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Understanding subcellular protein localisation is an essential component
in the analysis of context specific protein function. Recent advances in quanti-
tative mass-spectrometry (MS) have led to high-resolution mapping of thou-
sands of proteins to subcellular locations within the cell. Novel modelling
considerations to capture the complex nature of these data are thus neces-
sary. We approach analysis of spatial proteomics data in a nonparametric
Bayesian framework, using K-component mixtures of Gaussian process re-
gression models. The Gaussian process regression model accounts for corre-
lation structure within a subcellular niche, with each mixture component cap-
turing the distinct correlation structure observed within each niche. The avail-
ability of marker proteins (i.e., proteins with a priori known labelled loca-
tions) motivates a semi-supervised learning approach to inform the Gaussian
process hyperparameters. We moreover provide an efficient Hamiltonian-
within-Gibbs sampler for our model. Furthermore, we reduce the computa-
tional burden associated with inversion of covariance matrices by exploiting
the structure in the covariance matrix. A tensor decomposition of our covari-
ance matrices allows extended Trench and Durbin algorithms to be applied to
reduce the computational complexity of inversion and hence accelerate com-
putation. We provide detailed case-studies on Drosophila embryos and mouse
pluripotent embryonic stem cells to illustrate the benefit of semi-supervised
functional Bayesian modelling of the data.

1. Introduction. Proteins are biomolecules that have a diverse set of functional roles
within a cell enabling proliferation and survival. For a protein to be able to perform its func-
tion(s), it must interact with other binding partners and substrates which requires it to lo-
calise to the correct subcellular compartment (Gibson (2009)). There is mounting evidence
implicating aberrant protein localisation in disease, including cancer and obesity (Olkkonen
and Ikonen (2006), Laurila and Vihinen (2009), Luheshi, Crowther and Dobson (2008),
De Matteis and Luini (2011), Cody, Iampietro and Lécuyer (2013), Kau, Way and Silver
(2004), Rodriguez, Au and Henderson (2004), Latorre et al. (2005), Shin et al. (2013), Siljee
et al. (2018)). Mapping the location of proteins within the cell using high-resolution spa-
tial proteomic approaches is thus of high utility in the characterisation of therapeutic tar-
gets and in determining pathobiological mechanisms (Cook and Cristea (2019)). To inter-
rogate the subcellular locations of thousands of proteins per experiment, recent advances
in high-throughput spatial proteomics (Christoforou et al. (2016), Mulvey et al. (2017),
Geladaki et al. (2019)), followed by rigorous data analysis (Gatto et al. (2010)) can be ap-
plied. As we elaborate in our exposition below, the methodology relies on the observation
that each organelle (or, more generally, each subcellular niche) can be characterised by a
subcellular fractionation profile that is shared by the proteins that localise to that organelle
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(De Duve and Beaufay (1981)). Applications of spatial proteomics experiments and analy-
ses have enabled organelle-specific localisation to be determined for many proteins in many
systems (Dunkley et al. (2006), Tan et al. (2009), Hall et al. (2009), Breckels et al. (2013)),
including mouse pluripotent stem cells (mESCs) (Christoforou et al. (2016)) and cancer cell
lines (Thul et al. (2017)). Mass spectrometry (MS) based spatial proteomics, which is what
we consider here, has gained in popularity in recent years with several recent applications
across many different organisms (Christoforou et al. (2016), Beltran, Mathias and Cristea
(2016), Jadot et al. (2017), Itzhak et al. (2017), Mendes et al. (2017), Hirst et al. (2018),
Davies et al. (2018), Orre et al. (2019), Nightingale et al. (2019), Shin et al. (2019), Barylyuk
et al. (2020)).

An overview of a typical spatial proteomics experiment is provided in Figure 1(A). First,
cells are gently lysed to expose the cellular content while preserving the integrity of the or-
ganelles. The cellular content is then separated using, for example, differential centrifugation
(Itzhak et al. (2016), Geladaki et al. (2019), Orre et al. (2019)) or equilibrium density cen-
trifugation (Christoforou et al. (2016), Dunkley et al. (2004), Dunkley et al. (2006)), among
others (Parsons, Fernández-Niño and Heazlewood (2014), Heard et al. (2015)). After cen-
trifugation the proteins present in the fractions generated by this process are then extracted.
The protein abundance of each protein in each fraction is then determined experimentally
using high accuracy mass-spectrometry. This gives, for each protein, an abundance profile
across the subcellular fractions.

In the localisation of organelle proteins by isotope tagging (LOPIT; Dunkley et al. (2004),
Dunkley et al. (2006), Sadowski et al. (2006)) and hyper-LOPIT (Christoforou et al. (2016),
Mulvey et al. (2017)) approaches, cell lysis is proceeded by the separation of subcellular com-
ponents along a continuous density gradient based on their buoyant density. Discrete fractions
along this gradient are then collected, multiplexed using tandem mass tags (TMT) (Thompson
et al. (2003)) and protein distributions revealing organelle specific correlation profiles within
the fractions are achieved using synchronous precursor selection mass-spectrometry (SPS-
MS3). The resultant data are annotated using marker proteins; that is, proteins with unam-
biguous single localisations from the literature or appropriate databases such as the Human
Protein Atlas (HPA) (Thul et al. (2017)) or Gene Ontology (Ashburner et al. (2000)); see
Gatto et al. (2014a) for discussion. We, therefore, know a priori the unique subcellular niche
to which each marker protein localises, and hence these proteins define a labelled training
dataset comprising proteins for which we know the corresponding subcellular niche locali-
sations (class labels). We denote by K the number of distinct subcellular niches that appear
in this training dataset; that is, K is the number of classes. Typical spatial proteomics ex-
periments can now provide information on several thousands of proteins; for example, 5032
were quantified for the mESC application (Section 3.2). Modern experiments are expected
to resolve all major subcellular niches, but the precise number depends on experimental de-
sign. Indeed, in the Drosophila application (Section 3.1) no cytosolic component is observed
because the supernatant, enriched in cytosolic proteins, was discarded; that is, all proteins
belonging to the cytosol class were removed from the experiment. Furthermore, eukaryote
cells with more complex subcellular organisation are likely to have more subcellular niches
observed, if the data are sufficiently resolved (Barylyuk et al. (2020)). The experimental de-
sign (and thus the organelle separation) may be validated prior to quantitative analysis using
western blotting (Mulvey et al. (2017)).

In work that contributed to the discovery of previously unknown organelles and the award
of a Nobel prize, de Duve and colleagues (De Duve (1969), De Duve and Beaufay (1981),
Blobel (2013)) observed that proteins belonging to the same organelle possessed very similar
abundance profiles (Figure 1(B)). This motivates the following data analysis problem: given
the abundance profiles of the marker proteins that are already known to localise to a particular
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FIG. 1. An overview of the experimental design of a spatial proteomics experiment using density-gradient cen-
trifugation: (A) Cellular content is loaded onto a preformed iodixanol density gradient. The tube is then subject to
centrifugation, typically at 106g for eight hours. After centrifugation organelles have migrated to their buoyant
densities and proteins localised to these organelles will be more abundant in that part of the density gradient. (B)
Discrete fractions are collected along the density gradient. Proteins localised to the same organelle share char-
acteristic distributions across the fractions. (C) Organelles are assumed to be characterised by a smooth latent
probability density function p(x). Example characteristic probability density shown for organelle B with frac-
tions a, b and c indicated with assumed fixed depth �. (D) Observed abundance profile for a protein belonging to
Organelle B, after high-accuracy mass-spectrometry. (E) Proteins with a priori known localisation are annotated.
Proteins from the same subcellular niche share the same (median-centered) abundance profiles.

subcellular niche (e.g., organelle), can we determine which other proteins might also localise
to that niche? In many previous analyses this problem has been addressed as a black-box
classification problem, with partial least squares discriminant analysis (Dunkley et al. (2006),
Tan et al. (2009)) and the support vector machine (SVM) (Christoforou et al. (2016), Itzhak et
al. (2016), Orre et al. (2019)) being the most popular approaches. However, other approaches
are also used, such as nearest neighbour classifiers (Groen et al. (2014)), random forests (Ohta
et al. (2010)), naive Bayes (Nikolovski et al. (2012)) and neural networks (Tardif et al. (2012),
Beltran, Mathias and Cristea (2016)). We refer to Gatto et al. (2014a) for a review. Other
advances include the use of transfer learning to incorporate additional sources of localisation
information (Breckels et al. (2016)) and the development and application of outlier detection
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techniques (Breckels et al. (2013)). A recent review of the improvements in resolution of
spatial proteomics experiments over the last decade is provided by Gatto, Breckels and Lilley
(2019).

The classification approaches listed above have a number of major limitations. For exam-
ple, they implicitly assume that all proteins can be robustly assigned to a primary location,
which will often not be the case, since many proteins function in multiple cellular com-
partments. Other sources of uncertainty include the inherit stochastic processes involved in
MS-based quantitation as well as each protein’s physical properties which influence how well
it is quantified. Posttranslation modifications and the presence of different protein isoforms
also add to the challenge of protein quantification. Furthermore, many elements of the ex-
perimental procedure are variable and context specific, such as, cell lysis, formation of the
density gradients and protein extraction. In addition, organelle integrity maybe disrupted dur-
ing many of the downstream processing steps. Hence, there are many factors that contribute
to the challenge of making protein-niche associations.

Crook et al. (2018) demonstrated the importance of uncertainty quantification in spatial
proteomics analysis. This study developed a generative mixture model of MS spatial pro-
teomics data and, using this model, computed posterior distributions of protein localisation
probabilities. However, this model made a number of assumptions that simplified the analysis
but which do not accurately reflect the data generating process. In the present manuscript we
develop a generative model for the data that is more clearly motivated by the data generating
process.

1.1. Model development. Let x be the spatial axis along which density gradient separa-
tion occurs (see Figure 1(A)), and let x1 < x2 be two distinct points along x. We assume that
the kth organelle may be characterised by a smooth latent probability density function, pk(x)

(Figure 1(C)), such that, for any protein i that uniquely localises to the kth organelle, the
(unobserved) absolute quantity of protein i in the region [x1, x2] after separation is given by

(1) qk(x1, x2) =
∫ x2

x=x1

pk(x)dx.

In a spatial proteomics experiment, quantification occurs in discrete fractions, which we as-
sume to be of approximately the same depth, �. Thus, an idealised spatial proteomics exper-
iment would provide us with the quantities qk(xj , xj + �), where {x1, . . . , xD} is a grid of
spatial coordinates. To simplify notation, we write qk(xj ) to mean qk(xj , xj +�), that is, for
any protein that uniquely localises to the kth organelle, qk(xj ) is the absolute quantity of that
protein in the fraction spanning the region from xj to xj + �.

In practice, current spatial proteomics experiments are unable to determine absolute quan-
tities. We assume that the abundances provided by current spatial proteomics experiments
can be expressed as a continuous deterministic function, h, of the absolute quantities such
that the measured abundance, μk(xj ) of protein i in the interval from xj to xj + � can be
expressed as μk(xj ) = h(qk(xj )); see Figure 1(D). Since both h and qk are unknown, we
adopt a functional data analysis approach and treat μk as an unknown function to be inferred.
We learn μk using data from proteins whose localisation to organelle k is already known (see
Figure 1(E)) and use a semi-supervised approach to further improve the inference of μk using
data from proteins whose allocations to organelles are unknown a priori (see Section 2.4.4.2).
The number of tandem mass tags available limits the number, D, of discrete observations we
can observe and hence the resolution of the experiment. For example, in the case studies that
we consider later, D = 4 for the Drosophila example (Tan et al. (2009)), whereas for the
mouse embryonic stem cell (mESCs) example D = 10 (Christoforou et al. (2016)). As TMT
chemistry improves, it is expected that more complex designs will become available.
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Functional data analysis concerns itself with the analysis of data, where the sampled data
for each subject is a function (Ramsay (2004)). Wang, Chiou and Müller (2016) recently re-
viewed the current major approaches in functional data analysis, including functional princi-
pal component analysis (Jones and Rice (1992)), functional linear regression (Morris (2015)),
functional clustering (James and Sugar (2003)) and functional classification (Preda, Saporta
and Lévéder (2007)). For classification the linear discriminant analysis method was extended
to the functional setting using splines (James and Hastie (2001)). Mixture discriminant analy-
sis in the functional setting applied to model bike sharing data was considered by Bouveyron,
Côme and Jacques (2015), using a functional EM algorithm. Bayesian approaches to func-
tional classification have also been considered, such as, the wavelet based functional mixed
model approach (Zhu, Brown and Morris (2012)); Bayesian variable selection has also been
extended to the functional setting (Zhu, Vannucci and Cox (2010)). Rodríguez, Dunson and
Gelfand (2009) use dependant Dirichlet processes in the nonparametric Bayesian setting
to cluster functional data. The Gaussian process approach to analysing functional data in
biomedical applications is extensive (Honkela et al. (2010), Liu et al. (2010), Stegle et al.
(2010), Kalaitzis and Lawrence (2011a), Heinonen et al. (2014), Topa et al. (2015)).

We assume each quantitative protein profile can be described by some unknown function,
with the uncertainty in this function captured using a Gaussian process (GP) prior. Each
subcellular niche is described by distinct density-gradient profiles which display a nonlinear
structure with no particular parametric assumption being suitable. The contrasting density-
gradient profiles are captured as components in a mixture of Gaussian process regression
models. Gaussian process regression models have been applied extensively, and we refer to
Rasmussen (2004) and Rasmussen and Williams (2006) for the general theory. In molec-
ular biology and functional genomics, the focus of many applications has been on expres-
sion time-series data, where sophisticated models have been developed (Kirk and Stumpf
(2009), Cooke et al. (2011), Kalaitzis and Lawrence (2011b), Kirk et al. (2012), Hensman,
Lawrence and Rattray (2013)). We remark that many of these applications consider unsu-
pervised clustering problems. In contrast, here we have (partially) labelled data (since the
localisations of the marker proteins are known prior to our experiments), and so we may
consider semi-supervised approaches. We explore inference of GP hyperparameters in two
ways: first, an empirical Bayes approach in which the hyperparameters are optimised by
maximising a marginal likelihood; second, by placing priors over these GP hyperparameters
and performing fully Bayesian inference using labelled and unlabelled data.

A number of computational aspects need to be considered if inference is to be applied
to spatial proteomics data. The first is that correlation in the GP hyperparameters can lead
to slow exploration of the posterior; thus, we use Hamiltonian evolutions to propose global
moves through our probability space (Duane et al. (1987)), avoiding random walk nature ev-
ident in traditional symmetric random walk proposals (Metropolis et al. (1953), Beskos et al.
(2013)). Hamiltonian Monte Carlo (HMC) has been explored previously for hyperparameter
inference in GP regression (Williams and Rasmussen (1996)), and here we show that HMC
can be up to an order of magnitude more efficient than a Metropolis–Hastings approach. Fur-
thermore, a particular costly computation in our model is the computation of the marginal
likelihood (and its gradient) associated with each mixture component, which involves the in-
version of a large covariance matrix—even storage of such matrix can be challenging. We
demonstrate that a simple tensor decomposition of the covariance matrix allows application
of fast matrix algorithms for covariance inversion and low memory storage (Zhang, Leithead
and Leith (2005)).

2. Methods. We provide an overview of the key modelling choices and considerations
below. A comprehensive mathematical summary of the model and inference procedure is
provided in the Supplementary Material (Crook et al. (2022))
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2.1. Modelling protein abundances along the density gradient. In our experiment we
make discrete observations along a continuous density gradient yi = [yi(x1), . . . , yi(xD)],
where yi(xj ) indicates the measurement of protein i in the fraction spanning the spatial re-
gion from xj to xj +� along the density gradient. We assume that protein intensity yi varies
smoothly with the distance along the density-gradient. We then define the following regres-
sion model for the measured abundance of protein i as a function of the spatial coordinate
x:

(2) yi(x) = μi(x) + εi,

where μi is an unknown deterministic function and εi a noise variable. We assume that
εi ∼iid N (0, σ 2

i ), for simplicity, and remark that more elaborate noise models could be cho-
sen but at additional computational cost and greater model complexity. Proteins are grouped
together according to their subcellular localisation, with all proteins associated with subcel-
lular niche k = 1, . . . ,K sharing the same regression model; that is, μi = μk and σi = σk for
all proteins in the kth subcellular niche. For clarity we refer to subcellular structures, whether
that be organelles, vesicles or large multiprotein complexes, as components. Thus, proteins
associated with component k can be modelled as i.i.d draws from a multivariate Gaussian
random variable with mean vector μk = [μk(x1), . . . ,μk(xD)] and covariance matrix σ 2

k ID .
To perform inference for the unknown function μk , as is typical for spatial correlated data
(Gelfand, Kottas and MacEachern (2005), Steel and Fuentes (2010)), we specify a Gaussian
process (GP) prior for each μk ,

(3) μk(x) ∼ GP
(
mk(x),Ck

(
x, x′)),

where mk(x) is the mean function and Ck(x, x′) is the covariance function (sometimes also
known as the kernel function) of the GP prior; see Rasmussen and Williams (2006). Each
component is thus captured by a Gaussian process regression model. The full complement of
proteins is then modelled as a K-component mixture of Gaussian process regression models,
plus an “outlier component” to model proteins that are not captured well by any of the K

known subcellular components. We provide a brief overview of Bayesian K-compinent mix-
tures in the next section, describe the modelling of outliers in Section 2.3 and further discuss
the specification of the GP prior, including hyperparameter inference, in Section 2.4.

2.2. Finite mixture models. This section provides a brief review of finite mixture mod-
els (see, e.g., (Fraley and Raftery (2007), Lavine and West (1992)) for more details). Finite
mixture models are of the form,

(4) p(y|π , θ) =
K∑

k=1

πkf (y|θk),

where K is the number of mixture components, πk are the mixture proportions and f (y|θk)

are the component densities. In our application, each mixture component corresponds to a
distinct subcellular niche, and θk is shorthand for μk and σk , as described in Section 2.1
above. As described in the Introduction, our data includes a set of marker proteins whose
subcellular niche localisations are known a priori. Thus, K is known from the outset, since
we assume that we have, at least, one marker protein localising to each subcellular niche;
that is, we assume that all classes are represented among our labelled data (see Crook et al.
(2020), for a relaxation of this assumption).

We assume each component density to have the same parametric form but with component
specific parameters, θk . We denote the prior for these unknown component parameters by
g0(θ). We suppose that we have a collection of n data points, Y = {y1, . . . ,yn}, that we
seek to model using equation (4). We associate with each of these data points a component
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indicator variable, zi ∈ {1, . . . ,K} which indicates which component generated observation
yi . In our initial exposition we consider the unsupervised case, where all zi are unknown, and
then describe how we take into account the marker proteins which are (labelled) proteins for
which the zi are known. As is common for mixture models, we perform Gibbs sampling for
the zi and πk by sampling from the conditionals described below.

Conditional for π : If we assign the mixture proportions a symmetric Dirichlet prior with
concentration parameter α/K , then we may marginalise the πk (Murphy (2012)) or sample
them. Although sampling these parameters can lead to increased posterior variance (Gelfand
and Smith (1990), Casella and Robert (1996)), it can be computationally advantageous. Con-
jugacy of the Dirichlet prior and multinomial likelihood means that the conditional posterior
distribution of the mixing proportions, given the component indicator variables is also Dirich-
let,

(5) π |z1, . . . , zn, α ∼ Dir(α/K + n1, . . . , α/K + nK),

where nk is the number of data points yi for which zi = k. Selecting an appropriate value for α

can be challenging. A sensitivity analysis for the choice of α is provided in the Supplementary
Material (Crook et al. (2022)), and we show that α = 1 is a good default choice in practice.

Conditional for zi : Given the mixing proportions, the prior distribution of zi is categorical
with parameter vector π = [π1, . . . , πK ],
(6) P(zi = k|π) = πk,

and the conditional posterior for zi is

(7) P(zi = k|π ,yi , θk) ∝ πkf (yi |θk).

In the present application we have a number of labelled marker proteins for which the
component labels are known. If protein j is a marker protein, it is unnecessary to perform
inference for zj by sampling from equation (7) and, instead, zj is fixed from the outset (see
the Supplementary Material for details, Crook et al. (2022)).

2.3. Modelling outliers. Crook et al. (2018) demonstrated that many proteins are not
captured well by any known subcellular component. This could be because of yet undiscov-
ered biological novelty, technical variation or a manifestation of some proteins residing in
multiple localisations. Modelling outliers in mixture models can be challenging (Cooke et al.
(2011), Coretto and Hennig (2016), Hennig (2004), Murphy and Murphy (2019)). Here, we
take the approach of Crook et al. (2018). Briefly, we introduce a binary latent variable φ so
that, for each protein yi , we have a φi ∈ {0,1} indicating whether yi is modelled by one of
the known subcellular components or an outlier component. The augmented model becomes
the following:

p(yi |π , θ, φ) =
K∑

k=1

πkf (yi |θk)
φi g(yi |�)1−φi

=
K∑

k=1

πk

(
φif

(
yi

∣∣θk

) + (1 − φi)g
(
yi

∣∣�))
,

(8)

where g is the density of the outlier component. In our case we specify g as the density of a
multivariate T distribution with degrees of freedom κ = 4, mean M and scale matrix V . M is
taken as the empirical global mean of the data and the scale matrix V as half the empirical
covariance of the data. These choices are motivated by considering a Gaussian component
with the same mean and covariance but with heavier tails to better capture dispersed proteins.
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We remark that other choices of g and parameters may be suitable and can be tailored to the
application at hand. In typical Bayesian fashion we specify a prior for φ as p0(φi = 0) = ε,
where ε ∼ B(u, v). Marginalising φ in equation (8) leads to the following mixture of mixtures
(Malsiner-Walli, Frühwirth-Schnatter and Grün (2017)):

(9) p(yi |π, θ) =
K∑

k=1

πk

(
(1 − ε)f

(
yi |θk

) + εg
(
yi |�))

.

We can also rewrite the above equation in the following way:

(10) p(yi |π , θ) =
K∑

k=1

π̃kf (yi |θk) + π̃0g(yi |�),

where π̃k = πk(1 − ε) for k = 1, . . . ,K and π̃0 = πkε and, evidently,
∑K

k=0 π̃k = 1. Thus, ε

can be interpreted as the prior proportion of outliers. The Jeffreys prior in this scenario would
set the parameters u and v of the B(u, v) prior to be u = v = 1

2 (Jeffreys (1946)), while a
uniform prior corresponds to u = v = 1. We prefer to specify a weakly informative prior
based on prior data. From independent microscopy data, up to 50% of proteins do not have
robust single localisations (Thul et al. (2017)), and it is unlikely that there are extremely few
outliers (Christoforou et al. (2016)). These considerations lead us to placing small probability
mass on the upper tail ε > 0.5 and small probability around the lower tail close to 0. Since our
prior information comes from different experiments, we only consider a weakly informative
Beta prior: ε ∼ B(2,10). A sensitivity analysis is performed in the Supplementary Material
(Crook et al. (2022)). All hyperparameter choices are stated in the appendix.

2.4. Gaussian process prior specification. A Gaussian process (GP) is a continuous
stochastic process such that any finite collection of these random variables is jointly Gaus-
sian. A Gaussian process prior is uniquely specified by a mean function m and covariance
function C which determine the mean vectors and covariance matrices of the associated mul-
tivariate Gaussian distributions. To elaborate, assuming a GP prior for the function μk(x)

means that, at spatial coordinates x1, . . . , xD , the joint prior of μk = [μk(x1), . . . ,μk(xD)]T
is multivariate Gaussian with mean vector mk = [mk(x1), . . . ,mk(xD)] and covariance matrix
Ck(i, j) = Ck(xi, xj ). Given no prior belief about symmetry or periodicity in our determin-
istic function, we assume our GP is centred with squared exponential covariance function

(11) Ck(xi, xj ) = a2
k exp

(
−‖xi − xj‖2

2

lk

)
.

2.4.1. Marginalising the unknown function. Having adopted a GP prior with component
specific parameters ak and lk for each unknown function μk , we let observations associated
with component k be denoted by Yk = {yi1, . . . ,yink

}, where i1, . . . , ink
∈ {1, . . . , n} are the

indices for which zi1 = · · · = zink
= k. Our model tells us that

(12) Yk|μk, σk ∼N
(
μk, σ

2
k ID

)
.

Then, we can write this as

Yk(x1), . . . , Yk(xD)|μk,σk

∼ N
(
μk(x1), . . . ,μk(xD), . . . ,μk(x1), . . . ,μk(xD), σ 2

k InkD

)
,

(13)

where μk(x1), . . . ,μk(xD) is repeated nk times. Our GP prior tell us

(14) μk(x1), . . . ,μk(xD), . . . ,μk(x1), . . . ,μk(xD)|ak, lk ∼ N (0,Ck),
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where Ck is an nkD × nkD matrix. This matrix is organised into nk × nk square blocks each
of size D. The (i, j)th block of Ck being Ak , where Ak is the covariance function for the kth
component evaluated at τ = {x1, . . . , xD},

(15) Ck =

⎡
⎢⎢⎢⎣
Ak Ak . . . Ak

Ak Ak . . . Ak

...
...

. . .
...

Ak Ak . . . Ak

⎤
⎥⎥⎥⎦ .

Letting ρk = {a2
k , lk}, we can then marginalise μk to obtain

Yk(x1), . . . , Yk(xD)|ρk, σ
2
k ∼N

(
0,Ck + σ 2

k InkD

)
,(16)

thus avoiding inference of μk . Let Yk(τ ) denote the vector of length nk × D equal
to [y1(x1), . . . , y1(xD), . . . , ynk

(x1), . . . , ynk
(xD)]. Then, we may rewrite equation (7) by

marginalising μk to obtain

(17) P(zi = k|z−i ) ∝ πk

∫
p(yi |μk)p

(
μk|ρk, Y−i,k(τ )

)
dμk,

where Y−i,k(τ ) is equal to Yk(τ ) with observation i removed.

2.4.2. Tensor decomposition of the covariance matrix for fast inference. Our covariance
matrix has a particularly simple structure, allowing us to exploit extended Trench and Durbin
algorithms for fast matrix computations (Zhang, Leithead and Leith (2005)). Full derivations
and step-by-step algorithms for computing this inverse and determinant can be found in the
Supplementary Material (Crook et al. (2022)).

2.4.3. Sampling the underlying function. Whilst it is often mathematically convenient
to marginalise the unknown function μk from a computational perspective, it is not always
advantageous to do so. To be precise, marginalising μk induces dependencies among the
observations; that is, we cannot exploit the conditional independence structure given the un-
derlying function μk . After marginalising, Gibbs moves must be made sequentially for each
protein in turn, and this can slow down computation.

The alternative approach is to sample the underlying function and exploit conditional inde-
pendence. Once a sample is obtained from the GP posterior on μk , conditional independence
allows us to compute the likelihood for all proteins at once, exploiting vectorisation. If there
are a particularly large number of observation in each component, it is also possible to paral-
lelize computation over the components k = 1, . . . ,K .

2.4.4. Gaussian process hyperparameter inference. To complete the specification of the
GP prior, we need either to fix the hyperparameters a2

k , lk and σ 2
k at the outset or to perform

inference for these quantities. We consider two strategies for dealing with the hyperparame-
ters: supervised optimisation and semi-supervised inference.

2.4.4.1. Supervised approach: Optimising the hyperparameters. Our first strategy is to fix
the hyperparameters at the outset, via a maximum marginal likelihood, using only the labelled
data. The marginal likelihood can be obtained quickly by recalling that

Yk(x1), . . . , Yk(xD)|ρk, σ
2
k ∼ N

(
0,Ck + σ 2

k InkD

)
.(18)

Thus, the log marginal likelihood is given by

logp
(
Yk|τ,ρk, σ

2
k

)
= −1

2
Yk(τ )

(
Ck + σ 2

k InkD

)−1
Yk(τ )T − 1

2
log

∣∣Ck + σ 2
k InkD

∣∣ − nkD

2
log 2π.

(19)
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For convenience of notation set Ĉk = Ck + σ 2
k InkD . To maximise the marginal likelihood,

given equation (19), we find the partial derivatives with respect to the parameters (Rasmussen
(2004)). Hence, we can use a gradient based optimisation procedure. Positivity constraints
on a2

k , lk , σ 2
k are dealt with by reparametrisation, and so, dropping the dependence on k for

notational convenience and abusing notation, we set l = exp(ν1), a2 = exp(2ν2) and σ 2 =
exp(2ν3). Application of the quasi-Newton L-BFGS algorithm (Liu and Nocedal (1989)) for
numerical optimisation of the marginal likelihood with respect to the hyperparameters is now
straightforward. The L-BFGS can only find a local optimum, and so we initialise over a grid
of values. We terminate the algorithm when successive iterations of the gradient are less
than 10−8. We make extensive use of high-performance R packages to interface with C++
(Eddelbuettel and Francois (2011), Eddelbuettel and Sanderson (2014)).

2.4.4.2. Semi-supervised approach: Bayesian inference of the hyperparameters. The ad-
vantage of adopting a Bayesian approach to hyperparameter inference is that we can quantify
uncertainty in these hyperparameters. Uncertainty quantification in GP hyperparameter infer-
ence is important, since different hyperparameters can have a strong effect on the GP posterior
(Rasmussen (2004)). Furthermore, we consider a semi-supervised approach to hyperparame-
ter inference. By a semi-supervised approach we mean that the hyperparameters are inferred,
using both the labelled and unlabelled data rather than just the labelled data.

Consider, at some iteration of our MCMC algorithm, the data associated to the kth compo-
nent Yk . We can partition this data into the unlabelled (U) and labelled data (L); in particular,
Yk = [Y (L)

k , Y
(U)
k ]. To clarify, the indicators zi are known for Y

(L)
k prior to inference, whilst

allocations zi for Y
(U)
k are sampled at each iteration of our MCMC algorithm. In our semi-

supervised approach to hyperparameter inference, we use the set Yk of all data (labelled and
unlabelled) currently associated with the kth component. We consider a Hamiltonian Monte
Carlo (HMC) sampler for performing inference for these hyperparameters, as described in
the Supplementary Material (Crook et al. (2022)), where we also compare to a Metropolis–
Hastings sampler.

2.5. MCMC algorithm for posterior Bayesian computation. Full details of the proce-
dure(s) for performing inference in our model are provided in the Supplementary Material
(Crook et al. (2022)).

2.6. Summarising uncertainty in posterior localisation probabilities. Summarising un-
certainty quantified by Bayesian analysis in an interpretable way can be challenging. As
always, we can summarise uncertainty using credible intervals or regions (Gelman et al.
(1995)). One particularly challenging quantity of interest to summarise is the uncertainty in
posterior allocations. Whilst each individual allocation of a protein to a subcellular niche can
be summarised by a credible interval, it is not clear what is the best way to summarise the pos-
terior over all possible localisations for each individual protein. As in previous work (Crook
et al. (2018)), we propose to summarise this uncertainty in an information-theoretic approach
by computing the Shannon entropy of the localisation probabilities (Shannon (1948)) at each
iteration of the MCMC algorithm

(20)

{
H

(t)
ik = −

K∑
k=1

p
(t)
ik logp

(t)
ik

}T

t=1

,

where p
(t)
ik is the probability that protein i belong to component k at iteration t . We can then

summarise this by a Monte Carlo average,

(21) Hik ≈ 1

T

T∑
t=1

H
(t)
ik .
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We note that larger values of a Shannon entropy correspond to greater uncertainty in alloca-
tions.

2.7. Proper scoring rules. The primary goal of spatial proteomics is to assign proteins
with unknown localisations to subcellular niches based on their quantitative functional mea-
surements. Secondary goals include inference of organelle specific parameters and uncer-
tainty quantification, because organelles have overlapping biochemical properties. To mea-
sure the ability of methodologies to correctly assign proteins to organelles, we desire a strictly
proper and symmetric scoring rule (Gneiting and Raftery (2007)). The symmetry is a require-
ment because ruling out protein localisations are as important as confident assignments. The
quadratic (Brier) loss, spherical loss and logarithmic loss are usually appropriate candidates
(Gneiting and Raftery (2007)). We put equal value on whether probabilities are over or under
estimated, and so the quadratic loss is appropriate, since the spherical loss puts more weight
on lower entropy predictions (penalises underconfident predictions) and the log loss higher
entropy predictions (rewards erring on the side of caution) (Gneiting and Raftery (2007),
Machete (2013)). The unboundedness of the log loss is also problematic, since assigning po-
tentially infinite penalty to an incorrect prediction is not useful in practice. We define the
quadratic loss for a set of probabilistic forecasts p as

(22) B(p) =
n∑

i=1

K∑
j=1

‖δij − pij‖2
2,

where δij = 1 if protein i localises to component j and is 0 otherwise. It is useful to note a
penalty of size 2 is incurred for completely incorrect predictions, that is, forecasting probabil-
ity 1 for the wrong component. A smaller penalty is incurred for agnostic prediction amongst
several classes. For example, suppose protein i localises to organelle 1, but we predict it be-
longs to organelle 2, 3, 4 and 5 with equal probability; the penalty incurred is 1.25. This is
important in practice, because we favour methodologies that avoid us performing erroneous
validation experiments.

3. Results.

3.1. Case study I: Drosophila melanogaster embryos.

3.1.1. Application. The first case study is the Drosophila melanogaster (common fruit
fly) embryos (Tan et al. (2009)) in which we compare the supervised and semi-supervised ap-
proaches for updating the model hyperparameters. In particular, we explore the effect on the
component specific noise term σ 2 by adopting different inference approaches. For each sub-
cellular niche we learn the hyperparameters by either maximising their marginal likelihood
or sampling from their posterior using MCMC. The posterior distribution for the hyperpa-
rameters can either be found solely using the labelled data for each component or by making
use of labelled and unlabelled data.

Figure 2 demonstrates several phenomena. Reassuringly, the estimates of the noise param-
eters σ 2

k for k = 1, . . . ,K , obtained by using the L-BFGS algorithm to maximise the marginal
likelihood, coincide with the posterior distributions of the noise parameters, inferred using
only the labelled data for each component. However, when we perform inference in a semi-
supervised way, by using both the labelled and unlabelled data to make inferences, we make
several important observations.

First, in many cases the posterior, using both the labelled and unlabelled data, is shifted
right toward 0. Recalling that we are working with the log of the hyperparameters, this indi-
cates that the noise parameters is smaller when solely using the labelled data. This is likely a
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FIG. 2. Posterior distributions for the log noise parameter σ 2 on the Drosophila data. In general, we observe
a shift toward 0, indicating that the labelled data underestimates the value of the noise term for each component.
We also observe increased posterior shrinkage for many components with the variance of the noise parameters
reduced in the semi-supervised setting.

manifestation of experimental bias, since it is reasonable to believe that proteins with known
prior locations are those which have less variable localisations and are, therefore, easier to
experimentally validate. A semi-supervised approach is able to overcome these issues, by
adapting to proteins in a dense region of space. In some cases the shift is pronounced, with
posteriors of the parameters using labelled and unlabelled data found in the tails of the pos-
terior only using the labelled distribution. Furthermore, we notice shrinkage in the posterior
distribution of the noise parameter in the semi-supervised setting. The reduction in variance
reduces our uncertainty about the underlying true value of σ 2

k for k = 1, . . . ,K . This variance
reduction is observed, in most cases, even when there is little difference in the mean of the
posteriors.

The primary goal of spatial proteomics is to predict the localisation of unknown proteins
from data. Our modelling approach allows the allocation probability of each protein to each
component to be used to predict the localisation of unknown proteins. Proteins may reside
in multiple locations, and some subcellular niches are challenging to separate because of
confounding biochemical properties, leading to uncertainty in a proteins localisation. Thus,
adopting a Bayesian approach and quantifying this uncertainty is of great importance. Our
methods allow point-estimates as well as interval estimates to be obtained for the posterior
localisation probabilities. Figure 3 demonstrates the results of applying our method. Each
protein in this PCA plot is scaled according to mean of the Monte Carlo samples from the
posterior localisation probability. To visualise the allocation probabilities for proteins across
organelles, we produce a heatmap, M , where the (i, j)th entry of M is the Monte Carlo
estimate of the allocation probability of the ith protein to organelle j (see the Supplementary
Material, Crook et al. (2022)).

Further visualisation of the model and data are possible. We plot two representative exam-
ple of gradient-density profiles for two components, the endoplasmic reticulum (ER) and the
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FIG. 3. A PCA plot for the Drosophila data where points, representing proteins, are shaded by the compo-
nent of greatest probability. The pointer for each protein is scaled according to membership probability with
larger/smaller points indicating greater/lower allocation probabilities.

nucleus, in Figure 4. We plot the labelled proteins, which were assigned to each component
before our analysis, as well as the unlabelled proteins which have been allocated to these
components probabilistically. We observe that they have the same gradient-density shape as
the labelled proteins—in line with our beliefs about the underlying biology: that proteins
from the same components should cofractionate and, therefore, have similar density gradient
profiles. In addition, we overlay the posterior predictive distribution for these components
and observe they represent the data well.

3.1.2. Sensitivity analysis for hyperprior specification. We use the Drosophila melano-
gaster dataset to test for sensitivity of the hyperprior specification. To test for sensitivity, we
see if predictive performance is affected by changes in the choice of hyperprior. The following
cross-validation schema assesses whether predictive performance is affected by choice of

FIG. 4. A plot of the gradient-density profiles for the ER and Nucleus with labelled proteins (solid lines) and pro-
teins probabilistically assigned to those components (dashed lines). The profiles of the assigned proteins closely
match the profiles of the components. The predictive posterior of these components is also overlaid.
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FIG. 5. Boxplots of quadratic losses to assess the sensitivity of semi-supervised hyperparameter inference to
hyperprior choices.

hyperprior. We split the labelled data for each experiment into class-stratified training (80%)

and test (20%) partitions, with the separation formed at random. The true classes of the
test profiles are withheld from the classifier, whilst MCMC is performed. This 80/20 data
stratification is performed 100 times in order produce a distribution of scores. We compare the
ability of the methods to probabilistically infer the true classes using the quadratic loss, also
referred to as the Brier score (Gneiting and Raftery (2007)). Thus, a distribution of quadratic
losses is obtained for each method, with the preferred method minimising the quadratic loss.
Each method is run for 10,000 MCMC iterations with 1000 iterations for burn-in. We vary
the mean of the standard normal hyperprior for each hyperparameter in turn for a grid of
values m̃ = (0,−1,−2,−3,−4), keeping the hyperprior for the other variable held the same
as a standard normal distribution. The results are displayed in Figure 5.

We observe only minor sensitivity to the choice of hyperprior, with no significant differ-
ence in performance noted (KS test, threshold = 0.01). Sensitivity analysis for hyperparam-
eters of GPs is vital, since these hyperparameters have a strong effect on the posterior of
the GP (Rasmussen (2004)). The observed lack of sensitivity in our case is advantageous,
since prior information can be included without fear of over fitting. However, practitioners
should always take care when specifying priors, especially for variance/covariance parame-
ters, as many authors have noted sensitivity of Bayesian models to these parameters (Gelman
(2006), Gelman et al. (1995), Lunn et al. (2000), Wang and Dunson (2011), Schuurman,
Grasman and Hamaker ()).

3.2. Case study II: Mouse pluripotent embryonic stems cells.

3.2.1. Application. Our main case study is the mouse pluripotent E14TG2a stem cell
dataset of Christoforou et al. (2016). This dataset contains 5032 quantitative protein pro-
files and resolves 14 subcellular niches. We first plot the density-gradient profiles of the
marker proteins for each subcellular niche in Figure 6. We fit a Gaussian process prior re-
gression model for each subcellular niche with the hyperparameters found by maximising
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FIG. 6. Quantitative profiles of protein markers for each subcellular niche. A GP prior regression model is fitted
to these data, and the predictive distribution is displayed. We observe distinct distributions for each subcellular
niche generated by the unique density-gradient properties of each subcellular niche.

the marginal likelihood. A table of unconstrained log hyperparameter values found by max-
imising the marginal likelihood is found in the Supplementary Material (Crook et al. (2022)).
Alternatively, placing standard normal priors on each of the log hyperparameters and using a
Metropolis–Hastings update, we can infer the distributions over these hyperparameters. We
perform 20,000 iterations for each subcellular niche and discard 15,000 iterations for burn-in
and proceed to thin the remaining samples by 20. We summarise the Monte Carlo sample by
the expected value as well as the 95% equitailed credible interval which can also be found in
the Supplementary Material (Crook et al. (2022)).

We go further to predict proteins with unknown localisation to annotated components using
our proposed mixture of GP regression models. As before, we adopt a semi-supervised ap-
proach to hyperparameter inference. Again, we place standard normal hyperpriors on the log
of the hyperparameters. We run our MCMC algorithm for 20,000 iterations with half taken
as burn-in and thin by 5 as well as using HMC to update the hyperparameters. The PCA
plot in Figure 7 visualises our results. Each pointer represent a single protein and is scaled
either to the probability of membership to the most probable component (left) or scaled with
the Shannon entropy (right). As before, we also visualise the allocation probabilities for pro-
teins across organelles in a heatmap (see the Supplementary Material, Crook et al. (2022)).
In these plots we observe regions of high probability and confidence to each organelle as
well as obtaining a global view of uncertainty. In this example we observe regions of uncer-
tainty, as measured by the Shannon entropy, concentrating where components overlap. We
also observe uncertainty in regions where there is no dominant component. This Bayesian
analysis provides a wealth of information on the global patterns of protein localisation in
mouse pluripotent embryonic stem cells.
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FIG. 7. A PCA plot for the mouse pluripotent embryonic stem cell data where points, representing proteins,
are shaded by the component of greatest probability. The pointer for each protein is scaled with membership
probability (left). (right) The pointer for each protein is scaled with the Monte Carlo averaged Shannon Entropy.

3.3. Assessing predictive performance. We compare the predictive performance of the
methods proposed here as well as against the fully Bayesian TAGM model of Crook et al.
(2018), where subcellular niches are described by multivariate Gaussian distributions rather
than GPs. The following cross-validation schema is used to compare the classifiers. We split
the labelled data for each experiment into class-stratified training (80%) and test (20%) parti-
tions, with the separation formed at random. The true classes of the test profiles are withheld
from the classifier, whilst MCMC is performed. This 80/20 data stratification is performed
100 times in order produce a distribution of scores. We compare the ability of the methods
to probabilistically infer the true classes using the quadratic loss, also referred to as the Brier
score (Gneiting and Raftery (2007)). Thus, a distribution of quadratic losses is obtained for
each method, with the preferred method minimising the quadratic loss. Each method is run
for 10,000 MCMC iterations with 1000 iterations for burn-in. For fair comparison we held
priors the same across all datasets. Prior specifications are stated in the Supplementary Ma-
terial Crook et al. (2022).

We compare across five different spatial proteomics datasets across three different organ-
isms. The datasets we compare our methods on are Drosophila melanogaster embryos from
Tan et al. (2009), the mouse pluripotent embroyonic stem cell dataset of Christoforou et al.
(2016), the HeLa cell line dataset of Itzhak et al. (2016), the mouse primary neuron dataset
of Itzhak et al. (2017) and, finally, a CRISPR-CAS9 knock-out coupled to spatial proteomics
analysis dataset (AP5Z1-KO1) of Hirst et al. (2018). The results are found in Figure 8.

We see that our in four out five datasets there is an improvement of the GP models over
the TAGM model (Kolmogorov–Smirnov (KS) two-sample test p < 0.0001), because the GP
model is provided with more explicit correlation structure of the data. The empirical Bayes
slightly method outperforms the fully Bayesian approach in three of the data sets ((KS) two-
sample test p < 0.01). These are the mouse pluripotent embryonic stem cell dataset, the HeLa
data set of Itzhak et al. (2016) and the HeLA AP5Z1 knock-out dataset of Hirst et al. (2018).
However, the size of these difference is small, and there is, at most, a six point difference.
This corresponds to better assignments for, at most, three proteins, which we do not believe to
be worth the loss in uncertainty quantification in the GP hyperparameters and the lost ability
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FIG. 8. Boxplots of quadratic losses comparing predictive performance of the TAGM against the two semi–
supervised Gaussian process models described here, where either an empirical Bayes (EB) approach or fully
Bayesian (FB) approach is used for hyperparameter inference. That is, (EB) denotes the model where hyperpa-
rameters are fixed and learned for the labelled data only, using L-BFGS to optimise the hyperparameters with
respect to the marginal likelihood. (FB) denotes the semi-supervised model where hyperparameters are given
priors, and the unlabelled data are allowed in the inference of the hyperparameters.

to provide expert prior information on the GP hyperparameters, both of which are provided
by the fully Bayesian approach. Meanwhile, the improvement of the GP methods over the
TAGM model is marked in the four datasets where we see improvement. Improvements range
from score differences of roughly 16 to almost 80 which corresponds to eight to 40 proteins
with better allocations. Moreover, we note that the GP methods have only three parameters
for the structured covariance to be inferred, whilst the TAGM model requires inference of
full unstructured covariance matrices.

We observe that the TAGM model outperforms the GP methods in the Itzhak et al. (2016)
dataset. The authors of this study used differential centrifugation to separate cellular content
and curated a “large protein complex” class. This class could contain multiple subcellular
structures, such as ribosomes, as well as cytosolic and nuclear proteins. In any case, our
modelling assumptions are violated in both models, and this issue is exacerbated by param-
eterising the covariance structure. One solution to this would be to model this mixture of
large protein complexes as its own class. However, as this class contains a quite diverse set
of subcellular compartments, it is difficult to predict behaviour. This class could be itself a
mixture of GPs; however, the number of components of the class would be unknown and this
would have to be carefully modelled, perhaps using reversible jump methods (Richardson
and Green (1997)) or Dirichlet process approaches (Escobar and West (1995)).

4. Discussion. This article presents semi-supervised nonparametric Bayesian methods
to model spatial proteomics data. Subcellular niches display unique signatures along subcel-
lular fractions, and we exploit this information to construct GP regression models for each
niche. The full complement of subcellular proteins is then described as mixture of GP regres-
sion models, with outliers captured by an additional component in our mixture. This provides
cell biologists with a fully Bayesian method to analyse spatial proteomics data in the non-
parametric framework that more closely reflects the biochemical process used to generate
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the data. This greatly increases model interpretation and allows us to make more biological
sound inferences from our model.

We compared the proposed semi-supervised models to the state-of-the-art model on five
different spatial proteomics datasets. Modelling the correlation structure along the subcellular
fractions leads to competitive predictive performance over state-of-the-art models. Empirical
Bayes procedures perform either equally well or better than the fully Bayesian approach at the
loss of uncertainty quantification in the hyperparameters. Though this performance improve-
ment should not be overinterpreted, since cross-validation assessment is only performed on
the labelled data and will not reflect any biased sampling mechanisms that could be at play.

To accelerate computation in our model, we note that the structure of our covariance matrix
admits a tensor decomposition which can be exploited so that fast algorithms for matrix
inversion of Toeplitz matrices can be employed. These decompositions can then be used to
derive formulae for fast computation of the likelihood and gradient of a GP. A stand-alone
R-package implementing these methods, using high-performance C++ libraries, is available
in the Supplementary Material (Crook et al. (2022)) and at the following GitHub repository:
https://github.com/ococrook/toeplitz. These algorithms and associated formulae are useful to
those outside the spatial proteomics community and to anyone using GPs with equally spaced
observations, even in the unsupervised case.

We demonstrated that, in the presence of labelled data, there are two approach to hyper-
parameter inference. This first is to use empirical-Bayes to optimise the hyperparameters,
the other a fully Bayesian approach, taking into account the uncertainty in these hyperpa-
rameters. We propose to use HMC to update these hyperparameters, since highly correlated
hyperparameters can induce high autocorrelation and exacerbate issues with random-walk
MH updates. We demonstrate that, in the situation presented here, HMC updates can be up
to an order of magnitude more efficient than MH updates. We further explored the sensitivity
of our model to hyperprior specification which gives practitioners good default choices.

In two case-studies we highlighted the value of taking a semi-supervised approach to hy-
perparameter inference, allowing us to explore the uncertainty in our hyperparameters. In a
fully Bayesian approach the uncertainty in the hyperparameters is reflected in the uncertainty
of the localisation of proteins to components. Quantifying uncertainty provide cell biologists
with a wealth of information to make quantifiable inference about protein subcellular locali-
sation.

We plan to disseminate our method via the Bioconductor project (Gentleman et al. (2004),
Huber et al. (2015)) and to include our code in pRoloc package (Gatto et al. (2014b)). The
pRoloc package includes methods for visualisation, processing data and disseminating code
in a unified framework. All spatial proteomics data used here is freely available within the
Bioconductor package pRolocdata (Gatto, Crook and Breckels (2018)).

One potential source of uncertainty in protein localisation is that they can be residents
of multiple subcellular compartments. We believe that, by proposing a model which more
closely reflects the underlying biochemical rationale for the experiment, we can facilitate
models which can infer proteins with multiple locations with greater confidence. This is the
subject of further work.
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SUPPLEMENTARY MATERIAL

Supplement to “Semi-supervised nonparametric Bayesian modelling of spatial pro-
teomics” (DOI: 10.1214/22-AOAS1603SUPP; .zip). In this supplement, we provide the ad-
ditional derivations, results, and figures referenced in the main text, as well as our code for
fast matrix inversion of Toeplitz matrices.
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