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Abstract: It is often useful to conduct inference for probability densities
by constructing “plausible” sets in which the unknown density of given
data may lie. Examples of such sets include pointwise intervals, simulta-
neous bands, or balls in a function space, and they may be frequentist
or Bayesian in interpretation. For almost any density estimator, there are
multiple approaches to inference available in the literature. Here we review
such literature, providing a thorough overview of existing methods for den-
sity uncertainty quantification. The literature considered here comprises a
spectrum from theoretical to practical ideas, and for some methods there is
little commonality between these two extremes. After detailing some of the
key concepts of nonparametric inference – the different types of “plausible”
sets, and their interpretation and behaviour – we list the most prominent
density estimators and the corresponding uncertainty quantification meth-
ods for each.
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1. Introduction

Density estimation is one of the seminal examples of nonparametric statistical
modelling. There are a litany of methods spread across decades of literature,
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from more “classical” approaches [159] to the most advanced modern techniques
[23]. Estimation, however, is only one piece of the puzzle: as in any statistical
problem, it is desirable to also conduct inference, providing some quantification
of uncertainty in addition to single estimates. Broadly speaking, uncertainty is
quantified using sets of “plausible” values – for example, confidence intervals
for frequentist methods and credible intervals for Bayesian ones. Although not
as abundant as other areas in nonparametric statistics, there is a sizeable body
of literature on uncertainty quantification (UQ) for density estimation, ranging
from rigorously theoretical to extremely practical.

The following sections provide more detail on various types of “uncertainty
sets”, then outline several density estimation methods and review available liter-
ature dealing with UQ for each one. Although some combinations of estimation
and inference ideas are not represented in the literature (in particular, a sub-
stantial gap exists between theoretical and practical UQ developments in many
cases), in principle, one could always obtain some kind of uncertainty bounds
on a density estimate, either by bootstrapping a frequentist method or taking
quantiles of MCMC output for a Bayesian one. Whether or not such bounds
have suitable coverage properties or otherwise perform adequately is another
question for which the answers are not always known. Despite some of these
limitations, this paper presents a comprehensive review of the work done thus
far in unknown density UQ, and suggests promising areas to extend the research
or “fill in the gaps”.

2. Overview and notation

Let X = (X1, . . . , Xn) be a sample from some unknown “true density” f0. The
majority of discussion here will assume i.i.d. samples, but other data structures
will also be considered as warranted. One structure that is common enough to
justify mentioning here is the case of “noisy” observations Yi = Xi + Zi, where
the errors Zi have known distribution and the true X-values are unknown. Esti-
mating the density of X in this case is called deconvolution density estimation.
In the present context, f̂ will denote a specific “point” estimate (in the sense
that it is a single element of a function space) of f0, such as a MLE or poste-
rior mean; while f will typically be used to discuss classes or function spaces of
estimators in more generality.

As mentioned in the introduction, UQ arises by considering “uncertainty
sets”. Such sets are random through their dependence on X, but for brevity the
notation here does not reflect this. As f0 is a function, there are several ways to
define uncertainty sets, each with different implications and advantages. Perhaps
the most obvious examples are pointwise intervals Cx = [L(x), U(x)], defined
separately for each point x in the domain of f0. A common special case is when

the intervals are symmetric about an estimator f̂ : Cx =
[
f̂(x)− εx, f̂(x) + εx

]
.

The goal with pointwise intervals is to achieve (possibly only approximately or
asymptotically) P (f(x) ∈ Cx) ≥ 1− α for all x ∈ Dom(f0), where 1− α is the
usual predetermined level. The meaning of the generic placeholders P and f
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depends on whether the inference is frequentist or Bayesian.
Pointwise intervals tend to be easy to implement, and also have nice theoret-

ical properties for some (but not all) density estimation techniques. However,
they are fundamentally limited in their ability to make “global” uncertainty
statements. For a given level 1 − α, even if P (f(x) ∈ Cx) ≥ 1 − α ∀x, the
stronger and perhaps more meaningful statement P (f(x) ∈ Cx ∀x) ≥ 1 − α
cannot necessarily be deduced. However, in some cases the “simultaneous” state-
ment does hold, in which case the set C = {(x, y) : x ∈ Dom(f0) , y ∈ Cx} is
called a confidence or credible band. Like pointwise intervals, bands are often
centered at a specific estimator, although this need not be the case. For in-
stance, Hall and Titterington [89] proposed to construct frequentist bands for
univariate densities based on simultaneous multinomial confidence intervals for
the probability masses within consecutive subintervals of the domain. Classi-
cal approximation results allowed them to construct such intervals without a
specific density estimator, and they constructed the density bands by interpo-
lation, with modifications depending on f0 being once or twice differentiable.
Such bands are not smooth, but were shown to have suitable coverage prop-
erties and optimal asymptotic widths without making further assumptions or
restrictions. Hengartner and Stark [94] devised conservative confidence bands
for shape-restricted densities (either monotonic or having ≤ k modes for known
k, possibly relative to some weight function), also obtained without an estima-
tor. To derive their bands, they started with a confidence region for the cdf F0

comprised of distributions with densities having the same shape restriction as
f0, and subsequently showed how to reduce the determination of the band for f0
to a finite-dimensional linear program while conservatively preserving coverage
probability.

If Cx has the same width for all x in a band, then it is uniform and is there-
fore a L∞-ball in a suitable function space F . Thus, a uniform band is a special
case of a more general idea: using a ball C in some pseudo-metric space of
functions (F , d) as an uncertainty set. Analogously to pointwise intervals and
bands, here the goal is to have P (f ∈ C) ≥ 1 − α. For choices of d such as
the Hellinger or L2 distances, such sets arise in nonparametric literature due to
their satisfying theoretical properties. However, their practicality is somewhat
limited: an L2-ball of functions, for instance, does not provide error bounds that
can be easily visualized or understood, short of simply plotting a large number
of functions from the ball alongside f̂ . For example, Szabó, van der Vaart and
van Zanten [198] visualized L2-balls from an empirical Bayesian model for non-
parametric regression by sampling functions from the posterior and plotting
the 100 (1− α)% of draws closest in the L2 sense to the posterior mean. In
a discussion of this paper, Low and Ma [133] suggested using this procedure
to generate bands for the regression function whose boundaries are simply the
pointwise maxima and minima of these closest posterior draws. Their simula-
tions showed that the bands thus obtained performed quite well with respect to
the framework of Cai, Low and Ma [20]. Beyond the aforementioned examples
and those in Section 4.4.3, discussion of these “uncertainty balls” is limited,
although Chapter 6 of Csörgo and Révész [35] contains theorems on the asymp-
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totic distributions of the L2-errors of several “classical” frequentist estimators
(KDE’s, histograms, and certain orthonormal basis expansions). These results
could be relevant towards the construction of confidence balls, but this seems
not to have been done in practice, likely due to their limited visual utility. On
the other hand, if d is the L∞ distance, one recovers the meaningful and easily-
visualized UQ given by bands, at the expense of nice theory in some cases.
As before, for any pseudo-metric a common special case arises by taking the
associated sets to be centered at some estimator:

C(ε) =
{
f ∈ F : d

(
f, f̂

)
< ε

}
. (1)

In frequentist inference, uncertainty quantification relies on confidence sets
of any of the forms described above, typically obtained in practice using asymp-
totic arguments and/or bootstrapping. Confidence sets are designed in view of
the “ground truth” X ∼ f0: letting P0 denote the probability law associated
with f0, the goal is to achieve coverage probability P0 (Cx � f0(x)) ≥ 1− α ∀x
in the pointwise case, or P0 (C � f0) ≥ 1 − α for bands or function balls. The
Bayesian approach employs credible sets instead: using Π (· | X) as generic no-
tation for the posterior over a space of densities f , the sets of interest are either
pointwise intervals such that Π (f(x) ∈ Cx | X) ≥ 1 − α ∀x, or bands/balls
such that Π (f ∈ C | X) ≥ 1− α. To facilitate validation and comparison, it is
possible to view Bayesian methods through a frequentist lens by acknowledging
the existence of the “ground truth” f0, in which case the posterior Π (· | X)
is considered as a random measure due to its dependence on X ∼ P0. This
leads to a similar interpretation of credible sets as functions of the data. It is
then natural to ask if they achieve coverage in the aforementioned frequentist
sense. Put another way, can credible sets also serve as valid confidence sets?
The difficulty of answering this question for nonparametric Bayesian methods
is well-known and an active area of research; discussion of coverage therefore
tends to be easier in the frequentist paradigm.

Naturally, the best possible inference produces small sets with high coverage
probability. To this end, the concepts of honesty and adaptivity are relevant.
Consider a confidence set Cn, where the subscript n is added to emphasize
limiting behaviour with respect to sample size. The remainder of this section
ignores the distinction between pointwise intervals, bands, and balls.

In the context of density estimation, Cn is honest at level 1− α if

lim inf
n

inf
f0∈F

P0 (Cn � f0) ≥ 1− α, (2)

where F is once again a suitable function space of interest [95]. In words, an hon-
est confidence set asymptotically achieves the desired coverage level uniformly
over all possible “ground truths”. Honesty is crucial for practical finite-sample
inference: without it, it is possible in some cases for the infimum of coverage
probability over F to be zero for any n [123].

The precise definitions and presentations underpinning the notion of adap-
tivity vary throughout the nonparametric literature [19, 69, 95, for instance].
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The present discussion will focus as narrowly as possible on material relevant to
density UQ. Suppose F = ∪s∈SFs for some ordered index set S, where for s > t
it holds that Fs ⊆ Ft and the elements of Fs are smoother than those of Ft\Fs.
Typically each subset Fs is, say, a ball in a suitable Besov space of regularity s,
with an associated minimax-optimal contraction rate rn(s) decreasing in both
n and s [70]. Following Hoffmann and Nickl [95], call Cn adaptive if there exists
L > 0 such that, for all s ∈ S and for all n large enough,

sup
f0∈Fs

E0 |Cn| ≤ Lrn(s), (3)

where the expectation is with respect to P0, and |Cn| is the diameter of Cn with
respect to the metric by which it is defined (typically L2 or L∞ in this context).
Naturally, less uncertainty is expected in the estimation of smoother functions.
Adaptive confidence sets take advantage of this fact: they are optimal in the
sense that, for every level of smoothness under consideration, their “maximum”
expected size contracts at the optimal rate with respect to n. This is especially
useful since the actual smoothness of the true density is likely to be unknown,
and it does not have to be specified for adaptive Cn. Unfortunately, adaptivity is
an elusive goal which cannot be achieved without caveats, especially if honesty
is also desired. As it pertains to density estimation, one of the earliest results to
this effect came from Low [132], who considered pointwise inference for f0 with
uniformly bounded kth derivatives. They showed that, over this space, an honest
confidence interval could achieve the worst-case contraction rate for any f0,
regardless of its true smoothness. Confidence sets in L∞ are particularly tricky:
full adaptivity over finitely many smoothness levels can only be achieved by
swapping the lim inf and inf in (2) (i.e. considering “dishonest” bands) [70, 95],
but Bull [15] showed that even with this modification it is still impossible to
adapt over a continuous range of smoothness levels in the white noise model.
Dümbgen [41] defined density confidence bands using a test statistic depending
on the cdf values at order statistics and showed some adaptivity results based
on local smoothness, but they are only valid over sets of shape-restricted (e.g.
unimodal or monotonic) densities. Such difficulties are pervasive for all types
of confidence sets: to achieve honesty and adaptivity together, it is necessary
to assume additional restrictions on the smoothness classes under consideration
or the functions therein. The theory shows that L2 confidence sets are less
restrictive in this regard than confidence bands, but neither are without their
difficulties. Section 8.3 of Giné and Nickl’s textbook [70] is an excellent and
comprehensive discussion of these ideas, and the references in their notes provide
further details. The authors explored adaptation theory for the white noise
model, but noted that it can be made to apply to density estimation.

Adaptivity and honesty are central to the theory of nonparametric inference,
but to many practitioners they may ultimately be less important than the afore-
mentioned visual aspect of UQ. Figure 1 shows how to graphically represent the
uncertainty associated with a density estimate by plotting multiple estimators
and corresponding UQ methods, all based on the same simulated dataset. The
figure includes both frequentist and Bayesian inference methods, and demon-
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Fig 1. Different combinations of density estimation and UQ methods applied to the same
sample.

strates the differences between pointwise intervals and simultaneous bands (in
particular, the latter are wider than the former, as one would expect to be nec-
essary for this stronger type of inference). The methods shown in Figure 1 are
among the many described in the following sections, each of which explores UQ
in terms of the concepts described above. The figure itself is discussed in more
detail in Section 9 as well as the supplementary material [141].

3. Kernel density estimators

KDE’s are one of the most used and well-studied density estimation methods, at
least in the frequentist literature. They are ubiquitous enough that their prop-
erties are arguably “common knowledge”, receiving extensive documentation in
textbooks, undergraduate course material, and review papers unto themselves
[e.g. 28, whose review informs much of the discussion in this section]. Recall
that a kernel density estimate for a density on R

d is of the form

f̂(x) =
1

nhd

n∑
i=1

K

(
x−Xi

h

)
, (4)
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where K is some (typically symmetric) kernel function and h is a bandwidth
which controls smoothing, or bias/variance tradeoff. Asymptotic theory for es-
timation is typically based on h decaying to zero in some “big-O” relationship
with n that optimizes MSE, or integrated MSE. Practical methods for obtaining
h include cross-validation, plug-in methods, rules of thumb, and bootstrapping
[102]. Note that, as the estimator is little more than a sample mean, it is equiv-
alent to a conditional expectation with respect to the random measure Fn, the
empirical distribution function of X.

3.1. Pointwise inference

For pointwise inference, it is well-known that KDE’s are asymptotically normal:
with f̂ as defined in (4), for all x ∈ R

d it holds that√
nhd

f0(x)
∫
K2(t)dt

(
f̂(x)− E

[
f̂(x)

])
d−→ N (0, 1). (5)

Furthermore, the distributions for a finite collection of points are asymptotically
independent [18]. Using this fact, it follows that the endpoints for pointwise con-

fidence intervals should be roughly of the form f̂(x)±z1−α/2σx, where σ
2
x is the

variance which is asymptotically equal to
f0(x)

∫
K2(t)dt

nhd . In practice, intervals
can be computed by estimating σx: either by using one of its asymptotically-
equivalent formulae (“plugging in” f̂ in place of f0 [28, 87] or replacing expec-
tations with sample averages [96, 57]) or bootstrapping [28]. Many papers also
replace the standard normal quantiles with those of bootstrap t-statistics [e.g.
96, 84]. Such studentized or “percentile-t” confidence intervals seem to be the
most commonly-discussed in the literature, but any method of bootstrap confi-
dence interval construction should be valid – for instance, Chen [28] discussed
a bootstrap interval based entirely on the percentiles of absolute deviations.
Hall and Kang [87] showed that re-calculating the bandwidth for each bootstrap
sample does not provide worthwhile improvements to the accuracy of inference1,
so computational difficulty is avoided by using the same bandwidth across all
replications. In the univariate case with a compactly-supported kernel, Chen [27]
considered the construction of confidence intervals based on empirical likelihood,
a nonparametric analogue to the standard methods of profile log-likelihood ra-
tios. The theory is similar to the parametric case: viewing f̂(x) as a sample
mean of random variables K

(
x−Xi

h

)
/h, Chen derived a limiting chi-squared

distribution for �
(
E

[
f̂(x)

])
, where � is the profile empirical log-likelihood ra-

tio. This allows for pointwise intervals of the form {y : �(y) ≤ c1−α}, where c1−α

is the 1 − α quantile of the χ2
1 distribution. Chen showed that such intervals

1In simulations, they found that recalculating the bandwidths can provide higher coverage,
but at the expense of more conservative intervals. They showed that it doesn’t asymptotically
make a difference for compactly-supported kernels, but used the Gaussian kernel in simulations
since its tails are light enough that it is “almost compact”.
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have asymptotic performance comparable to the percentile-t bootstrap and can
outperform it in simulations, especially with Bartlett correction.

Note that everything discussed thus far is based on (5), which is centered

about E
[
f̂
]
instead of f0. This poses a problem for inference when choosing an

“optimal” bandwidth minimizing (integrated) MSE or some proxy. The afore-
mentioned intervals provide asymptotically-correct coverage for the expectation
of f̂(x); in order for this to hold for f0(x) instead, the quantities in the numer-
ator of (5) must be interchanged. This is only possible if the ratio of bias and
asymptotic standard deviation√

nhd

f0(x)
∫
K2(t)dt

(
f0(x)− E

[
f̂(x)

])
goes to zero. However, the optimal asymptotic error rate is achieved when h is
set proportional to some power of n such that the squared bias and variance de-
cay at equal rates [28, 159]. Thus, with an “optimal” bandwidth, the ratio above
tends to a nonzero constant so that confidence intervals do not have the correct
coverage properties2. There are two main ways to handle this. The first is under-
smoothing, where a lower-than-optimal bandwidth is selected. In the univariate
case, Horowitz [96] suggested taking h proportional to a higher power of n than
usual, thereby allowing the squared bias to decay faster than the variance; while
Hall [84] multiplied a rule-of-thumb bandwidth by a constant c ∈ (0, 1). Chen
[27] used a version of the former when a confidence interval at only one point
is desired: first obtaining kernel estimates of f0 and its second derivative at the
point with approximations of the (local) MSE-optimal bandwidths, then using
these to estimate the bias. Chen suggested simply using the optimal bandwidth
in confidence interval construction when the estimated relative bias is small, or
an estimate of a coverage-optimal undersmoothing bandwidth when it is large.
Because a smaller h means higher variance, confidence intervals based on un-
dersmoothing may be wider than one would prefer [28]. The second method is

therefore to estimate the bias term with b̂ and replace f̂ with the bias-corrected
estimator f̂ − b̂. Assuming a kernel of order3 r is used, the bias depends on
the rth-order derivatives of f0, assuming these are bounded and continuous [26].
These derivatives can also be estimated with kernel methods, but require higher
bandwidths for optimality than the density estimator itself; for this reason, tra-
ditional bias correction uses an oversmoothed KDE to obtain b̂ [84, 28]. Hall [84]
showed through both asymptotics and simulations that undersmoothing with a
higher-order kernel results in percentile-t bootstrap confidence intervals with
smaller coverage errors than those based on such “oversmoothing” bias correc-
tions. However, Calonico, Cattaneo and Farrell [21] developed a “robust” bias
correction, in which the variance estimate used in confidence interval construc-
tion is modified to account for the correction, and showed that it can perform

2This is one example of inference being at odds with the goal of optimal estimation. This
will become a familiar refrain in theoretical ideas discussed throughout this paper.

3The order r of a kernel K is the smallest positive integer such that the rth moment of K
is nonzero.
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as well as undersmoothing-based intervals, with more robustness to bandwidth
selection. Notably, their results hold when using the MSE-optimal bandwidth
and second-order kernels for both f̂ and the bias correction, which they noted to
be convenient automatic choices. While lower error rates and narrower intervals
are desirable, it should be noted that the bias-corrected centers f̂ − b̂ are not
necessarily nonnegative. Also note that the aforementioned results are based on
a kernel with compact support.

Hall and Horowitz [86] devised another novel bootstrap approach. Starting

with the original KDE f̂ , they repeatedly drew “bootstrap” samples from f̂
(some papers call this the smoothed bootstrap, e.g. [148]) and used these to create
Gaussian plug-in intervals at each point x in the domain, with some nominal
confidence level 1−β(x). They set each β(x) to ensure that the actual coverage
(as estimated with bootstrap replicates) achieved the desired level 1−α. Letting

β̂δ be the ξ-quantile, for some low ξ, of the β(x)-values over a fine grid of x’s with

edge width δ, they took β̂ as the limit of β̂δ as δ → 0 and finally used standard
normal quantiles z1−β̂/2 to construct pointwise plug-in intervals centered at f̂ .
Their theory and simulation studies focused on nonparametric regression, and
in this case they showed asymptotic pointwise coverage of at least 1 − α at
roughly (1− ξ)100% of points in the domain. However, they suggested that all
results would translate to KDE’s as well.

Similar ideas to those discussed above extend to situations besides a single
i.i.d. sample X. Louani [130] derived theoretical results for the case of ran-
domly right-censored data: when there exists another sample Y of size n, and
only Zi = min {Xi, Yi} and 1 (Xi ≤ Yi) are observed. They considered a mod-
ified KDE defined by integrating with respect to a Kaplan-Meier estimate of
the cdf, rather than the usual edf Fn. Relaxing some of the conditions required
for previous similar results [142, 127] (in particular, assuming only one bounded
continuous derivative of f0), Louani showed pointwise asymptotic normality for
this estimator when using a kernel of compact support. The asymptotic stan-
dard deviation is similar to the left-side factor in (5), but with an extra factor of√
1−G(x), where G is the cdf of Y . Another theoretical extension came from

Giné and Mason [68], who considered kernel-based U-statistic estimators for the
densities of functions g (X1, . . . , Xm) with m > 1. Analogously to other results
described here, they derived central limit theorems for such estimators, noting
the bias can be eliminated if the bandwidth decays appropriately in the special
case where g is additive in its arguments (see also [185] for related results).
Schick and Wefelmeyer [186] studied the case when the data is a linear pro-
cess: Xi =

∑∞
s=0 asεi−s for zero-mean εs and absolutely convergent {as}. The

asymptotic mean in their limiting normal distribution is the convolution of the
true density with the kernel. For a more practically-oriented extension, Wang
and Wertelecki [214] considered data observed with rounding errors. They pro-
posed a multi-step process to estimate the density of X: first deriving a rough,
convolution-based estimate for the cdf of the non-rounded data; then using this
to generate a sample from the estimated distribution of the rounding errors; and
finally subtracting the simulated errors from the rounded data and constructing
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a KDE from the resulting quantities. Because the procedure involves simulated
sampling, it naturally lends itself to bootstrap-style uncertainty quantification,
which the authors showed in the form of pointwise confidence intervals for real
data.

Further results exist for deconvolution density estimation. In this case, it is
common to use a specialized kernel deconvolution density estimator, replacing
the “standard” kernel in (4) with a deconvolution kernel : the Fourier transform
of the ratio between the characteristic functions of some kernel function and the
known error distribution. Fan [49] provided asymptotic normality results for
such estimators in two cases: ordinary smooth deconvolution (where the tails of
the error characteristic function decay at a polynomial rate) and supersmooth
deconvolution (where they decay exponentially). In addition to the usual corol-
lary of bias removal with undersmoothing, Fan also showed that the asymptotic
variance (which depends on the true unknown density of the noisy data in the or-
dinary smooth case, and does not have a general expression in the supersmooth
case) in the pivotal quantity could be replaced by a sample-dependent term:
either the sum of squared deconvolution kernel values, or their sample variance
(only the former was considered for the supersmooth case). Zhang [217] showed
similar results for a similar estimator. Fan and Liu [51] later relaxed the condi-
tions assumed in [49] for the ordinary smooth case, allowing the asymptotic nor-
mality results to apply to a wider variety of commonly-used error distributions.
In a later paper, van Es and Uh [205] showed for a subset of supersmooth error
densities that, under certain conditions on the kernel, the asymptotic variance
of the estimator does not depend on the data or the true density. They noted
that this allows in this case for the construction of pointwise confidence intervals
without data-dependent standardization, although they do not address the issue
of bias. Further asymptotic normality results with known variances are given in
van Es and Uh [204] and Uh [201] for somewhat more general kernels and sub-
sets of supersmooth error densities. Masry [139] generalized the classical results
of Fan and Zhang to inference on the joint density of stationary process data
based on observations with i.i.d. additive noise. They showed asymptotic nor-
mality for various types of mixing with both ordinary smooth and supersmooth
error distributions, but only considered undersmoothing-based bias removal and
sample-based standardization for the former. For both i.i.d. and strongly-mixing
data, Zu [219] proved asymptotic normality of the estimator when the noise is
logarithmic chi-squared, a case not covered by the assumptions in the previous
literature. The asymptotic variance in this case depends once again on the true
density of the noisy data; Zu suggested that it could be consistently estimated
by a classical KDE to facilitate construction of (biased) confidence intervals.

Returning once more to the case of an i.i.d. sample, a final extension is the
adaptive kernel density estimator implemented in Stata by Van Kerm [206]. This
method starts with a “pilot” density estimate of fixed bandwidth; its values at
the sample points are used to assign individual bandwidths to each of the kernels
in (4), which can also be given individual weights. These variable bandwidths
reduce variance in regions where data is sparse, and bias in regions where it is
dense. As with the normal KDE, it is an easy matter to get a plug-in estimate
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of standard error; this is how Van Kerm’s software implements simple pointwise
inference.

3.2. Simultaneous inference

Moving beyond the pointwise case, consider simultaneous UQ on the entire
support or some subset thereof. The aforementioned undersmoothing and/or
bias-correction principles still apply, and the rest of this section will largely take
the application of such principles for granted. Bickel and Rosenblatt [9] provided
perhaps the first results to this effect for univariate KDE’s, showing that, under
suitable technical conditions,

P

[
An

(√
nh∫

K2(t)dt
sup
x

∣∣∣∣∣ f̂(x)− Ef̂(x)√
f0(x)

∣∣∣∣∣− dn

)
< z

]
→ e−2e−z

(6)

for suitable sequences An and dn (the latter being a function of the former), with
the supremum taken over a compact interval (say, [0, 1] w.l.o.g.) on which f0 is
bounded away from 0. They further showed that with moderate undersmooth-

ing, it is possible to replace Ef̂ and
√
f0 in (6) by f0 and

√
f̂ , respectively,

thereby justifying variable-width confidence bands f̂(x) ±
√

f̂(x)
∫
K2(t)dt
nh ×(

z
An

+ dn

)
for x ∈ [0, 1], where z is such that e−2e−z

= 1− α. Note that using

a differently-scaled An, the factor of 2 in the exponent of the limiting distribu-
tion can be eliminated, thereby turning it into the c.d.f. of a standard Gum-
bel random variable [e.g. 69, who derived such a result for an undersmoothed
data-driven bandwidth choice and plug-in estimator for

√
f0; see Section 4.4 for

further details]. In either case, the limiting probability law is of the extreme
value or “double exponential” form. Rosenblatt [177] expanded upon Bickel and
Rosenblatt’s results, slightly relaxing the conditions under which (6) holds in
the univariate case and generalizing to the multivariate case. However, their
multivariate results required rather strong restrictions on the bandwidth, dif-
ferentiability of f0, and moments of K. Rio [171] gave another rather technical
result on the limiting distributions of suprema over closed subsets of (0, 1)d

for d-dimensional densities. Additional generalizations of the Bickel-Rosenblatt
results in the univariate case were provided by Giné, Koltchinskii and Sakha-
nenko [66], who gave conditions for results similar to (6) to hold with a different

weight function Ψ replacing the factor
(√

f0
)−1

or the supremum taken over a
data-dependent set. The same authors provided further theory to this end in
a companion paper, in which they considered suprema over the whole real line
[67]. Sakhanenko [183] further modified and extended these results to multivari-
ate densities. Using moderate deviations principles, Mokkadem and Pelletier
[143] showed that it is actually possible to construct Bickel/Rosenblatt-style
confidence bands with asymptotic coverage level equal to 1 by using separate
bandwidths for the KDE’s in the mean and variance estimates (i.e. in the quan-
tities used to define, respectively, the centre and margins of the bands). Further
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technical refinements allowed them to achieve this with narrower bands, at the
expense of a slower convergence rate. While remarkable, these results have not
been applied in practice in literature to date.

A drawback of using these asymptotics in practice is that convergence to
the extreme value distribution is known to be very slow [e.g. 83]. Thus, it may
be advisable to use bootstrapping for confidence bands. In what follows, let f∗

denote a KDE based on a bootstrap resample of X. Hall [85] considered bands
(over compact intervals) of the type{

(x, y) : 0 ≤ x ≤ 1, L̂ ≤ f̂(x)− y
√
y

≤ Û

}

where P

⎛⎝L̂ ≤ inf
x

f∗(x)− f̂(x)√
f̂(x)

≤ sup
x

f∗(x)− f̂(x)√
f̂(x)

≤ Û
∣∣ X

⎞⎠ = 1− α.

This band is based on the “studentized” quantity
(
f̂ − Ef̂

)
/

√
Ef̂ , but differs

from others by not using any kind of estimator for the denominator. Hall found in
simulations that this interval had better coverage for Ef̂ than a bias-corrected
translation had for f0, presumably due to inaccuracy in the bias correction.
Hall and Owen [88] recommended the bootstrap to construct simultaneous con-
fidence bands on [0, 1] with profile empirical likelihood methods. Recalling the
notation for empirical likelihood in Section 3.1, they found an extreme value

limiting result for supx

√
�
(
E

[
f̂(x)

])
similar to (6), but recommended using

percentile bootstrap methods to find a suitable bound ĉ for a band of the form
{f : �(f(x)) ≤ ĉ ∀x ∈ [0, 1]}. The technicalities and variations they considered
are too cumbersome to discuss further here; see [88] for the full details. They
found their intervals to be disappointingly wide when applied to real data, but
suspected that this was due to the inherent variability of the density estimation
itself. Neumann [148] gave quite general theoretical results for uniform-width

percentile bootstrap bands of the form f̂ ± t∗α, where t∗α is the bootstrap quan-
tile of supx |f∗ − Ef∗|. Their results are valid for multivariate densities, suprema
over all of Rd, and weakly-dependent data. Neumann used compactly-supported
kernels and the smoothed bootstrap: generating X∗ from a possibly-different
KDE based on the original sample, rather than from the empirical distribu-
tion. In a recent paper, Cheng and Chen [29] used the debiased estimator of
Calonico, Cattaneo and Farrell [21] to derive asymptotically correct bands, via

the bootstrap, of either uniform width (using quantiles of supx

∣∣∣f∗ − f̂
∣∣∣) or vari-

able width (using quantiles of supx

∣∣∣(f∗ − f̂
)
/σ∗

∣∣∣ multiplied by σ̂(·)), where the
bootstrap density and associated variance estimates were all computed based on
the bias-correction approach. Their results extend to the multivariate case and
assume a compactly-supported f0. Their simulation study showed that their
bands achieved better coverage and narrower width than those based on the
standard KDE, although some undercoverage still occurred for small samples
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without undersmoothing.
Yeh [215] used the bootstrap to create a rather novel type of confidence

band. Generating a large number of KDE’s from bootstrap samples of X, they
retained the 100 (1− α)% of them with the largest curve depth (a way of ranking
functions “from the centre out” based on some distance from a central curve, in
this case the KDE f̂). Simulation studies showed that such bands had reasonable
performance compared to the asymptotic methods discussed in this section.

As is the case for pointwise inference, for simultaneous bands there are analo-
gous results for deconvolution KDE’s, described by Bissantz et al. [10]. A neces-
sary assumption for these results is that the characteristic function of the error
density decays as t−β for large |t| and some known constant β > 0. Their asymp-
totic results for bands over a compact interval are nearly equivalent to those
derived from (6), although in the asymptotic standard deviation they divided

by an extra factor of hβ and replaced f̂ with ĝ, where the latter is an estimate
of the density g of the observed Y -values (a standard KDE suffices). However,
they noted slightly better coverage probability (especially in terms of robustness
to model misspecification) can be achieved with percentile bootstrap confidence

bands of variable width based on the quantiles of
[
f∗(x)− f̂(x)

]
/ĝ(x), where

f∗ is a deconvolution estimator from a bootstrap sample of the observed noisy
data.

3.3. Miscellaneous

Aside from some technical considerations in the previous section, not much
consideration is given to the support of the true density. Indeed, the issue of
KDE boundary bias for f0 of restricted support is well-known and several mit-
igating strategies exist [e.g. 101, and discussion therein], but this is rarely dis-
cussed in the context of uncertainty quantification. One exception is given by
Bouezmarni and Rombouts [11], who considered the gamma kernel estimator
for time series data on [0,∞). The gamma kernel has a shape parameter vary-
ing with x and leads to an estimator (asymptotically) free of boundary bias.
The authors showed pointwise asymptotic normality analogously to the results
discussed above, based on the behaviour of the gamma scale parameter which
acts as a bandwidth. In practice, it can be selected by cross-validation; the au-
thors did so and constructed confidence intervals for real data based on their
asymptotic results.

This section concludes by discussing a paper on large-sample Bayesian meth-
ods by Lo [126]. The key observation for this discussion is to recall that one can
view the KDE (4) as a (conditional) expectation with respect to Fn. Lo’s ideas
are based on replacing Fn in this expectation with a different random distribu-
tion F conditional on X. One such example is the empirical distribution of a
bootstrap sample; this is equivalent to a probability measure with atoms at the
sample values and weights randomly selected from {1/n, 2/n, . . . , 1}. Lo also
considered the Bayesian bootstrap, where the weights on the atoms are drawn
from a uniform Dirichlet distribution [180]. This is equivalent to a draw from
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the posterior when X ∼ F , and F is given an improper Dirichlet Process prior
with zero base measure. Finally, Lo generalized this to allow for a non-zero base
measure in the DP prior. They showed an asymptotic result analogous to (6) for
all three aforementioned KDE variants, where the limit holds for f0-almost all
X. This allowed them to use extreme value asymptotics to derive appropriate
Bayesian bands for f centred at the usual KDE f̂ . In practice one may pre-
fer not to do this, given the substantial developments in Bayesian computation
since the time of Lo’s paper.

4. Adaptive basis expansion methods

This section considers estimates for f0 of the form

f(x) =

K∑
j=1

bjBj,K(x), (7)

where the Bj,K ’s are a suitable set of fixed nonnegative “basis functions” for
a given K. The simplest choice is taking them to be indicator functions on
disjoint subsets of the support, in which case f is simply a histogram. Other
options include Bernstein polynomials [e.g. 208, 160], B-splines [e.g. 190], and
wavelets [e.g. 69]. The coefficient vector b ∈ R

K is constrained such that f is a

valid density. The remainder of this section will use b̂ to denote the coefficients
associated with a specific estimator f̂ .

The dimensionality K is of particular interest, serving as a smoothing param-
eter that controls the bias-variance tradeoff of the estimator. The basis functions
corresponding to higher K-values are typically “narrower”, allowing for more
intricate shape detail to be captured in estimates. For instance, taking a high
K-value for the histogram corresponds to using a larger number of narrower
bins. Conversely, a value that is too high will result in a high-variance estimator
that is unacceptably noisy. In general, higher K-values are required for larger
samples to capture the true density.

One can choose K in a data-driven way. Many theoretical results for this
approach rely on K increasing with n, usually appealing to some “big-O” con-
ditions on its growth [e.g. 3, 69, 200]. In practice, a value could be chosen by
cross-validation [120], changepoint methods [81], or appealing to known asymp-
totic theory [3, who derived nice properties for a method with K = o (n/ log n)
and then simply used K = n/ logn in a simulation study]. In the theoreti-
cal Bayesian context, Rousseau and Szabó [179] considered maximum marginal
likelihood (MML) estimates for K, marginalizing over a prior for b. Further
discussion of such ideas is beyond the scope of this paper; see van de Wiel, Te
Beest and Münch [202] for details on practical implementation of MML.

In the Bayesian literature, methods involving a data-driven choice of a single
K-value are often called empirical [179]. All frequentist methods discussed in
this section are of this type. On the Bayesian side, such methods contrast with
hierarchical ones, which use a suitable discrete prior on K and allow it to “vary”
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[179]. In general terms, the K-values obtained with any approach will reflect
what is necessary to capture the true shape of f0. It is in this respect that these
estimators are said to be “adaptive”.

4.1. Histograms

Perhaps the simplest of density estimators, a histogram (sometimes referred
to as an empirical density [169]) is piecewise constant over some division of the
support into disjoint subsets, or “bins”. In the most general form with countably
many bins {Aj}, it can be written as

f(x) =
∑
j

cj1Aj (x), (8)

with the constants cj chosen to ensure that the estimator is a valid density. The
regularity of a histogram is controlled by adjusting the sizes of the bins. For
instance, a very common form for the univariate case is

f̂(x) =
K

n

∑
j

nj1[ j−1
K , j

K )(x), (9)

where nj is the number of sample values in the interval
[
j−1
K , j

K

)
and K provides

the needed regularity control. Assuming a bounded support, say [0, 1], the sum
in (9) is over j = 1, . . . ,K and is equivalent to (7) using a basis of indicator
functions: Bj,K = K1[ j−1

K , j
K ).

Temporarily ignoring the notion of empirical or hierarchical approaches to K,
suppose for now that it is fixed at some arbitrary value irrespective of everything
else. Then the histogram simply becomes a problem of multinomial inference:
the coefficient bj in (7) is an estimate of the probability that X ∼ f0 falls in the

jth bin, say pj . In this respect, the “traditional” histogram, where b̂j = nj/n as
in (9), is a MLE. Here the object of inferential interest is not necessarily f0, but
rather the so-called theoretical histogram f [194], a piecewise-constant density
equal to Kpj in the jth bin. With this view, (piecewise-constant) pointwise in-
tervals arise by considering the single binomial proportion pj , and simultaneous
bands by considering the vector of multinomial probabilities p = (p1, . . . , pK).
Frequentist and Bayesian methods for both are well-studied; see Vermeesch [207]
for some practical applications to histograms.

4.1.1. Simultaneous frequentist inference

To discuss inference for f0 itself, it is necessary to return to the adaptive
paradigm. Much of the frequentist literature for histogram density UQ is the-
oretical and predates developments such as the bootstrap, relying on extreme
value asymptotics similar to those for KDE’s. One of the first such papers is by
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Smirnov [194]. They derived a limiting result much like (6) for the normalized
quantity

√
nK−1 sup

x

∣∣∣f̂(x)− f0(x)
∣∣∣√

f(x)
, (10)

where the supremum is over a compact interval on which f0 is bounded away
from 0 and has total mass less than 1. Smirnov claimed that it was not possible
to replace f in the denominator with f0 due to the systematic difference between
them dominating the error. However, they stated that it is possible to do so
by replacing the histogram with a frequency polygon (a linear interpolation
between the histogram values at the sample points) and imposing some extra
conditions on the relationship between K and n. Although Smirnov did not
provide proofs for these results, they will be shown later to be a special case
of proven results for wavelets [69]. For f0 supported on a compact interval,
Révész [169] was able to prove a somewhat modified extreme value limit for the

distribution of a quantity similar to (10), except f̂ can be either the traditional
histogram or a frequency polygon (with a slightly different interpolation scheme
than that considered by Smirnov), f0 replaces f in the denominator, and the
supremum is taken over an interval converging to the whole support of f0.
Révész also derived a similar result with the absolute value removed from the
supremum. Further results to this effect were given by Freedman and Diaconis
[58]. For everywhere-positive densities with a unique maximum, they considered
a quantity similar to (10) without the absolute value (i.e. considering only the
maximum positive deviation, although they claimed their proofs can be adapted
to the maximum absolute deviation), the supremum taken over the whole real
line, and the factor of f(x) in the denominator replaced by the maximal value of
f0 (a fixed constant). Their limiting results are quite similar to those of Révész.

The three papers just discussed allow for (using a moderate amount of alge-
bra) the construction of asymptotically correct simultaneous confidence bands
for univariate densities satisfying suitable technical conditions, provided K in-
creases at a suitably fast rate with respect to n (this roughly corresponds to
the notion of undersmoothing discussed in Section 3). However, these papers
did not concern themselves with the practicality of these ideas applied to actual
data. It seems reasonable to suspect that slow convergence could be an issue
which could be rectified with bootstrap methods, as was the case with KDE’s.

4.1.2. Pointwise frequentist inference

Consider now the issue of frequentist pointwise intervals. For the “traditional”
histogram (of the form (9)), Laloë and Servien [115] showed conditions on K
and f0(x) for the quantity

√
nK−1

f̂(x)− f0(x)√
f0(x)

(11)
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to have a limiting distribution, which they proved to be a standard Gaussian
when it does exist. Their proof applied the Lindberg-Feller Central Limit Theo-
rem to the histogram values (recall that these are scaled binomial random vari-
ables for each K). Their conditions were more general (but also more technical)
than those in many other papers: in particular, they did not even require f0 to be
continuous. Some literature provides results for non-traditional histogram vari-
ants with non-uniform bin spacing. For univariate densities, Kim and Van Ryzin
[106] showed pointwise asymptotic normality for a histogram with randomly-
spaced bins. They required bin spacings to meet certain conditions for their
results to hold; one valid option is to fix the number of observations in each
bin and determine their widths by the spacings of the sample’s order statistics.
The same authors showed analogous results for an extension to the bivariate
case [107]. Another variant for the univariate case is the maximum entropy his-
togram estimator (MEHE), which works by dividing the real line into K ≤ n
subintervals (with the first and Kth respectively extending to −∞ and +∞ and

f̂ having some suitable tail behaviour there) and choosing the spacing of their
boundaries to maximize entropy subject to preservation of sample means and
mass in the subintervals. Rodriguez and Van Ryzin [175] considered this estima-
tor and a “symmetrized” variant and showed pointwise asymptotic normality
of the quantity (11) for both. Their conditions on continuity and growth of the
number of subintervals were slightly different for the symmetrized version, and
the limiting law does not concentrate around zero as it does for the regular
MEHE, presumably necessitating bias correction. Stadtmüller [195] considered
asymptotics for yet another variant of the form (9), first considered by Gawron-
ski and Stadtmüller [59], in which the indicator functions in the summands
are replaced by the values of lattice distributions to yield a smoothed estimate.
They gave a few suitable examples: replacing 1[ j

K , j+1
K )(x) by P (Y = j) with,

say, Y ∼ Bin(K,x) for densities supported on [0, 1], or with Y ∼ Poi(Kx) for
those supported on [0,∞). Note that the lattice distributions do not necessarily
constitute probability distributions with respect to x. Thus, density estima-
tors of this type may not integrate to 1, although some examples presented in
[59, 195] certainly will. For these estimators, Stadtmüller [195] showed pointwise
asymptotic normality of the quantity

(
4πσ2(x)n2

Kf2
0 (x)

)1/4 (
f̂(x)− Ef̂(x)

)
,

where σ2 depends on the lattice distributions. Additionally, they showed extreme
value limiting results [somewhat similar in form to those in 9, as usual] for the
supremum of this quantity (as well as the supremum of its absolute value)
over compact intervals, under some regularity conditions on f0 and the lattice
distributions. They also noted that it is possible, as usual, to replace Ef̂ by
f0 (thereby achieving correct asymptotic coverage for confidence intervals or
bands) by undersmoothing – in this case, increasing K at a higher-than-optimal
rate with respect to n.
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4.1.3. A Bayesian approach

Recently, Rousseau and Szabó [179] discussed theory for Bayesian UQ of his-
togram estimators, assuming univariate f0 supported on a compact interval.
For this, return to the form (7), with the basis functions equal to indicators for
equally-spaced bins. Rousseau and Szabó considered credible sets of the form
(1), where d is the Hellinger distance and f̂ is a suitable centering point such
as the posterior mean. They showed that, under some regularity conditions on
f0 (it must be bounded away from zero and sufficiently smooth, and satisfy a
“general polished tail assumption” defined by the authors and briefly described
below) and the prior (a suitable K-dimensional Dirichlet for b | K, and others
omitted here for brevity), posterior credible sets of this type have arbitrarily
high asymptotic frequentist coverage if their diameter is increased by an appro-
priate factor. In mathematical terms, for any ε ∈ (0, 1), there exists Lε > 0 such
that

lim inf
n→∞

P0

(
C

(
Lε

√
lognrα

)
� f0

)
≥ 1− ε, (12)

where Π (f ∈ C (rα) | X) = 1− α.

In fact, they showed the stronger honesty result that this limit inferior holds
uniformly over a certain class of functions, and that the uninflated credible
sets are also almost adaptive over this class (save for a logarithmic factor in
the diameter contraction rate). The densities comprising this class are those in
an arbitrary union of Hölder balls of equal radius and regularities in (1/2, 1].
They must also satisfy the aforementioned general polished tail assumption,
which essentially controls their high-resolution behaviour. Further ideas of this
type will emerge in Section 4.4. Rousseau and Szabó’s results hold for both the
empirical and hierarchical approaches to K. For the latter case, a geometric or
Poisson prior for K satisfies the relevant conditions. The authors noted that
the “blow-up factor” of

√
logn is unfortunate, but they believe it is necessary

to prevent coverage from decaying to zero in certain cases. Although it is quite
pleasant to have such theoretical guarantees, it may be a challenge to put them
towards a practical end due to the blow-up factor. Given an MCMC method to
generate posterior simulations from this model, a credible set can be roughly
visualized by plotting the (1− α)100% of f draws closest in Hellinger distance

to f̂ , but plotting draws from the blown-up set is another matter since we are
not aware of any way to estimate Lε.

Given the popularity of histograms, it is somewhat surprising that practical
implementations and demonstrations of UQ for them appear so rare in the litera-
ture. For practitioners thorough enough to quantify errors in density estimation,
it is perhaps reasonable to conclude that histograms have been superseded by
KDE’s and other methods that produce smooth estimates. Certainly, smooth-
ness is advantageous for interpretation, especially when one wishes to account
for uncertainty.

The following sections will contain a few more results which are applicable
to histograms, arising as special cases of other methods.
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4.2. Bernstein polynomials

One of the earliest non-histogram methods of the type (7) was proposed by
Vitale [208] for densities supported on [0, 1]. They took

Bj,K = Beta (j,K − j + 1) ,

b̂j =
#

{
Xi ∈

(
j−1
K , j

K

]}
n

.

The basis functions are Beta densities with integer parameters (equivalently,
scaled Bernstein polynomials), and the coefficients are equal to the proportion
of sample values in each interval

[
j−1
K , j

K

)
. In this respect, Vitale’s estimator

is essentially a smoothed histogram. In fact, aside from a different scaling fac-
tor it is almost the same as the lattice-smoothed histogram of Gawronski and
Stadtmüller [59]; it therefore seems reasonable to suspect that one could derive
confidence bands from similar asymptotic arguments as Stadtmüller [195]. An
equivalent way to interpret this estimator is as a mixture of Beta densities.

Babu, Canty and Chaubey [3] provided pointwise asymptotic normality re-
sults for this estimator under mild conditions, from which one can presumably
derive expressions for approximate pointwise confidence intervals (subject to the
usual handling of bias and variance terms). At interior points x ∈ (0, 1), Vitale’s
estimator is quite similar to the KDE: optimal MSE behaviour occurs with K
such that the asymptotic orders of variance and squared bias match [208]. With
this choice, confidence intervals – based on either plug-in or bootstrap methods

– will not have the correct asymptotic coverage, concentrating around E

[
f̂(x)

]
instead of f0(x) [3]. “Correct” intervals could be obtained by undersmoothing,
choosing a higher-than-optimal K [asymptotic conditions in 3]. Alternatively,
noting that the bias term is a known function of the first two derivatives of f0,
it may be reasonable to estimate a bias correction with plug-in methods, again
in analogy with KDE’s. Tenbusch [200] proved analogous results for Vitale-style
estimates of bivariate densities defined on triangular or rectangular regions, with
some generalizations for the latter provided by Babu and Chaubey [4]. As they
are quite similar to the univariate case, they are not repeated here. The afore-
mentioned pointwise results are valid for interior points x, but these estimators
are known to have different asymptotic behaviour at the boundaries [208, 200]
and so UQ may also work differently there.

There are methods besides Vitale’s for estimating a density with Bernstein
polynomials. For another frequentist method, take the coefficients b̂ to be MLE’s.
Guan [81] claimed pointwise asymptotic normality results for this approach, but
it is not clear how to turn these results into appropriate pointwise intervals.

Theory for Bayesian estimates of this type typically depends on the idea of
viewing the coefficients b as increments of some unknown c.d.f. F :
bj = F

(
j
K

)
−F

(
j−1
K

)
(Vitale’s estimator fits this framework for F equal to the

edf of X). To that end, Petrone [160, 161] considered a hierarchical Bayesian
formulation with a discrete prior on K and a Dirichlet Process prior on F . For
practical implementation, they devised an equivalent formulation making use of
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the aforementioned “mixture-of-betas” interpretation. They introduced a vector
of latent variables Y = (Y1, . . . , Yn) ∼ F , which provide “mixture labels” for the
samples conditional on K: Xi | Yi,K, F ∼ Beta (�KYi� ,K − �KYi�+ 1). See
Petrone [161] for more details on the properties of this construction, as well as a
Gibbs sampling algorithm for posterior inference. In principle, this formulation
gives everything needed to obtain, at the very least, pointwise credible intervals
– indeed, Petrone did so in these papers. Note that practical implementations
of this model require the truncation of the prior for K for computations to be
possible. This has theoretical implications, but is not an issue in practice pro-
vided the maximum value for K is reasonably high. Petrone and Veronese [162]
generalized these ideas for data not necessarily in [0, 1]; see Section 7.3.1 for
elaboration on this.

Following the analogous KDE ideas in Lo [126], Ghosal [64] considered an
alternative “posterior” based on a (generalized) Bayesian bootstrap approach,
where it is assumed that X ∼ F and F is a random distribution from a Dirichlet
Process with base measure α(·)+

∑
δXi . They conjectured pointwise asymptotic

normality (concentrating around the Bernstein density with coefficients from
F = F0, rather than f0 itself), but could not adapt the results in Lo [126] to
prove this.

4.3. B-splines

B-splines are another option for the basis functions in (7). They are piecewise
polynomials, characterized by a set of points in the domain called knots at which
the values of the piecewise functions and a certain number of their derivatives
must match. The number of basis functions K depends on both the number of
knots and the polynomial degree chosen. Cubic splines are the most common
choice, but there are others: for instance, a Bernstein basis of size K is a special
case of B-splines of degree K−1 and no interior knots [45]. Using interior knots
allows B-splines to be sharper-peaked in general than Bernstein polynomials,
even at lower degrees. Literature about B-splines abounds; see Dias [40] for one
of many introductions.

Although there will be plenty of discussion of splines in Sections 5.1 and 6,
their use in estimators of the form (7) is limited in the literature. UQ for such
estimators appears limited to practically-oriented Bayesian papers, although
we suspect that it may be possible to translate some of the theory pertaining
to histograms or Bernstein polynomials to this type of basis. Note that it is
necessary to normalize each B-spline so it integrates to 1, thereby preserving
the “mixture-of-basis-densities” view of (7). As another technical note, here
attention is restricted to compactly-supported densities and estimators.

Shen and Ghosal [190] considered the hierarchical Bayesian setup (as defined
at the beginning of Section 4), with K having a suitable discrete prior and
b | K having a conditional K-dimensional Dirichlet prior. Like most practically-
oriented papers with a hierarchical framework, they noted that the prior on K
must be truncated for computation. They gave a closed-form expression for the
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posterior mean of f and claimed similar expressions existed for higher posterior
moments, allowing them to construct approximate credible intervals (presum-
ably by a Gaussian-style “mean ± 2*standard deviation” approximation). Their
expression for the posterior mean is a ratio of sums, each of which has a num-
ber of terms increasing exponentially in n for splines of degree ≥ 1. Thus, the
authors suggested randomly sampling a reasonable number of summands, say
3000, to approximate it. This is not an issue for splines of degree 0, as many
terms cancel out due to the basis functions having non-overlapping supports. In
this case, the estimator is simply a histogram and simplicity arises at the ex-
pense of smoothness. Shen and Ghosal found in their simulation study that the
credible intervals were more appealing with cubic splines than with constant
ones, although both had some difficulty capturing some of the true density’s
shape.

Edwards, Meyer and Christensen [45] compared Petrone-style Bayesian for-
mulations [161, although Edwards et al. modified the MCMC] using both the
Bernstein basis [see also 31] and B-splines for estimating the spectral density of
a stationary time series. This use case differs from the probability density esti-
mation considered here, but some of their ideas are nevertheless interesting for
our purposes. In addition to pointwise credible intervals, they also considered
simultaneous bands generated from median absolute deviations:

f̂(x)± ξαMAD[f(x)], (13)

where f̂ is the posterior median, the pointwise MAD’s are taken over MCMC
draws, and ξα is the (1− α)-quantile (obtained via MCMC draws) of

supx

(∣∣∣f(x)− f̂(x)
∣∣∣ /MAD[f(x)]

)
. In a simulation study, they found that such

bands had vastly superior coverage using B-splines instead of the Bernstein ba-
sis. Pointwise intervals for B-splines tended to be wider, but both these and
simultaneous bands captured intricate shape details more effectively than when
the Bernstein basis was used. This is because the compact support of B-splines
allows them to more effectively capture sharp peaks. The authors noted, how-
ever, that B-splines resulted in longer computation times than the Bernstein
basis. Lopes and Dias [129] used a semiparametric Bayesian model for densi-
ties, combining a mixture of normalized B-splines (with Dirichlet-distributed
coefficients) with a mixture of parametric densities. As usual, a straightforward
Gibbs sampler allowed them to obtain pointwise credible intervals from MCMC
output.

4.4. Orthonormal wavelets

Briefly, the idea behind estimation with orthonormal wavelets is to express a
square-integrable function f in the form

f(x) =
∑
k∈Z

∑
j∈Z

ckjψkj(x), (14)
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where ψkj(x) = 2k/2ψ
(
2kx− j

)
for some suitable function ψ called the mother

wavelet. The mother wavelet is such that {ψkj} is an orthonormal basis of L2 (R),
so that ckj =

∫
fψkj . For most of the literature discussed in this section, it can

be assumed unless otherwise noted that the domain is indeed all of R. However,
in some cases it is desirable to modify the wavelets so that they form a basis of,
say, L2 ([0, 1]), and there are multiple approaches to this [e.g. 33].

It is often more convenient to express f as

f(x) =
∑
j∈Z

djφk0j(x) +

∞∑
k=k0

∑
j∈Z

ckjψkj(x), (15)

where φkj(x) = 2k/2φ
(
2kx− j

)
for a scaling function or father wavelet φ such

that {φk0j , ψkj : j ∈ Z, k ≥ k0} is also an orthonormal basis for L2 (R). The num-
ber k0 corresponds to the “coarsest” level of detail under consideration. In most
literature explored below, it is either left arbitrary or set to 0 when the domain
is R. When modifying the wavelets for use on [0, 1], the dimensionality of the
basis will depend on k0 and, for some methods, the “regularity” of ψ [33]. In
this setting, k0 may therefore be chosen to provide an appropriate set of basis
functions [e.g. 14, 25].

The simplest wavelet example is the Haar wavelet, where φ = 1[0,1) and
ψ = 1[0,1/2) − 1[1/2,1). In general, φ and ψ must be selected to mutually satisfy
certain functional equations. For further detail on wavelet theory and examples,
refer to Kaiser’s excellent book on the subject [103].

In practice, to estimate a density with wavelets, one must truncate the sum
over k in the second term of (15) to some upper limit K. In this respect, K is a
bandwidth or “resolution”: higher values introduce thinner wavelets into the sum
that capture finer details, thereby reducing bias and increasing variance. In this
respect, wavelets differ from other basis expansion methods in which the shapes
of the basis functions themselves change with K. As previously mentioned, the
coefficients in the wavelet expansion are simply inner products between the
density and the basis functions. Thus, to obtain a point estimate f̂ , the natural
choice is to estimate dj and ckj by their empirical versions: the sample means
of φk0j (X) and ψkj (X), respectively. It is now clear that density estimators
based on the Haar wavelet are simply histograms with evenly-spaced bins.

4.4.1. Frequentist L∞ inference

Giné and Nickl [69] derived some theoretical results for confidence bands over
a compact subinterval, taken w.l.o.g to be [0, 1], by treating certain types of
wavelet estimators in a unified framework with KDE’s. In their approach, X
is split into two subsamples: one of which is used for a data-driven bandwidth
selection procedure (as always, their arguments involved undersmoothing to

ensure correct coverage), with the other used to obtain the estimate f̂ with
this bandwidth. Letting K denote the number obtained from the bandwidth
selection procedure (the details of which can be read in [69]), their framework
encompasses both
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1. kernel density estimators with kernel κ(x, y) = κ(x − y) and bandwidth
2−K ; and

2. wavelet estimators in the form of (15) with k0 = 0, and the sum over k
in the second term truncated to K terms. To unify these estimators with
KDE’s, the authors invoked a projection kernel defined in terms of the
father wavelet: κ(x, y) =

∑
k φ(x− k)φ(y − k).

For a final piece of notation, let c = supx
∫
κ2(x, y)dy. Giné and Nickl showed

a result somewhat similar to the asymptotic KDE result in (6): for f0 bounded
away from zero on an open interval containing [0, 1], under some technical con-
ditions the estimators in their framework satisfy

P

⎡⎣An

⎛⎝√
n2−K

c
sup

x∈[0,1]

∣∣∣∣∣∣ f̂(x)− f0(x)√
f̂(x)

∣∣∣∣∣∣− dn

⎞⎠ < z

⎤⎦ → e−e−z

(16)

for suitable (known) sequences An and dn. Just as in Section 3.2, it is straight-
forward to use this limit to get asymptotically-correct confidence bands. The
authors further showed that these bands are honest and nearly4 adaptive in a
range of Hölder balls over all but a nowhere-dense (w.r.t. the Hölder norm) sub-
set of the function space. However, they noted that their work is theoretically
oriented and therefore cautioned against using these bands without assessing
their finite-sample performance. Furthermore, the only wavelets they showed to
fit into their framework were the Battle-Lemarié wavelets of order 1, 2, 3, and
4. The scaling function for the Battle-Lemarié wavelet of order r is a B-spline
of order r [36], so for r = 1 it reduces to the Haar wavelet.

Because (16) generalizes the histogram results first discussed by Smirnov
[194] and the KDE results shown by Bickel and Rosenblatt [9], results of this
type are often called Smirnov-Bickel-Rosenblatt theorems. Bull [16] showed that
a Smirnov-Bickel-Rosenblatt result holds in the white noise model using symlets
and Daubechies wavelets. The Daubechies wavelet of order r is a Haar wavelet
for r = 1 and has increasing regularity for higher orders, but unlike the Battle-
Lemarié wavelet it has the advantage of being compactly supported [16, 103].
Bull verified their results for orders 6 ≤ r ≤ 20, using bases on both R and
[0, 1]. Although the white noise model is not the focus of this review, they noted
that these results could translate to the density estimation context via some of
the Gaussian process theory in [69]. Indeed, the notion of equivalence between
the white noise model and density estimation is established [e.g. 154], but the
details are beyond the scope of this paper.

It was noted above that a Smirnov-Bickel-Rosenblatt confidence band could
achieve honesty and adaptivity under certain conditions and restrictions on the
function space. More broadly, discussion of these concepts often uses wavelet
theory as a starting point, due to the nice theoretical properties of an orthonor-
mal basis. Hoffmann and Nickl [95] considered another approach to ensuring

4Their diameters shrink at a rate which is nearly optimal, save for the presence of an extra
logarithmic factor.
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the existence of adaptive and honest confidence bands in finitely many nested
Hölder balls: removing subsets of functions from the lower-regularity ones to
ensure “separation” from the smoother classes. By connecting this idea to hy-
pothesis tests for the smoothness of f0, they showed that, in the case of finitely
many smoothness levels, such separation conditions are necessary and sufficient
for the existence of honest and adaptive bands, and that these conditions are
weaker than those imposed by [69]. The constructive part of their argument
involved a uniform band centered at an estimator satisfying certain proper-
ties; their paper and the references therein suggested that a wavelet estimator
would be a good choice for both L2 (R) and L2 ([0, 1]). Unfortunately, the radii
of these bands depend on properties of the Hölder balls that are unlikely to
be known in practice, rendering application implausible. Nevertheless, these re-
sults are useful to inform theoretical discussion of the behaviour of confidence
sets. Bull [15] considered inference on a union of Hölder balls with diameters
and regularities both varying over a continuum. The conditions they imposed
on the function sets are similar to those in [69], but somewhat weaker. Specifi-
cally, they required the densities under consideration to be self-similar. Briefly,
self-similarity is a property of a function’s wavelet expansion ensuring that it
exhibits similar regularity at both small and large scales. Note that the general
polished tail condition of [179] (see Section 4.1.3) is a generalization of this. Bull
showed that this restriction excludes only a “negligible” set of functions in both
the topological and probabilistic5 sense, and that it is necessary and sufficient to
achieve honest and adaptive confidence bands over a continuous union of Hölder
balls. Refer to Sections 8.3.3 – 8.3.4 of [70] for a more in-depth discussion of the
role self-similarity plays in nonparametric inference.

Bull described a rather complex procedure to construct such a uniform band
centered at a truncated empirical wavelet estimator, using Daubechies wavelets
or symlets of order 6 ≤ r ≤ 20, modified to form a basis of L2 ([0, 1]). The
procedure exploits self-similarity to estimate the true smoothness of f0. Unlike
the construction of Giné and Nickl [69], it does not require sample-splitting.

4.4.2. A practical approach

None of the literature discussed thus far in this section concerns itself with
applications to real data. To the extent that there have been constructive results,
they have tended in most cases to be rather complicated. For an example of
somewhat more practically-oriented material, Chernozhukov, Chetverikov and
Kato [30] developed 1− α confidence bands of the form

f̂l̂(x)± σ̂l̂(x) (ĉn(α) + c′n) (17)

over a compact subset of Rd. The subscript l̂ is a particular value of l, which is
used to denote bandwidth (l replaces the usual letter K here for more stream-
lined notation as in the original paper). Much like Giné and Nickl [69], these

5By considering a natural prior distribution on the space of functions.
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authors cast both KDE’s and wavelet estimators into the larger framework of
estimators f̂l based on some kernel κl (note that, unlike [69], they folded the
bandwidth into the definition of the kernel). In fact, their framework also encom-
passes estimators based on nonwavelet projection kernels using other orthonor-
mal bases such as Legendre polynomials. They considered univariate kernels and
wavelets, and extended to the multivariate case by using elementwise products.
Returning to (17), σ̂l is an estimate of the standard deviation of f̂l, obtained
using sample mean analogues of the relevant expectations [e.g. 57]. Letting Ln

denote the space of possible bandwidths, ĉn(α) is an estimate of the 1 − α
quantile of

sup
l∈Ln,x

∣∣∣∣∣∣∣∣
f̂l(x)− E

[
f̂l(x)

]
√
Var

[
f̂l(x)

]
∣∣∣∣∣∣∣∣ .

The authors suggested obtaining ĉn(α) by using the Gaussian multiplier boot-
strap: whereas the normal bootstrap takes repeated samples of size n from the
empirical distribution of X, this version repeatedly samples n i.i.d. standard
normal variables ξ1, . . . , ξn. Subsequently,

sup
l∈Ln,x

∣∣∣∣∣ 1n
n∑

i=1

ξi
κl (Xi, x)− f̂l(x)

σ̂l(x)

∣∣∣∣∣ (18)

is calculated, and ĉn(α) is taken to be the 1 − α quantile of this quantity over

bootstrap replications. The numbers c′n and l̂ are chosen based on a separate
application of the Gaussian multiplier bootstrap: the former is a scaled quantile
of a different Gaussian multiplier process, and the latter is based on a modified
application of the popular Lepskĭı’s method [121]. Chernozhukov, Chetverikov
and Kato showed that – under some conditions on the necessary intermediate
quantities, Ln, and κl – the bands (17) constructed in this way are asymp-
totically honest and adaptive over a range of Hölder balls, subject to global
upper and lower bounds on the densities and a modified version of the “self-
similarity” notion mentioned previously. Furthermore, they showed that the
worst-case coverage probability of their bands converges to the nominal level
at a polynomial rate, asymptotically faster than the logarithmic rate associ-
ated with Smirnov-Bickel-Rosenblatt results. These theoretical results hold for
KDE’s with compactly-supported kernels and estimators using either compact
or Battle-Lemarié wavelets, with regularity conditions based on the maximal
degree of Hölder smoothness to which one wishes to adapt. In their supplemen-
tary material, the authors conducted a small simulation study. Although most
of the intermediate quantities used to construct (17) must meet certain con-
ditions (primarily in terms of their behaviour with respect to n), they simply
experimented with predetermined numerical values for their simulations.
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4.4.3. Frequentist L2 inference

Robins and van der Vaart [172] investigated the construction of L2 confidence
sets for conventional frequentist wavelet estimators. For a given wavelet basis6,
let θ(f) denote the coefficients of the basis expansion for an arbitrary f , and let

f̂ be the usual empirical wavelet density estimator. Then their confidence sets
are of the form{

f ∈ F :
∥∥∥θ(f)− θ

(
f̂
)∥∥∥

2
≤

√
τ̂K,n,θ

α
+ R̂K,n

(
θ
(
f̂
))

+ 2B̂K

}
, (19)

where K = K(n) is a suitably-increasing bandwidth and the terms τ̂ , B̂, and

R̂ are estimates for variance, bias, and
∥∥∥θ (f0)− θ

(
f̂
)∥∥∥

2
, respectively. They

used sample splitting, assuming that the data used to calculate f̂ is indepen-
dent from that used for the other terms. These sets were shown to be honest
at level 1− α, and adaptive to the fullest extent allowed by the theory without
further restrictions7. Robins and van der Vaart mainly concerned themselves
with the theoretical properties of such sets in various contexts. In practice, they
may be difficult to construct due to the (likely unknown) quantities required
for the calculation of the various terms in Equation 19. Bull and Nickl [17] fur-
ther expanded upon the results of Robins and van der Vaart in the L2 ([0, 1])
case, showing that honest and adaptive L2 confidence sets over a wider range of
regularity classes and Sobolev ball radii are possible by discretizing the smooth-
ness range and using the “separation” approach from [69]. They constructed
such a set in their proofs, somewhat similar in form to (19). Although they
acknowledged the possibility of replacing some of the unknown terms in their
construction by certain data-driven approximations, they did not consider appli-
cations to real data. Lerasle [122] provided a different approach to L2 confidence
balls, the full intricacies of which are omitted here. They used a model selection
approach to determine the best approximation space (they dealt more gener-
ally with projection estimators on linear subspaces of an L2 space, but for our
purposes it suffices to consider the special case of wavelet estimators where the
selection is for the truncation level) and a resampling method to estimate an
L2 norm needed in the radius of the set, thereby avoiding the sample splitting
needed by some of the other literature discussed here. They showed that their
confidence balls have the same adaptation properties as in [172], and that they
are additionally non-asymptotic: they have correct coverage probability for any
sample size n, not just in the limit.

6Actually, Robins and van der Vaart considered general orthonormal bases, not just
wavelets. However, it seems appropriate to discuss their paper in this context, and to handwave
some of the notation and technicalities for the sake of brevity.

7For instance, if F is a Sobolev ball of regularity r, the “fullest extent” in this L2 context
means adaptation over any nested Sobolev balls of regularity s ∈ [r, 2r] [17, 70]. Recall that
the L∞ context is even more restrictive than this [70].
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4.4.4. Some extensions and Bayesian ideas

Lounici and Nickl [131] defined a wavelet-based deconvolution density estimator
analogous to the kernel one described in Section 3, based on a deconvolution
kernel using Fourier transforms of the error density and wavelet basis functions.
They used concentration inequalities and Rademacher processes to construct a
confidence band, the radius of which is a complicated expression depending on
the unknown density of the observed noisy data (although they noted that it can
be replaced by the deconvolution estimator in practice). Under some conditions
on the bandwidth, error density, and smoothness of f , it is possible to control
the probability with which the bands cover f0 over all of R.

For another somewhat unconventional theoretical example, Kerkyacharian,
Nickl and Picard [105] developed an estimator for densities on homogenous com-
pact manifolds such as spheres. Their estimator is based on a needlet expansion
of the density, where needlets form a basis with multiresolution properties sim-
ilar to wavelets. They proposed a confidence band of random uniform width,
discussed its (limited) adaptivity, and showed that its coverage probability can
be controlled by undersmoothing.

Bayesian UQ literature for density estimators of this type is generally scarce,
but some Bayesian results for histograms by Castillo and Nickl [25] can be
more easily explained with the machinery of Haar wavelets. They used wavelet
expansions of roughly the form (15) with k0 = 0, the sums over j restricted to
j = 0, . . . , 2k − 1 to ensure the Haar system forms a basis of L2 ([0, 1]), and the
sum over k truncated to some upper limit K. This is equivalent to the basis
function estimator (7) with 2K piecewise constant basis functions instead of K.
In the latter form, Castillo and Nickl placed a 2K -dimensional Dirichlet prior on
the histogram coefficients b, with K = Kn chosen as a deterministic function of
n and the assumed Hölder regularity of f0 (for regularities in the range (1/2, 1]).
They proposed credible sets C based on a “multiscale” approach:

C =

⎧⎨⎩f : max
j,k

∣∣∣〈f − f̂ , ψkj

〉∣∣∣
wk

≤ Rn√
n

⎫⎬⎭ , (20)

where the inner product is the standard one on L2 ([0, 1]), f̂ is the usual empirical
wavelet estimator of f0, wk is a sequence such that wk/

√
k → ∞ as k → ∞, and

Rn is such that Π (f ∈ C | X) = 1−α. Note that Rn can be computed explicitly
due to the conjugacy of the Dirichlet prior, since the likelihood depends only
on the counts of observations in each “bin”. Castillo and Nickl showed that the
posterior over densities satisfies a sort of nonparametric Bernstein-von Mises
property, and that these sets therefore have asymptotically correct frequentist
coverage: P0 (C � f0) → 1 − α as n → ∞. With a further refinement to their
definition, their L∞-diameters also contract at a nearly-optimal rate in the “big-
O in P0” sense. Unlike many of the other methods in this section, honesty and
adaptivity are not implied here as the authors did not show the asymptotics
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to be uniform over all f0 in some class. Although the choice of bandwidth K
depends on the regularity of the unknown f0, they suggested that one could
estimate a suitable bandwidth under a self-similarity assumption as in [69]. The
geometry of these sets does not lend itself to visualizable error bounds. Instead,
one can simulate from the posterior with MCMC, discard the 5% of function
draws with the highest values for the multiscale quantity on the left-hand side
of (20), and plot the remaining 95% to get a visual representation of the sets.
This is the approach taken in, for example, the simulation study of [167], who
considered similar theoretical ideas for Bayesian UQ in the context of white
noise and conjectured that they may be applicable to densities.

5. Adaptive basis expansion methods for log densities

An adaptive basis expansion does not have to be applied to the density itself as
in the preceding section. Rather, it can serve as a model of the logarithm of the
density, provided normalizing constant c is incorporated:

log f(x) =

K∑
j=1

bjBj,K(x)− c, (21)

c = log

∫
exp

⎡⎣ K∑
j=1

bjBj,K(t)

⎤⎦ dt.

Modelling the logarithm as a sum has a few nice consequences. In particular,
it allows f to be viewed as a member of an exponential family with sufficient
statistics

∑
i Bj,K (Xi), which makes it very easy to obtain an MLE f̂ by max-

imizing
∑

i log f (Xi) with respect to b using (21) [e.g. 110]. Additionally, it is
no longer necessary to constrain the coefficients.

5.1. Logsplines

One of the best-studied methods of this type is logspline density estimation.
Assuming the density is supported on an interval and letting L and U denote
its endpoints, let {Bj,K : j = 1, . . . ,K} be a B-spline basis with knot sequence
L < t1 < . . . < tm < U (recall Section 4.3). Although cubic splines are the most
common choice, lower orders are possible; in particular, using splines of “order”
1 (equivalently, degree 0) corresponds to a histogram [197]. It is common to put
some constraint on the tail behaviour of the estimate when using cubic splines,
especially (but not exclusively) when (L,U) = R, in which case the MLE log f̂
is typically required to be linear on (L, t1] and [tm, U) [91, 110]. If the support

is a compact interval, another option is to require
(
log f̂

)′′
to be zero at L and

U to reduce variance near the endpoints [112].
Stone [197] discussed some asymptotic theory for the maximum likelihood

logspline density estimator, assuming the support is a compact interval ([0, 1]
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w.l.o.g.) and the knots are equally spaced. They showed that, when K increases
to ∞ with n,

f̂(x)− f(x)

ŜE
(
f̂(x)

) d−→ N (0, 1)

for all x ∈ [0, 1], where ŜE
(
f̂(x)

)
is a standard error estimate involving values

of the basis functions and derivatives of c with respect to b (actual expression
omitted for brevity), and f is the deterministic logspline density obtained by
maximizing the expected (with respect to f0) log-likelihood. In a related techni-
cal report, Stone [196] noted that this result can be used to obtain asymptotic
confidence intervals for f0, provided K increases with respect to n at a suitable
rate depending on some underlying differentiability assumptions on f0. As in
many other cases, K must increase faster than the error-optimizing rate for this,
leading to undersmoothing.

A more comprehensive and practical treatment of pointwise inference for
logsplines was given by Kooperberg and Stone [112]. They considered more in-
volved knot placement schemes: one that involves stepwise selection, addition,
and deletion, ultimately selecting the number of knots to optimize a generalized
AIC [see 112, and references therein]; and a free knot placement scheme where
knot locations and coefficients are jointly maximized, with the dimensionality
again chosen by AIC. In either case, it is possible to estimate a standard error for
log f̂ and use it to get approximate Gaussian pointwise intervals for the log den-
sity. By exponentiating the endpoints of these, Kooperberg and Stone obtained
approximate confidence intervals for f0. The only difference between the two
knot selection procedures in this regard is the dimensionality of the gradients
and Hessians required for the standard error estimate: the free knot procedure
requires more components, since it is necessary to include derivatives with re-
spect to knot locations. Additionally, for the stepwise procedure (in which the
knots are considered fixed), the authors considered confidence intervals obtained
via the bootstrap: either using percentile intervals, or plugging a bootstrap esti-
mate of the standard error into the Gaussian interval approximation. The final
UQ option they considered was a fully Bayesian approach, in which they put
a hierarchical prior on K, knot placement (conditional on K), and coefficients
b (conditional on knot placement and K). They simply took simulation quan-
tiles from a reversible-jump MCMC procedure as pointwise credible intervals.
In their simulation study, Kooperberg and Stone found that, for non-bootstrap
methods, intervals based on the free knot procedure had higher coverage than
those based on the stepwise procedure, but all non-bootstrap frequentist ap-
proaches consistently undercovered. Bootstrap methods based on the stepwise
procedure were much better, although the percentile bootstrap tended to over-
cover (i.e. the intervals were perhaps too wide). Using a bootstrap standard
error estimate with the stepwise procedure therefore appeared to be the best
option, especially due to computational savings since fewer resamples were re-
quired than for the percentile bootstrap. They reserved analysis of the Bayesian
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approach for a real dataset, where they found that the credible intervals were
much narrower than the “bootstrap standard error” confidence intervals, sug-
gesting that the Bayesian approach may undercover. In a different publication
[111], Kooperberg and Stone expanded somewhat on these results. There they
found that the non-bootstrap frequentist intervals could achieve appropriate
coverage on average when their widths were modified by some uniform scaling
factor. Factors between 1.34 and 1.55 sufficed in their simulations depending
on the specifics of the standard error calculations, but it was not clear how
well these would generalize. They also found once again that the Bayesian in-
tervals appeared too small when applied to practical data, even with a larger
prior covariance on the coefficients. Hansen and Kooperberg [91, in rejoinder
to discussions] noted their challenges with UQ in Bayesian logspline estima-
tion: they found it difficult to select priors that led to good point estimates and
sensible credible intervals. More broadly, some authors have expressed skepti-
cism about the usefulness of UQ for logspline density estimation, stating their
view that pointwise confidence intervals do not generally provide useful shape
information [110, 140].

5.2. General orthonormal bases

A few theoretical Bayesian papers discussed in Section 4 also provided analo-
gous results for log density basis methods. Castillo and Nickl [25] modelled log
densities with wavelets modified to form a basis of L2 ([0, 1]) instead of L2 (R).
The coefficients were given independent and identical priors – either Gaussian,
Laplace, or something heavier-tailed – with a scale parameter depending on the
Hölder regularity of log f0 (assumed to be > 1). Similarly to their histogram
approach described in Section 4.4, the authors used a deterministic bandwidth
choice and showed that multiscale credible sets of the form (20) have correct
asymptotic frequentist coverage, with near-optimal diameter contraction possi-
ble with further refinements. The same comments about practicality made in
Section 4.4 apply here. In a similar vein, Rousseau and Szabó [179] considered
density estimators (supported on [0, 1]) of the form (21) with an orthonormal
basis of L2 ([0, 1]) such that B1 ≡ 1, with the subscript K removed since they
did not consider basis functions changing with K. Among other technical con-
ditions omitted here for brevity, they assumed log f0 has (up to a normalizing
factor) an infinite series representation in terms of this basis; equivalently, that
the true density is a member of an infinite-dimensional exponential family. With
a suitable prior on b | K (a normal distribution with independent components
is one example satisfying their conditions), the authors showed that (12) holds
with Hellinger balls for both empirical and hierarchical approaches to K, just
as it does for the histogram model. As in that case, honesty and near-adaptivity
(up to a logarithmic factor) results hold over functions in a Sobolev ball of regu-
larity > 1/2 satisfying their general polished tail condition. Unfortunately, their
results remain difficult to put into practice due to the existence of the “blow-up
factor” in the diameter of the sets.
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6. Roughness penalty methods

Some of the frequentist estimators considered in Sections 4 – 5 were MLE’s. In
the i.i.d. case, one chooses f̂ to maximize

n∑
i=1

log f (Xi)

over all f in some predetermined class of possible estimators – generally those
that can be expressed in the form of (7) or (21) – so that obtaining the estimate
is simply a matter of optimizing the coefficients. In some cases it is advantageous
to impose a further restriction on f̂ to reduce variance or otherwise enforce some
desirable “baseline” shape properties. In this case, instead choose f̂ to maximize

n∑
i=1

log f (Xi)− λJ(f) (22)

over the estimator class, where the functional J is some roughness penalty. This
term forces f̂ or log f̂ (depending on the context) to more closely resemble
a function in the null space of J to an extent controlled by the smoothing
parameter λ. A common choice for J is the integrated square of some linear

differential operator: for instance, if J : f �→
∫ (

D3 log f
)2
, then as λ → ∞,

log f̂ is forced towards a quadratic shape, and therefore f̂ towards a Gaussian
[193]. For brevity, this case may be described as “penalizing [the size of] the
third derivative” [166] on the log scale.

As indicated above, roughness penalties most commonly appear in the con-
text of basis expansion methods, particularly spline fitting. When using splines
with equally-spaced knots that do not repeat at the endpoints [47], an integrated
squared kth-order derivative penalty can be approximated by the sum of squared
kth-order differences between the coefficients. This simpler penalty gives rise to
so-called P-splines, devised by Eilers and Marx [46]. In any case, such penalties
are equivalent to quadratic forms in the basis function coefficients – for instance,
the associated matrix for the aforementioned third derivative penalty consists
of inner products between the third derivatives of the basis functions.

A Bayesian approach to roughness penalties is quite natural: it comes from
viewing (22) as a log-posterior, with the first and second terms respectively cor-
responding to likelihood and prior. In this respect, the Bayesian methods of the
previous two sections technically fit into this framework, but the focus in this
section is on literature with a stronger emphasis on specific shape and smooth-
ness restrictions imposed by the prior or penalty. The benefits of expressing
penalties as quadratic forms as described above is now apparent: such a penalty
is equivalent to an improper Gaussian prior on the spline coefficients (e.g. the
P-spline penalty corresponds to a random walk), with λ commonly given a
Gamma hyperprior [e.g. 118]. Note that this type of prior is only suitable when
modelling the log-density with basis functions – when using a basis expansion
for the density itself, care must be taken to ensure that it is nonnegative and
integrates to one. Some examples of this approach are given in Section 6.2.
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6.1. Penalty methods for log-scale basis expansions

Although roughness penalty density estimators had already been developed by
Good and Gaskins [72], Silverman [193] appears to have provided some of the
earliest results for the approximate distributions of such estimators. Letting
g = log f and taking J(g) (in a slight abuse of notation) to be the integrated
square of some mth-order linear differential operator on g, they considered the
estimator ĝ := log f̂ which minimized (22) over all g such that

1. g has piecewise differentiable (m− 1)th derivatives,
2. J(g) < ∞, and
3.

∫
eg < ∞.

Silverman showed that, for bounded f0 on a bounded univariate domain, ĝ is
asymptotically normal under suitable conditions on the higher-order derivatives
of log f0 and the rate at which λ → 0 as a function of n and m. In principle
this result could lead to some type of pointwise confidence intervals, but Sil-
verman did not pursue this further. The mean and covariance functions for the
limiting Gaussian process depend on eigenvalues of an inner product space of
estimators, and it is not clear how to approximate these in practice. O’Sullivan
[155] expanded further on Silverman’s original ideas for univariate densities on
compact intervals, and justified approximating ĝ by cubic B-splines with knots
at order statistics of X. They proposed to calculate λ by approximations to
either a cross-validation score or an AIC-type quantity, and penalized the sec-
ond derivatives of the log-densities. For uncertainty quantification, O’Sullivan
adapted an idea from the non-parametric regression setting [210]: treating (22)
as a log-posterior for the coefficients b in order to obtain “approximate Bayesian
pointwise intervals”. In the density case, O’Sullivan took a second-order Tay-
lor series approximation of the unpenalized likelihood component

∑
log f (Xi).

This lead to an approximate Gaussian log-posterior, from which they derived
pointwise intervals on the log scale of the form

log f̂(x)± 2

√
2

n
B(t)T

[
Ĥ + 2λΩ

]−1

B(t), (23)

where B(t) is a vector of basis function evaluations, Ĥ is the Hessian (with

respect to b) of the unpenalized likelihood at b̂, and Ω is the matrix of inner
products associated with the roughness penalty. Presumably, confidence inter-
vals for f0 could be obtained by exponentiating the above expression. O’Sullivan
did not comment on the performance of these intervals in their simulation study,
but noted that they were found to have good coverage properties in the non-
parametric regression setting by Wahba [210].

There are other formulations besides the Silverman approach for density
estimation with roughness penalties. One such Bayesian approach came from
Lambert and Eilers [117], who essentially used logistic regression to produce
a smoothed estimate of a histogram. Suppose the density is supported on a
bounded interval, which is partitioned into J bins. Let uj and mj respectively
denote the center of, and number of observations in, the jth bin Ij . Then Lam-
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bert and Eilers proposed the model

(m1, . . . ,mJ) ∼ Multinomial (n,π) , (24)

πj =
exp

[∑K
k=1 bkBk (uj)

]
J∑

l=1

exp
[∑K

k=1 bkBk (ul)
] , (25)

b−K ∼ N
(
0, (τΛ)

−1
)
;

where the Bk’s are B-splines with equally-spaced knots, bK = −
∑K−1

k=1 bk for
identifiability, Λ is a matrix of finite difference coefficients encoding a P-spline
penalty, and τ is a precision parameter with a gamma hyperprior. For x ∈ Ij ,
one can take f(x) = πj/� (Ij) as a density estimate, where � denotes the length
of the interval. This penalized spline structure, combined with a high number of
reasonably narrow bins, ensures the appearance of smooth estimates. Lambert
and Eilers proposed this framework as a flexible way to handle grouped data
by dividing the support into a smaller number of “wide bins” and replacing
(24) with a multinomial model for wide bin counts, the probabilities for which
are sums of the corresponding fine-grid π-values. Using a modified Langevin-
Hastings algorithm to generate posterior samples, Lambert and Eilers applied
this model to simulated and real data, using a moderately-sized cubic spline ba-
sis (K = 20). Unsurprisingly, their pointwise credible intervals (obtained from
MCMC draws) exhibited higher variance when using larger “wide bins”. In an
earlier technical report, the same authors considered extensions of this model to
multivariate densities by simply using products of B-spline bases, possibly allow-
ing different dimensionalities and roughness penalties in each dimension [116].

6.2. Penalty methods for direct basis expansions

Roughness penalties can also be applied when modelling the density itself, rather
than the log density, with basis functions. Komárek, Lesaffre and Hilton [109]
considered such a formulation to estimate the error density in accelerated fail-
ure time models. Rather than splines, they used Gaussian densities at fixed
locations, which they noted to be the limiting case for B-splines as their degree
tends to infinity. The number of basis functions in their model is determined
by the desired distance between their means (which serve the same purpose as
equally-spaced knots for splines), as is their standard deviation. To ensure their
estimates were valid densities, the authors used a softmax transformation to
obtain the coefficients b:

bk =
eak

K∑
l=1

eal

. (26)

For identifiability, it is necessary to fix, say, aK = 0; a few other constraints
on a are also necessary to ensure identifiability of other parameters in the fail-
ure time model. The roughness penalty, based on second- or third-order finite
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differences, is imposed directly on a. Estimation and inference follow from sim-
ilar ideas as in O’Sullivan [155]: Komárek, Lesaffre and Hilton took a penalized
maximum-likelihood estimate choosing the smoothing parameter with an ap-
proximate cross-validation score, and used a second-order Taylor expansion to
obtain approximate pointwise “posterior” intervals for the density. They noted
that in a simulation study (which they did not show), this method of construct-
ing pointwise intervals yielded better coverage results than asymptotic methods.
Komárek and Lesaffre [108] used a Bayesian version of this construction to model
the errors and random effects in an accelerated failure time model with interval-
censored data. As one might expect, the “logistic-scale” coefficients a in (26)
were given (aside from a single identifiability constraint) a Gaussian prior with
a (third-order) finite difference covariance structure, the scale of which is con-
trolled by a smoothing parameter with a diffuse Gamma prior. Specifying the
model in this way leads to related closed forms for estimated survival functions
and densities of onset and event times. These functions can be simulated in an
MCMC run, leading to pointwise credible intervals and means corresponding to
posterior predictive functions. The simulation study conducted by Komárek and
Lesaffre [108] showed that such credible intervals did a good job of capturing the
true densities of event and onset times, although their smoothness varied with
different combinations of true random effect and error densities. Sharef et al.
[189] provided an even more flexible Bayesian approach of this type to estimate
the frailty density in a proportional hazards frailty model. They used a mixture
of normalized B-splines and an optional parametric term, constrained to ensure
the density has mean one. The authors considered the use of fixed splines, as
well as a reversible-jump MCMC procedure allowing the number and location of
knots (and therefore, of basis functions) to vary adaptively. For the latter, they
put some truncated discrete prior on the number of knots, with their locations
given a discrete uniform prior over a larger set of “candidate knots”. Conditioned
on dimensionality, they expressed the coefficients for the spline part of the model
as in (26). They considered multiple choices for a smoothness-imposing prior on
a | K, listed below.

1. Simply taking the components of a to be i.i.d. Gaussians. The authors
used this prior with adaptive knot selection, since the latter procedure
controls smoothness automatically.

2. Taking a to be Gaussian with a covariance structure corresponding to
second-order finite differences. The authors noted that this is only guar-
anteed to enforce smoothness for equally-spaced (fixed) knots.

3. Directly penalizing the second derivative of the spline mixture. This amounts
to using a log-prior that is a quadratic form in exp (a) (with an associated
matrix of inner products between B-spline second derivatives), divided by

(
∑

k e
ak)

2
.

In all cases, the prior for a has a scale parameter with an inverse-Gamma prior
to control smoothing. The authors applied their approach to both simulated
and real data, quantifying uncertainty with pointwise credible intervals from
MCMC quantiles. Their simulation study showed that the adaptive knot se-
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lection approach without parametric component effectively captured the true
frailty densities, although it required a sufficient quantity of data to do so (in
particular, too few data clusters lead to wide pointwise intervals that did not
adequately capture true shape information). On a real dataset with a mod-
est number of clusters, they compared the fixed-knot version of their model
(with second derivative penalty) to the adaptive knot procedure with different
prior choices for the parametric component weight and number of knots. They
found that the adaptive version with parametric components encouraged more
smoothness in the posterior mean density and its credible intervals, to an extent
determined by the choices of priors. However, the fixed-knot version with second
derivative penalty performed best in terms of a modified Deviance Information
Criterion.

This section concludes with a rather novel frequentist approach from Sardy
and Tseng [184] which is better-suited to densities that may not be smooth in
the sense of piecewise differentiability. They used estimators which are either
piecewise linear between the order statistics of X, or piecewise constant between
their midpoints (equivalently, splines of degree 1 or 0, respectively), and total
variation as their roughness penalty. The penalty is easily computed since their
estimators ensure piecewise monotonicity, so that total variation is simply the
sum of absolute differences between function values at consecutive order statis-
tics. The authors devised two approaches for selecting the smoothing parameter:
a universal one (depending only on sample size, not sample values) engineered

to control the behaviour of f̂ when the true density is uniform; and one based
on a sparsity �1 information criterion, in which λ and f̂ are jointly estimated.
They used the latter approach on real datasets with some tied values due to
rounding, and obtained 95% pointwise confidence intervals by bootstrapping.
The pointwise intervals had reasonable width and shape, and the authors noted
that they may allude to the existence of additional modes not captured in the
“point estimates” of the densities.

7. Random measure mixture methods

This section explores uncertainty quantification for the canonical nonparametric
Bayesian method of density estimation. In the general case, this method employs
(conditional) mixtures of the form

f (· | G) =

∫
κ (· | θ, φ) dG (θ) , (27)

where κ is some kernel with parameters θ and φ, and the integral constitutes a
mixture over the domain of θ with respect to a random probability distribution
G. The bulk of the nonparametric Bayesian literature uses infinite-dimensional
discrete mixing distributions:

G (·) =
∞∑
i=1

wiδZi (·) , (28)
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where the weights and locations of the atoms – respectively, w and Z – are ran-
dom sequences. The centrepiece of this Bayesian mixture model is the infinite-
dimensional prior on G: a “distribution on distributions”. As it pertains to
density inference, the locations and weights are usually independent, with the
former distributed according to some continuous “base measure” and the latter
having a prior from one of two commonly-used broad classes.

1. Normalized random measures with independent increments, or NRMI’s
[168], in which unnormalized weights are generated from a Poisson point
process [100] and subsequently normalized. The measure with unnormal-
ized weights is a completely random measure (CRM).

2. Gibbs-type random measures of type8 σ ∈ (0, 1), which are equivalent
to σ-stable Poisson-Kingman processes [71, 124]. Briefly, these arise from
NRMI’s with intensity measure corresponding to the σ-stable subordina-
tor [65, p. 604] by conditioning the distribution of the weights on their
sum T , then mixing over an arbitrary distribution for T [163].

Assuming independence between weights and locations, each approach is a spe-
cial case of the larger set of Poisson-Kingman models [163, 124], which are
in turn a type of species sampling model. The normalized generalized gamma
(NGG) processes comprise the intersection of these approaches [124], whereas
the Pitman-Yor process [164] is an example of the second but not the first, as
noted by Favaro and Teh [54]. It is well-known that both the NGG and Pitman-
Yor processes admit the Dirichlet process as a limiting case when the parameter
σ → 0 [as mentioned in 128, for instance]; many Bayesian density inference
papers are specifically devoted to so-called Dirichlet process mixtures. For the
interested reader, Chapter 14 of Ghosal and van der Vaart [65] is an excellent
exploration of the relationships between such discrete nonparametric priors.

For any of these priors on G, it is easily seen that its specification in the form
(28) leads to another expression equivalent to (27):

f (· | G) =

∞∑
i=1

wiκ (· | Zi, φ) . (29)

Discussion of the theoretical aspects of UQ, such as asymptotic coverage prob-
ability, appears scarce in the literature for such estimators. Instead, the focus is
on practical generation of uncertainty sets (usually pointwise credible intervals)
from posterior samples obtained via MCMC. As one might expect, difficulty
arises here due to the nonparametric nature of the quantity of interest – in par-
ticular, since the posterior distribution of G (this section hereafter adopts the
bracket notation of Gelfand and Smith [61], denoting this posterior by [G | X])
will be infinite-dimensional. The key to most ideas for MCMC sampling of this

8Other Gibbs-type random measures are possible for different values of σ. For σ < 0, they
are mixtures (over the dimensionality) of finite-dimensional symmetric Dirichlet distributions;
for σ = 0, they are mixtures (over the concentration parameter) of Dirichlet processes [71].
However, these are not typically seen in the density inference literature.
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model is to reformulate it in a hierarchical way:

Xi ∼ κ (· | θi, φ) ,
θi ∼ G, (30)

G ∼ P (· | ψ) .

If there are additional hyperparameters φ and ψ, they are typically given their
own independent priors, but these are not a main focus here. The latter encodes
all parameters of the prior for G: for instance, for a Dirichlet Process prior with
Gaussian base measure it may include the concentration parameter, as well as
the location and scale of said base. Note that by the almost-sure discreteness of
G, there is positive probability that θi = θj for some i �= j. In this respect, the
model imposes a random partitioning or clustering of the data, where each clus-
ter is comprised of all observations with the same θ-value. With this formulation
in mind, the known MCMC strategies divide into two main groups – marginal
and conditional, depending on the way in which the infinite-dimensional pa-
rameter G is handled. The sections below briefly explain, and discuss the UQ
implications for, each of these groups.

7.1. Marginal sampling methods

Marginal methods rely on integrating G out of the model and being able to ob-
tain approximate samples from [θ | X]. Algorithms for this purpose are readily
available when using the Dirichlet Process prior; see Neal [147] for a seminal
review of them. In this case, it is easy to obtain a Monte Carlo estimate of
the posterior mean density (denoted here as f (· | X), in keeping with the rest
of the Bayesian notation in this section), as discussed by Escobar and West
[48]. Letting θ∗ denote the parameter for a hypothetical new observation and
θ = (θ1, · · · , θn), note that f (· | θ) =

∫
f (· | θ∗) dΠ (θ∗ | θ). The integrand is

simply the kernel κ, and the distribution [θ∗ | θ] is readily available. Assuming
the base measure of the Dirichlet process is conjugate to the kernel (as in the
Gaussian case, for instance), this integral has an analytic closed form. From
there, the Monte Carlo estimate of f (· | X) =

∫
f (· | θ) dΠ (θ | X) is an av-

erage of the above quantity over posterior MCMC draws of θ. By the same
token, it is easy in the conjugate case to quantify uncertainty with respect to
[f (· | θ) | X]. This is essentially the approach suggested by Wang and Dunson
[213] to find pointwise confidence intervals, although they further simplified in-
ference by using a greedy algorithm to find an optimal partition of the data.
They noted that the deterministic nature of their algorithm results in an un-
derestimation of uncertainty.

Inference of this nature ether ignores or marginalizes out uncertainty in the
weights of G. For marginal samplers, this seems to be fairly standard practice
when obtaining posterior density estimates to construct credible sets. Shi et al.
[192] used one of Neal’s nonconjugate algorithms [147] and obtained posterior
density draws by taking the mean of the κ (· | θi)’s for each MCMC draw of θ
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[see also their R package 191, and its source code9]. This is equivalent to taking
a mixture of cluster-specific kernels, each weighted by the number of observa-
tions in its corresponding cluster. Using kernel- and data-specific scaling and a
low-information prior, Shi et al. obtained pointwise credible intervals for sim-
ulated and real data. Their framework can accommodate censored data, with
pointwise uncertainty increasing in the presence of censoring as expected. In
their simulation studies, the credible intervals did a good job of capturing the
true densities, covering them throughout the domains for all one-dimensional
examples and at roughly 98% of domain points for their two-dimensional ex-
ample. Favaro and Teh [54] and Favaro, Lomeli and Teh [53] devised marginal
Gibbs samplers for NRMI’s and a specific subclass of σ-stable Poisson-Kingman
models, respectively. For both classes, their density draw computations appear10

to be based on truncation, and marginalization of the distribution of G given θ
and the auxiliary variables of the sampler. To elaborate, the density draws are
a sum of cluster-specific kernels, each given weight proportional to its (condi-
tional) expected mass; and ten “new” kernels with parameters taken from the
prior base measure, each given weight proportional to the expected total mass
divided by ten. In the latter paper, the authors showed a pointwise credible
interval for the density of a dataset of galaxy velocities, noting that the results
were satisfactory and consistent with previous work.

It could be argued that the aforementioned approaches to density inference
are inherently “incomplete”. Indeed, marginalizing or otherwise deterministi-
cally approximating the random weights of G fails to account for some of the
uncertainty in (29). If the goal is full uncertainty quantification in this regard,
the focus must be on [f (· | G) | X] if possible. As noted by Gelfand and Kottas
[60], it holds that

[θ, G | X] ∝ [θ | X] [G | θ] . (31)

This reveals the key to fully meaningful inference with a marginal sampler:
for each MCMC draw θb ∼ [θ | X] , b = 1, . . . , B, if it is possible to draw
Gb ∼ [G | θb], then the quantities {f (· | Gb)} constitute a posterior sample
from [f (· | G) | X]. Gelfand and Kottas [60] noted that this is easy for the
Dirichlet process prior by conjugacy, since [G | θ] is a Dirichlet process with
updated parameters. Of course, in practice the infinite sum in (29) must be
somehow truncated to obtain actual density draws. Gelfand and Kottas did
this by choosing the number of terms to satisfy a predetermined expected error
threshold, then replacing the final weight to ensure that the truncated sum
integrates to one. Kottas [114] later used this approach in the context of survival
analysis, as did Griffin [74] when comparing different approaches to hyperpriors
in the Dirichlet process model. Such methodology is not typically used for more
general random measure priors, despite relevant distributional results existing in
the literature [54, 53]. This is likely a computational matter: to directly sample
the weights w of a random measure, it is typically necessary to employ a stick-

9Available at https://github.com/cran/DPWeibull.
10Based also on their source code at https://github.com/BigBayes/BNPMix.java.

https://github.com/cran/DPWeibull
https://github.com/BigBayes/BNPMix.java
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breaking process, in which they are represented as

wi = Vi

i−1∏
j=1

(1− Vj) (32)

for certain continuous random variables {Vi} on [0, 1]. It is well-known that the
Dirichlet process with concentration parameter M has a stick-breaking repre-

sentation of the form (32) with Vi
i.i.d.∼ Beta(1,M) [188]. However, such repre-

sentations for the general classes of random measure considered here are more
recent developments, and the densities of the Vi’s are quite complicated [52, 50].

7.2. Conditional samplers

In contrast to the approaches described above, conditional methods do produce
posterior samples of the weights in (28), allowing for “full” inference on func-
tionals such as (29). There are several ways to avoid the problem of having
to sample infinitely many weights. Early conditional samplers simply replaced
G by a finite approximation, choosing the deterministic truncation level a pri-
ori. Discussion of such methods is deferred to Section 7.4; this section focuses
on alternatives that better incorporate the infinite-dimensional nature of the
model. Perhaps the most common approach to this end is to introduce some
auxiliary variables such that the full conditionals of G are finite-dimensional.
This ensures that Gibbs samplers target the correct posterior without the need
for approximation, aside from the inevitable truncation to calculate the density
draws themselves.

The retrospective sampler of Papaspiliopoulos and Roberts [157] was one
of the earliest methods of this type for Dirichlet process mixtures. It involves
the introduction of allocation variables K = (K1, . . . ,Kn) such that Ki = j iff
θi = Zj , with Zj as in (28). At each step of the chain, first draw only max (K) :=
maxi {K1, . . . ,Kn} of the atoms and weights in G. A certain condition involving
auxiliary standard uniform variables and the full conditionals of K is then
checked. If the condition is met, perform a Metropolis-Hastings update of K
and resume sampling as normal; otherwise, simulate additional components of
G one at a time (from their priors, as they represent clusters with no allocated
observations) until the condition is met. Note that the number of components is
therefore variable across iterations. The authors noted that posterior draws for
any linear functional of G are equal in distribution to a deterministic function of
prior draws and the first max (K) components from one retrospective sampling
iteration. Thus, full posterior inference for f (· | G) is quite straightforward.

Another popular approach which avoids some of the computational burden of
the retrospective algorithm is slice sampling, first used in this context by Walker
[211]. Briefly, Walker’s original idea involved introducing new latent variables
Ui, i = 1, . . . , n such that, with Ki again denoting the allocation variable as
above, the joint likelihood for observation i is

f (Xi, Ui,Ki = j | G) = κ (Xi | θj) 1 (Ui < wj) . (33)
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Integrating out Ki and Ui reduces this to (29). Furthermore, these variables
ensure that all full conditionals in the Gibbs sampler – including those for the
necessary components of G – are finite-dimensional. Numerous adaptations of
the algorithm exist: for instance, Kalli, Griffin and Walker [104] altered it for
greater efficiency. Technical details aside, the main point is to simulate the
finitely (but randomly) many components of G needed for the other sampler
variables; this can exceed n, in which case some components will correspond to
clusters with no data allocated. Favaro and Walker [55] adapted the algorithm
of Kalli et al. to the larger class of σ-stable Poisson-Kingman models, using
their stick-breaking representation to devise a method for sampling the weights.
They applied their method with mixtures of Gaussians with common variance
and means from the random measure. Density draws were calculated by first
adding together the components obtained from the sampler, then allocating the
remaining mass (which the authors noted was usually quite small) to a Gaussian
kernel with the sampled posterior variance centered at the prior mean of the base
distribution. One can then extract posterior sets from these draws in the usual
way. In the same paper discussed in Section 7.1, Favaro and Teh [54] considered a
slice sampler for NRMI mixtures; here they sampled the unnormalized masses of
the random measure. They showed pointwise credible intervals for the densities
of some real datasets that were reasonable in shape and variability. Their source
code suggests that they used the same formula for density draws here as they did
for their aforementioned marginal samplers, with ten additional “new” kernels
as described in the previous section.

Although finite-sum approximations are always necessary for density esti-
mation, the approaches described above are noteworthy because the samplers
themselves introduce no truncation error; all of their full conditionals are truly
finite-dimensional. This is not the case for all papers which use conditional
samplers for density inference. For instance, Barrios et al. [7] used a conditional
algorithm for NRMI’s that does not induce a finite-dimensional full conditional
for G. Instead, they used a representation which allowed them to sample the
masses in decreasing order. This allowed them to select the number of compo-
nents sampled based on a relative error criterion, and to calculate density draws
from only these (normalized by the sum of the sampled masses). They obtained
pointwise credible intervals for a real dataset, demonstrating that the choice
of both kernel and NRMI prior can moderately affect the smoothness of said
intervals. Argiento, Bianchini and Guglielmi [1] folded random truncation into
a modification of the NRMI prior itself by discarding all unnormalized weights
smaller than some threshold ε. The resulting random measures have finite and
random dimension, and converge in distribution to the corresponding NRMI’s as
ε → 0. The authors recommended fixing some small value for ε (it is possible to
place a prior on it, but they warned that the computational cost may be unrea-
sonable). They derived a conditional sampling algorithm, introduced a new class
of NRMI’s with a Bessel function in the intensity measure, and applied their
method to real and simulated data. Their pointwise credible intervals showed a
pleasing degree of smoothness and reasonable faithfulness to the true density of
a simulated sample. Griffin [75] proposed an adaptive truncation method based
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on sequential Monte Carlo. The method involves iteratively resampling and in-
creasing the dimension of the approximate model until a discrepancy measure
falls below some threshold. Griffin applied this approach to a variety of non-
parametric models, including Dirichlet process mixtures. Although they did not
show credible intervals for densities, they did so in the context of time series
modelling, indicating that density inference is indeed possible in this framework.

7.3. Extensions

7.3.1. Feller-Dirichlet priors

This Bayesian model from Petrone and Veronese [162] generalizes the Dirichlet
process mixture model, although it also serves as an extension of Petrone’s ideas
[160, 161] from Section 4.2. Recall from that section that Petrone put a prior
on K and introduced latent variables Y1, . . . , Yn from a random distribution
F with DP prior such that Xi | Yi,K, F ∼ Beta (�KYi� ,K − �KYi�+ 1). The
Feller-Dirichlet prior generalizes this by replacing the latter Beta densities by
some kernels gK (·;Yi), leading to a density model of the form

f (· | K,F ) =

∫
gK (·; θ) dF (θ) .

Petrone and Veronese provided several examples beyond the original Bernstein
model that are suitable for data on [0,∞) or R. For instance, take gK (·; θ) to
be an inverse Gamma density with parameters (K,Kθ) with a Gamma base
measure for the prior on F , or use a N

(
θ, σ2/K

)
density for the kernel with

a Gaussian base measure. These examples illuminate the idea that the Feller-
Dirichlet prior – a “mixture of DP mixtures” – bridges the gap between Dirichlet
process mixture models and the Bernstein polynomial models explored previ-
ously. For inference, Petrone and Veronese truncated the DP to a large finite
number of components and used a Gibbs sampler similar to that of Ishwaran
and Zarepour [99] to obtain density estimates and pointwise credible intervals.

7.3.2. Extensions for non-i.i.d. data

Several extensions to the random measure density model also exist for data
structures besides an i.i.d. sample X, most of which are based on the Dirichlet
process instead of the more general measures. Müller and Rodriguez [145] and
the references therein provide an excellent overview of such extensions; this sec-
tion details some examples for which uncertainty quantification has been done
in literature. In broad terms, these examples all involve inference for a fam-
ily of densities {f (· | Gt) : t ∈ T }, where the random measures are indexed by
some set T and share some form of dependence. In many cases, this will mean
modelling the density for a “response variable” X with associated covariate t,
effectively building yet another bridge between density estimation and nonpara-
metric regression.
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The dependent Dirichlet process (DDP) first introduced by MacEachern [134]
is the basis for many useful models. DDP mixtures are similar in construction
to (29), except that the weights {wtj} and locations {Ztj} may both vary with
t ∈ T . For instance, De Iorio et al. [37] considered a model for survival analysis
when there are covariates ti associated with each observationXi. The weights do
not vary with t, but the Ztj ’s correspond to location-scale pairs with the former
component equal to a linear model in t: for example, if t = (u, v) for categorical u
and continuous v, then Ztj =

(
mj , Auj , Bjv, σ

2
)
for j ∈ N. Inference proceeds by

reformulating the model into the conventional DP mixture framework, replacing
the top line of the hierarchy in (30) by

Xi | θi, ti ∼ N (θidi) (34)

where di is a design vector so that θidi =
(
mj +Auj +Bjv, σ

2
)
when θi = j

and ti = (u, v). De Iorio et al. used this so-called linear DDP to analyze the
densities of log survival times with various combinations of treatments and other
factors. They showed some pointwise credible intervals for survivor and hazard
functions, and although they did not do so for densities, it should be no more
difficult. However, their inferential approach [as described in 38] is the same as
that suggested by Escobar and West [48], where the weights are marginalized
so that inference is based on [f (· | t, θ) | X] as opposed to [f (· | Gt) | X].

The above formulation is somewhat similar to the density regression model
considered by Dunson, Pillai and Park [43] for modelling the density of a con-
tinuous response variable. The model assumes a set of continuous covariates
associated to each observation and a structure similar to (34), except that the
random measure governing the θ-value for an observation now depends on the
corresponding covariate vector t: it is a finite mixture of n i.i.d. Dirichlet pro-
cesses, with the ith weight based on the distance between t and ti. Dunson
et al. used a marginal sampler, so that posterior inference for the predictive
density of a “new” observation (given some covariate vector) was once again
based only on the finite-dimensional parameters. Draws for these densities have
closed forms due to conjugacy: they are mixtures of cluster-specific kernels and
one using posterior draws of the hyperparameters of the base distribution. For
both real and simulated data, the authors showed pointwise credible intervals
for such densities conditioned on various values for the covariates. In the latter
case, the intervals did a good job of capturing the true densities. Dunson and
Park [42] subsequently developed the kernel stick-breaking process (KSBP) to
model an uncountable collection of probability distributions (with particular
focus on the density regression application), generalizing and expanding upon
some of the ideas in [43]. In this model, the covariate-dependent distribution
for an observation’s θ-value is an infinite mixture of “basis” random measures
(typically either point masses or draws from a Dirichlet process) with stick-
breaking mixture weights. To induce dependence on the covariates, the beta
random variables defining the stick-breaking process are weighted by kernels
evaluated at the covariate value and centered at random locations with some
arbitrary prior distribution. Dunson and Park’s MCMC algorithm for pointwise
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UQ was a hybrid between marginal and conditional: like [43], they marginalized
over the basis random measures; but at the tth step of the chain they sampled
Mt mixture weights, where Mt is the highest index of an occupied cluster across
the first t iterations. The authors repeated the same simulation study as in [43],
showing that the pointwise credible intervals from the KSBP model enveloped
the true densities. Norets and Pelenis [153] explored the same simulated data
model, showing how changes in the KSBP hyperparameters affected the quality
of inference.

The formulation in the preceding paragraph directly models the conditional
density of X given t by specifying a covariate-dependent random measure. Al-
ternatively, it is possible to first model the joint distribution of X and t as a
mixture of a kernel κ (X, t | θ, ψ) = κ (X | t, θ)κ (t | ψ) with respect to a random
distribution on the product space for (θ, ψ), then obtain the desired (conditional)
density estimates by standard calculations. This approach is used by Park and
Dunson [158], who put a Dirichlet process prior on the product measure; and
Wade et al. [209], who gave separate DP priors to Gθ and Gψ|θ to allow for
greater flexibility. Both used marginal samplers for inference (again, with un-
certainty only in terms of the finite-dimensional parameters), with the latter
finding pointwise credible intervals to be much narrower and more accurate
than those resulting from a DP on the product measure.

Returning to the DDP, note that it is also a suitable starting point when there
are multiple sets of observations from different discrete time points, in which case
the density is a random process evolving through time. Nieto-Barajas et al. [150]
used this approach in such a context, making the atom locations independent of
time but introducing dependence into the weights through their stick-breaking
construction. They achieved the latter by introducing latent variables Ytj depen-
dent on the stick-breaking proportion Vtj , such that V(t+1)j is in turn dependent
on Ytj and the usual Dirichlet process is recovered by marginalizing out the Y ’s.
They applied this construction in a mixed-effects model for protein activation
over time, using a partially marginalized algorithm which exploited conjugacy
to sample only atoms corresponding to clusters containing data. Müller and Ro-
driguez [145] showed densities with pointwise credible intervals from the same
application, presumably using the same algorithm. Gutiérrez, Mena and Rug-
giero [82] used a different approach to introduce dependence in the stick-breaking
process: with random probability p having a Beta prior, they sampled V(t+1)j

from its usual distribution, and set it equal to Vtj otherwise. They used slice
sampling for inference, but did not specify if their density draws incorporated
any components beyond those sampled (recall that this was the case for the
Favaro-authored papers in Section 7.2). Their simulation study showed that
their method was much more effective than one based on spline regression at
capturing the true shape of their density, but their pointwise credible intervals
did a much better job at enveloping the true density at later time points than
at earlier ones.

Finally, there may be multiple samples X1, · · · ,Xm for which it makes sense
to “share information”, assigning mutually dependent densities to each sample.
The hierarchical methods discussed in Müller and Rodriguez [145] and its refer-
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ences are perhaps the most natural ways of doing this, but there does not appear
to be existing literature which specifically conducts UQ with these methods.
Griffin, Kolossiatis and Steel [76] developed an interesting model: starting with
p underlying i.i.d. CRM’s, the mixing distribution for each density is the nor-
malized sum of some sample-specific subset of the underlying measures. Griffin
et al. called this the correlated NRMI model, and implemented it with a com-
bination of slice sampling and a split-merge step (in which clusters are moved
between the underlying measures to address posterior multimodality). Although
the main purpose of their model was assessing differences between distributions,
they did show pointwise intervals for survival functions fitted from interval-
censored data; as always, it seems reasonable to assume that density inference
is possible by similar means.

7.4. Finite mixtures

As previously mentioned, one way around the difficulties of infinite-dimensional
models is to simply truncate the sum in (29) at some level N . This case leads
to a vector of weights w = (w1, . . . , wN ) on the (N − 1)-dimensional proba-
bility simplex. This was the approach taken by the early conditional samplers
of Ishwaran and Zarepour [99] and Ishwaran and James [98], who considered
generalized Dirichlet priors on w to approximate random measures with stick-
breaking representations (namely, those for which the stick-breaking variables
Vj in (32) have beta distributions). For instance, to approximate a Dirichlet
process mixture with concentration parameter α, they would either give w a
symmetric Dirichlet prior with parameters α/N ; or truncate its stick-breaking
representation, setting VN = 1 to ensure the N weights summed to one. They
gave asymptotic justifications (as N grows large) for both options. With the
conditional samplers devised in these papers, approximate posterior inference
is obviously possible. Of course, extensions to the types of data structures con-
sidered in Section 7.3 are also possible. For instance, Chung and Dunson [32]
modelled covariate-dependent densities using truncated random measures with
stick-breaking weights derived from a probit model. Their structure for the
weights incorporated a variable selection component, resulting in a rather flexi-
ble density regression framework. Finucane et al. [56] conducted a meta-analysis
of child nutrition data by modelling the study-specific densities of interest with
finite mixtures of normals, using probit model stick-breaking weights which in-
corporated individual time and location effects. Norets and Pelenis [152] mod-
elled the joint distribution of a response variable and covariates with a finite
Gaussian mixture, obtaining the conditional response densities with standard
calculations. Their model allows for any number of discrete variables by mapping
them to continuous latent variables. The pointwise credible intervals obtained in
these papers showed reasonably good uncertainty quantification, although the
choice of a fixed finite number of components naturally reduces their flexibility
somewhat.

The focus thus far in this section has been overwhelmingly Bayesian. Fre-
quentist approaches to mixture models do exist in the literature, but it is rare
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to see them consider density UQ as it is defined here. Roeder [176] provided one
rather novel exception for mixture-of-Gaussians estimators with finitely sup-
ported mixing distributions. Given some bandwidth h for the Gaussian kernel
κ, the mixing distribution Ĝh is uniquely chosen to optimize an asymptotically
normal statistic based on sample spacings11. This statistic is nonincreasing in
h, and so it is possible to find a range of h-values such that the statistic falls
within the (α/2)- and (1− α/2)-quantiles of the standard Normal distribution.

The confidence set defined by Roeder is then the set of all estimators f
(
· | Ĝh

)
as h varies through this range. This set is comprised entirely of finite mixtures
(although the number of components for each is random), is easy to visualize,
and provides correct coverage if the true density is assumed to be a mixture of
Gaussians.

In addition to the KDE connection, it is easy to see parallels between finite
mixtures and some of the basis expansion methods discussed earlier. Indeed,
even if one were to put a prior on N (e.g. Norets and Pati [151], whose inference
involved modelling conditional densities using covariate-dependent multinomial
logit mixture weights), the model would be similar in principle to the fully
Bayesian approaches in Section 4. Thus, beyond what has already been explored,
there is little else to discuss here. The interested reader may refer to Gelman
et al. [62] for some more details on working with models of this type.

8. Other methods

This section explores uncertainty quantification for an assortment of density es-
timation methods for which literature is too scarce to warrant separate sections.

8.1. Nearest neighbour methods

This classical density estimator is closely related to the KDE and is applicable
to any density on R

d. Let k = k(n) be an integer increasing with sample size
n, let ‖·‖ be some norm on R

d (typically Euclidean, but some other norms also
satisfy the required conditions for some of the results discussed here), and for
an arbitrary point x ∈ R

d let R(k, x) be the ‖·‖-distance between x and the kth-
closest value in X. Then for a kernel K, the nearest neighbour density estimator
as defined by Mack [135] is

f̂(x) =
1

R(k, x)d

n∑
i=1

K

(
x−Xi

R(k, x)

)
. (35)

Unless otherwise stated, all results in this section require K to equal 0 outside
of the unit ‖·‖-ball. A particularly common case arises from the uniform kernel:

f̂(x) =
k

nV (k, x)
, (36)

11Roeder noted the analogy between such estimators and KDE’s, the difference being
the sample-dependent mixing distribution used. Similar connections and generalizations were
briefly explored in Section 3.3.
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where V (k, x) is the volume of the ‖·‖-ball centered at x with radius R(k, x).
Nearly all of the literature on NN density inference is theoretical, and closely
mirrors the results discussed previously for KDE’s12. For instance, Theorem
9.3.7 in Csörgő [34] is essentially a Smirnov-Bickel-Rosenblatt result for univari-
ate NN estimators. Unlike the KDE and wavelet theorems, their formulation
would lead to confidence bands over a certain random interval defined by order
statistics of the sample, but they noted that this interval converges to the full
support as n → ∞.

Moore and Yackel [144] provided what appear to be the first asymptotic nor-
mality results for (35), showing that the limiting distribution could be made
to center at f0 under some conditions on its properties and the asymptotic be-
haviour of k. They also noted that the asymptotic variance of the NN estimator
is smaller than that of the KDE at points x where f0(x) is small, claiming that
this makes it more efficient for estimating density tails. Mack and Rosenblatt
[136] expanded on this, noting that the NN estimator can be much more biased
than the KDE in the tails, with the opposite relations holding for large values
of f0(x). These observations, combined with the non-monotonic dependence of
asymptotic bias on k, make error analysis here somewhat less straightforward
than it is for the KDE.

Mack [135] derived slightly different asymptotic normality results than Moore

and Yackel, centering at E
[
f̂
]
instead of f0. This allows for less restrictive con-

ditions: for instance, theirs are the only results here which do not require K to
vanish outside of the unit ball. Pointwise Gaussian limits centered on f0 with
some variant of usual conditions (among others, as needed) are also available
for univariate NN density estimates with non-i.i.d. data structures, such as ran-
domly right-censored data [142], observations from an α-mixing sequence [125,
only for the uniform kernel], or randomly left-truncated samples [216, who ac-
tually implemented confidence intervals in practice using a plug-in estimator of
the asymptotic variance].

A technical report by Rodŕıguez [173] [see also 174] made an interesting
connection between NN estimators of the form (36) and KDE’s: the former
allocates the fixed mass k/n to the random volume V (k, x), while the latter can
be rewritten to show that it essentially does the opposite, spreading a random
mass over a fixed volume. This observation motivated Rodŕıguez to view the
two estimators as endpoints on a “continuum” of estimators of the form

f̂(x) =
c
∫
K

(
x−t
μ

)
dFn(t)∫ 1

0
hd(t)dω(t)

,

where ω is a distribution on [0, 1] with mean c, and the (possibly random) num-
ber μ and function h meet certain technical conditions. Rodŕıguez showed how
KDE’s and uniform NN estimators arise as special cases and described every-

12Unfortunately, even the drawbacks are similar: most asymptotic results relevant to infer-
ence require a choice of k which is not optimal w.r.t. the mean square error [e.g. 34, Chapter
9].
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thing in-between as “double smoothing”: in the numerator (resp. denominator),
the mass (resp. volume) given by Fn (resp. hd) is smoothed with K (resp. ω).
Rodŕıguez proved asymptotic normality for certain subclasses of these estima-
tors in this report, as did Biau et al. [8] for another variant. Both cases are
generalized NN estimators, and the results hold even using the “optimal” k(n)
with given asymptotic biases. It is possible to eliminate the bias and center at
f0 with a suboptimal kn, although the conditions for this are less restrictive
here than in [144] at the expense of stricter smoothness assumptions on f0.

8.2. Logistic Gaussian process estimators

This approach is usually Bayesian and involves density estimates of the form

f(x) =
eg(x)∫
eg(u)du

, (37)

where the latent function g is given a zero-mean Gaussian process (GP) prior
with hyperparameters γ governing the covariance kernel. The “logistic” trans-
formation of g ensures that the estimates are valid densities: nonnegative and
integrating to one. Riihimäki and Vehtari [170] explored some approaches for ap-
proximate Bayesian inference with this model with 1- or 2-dimensional densities.
Technically, they assumed that g would be the sum of a Gaussian process and a
parametric polynomial component, but they integrated out the coefficients for
the latter so that the basis function values and hyperparameters could simply
fold into the mean and variance of the GP. Similarly to Lambert and Eilers
[117] (see Section 6.1), Riihimäki and Vehtari discretized the model, replacing
the actual data with observation counts in a fine, equally-spaced partition of
the domain. Assuming that the partition consists of J subregions and letting m
and g respectively denote the vectors of observation counts and latent function
values within each subregion, the likelihood P (m | g) is essentially the same as
(24 – 25) [117], except the B-spline values in (25) are replaced by the latent
function values gj for j = 1, . . . , J . In turn, the prior Π (g | γ) for the latent val-
ues is simply the multivariate normal distribution induced by evaluating the GP
prior at the center points of the subregions. The main object of inference is then
the conditional posterior of g given the observation counts and hyperparameters
(and, technically, conditioned on the chosen partition as well),

Π (g | m, γ) ∝ P (m | g)Π (g | γ) . (38)

This posterior is not analytically tractable, so approximate methods must be
used to employ this model in practice. As an alternative to MCMC, Riihimäki
and Vehtari proposed the use of a Laplace approximation: a Gaussian distribu-
tion for g based on a second-order Taylor approximation to the log of (38). In
order to quantify uncertainty in f , samples must be drawn from this approx-
imate Gaussian posterior and transformed via (37). To this end, the authors
showed that importance sampling can improve performance, and rejection sam-
pling can also be incorporated to ensure appropriate tail behaviour if necessary.
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The model is completed by putting a prior on γ, but Riihimäki and Vehtari
also considered the possibility of ignoring the uncertainty in these hyperparam-
eters: marginalizing the approximate Laplace posterior over g, maximizing it
with respect to γ, and simply plugging in the resulting approximate MAP point
estimate for γ. They found that their method performed (in terms of mean
log predictive density, evaluated with cross-validation for real data or w.r.t. the
true distribution for simulated data) comparably with MCMC targeting the
true joint posterior of (g, γ), as well as the Dirichlet process mixture models
of Griffin [74]. The pointwise credible intervals for real and simulated data pro-
vided reasonable practical visualization for uncertainty quantification. However,
one of their simulations showed that densities with varying amounts of smooth-
ness throughout the domain can be challenging, as the MAP parameters needed
to capture more narrow features can result in excessive roughness elsewhere.
The authors also showed how their method can extend to density regression,
modelling densities conditional on covariate values.

8.3. Pólya trees

The Pólya tree (PT) prior is a Bayesian nonparametric method for constructing
a random probability measure, discussed in [119] and the first few references
therein. The construction is based on a recursive partitioning of the domain
and is most easily explained when the domain is an interval in R. At the mth

level of partitioning, the interval is split into 2m subintervals. It is common to set
the partition boundaries to the dyadic quantiles of some base measure G0 (i.e.
G−1

0 (j/2m) , j = 0, . . . , 2m), thus “centering” the random measures drawn from
the PT prior around this base [119, 145]. Associate to each mth-level subinterval
a binary number ε = ε1 . . . εm ∈ {0, 1}m, and define a set of Beta random
variables {Yε : ε ∈ {0, 1}m} such that the Yε1...εm−10’s are mutually independent
and Yε1...εm−11 = 1−Yε1...εm−10. Finally, consider a random probability measure
that assigns mass

m∏
j=1

Yε1...εj .

to Bε, where Bε is the subinterval associated to binary number ε = ε1 . . . εm.
Iterating this process over all m ∈ N results in a draw from the Pólya tree prior
(so named because the recursive partitioning defines a tree with nodes corre-
sponding to subsets), defined by the sequence of partitions and Beta parameters.
A special case for the latter gives rise to the Dirichlet process, but they can also
be tailored to almost surely produce absolutely continuous distributions [e.g.
119, 146], which is obviously more appealing for density inference.

It is possible to extend this construction to d-dimensional domains, for in-
stance by using the construction of Hanson [92]. At the mth level, the domain
is partitioned into 2md subsets, indexed by base-2d numbers ε = ε1 . . . εm ∈
{0, . . . , 2d − 1}m [145]. These subsets are formed by taking Cartesian products
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of the subintervals used in the univariate construction, then applying a suitable
affine transformation. Probabilities are assigned to each subset in an analo-
gous way to the univariate case, except that for a fixed ε1 . . . εm−1, the variables{
Yε1...εm−1e, e = 0, . . . , 2d − 1

}
have a 2d-dimensional Dirichlet distribution. Lit-

erature on multivariate PT’s rarely entails any density UQ, so the remainder of
this section focuses primarily on the univariate case.

Castillo [24] provided theoretical results for posterior inference with such
priors on the unit interval, with partition boundaries at the dyadic rationals. In
particular, they showed that, when f0 is Hölder with regularity β ∈ (0, 1] and
bounded away from zero, a type of Bernstein-von Mises result holds (i.e. the
posterior weakly [25] converges in P0-probability to a Gaussian process) when
the Beta parameters of the prior grow suitably fast with m. The posterior must
be centered at some estimator for f0 for this to hold: either the posterior mean
or, when the Beta parameters grow suitably slowly depending on β (note that
this corresponds to “undersmoothing” of the posterior), a “canonical” estimate
based on the Haar wavelet expansion of the empirical measure. Castillo noted
that this result can lead to similar results to some of those discussed earlier for
wavelet estimators [25]: namely, multiscale credible bands similar to (20) with
Pólya trees should have correct frequentist coverage.

Practical implementations of Pólya tree models involve truncating the parti-
tioning at some finite “terminal” level, rather than continuing it infinitely. By a
well-known conjugacy result [e.g. 146, 92], the posterior for the PT prior is sim-
ply an updated PT, with the same partition and updated Beta (or Dirichlet, in
the multivariate case) parameters for the Yε’s. With the aforementioned trunca-
tion, density samples from this posterior can be obtained by allocating the mass
proportion within each terminal subset either uniformly [65, chapter 3] or ac-
cording to the density of the base measure [as in 92]. The resulting densities will
be discontinuous at the partition boundaries [146, 65] and are therefore perhaps
not as “well-behaved” as one may prefer. In a survival model with longitudinal
data and a PT prior on event times, Zhang, Müller and Do [218] addressed
this issue by applying kernel smoothing to the actual posterior PT draws to
obtain event time densities. There are other ways around this which change the
structure of the model itself: mixing the prior over the parameters of the base
distribution [92], adding random “jitter” to the partition boundaries [156], or
mixing a kernel with respect to a PT measure [12]. Surprisingly, literature em-
ploying such methods does not tend to address UQ for densities. On the other
hand, Nieto-Barajas and Müller [149] did so for their rubbery Pólya tree (rPT)
prior, introducing dependence amongst the Yε1...εm−10’s at level m (i.e. all “left
nodes” in the tree at a given depth) through latent variables. The construction
resembles that used to introduce dependence for time-series DDP’s by Nieto-
Barajas et al. [150] as discussed in Section 7.3, and recovers the usual PT prior
by marginalizing over the latent variables. Conditional conjugacy allows for an
easy Gibbs sampler, which Nieto-Barajas and Müller implemented by truncating
the partitioning process at some depth (using a depth between 5–8 in all exper-
iments) and allocating the mass uniformly within each of the terminal subsets.
Pointwise credible intervals in their simulation study fully contained the true
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densities, but were not smooth. Indeed, the rPT only “smooths” the estimates in
the sense of reducing jump sizes between masses in neighbouring partition sets.
Its dependence structure addresses variability, not continuity. Nieto-Barajas and
Müller suggested mixing (either over a kernel w.r.t. a rPT prior, or over the pa-
rameters of the rPT’s base distribution) when more smoothness is desired, but
did not attempt uncertainty quantification with such models.

A different extension of the model came from Hanson, Zhou and Inácio De
Carvalho [93], when each Xi is observed at a spatial location ti. Their object
of interest was the predictive density (i.e. marginalizing over G) for a new X,
and they proposed to modify the usual formula by weighting the contribution of
each observation by some distance between their locations and that of the new
X. Uncertainty was with respect to the (hyper)parameters of the PT prior and
the distance function and was quantified with MCMC output. Their pointwise
credible intervals appeared quite smooth; it is unclear whether this is the result
of an actual procedure or merely the plotting functions used.

8.4. Multiscale estimators

This rather novel Bayesian approach from Canale and Dunson [23] uses multi-
scale mixtures of Bernstein polynomials as estimates:

f (·) =
∞∑
s=0

2s∑
h=1

πshBeta (·;h, 2s − h+ 1) . (39)

The weights πsh are constructed in terms of a stochastic process defined on
an infinite binary tree. For the hth node at tree depth s (h = 1, . . . , 2s), let
Ssh be the probability of stopping at that node and Rsh be the probability
(conditional on not stopping) of moving to the right daughter of node (s, h).
These probabilities define a sort of “random climb” on the branches of the tree,
which at each step either stops with some probability or else moves on to the next
depth, randomly choosing either the left or right path. The weight πsh is then
the probability of the process taking the path to node (s, h) (starting from the
root of the tree) and then stopping there. For instance, π12 = (1− S00)R00S12,
and π23 = (1− S00)R00 (1− S12) (1−R12)S23. The specification of the model

is completed with priors Ssh
i.i.d.∼ Beta (1, a) and Tsh

i.i.d.∼ Beta (b, b), where a
and b can be fixed or given their own hyperpriors.

Canale and Dunson noted that this model induces an interesting multiscale
clustering on the data: two data points may be assigned to the same tree node
at some depth s, meaning they are sufficiently similar to be clustered together
at this scale; but may occupy different nodes at a depth r > s, so that they
are separated at a higher “resolution”. For practical inference, they truncated
or “pruned” to a maximum tree depth S by simply setting the stopping prob-
abilities SSh = 1 for all h. Using a slice sampling approach, they devised an
MCMC algorithm for inference, which alternates between two steps: assigning
each observation to a tree node (equivalently, to a “multiscale cluster”) given
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the πsh’s, and updating the Ssh’s and Rsh’s given these allocations. Posterior
density samples can then be obtained by plugging these probabilities into (39),
truncated accordingly. Although Canale and Dunson did not show any credible
intervals for densities in their paper, the corresponding R package for this type
of model implements them readily [22].

8.5. Shape-restricted methods

If an a priori assumption can be made about the shape of the true density f0
(for instance, that it is monotone or unimodal), one may wish to incorporate
this into estimation and inference. A solid body of literature exists on the use
of such shape constraints in nonparametric estimation, but only a subset of this
literature specifically considers UQ for densities.

Perhaps the best-studied shape constraint is monotonicity, in which f0 is
assumed to be non-decreasing. In the frequentist setting, the so-called Grenan-
der estimator is the canonical choice for estimation of f0, and is also the MLE
subject to the monotonicity constraint [73]. Letting Fn denote the empirical dis-
tribution function of X, let F̂ be the least concave majorant of Fn: the smallest
concave c.d.f. such that F̂ ≥ Fn throughout the entire support (typically as-

sumed w.l.o.g. to be [0, 1], or [0,∞)) [77]. The Grenander estimator f̂ is then
the left derivative of F̂ , which turns out to be a step function with jumps at
sample values and f̂(x) = 0 for x ≤ 0 and x > X(n) [165]. Prekasa Rao [165]
derived a pointwise limiting distribution for this estimator, showing that with
suitable standardization it is asymptotically equivalent to a particular func-
tional of Brownian motion13. Groeneboom and Jongbloed [78] leveraged this
fact to derive the asymptotic distribution of a likelihood ratio test statistic for
f0 (x) when f0 has nonzero derivative in a neighbourhood of x ∈ (0,∞). The
limiting distribution is that of a different functional of Brownian motion de-
rived by Banerjee and Wellner [6]. The authors of that paper did not find an
analytic form for this distribution, but provided estimates of its quantiles from
simulation-based methods. Groeneboom and Jongbloed used these estimated
quantiles to obtain pointwise confidence intervals with asymptotically correct
coverage by inverting their likelihood ratio test. They also considered pointwise
bootstrap intervals based on a boundary-corrected kernel (under-)smoothing of
the Grenander estimator. The use of the bootstrap in this way is at least par-
tially justified by an asymptotic normality result for this smoothed Grenander
estimator [80] (indeed, there are a few modifications to this method that result
in smooth, asymptotically normal estimators; see also [203]). Unfortunately, the
bootstrap is unsuitable for inference with the unaltered estimator, due to the
inconsistency results shown by Kosorok [113] and Sen, Banerjee and Woodroofe
[187] and demonstrated in practice by the latter. However, both papers showed
that consistency can be restored with a smoothed bootstrap (i.e. resampling

13The full details of this functional are omitted here, but its distribution is commonly
known as the Chernoff distribution, which commonly arises in shape-constrained nonpara-
metric inference.
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from a modified kernel estimate of f0, rather than from the empirical distri-
bution). Kosorok further showed that smoothed bootstrap methods could be

used to define an L1-ball of functions centered at f̂ with correct asymptotic
coverage, based on the known asymptotic normality of the L1-error [77]. Recall,
however, that such sets are limited in visual interpretability. Uniform confidence
bands were briefly considered by Durot, Kulikov and Lopuhaä [44], who derived
a Gumbel limiting distribution similar to the Smirnov-Bickel-Rosenblatt results
of Section 4.4.1. However, they believed that the technicalities required for data-
driven construction of such a band were not worth exploring further. A recent
preprint by Deng, Han and Zhang [39] proposed another method to construct
pointwise intervals, based on the adaptation of an analogous method for infer-
ence in isotonic regression (see their manuscript for details). They suggested that
their method, which involves suitable estimates of nuisance parameters in the
limiting distribution, could be tailored to adapt to the smoothness of f0 more
readily than the method of Groeneboom and Jongbloed [78], but both meth-
ods require simulation-based estimates for quantiles of the complicated limiting
distribution.

As an alternative to frequentist inference methods based on the Grenander
estimate (or some modification thereof), Bayesian methods are also available.
For instance, Martin [138] proposed an empirical prior in which the density is
modelled as a finite scale mixture of uniform densities. The mixture weights
and uniform density scales are respectively given Dirichlet and Pareto priors,
both of which are calibrated so the prior over densities is centered at some
predetermined mode. This mode (and the dimensionality of the mixture) can
either arise from a sieve MLE (i.e. the MLE over a space whose size depends
on n) or the Grenander estimate. Using simulated data and MCMC, Martin
compared the pointwise credible intervals from this model to those obtained
from a Dirichlet process mixture, and found that the empirical model resulted
in higher coverage probability and shorter intervals on average.

The second most common shape constraint explored in the literature is ar-
guably log-concavity, in which log f0 is assumed to be concave. As in the mono-
tone case, frequentist UQ for log-concave densities typically centers on the MLE
f̂ . Rufibach [182] showed that the log of f̂ is piecewise linear with breaks at

sample values, and f̂ supported on the range of X. Balabdaoui, Rufibach and
Wellner [5] obtained a limiting distribution for this estimator under some regu-
larity conditions on f0. Much like the monotone case, the MLE for log-concave
densities converges in distribution to a certain functional of Brownian motion,
scaled by nuisance parameters that depend on the value of f0 and its deriva-
tives. Azadbakhsh, Jankowski and Gao [2] translated these results into practical
means of constructing pointwise confidence intervals. They estimated the neces-
sary quantiles of the limiting distribution by simulation, and considered several
methods (kernel-based and plug-in) to estimate the f0-dependent nuisance pa-
rameters. The intervals thus obtained performed reasonably well in a simulation
study, although the best overall results came from standard bootstrap percentile
intervals. Compared to the bootstrap intervals, the pointwise intervals based on
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asymptotics generally had a somewhat higher propensity for undercoverage in
some parts of the domain, and for overcoverage (i.e. coverage probability ex-
ceeding the desired nominal level, leading to wider intervals than necessary) in
other parts. Despite these promising empirical results, the authors cautioned
that there were no theoretical results justifying bootstrap methods for this pur-
pose.

Mariucci, Ray and Szabó [137] developed a Bayesian model for log-concave
densities f :

f(x) =
ew(x)1[a,b](x)∫ b

a
ew(u)du

,

w(x) = γ1

m∑
j=1

pj
min {θj , x− a}

θj
− γ2 (x− a) . (40)

The function w is piecewise linear with m break-points, where m is a predeter-
mined number dependent on sample size. The weights p1, . . . , pm can either be
given a Dirichlet prior, or a prior based on truncating the stick-breaking repre-
sentation of the Dirichlet process (32). The support [a, b] can be deterministic
(based on n), empirical (a = X(1), b = X(n)), or hierarchical (a and b− a given
their own priors). Priors on γ1 ≥ 0, γ2 ∈ R, and θ1, . . . , θm ∈ [0, b− a] complete
the model, and posterior density draws can be obtained from MCMC samples of
these parameters using (40). See Mariucci, Ray and Szabó for technical details,
as well as motivation for (40). Pointwise credible intervals obtained with MCMC
did a good job capturing true densities in their simulation studies, although in
some cases they underperformed somewhat around boundaries or modes. The
authors also evaluated the coverage probability of the intervals in one example,
showing a tendency for undercoverage in some parts of the domain but overall
reasonable performance with increasing sample sizes.

Similarly to [165] and [5], complicated limiting distributions have been de-
rived for density estimation under different shape constraints. Examples include
monotonicity with right-censored data [97], convexity [79], and s-concavity [90].
In principle these limiting distributions could be used to derive practical UQ
methods for densities as in the examples described above, but there does not
appear to be any literature directly doing so.

8.6. Connections to nonparametric regression

Various parts of this paper have suggested that some uncertainty quantifica-
tion ideas from other nonparametric models could apply for density estimation.
Indeed, there exist a great deal of theoretical results showing that many such
models are “equivalent” in a sense involving asymptotic convergence of their
risks [e.g. 154, 13, and references therein, especially those by Lucien Le Cam].
Brown et al. [14] offered a practical way of leveraging these ideas. They proposed
the root-unroot algorithm to estimate a density on, say, [0, 1] via nonparametric
regression. The algorithm proceeds as follows.



UQ for density estimation 55

1. Divide the domain, assumed wlog to be [0, 1], into T equal subintervals.
2. For j = 1, . . . , T , let Yj =

√
Qj + 1/4, where Qj is the count of Xi’s in

the jth subinterval and the offset of 1/4 gives optimal bias and variance
properties.

3. Treat the Yj ’s as response variables and use any suitable method to fit the
corresponding smooth regression function m̂.

4. Take f̂ (·) = [m̂ (·)]2 /
∫
[m̂ (t)]

2
dt as the density estimate.

Wang [212] used the root-unroot algorithm for Bayesian density inference, using
integrated nested Laplace approximations (INLA) for the posterior of the regres-
sion model. The details of INLA – first given by Rue, Martino and Chopin [181]
– are omitted here, but it suffices to note that it uses Gaussian approximations
and numerical integration to approximate the posterior, allowing for inference
without MCMC being necessary. In the above algorithm, Wang took m̂ to be
the posterior mean from the INLA model. Letting γ denote the normalizing in-
tegral in the denominator, they divided the INLA quantiles of m by γ to obtain
approximate pointwise credible intervals for f . Such intervals did an excellent
job capturing true density shapes in their simulation studies.

More broadly, one may exploit the connections described here to quantify
density uncertainty with any number of methods originally devised for non-
parametric regression. Examples include confidence bands based on coverage
of surrogate functions [63], or on relaxed notions of coverage that still try to
minimize the extent to which the band excludes the true function but allow for
nice adaptivity properties [20].

9. Simulation study

Recall Figure 1 from Section 2, which shows select combinations of density
estimation and UQ methods for a simulated dataset. Having described many
such methods in the preceding sections, a more thorough discussion of the figure
is presented here.

The dataset X is a sample of size n = 1000 from the mixture density
f0 = 0.5N

(
1
2 ,

1
49

)
+ 0.5N

(
5
7 ,

1
490

)
. This is a bimodal, everywhere-positive den-

sity with almost all of its mass contained in the interval [0, 1], and its magni-
tude and curvature are close to zero at the boundaries of this interval. Thus, it
“approximately satisfies” the assumptions made by many of the UQ methods
discussed here, while having a fairly interesting shape which provides a good
test for UQ methods.

The methods applied to X and shown in Figure 1 are as follows.

1. KDE with pointwise bias-corrected confidence intervals as in Calonico,
Cattaneo and Farrell [21], and fixed-width bootstrap confidence bands
based on the same bias correction [29]. The bandwidth was selected to
minimize estimated integrated MSE (instead of pointwise MSE as in the
former reference) in order to ensure a smooth estimator.
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2. Adaptive basis expansion with Bernstein polynomials as in Petrone [160],
with pointwise credible intervals and credible bands based on median ab-
solute deviations [45].

3. Logspline estimation with stepwise knot selection [110] and exponentiated
pointwise Gaussian confidence intervals using bootstrap standard error
estimates [111].

4. A Dirichlet process mixture of Gaussians with a Normal-Inverse Gamma
base measure. A marginal MCMC sampler was used (see Section 7.1)
but pointwise credible intervals incorporated “full uncertainty” by using
posterior draws of the Dirichlet process obtained by conditional conjugacy
[60].

All Bayesian methods were based on output from an appropriate MCMC sam-
pler, and the level for all UQ methods was taken to be 1 − α = 0.95. The
simulation study was conducted with the R programming language [199], and
further details can be found in the supplementary material for this manuscript
[141].

As noted in Section 2, the bands are expectedly wider than the pointwise
intervals for both estimation methods shown on the top row of Figure 1. Note
that the confidence sets for the KDE are not centered at the estimator due to
the bias correction, and are in fact closer to the true density. However, they still
fail to fully reach the height of the main mode. Certainly no conclusions can be
made about the coverage probability of any UQ method when it is applied to
only a single dataset, but further simulations (not shown; see [141]) suggested
that this deficiency is typical for samples taken from the true density f0, even
when using pointwise instead of integrated MSE to select bandwidths. In fact,
sample sizes in the millions were necessary to attain good coverage probability
at the main mode, although the performance was much better at the smaller
mode even for n = 1000. To some degree this is to be expected as the coverage
error depends on higher-order derivatives of f0 [21], but it is infeasible to fully
predict this error in practice. This leads to an important point to be made
about the difference between asymptotic and finite-sample behaviour: although
Calonico, Cattaneo and Farrell [21] showed that these confidence intervals have
coverage error ultimately decaying at the optimal rate with respect to n, there
are no concrete guarantees for any finite sample size when using data-driven
methods.

Recall from Section 3.2 that Cheng and Chen [29] provided bootstrap meth-
ods for both fixed- and variable-width bias-corrected confidence bands for KDE’s.
Here the former was used, as the latter involves bootstrapping a quantity which
can have a zero denominator when using a compact kernel, as was the case here
[141]. In contrast, the credible band used for the Bernstein polynomial estimator
has variable width (see (13)). However, the band shown in the top-right plot of
Figure 1 extends over the subinterval [0.01, 0.99], as the band taken over all of
[0, 1] was far too wide to be graphically meaningful. This is because a sizeable
proportion of MCMC draws had absolute deviations near the boundaries that
were much larger than the MAD there, so that the quantile ξα in (13) was very
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large. In turn, the MAD was comparatively small at the boundaries because,
like f0 itself, most MCMC draws had tail values near zero. These examples
demonstrate that variable-width bands may not be an ideal choice unless f0 is
bounded suitably far away from zero.

Interpretation of the bottom row of Figure 1 is straightforward. The pointwise
intervals for the logspline estimator are noticeably less smooth than those for the
other estimation methods. Recall that the width of the interval (on the log scale)
is determined by the pointwise sample variance of bootstrap density estimates
[111]; evidently this induces some roughness. The pointwise credible intervals
for the DP mixture are quite similar to those for the Bernstein polynomial
estimator: both are quite narrow and smooth and encompass f0 throughout
nearly the entire domain.

10. Conclusion

There is a vast, sprawling body of work on density uncertainty quantification,
dating back over half a century and spanning across many different methods
for both estimation and inference. Reviewing the literature – from classical ap-
proaches like KDE’s and histograms, to the spline methods of the late twentieth
century, to modern nonparametric methods – one notices that the gap between
theoretical and practical ideas seems to have widened over time. KDE’s and
related methods are extremely well-studied, with a litany of theoretical and
practical results for all relevant types of UQ. Turning the focus to the past
two decades of developments, one sees that UQ in the literature for random
mixtures is entirely practical, with almost no regard for asymptotic proper-
ties; conversely, the advanced wavelet-based papers comprising the core of new
theoretical developments often include no data studies whatsoever. It seems nat-
ural to wonder whether it is possible to “bridge the gap”: perhaps introducing
greater theoretical justification for some of the most commonly-used practical
methods, or facilitating applications of some of the more obscure asymptotic
arguments. However, such developments may be hampered by issues intrinsic to
the problems at hand, such as the known complexities of asymptotics in non-
parametric Bayesian inference [e.g. the review of 178]. The importance of these
considerations is certainly a subjective matter, and as modern practitioners turn
their focus to larger datasets and more overt “data science” approaches, there
is perhaps a case to be made that applications could provide “all the proof we
need”.

Based on the simulation study described in Section 9, Figure 1 shows finite-
sample results for a few of the methods discussed throughout this paper. The
code for these experiments is available in the supplementary material [141], and
there is certainly merit to further comparative analysis beyond that considered
here.

Of interest for future work are extensions to frameworks beyond a single
i.i.d. sample, particularly hierarchical modelling of multiple related densities.
Bayesian nonparametric methods are emerging as a promising approach to such
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frameworks, and we are eager to explore the improvements which further devel-
opments can provide.
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[34] Csörgő, M. (1983). Quantile Processes with Statistical Applications. So-
ciety for Industrial and Applied Mathematics.

[35] Csörgo, M. andRévész, P. (1981). Strong approximations in probability
and statistics. Academic Press. MR0666546

[36] Daubechies, I. (1992). Ten Lectures on Wavelets. Society for Industrial
and Applied Mathematics. MR1162107

[37] De Iorio, M., Johnson, W. O., Müller, P. and Rosner, G. L.

(2009). Bayesian Nonparametric Nonproportional Hazards Survival Mod-
eling. Biometrics 65 762–771. MR2649849

[38] De Iorio, M., Müller, P., Rosner, G. L. and Maceachern, S. N.

(2004). An ANOVA Model for Dependent Random Measures. Journal of
the American Statistical Association 99 205–215. MR2054299

[39] Deng, H., Han, Q. and Zhang, C.-H. (2020). Confidence intervals for
multiple isotonic regression and other monotone models. Technical Re-
port.

[40] Dias, R. (2011). Nonparametric Estimation: Smoothing and Visualiza-
tion. Technical Report.
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