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1. Introduction

When analyzing survival data, interval censoring arises frequently in medical
and public health studies. In particular, interval-censored data occur when the
exact failure time cannot be observed, instead, it is known to lie within an
interval or not. Among these data, due to the constraints, costs, features of
events of interest and many other difficulties, an event of interest is observed
once only but the failure time is just known before the examination time or not.
This kind of data is called case I interval-censored data or current status data
([15, 25]).

The nonparametric maximum likelihood, as a widely used method in nonpara-
metric inference, has been developed for estimation of an unknown cumulative
distribution function with current status data. In particular, [1] and [9] derived
the nonparametric maximum likelihood estimator (NPMLE) with current sta-
tus data, while [15] and [17] established the limit distribution of the NPMLE
for current status data. [3] studied a likelihood ratio test to construct pointwise
confidence intervals for an unknown distribution function with current status
data. This novel method was investigated further in [4, 5, 2]. The NPMLE is
an important method and widely used in applications, since it does not involve
any tuning parameter and it converges in distribution pointwisely to an asymp-
totically unbiased limiting distribution. However, due to the discontinuity of
NPMLE, estimators of the density and the hazard rate cannot be directly ob-
tained through taking derivatives. For the problem, [6] provided adaptive risk
bounds for a wide class of distribution function estimators under current status
data based on smoothness classes such as splines, wavelets, etc. [14] proposed
the maximum smoothed likelihood and the smoothed maximum likelihood esti-
mators. Moreover, [11] presented the maximum smoothed likelihood estimator
for the interval censoring model, [12] discussed these nonparametric estimators,
and [13] improved the algorithm for computation and also provided an alter-
native way to derive the distribution of the likelihood ratio. [27] developed an
I-spline based sieve maximum likelihood method for estimating the marginal
and joint distribution functions with bivariate current status data.

As the hazard and cumulative hazard functions can provide different insights
about an event of interest from a survival function, and the survival function
can be directly obtained from the hazard and cumulative hazard functions via
simple calculations, a number of studies have been developed for estimating the
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hazard and the cumulative hazard. While the nonparametric estimation with-
out smoothing is not stable, some smoothing estimation approaches have been
developed. For example, the kernel-based approaches were given in [10] and [14].
In order to avoid selecting the sensitive bandwidth in estimation, spline meth-
ods have also been developed for the case of interval-censored data. Specifically,
[20] used M-splines to model the hazard and I-splines for the cumulative haz-
ard, [22] suggested using the nonnegative coefficients to model the hazard, while
[7] developed the penalized B-spline basis to model the hazard. [16] considered
Cox’s proportional hazards model with current status data, and studied the
asymptotic properties of the maximum likelihood estimators of the regression
parameter and the baseline cumulative hazard function. [18] proposed likelihood
ratio tests and confidence intervals for the current status data with the model
studied by [16]. Furthermore, [28] developed a B-spline based semiparametric
maximum likelihood approach for Cox’s proportional hazards model with case
II interval-censored data.

Despite the significant contributions in the literature, the limiting distribu-
tions of the spline-based estimators have not been established yet. Our goal is
to fill this gap and address the theoretical challenge. An additional challenge
is to study the likelihood ratio test for the global hypothesis, which has not
been addressed in the current status data model. In this paper, we develop a
penalized nonparametric likelihood method to estimate an unknown cumulative
hazard function with current status data. In particular, a functional Bahadur
representation is established. Using this technical tool, we show that the pro-
posed estimator enjoys the pointwise asymptotic normality. Furthermore, we
study the penalized likelihood ratio tests and show the optimality of the global
test.

The remainder of this paper is organized as follows. In Section 2, we present
estimation procedures, construct the Sobolev space with a special inner prod-
uct, and give some basic results. In Section 3, we derive a functional Bahadur
representation (FBR) in the space and establish the asymptotic properties of
the proposed estimator. In Section 4, we develop the penalized likelihood ratio
tests for local and global hypotheses. In Section 5, we present simulation results
for comparing the performance of the proposed penalized likelihood ratio test
and the classical likelihood ratio test [3]. Some concluding remarks are made in
Section 6. All technical proofs are deferred to the Appendix.

2. Methodology

Denote U as an examination or observation time and T as a failure time with
an unknown distribution function F . Then under the scenario of current status
data, the observation consists of X = (Δ, U), where Δ = I(T ≤ U). In this
paper, we assume that the examination time is independent of the failure time.
Such an assumption is less stringent than that of [6] and common for the simplest
version of the current status model in survival analysis; see [26]. Let Xi =
(Δi, Ui), i = 1, 2, . . . , n be i.i.d copies of X = (Δ, U). Under the assumption
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that U is independent of T , the log-likelihood of F is

ln(F ) =
1

n

n∑
i=1

[Δi log{F (Ui)}+ (1−Δi) log{1− F (Ui)}]

by omitting the term independent of F .
Assume that there exists a small positive constant ξ such that P (U ≥ ξ) = 1.

Let Λ0 be the true cumulative hazard function of the failure time. Assume that
Λ0(t) is increasing and bounded away from 0 and infinity on I = [ξ, τ ], where
τ is the end of the study period. This assumption is less stringent than (F.1)
in [14], since we do not need to assume the distribution of the survival time
has bounded support. Besides, the introduction of ξ is to make the definition
of the inner product in (1) meaningful. In fact, we can relax this assumption to
ξ = 0. In applications, we can choose ξ as the minimum observation time and
τ as the maximum follow-up time. Moreover, it is assumed that Λ0 belongs to
the Sobolev space Hm, where

Hm = {g : I �→ R|g(j) is absolutely continuous for

j = 0, 1, . . . ,m− 1, g(m) ∈ L2(I)}.

Here m > 1 is assumed to be known, and g(j) is the j-th derivative of any
function g. Without loss of generality, we assume that I = [ξ, 1 + ξ]. Then, the
log-likelihood of Λ is

ln(Λ) =
1

n

n∑
i=1

(Δi log[1− exp{−Λ(Ui)}]− (1−Δi)Λ(Ui)) .

Define l(Λ) = Eln(Λ) and J(g, g̃) =
∫
I
g(m)(t)g̃(m)(t) dt. To make an inference

about Λ0(t), we propose the following penalized log-likelihood of Λ

�n,λ(Λ) = ln(Λ)−
λ

2
J(Λ,Λ),

where J(Λ,Λ) is the roughness penalty and λ is the smoothing parameter. Then,
the penalized likelihood estimator of Λ0 is defined as

Λ̂n,λ = arg max
Λ∈Hm

�n,λ(Λ).

We will show that Λ̂n,λ is increasing on I with probability tending to 1 in the
next section.

Define �λ(Λ) = E�n,λ(Λ) and the inner product in the space Hm as

〈g, h〉λ = EU

[
h(U)g(U) exp{−Λ0(U)}

1− exp{−Λ0(U)}

]
+ λ

∫
I

g(m)(t)h(m)(t) dt, (1)

where EU is the expectation with respect to U and the corresponding norm is
‖g‖2λ = 〈g, g〉λ. Hence, Hm is the reproducing kernel Hilbert space (RKHS) with
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the inner product 〈·, ·〉λ. Besides, there exists a positive self-adjoint operator:
Wλ : Hm → Hm, such that 〈Wλf, g〉λ = λJ(f, g) for any f, g ∈ Hm. Define

V (f, g) = EU

[
f(U)g(U) exp{−Λ0(U)}

1− exp{−Λ0(U)}

]
.

We have

〈f, g〉λ = V (f, g) + 〈Wλf, g〉λ.

Let K(·, ·) be the reproducing kernel of Hm, and let hj and γj be the eigenfunc-
tions and eigenvalues of Hm. The properties of K(·, ·), hj ∈ Hm and γj can be
found in Appendix A. Let Sn(Λ) and Sn,λ(Λ) be the Fréchet derivatives of ln(Λ)
and �n,λ(Λ), respectively. Similarly, let S(Λ) and Sλ(Λ) be the Fréchet deriva-
tives of l(Λ) and �λ(Λ), respectively. Let D be the Fréchet derivative operator.
Then, direct calculations yield

〈DSλ(Λ0)f, g〉λ = −EU

[
f(U)g(U) exp{−Λ0(U)}

1− exp{−Λ0(U)}

]
− 〈Wλf, g〉λ

= −〈f, g〉λ.

The following proposition will play a key role in the FBR.

Proposition 1. DSλ(Λ0) = −id, where id is the identity operator.

Following Proposition 1, the first term of the Taylor expansion of Sn,λ(Λ)
at Λ0 can be approximated by −id(Λ − Λ0). This will result in a sum of the
independent and identically distributed random variables.

3. Functional Bahadur representation and asymptotic normality

The functional Bahadur representation (FBR) is a key technique to establish
the asymptotic normality of the estimators. The following lemma shows that
the estimator is consistent in the ‖ · ‖∞ with ‖g‖∞ = supt∈I

|g(t)| and ‖ · ‖1,
which denotes that ‖ · ‖λ with λ = 1.

Lemma 1 (Consistency). If λn1−2μ → 0 as n → ∞ for any 0 < μ < 1/2, we

have ‖Λ̂(j)
n,λ−Λ

(j)
0 ‖∞ = op(1), j = 0, 1, . . . ,m−1, and J(Λ̂n,λ−Λ0, Λ̂n,λ−Λ0) =

op(1).

Remark 1. Define Hm
0 = {g ∈ Hm, g(t) > 0, g′(t) > 0, t ∈ I}. Assume Λ0(t) ∈

Hm
0 , m > 1. By Lemma 1, one can show that

lim
n→∞

P (Λ̂n,λ ∈ Hm
0 ) = 1.

To see this, define An = {ω : supt∈I
|Λ̂(j)

n,λ(t) − Λ
(j)
0 (t)| ≤ ε, j = 0, 1}. Then by

Lemma 1, for any ε > 0, η > 0, there exists a N0 such that when n ≥ N0,
P (An) > 1 − η. Thus, on An, we have Λ̂n,λ(t) ≥ Λ0(t) − ε ≥ Λ0(ξ) − ε and
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Λ̂′
n,λ(t) ≥ Λ′

0(t)− ε ≥ C0 − ε with C0 = mint∈I Λ
′
0(t) > 0. Therefore, by taking

ε = min(Λ0(ξ)/2, C0/2), we have Λ̂
(j)
n,λ(t) > 0 for any t ∈ I on An with n > N0,

j = 0, 1. This yields the conclusion. Numerically, to ensure monotonicity, we use
the B-spline with constrained coefficients for estimating the cumulative hazard
in the simulation studies.

Next, we present the exact rate of convergence and the FBR for Λ̂n,λ.

Theorem 1 (Rate of Convergence). If log{log(n)}/(nh2) → 0, λn1−2μ → 0 as
n → ∞ for any 0 < μ < 1/2, we have ‖Λ̂n,λ − Λ0‖λ = Op((nh)

−1/2 + hm).

We derive a new version of the FBR.

Theorem 2 (Functional Bahadur Representation). If log{log(n)}/(nh2) → 0,
nh2 → ∞ and λn1−2μ → 0 as n → ∞ for any 0 < μ < 1/2, we have ‖Λ̂n,λ −
Λ0 − Sn,λ(Λ0)‖λ = Op(αn), where

αn = h−1/2{(nh)−1+h2m}+h−(6m−1)/(4m)n−1/2[log{log(n)}]1/2{(nh)−1/2+hm}.

From Theorem 2, we can find that the bias of the estimator is very close to a
sum of some independently and identically distributed random variables, which
is very useful to study the asymptotic normality.

Theorem 3. (Asymptotic Normality) Assume that m > 3/4+
√
5/4, nh4m−1 →

0 and nh3 → ∞ as n → ∞. For ∀t0 ∈ I, define

σ2
t0 = lim

h→0
h

∞∑
j=0

h2
j (t0)/(1 + λγj)

2.

Let Λ∗ = (id−Wλ)Λ0 be the biased true parameter. Then we have

√
nh{Λ̂n,λ(t0)− Λ∗(t0)} d−−→ N(0, σ2

t0).

The above theorem reports the point-wise asymptotic normality of the re-
sulting estimate.

Corollary 1. If m > 3/2, nh2m → 0 and nh3 → ∞ as n → ∞, then

√
nh{Λ̂n,λ(t0)− Λ0(t0)} d−−→ N(0, σ2

t0).

Remark 2. The choice of tuning parameter that leads to the optimal pointwise

rate of convergence is h � n− 1
2m+1 . However, this rate does not satisfy the con-

ditions of Corollary 1; in other words, the estimator needs to be under-smoothed
to ensure an unbiased limiting distribution, which yields a sub-optimal point-
wise rate of convergence. This shares the same spirit as the under-smoothing
procedures in the literature. Thus, we need to sacrifice the optimal rate for re-
moving bias. In practice, we apply the widely-used CV or GCV to select the
tuning parameter h, as suggested by [24].
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Remark 3. Corollary 1 together with the Delta-method immediately gives the
pointwise confidence interval for some real-valued smooth function of Λ0(t0) at
any fixed point t0 ∈ I, denoted as ρ(Λ0(t)). Let ρ̇(·) be the first derivative of
ρ(·). If ρ̇(Λ0(t0)) �= 0, we have

P

(
ρ{Λ0(t0)} ∈

[
ρ{Λ̂n,λ(t0)} ± zα/2

ρ̇{Λ0(t0)}σt0√
nh

])
→ 1− α,

where zα is the lower αth quantile of the standard normal distribution function.

4. Penalized likelihood ratio test

In this section, we present the penalized likelihood ratio tests for the local and
global hypotheses.

4.1. Local likelihood ratio test

For a prespecified point (t0, ω0), we consider the following hypothesis:

H0 : Λ(t0) = ω0 versus H1 : Λ(t0) �= ω0.

The constrained penalized log-likelihood is defined as

Ln,λ(Λ)

=
1

n

n∑
i=1

[Δi log{1− exp(−Λ(Ui)− ω0)} − (1−Δi){ω0 + Λ(Ui)}]−
λ

2
J(Λ,Λ),

where Λ ∈ H0 = {Λ ∈ Hm : Λ(t0) = 0}. To test H0 against H1, take the
penalized local likelihood ratio test (PLLRT) statistic:

PLLRTn,λ = Ln,λ(ω0 + Λ̂0
n,λ)− Ln,λ(Λ̂n,λ),

where Λ̂0
n,λ = argmaxΛ∈H0 Ln,λ(Λ).

Endowed with the norm ‖·‖λ, H0 is a closed subset in Hm, and thus a Hilbert
space. The following proposition states that H0 also inherits the reproducing
kernel and penalty operator from the space Hm. The proof is trivial and thus
omitted.

Proposition 2. (H0, 〈·, ·〉λ) is a reproducing kernel Hilbert space.

(a) The bivariate function

K∗(t1, t2) = K(t1, t2)−K(t0, t1)K(t0, t2)/K(t0, t0)

is a reproducing kernel for (H0, 〈·, ·〉λ). That is, for any t′ ∈ I and g ∈ H0,
we have K∗

t′ ≡ K∗(t′, ·) ∈ H0 and 〈K∗
t′ , g〉λ = g(t′). Besides, ‖K∗‖λ ≤√

2cmh−1/2.
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(b) The operator W ∗
λ defined by W ∗

λg = Wλg − (Wλg)(t0)Kt0/K(t0, t0) is
bounded linear from H0 to H0 and satisfies 〈W ∗

λg, g̃〉λ = λJ(g, g̃).

From Proposition 2, we obtain the restricted FBR for Λ̂0
n,λ, which will be used

to derive the null limiting distribution. Let the first-order Fréchet derivative
of Ln,λ and Ln be S0

n,λ and S0
n respectively. Define S0(Λ) = E{S0

n(Λ)} and

S0
λ(Λ) = S0(Λ)−W ∗

λΛ. Taking the derivative of S0
λ(Λ), we have

DS0
λ(Λ)g1g2 = −E

[
Δi exp{−Λ(Ui)− ω0}g1(Ui)g2(Ui)

[1− exp{−Λ(Ui)− ω0}]2
]
− 〈W ∗

λg2, g1〉λ.

Define Λ0
0(t) = Λ0(t)− ω0. Thus, we have

〈DS0
λ(Λ

0
0)f, g〉λ = 〈D{S0(Λ0

0)}f, g〉λ − 〈W ∗
λf, g〉λ

= −EU

[
exp{−Λ0(Ui)}g1(Ui)g2(Ui)

1− exp{−Λ0(Ui)}

]
− 〈W ∗

λf, g〉λ

= −〈f, g〉λ.

Following from the equation, we have the next proposition.

Proposition 3. DS0
λ(Λ

0
0) = −id, where id is the identity operator.

Proposition 4 (Rate of Convergence). Under H0, if (log log(n))/(nh
2) → 0,

λn1−2μ → 0 as n → ∞ for any 0 < μ < 1/2, we have ‖Λ̂0
n,λ − Λ0

0‖λ =

Op((nh)
−1/2 + hm).

The proof of Proposition 4 is similar to Theorem 1 and thus omitted.

Theorem 4 (Restricted FBR). Suppose that (log log(n))/(nh2) → 0, λn1−2μ →
0 as n → ∞ for any 0 < μ < 1/2. Under H0, we have ‖Λ̂0

n,λ−Λ0
0−S0

n,λ(Λ
0
0)‖λ =

Op(αn), where αn is given in Theorem 2.

The proof of Theorem 4 is similar to that of Theorem 2 and thus omitted.
Our main result follows immediately from the Restricted FBR.

Theorem 5. (Penalized Local Likelihood Ratio Test). Assume m > (5+
√
21)/4,

nh2m → 0 and nh4 → ∞ as n → ∞. Also assume that for ∀t0 ∈ I, σt0 �= 0, and

ct0 = lim
h→0

V (Kt0 ,Kt0)/‖Kt0‖2λ ∈ (0, 1].

Under H0, as n → ∞, we have

(i) ‖Λ̂n,λ − Λ̂0
n,λ − ω0‖λ = Op(n

−1/2);

(ii)−2nPLLRTn,λ = n‖Λ̂n,λ − Λ̂0
n,λ − ω0‖2λ + op(1);

(iii)−2nPLLRTn,λ
d−−→ ct0χ

2
1.

Note that the convergence rate stated in Theorem 5 is reasonable since the
restriction is local.
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4.2. Global likelihood ratio test

Consider the following global hypothesis:

Hglobal
0 : Λ = Λ0 versus H1 : Λ �= Λ0.

The penalized global likelihood ratio test (PGLRT) statistic is defined as

PGLRTn,λ = �n,λ(Λ0)− �n,λ(Λ̂n,λ).

Theorem 6 (Penalized Global Likelihood Ratio Test). Suppose m > (3+
√
5)/4,

nh2m+1 = O(1), nh3 → ∞ as n → ∞. Define σ2
λ =

∑∞
j=0 h/(1 + λγj), ρ

2
λ =∑∞

j=0 h/(1 + λγj)
2, γλ = σ2

λ/ρ
2
λ, νλ = h−1σ4

λ/ρ
2
λ. Under Hglobal

0 , we have

(2νλ)
−1/2(−2nγλPGLRTn,λ − nγλ‖WλΛ0(t)‖2λ − νλ)

d−−→ N(0, 1).

A direct examination reveals that h � n−d, where 1/(2m+1) ≤ d < 1/3 sat-
isfies the conditions required in Theorem 6. As one can show that n‖WλΛ0‖2 =
o(h−1) = o(νλ), then −2nγλPGLRTn,λ is asymptotically distributed as N(νλ,
2νλ). Since N(νλ, 2νλ) is asymptotically distributed as χ2

νλ
, then

−2nγλPGLRTn,λ ∼ χ2
νλ
.

This shows that the Wilks phenomenon holds for the PGLRT. Since people pay
much more attention to the shape of a function, the PGLRT plays a key role
in practice. For example, the proposed likelihood ratio approach can also be
applied to a parametric setup, e.g.,

H0 : Λ ∈ Pd

where Pd =
{
Λ(t) : Λ(t) =

∑d
j=0 t

jbj

}
. It follows from similar arguments as

in Remark 5.4 of [24] that, the asymptotic null distribution for testing such a
hypothesis is χ2

νλ
, which is the same as that in Theorem 6. This result fills a

gap compared to the local test results in [3].
Furthermore, we show that the PGLRT achieves the optimal minimax rate

of testing presented in [19] based on the uniform version of the FBR. Write
H1 : Λ = Λn0 , where Λn0 = Λ0 + Λn, where Λ0 ∈ Hm

0 and Λn belongs to
the alternative set A = {Λn ∈ Hm

0 , exp(Λn(t)) ≤ ζ, J(Λn,Λn) ≤ ζ} for some
constant ζ > 0.

Theorem 7. Let m > (3 +
√
5)/4, h � n−d, where 1/(2m + 1) ≤ d < 1/3.

Suppose that uniformly over Λn ∈ A, ‖Λ̂n,λ−Λn0‖λ = Op((nh)
−1/2+hm) holds

under H1n : Λ = Λn0 . Then for any ε ∈ (0, 1), there exist positive constants C
and N such that

inf
n≥N

inf
Λn∈A,‖Λn‖λ≥Cηn

P (reject Hglobal
0 |H1n is true) ≥ 1− ε,

where ηn ≥
√

h2m + (nh1/2)−1. The minimal lower bound of ηn, n
−2m/(4m+1),

can be achieved when h = h∗ = n−2/(4m+1).
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Theorem 7 shows that when h = h∗ = n−2/(4m+1), the PGLRT can detect
any local alternatives with separation rates no faster than n−2m/(4m+1), which
turns out to be the minimax rate of testing in the sense of [19].

5. Simulation studies

To assess the performance of the penalized likelihood estimator and likelihood
ratio test, we conducted a simulation study with a focus on the comparison of
the proposed penalized method and the classical likelihood method [3, 4, 5, 13].
For this purpose, we consider two examples. We use 5-fold cross validation to
choose the tuning parameter. Besides, we considerm = 2 and 3, and sample sizes
n = 600 and 800. In addition, we calculate ct0 on the basis of the eigenfunctions
and eigenvalues defined in equation (1) with the cumulative hazard function
replaced by the estimate of Λ0. For each setting, we report simulation results
based on 1000 repetitions using the proposed local likelihood ratio test (PLLRT)
and the likelihood ratio test (LRT) proposed by [3] and [13].

Example 5.1. The failure time follows the Exponential distribution with density
function

f(t) =
1

μ
exp

(
− t

μ

)
, t ∈ [0,∞),

where μ = 2.5, while the examination time follows the uniform distribution from
0.5 to 1.5. Specifically, we test H0 : Λ(0.82) = Λ0(0.82) against H1 : Λ(0.82) �=
Λ0(0.82) where Λ0 is the cumulative hazard function of the failure time defined
above. To access the power of the test, we generated failure times with density
function

f(t) =
1

μ+ c
exp

(
− t

μ+ c

)
, t ∈ [0,∞),

where μ = 2.5, c = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and the distribution of the exam-
ination time remains unchanged. Simulation results for this example are shown
in Table 1. The powers of both methods are comparable. It can be seen that the
estimated sizes of the proposed test are closer to the target level 5% than that
of LRT.

Example 5.2. We use the setting of Example 5.1 except that the failure time
distribution is changed to the Pareto distribution with density function

f(t) =
1

σ

(
1 +

kt

σ

)−1− 1
k

, t ∈ [0,∞),

where σ = k = 2.5. We test H0 : Λ(0.82) = Λ0(0.82) against H1 : Λ(0.82) �=
Λ0(0.82) where Λ0 is the cumulative hazard function of the Pareto distribution
defined above. To assess the power of the test, we generated failure times with
density function

f(t) =
1

σ + c

(
1 +

kt

σ + c

)−1− 1
k

, t ∈ [0,∞),
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Table 1

The estimated size and power of the proposed test (PLLRT) in comparison to the NPMLE
method (LRT) in Example 5.1

PLLRT (m = 2) PLLRT (m = 3) LRT
c n = 600 n = 800 n = 600 n = 800 n = 600 n = 800
0.0 0.064 0.059 0.067 0.050 0.072 0.033
0.5 0.292 0.355 0.214 0.277 0.256 0.314
1.0 0.629 0.761 0.560 0.692 0.675 0.778
1.5 0.862 0.959 0.833 0.932 0.923 0.963
2.0 0.951 0.988 0.945 0.985 0.984 0.996
2.5 0.985 0.994 0.980 0.989 0.999 1.000
3.0 0.987 0.999 0.984 0.996 1.000 1.000

Table 2

The estimated size and power of the proposed test (PLLRT) in comparison to the NPMLE
method (LRT) in Example 5.2

PLLRT (m = 2) PLLRT (m = 3) LRT
c n = 600 n = 800 n = 600 n = 800 n = 600 n = 800
0.0 0.061 0.044 0.047 0.040 0.074 0.050
0.5 0.161 0.180 0.126 0.122 0.198 0.226
1.0 0.370 0.474 0.279 0.360 0.463 0.558
1.5 0.596 0.739 0.528 0.652 0.741 0.832
2.0 0.787 0.896 0.726 0.841 0.911 0.960
2.5 0.902 0.955 0.857 0.939 0.971 0.991
3.0 0.947 0.973 0.913 0.972 0.991 0.999

Table 3

The mean squared error (MSE) of the proposed method in comparison to the NPMLE
method.

Proposed(m = 2) Proposed(m = 3) NPMLE
n = 600 n = 800 n = 600 n = 800 n = 600 n = 800

Example 5.1 0.0107 0.0038 0.0094 0.0044 0.0056 0.0043
Example 5.2 0.0442 0.0035 0.0151 0.0033 0.0036 0.0028

where c = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and the distribution of the examination
time remains unchanged. Simulation results for this example are shown in Table
2. It can be seen that the estimated sizes and powers of both methods are
comparable.

For each setting, the pointwise averages, the coverage probability of the point-
wise 95% confidence intervals, and the estimated standard errors of Λ̂n,λ(t) are
calculated. The simulation results of Example 5.1 are displayed in Figures 1–
3, and those of Example 5.2 are showed in Figures 4–6. Table 3 summarizes
the mean squared error (MSE) of the estimate in each setting. The simulation
results based the NPMLE proposed by [3] and [13] are also included for compar-
ison. For each case, the estimates given by our proposed method are closer to
Λ0(t), particularly when t is near the boundaries, than that given by [3] and [13].
When the sample size increases, the reduction of MSE of the proposed method
is faster than that of NPMLE. This result confirms that the convergence rate of
the proposed method is higher than that of the NPMLE. The coverage proba-
bilities of both methods are reasonable. Besides, the simulation results indicate
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Fig 1. Estimates of the cumulative hazard function in Example 5.1. Note: The solid blue lines
represent Λ̂n,λ(t) ; the dashed red lines represent Λ0(t). The bottom panel, labelled NPMLE,
is the results based on the estimator proposed by Banerjee and Wellner’s.

that the proposed method with m = 2 and m = 3 has similar performance.

6. Closing remarks

This article focuses on the development of nonparametric inference for the cumu-
lative hazard function with case I interval-censored data or current status data.
It is well known that the convergence rate of the NPMLE of an unknown dis-
tribution function is n−1/3 rather than the standard rate n−1/2 due to interval-
censoring. To improve the convergence rate, we develop a penalized likelihood
method using smoothing techniques. To establish the asymptotic properties of
the proposed estimator, we derive a functional Bahadur representation of the
estimator in the Sobolev space with a proper inner product, which plays a key
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Fig 2. The coverage probability of the pointwise 95% confidence intervals in Example 5.1.
Note: The solid blue lines represent the coverage probability; the dashed red horizontal lines
represent the target coverage probability, 95%. The bottom panel, labelled NPMLE, is the
results based on the estimator proposed by Banerjee and Wellner’s.

role for nonparametric inference. Furthermore, we develop the penalized likeli-
hood ratio tests for both local and global hypotheses. In particular, the proposed
penalized global likelihood ratio test is able to detect any local alternatives with
minimax separation rate in the sense of [19], while the classical likelihood ratio
test for the global hypothesis in the current status data model has not been
addressed, to the best of our knowledge. Simulation studies demonstrate that
the proposed estimator outperforms the classical NPMLE and the penalized
likelihood ratio test is more powerful than the classical likelihood ratio test, as
expected.

Note that for case II interval-censored data, the convergence rate of the non-
parametric maximum likelihood estimator of an unknown distribution function
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Fig 3. The simulated standard error (SSE) and the estimated standard error (ESE) in Exam-
ple 5.1. Note: The solid blue lines represent the SSE; the dashed red lines represent ESE. The
bottom panel, labelled NPMLE, is the results based on the estimator proposed by Banerjee
and Wellner’s.

is n−1/3 and the limiting distribution of the estimator is still unknown. Fur-
ther interesting research is to investigate the limiting distribution of penalized
nonparametric maximum likelihood estimator through deriving a functional Ba-
hadur representation of the estimator, which is very challenging in the presence
of case II interval-censoring.

Appendix

The Appendix contains the proofs of the main results in the main text and the
properties of the reproducing kernel and the eigensystems. In the following, we
will denote different positive constants by C which may take different values in
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Fig 4. Estimates of the cumulative hazard function in Example 5.2. Note: The solid blue lines
represent Λ̂n,λ(t) ; the dashed red lines represent Λ0(t). The bottom panel, labelled NPMLE,
is the results based on the estimator proposed by Banerjee and Wellner’s.

different places, while “a � b” means “a ≤ Cb” and “a � b” means “a ≥ Cb”.

Appendix A

In this section, we state the properties of the reproducing kernel K(·, ·), the
eigensystems and how to compute the eigensystems.

First, the reproducing kernel K(·, ·) of Hm defined on I × I satisfies the
following properties:

(P1) Kt(·) = K(t, ·) and 〈Kt, g〉λ = g(t) for any g in Hm and any t ∈ I.
(P2) There exists a constant cm which only depends on m such that ‖Kt‖λ ≤

cmh−1/2 for ∀t ∈ I, where h = λ1/2m. Thereby, for any g ∈ Hm, we have
‖g‖∞ ≤ cmh−1/2‖g‖λ.
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Fig 5. The coverage probability of the pointwise 95% confidence intervals in Example 5.2.
Note: The solid blue lines represent the coverage probability; the dashed red horizontal lines
represent the target coverage probability, 95%. The bottom panel, labelled NPMLE, is the
results based on the estimator proposed by Banerjee and Wellner’s.

The eigenfunctions hj ∈ Hm and the eigenvalues γj satisfy the following prop-
erties:

(P3) supj∈N ‖hj‖∞ < ∞, γj � j2m.
(P4) V (hi, hj) = δij , J(hi, hj) = rjδij , where δij is a Kronecker’s delta, which

means that when i = j, δij = 1; otherwise, it’s 0.
(P5) For any g ∈ Hm, we have g =

∑
j V (g, hj)hj with a convergence in the

‖ · ‖λ-norm.
(P6) For any g ∈ Hm and t ∈ I, we have ‖g‖2λ =

∑
j V (g, hj)

2(1 + λγj),
Kt(·) =

∑
j hj(t)hj(·)/(1 + λγj) and Wλhj(·) = (λγj)/(1 + λγj)hj(·).

It follows from [24] that the underling eigensystem (γj , hj(·)) can be chosen
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Fig 6. The simulated standard error (SSE) and the estimated standard error (ESE) in Exam-
ple 5.2. Note: The solid blue lines represent the SSE; the dashed red lines represent ESE. The
bottom panel, labelled NPMLE, is the results based on the estimator proposed by Banerjee
and Wellner’s.

as the (normalized) solution of the following ODE functions:

(−1)mh
(2m)
j (t) = γj

exp{−Λ0(t)}
1− exp{−Λ0(t)}

π(t)hj(t), t ∈ I,

h
(k)
j (ξ) = h

(k)
j (1 + ξ) = 0, k = m,m+ 1, . . . , 2m− 1, (2)

where π(·) is the density of U .

Appendix B

In order to prove Lemma 1, we need the following lemma.
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Lemma B.1. For any g ∈ Hm, we have J(g, g) ≤ C0V (g, g) with C0 being
independent of g.

Proof. Using the properties of the eigensystems (P4)-(P5), we have for any
g ∈ H(m), g =

∑
j V (g, hj)hj . It follows from [8] that there exists a constant C0

such that {
∑

j V (g, hj)
2γ2

j } ≤ C0V (g, g) with C0 being independent of g. Thus,

J(g, g) = J

⎛
⎝∑

j

V (g, hj)hj , g

⎞
⎠ =

∑
j

V (g, hj)J(hj , g) =
∑
j

V (g, hj)
2γj

≤ {
∑
j

V (g, hj)
2}1/2{

∑
j

V (g, hj)
2γ2

j }1/2 ≤ V (g, g)1/2C0V (g, g)1/2

≤ C0V (g, g).

Proof of Lemma 1

Let qn(t) ∈ Hm satisfying ‖qn‖∞ = O(n−1/2+μ). Define

Hn(α)

=
1

n

n∑
i=1

[Δi log {1− exp(−Λ0(Ui)− αqn(Ui))} − (1−Δi) {Λ0(Ui) + αqn(Ui)}]

− λ

2

∫
I

{Λ(m)
0 (t) + αq(m)

n (t)}2 dt

Then, the derivative of Hn(α) is

H ′
n(α) =

1

n

n∑
i=1

[
Δi

qn(Ui)

1− exp{−Λ0(Ui)− αqn(Ui)}
− qn(Ui)

]

− λ

∫
I

Λ
(m)
0 (t)q(m)

n (t) dt− αλ

∫ 1

0

(q(m)
n )2 dt

=
1

n

n∑
i=1

[
Δiqn(Ui)

{
1

1− exp(−Λ0(Ui)− αqn(Ui))
− 1

1− exp(−Λ0(Ui))

}

+qn(Ui)

{
Δi

1

1− exp{−Λ0(Ui)}
− 1

}]

− λ

∫
I

Λ
(m)
0 (t)q(m)

n (t) dt− αλ

∫
I

(q(m)
n (t))2 dt

=− α

[
1

n

n∑
i=1

Δi
q2n(Ui) exp{−Λ0(Ui)}
[1− exp{−Λ0(Ui)}]2

(1 + op(1)) + λ

∫
I

q(m)
n (t)2 dt

]

+
1

n

n∑
i=1

qn(Ui)

[
Δi

1

1− exp{−Λ0(Ui)}
− 1

]
− λ

∫
I

Λ
(m)
0 (t)q(m)

n (t) dt

≡I1 + I2 + I3.
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It follows directly from ‖qn‖∞ = Op(n
−1/2+μ) that I1 = OP (n

−1+2μ). Direct
calculations yield that

E

(
I2

n−1/2+μ

)2

=
1

n
E

[{
qn(Ui)

n−1/2+μ

}2{
Δi

1

1− exp{−Λ0(Ui)}
− 1

}2
]
= Op(n

−1),

and EI2 = 0.
Thus, by the central limit theorem, we can get I2 = Op(n

−1+μ). As qn ∈ Hm,

we have ‖q(m)
n ‖∞ = O(1). As λn1−2μ → 0, I3 = op(n

−1+2μ). Hence, H ′
n(α)α <

0. Since

H ′′
n(α) = −

[
1

n

n∑
i=1

Δi
q2n(Ui) exp{−Λ0(Ui)− αqn(Ui)}
[1− exp{−Λ0(Ui)− αqn(Ui)}]2

+ λ

∫
I

q(m)
n (t)2 dt

]
,

then H ′
n(α) is a nonincreasing function. So Λ̂n,λ(t) ∈ [Λ0(t) − |αqn(t)|,Λ0(t) +

|αqn(t)|]. Then ‖Λ̂n,λ−Λ0‖∞ ≤ |α|‖qn‖∞ → 0. Thereby, V (‖Λ̂n,λ−Λ0‖∞, ‖Λ̂n,λ−
Λ0‖∞) = op(1). It follows from Lemma B.1 that J(Λ̂n,λ−Λ0, Λ̂n,λ−Λ0) = op(1).

Then, ‖Λ̂n,λ − Λ0‖λ=1 = op(1).
Following [23], there exist two B-spline functions ĝm,λ, ĝm,0 such that

‖Λ̂(j)
n,λ − ĝ

(j)
m,λ‖∞ = o(1), ‖ĝ(j)m,0 − Λ

(j)
0 ‖∞ = o(1), for j = 0, 1, . . . ,m− 1. Note

that

‖ĝm,λ − ĝm,0‖∞
≤ ‖Λ̂n,λ − ĝm,λ‖∞ + ‖ĝm,0 − Λ0‖∞ + ‖Λ̂n,λ − Λ0‖∞ = op(1).

Then it follows from Corollary 6.21 in [23] that ‖ĝ(j)m,λ − ĝ
(j)
m,0‖∞ = op(1), j =

1, 2, · · · ,m− 1. Thereby, we have

‖Λ̂(j)
n,λ − Λ

(j)
0 ‖∞ ≤ ‖Λ̂(j)

n,λ − ĝ
(j)
m,λ‖∞ + ‖ĝ(j)m,0 − ĝ

(j)
m,λ‖∞ + ‖Λ(j)

0 − ĝ
(j)
m,0‖∞ = op(1).

As a result, ‖Λ̂(j)
n,λ − Λ

(j)
0 ‖∞ = op(1), j = 1, 2, . . . ,m− 1.

Proof of Theorem 1

Set g = Λ̂n,λ − Λ0 and write

ln,λ(g + Λ0)− ln,λ(Λ0) = Sn,λ(Λ0)g +
1

2
DSn,λ(Λ0)gg +

1

6
D2Sn,λ(g

∗)ggg

≡ I1 + I2 + I3,

where g∗ = Λ0 + αg with α ∈ [0, 1]. Note that

|6I3| = |D2Sn,λ(g
∗)ggg|

=
∣∣∣ 1
n

n∑
i=1

Δi
[1 + exp{−g∗(Ui)}] exp{−g∗(Ui)}g3(Ui)

[1− exp{−g∗(Ui)}]3
∣∣∣
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≤ ‖g‖∞
∣∣∣ 1
n

n∑
i=1

Δi
[1 + exp{−g∗(Ui)}] exp{−g∗(Ui)}g2(Ui)

[1− exp{−g∗(Ui)}]3
∣∣∣

� ‖g‖∞
∣∣∣ 1
n

n∑
i=1

Δi
exp{−Λ0(Ui)}g2(Ui)

[1− exp{−Λ0(Ui)}]2
∣∣∣

≤ ‖g‖∞
n

∣∣∣ n∑
i=1

[
Δi

exp{−Λ0(Ui)}g2(Ui)

[1− exp{−Λ0(Ui)}]2
− E

(
Δi

exp{−Λ0(Ui)}g2(Ui)

[1− exp{−Λ0(Ui)}]2
)] ∣∣∣

+‖g‖∞EU

[
exp{−Λ0(Ui)}g2(Ui)

{1− exp(−Λ0(Ui))}2

]

=
‖g‖∞
n

|〈
n∑

i=1

[ψ(Δi, Ui, g)KUi − E{ψ(Δ, U, g)KU}] , g〉λ|

+‖g‖∞EU

(exp{−Λ0(Ui)}g2(Ui)

[1− exp{−Λ0(Ui)}]2
)
,

where

ψ(Δi, Ui, g) = Δi
exp{−Λ0(Ui)}g(Ui)

[1− exp{−Λ0(Ui)}]2
.

Define

ψ̃(Δi, Ui, g) =
[1− exp{−Λ0(ξ)}]2

exp{−Λ0(ξ)}
c−1
m h1/2ψ(Δi, Ui, g), i = 1, 2, . . . , n.

Then,

|ψ̃(Δi, Ui, g)− ψ̃(Δi, Ui, f)|

=
(1− exp(−Λ0(ξ)))

2

exp(−Λ0(ξ))
c−1
m h1/2 Δi exp{−Λ0(Ui)}

[1− exp{−Λ0(Ui)}]2
|f(Ui)− g(Ui)|

≤ c−1
m h1/2‖f − g‖∞.

Lemma 1 shows that g ∈ F = {g ∈ Hm(I), ‖g‖∞ ≤ 1, J(g, g) ≤ c−2
m hλ−1} when

n is large enough with cm defined in (P2). It then follows from [24] that there
exits a set Bn with limn→ P (Bn) = 1 such that on Bn,

‖
n∑

i=1

[
ψ̃(Δi, Ui, g)KUi − E{ψ̃(Δi, Ui, g)KUi}

]
‖λ

≤ (n1/2‖g‖1−1/(2m)
∞ + 1){5 log log(n)}1/2.

Thereby, on Bn, we have

‖g‖∞
n

|〈
n∑

i=1

[ψ(Δi, Ui, g)KUi − E{ψ(Δ, U, g)KUi}] , g〉λ|

� cmh−1/2 ‖g‖∞‖g‖λ
n

(n1/2‖g‖1−1/(2m)
∞ + 1){5 log log(n)}1/2.
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Since

‖g‖∞EU

[
exp{−Λ0(Ui)}g2(Ui)

1− exp{−Λ0(Ui)}

]
≤ ‖g‖∞‖g‖2λ,

then on Bn,

|6I3| � cmh−1/2 ‖g‖∞‖g‖λ
n

(n1/2‖g‖1−1/(2m)
∞ + 1){5 log log(n)}1/2 + ‖g‖∞‖g‖2λ

� c2m
n1/2h

{log log(n)}1/2‖g‖2λ + ‖g‖∞‖g‖2λ. (3)

Hence, from (n1/2h)−1{log log(n)}1/2 = o(1) and ‖g‖∞ = op(1), we have |6I3| =
op(1)‖g‖2λ.

It follows from the definition of Sn,λ(Λ0) that ‖Sn,λ(Λ0)‖λ = Op((nh)
−1/2 +

λ1/2). Thereby,

|I1| = |Sn,λ(Λ0)g| ≤ ‖Sn,λ(Λ0)‖λ‖g‖λ = Op((nh)
−1/2 + λ1/2)‖g‖λ.

For I2, we write

2I2 = DSn,λ(Λ0)gg

= {DSn,λ(Λ0)gg − EDSn,λ(Λ0)gg}+ EDSn,λ(Λ0)gg

= −‖g‖2λ + {DSn,λ(Λ0)gg − EDSn,λ(Λ0)gg}

= −‖g‖2λ +
1

n

n∑
i=1

(
Δi

g2(Ui) exp{−Λ0(Ui)}
[1− exp{−Λ0(Ui)}]2

− EU
g2(Ui) exp{−Λ0(Ui)}
1− exp{−Λ0(Ui)}

)
.

In view of (3), we have

lim
n→∞

P

(∣∣∣ 1
n

n∑
i=1

[
Δi

g2(Ui) exp(−Λ0(Ui))

{1− exp(−Λ0(Ui))}2
− EU

{
g2(Ui) exp(−Λ0(Ui))

1− exp(−Λ0(Ui))

}] ∣∣∣
� cmh−1/2‖g‖λ

{
1√
n
‖g‖1−1/(2m)

∞ +
1

n

}
{5 log log(n)}1/2

)
= 1.

It follows from the definition of Λ̂n,λ that I1 + I2 + I3 ≥ 0. Thus,

lim
n→∞

P
(
‖g‖2λ(1+op(1))�{‖g‖2−1/(2m)

λ n−1/2c2−1/(2m)
m h−1+1/(4m){5 log log(n)}1/2

+ n−1h−1/2{5 log log(n)}1/2‖g‖λ + ((nh)−1/2 + λ1/2)‖g‖λ}
)
= 1.

Therefore,

lim
n→∞

P
(
‖g‖λ � {‖g‖1−1/(2m)

λ n−1/2c2−1/(2m)
m h−1+1/(4m){5 log log(n)}1/2

+ n−1h−1/2{5 log log(n)}1/2 + ((nh)−1/2 + λ1/2)}
)
= 1.
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Since (nh1/2)−1{5 log log(n)}1/2 = o((nh)−1/2),

lim
n→∞

P (‖g‖n,λ � {(nh)−1/2 + λ1/2 + ‖g‖1−1/(2m)
∞ n−1/2{5 log log(n)}1/2cmh−1/2})

= 1.

Moreover, as ‖g‖∞ = op(1) and (nh)−1/2{5 log log(n)}1/2 = o(1), we have

‖g‖λ = Op((nh)
−1/2 + hm).

Proof of Theorem 2

Denote g = Λ̂n,λ−Λ0. By Theorem 1, we have ‖g‖λ = Op((nh)
−1/2+hm). Then,

there exists a constant C such that Bn = {‖g‖λ ≤ rn ≡ C((nh)−1/2 + hm)}
has a large probability to occur. Define g̃ = d−1

n g with dn = cmrnh
−1/2. Since

h = o(1) and {log log(n)}(nh2)−1 → 0, dn = o(1). Besides, on Bn, ‖g̃‖∞ ≤ 1
and J(g̃, g̃) = d−2

n λ−1(λJ(g, g)) ≤ d−2
n λ−1‖g‖2λ ≤ c−2

m λ−1h. Thus, on Bn, we
have g̃ ∈ F , where F = {g : ‖g‖∞ ≤ 1, J(g, g) ≤ c−2

m hλ−1}. By the Taylor
expansion,

Sn(Λ̂n,λ)− Sn(Λ0)− {S(Λ̂n,λ)− S(Λ0)}

=
1

n

n∑
i=1

[
−KUi +Δi

KUi

1− exp{−Λ̂n,λ(Ui)}

]

+
1

n

n∑
i=1

[
KUi −Δi

KUi

1− exp{−Λ0(Ui)}

]

− E

[
Δ

KU

1− exp{−Λ̂n,λ(U)}
−Δ

KU

1− exp{−Λ0(U)}

]

=
1

n

n∑
i=1

[
Δi

KUi

1− exp{−Λ̂n,λ(Ui)}
−Δi

KUi

1− exp{−Λ0(Ui)}

]

− E

[
Δ

KU

1− exp{−Λ̂n,λ(U)}
−Δ

KU

1− exp{−Λ0(U)}

]

=− 1

n

n∑
i=1

(
Δi

KUi exp{−Λ0(Ui)}g(Ui)

[1− exp{−Λ0(Ui)}]2
− EΔi

KUi exp{−Λ0(Ui)}g(Ui)

[1− exp{−Λ0(Ui)}]2
)

+
1

n

(
n∑

i=1

Δi
exp{−Λ0(Ui)}KUig

2(Ui)[1 + exp{−Λ0(Ui)}]
[1− exp{−Λ0(Ui)}]3

−EΔi
exp{−Λ0(Ui)}KUig

2(Ui)[1 + exp{−Λ0(Ui)}]
[1− exp{−Λ0(Ui)}]3

)
(1 + op(1))

≡I1 + I2.

Note that

I1 = − 1

n

n∑
i=1

[
Δi

KUi exp{−Λ0(Ui)}g(Ui)

[1− exp{−Λ0(Ui)}]2
− E

{
Δi

KUi exp{−Λ0(Ui)}g(Ui)

[1− exp{−Λ0(Ui)}]2
}]
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= − 1

n

n∑
i=1

{φ(Δi, Ui, g)KUi − Eφ(Δi, Ui, g)KUi} ,

where

φ(Δi, Ui, g) = Δi
exp{−Λ0(Ui)}g(Ui)

[1− exp{−Λ0(Ui)}]2
.

Define

φ̃(Δi, Ui, g̃) =
[1− exp{−Λ0(ξ)}]2

exp{−Λ0(ξ)}
d−1
n φ(Δi, Ui, dng̃)c

−1
m h1/2.

Then,

|φ̃(Δi, Ui, g̃)− φ̃(Δi, Ui, f̃)|

≤ [1− exp{−Λ0(ξ)}]2
exp{−Λ0(ξ)}

d−1
n c−1

m h1/2|φ(Δi, Ui, dng̃)− φ(Δi, Ui, dnf̃)|

=
[1− exp{−Λ0(ξ)}]2

exp{−Λ0(ξ)}
d−1
n c−1

m h1/2
∣∣∣ Δi exp{−Λ0(Ui)}
[1− exp{−Λ0(Ui)}]2

dn{g̃(Ui)− f̃(Ui)}
∣∣∣

≤ c−1
m h1/2‖f̃ − g̃‖∞.

It follows from [24] that there exists an event An ⊂ Bn such that limn P (Bn −
An) = 0, and on An,

∥∥∥ n∑
i=1

{
φ̃(Δi, Ui, g̃)KUi − Eφ̃(Δi, Ui, g̃)KUi

}∥∥∥
λ

≤(n1/2h−(2m−1)/(4m)‖g̃‖1−1/(2m)
λ + 1){5 log log(n)}1/2.

Then, on event An,

‖I1‖λ =
1

n

∥∥∥ n∑
i=1

{φ(Δi, Ui, g)− Eφ(Δi, Ui, g)}
∥∥∥
λ

� 1

n
(n1/2h−(2m−1)/(4m)‖g̃‖1−1/(2m)

∞ + 1){5 log log(n)}1/2dncmh−1/2

= (n−1/2h−(2m−1)/(4m)‖g̃‖1−1/(2m)
∞ + n−1){5 log log(n)}1/2dncmh−1/2.

As ‖g̃‖∞ ≤ 1, then, on An,

‖I1‖λ � (n−1/2h−(6m−1)/(4m) + n−1h−1){5 log log(n)}1/2c2mrn

= Op(n
−1/2h−(6m−1)/(4m){5 log log(n)}1/2{(nh)−1/2 + hm}).

For the main part of I2 (ignoring op(1)I2, still denote as I2), we have

I2 =
1

n

n∑
i=1

{
Δi

exp{−Λ0(Ui)}KUig
2(Ui)[1 + exp{−Λ0(Ui)}]

[1− exp{−Λ0(Ui)}]3
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−E

(
Δi

exp{−Λ0(Ui)}KUig
2(Ui)[1 + exp{−Λ0(Ui)}]

[1− exp{−Λ0(Ui)}]3
)}

.

Write

ϕ(Δi, Ui, g) = Δi
exp{−Λ0(Ui)}KUig

2(Ui)[1 + exp{−Λ0(Ui)}]
[1− exp{−Λ0(Ui)}]3

,

ϕ̃(Δi, Ui, g̃) =
[1− exp{−Λ0(ξ)}]3

2 exp{−Λ0(ξ)}
d2ncmh−1/2ϕ(Δi, Ui, dng̃).

Again, it follows from [24] and nh2 → ∞ that with n large enough,

‖I2‖λ = Op(rnh
−1/2‖I1‖λ) = op(‖I1‖λ).

Thereby, it is not hard to show that

‖Sn(Λ̂n,λ)− Sn(Λ0)− {S(Λ̂n,λ)− S(Λ0)}‖λ
= Op(n

−1/2h−(6m−1)/(4m){log log(n)}1/2{(nh)−1/2 + hm}).

On the other hand,

Sn(Λ̂n,λ)− Sn(Λ0)− {S(Λ̂n,λ)− S(Λ0)}
= Sn,λ(Λ̂n,λ)− Sn,λ(Λ0)− {Sλ(Λ̂n,λ)− Sλ(Λ0)}
= −Sn,λ(Λ0)− {Sλ(Λ̂n,λ)− Sλ(Λ0)}

= g − Sn,λ(Λ0)−
∫
I

∫
I

sD2Sλ(Λ0 + ss′g)g2 ds ds′.

Since ‖
∫
I

∫
I
sD2Sλ(Λ0+ss′g)g2 ds ds′‖λ ≤

∫
I

∫
I
‖D2Sλ(Λ0+ss′g)g2‖λ ds ds′ and

‖D2Sλ(Λ0 + ss′g)g2‖λ = Op(h
−1/2{(nh)−1/2 + hm}2),

then ‖g − Sn,λ(Λ0)‖λ = Op(αn), where

αn = h−1/2{(nh)−1+h2m}+n−1/2h−(6m−1)/(4m){log log(n)}1/2{(nh)−1/2+hm}.

Proof of Theorem 3

Define Remn = Λ̂n,λ − Λ∗ − Sn(Λ0). It follows from the Functional Bahadur
representation that ‖Remn‖λ = Op(αn). As nh3 → ∞, nh4m−1 → 0 and m >
(3 +

√
5)/4, we have αn = o(n−1/2). Since ‖Sn(Λ0)‖λ = Op((nh)

−1/2), Remn

is negligible compared with Sn(Λ0). Next, we intend to show the asymptotic
distribution of (nh)−1/2{Λ̂n,λ(t0) − Λ∗(t0)}. We will use the fact that for any
t ∈ I and any g ∈ Hm, 〈Kt, g〉λ = g(t). Hence, for any fixed t0 ∈ I, since

−(nh)1/2〈Kt0 ,Sn(Λ0)〉λ = (nh)1/2
1

n

n∑
i=1

Kt0(Ui)

[
1− Δi

1− exp{−Λ0(Ui)}

]
,
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then,

|(nh)1/2〈Kt0 , Λ̂n,λ − Λ∗ − Sn(Λ0)〉λ|
≤ ‖Kt0‖λ‖Λ̂n,λ − Λ∗ − Sn(Λ0)‖λ(nh)1/2 = op(1).

As Var
{
Kt0(Ui)

(
1 − Δi[1 − exp{−Λ0(Ui)}]−1

)}
= V (Kt0 ,Kt0) and hV (Kt0 ,

Kt0) → σ2
t0 < c2m,

(nh)1/2〈Kt0 ,Sn(Λ0)〉λ d−−→ N(0, σ2
t0)

as n → ∞. We finish the proof of Theorem 3.

Proof of Theorem 5

Clearly, part (i) can be obtained from part (ii) and part (iii). Here, we only need
to give the proofs of part (ii) and part (iii).

Proof of Theorem 5(ii). For notational convenience, denote Λ̂ = Λ̂n,λ, Λ̂0 =

Λ̂0
n,λ, g = Λ̂0 + ω0 − Λ̂. By Theorem 4, we have

‖g‖λ = ‖Λ̂0 + ω0 − Λ̂‖λ ≤ ‖Λ̂0 + ω0 − Λ0‖λ + ‖Λ̂− Λ0‖λ = Op(rn),

where rn = (nh)−1/2 + hm. By the Taylor expansion, we have

PLLRTn,λ = Ln,λ(ω0 + Λ̂0)− Ln,λ(Λ̂)

= Sn,λ(Λ̂)(ω0 + Λ̂0 − Λ̂) +

∫
I

∫
I

sDSn,λ(Λ̂ + ss′g)gg ds ds′.

By the definition of Sn,λ(Λ̂) = 0, Sn,λ(Λ̂)(ω0 + Λ̂0 − Λ̂) = 0. Then,

PLLRTn,λ

=

∫
I

∫
I

sDSn,λ(Λ̂ + ss′g)gg ds ds′

=

∫
I

∫
I

s[DSn,λ(Λ̂ + ss′g)gg −DSn,λ(Λ0)gg]ds ds
′ +

∫
I

∫
I

sDSn,λ(Λ0)gg ds ds
′

=

∫
I

∫
I

s[DSn,λ(Λ̂+ss′g)gg−DSn,λ(Λ0)gg]ds ds
′+

1

2
[DSn,λ(Λ0)gg −DSλ(Λ0)gg]

+
1

2
DSλ(Λ0)gg

≡I1 + I2 + I3.

Define g̃ = Λ̂ + ss′g − Λ0, for any 0 ≤ s, s′ ≤ 1, ‖g̃‖λ = ‖Λ̂ − Λ0 + ss′g‖λ ≤
‖Λ̂− Λ0‖λ + ‖g‖λ = Op(rn). Then,

DSn,λ(Λ̂ + ss′g)gg = DSn,λ(g̃ + Λ0)gg
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= − 1

n

n∑
i=1

Δi
g2(Ui) exp{−g̃(Ui)− Λ0(Ui)}
[1− exp{−g̃(Ui)− Λ0(Ui)}]2

− λ

∫
I

{g(m)(t)}2 dt.

Note that

|DSn,λ(Λ̂ + ss′g)gg −DSn,λ(Λ0)gg|

=
∣∣∣ 1
n

n∑
i=1

Δi
g2(Ui) exp{−g̃(Ui)− Λ0(Ui)}
[1− exp{−g̃(Ui)− Λ0(Ui)}]2

− 1

n

n∑
i=1

Δi
g2(Ui) exp{−Λ0(Ui)}
[1− exp{−Λ0(Ui)}]2

∣∣∣
=
∣∣∣ 1
n

n∑
i=1

Δig
2(Ui)

[
−
{

1

1− exp{−Λ0(Ui)− g̃(Ui)}
− 1

1− exp{−Λ0(Ui)}

}

+

{
1

[1− exp{−Λ0(Ui)− g̃(Ui)}]2
− 1

[1− exp{−Λ0(Ui)}]2
}] ∣∣∣

≤
∣∣∣ 1
n

n∑
i=1

Δig
2(Ui)

exp{−Λ0(Ui)}g̃(Ui)

[1− exp{−Λ0(Ui)}]2
∣∣∣{1 + op(1)}

+
∣∣∣ 1
n

n∑
i=1

Δig
2(Ui)

exp{−Λ0(Ui)}g̃(Ui)

[1− exp{−Λ0(Ui)}]3
∣∣∣{1 + op(1)}

≡ Ĩ1 + Ĩ2.

For the main part of Ĩ1 (ignoring the term op(1)Ĩ1, still denoted as Ĩ1), we have

Ĩ1 ≤ ‖g̃‖∞
∣∣∣ 1
n

n∑
i=1

[
Δi

g2(Ui) exp{−Λ0(Ui)}
[1− exp{−Λ0(Ui)}]2

− EU

{
g2(Ui) exp{−Λ0(Ui)}
[1− exp{−Λ0(Ui)}]

}] ∣∣∣
+ ‖g̃‖∞EU

{
g2(Ui) exp{−Λ0(Ui)}
[1− exp{−Λ0(Ui)}]

}

≤ ‖g̃‖∞
∣∣∣ 1
n

n∑
i=1

[
Δi

g2(Ui) exp{−Λ0(Ui)}
[1− exp{−Λ0(Ui)}]2

− EU

{
g2(Ui) exp{−Λ0(Ui)}
1− exp{−Λ0(Ui)}

}] ∣∣∣
+ ‖g̃‖∞‖g‖2λ

≡ I11 + I12.

From the proof of Theorem 2, we have

I11 = ‖g̃‖∞Op(rnα
′
n),

where α′
n = n−1/2{(nh)−1/2 + hm}h−(6m−1)/(4m){log log(n)}1/2. Then,

|Ĩ1| = ‖g̃‖∞Op(rnα
′
n) + ‖g̃‖∞Op(r

2
n).

Similarly, we have |Ĩ2| = ‖g̃‖∞Op(rnα
′
n) + ‖g̃‖∞Op(r

2
n). Thus,

|I1| = ‖g̃‖∞Op(rnα
′
n) + ‖g̃‖∞Op(r

2
n).
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Under the conditions of λ, we have n−1/2h−(6m−1)/(4m){log log(n)}1/2 = o(1).
Thus α′

n = o(rn) and

|2I1| = ‖g̃‖∞Op(r
2
n) ≤ h−1/2rnOp(r

2
n) = Op(h

−1/2r3n).

Further, it can be easily checked that

|2I2| = |DSn,λ(Λ0)gg −DSλ(Λ0)gg| = Op(rnα
′
n).

As I3 = −‖g‖2λ/2,

PLLRTn,λ = −‖g‖2λ
2

+Op(h
−1/2r3n + rnα

′
n).

It follows from nh2m → 0 that nh2m+1 → 0. Together with nh4 → ∞, h−1/2r3n+
rnα

′
n = o(n−1). As a result,

−2nPLLRTn,λ = n‖Λ̂0 + ω0 − Λ̂‖2λ + op(1).

Proof of Theorem 5(iii). As−2nPLLRTn,λ = n‖Λ̂0+ω0−Λ̂‖2λ+op(1), it suffices

to derive the asymptotic property of n‖Λ̂0 + ω0 − Λ̂‖2λ. Note that

n1/2‖Λ̂0 + ω0 − Λ̂− S0
n,λ(Λ

0
0) + Sn,λ(Λ0)‖λ

≤ n1/2‖Λ̂0 + ω0 − S0
n,λ(Λ

0
0)‖λ + n1/2‖Λ̂− Sn,λ(Λ0)‖λ

= Op(n
1/2αn) = op(1).

Hence, we only need to focus on n1/2{S0
n,λ(Λ

0
0)− Sn,λ(Λ0)}. Note that

S0
n,λ(Λ

0
0)

=
1

n

n∑
i=1

[
ΔiK

∗
Ui

1− exp{−Λ0
0(Ui)− ω0}

−K∗
Ui

]
−W ∗

λΛ
0
0

=
1

n

n∑
i=1

[
Δi

1− exp{−Λ0
0(Ui)− ω0}

{
KUi −

KUi(t0)Kt0

K(t0, t0)

}

−
{
KUi −

KUi(t0)Kt0

K(t0, t0)

}]

−
{
WλΛ0 −

Wλ(Λ0)(t0)Kt0

K(t0, t0)

}
.

Thus,

S0
n,λ(Λ

0
0)− Sn,λ(Λ0)

=
Kt0

K(t0, t0)

[
1

n

n∑
i=1

{
−ΔiKUi(t0)

1− exp{−Λ0(Ui)}
+KUi(t0)

}
+ (WλΛ0)(t0)

]
.
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Thereby,

n1/2‖S0
n,λ(Λ

0
0)− Sn,λ(Λ0)‖λ

=

∣∣∣∣∣ 1√
K(t0, t0)

[
1√
n

n∑
i=1

{
−ΔiKUi(t0)

1− exp{−Λ0(Ui)}
+KUi(t0)

}
+ (WλΛ0)(t0)

]∣∣∣∣∣ .
As nh2m → 0 as n → ∞,

√
n(WλΛ0)(t0)

‖Kt0‖λ
≤

√
nh(WλΛ0)(t0)

h1/2‖V 1/2(Kt0 ,Kt0)‖λ

= O(1)

√
nh(WλΛ0)(t0)

σt0

= O(
√
nhm) = o(1).

Consequently,

1√
K(t0, t0)

[
1√
n

n∑
i=1

{
−ΔiKUi(t0)

1− exp(−Λ0(Ui))
+KUi(t0)

}

+ (WλΛ0)(t0)]
d−−→ N(0, ct0)

as n → ∞, where

ct0 = lim
h→0

V (Kt0 ,Kt0)

‖Kt0‖2
∈ (0, 1].

Finally, we have shown −2nPLLRTn,λ
d−−→ ct0χ

2
1 as n → ∞.

Proof of Theorem 6

For ease of presentation, we denote g = Λ0 − Λ̂n,λ and rn = (nh)−1/2 + hm. By
the Taylor expansion,

PGLRTn,λ = ln,λ(Λ0)− ln,λ(Λ̂n,λ)

= Sn,λ(Λ̂n,λ)(Λ0 − Λ̂n,λ) +

∫
I

∫
I

sDSn,λ(Λ̂n,λ + ss′g) ds ds′

≡ I1 + I2.

According to the the definition of Sn,λ, |I1| = 0. It follows from similar lines of
the proofs of Theorem 5(ii) that

|I2| = −‖g‖2λ
2

+Op(h
−1/2r3n + rnα

′
n),

where α′
n = h−(6m−1)/(4m)n−1/2{log log(n)}1/2rn. Thus,

PGLRTn,λ = −‖g‖2λ
2

+Op(h
−1/2r3n + rnα

′
n).
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Under the conditions that m > (3 +
√
5)/4, nh2m+1 = O(1) and nh3 → ∞, we

have
−2nPGLRTn,λ = n‖g‖2λ + op(h

−1/2).

Under the null hypothesis Hglobal
0 and Theorem 2, ‖Λ̂n,λ − Λ0 − Sn,λ(Λ0)‖ =

Op(αn). And it follows from Theorem 3 that n1/2αn = o(1). Thus,

n1/2‖g‖λ = n1/2‖Sn,λ(Λ0)‖λ + op(1).

Next, we study the leading term ‖Sn,λ(Λ0)‖λ. Write

n‖Sn,λ(Λ0)‖2λ = n
∥∥∥ 1
n

n∑
i=1

[
−KUi +Δi

KUi

1− exp{−Λ0(Ui)}

]
−WλΛ0

∥∥∥2
λ

=
1

n

∥∥∥ n∑
i=1

[
−KUi +Δi

KUi

1− exp{−Λ0(Ui)}

] ∥∥∥2
λ

−2〈
n∑

i=1

[
−KUi +Δi

KUi

1− exp{−Λ0(Ui)}

]
,

WλΛ0〉λ + n‖WλΛ0‖2λ.

We first approximate ‖WλΛ0‖λ. Define

mλ(j) = |V (Λ0, hj)|2γj
λγj

1 + λγj
, j = 0, 1, 2, . . . .

Then, |mλ(j)| is a sequence of functions satisfying |mλ(j)| ≤ |V (Λ0, hj)|2γj ≡
m(j). Since Λ0 ∈ Hm, we have

∑
j |V (Λ0, hj)|2γj =

∫
N
m(j) dμ(j) = J(Λ0,Λ0) <

∞, where μ(·) is the counting measure. As limλ→0 mλ(j) = 0,

lim
λ→0

∑
j

|V (Λ0, hj)|2
λγ2

j

1 + λγj
= lim

λ→0

∫
N

mλ(j) dμ(j) = 0

by the Lebesgue dominated convergence theorem. That is,

‖WλΛ0‖2λ =
∑
j

|V (Λ0, hj)|2
λ2γ2

j

1 + λγj
= o(λ),

which implies that

E
∣∣∣〈 n∑

i=1

[
−KUi +Δi

KUi

1− exp{−Λ0(Ui)}

]
,WλΛ0〉

∣∣∣2

= E
∣∣∣ n∑
i=1

[
Δi

1− exp{−Λ0(Ui)}
− 1

]
WλΛ0

∣∣∣2

= nEU

[ exp{−Λ0(Ui)}
1− exp{−Λ0(Ui)}

(WλΛ0)
2
]
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≤ n‖Wλ(Λ0(t))‖2λ = o(nλ).

Thus, it follows from nh2m+1 = O(1) that

〈
n∑

i=1

[
−KUi +Δi

KUi

1− exp{−Λ0(Ui)}

]
,WλΛ0〉λ

= op((nλ)
1/2) = op(n

1/2hm) = op(h
−1/2).

Hence,

n‖Sn,λ(Λ0)‖2λ =
1

n

∥∥∥ n∑
i=1

[
−KUi +Δi

KUi

1− exp{−Λ0(Ui)}

] ∥∥∥2
λ
+ op(h

−1).

In what follows, we study the limiting property of

n−1‖
n∑

i=1

−KUi +ΔiKUi [1− exp{−Λ0(Ui)}]−1‖2λ.

Direct calculations yield that

1

n

∥∥∥ n∑
i=1

[
−KUi +Δi

KUi

1− exp{−Λ0(Ui)}

] ∥∥∥2
λ

=
1

n

n∑
i=1

[
Δi

1− exp{−Λ0(Ui)}
− 1

]2
KUi(Ui) +

1

n
Wn,

where

Wn =
∑
i 	=j

[
Δi

1− exp{−Λ0(Ui)}
− 1

] [
Δj

1− exp{−Λ0(Uj)}
− 1

]
〈KUi ,KUj 〉λ.

Define

Wij = 2

[
Δi

1− exp{−Λ0(Ui)}
− 1

] [
Δj

1− exp{−Λ0(Uj)}
− 1

]
〈KUi ,KUj 〉λ,

and Wn =
∑

1≤i<j≤n Wij such that Wn is clean ([21]). Next, we intend to derive

the limiting distribution of Wn. Let σ
2
n = Var(Wn). Then,

σ2
n =

n(n− 1)

2
E(W 2

ij)

= 2n(n− 1)E

([
Δi

1− exp{−Λ0(Ui)}
− 1

] [
Δj

1− exp{−Λ0(Uj)}
− 1

]
KUi(Uj)

)2

= 2n(n− 1)

∞∑
l=0

1

(1 + λγl)2
.
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WriteG1 =
∑

i<j E(W 4
ij),G2 =

∑
i<j<k E{W 2

ijW
2
ik}+E{W 2

jiW
2
jk}+E{W 2

kiW
2
kj},

and

G3 =
∑

i<j<k<l

E{WijWikWljWlk}+ E{WijWilWkjWkl}+ E{WikWilWjkWjl}.

It follows from Proposition 3.2 of [21] that, if G1, G2, G3 are all of lower order
than σ4

n, then σ−1
n Wn converges in distribution to the standard normal distri-

bution. Note that

E{W 4
ij}

= 16E

([
Δi

1− exp{−Λ0(Ui)}
− 1

] [
Δj

1− exp{−Λ0(Uj)}
− 1

]
〈KUi ,KUj 〉λ

)4

= O(h−4).

Then, G1 = O(n2h−4). By the Cauchy-Schwarz inequality, we have

EW 2
ijW

2
ik ≤ (EW 4

ij)
1/2(EW 4

ik)
1/2 = O(h−4).

Thus, G2 = O(n3h−4). Straightforward calculations give that

E{WijWikWljWlk} = 16

∞∑
j=0

1

(1 + λγj)4
= O(h−1).

Therefore, G3 = O(n4h−1). Since σ4
n = (σ2

n)
2 = O(n4h−2), nh3 → ∞ and

h = o(1), G1, G2, G3 are of smaller order than that of σ4
n. Hence,

σ−1
n Wn

d−−→ N(0, 1).

It then follows from ρ2λ =
∑∞

j=0 h/(1 + λγj)
2 that

1√
2h−1nρλ

Wn
d−−→ N(0, 1). (4)

Next, consider

1

n

n∑
i=1

[
Δi

1− exp{−Λ0(Ui)}
− 1

]2
〈KUi ,KUi〉λ.

It can be easily checked that

E

([
Δi

1− exp{−Λ0(Ui)}
− 1

]2
〈KUi ,KUi〉λ

)2

= O(‖KU‖4λ) = O(h−2),

and

E

(
n∑

i=1

[
Δi

1− exp{−Λ0(Ui)}
− 1

]2
〈KUi ,KUi〉λ − h−1σ2

λ

)2
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≤ nE

([
Δi

1− exp{−Λ0(Ui)}
− 1

]2
〈KUi ,KUi〉λ

)2

= O(nh−2),

where σ2
λ =

∑∞
j=0 h/(1 + λγj). Thus,

1

n

n∑
i=1

[
Δi

1− exp{−Λ0(Ui)}
− 1

]2
〈KUi ,KUi〉λ = h−1σ2

λ +Op((n
1/2h)−1).(5)

It follows from (4) and (5) that n‖Sn,λ‖2λ = Op(h
−1). Hence,

n1/2‖Sn,λ‖λ = Op(h
−1/2).

Finally,

− 2nPGLRTn,λ = {n1/2‖Sn,λ‖λ + op(1)}2 + op(h
−1/2)

= n‖Sn,λ‖2λ + op(h
−1/2). (6)

Combining (4), (5) and (6), we have

(2h−1σ4
λ/ρ

2
λ)

−1/2(−2nγλPGLRTn,λ−nγλ‖WλΛ0(t)‖2λ−h−1σ4
λ/ρ

2
λ)

d−−→ N(0, 1).

The proof of Theorem 6 is complete.

Proof of Theorem 7

First, it can be verified by straightforward calculations that m > (3 +
√
5)/4

and h � n−d, where 1/(2m + 1) ≤ d < 1/3 and satisfies those conditions in
Theorem 6. Then, we only need to consider Λn0 = Λ0 + Λn for Λn ∈ A. Write

−2n · PGLRTn,λ = −2n{ln,λ(Λ0)− ln,λ(Λn0)} − 2n{ln,λ(Λn0)− ln,λ(Λ̂n,λ)}
≡ I1 + I2. (7)

Regarding I1, we define

Ri = (Δi log[− exp{−Λ0(Ui)}]− (1−Δi)Λ0(Ui))

− (Δi log[1− exp{−Λn0(Ui)}]− (1−Δi)Λn0(Ui))

= Δi (log[1− exp{−Λ0(Ui)}]− log[1− exp{−Λn0(Ui)}])− (1−Δi)Λn(Ui).

Obviously,

ER2
i = O(‖Λn‖2λ + ‖Λn‖4λ).

Then,

E

{∣∣∣ n∑
i=1

(Ri − ERi)
∣∣∣2
}

≤ nER2
i = (n‖Λn‖2λ + n‖Λn‖4λ),
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and

n [ln,λ(Λ0)− ln,λ(Λn0)− E{ln,λ(Λ0)− ln,λ(Λn0)}] = Op(n
1/2‖Λn‖2λ+n1/2‖Λn‖λ).

On the other hand, in view of the fact that DSλ(g)ΛnΛn < 0 for any g ∈ Hm,
there exists constant c′ > 0 such that

E{DSn,λ(Λ
∗
n0
)ΛnΛn} ≤ c′E{DSn,λ(Λn0)ΛnΛn} =

−c′‖Λn‖2λ
2

.

Then,

E{ln,λ(Λ0)− ln,λ(Λn0)}

= E{Sn,λ(Λn0)(−Λn) +
1

2
DSn,λ(Λ

∗
n0
)ΛnΛn}

≤ λJ(Λn0 ,Λn)−
c′‖Λn‖2λ

2

≤ λ{J(Λn,Λn) + J(Λ0,Λn)} −
c′‖Λn‖2λ

2

≤ λ{J(Λn,Λn) + J(Λ0,Λ0)
1/2J(Λn,Λn)

1/2} − c′‖Λn‖2λ
2

= O(λ)− c′‖Λn‖2λ
2

.

Combining the above results, we obtain

I1 ≥ n‖Λn‖2λ +Op(nλ+ n1/2‖Λn‖λ + n1/2‖Λn‖2λ)
= n‖Λn‖2λ{1 +Op(λ‖Λn‖−2

λ + n−1/2‖Λn‖−1
λ + n−1/2)}. (8)

As for I2, under H1n, it follows from ‖Λ̂n,λ−Λn0‖ = Op((nh)
−1/2+hm) and the

FBR that, for any ε ∈ (0, 1), there exists a positive constant C and an integer
N such that

inf
n≥N

inf
Λn∈A

PΛn0

(
‖Λ̂n,λ − Λn0 − Sn,λ(Λn0)‖λ ≤ Crn

)
≥ 1− ε, (9)

where rn = (nh)−1/2 + hm. Similar to the proofs of Theorem 6, we can show
that I2 has the same limiting distribution as that in Theorem 6, uniformly over
any Λn ∈ A. In other words,

(2νn0)
−1/2(I2 − n‖WλΛn0‖2λ − h−1σ2

n0,λ) = Op(1), (10)

uniformly over any Λn ∈ A, where νn0 = h−1σ4
n0,λ

/ρ2n0,λ
, σ2

n0,λ
, ρ2n0,λ

are of the

form of σ2
λ, ρ

2
λ with the eigenvalues and eigenvectors derived under Λn0 . Let Vn0

and V0 be the V functions defined in Section 2. Then, for any f ∈ Hm,

|Vn0(f, f)− V0(f, f)| = ζV0(f, f)‖Λn‖∞.
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It follows from [24] that

σ2
n0,λ − σ2

λ = O(h−1/2‖Λn‖λ). (11)

Combining (8), (10) and (11), we have

(2νn)
−1/2(−2nrλPGLRTλ,n − νn)

=(2νn)
−1/2(−rλ(I1 + I2)− νn)

=(2νn)
−1/2rλ(I2 − n‖WλΛn0‖2λ − h−1σ2

n0,λ) + (2νn)
−1/2rλn‖WλΛn0‖2λ

+ (2νn)
−1/2rλI1 + (2νn)

−1/2rλh
−1(σ2

n0,λ − σ2
λ)

≥Op(1) + (2νn)
−1/2rλn‖Λn‖2λ(1 +Op(λ‖Λn‖−2

λ + n−1/2‖Λn‖−1
λ + n−1/2))

+O(h−1‖Λn‖λ),

where Op(1) holds uniformly in A, νn = h−1σ4
λ/ρ

2
λ, and rλ is defined in Theorem

6. Let λ‖Λn‖−2
λ ≤ 1/C, n−1/2‖Λn‖−1

λ ≤ 1/C, Ch−1‖Λn‖λ ≤ (nh1/2)‖Λn‖2λ, and
‖Λn‖2λ ≥ C(nh1/2)−1 for some sufficiently large constant C. Then,

|(2νn)−1/2(−2nrλPGLRTλ,n − νn)| ≥ cα,

where cα is the critical value (based on N(0, 1)) for rejecting Hglobal
0 at signifi-

cance level α. In other words,

‖Λn‖2λ � (h2m + (nh1/2)−1). (12)

Combining (9) and (12), the main results in Theorem 7 are proved.
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