
Statistical Science
2021, Vol. 36, No. 4, 612–622
https://doi.org/10.1214/21-STS821
© Institute of Mathematical Statistics, 2021

A Conversation with Don Dawson
Bouchra R. Nasri, Bruno N. Rémillard, Barbara Szyszkowicz and Jean Vaillancourt

Abstract. Donald Andrew Dawson (Don Dawson) was born in 1937. He re-
ceived a bachelor’s degree in 1958 and a master’s degree in 1959 from McGill
University and a Ph.D. in 1963 from M.I.T. under the supervision of Henry P.
McKean, Jr. Following an appointment at McGill University as professor for
7 years, he joined Carleton University in 1970 where he remained for the rest
of his career. Among his many contributions to the theory of stochastic pro-
cesses, his work leading to the creation of the Dawson–Watanabe superpro-
cess and the analysis of its remarkable properties in describing the evolution
in space and time of populations, stand out as milestones of modern probabil-
ity theory. His numerous papers span the whole gamut of contemporary hot
areas, notably the study of stochastic evolution equations, measure-valued
processes, McKean–Vlasov limits, hierarchical structures, super-Brownian
motion, as well as branching, catalytic and historical processes. He has over
200 refereed publications and 8 monographs, with an impressive number of
citations, more than 7000. He is elected Fellow of the Royal Society and of
the Royal Society of Canada, as well as Gold medalist of the Statistical Soci-
ety of Canada and elected Fellow of the Institute of Mathematical Statistics.
We realized this interview to celebrate the outstanding contribution of Don
Dawson to 50 years of Stochastics at Carleton University.

Key words and phrases: Biography, probability, statistics, stochastic pro-
cesses, physics, biology.

1. INDIVIDUAL EXPERIENCE

BN et al.: How did you initially get interested in the
subject of probability?

Don: In my undergraduate student days, the role of en-
tropy in thermodynamics captured my interest. The use
of entropy in information theory and its applications to
mathematical linguistics which was the subject of my
M.Sc. thesis. Then at M.I.T., from 1959 to 1963, as a
member of the Artificial Intelligence Project, I was in-
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spired by the course of Marvin Minsky in the new field
of artificial intelligence which dealt with the uses of ran-
dom methods for search and interacting systems. I took
an inspiring course on the (now famous) book of Henry
P. McKean Jr. and Kiyosi Itô: Diffusion processes and
their sample paths (Itô and McKean, 1974) and decided
to write my thesis on this topic.

BN et al.: Who were your mentors during your studies?

Don: At McGill University, Edward Rosenthall whose
real analysis course was inspiring. Joachim “Jim” Lam-
bek was the advisor for my M.Sc. thesis, and at M.I.T.,
my Ph.D. advisor was Henry P. McKean, Jr. I returned
to McGill after completing my Ph.D. to take up a pro-
fessorship. I taught at McGill University from 1963 to
1970 where I had four Ph.D. students. (I had two more at
McGill later on.) Then in 1970 I came to Carleton Univer-
sity, where I supervised 23 Ph.D. students. I also worked
with 35 postdoctoral fellows and research associates.

2. EARLY YEARS

BN et al.: You came from McGill to Carleton Univer-
sity in 1970. What were your main motivations and the
challenges you faced?
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FIG. 1. Don Dawson during a conference in honour of Kuznestsov
at University of Colorado (Boulder) in 2010.

Don: The main motivation was to build the Carleton
Ph.D. program. The first challenge was having the assess-
ment of the Ph.D. Program in Probability and Statistics.
Fortunately, Miklós Csörgő came in 1971 and the two of
us worked together, then a couple of years later Jon Rao
came.

BN et al.: Talk to us about your early years at Carleton
University.

Don: Many activities arose at Carleton during the
1970s. For example, there was the Symposium on Prob-
ability and Related Topics in 1973. Another was a series
of lectures by Takeyuki Hida on the Analysis of Brownian
Functionals in 1975, highlighted throughout by Hida’s
signature fans in his overhead talks. Also memorable were
a series of lectures by Josef Steinebach on Large deviation
probabilities and some related topics in 1980, and the In-
ternational Symposium in Ottawa in 1980, for which the
proceedings were published in 1981 by North–Holland.

BN et al.: How did the collaborations with the Univer-
sity of Ottawa emerge?

Don: At McGill, I had developed a close relationship
with Anatole Joffe, who had studied with Mark Kac. Ana-
tole’s former student David McDonald and later my stu-
dent Gail Ivanoff, as well as Mayer Alvo, who came from
Columbia University, after a masters thesis at McGill, all
became professors at the University of Ottawa. As a re-
sult, it was normal to have good relations between the two
universities.

3. LRSP YEARS

BN et al.: The Carleton University–University of Ot-
tawa Laboratory for Research in Statistics and Probabil-
ity (LRSP) at Carleton University was a hive of research
in probability and statistics from its creation in 1982 on.

FIG. 2. Founders of the LRSP from Carleton University: from left to
right, J.N.K. Rao, A.K.M.D.E Saleh, M. Csörgő and D. Dawson.

How did it come about and what were the main challenges
to its creation?

Don: The main challenges were to find the appropriate
funding. From 1983 to 1998, we obtained over 400K from
the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC). We also benefited from NSERC
Conference grants and International Foreign Researcher
grants.

BN et al.: Using rankings based on all research articles
published between 1986 and 2000 inclusively in 25 se-
lect journals of high reputation (9 in Probability and 16
in Statistics), Genest and Guay (2002) identified the Car-
leton University Statistics and Probability group as one
of only two in the world as having high productivity in
both statistics and probability (the other one was Cornell),
among the top 15 most productive statistical institutions
in the world at the time. In a prior survey of the period
1986–1995 by Genest (Genest, 1999), the LRSP was one
of three such groups (the other two were Cornell and the
Université Libre de Bruxelles). What was the secret of the
success of the LRSP? What are the key ingredients in your
opinion?

Don: What made the LRSP so successful was the set
of people who formed the team and the participation of
a critical mass of researchers from Carleton University,
the University of Ottawa and Statistics Canada. The key
was a wide vision of the discipline of stochastics, and the
scientific generosity of its members. The funding we re-
ceived made possible the hiring of Mrs. Gill Murray as
the Coordinator of the LRSP; she provided the outstand-
ing coordination and was the glue, which made the wide
range of activities possible.

BN et al.: Would it be possible to reproduce this suc-
cess today? What are the barriers to realizing this again?

Don: Many things have changed since 1982. It is not
clear to me what mechanism could produce this type of
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FIG. 3. Don Dawson and Gill Murray.

funding. However if this were possible, and the other con-
ditions I mentioned above for this success of LRSP were
met, it could be achieved.

BN et al.: Can you speak to us about the major con-
tributions to our field that emerged around the labora-
tory, during that time and since? What was the impact of
the numerous visitors on site? Can you name a few of
the most distinguished visitors you received at the labo-
ratory? Any defining moments (conferences or visits) or
anecdotes (amusing or enlightening) to share with us?

Don: Our Technical Report Series was a real success
with more than 450 volumes. Over the course of 50 or so
years there are many enlightening and sometime amusing
incidents involving visitors. I can highlight a few.

One of the most inspiring talks was given by Mark Kac,
who was one of the first to explain mathematical physics
and the Gibbs measure to probabilists like me. One of his
favorite sayings was “a demonstration convinces a reason-
able man whereas a proof satisfies a stubborn one.”

Robert Adler who was used to the weather in Australia
and Israel, faced a −30 degree (C) spell in Ottawa. He
looked a little cold but it did not affect his impressive
presentation. This included a lab demonstration of his
software which later appeared as “Superprocesses—The
Movie.”

Jean-Francois Le Gall’s blackboard talks, given as part
of the Fields Institute thematic program on Probability
and its Applications in August 1998–July 1999, were both
inspiring and enlightening.

As time went by, mathematics talks went from black-
board to overhead slides and then to computer aided talks.
A case in point were the superb lectures Tom Kurtz gave
on the “look-down” process about his work with Pe-
ter Donnelly (Donnelly and Kurtz, 1996). This became
one of the major advances in population genetics. His
lecture was an excellent example of the good use of a
computer talk. Another memorable lecture was given by

Terry Lyons on his seminal work introducing rough paths.
Terry’s was the first one I saw using a computer (tablet)
as a “blackboard.”

4. COLLABORATIONS AND INTERACTIONS

BN et al.: What are your favorite papers and why?

Don: I have listed my 3 favorite papers before 1991
because my future work, one way or another, was based
on these three.

Dawson and Hochberg (1982) is a favorite of mine
since it led to much of my research since then that has
been focused on Fleming–Viot processes. Wendell Flem-
ing was the External Examiner for Amit Bose’s Ph.D.
thesis defense in 1977 and he came to Carleton for this
reason. We discussed his joint work with Viot and I be-
came interested in their model. Ken Hochberg came to
Carleton as a PDF (he was also supervised by H.P. McK-
ean). With Ken, we saw that we could show that the mo-
ment measures satisfies de Finetti’s theorem and to use
this to reconstruct the measure. One application was to
show that the long time behavior has a coherence prop-
erty called which we called “wandering.” I gave a talk at
the Annual Winter Meeting of the Canadian Mathematical
Society at Vancouver in December 1980 on a early draft
and somebody pointed the connection that our wandering
measure could be interpreted as a continuous limit of the
of model of Kingman (1976). This also led to Dawson and
Hochberg (1983).

Dawson and Gärtner (1987) is also a favorite of mine
since it was a starting point for future applications of large
deviation arguments in mean-field models. I first met Jür-
gen Gärtner in Berlin in 1986 while visiting Klaus Fleis-
chmann. I was interested in McKean–Vlasov processes
(Dawson, 1983) and Jürgen was an expert on large de-
viation theory. The purpose of this paper was to show that
the numbers of particles N → ∞ which is given by the
McKean–Vlasov equation and the large deviation behav-
ior is described by a generalization of the Freidlin and
Wentzell results to obtain a characterization of the action
functional. This is achieved by a projective limit of large
deviation systems, large deviations on dual vector spaces
and a Sanov type theorem for vectors of empirical mea-
sures. I coauthored several papers with Jürgen including a
AMS memoir and lectures at the Cambridge Symposium
in 1987, “Stochastic calculus in application.” I learned a
great deal from him. Based on Google searchers, there
were a surprising numbers of citations on mean-field re-
sults and their large deviations limits as the number of par-
ticles goes to ∞. This includes stochastic dynamic games,
stochastic filtering, stochastic control, stochastic spin sys-
tems, ecology, nonequilibrium thermodynamics and ran-
dom polymers.

Another favorite of mine is Dawson and Perkins (1991)
since it brought together the work done on superprocesses
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during the period 1968 and 1990 by Watanabe, Iscoe,
Perkins and me by introducing the historical processes as
a superprocess, which is enriched to contain information
on the genealogy of the population.

BN et al.: How did historical processes come about?
You cowrote major papers on the subject with Ed Perkins.
Can you speak in more detail about this collaboration?

Don: The subject began with Watanabe (1968). Unfor-
tunately, I was unaware of this article until I read Walsh’s
Saint-Flour notes (Walsh, 1986), which refers to it. My
work on superprocesses was originally motivated by the
dimensional dependence of stochastic evolution equa-
tions in Euclidean spaces (Dawson, 1972, 1975). In my
1975 paper, the stochastic evolution equation on branch-
ing results in a measure-valued process in any dimension.
This is based of the use of the Trotter product formula.
Dawson (1977, 1978/79, 1979), Dawson and Hochberg
(1982), those of Iscoe (1981, 1986a, 1986b, 1988) (who
had developed a formula for the occupation time of a
superprocess in his Carleton Ph.D. thesis) and Perkins
(1988, 1989, 1990) also explore many questions of the
dimension dependence.

The notion of the historical process came about in early
discussions we had with Ian Iscoe. The formulations of
historical processes that took place in the sixth floor of
the Dunton Tower at Carleton University slowly came
together using the general superprocess due to Fitzsim-
mons, the use the nonstandard characterization of weak
convergence, which was new to me and the Palm mea-
sure formula and Campbell measure. The latter was based
on the theory of infinitely divisible random measures of
Jagers (1974), Kallenberg (1978), Matthes, Kerstan and
Mecke (1978).

Over the next 15 years, I had the pleasure to work on
several projects with Ed. One example of this is our joint
work on mutually catalytic branching. During that time,
we were stuck on finding the dual—fortunately Leonid
Mytnik produced new dual. In turn, this led to the five
author collaboration (Dawson et al., 2002). One memo-
rable meeting of the authors was at the Fields Institute.
Over the years, Perkins has made the many of the deepest
results in superprocess. His Saint-Flour Notes (Perkins,
2002) contain the state of the art before 2003. I have been
also influenced in particular by his later joint work with
Steve Evans (Evans and Perkins, 1998). This, together
with Barlow and Perkins (1994), played an important role
in Dawson and Fleischmann (1997).

BN et al.: Can you talk to us about your relationship
over the years with Dynkin and Le Gall? The publications
by Dynkin and Le Gall in the field came much later and
the main ones are both dated in 1991. What can you say

about their contribution to our understanding of superpro-
cesses and how superprocesses came to bear your name,
as in Dawson–Watanabe processes?

Don: In the late 1980s, Dynkin became interested in
superprocesses. I first leaned of this by an email message
asking questions about my 1978 paper. Later he also ar-
ranged a visit by me and also Iscoe to Cornell. I was in-
vited to give one of the Barrett lectures at the University of
Tennessee in 1993. Dynkin was one of the other lectures
there where I learned of his new results; these also formed
the contents of Dynkin (1994). Over the years, Dynkin
made many contributions to superdiffusions including the
important notion of branching exit Markov systems. This
and many more deep results of his are presented in Dynkin
(2002). Dynkin’s branching rate functional played an es-
sential role in Dawson and Fleischmann (1997). Dynkin
introduced the name superprocesses in Dynkin (1988)
and the name Dawson–Watanabe processes in the book
Dynkin (1994). He later introduced the class of super-
processes (ξ,K,ψ). The superprocess with ξ a Brownian
motion, quadratic branching and K(t) ∝ dt was called the
Dawson–Watanabe superprocess.

Le Gall presented his Brownian excursion, trees and
measure-valued branching processes paper (Le Gall,
1991) at the Workshop on Infinite dimensional Markov
processes at Cornell University in May 1989. This pa-
per develops a representation based on a tree inspired
by Neveu and its relation to the historical process. It is
a powerful tool for the superprocess and their general-
izations. His basic construction is extended in Duquesne
and Le Gall (2002) to Lévy processes to produce the
Lévy snake. One application is to get the stable analogue
of Aldous’ continuum Brownian random tree (Aldous,
1991a, 1991b, 1993). The Brownian snake also was used
in the Habilitation Dissertation of J.-F. Delmas, for which
I was asked to report in 1997. It included a section on cat-
alytic branching including his paper with Fleischmann.
His work has influenced me in several ways. In 2002,
we used the Brownian snake to discuss strong clumping
in a stable catalytic medium (Dawson, Fleischmann and
Mörters, 2002). Also the stochastic flow results of Bertoin
and Le Gall (2003), Bertoin and Le Gall (2005) were the
inspiration for Dawson and Li (2012).

BN et al.: Other than Dynkin, Le Gall and Perkins,
which three other researchers would you consider to have
written the most influential papers in your field or fields
of endeavor? How did they influence your own research?

Don: I will mention Allison Etheridge, Tom Kurtz and
Tokuzo Shiga. Barton, Etheridge and Véber (2010) was
the beginning of an approach to evolution in a spatial con-
tinuum that has since had an important impact on the sub-
ject. Etheridge (2011) and subsequent work since is a ma-
jor contribution to evolutionary biology. I have followed
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FIG. 4. From left to right: Don Dawson, Luis Gorostiza, Caroline
Kurtz, Tom Kurtz and Ed Perkins.

the work of Etheridge since her Ph.D. thesis. Etheridge
and March (1991) was the first to point out the relation-
ship between superprocesses and the Fleming–Viot pro-
cess, which was an important step. We were coauthors on
Dawson et al. (2002).

Donnelly and Kurtz (1996) was the start of a develop-
ment which represents the genealogy of a Fleming–Viot
populations and it had a major impact on population bi-
ology. I spent my sabbatical during 1980–1981 visiting
the University of Wisconsin. Kurtz and his former student
Ethier were starting to work on Ethier and Kurtz (1986),
which has had a major impact in the field of Markov pro-
cesses. At that time, I was completing the joint paper with
Ken Hochberg on the Fleming–Viot process, which had
introduced the dual method for measure-valued processes.
In a train ride from Madison to Chicago, we started to
work on our joint paper on the general conditions nec-
essary for the duality. Greven and I used the results of
Ethier–Kurtz and especially the results on coupling and
ergodic theorems.

I spent the period October–November 1994 visiting
Shiga at the Tokyo Institute of Technology and learned
much from him. I was familiar with his earlier paper Shiga
and Shimizu (1980) on infinite-dimensional stochastic
differential equations, when he gave a series of lectures at
Carleton, up to Konno and Shiga (1988). But I was un-
aware of his earlier work (Shiga and Uchiyama, 1986)
which I learned during this visit. This paper provided
some of the key tools in my later work with Greven
on Fleming–Viot processes (Dawson and Greven, 1999,
2014).

BN et al.: Can you talk to us about your relationship
over the years with your long term collaborators Klaus
Fleischmann, Luis Gorostiza and Andreas Greven?

Don: I first met Klaus Fleischmann at a meeting in
Hungary in 1978. We had a long collaboration. We

FIG. 5. From left to right: Luis Gorostiza, Don Dawson and Klaus
Fleischmann.

worked on catalytic and mutually catalytic super-
Brownian motions, including the work mentioned previ-
ously. Among my favorites is Dawson and Fleischmann
(1997).

Luis Gorostiza is another one of my long term collab-
orator. Our first joint paper was in 1984 (Dawson and
Gorostiza, 1984). We worked on a variety of topics, in-
cluding Dawson, Gorostiza and Li (2002), and Dawson,
Gorostiza and Wakolbinger (2001) where, among other
things, we identify the order of transience and recurrence
of hierarchical processes. Most recently, we worked on
random walks and percolation on Euclidean and hierar-
chical systems and their continuum limits (Dawson and
Gorostiza, 2018). Highlights were our trips to Beijing and
CIMAT in Guanajuato.

If the metric is number of pages published together,
then Andreas Greven and I are definitely the closest of
collaborators. My collaboration in the early years with
Andreas started with a Colloquium he gave at Carleton
on his joint work with Ted Cox (Cox and Greven, 1994),
and discussions we had afterwords. In 1995 at Carleton,
we collaborated with Jean Vaillancourt on equilibria and
quasiequilibria for infinite systems of interacting systems
Fleming–Viot processes (Dawson, Greven and Vaillan-
court, 1995). From May to July 2001, I was the Otto
Haupt Visiting Professor at the University of Erlangen-
Nürnberg and I had the pleasure to give a class to Greven’s
graduate students. In the last 20 years, Greven and his stu-
dents Achim Klenke, Peter Pfaffehuber and Anita Win-
ter had produced deep results on superprocesses and their
generalizations. In 2008 at EURANDOM, we studied the
renormalization transformation for two type branching
models (Dawson et al., 2008). Our work on Fleming–
Viot models with selection and mutation culminated with
Dawson and Greven (2014). This constructed a rigorous
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FIG. 6. Andreas Greven and Don Dawson.

framework for the analysis of the evolution of population
toward fitter types though punctuated equilibria. We also
taught a joint minicourse in 2017 based on this book at
EURANDOM.

5. SCIENTIFIC CONTRIBUTIONS

BN et al.: You have published more than 200 papers.
Many of your contributions aim at describing and analyz-
ing the behavior of branching particle systems. Can you
describe for our readers how your interest for these arose?

Don: This arose out my interest in the theory of the
stochastic heat equation

∂X

∂t
= ∂2X

∂x2 + αXβ ∂B

∂t

with β ∈ (0,1] and B(t) is standard Brownian motion.
The case β = 1

2 represents continuous state branching.
The starting point was Dawson (1972) in which ex-
istence and uniqueness for Hilbert-space valued solu-
tions for a class of parabolic stochastic partial differen-
tial equations (SPDE) with Lipschitz coefficients and the
joint continuity in space and time for the stochastic heat
equation in one dimension were established. In Dawson
and Salehi (1980), it was noted that the linear SPDE
dX(t, x) = �X(t, x) + X(t, x) dW(t, x) with X(0, x) ≥
0, now known as the parabolic Anderson equation, with
space-time white noise W does not have a function-valued
solution in Rd for d ≥ 2. However, it was proved using
Itô–Wiener chaos expansions that function-valued solu-
tions in d ≥ 2 exist if the white noise is replaced by noise
white in time but suitably colored in space.

The motivation for the development of measure-valued
processes came from the observation that the Feller dif-
fusion (continuous state branching) in dimensions d ≥
2, dX(t, x) = �X(t, x) + (X(t, x))1/2W(dt, dx), where
W(·, ·) denotes space-time white noise, does not have a

function-valued solution but does have a measure-valued
solution. This problem was addressed in Dawson (1975)
by reformulating it as a measure-valued process for which
existence and uniqueness in law was established. The re-
sulting process now known as super-Brownian motion or
Dawson–Watanabe superprocess had also been discov-
ered earlier by S. Watanabe in the context of continuous
state branching processes.

BN et al.: Your work on branching particle systems
led to the introduction of families of measure-valued pro-
cesses, which grew into a whole new field within proba-
bility theory. What are the results you are most proud of
in this area?

Don: During the years 1970–1995, my research pro-
gram focused on the characterization and classification of
basic classes of measure-valued processes and the study
of the small spatial scale and large space-time scale be-
havior of these processes. This led to the systematic
development of the foundations of measure-valued pro-
cesses presented in Dawson (1993, 2017), which now
have important applications in genetics, ecology and other
fields. For other measure-valued processes whose states
are not infinitely divisible random measures, dual repre-
sentations, that had applications to infinite particle sys-
tems, also could be applied to some measure valued
processes. In Dawson and Hochberg (1982), we devel-
oped the method of duality for the probability measure-
valued processes introduced by Fleming and Viot, as
well as a particle representation and decomposition into
a tree of subfamilies. Duality was also a key ingredient
in a joint paper with George Papanicolaou (Dawson and
Papanicolaou, 1984) for a Hilbert space-valued random
Schrödinger process. The duality method was also refor-
mulated in an abstract setting in a joint paper with Tom
Kurtz (Dawson and Kurtz, 1982) and this has now become
a standard tool.

Another basic tool is the historical superprocess and its
canonical representation, which we introduced in a joint
paper with E.A. Perkins (Dawson and Perkins, 1991) and
used there to establish a number of structural properties of
super-Brownian motion including the clan decomposition
of the equilibrium distribution.

A method that can be used to handle a class of non-
linear interactions is the Dawson–Girsanov formula for
measure-valued processes that we derived in Dawson
(1978) and has been used to incorporate selection in
Fleming–Viot processes and nonlinear birth and death
rates in superprocesses. Some results for nonlinear sam-
pling rates for Fleming–Viot sufficiently close to con-
stant rates were obtained in a joint paper with P. March
(Dawson and March, 1995) using a class of resolvent es-
timates and a semigroup perturbation argument.

BN et al.: What were the main applications driving the
research on measure-valued processes?



618 NASRI, RÉMILLARD, SZYSZKOWICZ AND VAILLANCOURT

Don: The are so many applications. Here are a few.

Catalytic and mutually catalytic processes: A cat-
alytic particle system is one in which the reactant popula-
tion produces new particles only in the presence of a cat-
alyst. A class of catalytic superprocesses was introduced
and studied in a series of joint papers with Klaus Fleis-
chmann. An example of that is Dawson and Fleischmann
(1997) where a super-Brownian motion is catalyzed by
another super-Brownian motion, which is nondegenerate
only in dimensions d = 1,2,3. Similar analysis can be
carried out for catalytic chains having no cycles but chains
having cycles are fundamentally different. The case of a
2-cycle (mutually catalytic branching) in which each of
two types catalyzes the production of the other was intro-
duced in Dawson and Perkins (1998). In the case of one
spatial dimension existence and weak uniqueness was ob-
tained with E.A. Perkins (Dawson and Perkins, 1998) for
the associated pair of SPDE. Existence and uniqueness in
law for the corresponding martingale problem in R2 was
established in a series of three papers in collaboration with
A. Etheridge, K. Fleischmann, L. Mytnik, E.A. Perkins
and J. Xiong but remains an open problem for d ≥ 3.

Analysis of interacting systems in large space and
time scales: A central problem in both statistical physics
and population biology is the determination of the long-
time behavior and possible equilibrium states for interact-
ing systems on the lattice Zd (or other spatial network
topology) with homogeneous initial conditions. We de-
veloped a program to determine such behavior for inter-
acting diffusions, superprocesses, catalytic systems (Cox,
Dawson and Greven, 2004) and interacting Fleming–Viot
processes (Dawson and Hochberg, 1982) and developed
methods for this purpose including McKean–Vlasov limit
dynamics, large deviations for measure-valued processes
and the hierarchical mean-field limit.

Large scale structures in measure-valued processes:
Dawson (1977) resolved the problem of the existence of
spatially homogeneous equilibria for critical branching
systems in R

d by identifying a dichotomy in which lo-
cal extinction and the formation of rare clumps occurs in
dimensions d = 1,2 and nontrivial equilibria exist in di-
mensions d ≥ 3. Dawson and Perkins (1998) establish the
same dichotomy for the mutually catalytic system on the
lattice Z

d , Dawson and Greven (1999) establish this for
the interacting Fleming–Viot system and Dawson, Goros-
tiza and Wakolbinger (2004) for multilevel branching (but
with critical dimension d = 4).

Mean-field methods and large deviations: Finally,
mean-field models are used to capture major features of
the behavior such as the phase transition structure. They
arise in the McKean–Vlasov limit of a measure-valued
system in which the spatial interaction is replaced by N

exchangeably interacting systems and then analyzing the
N → ∞ limit. An application of mean-field methods to
queueing systems in given in Dawson, Tang and Zhao
(2005). In Dawson (1983), we used the limiting McKean–
Vlasov dynamics to study phase transitions, critical slow-
ing down and the emergence of non-Gaussian fluctua-
tions at the critical point. The study of the large devi-
ations for interacting systems and measure-valued pro-
cesses was initiated in a series of joint paper with Jürgen
Gärtner. This was used in Dawson and Gärtner (1987) to
derive Wentzell–Freidlin estimates for deviations from the
McKean–Vlasov limit in order to investigate the transition
between quasi-equilibria in large finite systems. Large
deviation methods are used in Dawson–Feng, including
Dawson and Feng (2006), to study asymptotics for the
Fleming–Viot process in the infinite population limit.

BN et al.: What do you see as future applications or
problems for measure-valued processes?

Don: Several show intense research activity as we
speak: mean field games and spatial mean field games,
spatial epidemic models, ecology and evolutionary biol-
ogy, multilevel systems, hierarchical network theory, ran-
dom wave propagation, affine processes in finance.

BN et al.: Much of your later research production is
concerned with applications to evolutionary biology. Tell
us about hierarchical particle systems you and your col-
laborators introduced in order to model these extremely
complex phenomena.

Don:
Hierarchical analysis and the degree of random

walks: Hierarchical systems play a role in many fields
such as evolutionary biology, neuroscience, protein dy-
namics, statistical physics and Bayesian statistics. Our
research on this began jointly with Andreas Greven
(Dawson and Greven, 1993). In turn, this led to our in-
terest in the potential theory of random walk on groups
in which we introduced the notion of degree of random
walks. The results on branching on the hierarchical group
based on the degree of random walks joint research are
presented with Luis Gorostiza and Anton Wakolbinger
(Dawson, Gorostiza and Wakolbinger, 2001).

Hierarchical mean-field analysis on the hierarchical
group was introduced in joint work with Andreas Greven
(Dawson and Greven, Dawson and Greven, 1993, 1999),
and used to study interacting systems including branch-
ing systems, interacting Fleming–Viot processes (Dawson
and Greven, 1999) and catalytic systems (Cox, Dawson
and Greven, 2004) in multiple space and time scales and
their dependence of the degree of the underlying random
walk.

This research program has the objective of proving
that the large scale behavior of spatially interacting sys-
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tems can be classified into a small number of universality
classes (Dawson et al., 2008).

Application to evolutionary biology and ecology:
Evolutionary biology is based on a complex adaptive sys-
tem in which reproduction of individuals, subject to mu-
tation and selection located on a space of sites, combine
with migration between sites, given by a random walk
in a spatial environment. This can be modeled by spatial
Fleming–Viot systems with mutation and selection on a
fitness landscape with its ultrametric structure. We con-
sider, in particular, the emergence of new species. The
analysis of this system and its behaviour in the long time
scales involved, made it necessary to find a new family of
dual processes, the set-valued ones. This was carried out
in the book with Andreas Greven (Dawson and Greven,
2014).

Much current interest has developed in recent years in
the question of levels of selection in evolutionary biol-
ogy and evolutionary ecology. The corresponding natu-
ral framework for multilevel multitype models with ran-
dom effects at different levels is the setting of multi-
level measure-valued processes. In particular, two-level
measure-valued processes have state spaces of the form
M(M(E)) for some Polish space E where M(E) de-
notes the space of Borel measures on E. In Dawson
(2018), we work with an analogous class of two level
probability measure-valued processes formulated in terms
of a well-posed martingale problem which generalizes the
two-type model to systems with more than two types,
more complex interactions and to the diffusion limit of
systems with finitely many sites. The application of this
framework to evolutionary biology and ecology of multi-
species systems in which the fitness of a species can de-
pends on the higher level distributions of related species
is given in Dawson (2018).

The problem of extending this analysis to spatially ran-
dom environments modelled by migration between sites
given by a nearest neighbor random walk on a network
of long-range percolation clusters. This was recently car-
ried out in ultrametric spaces in joint research with Luis
Gorostiza (Dawson and Gorostiza, 2018).

6. ACADEMIC DUTIES

BN et al.: How did you reconcile this prolific produc-
tivity with your heavy involvement in editorial duties, di-
rectorships, grant agencies committee work, etc.?

Don: My main responsibilities were Department Chair
(1974–1977), Coeditors-In-Chief of the Canadian Jour-
nal of Mathematics (1988–1993), 5 terms of NRC and
NSERC committees during 1974–1995, Director of the
Fields Institute (1996–2000) and President of the Ber-
noulli Society (2003–2005). During many of these years,

FIG. 7. Don with his grandson Andrew in July 1998.

my graduate students and coauthors kept me alive scien-
tifically.

BN et al.: During your presidency of the Bernoulli So-
ciety, can you identify one or two key events of note to the
community that you had a hand in?

Don: Three events do stand out. First is the 6th
Bernoulli-IMS World Congress in Probability and Statis-
tics, held in Barcelona in 2004. There were great ple-
nary lectures by Jun Liu, Steffen L. Lauritzen, David
Aldous, Wendelin Werner, Iain Johnstone, Peter Bickel,
Vladimir Koltchinskii, Evarist Giné, Cun-Hui Zhang,
Alison Etheridge and Dominique Picard. Quite a roster!
This was followed by an excellent European Meeting of
Statisticians in Oslo (2005). Last but not least, the agree-
ment with the IMS called “Joined-up Thinking,” the cre-
ation of a joint Bernoulli Society/IMS membership be-
ginning in 2005. It seems natural now, given that the two
societies share common objectives, namely the advance-
ment of probability and statistics and their applications.

BN et al.: What is the role of your colleagues, friends
and family in your professional successes?

Don: My wife Elizabeth (Betty) and children Michael
and Suzanne have made everything possible. My col-
leagues, my students, my coauthors and visitors provided
the environment, which were instrumental to my research
program. I owe my coauthors a special thanks.

7. PROSPECTIVE QUESTIONS

BN et al.: Where do you see the field heading?
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Don: Randomness is ubiquitous and has produced
many diverse many manifestations. Examples arise in the
analysis of probabilistic models for real-world phenom-
ena from physics, biology, neuroscience, statistics and
computer science. Some specific topics of current interest
are: statistical physics in a random environment, random
matrix theory, branching systems in biology, random en-
ergy landscapes, data structure analysis, genetics and pop-
ulation biology, stochastic partial differential equations,
networks and random walks on random graphs.

BN et al.: What do you see as the future of probability
in the world of Artificial Intelligence and Big Data?

Don: These fields are multidisciplinary and require
team work. This includes probability which is involved
in hierarchical Bayes networks, random search, random
landscapes, statistical physics and deep learning algo-
rithms in data sciences.

BN et al.: What is your assessment of the current state
of health of the field of stochastics in Canada and around
the world?

Don: Stochastics has been developed in many direc-
tions over the past 50 years and is still going strong.
Canada plays an important role in several areas and LRSP
itself has contributed much to this success. Stochastics
continues to generate important gains in health science,
social science, economics, physics, genetics, evolutionary
biology, neuroscience, interacting systems and networks,
analysis of algorithms, financial probability and our gen-
eral scientific knowledge on the whole.

BN et al.: Do you have any advice for the young re-
searcher in probability.

FIG. 8. Don Dawson and authors, February 28, 2020: from left to
right, Bouchra R. Nasri, Bruno N. Rémillard, Don Dawson, Jean Vail-
lancourt and Barbara Szyszkowicz.

Don: Develop your set of mathematical skills. This can
provide a foundation in future years as you broaden your
interests. Keep your eyes open for new opportunities, for
new applications and for scientific cooperation.

The interested reader can find out more by going to
http://dynkincollection.library.cornell.edu/node/954.

REFERENCES

ALDOUS, D. (1991a). The continuum random tree. I. Ann. Probab. 19
1–28. MR1085326

ALDOUS, D. (1991b). The continuum random tree. II. An overview.
In Stochastic Analysis (Durham, 1990). London Mathematical So-
ciety Lecture Note Series 167 23–70. Cambridge Univ. Press, Cam-
bridge. MR1166406 https://doi.org/10.1017/CBO9780511662980.
003

ALDOUS, D. (1993). The continuum random tree. III. Ann. Probab. 21
248–289. MR1207226

BARLOW, M. T. and PERKINS, E. A. (1994). On the filtration
of historical Brownian motion. Ann. Probab. 22 1273–1294.
MR1303645

BARTON, N. H., ETHERIDGE, A. M. and VÉBER, A. (2010). A new
model for evolution in a spatial continuum. Electron. J. Probab. 15
162–216. MR2594876 https://doi.org/10.1214/EJP.v15-741

BERTOIN, J. and LE GALL, J.-F. (2003). Stochastic flows associated
to coalescent processes. Probab. Theory Related Fields 126 261–
288. MR1990057 https://doi.org/10.1007/s00440-003-0264-4

BERTOIN, J. and LE GALL, J.-F. (2005). Stochastic flows associ-
ated to coalescent processes. II. Stochastic differential equations.
Ann. Inst. Henri Poincaré Probab. Stat. 41 307–333. MR2139022
https://doi.org/10.1016/j.anihpb.2004.07.003

COX, J. T., DAWSON, D. A. and GREVEN, A. (2004). Mutually cat-
alytic super branching random walks: Large finite systems and
renormalization analysis. Mem. Amer. Math. Soc. 171 viii+97.
MR2074427 https://doi.org/10.1090/memo/0809

COX, J. T. and GREVEN, A. (1994). The finite systems scheme: An
abstract theorem and a new example. In Measure-Valued Processes,
Stochastic Partial Differential Equations, and Interacting Systems
(Montreal, PQ, 1992). CRM Proc. Lecture Notes 5 55–67. Amer.
Math. Soc., Providence, RI. MR1278282 https://doi.org/10.1214/
aop/1176988732

DAWSON, D. A. (1972). Stochastic evolution equations. Math. Biosci.
15 287–316. MR0321178 https://doi.org/10.1016/0025-5564(72)
90039-9

DAWSON, D. A. (1975). Stochastic evolution equations and related
measure processes. J. Multivariate Anal. 5 1–52. MR0388539
https://doi.org/10.1016/0047-259X(75)90054-8

DAWSON, D. A. (1977). The critical measure diffusion pro-
cess. Z. Wahrsch. Verw. Gebiete 40 125–145. MR0478374
https://doi.org/10.1007/BF00532877

DAWSON, D. A. (1978). Geostochastic calculus. Canad. J. Statist. 6
143–168. MR0532855 https://doi.org/10.2307/3315044

DAWSON, D. A. (1978/79). Critical behavior of the geostochas-
tic logistic system. C. R. Math. Rep. Acad. Sci. Can. 1 79–82.
MR0519528

DAWSON, D. A. (1979). Stochastic measure diffusion processes.
Canad. Math. Bull. 22 129–138. MR0537294 https://doi.org/10.
4153/CMB-1979-020-3

DAWSON, D. A. (1983). Critical dynamics and fluctuations for a
mean-field model of cooperative behavior. J. Stat. Phys. 31 29–85.
MR0711469 https://doi.org/10.1007/BF01010922

http://dynkincollection.library.cornell.edu/node/954
http://www.ams.org/mathscinet-getitem?mr=1085326
http://www.ams.org/mathscinet-getitem?mr=1166406
https://doi.org/10.1017/CBO9780511662980.003
http://www.ams.org/mathscinet-getitem?mr=1207226
http://www.ams.org/mathscinet-getitem?mr=1303645
http://www.ams.org/mathscinet-getitem?mr=2594876
https://doi.org/10.1214/EJP.v15-741
http://www.ams.org/mathscinet-getitem?mr=1990057
https://doi.org/10.1007/s00440-003-0264-4
http://www.ams.org/mathscinet-getitem?mr=2139022
https://doi.org/10.1016/j.anihpb.2004.07.003
http://www.ams.org/mathscinet-getitem?mr=2074427
https://doi.org/10.1090/memo/0809
http://www.ams.org/mathscinet-getitem?mr=1278282
https://doi.org/10.1214/aop/1176988732
http://www.ams.org/mathscinet-getitem?mr=0321178
https://doi.org/10.1016/0025-5564(72)90039-9
http://www.ams.org/mathscinet-getitem?mr=0388539
https://doi.org/10.1016/0047-259X(75)90054-8
http://www.ams.org/mathscinet-getitem?mr=0478374
https://doi.org/10.1007/BF00532877
http://www.ams.org/mathscinet-getitem?mr=0532855
https://doi.org/10.2307/3315044
http://www.ams.org/mathscinet-getitem?mr=0519528
http://www.ams.org/mathscinet-getitem?mr=0537294
https://doi.org/10.4153/CMB-1979-020-3
http://www.ams.org/mathscinet-getitem?mr=0711469
https://doi.org/10.1007/BF01010922
https://doi.org/10.1017/CBO9780511662980.003
https://doi.org/10.1214/aop/1176988732
https://doi.org/10.1016/0025-5564(72)90039-9
https://doi.org/10.4153/CMB-1979-020-3


A CONVERSATION WITH DON DAWSON 621

DAWSON, D. A. (1993). Measure-valued Markov processes. In
École D’Été de Probabilités de Saint-Flour XXI—1991. Lec-
ture Notes in Math. 1541 1–260. Springer, Berlin. MR1242575
https://doi.org/10.1007/BFb0084190

DAWSON, D. A. (2017). Introductory lectures on stochastic popula-
tion systems. Preprint. Available at arXiv:1705.03781.

DAWSON, D. A. (2018). Multilevel mutation-selection systems
and set-valued duals. J. Math. Biol. 76 295–378. MR3742789
https://doi.org/10.1007/s00285-017-1145-2

DAWSON, D. A. and FENG, S. (2006). Asymptotic behavior of
the Poisson–Dirichlet distribution for large mutation rate. Ann.
Appl. Probab. 16 562–582. MR2244425 https://doi.org/10.1214/
105051605000000818

DAWSON, D. A. and FLEISCHMANN, K. (1997). A continuous
super-Brownian motion in a super-Brownian medium. J. Theo-
ret. Probab. 10 213–276. MR1432624 https://doi.org/10.1023/A:
1022606801625

DAWSON, D. A., FLEISCHMANN, K. and MÖRTERS, P. (2002).
Strong clumping of super-Brownian motion in a stable cat-
alytic medium. Ann. Probab. 30 1990–2045. MR1944014
https://doi.org/10.1214/aop/1039548380

DAWSON, D. A. and GÄRTNER, J. (1987). Large deviations
from the McKean–Vlasov limit for weakly interacting diffu-
sions. Stochastics 20 247–308. MR0885876 https://doi.org/10.
1080/17442508708833446

DAWSON, D. A. and GOROSTIZA, L. G. (1984). Limit theorems for
supercritical branching random fields. Math. Nachr. 118 19–46.
MR0773609 https://doi.org/10.1002/mana.19841180103

DAWSON, D. A. and GOROSTIZA, L. G. (2018). Transience and
recurrence of random walks on percolation clusters in an ul-
trametric space. J. Theoret. Probab. 31 494–526. MR3769822
https://doi.org/10.1007/s10959-016-0691-7

DAWSON, D. A., GOROSTIZA, L. G. and LI, Z. (2002). Non-
local branching superprocesses and some related models. Acta
Appl. Math. 74 93–112. MR1936024 https://doi.org/10.1023/A:
1020507922973

DAWSON, D. A., GOROSTIZA, L. G. and WAKOLBINGER, A.
(2001). Occupation time fluctuations in branching systems. J. The-
oret. Probab. 14 729–796. MR1860521 https://doi.org/10.1023/A:
1017597107544

DAWSON, D. A., GOROSTIZA, L. G. and WAKOLBINGER, A.
(2004). Hierarchical equilibria of branching populations. Electron.
J. Probab. 9 316–381. MR2080603 https://doi.org/10.1214/EJP.
v9-200

DAWSON, D. A. and GREVEN, A. (1993). Hierarchical models
of interacting diffusions: Multiple time scale phenomena, phase
transition and pattern of cluster-formation. Probab. Theory Re-
lated Fields 96 435–473. MR1234619 https://doi.org/10.1007/
BF01200205

DAWSON, D. A. and GREVEN, A. (1999). Hierarchically interact-
ing Fleming–Viot processes with selection and mutation: Multiple
space time scale analysis and quasi-equilibria. Electron. J. Probab.
4 no. 4, 81. MR1670873 https://doi.org/10.1214/EJP.v4-41

DAWSON, D. A. and GREVEN, A. (2014). Spatial Fleming–
Viot Models with Selection and Mutation. Lecture Notes in
Math. 2092. Springer, Cham. MR3155790 https://doi.org/10.1007/
978-3-319-02153-9

DAWSON, D. A., GREVEN, A. and VAILLANCOURT, J. (1995).
Equilibria and quasiequilibria for infinite collections of interacting
Fleming–Viot processes. Trans. Amer. Math. Soc. 347 2277–2360.
MR1297523 https://doi.org/10.2307/2154827

DAWSON, D. A. and HOCHBERG, K. J. (1982). Wandering random
measures in the Fleming–Viot model. Ann. Probab. 10 554–580.
MR0659528

DAWSON, D. A. and HOCHBERG, K. J. (1983). Qualitative behavior
of a selectively neutral allelic model. Theor. Popul. Biol. 23 1–18.
https://doi.org/10.1016/0040-5809(83)90002-3

DAWSON, D. A. and KURTZ, T. G. (1982). Applications of du-
ality to measure-valued diffusion processes. In Advances in Fil-
tering and Optimal Stochastic Control (Cocoyoc, 1982). Lect.
Notes Control Inf. Sci. 42 91–105. Springer, Berlin. MR0794506
https://doi.org/10.1007/BFb0004528

DAWSON, D. A. and LI, Z. (2012). Stochastic equations, flows and
measure-valued processes. Ann. Probab. 40 813–857. MR2952093
https://doi.org/10.1214/10-AOP629

DAWSON, D. A. and MARCH, P. (1995). Resolvent estimates for
Fleming–Viot operators and uniqueness of solutions to related
martingale problems. J. Funct. Anal. 132 417–472. MR1347357
https://doi.org/10.1006/jfan.1995.1111

DAWSON, D. A. and PAPANICOLAOU, G. C. (1984). A ran-
dom wave process. Appl. Math. Optim. 12 97–114. MR0764811
https://doi.org/10.1007/BF01449037

DAWSON, D. A. and PERKINS, E. A. (1991). Historical processes.
Mem. Amer. Math. Soc. 93 iv+179. MR1079034 https://doi.org/10.
1090/memo/0454

DAWSON, D. A. and PERKINS, E. A. (1998). Long-time behavior
and coexistence in a mutually catalytic branching model. Ann.
Probab. 26 1088–1138. MR1634416 https://doi.org/10.1214/aop/
1022855746

DAWSON, D. A. and SALEHI, H. (1980). Spatially homogeneous ran-
dom evolutions. J. Multivariate Anal. 10 141–180. MR0575923
https://doi.org/10.1016/0047-259X(80)90012-3

DAWSON, D. A., TANG, J. and ZHAO, Y. Q. (2005). Balancing
queues by mean field interaction. Queueing Syst. 49 335–361.
MR2149648 https://doi.org/10.1007/s11134-005-6971-z

DAWSON, D. A., ETHERIDGE, A. M., FLEISCHMANN, K., MYT-
NIK, L., PERKINS, E. A. and XIONG, J. (2002). Mutually catalytic
branching in the plane: Infinite measure states. Electron. J. Probab.
7 No. 15, 61. MR1921744 https://doi.org/10.1214/EJP.v7-114

DAWSON, D. A., GREVEN, A., DEN HOLLANDER, F., SUN, R. and
SWART, J. M. (2008). The renormalization transformation of two-
type branching models. Ann. Inst. Henri Poincaré Probab. Stat. 44
1038–1077. MR2469334 https://doi.org/10.1214/07-AIHP143

DONNELLY, P. and KURTZ, T. G. (1996). A countable representa-
tion of the Fleming–Viot measure-valued diffusion. Ann. Probab.
24 698–742. MR1404525 https://doi.org/10.1214/aop/1039639359

DUQUESNE, T. and LE GALL, J.-F. (2002). Random trees, Lévy
processes and spatial branching processes. Astérisque 281 vi+147.
MR1954248

DYNKIN, E. B. (1988). Representation for functionals of superpro-
cesses by multiple stochastic integrals, with applications to self-
intersection local times. Astérisque 157–158 147–171. MR0976217

DYNKIN, E. B. (1994). An Introduction to Branching Measure-Valued
Processes. CRM Monograph Series 6. Amer. Math. Soc., Provi-
dence, RI. MR1280712 https://doi.org/10.1090/crmm/006

DYNKIN, E. B. (2002). Diffusions, Superdiffusions and Partial Dif-
ferential Equations. American Mathematical Society Colloquium
Publications 50. Amer. Math. Soc., Providence, RI. MR1883198
https://doi.org/10.1090/coll/050

ETHERIDGE, A. (2011). Some Mathematical Models from Popula-
tion Genetics. Lecture Notes in Math. 2012. Springer, Heidelberg.
MR2759587 https://doi.org/10.1007/978-3-642-16632-7

ETHERIDGE, A. and MARCH, P. (1991). A note on superpro-
cesses. Probab. Theory Related Fields 89 141–147. MR1110534
https://doi.org/10.1007/BF01366902

ETHIER, S. N. and KURTZ, T. G. (1986). Markov Processes: Charac-
terization and Convergence. Wiley Series in Probability and Math-
ematical Statistics: Probability and Mathematical Statistics. Wiley,
New York. MR0838085 https://doi.org/10.1002/9780470316658

http://www.ams.org/mathscinet-getitem?mr=1242575
https://doi.org/10.1007/BFb0084190
http://arxiv.org/abs/arXiv:1705.03781
http://www.ams.org/mathscinet-getitem?mr=3742789
https://doi.org/10.1007/s00285-017-1145-2
http://www.ams.org/mathscinet-getitem?mr=2244425
https://doi.org/10.1214/105051605000000818
http://www.ams.org/mathscinet-getitem?mr=1432624
https://doi.org/10.1023/A:1022606801625
http://www.ams.org/mathscinet-getitem?mr=1944014
https://doi.org/10.1214/aop/1039548380
http://www.ams.org/mathscinet-getitem?mr=0885876
https://doi.org/10.1080/17442508708833446
http://www.ams.org/mathscinet-getitem?mr=0773609
https://doi.org/10.1002/mana.19841180103
http://www.ams.org/mathscinet-getitem?mr=3769822
https://doi.org/10.1007/s10959-016-0691-7
http://www.ams.org/mathscinet-getitem?mr=1936024
https://doi.org/10.1023/A:1020507922973
http://www.ams.org/mathscinet-getitem?mr=1860521
https://doi.org/10.1023/A:1017597107544
http://www.ams.org/mathscinet-getitem?mr=2080603
https://doi.org/10.1214/EJP.v9-200
http://www.ams.org/mathscinet-getitem?mr=1234619
https://doi.org/10.1007/BF01200205
http://www.ams.org/mathscinet-getitem?mr=1670873
https://doi.org/10.1214/EJP.v4-41
http://www.ams.org/mathscinet-getitem?mr=3155790
https://doi.org/10.1007/978-3-319-02153-9
http://www.ams.org/mathscinet-getitem?mr=1297523
https://doi.org/10.2307/2154827
http://www.ams.org/mathscinet-getitem?mr=0659528
https://doi.org/10.1016/0040-5809(83)90002-3
http://www.ams.org/mathscinet-getitem?mr=0794506
https://doi.org/10.1007/BFb0004528
http://www.ams.org/mathscinet-getitem?mr=2952093
https://doi.org/10.1214/10-AOP629
http://www.ams.org/mathscinet-getitem?mr=1347357
https://doi.org/10.1006/jfan.1995.1111
http://www.ams.org/mathscinet-getitem?mr=0764811
https://doi.org/10.1007/BF01449037
http://www.ams.org/mathscinet-getitem?mr=1079034
https://doi.org/10.1090/memo/0454
http://www.ams.org/mathscinet-getitem?mr=1634416
https://doi.org/10.1214/aop/1022855746
http://www.ams.org/mathscinet-getitem?mr=0575923
https://doi.org/10.1016/0047-259X(80)90012-3
http://www.ams.org/mathscinet-getitem?mr=2149648
https://doi.org/10.1007/s11134-005-6971-z
http://www.ams.org/mathscinet-getitem?mr=1921744
https://doi.org/10.1214/EJP.v7-114
http://www.ams.org/mathscinet-getitem?mr=2469334
https://doi.org/10.1214/07-AIHP143
http://www.ams.org/mathscinet-getitem?mr=1404525
https://doi.org/10.1214/aop/1039639359
http://www.ams.org/mathscinet-getitem?mr=1954248
http://www.ams.org/mathscinet-getitem?mr=0976217
http://www.ams.org/mathscinet-getitem?mr=1280712
https://doi.org/10.1090/crmm/006
http://www.ams.org/mathscinet-getitem?mr=1883198
https://doi.org/10.1090/coll/050
http://www.ams.org/mathscinet-getitem?mr=2759587
https://doi.org/10.1007/978-3-642-16632-7
http://www.ams.org/mathscinet-getitem?mr=1110534
https://doi.org/10.1007/BF01366902
http://www.ams.org/mathscinet-getitem?mr=0838085
https://doi.org/10.1002/9780470316658
https://doi.org/10.1214/105051605000000818
https://doi.org/10.1023/A:1022606801625
https://doi.org/10.1080/17442508708833446
https://doi.org/10.1023/A:1020507922973
https://doi.org/10.1023/A:1017597107544
https://doi.org/10.1214/EJP.v9-200
https://doi.org/10.1007/BF01200205
https://doi.org/10.1007/978-3-319-02153-9
https://doi.org/10.1090/memo/0454
https://doi.org/10.1214/aop/1022855746


622 NASRI, RÉMILLARD, SZYSZKOWICZ AND VAILLANCOURT

EVANS, S. N. and PERKINS, E. A. (1998). Collision local times,
historical stochastic calculus, and competing superprocesses. Elec-
tron. J. Probab. 3 no. 5, 120. MR1615329 https://doi.org/10.1214/
EJP.v3-27

GENEST, C. (1999). Probability and statistics: A tale of two worlds.
Canad. J. Statist. 27 421–444. https://doi.org/10.2307/3315650

GENEST, C. and GUAY, M. (2002). Worldwide research output in
probability and statistics: An update. Canad. J. Statist. 30 329–342.
MR1930515 https://doi.org/10.2307/3315955

ISCOE, I. (1981). The man-hour process associated with measure val-
ued branching random motions in RD . Ph.D. thesis. MR2631942

ISCOE, I. (1986a). Ergodic theory and a local occupation
time for measure-valued critical branching Brownian motion.
Stochastics 18 197–243. MR0861108 https://doi.org/10.1080/
17442508608833409

ISCOE, I. (1986b). A weighted occupation time for a class of measure-
valued branching processes. Probab. Theory Related Fields 71 85–
116. MR0814663 https://doi.org/10.1007/BF00366274

ISCOE, I. (1988). On the supports of measure-valued critical branching
Brownian motion. Ann. Probab. 16 200–221. MR0920265

ITÔ, K. and MCKEAN, H. P. JR. (1974). Diffusion Processes and
Their Sample Paths. Die Grundlehren der Mathematischen Wis-
senschaften 125. Springer, Berlin. MR0345224

JAGERS, P. (1974). Aspects of random measures and point processes.
In Advances in Probability and Related Topics, Vol. 3 179–239.
MR0397872

KALLENBERG, O. (1978). On conditional intensities of point pro-
cesses. Z. Wahrsch. Verw. Gebiete 41 205–220. MR0461654
https://doi.org/10.1007/BF00534240

KINGMAN, J. F. C. (1976). Coherent random walks arising in
some genetical models. Proc. R. Soc. Lond., Ser. A 351 19–31.
MR0420867 https://doi.org/10.1098/rspa.1976.0127

KONNO, N. and SHIGA, T. (1988). Stochastic partial differential
equations for some measure-valued diffusions. Probab. Theory

Related Fields 79 201–225. MR0958288 https://doi.org/10.1007/
BF00320919

LE GALL, J.-F. (1991). Brownian excursions, trees and measure-
valued branching processes. Ann. Probab. 19 1399–1439.
MR1127710

MATTHES, K., KERSTAN, J. and MECKE, J. (1978). Infinitely Divis-
ible Point Processes. Wiley Series in Probability and Mathematical
Statistics. Wiley, Chichester–New York–Brisbane. MR0517931

PERKINS, E. A. (1988). A space-time property of a class of measure-
valued branching diffusions. Trans. Amer. Math. Soc. 305 743–795.
MR0924777 https://doi.org/10.2307/2000886

PERKINS, E. (1989). The Hausdorff measure of the closed support of
super-Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 25
205–224. MR1001027

PERKINS, E. (1990). Polar sets and multiple points for super-
Brownian motion. Ann. Probab. 18 453–491. MR1055416

PERKINS, E. (2002). Dawson–Watanabe superprocesses and measure-
valued diffusions. In Lectures on Probability Theory and Statis-
tics (Saint-Flour, 1999). Lecture Notes in Math. 1781 125–324.
Springer, Berlin. MR1915445

SHIGA, T. and SHIMIZU, A. (1980). Infinite-dimensional stochastic
differential equations and their applications. J. Math. Kyoto Univ.
20 395–416. MR0591802 https://doi.org/10.1215/kjm/1250522207

SHIGA, T. and UCHIYAMA, K. (1986). Stationary states and their
stability of the stepping stone model involving mutation and se-
lection. Probab. Theory Related Fields 73 87–117. MR0849066
https://doi.org/10.1007/BF01845994

WALSH, J. B. (1986). An introduction to stochastic partial differential
equations. In École D’été de Probabilités de Saint-Flour, XIV—
1984. Lecture Notes in Math. 1180 265–439. Springer, Berlin.
MR0876085 https://doi.org/10.1007/BFb0074920

WATANABE, S. (1968). A limit theorem of branching processes and
continuous state branching processes. J. Math. Kyoto Univ. 8 141–
167. MR0237008 https://doi.org/10.1215/kjm/1250524180

http://www.ams.org/mathscinet-getitem?mr=1615329
https://doi.org/10.1214/EJP.v3-27
https://doi.org/10.2307/3315650
http://www.ams.org/mathscinet-getitem?mr=1930515
https://doi.org/10.2307/3315955
http://www.ams.org/mathscinet-getitem?mr=2631942
http://www.ams.org/mathscinet-getitem?mr=0861108
https://doi.org/10.1080/17442508608833409
http://www.ams.org/mathscinet-getitem?mr=0814663
https://doi.org/10.1007/BF00366274
http://www.ams.org/mathscinet-getitem?mr=0920265
http://www.ams.org/mathscinet-getitem?mr=0345224
http://www.ams.org/mathscinet-getitem?mr=0397872
http://www.ams.org/mathscinet-getitem?mr=0461654
https://doi.org/10.1007/BF00534240
http://www.ams.org/mathscinet-getitem?mr=0420867
https://doi.org/10.1098/rspa.1976.0127
http://www.ams.org/mathscinet-getitem?mr=0958288
https://doi.org/10.1007/BF00320919
http://www.ams.org/mathscinet-getitem?mr=1127710
http://www.ams.org/mathscinet-getitem?mr=0517931
http://www.ams.org/mathscinet-getitem?mr=0924777
https://doi.org/10.2307/2000886
http://www.ams.org/mathscinet-getitem?mr=1001027
http://www.ams.org/mathscinet-getitem?mr=1055416
http://www.ams.org/mathscinet-getitem?mr=1915445
http://www.ams.org/mathscinet-getitem?mr=0591802
https://doi.org/10.1215/kjm/1250522207
http://www.ams.org/mathscinet-getitem?mr=0849066
https://doi.org/10.1007/BF01845994
http://www.ams.org/mathscinet-getitem?mr=0876085
https://doi.org/10.1007/BFb0074920
http://www.ams.org/mathscinet-getitem?mr=0237008
https://doi.org/10.1215/kjm/1250524180
https://doi.org/10.1214/EJP.v3-27
https://doi.org/10.1080/17442508608833409
https://doi.org/10.1007/BF00320919

	Individual Experience
	Early Years
	LRSP Years
	Collaborations and Interactions
	Scientiﬁc Contributions
	Academic Duties
	Prospective Questions
	References

