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Abstract: Our interest is whether two binomial parameters differ, which
parameter is larger, and by how much. This apparently simple problem was
addressed by Fisher in the 1930’s, and has been the subject of many review
papers since then. Yet there continues to be new work on this issue and no
consensus solution. Previous reviews have focused primarily on testing and
the properties of validity and power, or primarily on confidence intervals,
their coverage, and expected length. Here we evaluate both. For example,
we consider whether a p-value and its matching confidence interval are
compatible, meaning that the p-value rejects at level a if and only if the
1 — « confidence interval excludes all null parameter values. For focus,
we only examine non-asymptotic inferences, so that most of the p-values
and confidence intervals are valid (i.e., exact) by construction. Within this
focus, we review different methods emphasizing many of the properties
and interpretational aspects we desire from applied frequentist inference:
validity, accuracy, good power, equivariance, compatibility, coherence, and
parameterization and direction of effect. We show that no one method can
meet all the desirable properties and give recommendations based on which
properties are given more importance.
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1. Introduction

Suppose we observe two independent binomial variates with parameters (nq, 6;)
and (ng, 63). Two questions are: are §; and 6 equal? and how much larger is
one # parameter than the other? To answer these two questions, the frequentist
typically presents an estimate of an effect, a confidence interval (CI) on that
effect, and a p-value to test that there is no effect. Surprisingly, there is no
consensus method for testing and creating confidence intervals for this problem.
New methods continue to be developed for this problem [see e.g., 38, 57, 58,
21, 27]. Many review papers focus on testing alone [see 40, 48], or confidence
intervals alone [see 46, 53, 17]. Here we focus on both.

We limit the scope of this paper by considering only frequentist approaches
(so Bayesian methods are not covered), and by not considering asymptotic meth-
ods or other approximations. Many review papers or books [see e.g., 46, 40, 17,
47] cover and compare many of those approximations. Sometimes those ap-
proximations are closed-form expressions and can be useful for deriving simple
sample size formulas or when the test is applied many times such as in ge-
nomics. But often the approximations are unnecessary with modern computers.
Non-asymptotic methods are often called exact, but in this paper we reserve
the term exact for non-asymptotic methods that are valid, meaning tests that
control the type I error rate, and confidence intervals that cover the parameter
with at least the nominal value. See Section 2.2 for further discussion of the
term exact. A class of important non-asymptotic tests that are not valid are
mid-p methods (Section 9), which are sometimes called quasi-exact [29] and are
included in our review because, for confidence intervals, sometimes we want av-
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erage coverage close to the nominal value instead of guaranteed coverage that
on average is conservative.

Here is an outline of our paper. Section 2 begins by contrasting the two-sample
binomial problem with the two-sample difference in normal distributions with
the same variance, in which there is an accepted solution: the two-sample t-test.
This allows us to define inferential properties of interest as well as highlight
why there is no single accepted solution to the two-sample binomial problem.
Newcombe [47] takes a similar approach. Section 3 discusses the choice of ef-
fect measure (e.g., difference in binomial parameters, ratio of parameters, or
odds ratio of parameters). Section 4 defines a frequentist triple as a parameter
estimator, an associated confidence interval procedure, and a p-value function.
We then formally discuss some properties of triples, such as whether the confi-
dence interval and p-value match and are compatible, and whether directional
inferences may be made from the triple. The idea of matched triples is dis-
cussed in Hirji [28, p. 77] in a less formal way as a “unified report”. Our review
says very little about parameter estimators, and mostly focuses on properties
of p-values and confidence intervals and the compatibility of p-values with con-
fidence intervals. Our discussion of directional inferences is motivated from the
three decision rule of Neyman [see e.g., 26]. We describe methods for defining
valid one-sided decision rules in Sections 5 (unconditional methods) and 6 (con-
ditional methods), including the associated p-values and confidence intervals.
Much of Sections 5 and 6 was thoroughly reviewed in [48] but is included in
this paper for completeness; however, Section 5.3 presents some new ideas on
informativeness of ordering functions. Section 7 reviews the melded confidence
intervals of Fay, Proschan and Brittain [21] which are compatible with the one-
sided conditional method (i.e., Fisher’s exact test) p-values. Section 8 discusses
non-central confidence intervals and associated tests, with a new focus on the
relationship of these intervals to directional inferences. Section 9 discusses mid-p
methods, which are non-asymptotic methods that relax the validity assumption
in order to achieve better accuracy. Section 10 discusses the computational as-
pects of various methods. Section 11 discusses power and efficiency of methods,
including some new calculations. Section 12 presents recommendations. Briefly,
we recommend using exact central confidence intervals (those with equal error
bounds on both sides) because it is better for directional inferences. For fast cal-
culations, use exact conditional tests with compatible confidence intervals, but
for more power consider exact unconditional tests using the version that orders
by the one-sided mid-p Fisher’s exact p-values. If validity is not vital, use mid
p-values on the exact conditional test, which are often a good approximation to
the exact unconditional tests.

2. Overview: Failure of normal intuition
2.1. Frequentist inferences

We define a frequentist triple (or just a triple) as an estimator of a parameter of
interest, a confidence interval, and a p-value function. This approach allows us
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to compare different triples by examining not just properties of each component
(i.e., comparing powers of different p-value functions or expected lengths of
different confidence intervals), but also to examine properties of the triples as a
whole. For example, within a triple, we examine inferential agreement between
the p-value function and confidence interval procedure. Additionally, we examine
what directional inferential statements we can make from the triple, such as
whether 05 is significantly larger than 6;, and at what significance level.

Although in some different statistical settings (e.g., two-sample normal prob-
lem) the standard triple will automatically give inferential agreement between
p-values and confidence intervals as well as automatically give directional infer-
ential statements, in the two-sample binomial problem those inferential proper-
ties are not automatic. Thus, before discussing the binomial problem, we review
the two-sample problem with normally distributed responses with the same vari-
ance. We consider the latter problem first, because there is some consensus that
one triple (the difference in means, and the confidence interval and p-value asso-
ciated with the t-test) is appropriate for this problem. In the normal case, this
t-test triple meets some regularity properties that lead to inferences that are
intuitive and easy to understand. Because these properties form the basis for a
certain statistical intuition about how frequentist inferences ought to be, and
because the example uses normal distributional assumptions, we call these prop-
erties the “normal intuition”. We show later how the normal intuition breaks
down for the two-sample binomial problem, although many of the properties
may approximately hold for large samples.

2.2. Background and notation

Consider a general frequentist problem, where we observe data, x, and denote
its random variable as X. Assume some probability model for X that depends
on a parameter vector 6, but we are interested in a function of 6 that returns
a scalar, b(f) = 8. We partition the possible values of # into two sets, the null
hypothesis space, ©g, and the alternative hypothesis space, ©;.

In this paper, we consider only three classes of partitions, where the null and
alternative space is defined by 3, and separated by a value 5y on the boundary
between the null and alternative hypothesis spaces. The first of these three
classes are two-sided hypotheses,

Hy: B = PBo
Hy: B # Bo

which can be equivalently written as

Hy : 0 € ©g where ©g = {9 : b(9) = 60

}
Hy: 0 € ©1 where @1:{0b(0)7£60}

The other two classes are the one-sided hypotheses,
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Alternative is Less Alternative is Greater
Hy: 82> B Hy: B8 < B
Hy:B< By Hy: 3> fp.

Let p(x,00) be a p-value associated with the null hypothesis space, ©y.
Typically, we assume a class of hypotheses and write (with a slight abuse of
notation) p(x, By) as a p-value associated with the null hypothesis indexed by
Bo- We reject the null hypothesis at level « if p(x, 8p) < «a. Following Berger
and Boos [5], we define a p-value procedure as valid if

Py [p(X’ﬂO) < 04 < q

for all @ € (0,1) and all § € ©¢. (Ripamonti, et al [48] call a valid p-value
procedure a guaranteed p-value.) The term ezact is often used to describe tests
that give valid p-values, but be aware that the term ‘exact’ is used in at least
4 different ways in the literature: (i) methods not based on asymptotic or other
approximations [see 28, p.450], (ii) valid methods [see 29, 40, 21], (iii) methods
where the size is equal to the significance level (only possible with randomized
tests for discrete data) [16], or (iv) methods where the p-values are the smallest
p-values among a class of valid p-values [48, equation 2.5], specifically, p-value
procedures such that

QSEuGI)) P@ [p(Xvﬁo) S p(xa /BO)] = p(X7 ﬁo) for all X, (21)

In this review, we use the term exact only in the sense of (ii).

Following Rohmel [49], we define a p-value procedure as coherent if for every
x, p(x,0§) < p(x,0y) if OF C .

For the classes of hypotheses above, we can invert the p-value function to get
its associated 100(1 — «)% confidence region,

Cx,1—a) = {B:px,0)>a}. (2.2)

We define a confidence region as valid if it is guaranteed to have at least nominal
coverage for every 6 (and hence every b(0) = /3); in other words,

PgeCX,1-a) > 1l-oa.
This paper considers non-asymptotic methods, and all are valid except the

mid-p methods described in Section 9.

2.3. Standard frequentist inference: Normal intuition

Consider the two-sample problem, where the ath group has n, independent and
normally distributed responses, with mean p, and variance o2, for a = 1, 2. Let
0 = 1, p2, o], and suppose we are interested in 5 = b(6) = po — 1. The t-test
is valid for testing the null that 8 = [y and it is the uniformly most powerful
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(UMP) unbiased test [37, p. 160]. UMP unbiasedness means that among the
class of unbiased tests (i.e., tests for which power for each parameter value in
the alternative space is at least as large as the power for every parameter value
in the null space), the t-test is the most powerful test for each 6 € ©;.

We study this case first to define “normal intuition” about frequentist infer-
ences. This normal intuition is a series of properties, that if they are not met,
conflict with many statisticians’ intuitive feeling of how p-values and confidence
regions ought to work. Here are those properties met by the triple: difference in
sample means, B ; the two-sided p-value from the t-test, p; and the 100(1 — @)%
confidence interval on § associated with that p-value, (L, U).

Reproducibility: Application of the method by two independent statisticians
to the same data always gives the same results (as opposed to randomized
tests).

Confidence region is an interval: The confidence region created from p
through equation 2.2 is an interval, meaning it can be written as (L, U).

Compatible Inferences: p < « if and only if the (1 — «) confidence interval
does not contain Sy.

Accuracy (of coverage): Taken over repeated applications, the probability
that the 100(1 — )% confidence interval procedure includes S is equal to
(1 — @) for all values of 6 such that b(0) = 5.

Centrality (of CI): The 100(1—a)% CIis a central one, meaning P[L > ] <
a/2 and P[U < ] < a/2.

One-sided p-value from Two-sided p-value: Half of the two-sided p-value
can be interpreted as a one-sided p-value in the apparent direction of the
effect. For example, if B > B then we can reject Hy : 8 < By at level p/2.

Directional Coherence (of p-value): Call a two-sided p-value function di-
rectionally coherent if the p-values are decreasing as 5y gets farther from A.
In other words, directionally coherent two-sided p-values have p(x, 33) <
p(x, Bo) when either 8§ < By < Bor B < By < Bg- A two-sided p-value
with this property can be interpreted as a coherent one-sided p-value in
the appropriate direction. For example, if 3 > S, then we can reject
Hy : 8 < By at level p. (And for the t-test p-value, we can also reject
at a level of p/2.)

Monotonicity (of power): Under the alternative hypothesis, power increases
as the sample size increases.

Nestedness (of CIs): If (1—a*) > (1 — «), then the 100(1 — a*)% confidence
interval, (L*,U*), would contain the 100(1 — «)% one, (L,U); in other
words, L* < L <U < U*.

2.4. Two-sample binomial: Failure of normal intuition

Now we turn to the two-sample binomial problem, where X; ~ Binomial(n, 61)
and independently X5 ~ Binomial(ng,0s). Here the parameter of interest is
typically one of three functions of § = [01, 65]: the difference (84 = 03 — 61), the
ratio (8, = 02/61), or the odds ratio (8o, = {02(1 — 01)} / {61(1 — 62)}). In this
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problem, the inferential methods do not necessarily follow the properties that
we would expect from normal intuition. We list several examples using several
different valid tests, valid confidence intervals, or triples.

Failure of Reproducibility: The uniformly most powerful unbiased (UMPU)
test of Hy : 61 > 05 versus H : 01 < 05 is a randomized version of a one-
sided Fisher’s exact test [see e.g., 37, 23]. Testing this hypothesis at the
one-sided a = 0.025 level for the data x1/ny = 1/6 and x2/ny = 7/9,
the UMPU test rejects 70.3% of the time. So, provided they are not using
the same pseudo-random number generator, there is a 41.7% chance that
two researchers applying the UMPU test to those data will have different
accept/reject decisions.

Associated confidence region not an interval: There are two versions of
the two-sided Fisher’s exact test and the most common is the Fisher-Irwin
test (default in current versions of SAS [version 9.4] and R [version 4.0.4],
see Section 8 for definition). The test was designed to test Hp : Sor = 1,
but it can be generalized to test other null hypotheses. Consider the data
x1/ny = 7/262 and x5 /ny = 30/494 [see 19, Supplement, Section 3.1]. The
two-sided p-value for testing Hy : B, = 1 is p = 0.04996, which rejects the
null hypothesis at the a = 0.05 level. If we slightly change the null and test
Hy : Bor = 0.99, we get p = 0.05005, and we fail to reject. But counter-
intuitively, if we change the null the other way and test Hy : 8, = 1.01,
we also fail to reject, p = 0.05006. So if we create the 95% confidence
region by inverting the p-value procedure, this region is not contiguous,

C(x,0.95) = {B:B¢€(0.177,0.993) or B € (1.006,1.014)} .

and includes values of 3,, both larger and smaller than 1. The cause of this
behaviour is the lack of unimodality of the p-value function; see Figure 1.

Incompatible inferences: If the confidence region is not an interval, we can
create a valid CI by using the interval that covers the whole confidence re-
gion. But this will not give compatible inferences with the p-value function.
Returning to the Fisher’s exact test confidence region example, we can
create a 95% confidence interval by “filling in the hole” as (0.177,1.014)
to create the matching confidence interval [see Section 4.1 or Ref. 6]. In
this case, the two-sided p-value rejects the null that 3,. = 1 at the 0.05
level, but the matching 95% confidence interval includes 3,. = 1. This
issue is different from the incompatible inferences that often occur by us-
ing different methods to calculate p-values and confidence intervals, which
can be quite prevalent in this application. For example, the default for
R (fisher.test in base R, version 4.0.4) and SAS (exact option in Proc
Freq, version 9.4) uses the Fisher-Irwin two-sided p-value, but calculates
the two-sided confidence interval on ,, by inverting two one-sided Fisher
exact p-values [see e.g., 19, 20].

Imperfect Accuracy of Coverage: Because of discreteness, the valid confi-
dence interval must have coverage larger than the nominal level for some
values of 6, in order to ensure validity for all values of §. Remember, the
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Fic 1. Two-sided Fisher’s exact test (Fisher-Irwin version) p-values by Bo for x1/n1 = 7/262
and z2/ne = 30/494. Right panel is an enlargement of part of the left panel. Reference line
15 0.05.

term “exact” is often used to mean valid (see Section 2.2), so an “exact”
confidence interval may have coverage greater than the nominal level and
not, as the term might imply, have coverage exactly equal to the nominal
level. Section 9 discusses relaxing the requirement of validity in order to
have coverage closer to the nominal level “on average”, slightly greater
than nominal for some parameter values and slightly less for others.
Non-Centrality of Confidence Interval: Although central (1 — «) Cls for
the binomial problem are important, much has been written on non-central
intervals. Agresti and Min [1] showed that inverting certain two-sided tests,
produces shorter confidence intervals than central ones. For the difference
in proportions, this strategy often uses an unconditional exact (i.e., valid)
version of a two-sided score test [see 17]. For x1/ny = 5/9 and xo/ne = 7/7,
the difference in proportions is Bd = 0.444 with 95% confidence interval
(0.005,0.749) and the associated two-sided exact p-value for testing 84 = 0
is p = 0.0496. Because the 95% confidence interval is based on inverting a
two-sided test, we cannot use p/2 = 0.0248 as a one-sided p-value to show
that B3 > 0 at the 0.025 level. In fact, to ensure validity, we can only use
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the two-sided p-value as an upper bound on that one-sided p-value.

Non-monotonicity of power: Continuing with the previous example (1 /n; =
5/9 and x2/ny = 7/7 using the unconditional exact two-sided score test), if
we add one more observation to group 2 the two-sided p-value increases re-
gardless of whether the extra observation is a failure (giving x2/ng = 7/8
and p = 0.172), or success (giving x2/ne = 8/8 and p = 0.0510) [this
example comes from 56]. Thus, it is not surprising that the power to re-
ject at the two-sided 0.05 level when 6; = .4 and 6y = .9 is higher for
ny = 9,ne = 7 (power= 61.9%) than for n; = 9,ny = 8 (power=>53.7%).
Power non-monotonicity can also exist for common one-sided tests. Us-
ing a one-sided Fisher’s exact test (to reject Hy : 61 < 63) at the 0.025
level, when n; = ny = 4 the only way to reject is the most extreme case,
x1/n1 = 4/4 and z2/ny = 0/4, and the power to reject is (1 — 61)*65.
When ny = 4 and ny = 5 then still the only way to reject at the 0.025
level is the most extreme case, x1/n1 = 4/4 and z5/ns = 0/5, and the
power is (1 — 01)%63. Then, (1 — 6;)%03 > (1 — 61)%03 for all 0 < 67 < 1
and 0 < 0y < 1, and the power with the larger sample size is smaller. A
similar decrease in power occurs by instead adding one to the other group:
ny =5 and ny = 4.

Non-nested Confidence Intervals: Wang [57] proposed a method for con-
structing the smallest one-sided confidence interval for the difference of
two proportions. Consider z1/n; = 2/7 and x5 = 2/5. The lower one-sided
95% interval on the difference, 34, is (—0.467, 1), but the 96% interval by
the same method is (—0.442,1). See Figure 2 and Section 5.5.

Non-Coherence: For testing for non-inferiority on a difference in proportions,
Chan and Zhang [10] recommend the exact unconditional test based on
the score test. Rohmel [49] gives the following illustrative example: the
proportion of failures on control is 21 /n; = 130/248 and on new treatment
is x2/ng = 76/170, with the failure rate slightly lower on new treatment,
Bd = —0.077. If we want to show that H; : B4 < 0.025 the p-value is
p = 0.0226, but if we want to show an even less stringent margin, H; :
Ba < 0.026 the p-value non-intuitively increases to p = 0.0240 (see Figure 3
and Section 5.6).

For the two-sample binomial problem, many attempts to increase power or
get the smallest expected length CI result in violations of some of these “normal
intuition” properties.

3. Choosing the effect measure

Choosing the effect measure is dependent on the application, so we examine a
real application to discuss the issues. Coulibaly et al. [14] studied a parasite
called Mansonella perstans that infects people in parts of Africa. The usual
drugs that kill other similar parasites had not been working on killing M. per-
stans. Coulibaly et al. [14] realized that in this case there was a symbiotic
bacteria, Wolbachia, that helped the M. perstans live. They suspected that if



Two-sample binomial problem 81

o
‘_._
S
©
O__
_ o
o)
>
]
3
@
S ©
5 8
-'go
2
C
S
(@)
T
- S A L4
TR )
s !
1
.
1
8 1
._ 1
© ,
,
1
1

I I I I I I I
-060 -055 -050 -045 -040 -0.35 -0.30

L(x,1—a)

F1G 2. Thick gray lines are lower limits for the smallest one-sided 100(1 — a)% confidence
limits for Bq from Wang [57] for x1/n1 = 2/7 and z2/ns = 2/5. Solid black lines show
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they gave a common antibiotic, doxycycline, to kill the bacteria, it may in fact
help cure the patient of M. perstans. Patients were randomized to the treat-
ment group (doxycycline) or the control group (no treatment). There are issues
of missing data that we ignore for simplicity. At 12 months, zo = 67 out of
ne = 69 subjects who received doxycycline and x; = 10 out of n; = 63 had
cleared the M. perstans from their blood. There are several reasonable choices
for how to measure the effect: the difference in clearance rates, the ratio of
clearance rates, the ratio of failure probabilities, and the odds ratio of clearance
rates. Although the choice is often dominated by what is most natural to the
intended audience, there are some statistical issues related to this choice.
Without loss of generality, consider effect measures that measure how much
larger 65 is than 6;. The opposite effect can be measured by switching group
labels. But we could also simultaneously switch group labels and switch the
response and failure labels. If the effect remains the same after this double
switching, we say that the measure has symmetry equivariance. The measures
Ba and Bor have symmetry equivariance; however, (. does not have it, as we
demonstrate with the example. Let 02 =67/69 ~ 0.97 and 91 =10/63 ~ 0.16.
An estimate of the rate ratio for success (cleared parasites at 12 months) is
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Fia 3. One-sided ezact unconditional p-value using the score statistic ordering, py(x,Bo).
Virtual data example from Réhmel [49]: x1/n1 = 130/248 and x2/no = 76/170. Thick black
line is the p-value function. Thin black lines depict the test of the null Hy : B > 0.026 and
dotted lines depict the test of the null Hy : 8 > 0.025.

ég/él ~ 6.12. The rate ratio is often called the relative risk, but in this case
the “risk” is the risk of getting cured. A different expression of the same data
measures the ratio of the rates of failures (those still having detectable parasites
at 12 months). Let Opy = 2/69 ~ 0.03 and fp; = 53/63 ~ 0.84. Then an
estimate of the relative risk of failure is éFl/éFQ ~ 29.0. In this latter case the
control group looks about 29 times worse than the treatment group, while if
we look at the rate ratios for success, the treatment group looks only about
6 times better than the control group. So how many times better treatment
is than control depends on which way we measure risk. This is a violation of
symmetry equivariance. Despite this, the rate ratio is often used because it is
easy to understand [see e.g., 14], or because it has become the parameter of
choice within a field, so that its use facilitates comparisons between studies.
The difference has symmetry equivariance. If we measured the difference in
rates of disease rather than the difference in rates of cure we get exactly the
negative difference as we might expect. Similar to the relative risk, the difference
is often used because it is easy to understand. Additionally, the sample difference
in rates is always defined, unlike the ratio which is undefined when 6, =6, = 0.



Two-sample binomial problem 83

A N
Odds(8,)/0dds(6;)

8 8
7 7
6 6
5 5
X, 4 X, 4
3 3
2 2
1 1
0 0
0 1 2 3 4 5 6 7 8
X4
(1-81)/(1-8,)
8 8
7 7
6 6
5 5
X, 4 X, 4
3 3
2 2
1 1
0 0
01 2 3 4 5 6 7 8 01 2 3 4 5 6 7 8
X4 X4

Fic 4. Four simple ordering functions. Dark blue means B is much larger than 6, and
dark red is the opposite. White means both treatments appear the same. The functions are
based on n1 = m2 = 8 and using functions of the sample proportions, 61 = x1/n1 and
oy = z2/n2. The sample space is depicted by a 9 X9 grid of responses, ranked by the ordering
Sfunctions: difference in success proportions (upper left), odds ratio (upper right), ratio of
success proportions (lower left), and ratio of failure proportions (lower right). Colors rank
the functions from the highest values (dark blue) indicating larger 02, to middle values (white)
indicating 01 = 02, to lowest values (dark red), with black indicating no information.

Figure 4 plots the three statistics using 05 and 6; with ny = no = 8. The plots
go from dark blue (6, is larger) to white (6, = 65) to dark red (6, is larger), with
black denoting indeterminate. Because of the indeterminate black areas, the or-
dering of the sample space for the ratio and odds ratio is not straightforward
(see Section 5.3). The ordering of the measures on the parameters themselves
would give a continuous version of Figure 4, and the black regions would reduce
to points at (01,62) = (0,0) or (1,1). The bottom panels show the lack of sym-
metry equivariance for .. Comparing the panel for 3,, with the two different
ratio panels, we see that the lower left hand corner of the 3, panel is similar to
the lower left hand corner of BT = 0y / 0. For small 0, Bor is a good approxima-
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tion to Br. Similarly for both 6 values close to 1, Bo,. is a good approximation
of (1 —671)/(1 — 0s) (right bottom panel).

The odds ratio is the most complicated of the three measures, but it has
some nice properties. It is very important for the case-control design used to
study rare diseases, because the odds ratio of disease given exposure is equal to
the odds ratio of exposure given disease [see 8]. Also for performing regression
on binary observations, logistic regression allows linear predictors to be used to
model the log odds, and effects of binary covariates can be expressed as odds
ratios. An advantage of the odds ratio for the two-sample binomial case is that
by conditioning on the total number of successes in both groups, the probabil-
ity distribution reduces to a noncentral hypergeometric distribution which is a
function of S,.. This is discussed more in Section 6.

4. Properties of frequentist triples
4.1. Defining a matched triple

Once we choose an effect measure, we choose an appropriate triple (an estimator,
confidence interval, and p-value function) for inferences. We will not specify the
estimator except to require that it is within the confidence interval. We focus
mostly on choosing the CI and p-value function. Except in Section 9, we only
consider triples that are valid (i.e., the CI and p-value are both valid) and
reproducible. Because we require reproducibility, the triple based on the UMP
unbiased (and randomized) test is not allowed. We focus on triples where the p-
value function and the confidence interval are derived from the same procedure.
We call this a matched triple.

Here is a precise definition of a matched triple. If we start with p(x, 8y), an
associated confidence region is given by equation 2.2, and the matching CI is
smallest interval that contains that confidence region. In other words, if the
confidence region has holes in it, then those holes are “filled in”. On the other
hand, if we start with (L,U) = Cr(x,1— ), then the matching p-value function
is the smallest « such that 8y is outside Cr(x,1 — a) for all a > a.

4.2. Implications of compatible inferences

Theorem 4.1. Consider a valid, reproducible, and matched triple. The triple
has compatible inferences

1. if and only if the CI is equal to the confidence region associated with the
p-value, and

2. only if the CI is nested, and

3. only if the the p-value function is coherent (for one-sided p-values), or
directionally coherent (for two-sided p-values).

The formal proof of the theorem is in Appendix A. The theorem says we must
have nested CIs and coherent p-values in order to have compatible inferences.
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These ideas are best understood graphically. Figure 1 shows lack of directional
coherence; for every [y there is only one p-value, and the two-sided p-value
function is not unimodal (i.e., as By increases, the p-value function does not
increase to the global maximum, then decrease after that; see the right panel).
Similarly, Figure 3 shows lack of coherence. Figure 2 shows non-nestedness; for
every « there is only one lower limit, and the lower limit is not a monotonic
function of the level.

4.8. Directional inferences

Typically, a researcher who finds a significant difference from the two-sided p-
value suggesting that 8 # [y is almost always interested in interpreting the
result in terms of whether 8 > (g or 8 < [y. In other words, the two-sided
hypothesis test is often treated as a three-decision rule: (1) fail to reject 5 = S,
(2) reject B = By and conclude § > By, or (3) reject 5 = fp and conclude 5 < Sy.
If the two-sided p-value has directional coherence, then if we reject Hy : 8 = By
at level «, we can additionally reject at level «v either Hy : 5 < fy (if By < B)
or Hy: B> Bo (if Bo > ).

Consider comparing two triples that both have compatible inferences, one
with a central CI, and one with a non-central CI. For the non-central triple
(i.e., the one with the non-central CI) the associated two-sided hypothesis test
may be slightly more powerful, but if the non-central triple is applied also to a
subsequent one-sided hypothesis (as in the three decision rule), it can be quite
a bit less powerful than the central one. To see this, start with a nested central
CI, say (L,U), and pair it with its matching two-sided p-value, say pc. By
Theorem 4.1, this means that whenever the 100(1 — a)% CI excludes 5y then
po < a, and we can reject Hy : B = Py at level a. After rejecting the two-sided
hypothesis at level «, we can reject one of the one-sided hypotheses at level
a/2; if By < L we reject Hy : 8 < By, while if 5y > U we reject Hy : 8 > [p. A
non-central CI does not allow one-sided rejections at the «/2 level. Freedman
[26] discusses this issue in terms of clinical trials, and, using these arguments as
well as some Bayesian motivation, [26] recommends performing two one-sided
tests at the «/2 level, which is another way of describing the use of central CI
methods for three decision rules.

In summary, if we desire directional inferences, and we want to compare
the power to detect a one-sided effect in a fair way (i.e., both methods bound
the one-sided type I error rates of the three decision rule at the same level),
then we need to compare a method with a two-sided p-value and its matching
100(1 — @)% non-central CI, with a pair of one-sided p-values and its matching
100(1 — 2)% central CI. This means that when comparing expected lengths
of ClIs, if directionality of effect is important, we should compare the expected
length of a 100(1—a)% non-central CI with the expected length of a 100(1—2a)%
central CI. Because directionality is usually important, our default recommen-
dation is to use central confidence intervals and perform three-sided inferences
as described above.
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5. Methods for creating one-sided exact unconditional testing
procedures

5.1. Basic procedure for defining p-values

Suppose larger values of 6 are better. We want to know if treatment 2 is better
than treatment 1 (62 > 61), and by how much. Let T'(x) be a function of the data,
where larger values of T'(x) indicate that treatment 2 is better than treatment
1, and T'(X) is defined for all possible values of X. For example, a simple T'(x) is
the difference in observed proportions (see Figure 4 upper left). For this section
and the next (Section 5.2), we require that T is a function of x only. Later in
Section 5.5, T may depend on «, and in Section 5.6, T may depend on [y.
Barnard [4] outlined convexity conditions which ensure that larger values of T'
suggest treatment 2 is better. Barnard’s convexity (BC) conditions are:

if 5 > xo then T([z1,23]) > T([x1,22])
and (5.1)
if 27 <z then T([x],z2]) > T([z1, z2]).

Many choices for T satisfy the BC conditions. For example, T(x) = 0y — 6,
meets the BC conditions.

Once we have decided on the ordering function, 7', we can create valid uncon-
ditional one-sided p-values: py for testing the null Hyo (defined as Hy : 5 > 5o)
and py, for testing Hro (Hp : 8 < fBp) using

pu(x,B0) = sup Py [T(X) < T'(x)]
0:6(0)>pBo
and (5.2)
pr(x,00) = sup Py [T(X) > T(x)].
0:6(0)<PBo

These p-values are valid since

sup Py[p(X, Bo) < p(x, Bo)] < p(x, Bo)
UdSSH

where ©g = {6 : b(0) > By} for py and ©g = {0 : b(0) < By} for pr,. The p-values
are also ‘exact’ by the terminology of [48] (see equation 2.1, or Theorem 1 of
[38]). Thus, any other valid p-values with ordering based on T' are inadmissible
(that is, they have values that are never less than the valid unconditional p-
values and are greater for at least one x) [38, Theorem 2].

These valid one-sided p-values can be inverted to create two 100(1 — a/2)
one-sided confidence limits using

sup{fo: pu(x,Bo) > a/2}, if Fa by
Ux) = with pu (%, fo) > /2
Bmaz otherwise
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and (5.3)
inf{By: pr(x,Bo)>«a/2},if Fa by
Lx) = with pr(x, Bo) > /2
Bmin otherwise

where (Bmin, Bmaz) = (—1, 1) for B4 and (0, 00) for 8, or B,. A central 100(1 —
a) confidence interval is the union of the one-sided ones, (L(x),U(x)), and
a central p-value is po(x, Bp) = min(1,2pr, 2py). These confidence limits are
called exact unconditional [see e.g., 44] or Buehler confidence limits [see 39].
Lloyd and Kabaila [39] and Wang [57] show two results about these one-sided
intervals. First, the lower and upper one-sided confidence limits retain a logical
ordering analogous to Barnard’s convexity conditions. Specifically, (L,U) € Or,
where Or is the class of valid central confidence intervals such that if T'(x;) <
T(x2) then L(xy) < L(x2) and U(x;) < U(xz). Second, (L,U) calculated in
this manner is the smallest confidence interval within Or. In other words, any
other valid central confidence interval (L*,U*) in Or must have L*(x) < L(x)
and U(x) < U*(x) for all x € X.

Barnard [4] proposed the two-sided CSM test (we discuss the name later).
We define the CSM test more generally using an ordering method which may be
used for one or two-sided tests and confidence intervals, and we begin with the
one-sided versions. Briefly, Barndard’s CSM one-sided ordering starts from the
most extreme point and incrementally adds more points to the order such that
(1) the new point(s) and all previous points meet the BC conditions, and (2) the
new point(s) have the lowest one-sided p-value among the possible new points
that meet the BC conditions. Details are in Appendix B. Once the appropriate
one-sided CSM ordering function, T'(x), is defined, we use the above definitions
for the p-values (equation 5.2) and confidence intervals (equation 5.3). The CSM
stands for convexity, symmetry, and maximum. Convezity refers to the BC con-
dition that each new point must meet, and mazimum refers to the maximization
of the null hypothesis space in the definition of the p-value (see sup expression in
equations (5.2)). The symmetry condition only applies to the two-sided version
of the CSM test, but nevertheless we use “CSM” to describe all versions. The
symmetry condition states that whenever a point [z}, 23] is added to the order,
one must simultaneously add [ny —x7, no—a3] and give it the same T value in the
ordering (see Appendix B and Section 8 for more discussion of two-sided tests).

In a different paper, Barnard [3] outlined the general exact unconditional
test, and those tests are sometimes referred to as “Barnard’s test” [see e.g.,
54, 15], but we do not use that terminology to avoid confusion with Barnard’s
CSM test. Rohmel and Kieser [50] discussed one-sided exact unconditional tests
using Barnard’s CSM p-value ordering, except with breaking more ties to get
higher power, an idea discussed in the next section.

Martin Andrés, Sdnchez Quevedo and Silva Mato [41] proposed a good all-
purpose ordering, which is to base the ordering on the one-sided mid p-value
from Fisher’s exact test (see equation 9.1). We explore the power properties
of this ordering in Section 11. Alternatively, the ordering can be tailored to a
specific application. For example, Gabriel et al. [27] proposed an ordering to
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optimize power for certain types of animal experiments where 67, the parameter
for the control group, is expected to be nearly 1.

5.2. Improving power by breaking ties: Refinement of ordering
functions

One important way to improve the power of some unconditional exact tests
based on a function T is to break any ties that exist in the ordering function.
If T is an ordering function with ties, and 7™ is an ordering function that gives
the same ordering of T' at all the untied values and additionally breaks some
ties, then we say T is a refinement of T. Then the unconditional exact p-values
formed with T are always less than or equal to those formed with T [see 51,
p. 158]. Similarly, one-sided exact unconditional lower confidence limits formed
using T* are always at least as large as the ones formed using T [35, 57].

We describe one specific refinement or tie breaking algorithm for the differ-
ence in proportions next, which as far as we are aware, has not been specifically
described in the literature and has not been available in software (although there
are some closely related methods). We can order within each set of tied values
using Wald statistics for B4, ie., ordering by

B - iy
Voaro(Ba) /00— 0)(1/ny + 1/ny)

where 0 = (21 + x3)/(n1 + ny). This leaves the ties for 84 = 0, but otherwise
defines points with more precision as more extreme, where extreme is further
away from zero. Not all the values with Bd # 0 break all the ties. For example,
consider the ties at 35 = 5/8 that happen at the x values [0, 5], [1, 6], [2, 7], and
[3,8], for ny = nz = 8. This method still leaves tied the two pairs of points,
{]0,5],[3,8]} and {[1,6],[2,7]}. These remaining ties we argue should remain
tied in order for the ordering to retain symmetry equivariance. Note that this
suggested ordering is similar, but not equivalent to just ordering the entire
sample space by Z(x) [as was studied in 44].

If we break the ties in this way, then the BC conditions are still met, because
only at the boundaries (where the ties are broken according to the BC condi-
tions) do the ties occur at two points x, and x; with z,1 = Zp1 Or Te2 = Tpo.
All of the other ties will not have any x,1 = zp1 Or oo = Tpe so they can
be broken in any manner and the overall ordering function, 7%, will meet the
BC conditions. This is important for computation (see Section 10). Further, the
proposed T™* (tie-breaking on difference in proportions) does not depend on «
or By like some score test based methods (see Sections 5.5 and 5.6) so avoids
problems with nesting and coherence.

Z(x) =

5.3. Ordering functions for ratio and odds ratio

Performing exact unconditional tests on 3, or S, is not straightforward. We
consider , first since it is simpler. One problem is that x = [0, 0] could occur



Two-sample binomial problem 89

with high probability if the true ratio was 100 or if it was 1/100 as long as both
01 and 0y were very small. So if T'(x) is designed so that larger values suggest
02 > 01, it is not clear how to define T'([0,0]) if our interest is in S,.

Since x = [0,0] gives no information about §,, we must deal with [0,0]
in a special way; set the p-value at x = [0,0] to 1 for tests of f, regardless
of the null hypothesis. This means that x = [0,0] is placed “deepest” within
the null. Following equations 5.2, this implies T'([0,0]) can be thought of as the
largest value when calculating py (x, 89) and the smallest value when calculating
pr (%, Bo). A similar issue applies to the odds ratio, except in that case, the point
x = [n1,n2] also has no information about S,,.

For clarity, we rewrite equations 5.2 applied to all three parameters. Let
X; denote the set of X values with information about 5. Then if x ¢ X set

pu(x, Bo) and pr(x, Bo) to 1, otherwise let py(x, By) be

sup Py [T(X) < T(X)|X € X[] Py [X € X]]
6:(6)=Bo

and analogously, let pr(x, o) be

sup Py [T(X) > T(X)|X € X[] Py [X S X]] .
6:(6)<pBo

Since we never reject when x ¢ X7, these definitions give valid p-values, and
additionally when x ¢ X7 we do not need to define T'(x).

The simple ordering function by the estimate of 3, or 8, (even when using a
tie breaking ordering similar to what was done for 8y) is not very powerful (see
Section 11), and is not recommended. Typically, we order using a score function
(see Section 5.6) since it gives more reasonable power.

5.4. Other improvements: E+M and Berger-Boos

Another method to apparently improve the ordering statistic for any efficacy pa-
rameter (difference, ratio, or odds ratio) is the estimated and maximized (E+ M)
p-value [38]. In this method, we replace an ordering statistic, T', with T, where
T* is an estimated p-value when testing Hyo (or the negative estimated p-value
when testing Hyg). We estimate the p-value by plugging in fo instead of taking
the supremum of # under the null, where 0o is the maximum likelihood esti-
mator of 6 € ©g. For example, the approximation for p;, in expression 5.2 uses
pr(x,80) = Py [T(X) < T(x)]. Then we “maximize” using 7™ (x) = pr(x, 5o)
instead of T" as the ordering function. That is, we calculate the exact conditional
p-value using expression 5.2 by taking the supremum. Lloyd [38] studied this
method and observed that when T* (the approximate p-value) is used as the
ordering statistic, the resulting exact unconditional p-value is generally smaller
than the exact unconditional p-value on 7. The process can be repeated (re-
place T* by its approximate p-value), but the additional reduction appears to
be minimal.
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Berger and Boos [5] introduced a popular adjustment that tends to reduce
exact unconditional p-values. Instead of taking the supremum over the entire null
hypotheses parameter space, take the supremum only over C, a 100(1 — )%
confidence set of @ restricted to be in the null space, then add v to ensure
validity. This is usually done by reexpressing the parameter space (61,63) as
(B,1), where 9 is a nuisance parameter, then defining C, as the intersection of
0 € O and the set of 6 values with ¢ in its 100(1 — )% confidence interval. A
Berger-Boos version of py of expression 5.2, uses

pu~(x,60) = 7+eseug Py [T(X) > T(x)].

This is not optimal, since we may be able to improve it by using py~(x, 8p) as an
ordering function. Nevertheless, it usually provides some reduction in p-values
[see e.g., 38].

5.5. Ordering functions that depend on significance level

Kabaila and Lloyd [34] showed that for one-sided 100(1 — «/2)% exact uncon-
ditional upper confidence limits, the ordering function, 7', that maximizes the
asymptotic efficiency is an approximate 100(1 — «/2)% one-sided upper confi-
dence limit itself. A different ordering function is used for the upper and lower
limit, and for different confidence levels.

Wang [57] and Wang and Shan [58] also proposed an ordering function to give
the smallest CI, and the calculation of the ordering function itself is iterative
and quite involved, similar to the CSM test of Barnard [4]. The precise definition
of the ordering is notationally cumbersome, but the idea is roughly as follows.
Consider the lower 100(1 — «/2)% one-sided limit. Start from the most extreme
point x = [0, n2]. Then add points one at a time, picking the point, x,, that gives
the largest L(x,,1 — «/2) and belongs to the set of closest neighboring points
with the already included points, where closest neighbor is defined in terms of
the BC conditions. The algorithm ensures that the lower limit function meets
the BC conditions. Because each added L(x) value is as large as possible, if the
resulting ordering function 7" gives the finest partition (there are no ties), then
any valid 100(1 — «/2)% one-sided lower limit that meets the BC conditions and
uses T for ordering, say L*, has L*(x) < L(x) for all x [see 57, 58].

The price for this optimality property is that the ordering function depends
on «. Different ordering functions arise for different «, which can lead to non-
nestedness (see Figure 2).

5.6. Ordering functions that depend on hypothesis space boundaries

Basing the ordering statistic on a score test can increase power over using simple
Wald-type Z statistics [see 9]. Although this increased power has been shown in
several simulation studies, it is not clear whether the increase is due to fewer ties
for the score test, or from some other difference between the ordering statistics.
A problem with the score statistic is that the induced ordering may change
based on the Sy, since score statistics use [y in their calculation, whereas most
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other test statistics do not include j in the calculation. This can produce non-
coherence as was shown in Section 2.4 and Figure 3.

Although the exact unconditional p-values and confidence intervals of this
section can be powerful, they are more difficult to calculate than the exact
conditional ones described in the next two sections: Section 6 for p-values, and
Section 7 for compatible confidence intervals.

6. One-sided conditional exact tests

Yates [61] argues that conditioning on the total number of failures is the proper
strategy for this problem, and most of the discussants of the paper agreed with
this (including Barnard, who first suggested the unconditional approach). One
of the main reasons that others had recommended the unconditional approach
is an overemphasis on the fixed significance level and the resulting power, which
when used leads to more power for unconditional tests because the sample space
has more values and hence is less discrete. Yates [61] argues (in his Section 9)
that over reliance on the nominal significance level is not a good reason to
prefer the unconditional test, and that p-values should be reported instead of
accept/reject decisions. Yates [61] also argues for conditioning on the total num-
ber of events (X7 + X32), because that statistic is approximately ancillary to the
effects of interest. Chernoff [11] quantifies the approximate ancillarity, showing
that the absolute amount of information “is quite small unless [f; and 65] are
very far apart”, and the proportion of information in the margins decreases with
the sample size. Recent reviews [e.g., 40] have emphasized power arguments, and
we review the choice of test from that perspective in Section 11. Historically,
conditional tests have been important because of their much smaller computa-
tional burden compared to unconditional tests. The computational burden for
unconditional tests has become less important, although for some applications
it may be a non-trivial concern (e.g., big data applications with small sample
sizes but very many covariates being tested).

For the unconditional one-sided exact method, to calculate p-values we need
to take the supremum of the probability that T'(X) is at least as extreme than
the observed T'(x) over the parameter space O¢ (see e.g., equation 5.2). This
is a difficult calculation (see Section 10). An alternative method conditions on
the sum s = x; + x2, and calculates the conditional probability. The resulting
conditional distribution is the extended hypergeometric distribution [32] also
called Fisher’s noncentral hypergeometric distribution [25], which depends only
on B,-. Additionally, because s is fixed, we can write the ordering function in
terms of X3 only. In fact, the only unique ordering function that makes sense
and meets the BC conditions is X5 itself (ordering on n; — X; will be equivalent).
So this simplifies the calculations if the effect measure is 5,,. For example, for
testing Hy : Bor > By use

pue(x,80) = sup Py [T(X) =T(x)[S]= sup Pg,, [X2 = z3[S]
0€0¢ Bor:Bor=>PBo

= Pp, [Xa > 2]5], (6.1)
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where the last step follows because the conditional distribution is monotone
in B, [45]. The other conditional one-sided p-value, pr. is calculated similarly
except by reversing the inequality. These conditional p-values for testing Hy :
Bor = 1 (or equivalently Hy : 1 = 62) are Fisher’s exact one-sided p-values. We
calculate the central confidence intervals on f,, using equation 5.3 except using
the conditional exact one-sided intervals instead of the unconditional ones.

Now consider the other measures, 54 and (.. At the boundary of equality,
the one-sided hypotheses are equivalent. For example, the following three null
hypotheses give equivalent ©¢: (odds ratio) Hoy : Ber > 1, (ratio) Hoy : B, > 1,
and (difference) Hoy : 84 > 0. Analogously for the other one-sided p-value. But
for boundaries not representing equality, ©¢ changes depending on the effect
measure. The simplification of the p-value calculation only works for the odds
ratio. For example, for the difference in proportions (i.e., 8 = B4) there is no
simplification analogous to equation 6.1. Figure 5 shows that the exact one-
sided conditional confidence limit on (34 is not efficient, because the conditional
distribution depends on fS,.. The upper 100(1 — «/2)% limit for B4, say Ug,
based on the upper limit for S, say U, is [see 52, Section 2]

U 0 if U, <1
d=\ VU=l
N3 if Uy > 1
There are better ways to get confidence intervals on 55 and B, that provide
compatible inferences with the one-sided p-values with 5y representing 6; = 6.

We show these in the next section.

7. Melded confidence intervals

Fay, Proschan and Brittain [21] developed melded confidence intervals, a general
method for creating confidence intervals for the two-sample case, that is closely
related to the confidence distribution (CD) approach [59]. Confidence distribu-
tions are a frequentist analog to the Bayesian posterior with a non-informative
prior. These melded confidence intervals give compatible inferences with the
central conditional tests.

Before discussing the binomial case, we consider the normal case because it
is more straightforward. Consider the difference in means between two normal
samples with different variances. Let fiq, Ja, 74, and s2 be, respectively, the
mean, the sample mean, sample size, and unbiased sample variance estimate for
group a. The two 100(1 — a/2)% one-sided confidence intervals for the mean in
group a, are

(L, (1 —a/2), 00) and
(=00, Up,(1-a/2))

with
_ — Sa
L,“'a(]' - 0/2) = Ya — Fna171(1 - 0/2) \/—’

a
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Fi1c 5. 97.5% Confidence region based on one-sided conditional test of odds ratio (gray shaded
area). Data is x1/n1 = 4/12 and x2/n2 = 8/15. Upper 97.5% exact conditional limit on Bor
is U = 2.664 (dotted line) and on By is U = 0.240 (solid line). The confidence region based
on the upper limit for Bq is the gray region plus the white space between the dotted and solid
line. We see that because the conditional probability depends on Bor alone, that white space
represents the lack of efficiency of basing the confidence region on Bq instead of Bor.

and (7.1)

Up(l—a/2) = ot Fil (1-a/2)—

N

where F d}l (q) is the gth quantile of the t-distribution with df degrees of freedom.
The central 100(1 — a)% confidence interval is the intersection of the two one-
sided intervals,

(Lua(l —a/2), Uxta(l —a/2)).

The confidence distribution approach is a way to re-express the confidence
interval. Let A and B be two independent uniform (0,1) random variables.
Let My, ~ L,,(A) and My, ~ U, (B) be the lower and upper confidence
distribution random variables for p,, where the randomness comes from A and
B, while g, and s,/,/n, are treated as constants. From (7.1) and the probability
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integral transformation, we re-express those random variables as

_ Sa
MLua = Ya — Ta \/n—av
and
S
MU = Ya + Tg “

Ha \/n_a’

where T4y and Ty are independent and distributed ¢ with n, — 1 degrees of
freedom. Because of the symmetry of the t distribution about 0, My, —and
My, have the same distribution, so in this case the lower and upper confidence
distributions are equivalent, and we let M, = My, = My, be the confidence
distribution random variable associated with p,. In terms of the CD-RV, the
100(1 — )% confidence interval for p, is

{Q(O‘/ZM a,)’q(]‘ - a/QvM a)}

where ¢(a, M) is the ath quantile of the random variable M.

The confidence distribution approach appears to be a confusing and round-
about way to express the confidence interval. The advantage comes when we
want a confidence interval for ps — p1, based on a two-sample problem with
independent samples. Then we can write the 100(1 — «)% confidence interval
for po — 1 as

(Q(a/Qv M}J«z - Mlh)? q(l - 04/2, Mll«z - Mﬂl)) ? (72)

which can be estimated with Monte Carlo simulation. Expression 7.2 is equiv-
alent to the Behrens-Fisher confidence interval, and the confidence distribution
approach gives a simple way to conceptualize it [21]. The traditional approach
calculates the Behrens-Fisher statistic,

Y2 —
Tpr T
Z1 + 2
ni no

and calculates its distribution, which depends on ny,ne and s1/s2 [36].

For the binomial problem the lower and upper confidence distributions are
not equal. Let X, ~ Binomial(n,,0,), for a = 1,2. Let the 100(1 — )% exact
central confidence interval for 6, (i.e., the Clopper-Pearson interval [12]) be

{Lo, (1 — /2),Up,(1 - /2)},

where Lg, (1 — a/2) and Uy, (1 — «/2) are exact 100(1 — a/2)% one-sided con-
fidence limits, for 6, for a = 1,2. The lower and upper CD random variables
for group a are Wr, = Ly, (As1) and Wy, = Uy, (Aa2), where A,; are inde-
pendent uniform random variables. This gives, Wi, ~ Beta(xq,ng — Tq + 1)
with expectation z,/(ng + 1), and Wy, ~ Beta(z, + 1,n, — x,) with expecta-
tion (x4 + 1)/(ng + 1), and using limits of parameters going to zero we define
Beta(0,n+ 1) as a point mass at 0 and Beta(n+ 1,0) as a point mass at 1. The
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lower CD-RV is stochastically smaller than the upper CD-RV. In CD form, the
100(1 — )% Clopper-Pearson interval is

{Q(a/27 WLa), (1(1 - Q/Q, WUa)} .
The 100(1 — &)% melded confidence interval for 6, — 6; is
{a(a/2,Wra = Wui),q(1 — /2, Wya — Wra)},

where in order to be conservative for the lower limit, we use the lower CD-RVs
for 65 but the upper CD-RV for 61, and vice versa for the upper limit. We
can generalize this to other functions of § = [61,62]. Let b(f) be a monotonic
function of the parameters, such that § = b(6) is increasing in 65 and decreasing
in 01, within the allowable range of the parameters. For the binomial problem all
three parameters (84, 8, and (,,) meet the monotonicity requirements, while for
the normal two-sample problem the ratio of means (and odds ratios of means)
does not meet those requirements. In general form, the 100(1 — «)% (two-sided)
melded confidence interval is given by

(¢ {a/2,6((Wu1, Wir2])} {1 = a/2,b([Wr1, Wua])}) -

Fay, Proschan and Brittain [21] conjectured that if the one-sample confidence
interval procedures are valid, central, and nested, and 8 = b(f) is increasing in
05 for fixed 0; and decreasing in 6 for fixed 65 (such as B4, 5, and B, ), then
the melded confidence interval is valid, nested and central. Some mathematical
results, simulations in several situations, and extensive numeric calculations in
the binomial case supported this conjecture. A rigorous proof of the conjecture
is still needed.

Let pym (x, 8o) and pr.m,(x, Bo) be the one-sided melded p-values, the p-values
that match with the one-sided melded confidence limits. Then for the binomial
case, Fay, Proschan and Brittain [21] showed that the one-sided melded p-values
equal the exact one-sided conditional p-values when testing the null with margin
Bo which implies §; = 65. For example, for testing Hy : B3 > 0, we have
pum(%,0) = pue(x,0), and for testing Hy : B > 1, we have pyn,(x,1) =
pue(x,1). Because the melded confidence intervals are nested, by Theorem 4.1
the melded confidence intervals are compatible with the p-values from the one-
sided Fisher’s exact test.

The melded ClIs for 3, are very close to the exact conditional ones, but the
melded CIs for S, are more efficient (lower are larger, and upper are smaller)
than the exact conditional ones (see Figure 6).

8. Non-central confidence intervals and associated tests

Let Tys(x) = Tis(x, v, o) be an ordering function for testing the two-sided null
Hy : B = By, with smaller values suggesting 8 further away from the null. We
can create exact unconditional two-sided p-values using

Dts (X7 BO) = sup Py [Tts (X) < T (X)]
0€0(Bo)
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F1G 6. Lower and Upper limits associated with 95% central confidence intervals by ezact
conditional method and melding method. Simulated data where ng is simulated from uniform
on 1 to 100, and x4 is uniform on 0 to ng, 1000 replications. Calculation used the exact2x2
R package for melded confidence limits and fisher.test from the stats package for the exact
conditional limits. The limits for Bor agree well; the identity line for the upper limits does
not reach the top right corner of the graph because of some extreme data (e.g., x1/n1 = 1/68
and x2/ng = 57/61) perhaps caused by numeric issues in the computation. In contrast, the
limits for Bq show that the melded are shorter intervals (lower is larger, upper is smaller).

and exact conditional two-sided p-values using

pis(x,80) = sup Py [Tis(X) < Ths(x)[S = s].
0€0(Bo)

which simplifies to
Pis(X, Bo) = Pg, [T1s(X) < Tis(x)[S = 5], (8.1)

if 8= Bor-
For example, consider Tis(x, Bo) = f(x, o), where f is the probability mass
function for the extended hypergeometric distribution with parameter 5,, = Bo.



Two-sample binomial problem 97

The associated exact conditional p-value when By = 1 is the usual Fisher’s ex-
act test, called the Fisher-Irwin test since it was proposed by Irwin [31] and
to distinguish it from the central Fisher’s exact test created by doubling the
minimum of the one-sided Fisher’s exact p-values. Using Fisher’s exact p-values
(either Fisher-Irwin or central version) as an ordering function in an uncondi-
tional exact test gives a version of Boschloo’s test. Boschloo [7] showed that
using the Fisher-Irwin p-values in this way is uniformly more powerful than the
Fisher-Irwin test. In an analogous way, Using either one-sided or central Fisher’s
exact p-values as ordering functions in an unconditional test, is also uniformly
more powerful than the original Fisher’s exact versions of those tests [40].

Blaker [6] studied non-central confidence sets that always are subsets of the
central confidence sets in one parameter distributions. To translate into this
problem, we consider only the conditional distribution based on S = s and
B = Bor. Start with T'(x) = x2, a one-sided ordering function for the conditional
problem (see Section 6). Define

Y(x, 8) = min{Ps[X5 < x2|F = s], Ps[ X2 > 22| S = s]}.
Let the two-sided ordering function for Blaker’s test be

Tp(x,8) = Ps [v(X, 8) <v(x, B)|S = s].

Blaker’s test two-sided p-value is pp(x, 8p) from equation 8.1 using Tis = T,
and the associated 100(1 — a)% confidence region is

Co(x,1—a) = {8: pp(x,B) > a}.

Blaker [6] showed that this gives smaller confidence sets than the central Cls.
Specifically, Cp(x,1 — @) C C.(x,1 — «), where C, is the exact conditional
central CI using the one-sided ordering function T'(x) = x3. Let the 100(1—a)%
matching confidence interval to pg be the smallest interval that contains Cp.

Consider the conditional two-sided tests for 8y = 1 when z1/n; = 8/14 and
x2/ny = 1/7. Conditionally on X; + X5 = 9, the support of X5 is {0,1,...,7}.
In Table 1 we give the values of f(x,1), v(x,1), and Tp(x,1). Note, f([8,1],1) =
f([4,5],1). Suppressing the 8y = 1 term in the functions, the p-value for the
Fisher-Irwin test is,

pri([8,1]) = F([9,0]) + F([8,1]) + f([4,5]) + £([3,6]) + f([2,7]) = 0.159,
for the Blaker test is
p((8,1)) = f(19,0]) + f([8, 1)) + f([3,6]) + f([2,7]) = 0.087,
and for the central Fisher’s exact test is
pe([8,1]) = 2 {f([9,0]) + f([8,1])} = 0.157.

This example was chosen to clarify the differences between the tests, but often
the Fisher-Irwin and Blaker tests give the same p-values. The calculation of
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the matching 95% confidence intervals involves calculating a series of p-value
functions for changing [y, which may not be unimodal for Blaker’s test or
the Fisher-Irwin test (see e.g., Figure 1), so the algorithm is not simple [19].
The 95% confidence intervals are: Cry(x,0.95) = (0.005,1.53), Cp(x,0.95) =
(0.005,1.53), and C.(x,0.95) = (0.002, 1.62). The original (i.e., two-sided) CSM
test of Barnard [4] is more difficult to calculate (see Appendix B), it gives a two-
sided p-value of 0.089, and we know of no software to calculate the matching
confidence interval.

TABLE 1
The hypergeometric probability mass function (f), v(x,1) function, and the two-sided
ordering function for Blaker’s exact test (Tp(x,1)), for x1/n1 = 8/14 and x2/n2 = 1/7.

20 =0 x2=1 29=2 220=3 22=4 1220=5 229=6 220=7
(x,1) 0.007 0.072 0.245 0.358 0.238 0.072 0.009 0.000
(x,1) 0.007 0.078 0.324 0.676 0.319 0.080 0.009 0.000
Tp(x,1) 0.007 0.087 0.642 1.000 0.397 0.159 0.016 0.000

2=

Agresti and Min [1] showed that to create two-sided CIs with shorter expected
length, it is generally better to invert p-values from two-sided hypothesis tests
that are not central. This makes sense because centrality is a restriction, and
two-sided tests without that restriction will leave room for improving expected
CI length. For the two-sample binomial problem, basing T;4(x, 8o) on score tests
gives good expected CI length; see Chan and Zhang [10] for 54 and Agresti and
Min [2] for B,,. Despite this apparent improvement, if directional inferences are
needed, then central confidence intervals are recommended (see Section 4.3).

9. Mid-p methods: Improving accuracy by sacrificing validity

The mid p-value is a modification of a p-value for discrete data. Instead of
calculating the probability of observing equal or more extreme responses, the
mid p-value is 0.5 times the probability of equality plus the probability of more
extreme. For example, the conditional exact p-value of equation 6.1 becomes

1
pUc—mid(X7 ﬂo) = Pﬂo [XQ > CC2|S} + §P50 [XQ = .CE2|S] . (91)

Hwang and Yang [30] gave some optimality criteria for the mid-p approach
applied to one parameter situations, which applies to the conditional test using
Bor since the conditional probability is completely described by only the S,
parameter. They show that for one-sided or two-sided hypothesis tests, the loss
based on squared error between an indicator that 8 € {b(f) : 0 € By} and the
p-value function, and shows that for all 5 € {b(f):60 € ©1} (and 5 = Bo)
the expected loss is less than or equal to (strictly less than) the expected loss
from any randomized exact p-value function (Theorem 3.3 and 4.3 with Yang,
Lee and Hwang [60]). Fellows [22] showed minimaxity under squared error and
linear loss, and also showed that of all non-randomized ordered decision rules,
the mid-p version is the only one that has expectation 1/2 under a point null
hypothesis.
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10. Computational issues

Overall, conditional p-values are much easier to calculate than unconditional
ones, since they do not require taking the supremum over the null space. The
melded confidence intervals allow matching CIs to conditional tests of 8; = 6,
and are very quick to calculate, since they use numeric integration. There may
be some precision issues in the numeric integration for extreme data sets.

The main computational speed issues apply to unconditional tests, since they
require computing the supremum. Rohmel and Mansmann [51, p. 161] showed
that for ordering statistics, T, that meet the BC conditions, the supremum in
the p-value calculation is on the boundary between hypotheses. For example,

sup Py [T(X) >T(x)]= sup B[T(X)>T(x)].
0€0g 6:6(6)=Po

For example, the score statistic on 54 [18] has been shown to follow the BC
conditions for fixed Sy [49]. Further, if T meets the BC conditions and does not
depend on fp, then Theorem 3.1 of Kabaila [33] shows that the exact uncon-
ditional one-sided p-values based on T are either nonincreasing (for py(x, 5o))
or nondecreasing (for pr,(x, 3p)) in By for fixed x. This property means that for
these p-values, the associated 100(1 — «/2) one-sided confidence intervals can
be easily calculated by finding the value 8y where the p-value equals «/2.

Calculation using Barnard’s CSM p-value ordering can be very slow, because
determining the ordering itself requires p-value calculation. Rohmel and Kieser
[50] discussed one-sided exact unconditional tests using Barnard’s CSM p-value
ordering, except with breaking ties in a manner that does not worry about
symmetry equivariance. They also do not worry about the exact ordering for
very small p-values. This can speed up the calculations substantially.

Table 2 reviews different methods, their properties of centrality and compati-
ble inferences, and approximate ranking of computational speed and power. The
last column gives some software availability for the methods; it is not a com-
prehensive list, and only considers SAS 9.4, R (with packages), and StatXact
11.

11. Power and efficiency comparisons

A comprehensive simulation or calculation comparing different methods with re-
spect to power or efficiency is beyond the scope of this review. Here we review a
few of the best of those types of papers and add an example and some graphical
calculation results to supplement the previous literature on the topic. In essence
this section gives some detailed justification for the rough power/efficiency clas-
sifications listed in Table 2.

In general conditional tests (e.g., Fisher’s exact tests) are less powerful than
the best of the unconditional tests, because the latter tests are less discrete
[40]. Martin Andrés and Silva Mato [43] provide a very comprehensive power
comparison of several valid unconditional tests (including tests based on either
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TABLE 2. Valid (and Mid-p adjusted) Methods for Two-Sample Binomial Problem, and some Properties, References, and Software

Method Central Compat. Comput. Power/ References Sect. Software™**
Infer. Speed™ Efficiency ™™
Smallest CIL yes no 3 1 Wang [57] (for Bg) 5.5 Rpkeg:ExactCIdiff (for B, CI only)
‘Wang and Shan [58] (for By, Bor)
Barnard’s CSM both 7 3 T Barnard [4] 51 Rpkg: Exact(p-value only)
Boschloo Test both both 2 2 Boschloo [7] 5 Rpkg: Exact (p-value only), exact2x2
Uncond Exact no no 2 2 Chan and Zhang [10] (for Bg) 8 StatXact-11 (only Bg, Br),
Score Stat Agresti and Min [1] (for B4, Br) SAS 9.4 (only Bq, Br),
(square T) Agresti and Min [2] (for Bor) Rpkg: exact2x2 (tsmethod= “square”)
Uncond Exact yes yes 2 2(8q) 5.2 Rpkg: exact2x2 (tsmethod=‘“central”)
B Estimates 5(Br) 5.3
with tie break 5(Bor)
Uncond Exact no no 2 2 Mehrotra, Chan and Berger [44] B StatXact-11 (only Bg)
Wald Stat (T'2) Rpkg: exact2x2 (tsmethod=“square”)
Uncond Exact yes yes 2 3(Bg) Barnard (3] 5.1 Rpkg: oxact2x2 (tsmethod—= “central” )
B Estimates 5(Br, Bor) Mehrotra, Chan and Berger [44] 5.3
Cond Exact with no no 1 3 Fisher [24] (for p-value) 6 Rpkg:exact2x2
Fisher-Irwin Fay [19] (for CI)
Exact Test
Cond Exact with no o 1 3 Blaker [6] B Rpkg: exact2x2
Blaker Method Fay [19]
Cond Bxact with yos yeos f 1 Fisher [24] (for p-value) 7 Rpkg: oxact2x2
Melded CIs Fay, Proschan and Brittain [21] (for CI)
Cond exact with yes yes 1 4 Agresti and Min [1] 6 SAS 9.4 (use double one-sided
tail approach CI Fay [19] Fisher’s exact p-values)
(only for Boyr) StatXact-11, Rpkg: exact2x2
Adjustment Notes Sect. Software
Bergor-Boos Adjustment by Berger and Boos [5] applies to unconditional exact tests 5.4 StatXact-11, Rpkg: oxact2x2
and generally increases power Rpkg: Exact(p-values only)
ETM Adjustment by Lloyd [38] applics to unconditional exact tests 5.4 Rpkg: exact2x2
and generally increases power
Mid-p Applies to any mothod, increases power at the cost of validity 9 Rpkg: oxactax2
SAS 9.4 (not all tests)
* Approximate computation speed: 1=fast, 2=moderate, 3=slow. ** Approximate power/efficiency: 1=higher power/shorter CI, ..., 5=lower power/larger CI.

Software (not comprehensive, only considered R, SAS and StatXact): R packages available at https://cran.r-project.org/.
For SAS the methods are available in PROC FREQ using exact option. The value “both” denotes there could be versions with and without the property, and denotes that it is not
clear if the matching confidence intervals are compatible with the p-values because confidence intervals have not been studied with that test (although it is likely the method will not
be compatible because it is similar to the smallest CI method).

won
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an ordering function of the difference in sample proportions, or on some test-
based ordering functions related to Fisher’s exact p-value, the unpooled Z test,
or Barnard’s CSM test). They only considered ordering functions that do not
depend on « or fy (since they only consider power to show 6y > 6, [i.e., with
Bo = 0 for the difference or 8y = 1 for the ratio or odds ratio] the ordering
functions automatically do not depend on fj). Martin Andrés and Silva Mato
[43] based power comparisons on expected power assuming bivariate uniformly
distributed (61, 62). They found that Barnard’s CSM test was the most powerful
on average, and that ordering by either the unpooled Z statistics for the dif-
ference in means or Fisher’s exact p-values (i.e., a Boschloo-type test) gave the
next best power. Martin Andrés and Silva Mato [43] did not include a pooled Z
test, but Mehrotra, Chan and Berger [44] did, and they showed that the pooled
Z test can have much better power with unequal sample sizes. So in general we
can recommend ordering by the pooled Z instead of the unpooled Z. Since Barn-
dard’s CSM test is difficult to calculate, Martin Andrés, Sanchez Quevedo and
Silva Mato [42] compared many approximations to that value. They concluded
that the mid-p Fisher’s p-value was the best approximation to the CSM test,
although it could be conservative for very small samples. Hirji, Tan and Elashoff
[29] did extensive calculations finding the type I error rate for the exact condi-
tional mid-p one-sided and two-sided (Fisher-Irwin-type) tests. They found that
out of 3125 sample size and parameter situations (all with 6; = 65), typically
90-95% of both types of the mid-p p-value when used to test at a 5% signifi-
cance level, had type I error rates less than or equal to 5%. Further, Lydersen,
Fagerland and Laake [40] stated that the mid-p version of the Fisher-Irwin test
approximates the Fisher-Boschloo test well, and the latter test (or the exact
unconditional test on Pearson’s chi-squared test) was their recommendation.
For confidence intervals, we focus on two papers. Chan and Zhang [10] com-
pared unconditional confidence intervals based on estimates or tests on the dif-
ference: the difference in proportions, the unpooled Z statistic, the score statistic
(which they called the d-Projected Z statistic), and the likelihood ratio statis-
tic. They tried all with and without the Berger and Boos [5] adjustment. They
showed the score statistic with no adjustment generally gave shorter expected
confidence interval length. Santner et al. [53] did a very comprehensive set of
calculations for 34 confidence intervals, calculating expected coverage and con-
fidence interval length for a 100 x 100 grid of values of (61, 63). They compared
three valid methods and two approximate methods, including the unconditional
method based on a two-sided score test, the unconditional method based on two
one-sided score tests, and an approximate method of Coe and Tamhane [13].
The results show that of the valid methods, the unconditional method based
on the two-sided score test statistic had the lowest expected length, while the
central unconditional method based on two one-sided score tests had larger ex-
pected length. However, if directional inferences are important, then the proper
comparison should be the former method using 100(1 — «)% intervals compared
to the latter method using 100(1 — 2a))% intervals (see Section 4.3). Further,
score tests may lack coherence (see Figure 3). Santner et al. [53] recommended
the approximate method of Coe and Tamhane [13], which had shorter expected
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length confidence intervals and gave coverage above the nominal except in less
than 0.6% of the cases. Fagerland, Lydersen and Laake [17] also recommends
for small samples the exact unconditional confidence intervals with the ordering
function the two-sided score test statistic. Fagerland, Lydersen and Laake [17]
mentions using one-sided tests if direction is important.

We now compare score tests to other tests not included in the previous sim-
ulations. Between unconditional tests applied to 8, and B,,, the ordering based
on score tests or the ordering based on one-sided mid-p Fisher’s exact p-values
[41] perform much better than ordering by estimates with tie breaks as in Sec-
tion 5.3. For example, with n; = ny = 20, #; = 0.4, 5 = 0.8, and a one-sided
0.025 significance level, power is 73% for score-based or mid-p Fisher-based tests
of both 3, and S, but is very small for the test that orders by estimates with tie
breaks (power = 0 for 3, and power ~ 1% for §,,). Power increases slightly for
the latter tests with a Berger and Boos adjustment and v = 106 (power is 11%
for 3, and 16% for B,.). In contrast, for B4 in that example all three methods
of ordering with or without the Berger-Boos adjustment give 73% power.

Figure 7 compares powers on the two-sided 0.05 level central tests that 54 = 0.
Powers are calculated on a 99 x99 grid of values of (61, 02). We plot the difference
in powers between all pairs of three tests: two unconditional exact tests (one
based on the score test for the difference in proportions, and one based on the
difference in proportions with a tie break) and the conditional test (the central
Fisher’s exact test). We find, as expected, that unconditional tests do better,
and that the simple method with a tie break does well when the sample sizes
are not equal [see e.g., 44, for a different set of simulations showing a similar
result for the two-sided test].

Figure 8 compares unconditional exact tests ordered by score statistics (on
either B4 = 0, Bor = 1, or B, = 1) compared to unconditional exact tests based
on the mid p-values from the one-sided Fisher’s exact test. We find that the
latter tests are generally more powerful.

12. Recommendations

There are many ways to perform frequentist inferences on the two-sample bino-
mial problem. Our extensive review focused on valid inferences and highlighted
practical properties of tests. We give a few recommendations.

1. Use central confidence intervals with either a central p-value, or the mini-
mum of the one-sided p-values. Using non-central two-sided CIs can slightly
decrease expected CI length, but at a cost in terms of allowable one-sided
inferences. Since we usually care about the direction of effect, non-central
ClIs are not routinely recommended.

2. Avoid maximizing power or minimizing the expected length of the confi-
dence interval, because it increases computational burden and can lead to
incoherent p-values and non-nested Cls.

3. For fast calculations use one-sided conditional exact tests and melded con-
fidence intervals.
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Fia 7. Comparison of powers for testing 01 = 02 using central tests at the two-sided 0.05 level.
The three tests compared are “score” = unconditional exact test based on the score test of the
difference in proportions, “simple TB”= unconditional exact test based on the difference in
proportions using a simple tie-break (see Section 5.2), and “Fisher”= tests based on central
Fisher’s exact test. For columns labeled Test 1 vs Test 2, the result is power of Test 1 minus
Power of Test 2, so that positive values (pink and gray) indicate that Test 1 is more powerful.
White indicates that powers are within 0.025 of each other. Colors are smoothly changing so
that light blue (-0.2 to -0.3) are next to yellow and gray (0.2 to 0.80) is next to pink.

4. For more power use unconditional one-sided valid p-values and associated
central Cls. For inferences on (34, order based on the difference in sample
proportions, except break ties while maintaining the BC conditions, and
do not let the ordering function depend on 3y or «. This will ensure
monotonicity of p-values as a function of 3y, allowing for relatively fast
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F1a 8. Power of unconditional exact score test minus power of unconditional exact test based
on ordering by Fisher’s exact test one-sided mid p-value. Negative values (yellow and blue)
denote parameter values in which the latter test is more powerful. The unconditional exact
score tests are defined based on testing either Ho : Bq = 0 (first column), Ho : Bor = 1 (second
column), or Ho : B = 1 (third column). White indicates that the two powers are within 0.025
of each other. Colors are smoothly changing so that light blue (-0.2 to -0.3) are next to yellow
and gray (0.2 to 0.30) is newt to pink. Additional calculations with n1 = 12,ns = 12 showed
nearly equal powers (all white) for all three columns and are not plotted.

calculations, while preserving coherence and nestedness. For inferences on
B, and f,;, using the simple function with a tie breaking ordering has much
smaller power than the score method or ordering based on one-sided mid-
p Fisher’s exact p-values. The score method causes incoherence or non-
nestedness, while the mid-p Fisher p-value ordering does not. Because the
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latter method only uses the mid p-values for ordering within the exact
unconditional test framework, the resulting p-values are valid. Further,
for inferences on (4, the mid-p ordering meets the BC conditions and is
relatively fast to calculate.

5. If validity is not vital, then the mid-p conditional tests are a good approxi-
mation to the more powerful of the unconditional exact ones. Additionally,
with a large proportion of situations with #; = 65, the mid-p conditional
tests still have type I error rates less than the nominal value.

Appendix A: Proof of Theorem 4.1

Proof of statement 1 :

(Compatible Inferences) = (C; = C): If the confidence region asso-
ciated with a p-value is not an interval, then there must be an o and
Bo such that p(x, 5p) < « and fy € Cr(x,1 — ), which contradicts
the compatible inferences, therefore Cr(x,1 —a) = C(x,1 — ).

(Cr = C) = (Compatible Inferences): If the confidence region asso-
ciated with the p-value is the matching confidence interval, then the
inferences are compatible by definition (equation 2.2).

Proof of statement 2, (Compatible Inferences) = (Nested CI): We
show the contrapostive. If a method has non-nested Cls, then there exists
some o < ag and some Sy such that §y ¢ Cr(x,1—a1) and fy € Cr(x,1—
a). If the method had compatible inferences, then p(x, 8y) = p < a7 and
p > ay. This leads to the contradiction, p < a; < as < p, so the method
must not have compatible inferences, and we have proven the result.

Proof of statement 3, (Compatible Inferences) = (Coherence): From
statement 2, compatible inferences imply nested Cls. For one-sided p-
values, compatible inferences with nested Cls imply that the p-values
are non-decreasing as the null space expands (e.g., Sy gets larger when
Hy : B < By), and hence are coherent by definition. For two-sided p-values,
because of compatible inferences and nested Cls, the p-values are increas-
ing (i.e., non-decreasing) as 1 — o decreases. This is directional coherence
by definition.

Appendix B: Barnard’s CSM ordering

Because Barnard [4] defined his CSM ordering as a two-sided ordering, there
may be more than one way to generalize the idea to a one-sided ordering. We
present two one-sided orderings here [see 55, for alternative algorithmic details].
Consider first the bottom-up CSM ordering, where we start with the point
with the lowest value of T'(x), which is [z1,22] = [n1,0], and make that the
first rejection region, say Ry, and let T'([ny,0]) = 1. Then repeat the following
algorithm to create the jth rejection region (for j = 2,...) until all points have
been ordered:
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1. Let @; be the set of points such that when each individual point is added to
R;_1, the resulting set meets the BC condition. Let the elements of ); be
{le, N L } For example, when j = 1, then Q2 = {[n1, 1], [n1 — 1,0]},
with xo1 = [n1, 1] and x99 = [n1 — 1,0].

2. Calculate py(x;) for each member of @Q);, where

pu(xj) = sup Py [T(X) < T(xj1)]
0:02—6,

and T'(x) = oo for all points not yet added to the rejection region (i.e.,
not in WY Ry), and T(xjp) = j if k' = k and T(x;p) = oo if k' # k.
Note, because of the BC conditions (see Section 10), this is equivalent to
pu as defined in (5.2) when Hy : 02 > 61 (e.g., b(8) = 62 — 01 and By = 0).

3. Define R; as R;_; combined with the point with the lowest value of
pu (%), and if there are ties include all tied points, and define the the
associated T' function for all included points as j.

The top-down CSM ordering is analogous, starts from the highest value of T'(x)
(i.e., [x1, 23] = [0,n2]), and uses the other one-sided p-value function, pr. It is
not obvious whether the bottom-up and top-down CSM orderings are equivalent
or not.

Barnard’s original two-sided CSM ordering is similar, except whenever a point
[7, 23] is included in Rj;, its symmetric point [n; —z], ng — 23] is also included.
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