When comparing two forecasts x, x′ ∈ R for a given F ∈ �, and hence parameter T (F ),
we say that x dominates x ′ under F for the loss L if the difference of expected losses is
negative:

(2) EF

[
L(x,Y )

] −EF

[
L

(
x′, Y

)]
< 0.

From (1), for a strictly-consistent loss function, the true parameter T (F ) dominates any other
forecast.
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2.3. Dynamic forcasting and comparative forecast evaluation. Now let us consider a
forecasting situation. Forecasts are issued on the basis of certain information. Let (�,A,P)

be a probability space, let Ft ⊂ A be a sub-σ -algebra of A, the information set at time t ,
on the basis of which the forecast is issued. In finance, Ft can include returns (including
high-frequency) up to time t as well other covariates observed up to time t .

The aim is to predict the functional T , say the mean or the volatility, of the random variable
Yt+1 : � → R, which will be observed at time t + 1 (say one day ahead). For example, this
may be the return from t to t + 1 over one day. More precisely, if FYt+1|Ft (ω, ·) denotes the
conditional distribution of Yt+1 given Ft , then the parameter of interest is

T (Yt+1|Ft )(ω) := T
(
FYt+1|Ft (ω, ·))

We note that

• the forecast is based on the full information up to time t . Thus, even if Yt+1 is a return over
one day, for the forecast we use, for example, high-frequency data up to time t if these are
included in Ft ,

• compared to such additional data, the observation Yt+1 is of particular relevance since the
parameter T (Yt+1|Ft ) is defined via its conditional distribution FYt+1|Ft (ω, ·) given Ft .

Thus, to generate the forecast, even if the time horizon for the forecast is, say one day, it is
standard to use high-frequency information contained in Ft up to time t . Now, the issue in
this paper is how to use additional information contained in Ft+1, available at time t + 1, to
improve comparative forecast evaluation.

First, let us recall the setting for comparative forecast evaluation based on Yt+1. A forecast
at time t is—in great generality—an Ft -measurable random variable Zt . Now, if L is a strictly
consistent loss function for T , then compared to the true forecast T (Yt+1|Ft ), we have the
following results (Holzmann and Eulert (2014)):

(3) E
[
L

(
T (Yt+1|Ft ), Yt+1

)|Ft

]
(ω) ≤ E

[
L(Zt , Yt+1)|Ft

]
(ω) for P-a.e. ω ∈ �,

that is, the conditional dominance of the true forecast T (Yt+1|Ft ) over any other generic
forecast Zt , and

(4) E
[
L

(
T (Yt+1|Ft ), Yt+1

)] ≤ E
[
L(Zt , Yt+1)

]
,

the unconditional dominance of T (Yt+1|Ft ) over Zt . When comparing with the true forecast
T (Yt+1|Ft ) (but not in general), these two concepts coincide: We have equality in (3) or (4)
if and only if T (Yt+1|Ft ) = Zt P-almost surely. Note that Yt+1 is used in the comparisons
(3) and (4) by default.

We shall generally compare two potentially misspecified forecasts, that is, general Ft -
measurable random variables Zt and Z′

t none of which needs to coincide with T (Yt+1|Ft ).
Then, by definition, Z′

t conditionally dominates Zt for the loss function L if

(5) E
[
L

(
Z′

t , Yt+1
)|Ft

]
(ω) ≤ E

[
L(Zt , Yt+1)|Ft

]
(ω) for P-a.e. ω ∈ �,

with strict inequality on a set of positive probability, while Z′
t unconditionally dominates Zt

for the loss function L if

(6) E
[
L

(
Z′

t , Yt+1
)]

< E
[
L(Zt , Yt+1)

]
.

In this more general setting, conditional dominance still implies unconditional dominance,
but the converse is not true in general.

Now, we consider how additional information contained in Ft+1 (apart from Yt+1) may be
used for forecast evaluation. In the context of high frequency financial data, apart from using
the high-frequency data to generate forecasts over daily time horizons, we shall investigate
these high-frequency data to obtain a sharper forecast evaluation.
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3. Proxies when comparing forecasts of moments. Suppose that D = I is an interval,
h : I → R is a measurable function such that EF [|h(Y )|] < ∞ for all F ∈ �. Then a clas-
sical result by Savage (1971) (see also Gneiting (2011)), characterizes the strictly consistent
scoring functions for T (F ) = EF [h(Y )] in the form

(7) L(x, y) = φ(y) − φ(x) − φ′(x)
(
h(y) − x

)
, y, x ∈ I,

where φ : I →R is a strictly convex function with subgradient φ′ for which EF [|φ(X)|] < ∞
for all F ∈ �, and φ′ denotes the derivative of φ.

The functional T (F ) = EF [h(Y )] is called the h-moment of Y , or generalized moment
or simply a moment of Y . The classical moments arise for h(x) = xn for integers n. In our
applications, we shall focus on the cases n = 2,3, and n = 4.

First, we formulate the following lemma in the static framework.

LEMMA 1. Consider (7) and forecasts x1, x2 ∈ R.

(i) The loss difference,

L(x1, y) − L(x2, y) = φ(x2)(1 − x2) − φ(x1)(1 − x1) + (
φ′(x2) − φ′(x1)

)
h(y)

=: LDiff
(
x1, x2, h(y)

)(8)

depends on y only through h(y).
(ii) If F ∈ � and Ỹ is a random variable (with a given distribution) such that EF [h(Y )] =

E[Ỹ ] (the moment is the same), then

(9) EF

[
LDiff

(
x1, x2, h(Y )

)] = E
[
LDiff(x1, x2, Ỹ )

]
.

(iii) We have that

(10) VarF (LDiff
(
x1, x2, h(Y )

) = (
φ′(x2) − φ′(x1)

)2 VarF
(
h(Y )

)
.

Consequently, if in addition to (ii) it holds that Var(Ỹ ) ≤ VarF [h(Y )], then we have that

(11) Var
(
LDiff(x1, x2, Ỹ )

) ≤ VarF
(
LDiff

(
x1, x2, h(Y )

))
.

Here, Ỹ plays the role of the proxy that shall be used to improve forecast evaluation. Part
(ii) shows that using Ỹ instead of h(Y ) is valid if EF [h(Y )] = E[Ỹ ] in the sense that domi-
nance relations of forecasts are preserved when using Ỹ , while (11) shows that evaluation of
score differences is actually sharper based on Ỹ instead of h(Y ) if Var(Ỹ ) ≤ VarF [h(Y )].

Hoga and Dimitriadis (2022) call the equality of loss differences in (9) exact robustness.
When assuming that the proxy Ỹ enters the loss difference in the same fashion as Y , they
show that exact robustness can only hold for strictly consistent scoring functions of the mean.
In our more flexible approach, we cover general moments and also ratios of moments; see
below.

PROOF. Part (i) is easily checked by inserting the loss function (7).
Concerning part (ii), inserting LDiff from (8), we get by assumption

EF

[
LDiff

(
x1, x2, h(Y )

)] −E
[
LDiff(x1, x2, Ỹ )

]
= (

φ′(x2) − φ′(x1)
)(
EF

[
h(Y )

] −E[Ỹ ]) = 0

Part (iii) follows similarly easily. �

Now, let us turn to the dynamic setting described in Section 2.3.
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THEOREM 2 (Forecast dominance testing). Consider forecasting the conditional moment
E[h(Yt+1)|Ft ], and suppose that Ỹt+1 is Ft+1-measurable with

(12) E[Ỹt+1|Ft ] = E
[
h(Yt+1)|Ft

]
a.s.

(i) For the loss difference (8), for any two forecasts Zt and Z′
t (Ft -measurable random

variables),

(13) E
[
LDiff

(
Zt,Z

′
t , h(Yt+1)

)|Ft

] = E
[
LDiff

(
Zt,Z

′
t , Ỹt+1

)|Ft

]
,

and hence in particular

(14) E
[
LDiff

(
Zt,Z

′
t , h(Yt+1)

)] = E
[
LDiff

(
Zt,Z

′
t , Ỹt+1

)]
.

Thus, both conditional as well as unconditional dominance are preserved when using Ỹt+1
instead of h(Yt+1) in the forecast comparison.

(ii) If in addition to (12), we have that

Var(Ỹt+1|Ft ) ≤ Var
(
h(Yt+1)|Ft

)
,

then

(15) Var
(
LDiff

(
Zt,Z

′
t , Ỹt+1

)|Ft

) ≤ Var
(
LDiff

(
Zt,Z

′
t , h(Yt+1)

)|Ft

)
as well as

(16) Var
(
LDiff

(
Zt,Z

′
t , Ỹt+1

)) ≤ Var
(
LDiff

(
Zt,Z

′
t , h(Yt+1)

))
.

The second part of the theorem shows that a variance reduction is achieved both for testing
conditional as well as unconditional dominance.

PROOF. (i): Equation (13) is (9) in Lemma 1, conditional on Ft , while (14) follows from
(13) by taking expected values.

(ii): Inequality (15) is (11) in Lemma 1, (iii), conditional on Ft . As for (16), we have that

Var
(
LDiff

(
Zt,Z

′
t , Ỹt+1

)) = E
[
Var

(
LDiff

(
Zt,Z

′
t , Ỹt+1

)|Ft

)] + Var
(
E

[
LDiff

(
Zt,Z

′
t , Ỹt+1

)|Ft

])
Since by (13),

Var
(
E

[
LDiff

(
Zt,Z

′
t , Ỹt+1

)|Ft

]) = Var
(
E

[
LDiff

(
Zt,Z

′
t , h(Yt+1)

)|Ft

])
the conclusion follows since

E
[
Var

(
LDiff

(
Zt,Z

′
t , Ỹt+1

)|Ft

)] = E
[(

φ′(Z′
t

) − φ′(Zt )
)2 Var(Ỹt+1|Ft )

]
≤ E

[(
φ′(Z′

t

) − φ′(Zt )
)2 Var

(
h(Yt+1)|Ft

)]
= E

[
Var

(
LDiff

(
Zt,Z

′
t , h(Yt+1)

)|Ft

)]
. �

4. Ratios of moments and further parameters. Suppose that D = I is an interval, h :
I →R and s : I → (0,∞) are measurable functions such that EF [|h(Y )|] < ∞, EF [s(Y )] <

∞ for all F ∈ �. The target parameter is

T (F ) = EF [h(Y )]
EF [s(Y )] .

Gneiting (2011) shows that strictly consistent loss functions for T (F ) are of the form

(17) L(x, y) = s(y)
(
φ(y) − φ(x)

) − φ′(x)
(
h(y) − xs(y)

) − φ′(y)
(
h(y) − ys(y)

)
(y, x ∈ I ), where it is additionally assumed that

EF

[∣∣h(Y )
∣∣∣∣φ′(Y )

∣∣] < ∞,EF

[∣∣s(Y )
∣∣∣∣φ(Y )

∣∣] < ∞,EF

[|Y |∣∣s(Y )
∣∣∣∣φ(Y )

∣∣] < ∞, F ∈ �.
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LEMMA 3. Consider (17) and forecasts x1, x2 ∈ R.

(i) The loss difference,

L(x1, y) − L(x2, y)

= (
φ′(x2) − φ′(x1)

)
h(y) + (

x1φ
′(x1) − φ(x1) − x2φ

′(x2) + φ(x2)
)
s(y)

=: LDiff
(
x1, x2, h(y), s(y)

)(18)

depends on y only through h(y) and s(y).
(ii) If F ∈ �, and Ỹ1, Ỹ2 are random variables (with given distributions) such that

EF [h(Y )] = E[Ỹ1] and EF [s(Y )] = E[Ỹ2] (the moment is the same), then

(19) EF

[
LDiff

(
x1, x2, h(Y ), s(Y )

)] = E
[
LDiff(x1, x2, Ỹ1, Ỹ2)

]
.

(iii) If in addition to (ii) we have that Var(aỸ1 +bỸ2) ≤ VarF (ah(Y )+bs(Y )) for a, b ∈R

we have that

(20) Var
(
LDiff(x1, x2, Ỹ1, Ỹ2)

) ≤ VarF
(
LDiff

(
x1, x2, h(Y ), s(Y )

))
.

PROOF. The form (18) of the loss difference follows directly from inserting (17). Then
(19) and (20) follow immediately from the form of the loss difference. �

Note that the result of the lemma does not contradict Theorem 1 in Hoga and Dimitriadis
(2022), since they only allow a single proxy Ŷt , which enters the loss function in the same
way as Yt , whereas in the above lemma we require proxies Ỹ1 and Ỹ2 for the two moments
h(Y ) and s(Y ).

THEOREM 4 (Forecast dominance testing: Ratio of moments). Consider forecasting the
ratio of conditional moments E[h(Yt+1)|Ft ]/E[s(Yt+1)|Ft ], and suppose that Ỹ

(j)
t+1 are Ft+1-

measurable with

(21) E
[
Ỹ

(1)
t+1|Ft

] = E
[
h(Yt+1)|Ft

]
, E

[
Ỹ

(2)
t+1|Ft

] = E
[
s(Yt+1)|Ft

]
a.s.

(i) For the loss difference (18), for any two forecasts Zt and Z′
t (Ft -measurable random

variables),

(22) E
[
LDiff

(
Zt,Z

′
t , h(Yt+1), s(Yt+1)

)|Ft

] = E
[
LDiff

(
Zt,Z

′
t , Ỹ

(1)
t+1, Ỹ

(2)
t+1

)|Ft

]
,

and hence in particular

(23) E
[
LDiff

(
Zt,Z

′
t , h(Yt+1), s(Yt+1)

)] = E
[
LDiff

(
Zt,Z

′
t , Ỹ

(1)
t+1, Ỹ

(2)
t+1

)]
.

(ii) If in addition to (21) we have that for all Ft -measurable random variables V,W , we
have that

V 2 Var
(
Ỹ

(1)
t+1|Ft

) + W 2 Var
(
Ỹ

(2)
t+1|Ft

) + 2V W Cov
(
Ỹ

(1)
t+1, Ỹ

(2)
t+1|Ft

)
≤ V 2 Var

(
h(Yt+1)|Ft

) + W 2 Var
(
s(Yt+1)|Ft

) + 2V W Cov
(
h(Yt+1), s(Yt+1)|Ft

)
,

then

(24) Var
(
LDiff

(
Zt,Z

′
t , Ỹ

(1)
t+1, Ỹ

(2)
t+1

)|Ft

) ≤ Var
(
LDiff

(
Zt,Z

′
t , h(Yt+1), s(Yt+1)

)|Ft

)
as well as

(25) Var
(
LDiff

(
Zt,Z

′
t , Ỹ

(1)
t+1, Ỹ

(2)
t+1

)) ≤ Var
(
LDiff

(
Zt,Z

′
t , h(Yt+1), s(Yt+1)

))
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The proof is immediate from Lemma 3, and the final inequality (25) follows as (16) in
Theorem 2. The condition for a potential variance reduction in Theorem 4(ii) is more restric-
tive than that from Theorem 2(ii), and, apart from relating the variances of s(Y ) and h(Y ) to
those of the proxies, also involves conditional covariances.

Theorem 4 does not apply to measures such as skewness and kurtosis, which even for
centered distributions are known not to allow for strictly consistent scoring functions. How-
ever, the revelation principle, Theorem 4 in Gneiting (2011), and the elicitability (existence
of a strictly consistent scoring function), and hence joint elicitability of moments implies that
for centered distributions, these measures are elicitable when considered together with the
second moment. Roughly speaking, for the skewness this involves the two-dimensional pa-
rameter consisting of third and second moment, and for the kurtosis consisting of fourth and
second moment. The analysis of the corresponding loss differences is then similar to that in
Theorem 4.

5. Diebold–Mariano testing. We briefly summarize the DM test (Diebold and Mariano
(1995)) for forecast dominance, where we shall focus on unconditional dominance. For a
discussion of conditional dominance testing, together with asymptotic theory and local power
analysis see Hoga and Dimitriadis (2022).

As proposed in Fissler, Ziegel and Gneiting (2016) and Nolde and Ziegel (2017), in com-
parative backtesting, we are interested in the following null hypotheses:

H−
0 : Forecast x1,t predicts at least as well as x2,t ,

H+
0 : Forecast x1,t predicts at most as well as x2,t .

The forecast x2,t is used as a benchmark. If the hypothesis H−
0 is rejected, then x2,t is worse

than x1,t ; if H+
0 is rejected, x1,t is better than x2,t . The error of the first kind for reject-

ing one of the two hypotheses, even though they are true, can be controlled by the level of
significance. As in Nolde and Ziegel (2017), we define

λ = lim
n→∞

1

n

n∑
t=1

E
[
L(x1,t , Yt+1) − L(x2,t , Yt+1)

] = E
[
L(x1,t , Yt+1) − L(x2,t , Yt+1)

]

(assuming first-order stationarity). Then dominance of x1,t over x2,t is equivalent to λ ≤ 0,
and x1,t predicts at most as well as x2,t if λ ≥ 0. Therefore, the comparative backtesting
hypotheses can be reformulated as

H−
0 : λ ≤ 0, H+

0 : λ ≥ 0.

Forecast equality can be tested with the so-called DM test (Diebold and Mariano (1995),
Giacomini and White (2006), Diebold (2015)), which is based on normalized loss differences.
Here, the test statistic is given by

S =
√

n�nL̄

τ̂
,

where �nL̄ = 1/n
∑n

t=1 L(x1,t , yt+1) − L(x2,t , yt+1) and τ̂ 2 is an estimator of the long-run
asymptotic variance of the loss differences. One possible choice for τ̂ 2 is

τ̂ 2 =

⎧⎪⎪⎨
⎪⎪⎩

γ̂0 if h = 1,

γ̂0 + 2
h−1∑
j=1

γ̂j if h ≥ 2,
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where γ̂j denotes the lag j sample autocovariance of the sequence of loss differences
(Gneiting and Ranjan (2011), Lerch et al. (2017)). Another possible choice (Diks, Panchenko
and van Dijk (2011)) is τ̂ 2 = γ̂0 +2

∑J
j=1(1−j/J )γ̂j , where J is the largest integer less than

or equal to n1/4. As a compromise, we used τ̂ 2 = γ̂0 + 2γ̂1. Under the null hypothesis of a
vanishing expected loss difference and some further regularity conditions, the test statistic S

is asymptotically standard normally distributed. Therefore, we obtain an asymptotic level-η
test of H+

0 if we reject the null hypothesis when S ≤ �−1(η), and of H−
0 if we reject the null

hypothesis when S ≥ �−1(1 − η).
To evaluate the tests for a fixed significance level η ∈ (0,1), we use the following three-

zone approach of Fissler, Ziegel and Gneiting (2016). If H−
0 is rejected at level η, we con-

clude that the forecast x1,t is worse than x2,t , and we mark the result in red; similarly, if H+
0

is rejected at level η, forecast x1,t is better than x2,t , and we mark the result in green. Finally,
if neither H−

0 nor H+
0 can be rejected, the marking is yellow.

6. Simulations. In this section, we report some results of an extensive simulation study.
Additional results of the simulations are contained in Section 1 of the Supplementary Material
(Holzmann and Klar (2023)). First, in Section 6.1 we investigate proxies for the volatility, and
then in Sections 6.2 and 6.3 turn to higher-order moments.

6.1. Squared returns and realized variance. In the first two sections, as data generating
process (DGP) for the log returns we use a GARCH(1,1) process defined by

σ 2
t = a0 + a1r

2
t−1 + bσ 2

t−1, rt = σtεt ,

where additionally

εt =
m∑

i=1

εt,i , εt,i = N (0,1/m), i = 1, . . . ,m,(26)

and all εt,i independent. Assuming that σt is constant on (t − 1, t], observed intraday returns
are given by rt,i = σtεt,i . We use a0 = 0.02, a1 = 0.08, b = 0.85, m = 100, and m = 13;
the first is a typical range using 5-min returns, the latter corresponds to the use of half-hour
returns at the New York Stock Exchange (NYSE). While this is certainly an oversimplified
model for actual high-frequency data, it serves to illustrate the use of proxies, and is similar
to the setting used in Patton (2011), Section 2.2. Real high-frequency data for log-returns of
cryptocurrencies are analyzed in Section 7.

As the total length of the time series, we take T = 1500 and T = 6000. For these two
time series, we generate rolling one-step-ahead forecasts of the conditional variance using a
moving time window, with window length T/3, refitted every 10 time steps, for GARCH(1,1),
ARCH(1), ARCH(2), and ARCH(7) models. Hence, for T = 1500, the fit is based on 500
values, and the DM tests use 1000 forecasts of each model. All computations are done in
R (R Core Team (2021)) using the R packages rugarch (Ghalanos (2020)) and fGarch
(Wuertz et al. (2020)).

To stabilize the results, the following figures show the means of the results of 500 repli-
cations for Figures 2 and 3, and of 50 replications for all figures after Figure 3 of the DM
test. All figures use the three-zone approach described in the previous section with the fol-
lowing modification: we simultaneously show rejection of H−

0 at level 0.1,0.05 and 0.01
by marking in light red, red, and dark red, respectively, marking in light green, green, and
dark green signals rejection of H+

0 at the three levels. Besides the forecasts from the differ-
ent (G)ARCH models, we show the result for the optimal forecast, given by the true condi-
tional volatilities. Each figure shows four plot matrices: in the left (right) column, the squared
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FIG. 2. Results of DM tests (based on 500 replications), normal distribution, left: squared returns, right: realized
variances, m = 100, T = 1500.

returns (realized variances) are used as proxies. In the upper row, the loss function is the
mean squared error L(x, y) = (x − y)2, whereas in the lower row, the QLIKE loss func-
tion L̃(x, y) = y/x − log(y/x) − 1 is used. These loss functions correspond to the choice
of φ(y) = y2 and φ(y) = − log(y) in equation (7). The power of the DM test and even the
ranking of competing forecasts may depend on the particular choice of the strictly consistent
loss function in case of misspecified forecasts; see Patton (2020) and Ehm et al. (2016) for a
discussion. The QLIKE loss for the mean was proposed in Patton (2011) as a 0-homogeneous
alternative to the more standard squared loss. It requires fewer moment assumptions, and a
favorable performance for volatility forecasting was found in various empirical studies in-
cluding Patton and Sheppard (2009).

Figure 2 shows the results of DM tests under normal innovations with T = 1500 and
m = 100. The left panels show results for the squared returns r2

t , the right panels for the
realized variances RVt = ∑m

i=1 r2
t,i .

Let us first discuss the results shown in the lower-left panel, that is, for the QLIKE loss and
using the squared returns as proxies. The second value in the left column, +1.532, is the av-
erage value of the DM test statistic comparing the forecast x1,t from the GARCH(1,1) model
with the optimal forecast x2,t , the true conditional volatilities. The positive value hints at the
superiority of x2,t , but the value is not statistically significant. The results are significant when
comparing the ARCH(1), ARCH(2), and ARCH(7) model with the optimal forecast. Here,
the red color indicates a significant rejection of H−

0 at the 0.05-level. The light red entries in
the second column show that forecasts from the ARCH(1) and ARCH(2) models are worse
than the forecasts from the GARCH(1,1) model (which is the true data generating process) at
level 0.1, but not on the 0.05-level. The forecast from GARCH(7) is not significantly worse
than the GARCH(1,1).

Now, let us turn to the lower-right panel with the realized variances as proxies. Here, all
corresponding entries are marked in dark red, signalizing the rejection of H−

0 at level 0.01
in all cases. Hence, the power of the DM test is clearly higher by using realized variances
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FIG. 3. Results of DM tests (based on 500 replications), normal distribution, left: squared returns, right: realized
variances, m = 13, T = 1500.

compared to squared returns. Looking at the upper row, we see that the results for the MSE
are similar from a qualitative point of view. However, there are fewer statistically significant
entries compared to the QLIKE loss function. Hence, the latter allows for a sharper forecast
evaluation in this example.

Figure 3 shows results from the same setting as Figure 2 apart from that we use m = 13,
corresponding to the use of half-hourly returns, instead of m = 100. Hence, the results in
the two left panels are the same as in Figure 2 (up to simulation error). The right panels are
similar as in Figure 2, as well. A closer look shows that all entries have smaller absolute
values, showing the decreasing power in differentiating forecasts.

We also replaced the normal distribution of the intraday innovations by centered skewed
and long-tailed distributions. For this, we used the normal inverse Gaussian distribution
nig(μ, δ,α,β) (Barndorff-Nielsen (1997)) with parameters

α = 2, β = 1, γ =
√

α2 − β2, δ = γ 3/α2/m, μ = −δβ/γ.

This results in E[εt,i] = 0 and Var(εt,i) = 1/m. Since the class of nig distributions with fixed
shape parameters α and β is closed under convolution, the distribution of εt = ∑m

i=1 εt,i is
given by nig(mμ,mδ,α,β), with E[εt ] = 0,Var(εt ) = 1, E[ε3

t ] = 1, and E[ε4
t ] = 17/3.

Figure 4 shows the results of the DM tests as in Figure 2, that is, for m = 100, using nig
instead of normally distributed innovations. Again, the results are qualitatively comparable
to the results in Figure 2, but the absolute values of the entries are generally smaller. Hence,
the change in the distribution of the innovations has a negative effect on the power of the
test. Note that this decrease of power is larger for the realized variances than for the squared
returns. This can be explained by the fact that the skewness and kurtosis of the daily innova-
tions are rather modest with values of 1 and 5.67, whereas the skewness and kurtosis of the
intraday innovations are 10 and 269.8, respectively.
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FIG. 4. Results of DM tests (based on 50 replications), nig distribution, left: squared returns, right: realized
variances, m = 100, T = 1500.

6.2. Higher moments. The use of realized higher moments, skewness, and kurtosis to
estimate and forecast returns has become quite standard in the literature. For example,
Neuberger (2012) analyzed realized skewness and showed that high-frequency data can be
used to provide more efficient estimates of the skewness in price changes over a period.
Amaya et al. (2015) constructed measures of realized daily skewness and kurtosis based on
intraday returns, and analyzed moment-based portfolios. Recently, Shen, Yao and Li (2018)
discussed the explanatory power of higher realized moments.

6.2.1. Third moment. Assuming E[rt |Ft−1] = 0, we are interested in the conditional
third moment ρt = E[r3

t |Ft−1]. Possible proxies for ρt are the cubed return r3
t and the re-

alized third moment RM(3)t = ∑m
i=1 r3

t,i . We use the GARCH(1,1) model of Section 6.1,
with the normal inverse Gaussian distribution for the innovations. Under this model, we ob-
tain

ρt = E
[
r3
t |Ft−1

] = E
[
σ 3

t ε3
t |Ft−1

] = σ 3
t E

[
ε3
t

]
,

E
[
ε3
t

] = E

[(
m∑

i=1

εt,i

)3]

= E

[∑
i

ε3
t,i + 3

∑
i<j

ε2
t,iεt,j + 6

∑
i<j<k

εt,iεt,j εt,k

]
=

m∑
i=1

E
[
ε3
t,i

]
.

Since

E
[
RM(3)t |Ft−1

] = σ 3
t

m∑
i=1

E
[
ε3
t,i

] = σ 3
t E

[
ε3
t

]
,

RM(3)t is an unbiased estimator of ρt . As a forecast of ρt , we use σ̃ 3
t E[ε3

t ], where σ̃t denotes
the one-step ahead forecast of σt from the different (G)ARCH models.
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FIG. 5. Results of DM tests (based on 50 replications), nig distribution, left: cubed returns, right: realized third
moment, m = 13, T = 6000.

Figure 5 shows the results of DM tests under nig(μ, δ,2,1) innovations, with μ,δ chosen
such that E[εt,i] = 0,Var(εt,i) = m−1/2. Skewness and kurtosis of the intraday innovations
are 3.61 and 37.67, respectively, compared to the values 1 and 5.67 of the daily innovations.
Here, total length of the simulated time series is T = 6000, and we use m = 13, that is, half-
hourly returns. The left panels show the results for the cubed returns r3

t , the right panels for
the realized third moment RM(3)t = ∑m

i=1 r3
t,i .

At first glance, the results seem to be rather different from the corresponding ones for the
volatility, since the number of significant entries is much lower (cf. Figure 3). But they go in
the same direction: use of the realized moments increases the power of the DM test when the
optimal forecast competes against the other models, or when the true data generating process
is compared with ARCH models.

We have also used T = 1500 in the simulations; the results (not shown) go in the same
direction, but none of the values are statistically significant, even at the 0.1-level.

6.2.2. Fourth moment. Here, we are interested in the conditional fourth moment τt =
E[r4

t |Ft−1]. Again, we use the GARCH(1,1) model as in Section 6.1, and obtain

E
[
ε4
t

] = ∑
i

E
[
ε4
t,i

] + 6
∑
i<j

E
[
ε2
t,iε

2
t,j

] = ∑
i

E
[
ε4
t,i

] + 3m(m − 1)
(
E

[
ε2
t,1

])2
.

Hence, unbiased proxies for τt are r4
t and the realized corrected fourth moment

cRM(4)t =
m∑

i=1

r4
t,i + 6

∑
i<j

r2
t,ir

2
t,j .

As a forecast of τt , we use σ̃ 4
t E[ε4

t ].
The left and right panels of Figure 6 show the results of the DM tests, using r4

t and the
realized corrected fourth moment as proxies, respectively. The innovations are normally dis-
tributed; further, T = 1500 and m = 13. The general picture resembles strongly the results



2250 H. HOLZMANN AND B. KLAR

FIG. 6. Results of DM tests (based on 50 replications), normal distribution, left: returns to the power 4, right:
realized corrected fourth moment, m = 13, T = 1500.

of the volatility forecasts in Figure 3, and all conclusions also apply here, even though the
actual entries are a bit smaller.

When replacing the normal by the nig innovations, the power of the DM test decreases
strongly (cf. Figure A.2 in the Supplementary Material (Holzmann and Klar (2023))). On
the other hand, the entries are somewhat larger as in forecasting the third moment (with
T = 1500). Here, at least a few values are significant on the 0.1-level.

6.3. An apARCH model for the fourth moment. Instead of modeling the volatility, and
computing higher moments under this process, it is also possible to use suitable models for
higher moments directly. Harvey and Siddique (1999, 2000), for example, considered an
autoregressive model for conditional skewness. Lambert and Laurent (2002) used the asym-
metric power (G)ARCH or APARCH model of Ding, Granger and Engle (1993) to describe
dynamics in skewed location-scale distributions. Brooks et al. (2005) used both separate and
joint GARCH models for conditional variance and conditional kurtosis, whereas Lau (2015)
modeled (standardized) realized moments by an exponentially weighted moving average.

Hence, in this section, we model the fourth moment directly by an asymmetric power
ARCH (apARCH) process (Ding, Granger and Engle (1993)). Specifically, the log returns
follow an apARCH(1,1) model with δ = 4,

σ 4
t = ω + αr4

t−1 + βσ 4
t−1, rt = σtεt ,

where εt = ∑m
i=1 εt,i , εt,i = N (0,1/m) for i = 1, . . . ,m, and all εt,i are independent. As-

suming again that σt is constant on (t − 1, t], intraday returns are given by rt,i = σtεt,i . We
use ω = 0.02, α = 0.08, β = 0.75 such that the unconditional variance is

σ 2 =
(

ω

1 − E(ε4
1)α − β

)2/δ

= √
2.

Further, m = 100 and T = 1500. As in the last section, unbiased proxies for τt = E[r4
t |Ft−1]

are r4
t and cRM(4)t . As a forecast of τt , we use σ̃ 4

t E[ε4
t ], where σ̃ 4

t denotes the one-step
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FIG. 7. Results of DM tests (based on 50 replications), apARCH process with exponent 4, normal distribution,
left: returns to the power 4, right: realized corrected fourth moment, m = 100, T = 1500.

ahead forecast of σ 4
t from the different apARCH models, namely apARCH(1,1), apARCH(1),

apARCH(2), and apARCH(3).
The left and right panels of Figure 7 show the results of the DM tests for the apARCH

process with exponent 4, with r4
t and the realized corrected fourth moment, respectively, as

proxies.
The visual comparison of the upper-left and lower-right panels is striking; in the latter,

each result is significant, whereas the former shows no significant entries. Hence, using high-
frequency data and a suitable loss function results in a highly improved forecast evaluation.
Generally, the results are quite similar to the results for the fourth moment based on the
GARCH process in Figure 6.

To sum up the results of the simulations, it has become obvious that using high-frequency
data for the proxies improves the forecast evaluation in each example. In most cases, the
effect is substantial. There is also an effect of the choice of the loss function: the power of the
DM test improves when using the QLIKE loss compared to the MSE loss function.

7. Log returns of cryptocurrencies. Many GARCH and GARCH-type models have
been used for modeling and predicting the volatility of cryptocurrencies (Katsiampa (2017),
Naimy and Hayek (2018), Chu et al. (2017)), and there is no general agreement which model
is the best choice. Katsiampa (2017), Naimy and Hayek (2018), and Gyamerah (2019) ad-
vocate the use of the component GARCH (CGARCH), the exponential GARCH (EGARCH)
and the threshhold GARCH (TGARCH) model, respectively. Chu et al. (2017) conclude that
the standard GARCH (SGARCH), the integrated GARCH (IGARCH), and the Glosten–
Jagannathan–Runkle GARCH (GJRGARCH) are preferable depending on the cryptocur-
rency. An overview over this and related literature can be found in Naimy et al. (2021),
who favor CGARCH, GJR-GARCH, APARCH, and TGARCH. Catania, Grassi and Ravaz-
zolo (2018) advocate the use of a score driven model with conditional generalized hyperbolic
skew student’s-t innovations for predicting the conditional volatility.
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FIG. 8. Results of DM tests for ETH log returns from May 16, 2018, to October 27, 2021, left: squared returns,
right: high frequency proxy.

In this section, we consider log returns of three cryptocurrencies, namely Bitcoin
(BTC), already used in Section 2.1, Ethereum (ETH), and Ripple (XRP). According to
coinmarketcap.com, BTC and ETH are the cryptocurrencies with the highest and second
highest market capitalization; XRP is number seven in the list. BTC is one of the oldest cryp-
tocurrencies, existing since 2008, whereas ETH and XRP were released in 2013 and 2012.
All three cryptocurrencies are traded in many cryptocurrency exchanges like Binance, FTX,
or Bitstamp. We use hourly observations from May 16, 2018, to October 27, 2021, with
sample size 30264, which corresponds to 1261 days. All prices are closing values in U.S.
dollars of the Bitstamp Exchange obtained from cryptodatadownload.com. Returns are esti-
mated by taking logarithmic differences. Figures A.4 and A.5 in the Supplementary Material
(Holzmann and Klar (2023)) show plots of the log returns and the autocorrelation functions
of log returns for the three cryptocurrencies.

Similarly, as in Section 6, we consider a standard GARCH(1,1) model and ARCH models
of order 1 and 4. As more sophisticated models, we also employ the EGARCH model of
Nelson (1991) and the CGARCH model of Lee and Engle (1999), both with p = q = 1 and
normal innovations. We model the conditional mean by a constant value in all cases. Since the
variance is nonelicitable, we aim at predicting the conditional second moment, using either
squared returns or the high frequency proxy

∑24
i=1 r2

t,i . One-step-ahead forecasts use a moving
time window with length 
T/3� = 420, refitted every time step. Figure 1 in Section 2.1 and
Figures 8 and 9 show the results of DM tests for the log returns of Bitcoin, Ethereum, and
Ripple, respectively.

The general observation is that the GARCH-type models outperform the two ARCH
models. The GARCH-type processes are comparable, with the CGARCH dominating the
EGARCH model for BTC in case of the QLIKE loss and high frequency proxy. For
QLIKE loss and high frequency proxy, CGARCH outperforms all other models, followed
by SGARCH.

With QLIKE loss, the power of the DM tests is considerably higher by using the high
frequency proxy compared to squared returns. Moreover, for BTC and ETH, there is an in-

http://coinmarketcap.com
http://cryptodatadownload.com
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FIG. 9. Results of DM tests for XRP log returns from May 16, 2018, to October 27, 2021, left: squared returns,
right: high frequency proxy.

crease in power using the QLIKE loss function compared to MSE; somewhat surprisingly,
the reverse holds for XRP. Hence, apart from the latter observation, the results corroborate
the findings of the simulations.

8. Concluding remarks. Our perspective, say in the Theorem 2, is that Yt+1 is observed
at time t + 1, but that in addition a proxy Ỹt+1 is also observed or can be computed, which
is more informative about the functional. Hence, Ỹt+1 can be used to increase the power of
tests for forecast dominance. The theoretical results are supported by both the simulations
and the real data example: The use of high-frequency data for the proxies generally improves
the forecast evaluation. This effect overlaps with the impact of the choice of the loss function,
which can also be quite high. Empirically, the power of the DM test improves when using the
QLIKE loss compared to the MSE loss function, although no theoretical results seem to be
available in this direction.

Another perspective which is pursued, for example, in Hoga and Dimitriadis (2022) for
mean forecasts of US GDP growth, by Li and Patton (2018) for forecasting integrated volatil-
ity in high-frequency finance, and by Kleen (2021) for probabilistic forecasts is that the
variable of interest Yt+1 is actually not observed but latent, and only proxies of Yt+1 with
additional measurement error can be observed. The problem is to quantify the effect of mea-
surement error on forecast evaluation. An interesting issue in the context of probabilistic
forecasting would thus be to investigate whether proxies can also be used, as in our setting,
to improve forecast evaluation.

When moving beyond moments and ratios of moments and when considering general func-
tionals T , one always has the following: If L is strictly consistent for T , and Ỹt+1 is a proxy
for T of Yt+1 in the sense that the conditional functionals

(27) T
(
FYt+1|Ft (ω, ·)) = T

(
F

Ỹt+1|Ft
(ω, ·))

coincide, then for Ft -measurable Zt ,

(28) E
[
L

(
T

(
FYt+1|Ft (ω, ·)), Ỹt+1

)|Ft

]
(ω) ≤ E

[
L(Zt , Ỹt+1)|Ft

]
(ω) for P-a.e. ω ∈ �,
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with equality almost surely if and only if T (FYt+1|Ft (ω, ·)) = Zt P-almost surely. Indeed, this
is simply (3) stated for Ỹt+1 by observing (27). (28) implies that if we do not take into account
comparing two possibly misspecified forecasts, then we can always replace the variable of
interest Yt+1 by a proxy Ỹt+1, which satisfies (27).

However, Hoga and Dimitriadis (2022) show in their Proposition 3 that for quantile scores,
this cannot be extended to comparing misspecified forecasts: If the difference of conditional
loss differences vanishes, then the conditional distributions of Yt+1 and Ỹt+1 must coincide.
It would be of interest to investigate if this negative result is more pervasive and applies to
further functionals such as expectiles.
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