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Abstract: For ultrahigh-dimensional data, variable screening is an impor-
tant step to reduce the scale of the problem, hence, to improve the estima-
tion accuracy and efficiency. In this paper, we propose a new dependence
measure which is called the log odds ratio statistic to be used under the
sufficient variable screening framework. The sufficient variable screening
approach ensures the sufficiency of the selected input features in model-
ing the regression function and is an enhancement of existing marginal
screening methods. In addition, we propose an ensemble variable screening
approach to combine the proposed fused log odds ratio filter with the fused
Kolmogorov filter to achieve supreme performance by taking advantages
of both filters. We establish the sure screening properties of the fused log
odds ratio filter for both marginal variable screening and sufficient variable
screening. Extensive simulations and a real data analysis are provided to
demonstrate the usefulness of the proposed log odds ratio filter and the
sufficient variable screening procedure.
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1. Introduction

Ultrahigh-dimensional data have emerged recently in many areas of modern
scientific research, including microarray, genomic, proteomic, brain images and
genetic data. There are known challenges such as scalability, noise accumu-
lation, high collinearity, and spurious correlation for analyzing the ultrahigh-
dimensional data [10, 7, 12]. To improve the scalability and reduce the noise
accumulation, one possible approach is to first reduce the dimensionality of the
feature space from a very large scale to a moderate one using a screening proce-
dure and then implement learning algorithms or make inferences based on the
much reduced feature space. By doing so, one not only can drastically speed
up the computation process, but also can significantly improve the estimation
accuracy when the dimensionality of the data is ultrahigh.

Under the assumption that only a small number of variables, which are usu-
ally referred as active features, among all observed input features contribute
to the response variable, [10] propose the sure independent screening (SIS)
method to identify a subset of features that contains the active features. The
SIS method is based on the marginal Pearson correlation between an individual
feature and the response variable and is designed for the linear regression model
under which both response variable and input features follow the Gaussian dis-
tribution. Along this direction, many model-based screening procedures have
been proposed in recent years under different parametric, semi-parametric, or
nonparametric assumptions [see e.g., 12, 8, 18, 2, 11, 20, 24]. Nevertheless, speci-
fying a correct model for ultrahigh-dimensional data remains to be a challenging
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task. To tackle this problem, several model-free sure screening procedures have
been developed [see e.g., 30, 19, 23, 1, 15, 21, 22, 16, 6, 17] so that the sure
screening property can be achieved under much weaker assumptions on the re-
gression function.

While sure screening methods are useful in analyzing ultrahigh-dimensional
data, there are some known limitations. First, most screening methods rely on
the marginal dependence between input features and the response variable. The
marginal screening methods work well only if the noise features are weekly asso-
ciated with the active features. To deal with strong correlations among the fea-
tures for model-based screening method, [10] suggest an iterative screening and
model fitting procedure which has been demonstrated its usefulness empirically
[10, 12, 8], but theoretical justifications for this approach are missing. Another
limitation of many screening methods is that they are either proposed based
on a specific model or under certain parametric assumptions on the features.
Lastly, many screening methods are not invariant to the monotone transforma-
tions of the features. That is, the screening results differ with or without making
monotone transformations on the features [e.g., 19]. Recent studies have found
the Kolmogorov-Smirnov test statistic useful for the variable screening purpose.
As proposed by [21], variable screening using the Kolmogorov filter is fully non-
parametric and is invariant under monotone transformations. In addition, the
fused Kolmogorov filter [22, 16] is shown to be an effective variable screening
method when the input features and the response variable are either discrete or
continuous.

If we denote the response variable by Y and p-dimensional input features by
X = (X1, X2, . . . , Xp)

T ∈ R
p, in the ultrahigh-dimensional problems where p is

very large relative to the sample size, the sure screening methods are to identify
a subset of features XD such that it contains the true active set of features XA
(i.e., A ⊆ D). Hence, sure screening procedures aim to identify majority of the
features in Ac which is the complement of the index set A. In contrast, variable
selection procedures more ambitiously try to recover A exactly [26, 9, 31]. From
a different perspective, [28] introduce the concept of sufficient variable selection
to deal with the “large p, small n” problem where n is the sample size of the ob-
served data. Let B be a p×q matrix with q ≤ p, where the columns of B consist
of p-dimensional unit vectors ek of which the k-th element is 1. The subspace
spanned by the columns of B is called a variable selection space if Y X|BTX.
The intersection of all such variable selection spaces, if exists, is called the cen-
tral variable selection space and is denoted by SV

Y |X. It can be shown that the

central variable selection space exists under mild conditions [3, 29]. We assume
the existence of SV

Y |X in this paper. It can be seen that the set of features

involved in SV
Y |X are equivalent to XA. Hence, a sufficient variable selection

procedure is equivalent to identify A such that Y XAc |XA. [27] note that the
marginal screening methods identify features in Ac by evaluating the marginal
independence Y XAc instead of the conditional independence Y XAc |XA.
Compared with existing marginal screening methods, sufficient screening is par-
ticularly useful to improve marginal screening methods in at least two situations:
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(i) when the correlations among features are relatively strong; or (ii) when some
active features demonstrate weak dependence to the response marginally but
strongly associated with the response conditioning on some other correlated
features. To achieve sufficient feature screening, [27] propose a variable screen-
ing framework based on the conditional independence using distance correlation
[25] and Hilbert-Schmidt Independence Criterion [14]. However, [27]’s algorithm
requires using a dependence measure to evaluate the association between two
random vectors. As a consequence, some classic dependence measures that are
defined only to measure the association between two univariate random vari-
ables, such as Pearson’s correlation or Kolmogorov-Smirnov statistic [21], can-
not be used under their framework. In addition, the distance correlation and
the Hilbert-Schmidt Independence Criterion are not invariant under monotone
transformations.

In this paper, we establish a new sufficient feature screening framework that
is suitable for dependence measures defined only for univariate random vari-
ables. Therefore, our approach is a generalization of the sufficient screening
framework to incorporate any dependence measure without a constraint on the
dimension of the random variables (i.e., multivariate vs univariate). In addition,
we propose an ensemble algorithm to further improve the sufficient screening
performance using different dependence measures. The improvement in screen-
ing performance brought by our proposed ensemble approach is illustrated by
abundant simulation studies. In addition, we propose a new dependence mea-
sure, which we call the log odds ratio statistic, to assess the statistical association
between two random variables. We show that the proposed log odds ratio statis-
tic can be used for variable screening and the log odds ratio filter is fully non-
parametric and model-free. It is also invariant under monotone transformation
on features. More importantly, it outperforms the fused Kolmogorov filter [22]
for the situation when the conditional cumulative distribution function (c.d.f.)
F (y|Xj = x1) and F (y|Xj = x2) are close to each other for all pairs of (x1, x2)
and especially when both are close to 0 or 1. By definition, the log odds ratio
filter can be applied to the data where the response variable and the input fea-
tures are either discrete or continuous. Owning their advantages over different
situations, the proposed fused log odds ratio filter can be combined with the
fused Kolmogorov filter as a complement to each other to achieve better per-
formance under an ensemble approach. We show that the fused log odds ratio
filter enjoys sure screening properties for both marginal screening and sufficient
variable screening.

The rest of this paper is organized as follows. In Section 2, we introduce a
sufficient variable screening framework which can be adopted by any depen-
dence measure defined between two univariate random variables. Based on a
new dependence measure, we propose to use the fused log odds ratio filter for
sufficient variable screening in Section 3. Sure screening properties of the fused
log odds ratio filter are established in Section 4. Section 5 contains simulation
studies and a real data application. We conclude with discussions in Section 6.
Additional remarks and technical proofs are included in the appendix.
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2. Sufficient variable screening

2.1. Framework

For ultrahigh-dimensional data with p � n, the sparsity assumption assumes
that only a small subset of X are associated with Y . Denote this active set
by A, the sparsity assumption is equivalent to assume that F (Y |XA,XAc) =
F (Y |XA), where Ac is the complement of A. [28] provide an equivalent formu-
lation of the problem as Y XAc |XA and define the central variable selection
subspace SV

Y |X which involves features in XA. Through this definition, [28] dis-
cussed the existence and uniqueness of the central variable selection space. The
conditional independence Y XAc |XA indicates that if we can identify XA, we
can eliminate XAc and achieve the goal of variable screening without losing any
regression information. Motivated by the conditional independence, a sufficient
variable screening method was proposed by [27] using the following lemma.

Lemma 1. [Proposition 1 of [27]] Let X1, X2 be any arbitrary random vectors
and Y is a random variable. Then, either one of the two conditions:

(i) (Y,X2) X1, or

(ii) X1 X2|Y and Y X1,

implies the condition: (iii) Y X1|X2.

This lemma sheds light on the sufficient variable screening. Statement (iii)
implies that F (Y |X1,X2) = F (Y |X2). Hence, let X = (XT

1,X
T

2)
T
, if we can

iteratively eliminate X1 at each step and treat X2 as a new X, and repeat the
process until no additional variable can be eliminated, we can obtain a set of
variables that contains XA. Although statement (iii) is the ultimate goal of suf-
ficient variable screening, it is difficult to measure the conditional independence
directly because we do not know X2 in advance. Lemma 1 enables us to validate
statement (iii) through validating statement (i) or statement (ii). To this end,
[27] propose two sufficient variable screening approaches based on statements (i)
and (ii), which respectively, they call one-stage and two-stage sufficient variable
selection. To test the conditional independence X1 X2|Y in statement (ii),
[27] adopt a slicing approach by discretizing the values of Y .

In general, the sufficient variable screening framework developed under state-
ments (i) or (ii) of Lemma 1 is only applicable to dependence measures that are
defined for measuring the associations between two random vectors. In partic-
ular, [27] use distance correlation [DC, 25] and Hilbert-Schmidt Independence
Criterion (HSIC) [14] in their study. When a measurement is only defined to
measure the dependence between two univariate random variables, e.g. the Kol-
mogorov statistic [21, 22], we have to modify the framework so that such a
measurement can be used. To achieve this goal, we make separate observations
from statement (i) and statement (ii) of Lemma 1. Statement (i) implies that
Y X1 and X2 X1. For any arbitrary feature Xα ∈ X1 and Xβ ∈ X2, if
Y � Xα or Xβ � Xα, then (Y,Xβ) � Xα and, hence, Y � Xα|Xβ . On
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the other hand, statement (ii) suggests that if Xα Y and Xα Xβ |Y , then
Y Xα|Xβ . These relationships involve only univariate random variables Xα,
Xβ and Y , hence, inspire us to propose the following sufficient variable screen-
ing algorithms using the dependence measures defined only for measuring the
associations between univariate random variables.

It is noteworthy that Lemma 1 reveals the fundamental differences between
the sufficient variable screening methods and the marginal screening methods.
While the traditional marginal screening methods [e.g., 10, 8, 22] focus on the
marginal independence Y Xα which is the second part of statement (ii) in
Lemma 1, the sufficient variable screening methods directly target on the con-
ditional independence in statement (iii). To improve the performance of the
marginal screening method, [10] propose to use an iterative procedure by com-
puting the residuals from regressing the response Y over the selected variables.
And then the residual is treated as a new response variable to iteratively screen
over unselected variables to captured important variables that are missed from
the previous step. Since the residuals are obtained based on the previously se-
lected variables, to some extent, it uses the conditional information to avoid
missing important variables.

2.2. Algorithms

To make the proposed framework general, let I(X,Y ) denote an arbitrary index
that measures the statistical dependence between two univariate random vari-
ables X and Y . We first note that using either statement (i) or statement (ii)
of Lemma 1 requires to evaluate the marginal independence Y Xα by com-
puting I(Y,Xα), which conforms to the usual marginal screening methods. To
complete the route of using statement (i) of Lemma 1, it additionally requires
assessing the marginal independence Xβ Xα by computing I(Xβ , Xα). On
the other hand, to follow the path of statement (ii) of Lemma 1, we need to
evaluate the conditional independence Xα Xβ |Y in addition to the marginal
independence Y Xα. The assessment of this conditional independence is not
trivial and we propose to use a slicing approach to overcome the challenge of
computing E[I(Xα, Xβ)|Y ]. Define a general partition of the real line,

H =

{
[sh−1, sh) : sh−1 < sh;h = 1, . . . , H;

H⋃
h=1

[sh−1, sh) \ {s0} = R

}
, (2.1)

where s0 = −∞ and sH = ∞. We slightly abuse the notation and express all
intervals as [sh−1, sh) by noticing the fact that (s0, s1) is open. Note that the
definition of the partition H in (2.1) is arbitrary on the real line and can be
used for discretizing any continuous random variable. Let Hy be a partition of

Y with Hy slices
[
shy−1, shy

)
for hy = 1, . . . , Hy. We define Ỹ = hy if and only

if Y ∈
[
shy−1, shy

)
. If Y is already discrete, we can simply set Ỹ = Y . With the
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discrete Ỹ , we can approximate E[I(Xα, Xβ)|Y ] as

E[I(Xα, Xβ)|Y ] ≈ E[I(Xα, Xβ)|Ỹ ] =
1

Hy

Hy∑
hy=1

{
I(Xβ , Xα)|Ỹ = hy

}
, (2.2)

where I(Xβ , Xα)|Ỹ = hy is the index conditioned on Ỹ = hy (i.e., I(Xβ , Xα)
is computed within the hy-th slice of Y ). We denote sample estimates of the

pivotal quantities by Î(Y,Xα) and Î(Xβ , Xα) respectively. The algorithm of the
sufficient variable screening is as follows.

Sufficient Variable Screening (SVS):

1. Compute r̂α = Î(Y,Xα), for α = 1, . . . , p. We obtain an estimated

index set Â1 as the set of Xα’s with the d1 largest values of r̂α.

2a. Compute ûβ = maxα∈Â1

{
Î(Xβ , Xα)

}
for every β ∈ Âc

1. We obtain

an estimated index set Â2 as the set of Xβ ’s in XÂc
1
with the d2 largest

values of ûβ .
2b. Or alternatively, use partition (2.1) to slice Y into Hy non-overlapping

slices and obtain its discrete surrogate Ỹ . Then compute

v̂β = maxα∈Â1

{
1
Hy

∑Hy

hy=1

(
Î(Xβ , Xα)|Ỹ = hy

)}
for every β ∈ Âc

1.

We obtain an estimated index set Â2 as the set of Xβ ’s in XÂc
1
with

the d2 largest values of v̂β .

3. The final estimate of the active feature set is Â = Â1 ∪ Â2.

In above algorithm, Step 2a and Step 2b follow separate paths led by state-
ment (i) and statement (ii) of Lemma 1 to achieve sufficient variable screening.
We call the SVS methods using each approach SVS–I and SVS–II procedures
respectively. While the traditional marginal screening methods focus on only
Step 1 by assessing the marginal dependence and estimate the active feature
set directly by Â1, the additional step (2a or 2b) ensure the sufficiency of the
selected features.

From the practical point of view, for an observed sample data, we need to
determine how to partition the response variable Y and choose appropriate
values of d1 and d2. In our implementation, we set hy in (2.1) to be the hy/Hy-
th sample quantiles of Y and set Hy = 2. [19] suggest to use dn = 
n/logn�
to be the size of Â where n is the sample size and we follow the suggestion of
[27] to set d1 = 0.95dn and d2 = 0.05dn. Our simulations indicate that these
settings generally perform well.

2.3. Ensemble

The proposed SVS framework can be implemented using any index I(X,Y ),
such as Pearson correlation, distance correlation [25], Hilbert-Schmidt Inde-
pendence Criterion [14], and the Kolmogorov statistic [21, 22] among others.
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However, different dependence measures enjoy their own advantages for differ-
ent situations and it is difficult to know in advance which measure is preferred
for a specific data. Therefore, we further propose an ensemble SVS approach to
combine the use of different dependence measures under the SVS framework.
Let Im(X,Y ) for m = 1, . . . ,M be M different dependence measures under con-
sideration. The algorithm of ensemble sufficient variable screening is as follows.

Ensemble Sufficient Variable Screening (ESVS):

1. For each m = 1, . . . ,M , compute r̂mα = Îm(Y,Xα), for α = 1, . . . , p.
Denote by r̂m(α) the order statistics of r̂mα such that r̂m(1) ≤ r̂m(2) ≤ · · · ≤
r̂m(p), let ϕ(r̂

m
α ) be the rank of r̂mα among all p features such that r̂mα =

r̂m(ϕ(r̂mα )) (i.e., a relatively larger r̂
m
α is corresponding to a higher ϕ(r̂mα )).

Then define a combined rank for each Xα as ϕ(r̂∗α) = maxm {ϕ(r̂mα )}.
We obtain an estimated index set Â1 as the set of Xα’s with the d1
largest values of ϕ(r̂∗α).

2a. For each m = 1, . . . ,M , compute ûm
β = maxα∈Â1

{
Îm(Xβ , Xα)

}
for

every β ∈ Âc
1. Let ϕ(ûm

β ) denote the rank of ûm
β among all fea-

tures in Âc
1. Then define a combined rank for each Xβ as ϕ(û∗

β) =

maxm

{
ϕ(ûm

β )
}
. We obtain an estimated index set Â2 as the set of

Xβ ’s with the d2 largest values of ϕ(û∗
β).

2b. Use partition (2.1) to slice Y intoHy non-overlapping slices by defining

Ỹ and for each m = 1, . . . ,M , compute

v̂mβ = max
α∈Â1

⎧⎨⎩ 1

Hy

Hy∑
hy=1

(
Îm(Xβ , Xα)|Ỹ = hy

)⎫⎬⎭
for every β ∈ Âc

1. Let ϕ(v̂mβ ) denote the rank of v̂mβ among all fea-

tures in Âc
1. Then define a combined rank for each Xβ as ϕ(v̂∗β) =

maxm

{
ϕ(v̂mβ )

}
. We obtain an estimated index set Â2 as the set of

Xβ ’s with the d2 largest values of ϕ(v̂∗β).

3. The final estimate of the active feature set is Â = Â1 ∪ Â2.

We call methods using Step 2a and Step 2b in ESVS algorithm ESVS–I and
ESVS–II procedures respectively.

3. Log odds ratio filter

While many existing dependence measures can be used for the proposed SVS
framework, we propose a new measure called the log odds ratio statistic, which
is fully nonparametric and invariant under monotone transformation, to be used
under the SVS framework.
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3.1. Motivation

Before presenting the proposed log odds ratio filter for sufficient variable screen-
ing, we provide a brief review of the fused Kolmogorov filter [22]. Based on the
fact that a random variable X is independent of Y if and only if the conditional
distributions of X|Y = y are identical for all y’s, [22] propose using

Kj = sup
y1,y2

sup
x

∣∣FXj |Y (x|Y = y1)− FXj |Y (x|Y = y2)
∣∣ (3.1)

to measure the dependence between Xj and Y , where FXj |Y is the conditional
c.d.f. of Xj given Y . To facilitate the empirical estimation, [22] consider a sliced
version of (3.1) using the partition defined in (2.1). Given a partition Hy, define

a discrete random variable Ỹ ∈ {1, . . . , Hy} such that Ỹ = hy if and only if Y
is in the hy-th slice. Then [22] let

Kj(Hy) = max
h1,h2

sup
x

∣∣∣FXj |Ỹ (x|Ỹ = h1)− FXj |Ỹ (x|Ỹ = h2)
∣∣∣ , (3.2)

and show that Xj is independent of Y if and only if Kj(Hy) = 0 for all possible
choices of Hy. Since Kj(Hy) depends on a particular choice of partition Hy,
motivated by a fusion idea [5], [22] define the fused Kolmogorov filter as

K∗
j =

N∑
l=1

Kj(H
l
y), (3.3)

based on N different partitions Hl
y, for l = 1, . . . , N , where each partition Hl

y

contains H l
y intervals. [22] showed that the sample estimate K̂∗

j of (3.3) can be
effectively used for marginal variable screening as the fused Kolmogorov filter.

While it is useful in variable screening, the fused Kolmogorov filter can hardly
identify informative features when FXj |Y (x|Y = y1) and FXj |Y (x|Y = y2) are
essentially different but very similar, especially when both of them are close to
0 or 1. Consider two scenarios where in the first scenario FXj |Y (x|Y = y1) =
0.01 and FXj |Y (x|Y = y2) = 0.001, and in the second scenario FXj |Y (x|Y =
y1) = 0.41 and FXj |Y (x|Y = y2) = 0.401. Although both differences are 0.009,
the difference in the first scenario is much more noteworthy and significant
because FXj |Y (x|Y = y1) is 10 times larger than FXj |Y (x|Y = y2). Therefore,
in order to capture the important variables in such a case, we propose to use the

difference between log
(

FXj |Y (x|Y=y1)

1−FXj |Y (x|Y=y1)

)
and log

(
FXj |Y (x|Y=y2)

1−FXj |Y (x|Y=y2)

)
instead of

the difference between FXj |Y (x|Y = y1) and FXj |Y (x|Y = y2) in measuring the
statistical dependence of Xj and Y .

3.2. Proposed methodology

We define the log odds ratio statistic as

RY |Xj
= sup

x1,x2

sup
y

∣∣∣∣log( FY |Xj
(y|Xj=x1)

1− FY |Xj
(y|Xj=x1)

)
− log

(
FY |Xj

(y|Xj=x2)

1− FY |Xj
(y|Xj=x2)

)∣∣∣∣ .
(3.4)
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In order to avoid singularity points at FY |Xj
(y|Xj = x0) = 0 or FY |Xj

(y|Xj =
x0) = 1 for any x0, we introduce a threshold constant τ > 0 such that we set
FY |Xj

(y|Xj = x0) to τ if FY |Xj
(y|Xj = x0) < τ , and set FY |Xj

(y|Xj = x0) to
1 − τ if FY |Xj

(y|Xj = x0) > 1 − τ . In general, the magnitude of τ should be
small (e.g., 10−5) and it is related to our regularity condition (C2a) which is
needed to ensure the sure screening property.

The conditional c.d.f. in (3.4) is based on the conditional distribution of
Y |X whereas in the Kolmogorov statistic (3.1) is in the form of X|Y . If Y
and X are independent, then for any value x0, FY |Xj

(y|Xj = x0) are identical,
or equivalently, FY |Xj

(y|Xj = x0) = Fj(y). We choose to use the conditional
distribution Y |X because it conforms to the general goal of variable screening,
that is, to identify Xj ’s such that FY |Xj

(y|Xj) is functionally dependent on
Xj for some y. Note that, FY |Xj

(y|Xj = x1) = Pr(Y ≤ y|Xj = x1) and the
difference in (3.4) is the difference between two log odds which is equivalent
to the log odds ratio. Hence, we call the variable screening procedure based on
(3.4) the log odds ratio filter (LogOR filter ; hereafter).

For binary response Y , [12] propose a maximum marginal likelihood screen-
ing method under the logistic regression model. Specifically, for each Xj , they
consider a model

log

(
Pr(Y = 1|Xj)

1− Pr(Y = 1|Xj)

)
= β0 + βjXj ,

and rank variables based on the maximum likelihood estimate β̂M
j of βj . [12]

establish the sure screening property of this approach under certain conditions.
Under the logistic regression model, it is well known that the interpretation
of βj is related to the log odds ratio between different values of Xj . However,
the LogOR filter (3.4) is a more general approach than the maximum marginal
likelihood screening method because the log odds ratio statistic works not only
for binary response but also for continuous response and it is completely model-
free.

For continuous Xj , we can follow a slicing approach similar to [22] to make
the estimation easier. Given a specific partition Hxj on Xj as defined in (2.1),

for each Xj , define a discrete random variable X̃j ∈ {1, . . . , Hxj} such that

X̃j = h if and only if Xj is in the h-th slice. Accordingly, we define

RY |Xj
(Hxj ) = max

h1,h2

sup
y

∣∣∣∣∣log
(

FY |X̃j
(y|X̃j = h1)

1− FY |X̃j
(y|X̃j = h1)

)

−log

(
FY |X̃j

(y|X̃j = h2)

1− FY |X̃j
(y|X̃j = h2)

)∣∣∣∣∣ .
(3.5)

The following proposition demonstrates some characteristics of RY |Xj
(Hxj ).

Proposition 1. For RY |Xj
defined in (3.4) and RY |Xj

(Hxj ) defined in (3.5),
the following statement are true.
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(i) Xj is independent of Y if and only if RY |Xj
(Hxj ) = 0 for all possible

choices of Hxj .
(ii) Assume that Xj is not independent of Y and for any fixed x∈R,Pr(Xj

≤ x|Y = y) is not a constant in y; then RY |Xj
(Hxj ) �= 0 for any choice

of Hxj .
(iii) Assume that FY |X̃j

(y|Xj = x) is continuous and 0 < τ1 ≤ FY |X̃j
(y|Xj

= x) ≤ τ2 < 1 for some 0 < τ1 ≤ τ2 < 1. If maxh=1,...,Hxj
Pr(X̃j =

h) → 0 as Hxj → ∞, then RY |Xj
(Hxj ) → RY |Xj

as Hxj → ∞. There-
fore, if Xj is not independent of Y , RY |Xj

(Hxj ) > 0 for sufficiently
large Hxj .

The proof of Proposition 1 is included in the appendix. Proposition 1 indicates
that, for continuous Xj , RY |Xj

(Hxj ) serves as a good surrogate of RY |Xj
to

capture the dependence between Xj and Y .
With an observed random sample (Xi, Yi), i = 1, . . . , n, where Xi = (Xi1,

. . . , Xip)
T, an estimate of (3.5) can be obtained as

R̂Y |Xj
(Hxj ) = max

h1,h2

sup
y

∣∣∣∣∣log
(

F̂Y |X̃j
(y|X̃j = h1)

1− F̂Y |X̃j
(y|X̃j = h1)

)

−log

(
F̂Y |X̃j

(y|X̃j = h2)

1− F̂Y |X̃j
(y|X̃j = h2)

)∣∣∣∣∣ ,
(3.6)

where

F̂Y |X̃j
(y|X̃j = h) =

1

nh

∑
i:X̃ij=h

1(Yi ≤ y), (3.7)

and nh is the number of observations within the h-th slice, and X̃ij = h if Xij is

in the h-th slice. When Xj takes finite discrete values, we can let X̃j = Xj with-
out using a partition. When Xj takes infinite discrete values, such as following a
Poisson distribution, or Xj is continuous, we can use h/Hxj -th sample quantiles
in (2.1) to define the end-points for a partition. To search for the supremum
over y, for any given h1 and h2, we can search on a set of grid points defined
over the support of Y , Ξy = {yi : −∞ < y1 < y2 < · · · < yk−1 < yk < ∞}, to
find the value y∗ ∈ Ξy such that (3.6) is maximized. Note that we can also use
partition Hy to define the grid points for Ξy and this approach works well in
our simulation studies.

To further improve the stability and accuracy for variable screening, we can
define a fused LogOR filter as

R̂∗
Y |Xj

=
N∑
l=1

R̂Y |Xj
(Hl

xj
), (3.8)

which is an ensemble over N different partitions Hl
xj

each containing H l
xj

inter-

vals. Note that the population version of (3.8) is R∗
Y |Xj

=
∑N

l=1 RY |Xj

(
Hl

xj

)
.
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To obtain different partitions for the fusion step, we consider multiple uniform
slicing schemes under which Hl

xj
has H l

xj
many slices based on the sample

quantiles of Xj for 1 ≤ l ≤ N .

3.3. The fused log odds ratio filter for sufficient variable screening

In the marginal variable screening step, the true active marginal feature set is
defined as

A1 = {j : Xj � Y } .
Similar to many existing measures, the fused LogOR filter can readily be used for
marginal variable screening by selecting input features Xj ’s that have relatively

large R̂∗
Y |Xj

values.

In the SVS-I procedure, after obtaining the marginal screening set Â1, it

requires to compute ûβ = maxα∈Â1

{
Î(Xβ , Xα)

}
for every β ∈ Âc

1 to obtain

Â2. Hence, to use the fused LogOR filter in this step, we can compute

Û∗
Xk|Xj

= max
j∈Â1

{
R̂∗

Xk|Xj

}
. (3.9)

On the other hand, in the SVS-II procedure, after obtaining the marginal
screening set Â1, it requires to compute

v̂β = max
α∈Â1

⎧⎨⎩ 1

Hy

Hy∑
hy=1

Î(Xβ , Xα)|Ỹ = hy

⎫⎬⎭
for every β ∈ Âc

1, where Hy is the number of slices used in the partition (2.1)

for Y to define its discrete surrogate Ỹ . Therefore, in the sufficient screening
step, we use

V̂ ∗
Xk|Xj ;Y

= max
j∈Â1

⎧⎨⎩ 1

Hy

Hy∑
hy=1

(
R̂∗

Xk|Xj
|Ỹ = hy

)⎫⎬⎭ , (3.10)

to incorporate the fused LogOR filter. While there are many choices for the
partition Hy of Y , we use hy/Hy-th sample quantiles in (2.1) to define the
end-points for Hy.

We should note that the fused LogOR filter and the fused Kolmogorov filter
have their advantages in different situations and our empirical experiences in-
dicate that it is best to combine them to achieve the supreme screening results.
Therefore, we can apply the ensemble algorithm as proposed in Section 2 to
combine them in practice. We consider an ensemble of the fused LogOR filter
and the fused Kolmogorov filter for they share many common characteristics,
such as being fully nonparametric, model-free, and invariant under monotone
transformations of response variable and input features. A detailed algorithm
on how to combine the fused LogOR filter and the fused Kolmogorov filter is
included in the appendix.
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4. Theory

In this section, we will show that the fused LogOR filter (3.8) enjoys sure screen-
ing properties for both marginal screening and sufficient screening procedures.

4.1. Regularity conditions for marginal screening

Note that the fused LogOR filter is an ensemble over several R̂Y |Xj
(Hl

xj
)’s

which depend on the empirical quantiles of Xj . If we know the distribution of
Xj , we can use an oracle uniform partition scheme such that the partitionHl

o(xj)

contains the intervals defined by the h/H l
xj
-th theoretical quantitles of Xj , for

h = 1, . . . , H l
xj
. In this situation, since the true distribution of Xj is assumed

to be known, we denote the corresponding estimated log odds ratio statistic as

R̂
(o)
Y |Xj

(Hl
o(xj)

) and let

R̂
(o)
Y |Xj

=
N∑
l=1

R̂Y |Xj

(
Hl

o(xj)

)
. (4.1)

We call (4.1) as the oracle fused logOR filter using the terminology of [22] and

its population version is R
(o)
Y |Xj

=
∑N

l=1 RY |Xj

(
Hl

o(xj)

)
.

We define the screening sets obtained using the oracle fused LogOR filter
(4.1) and the fused LogOR filter (3.8) as

Â1

(
R̂

(o)
Y |Xj

)
=

{
j : R̂

(o)
Y |Xj

is among the dn largest R̂
(o)
Y |Xj

for j = 1, . . . , p
}
,

(4.2)

and

Â1

(
R̂∗

Y |Xj

)
=

{
j : R̂∗

Y |Xj
is among the dn largest R̂∗

Y |Xj
for j = 1, . . . , p

}
,

(4.3)

respectively, for some predetermined dn.
We should note that the definitions of the screening feature sets based on

(4.2) and (4.3) are equivalent to the commonly used definitions in the literature
[10, 8, 19],

Ã1

(
R̂

(o)
Y |Xj

)
=
{
j : R̂

(o)
Y |Xj

≥cn−ν
}
, and Ã1

(
R̂∗

Y |Xj

)
=
{
j : R̂∗

Y |Xj
≥cn−ν

}
,

for some predetermined thresholding positive constants c and ν. [19] discussed
the connection and equivalence of these definitions.

In order to establish the sure screening properties for Â1

(
R̂

(o)
Y |Xj

)
and

Â1

(
R̂∗

Y |Xj

)
, we need to assume the following regularity conditions.
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(C1) There exists a set D such that A1 ⊂ D and

ΔD = min
l

(
min
j∈D

RY |Xj

(
Hl

o(xj)

)
−max

j �∈D
RY |Xj

(
Hl

o(xj)

))
> 0.

(C2) Let Hmin
xj

= minl{H l
xj
}. For any b1, b2 such that P (Xj ∈ [b1, b2)) ≤

2/Hmin
xj

, we have

0 < τ1 ≤ FY |Xj
(y|Xj ∈ [b1, b2)) ≤ τ2 < 1, (C2a)

for some constants 0 < τ1 ≤ τ2 < 1; and∣∣∣∣log( FY |Xj
(y|Xj = x1)

1− FY |Xj
(y|Xj = x1)

)
− log

(
FY |Xj

(y|Xj = x2)

1− FY |Xj
(y|Xj = x2)

)∣∣∣∣≤ΔD
8

,

(C2b)

for all y, j and x1, x2 ∈ [b1, b2).

Condition (C1) is the key condition which is commonly used in the literature
for establishing the sure screening property of marginal screening methods. It
assures that the important variables in the active setA1 are also marginally more
important than the noise variables. In the appendix, we provide a discussion on
how Condition (C1) can be satisfied in general.

Condition (C2a) requires the conditional c.d.f. to be bounded away from 0
and 1 such that the log odds ratio statistic (3.4) is well defined. This condition
can be easily met by setting a small threshold value as described in Section 3.
Condition (C2b) requires the sample quantiles of Xj ’s to be close enough to the
population quantiles. Note that no other distributional and moment assump-
tions are needed to establish the marginal sure screening property of the fused
LogOR filter.

4.2. Sure screening property for marginal screening

Theorem 1. Assume conditions (C1) and (C2). If H l
xj

≤ 
logn� for all l and

dn ≥ |D|, then, for the screening sets Â1

(
R̂

(o)
Y |Xj

)
and Â1

(
R̂∗

Y |Xj

)
defined in

(4.2) and (4.3), we have

Pr
(
A1 ⊂ Â1

(
R̂

(o)
Y |Xj

))
≥ 1− η and Pr

(
A1 ⊂ Â1

(
R̂∗

Y |Xj

))
≥ 1− η,

(4.4)

where η = CNp
(
log2n

)
exp

(
−nτ2

∗Δ
2
D

logn

)
+ CN

(
log2n

)
exp

(
− n

log2n

)
for some

generic positive constant C and τ∗ = min(τ1, 1− τ2).

The proof of Theorem 1 is provided in the appendix. According to (4.4),
the fused LogOR filter has the same order as the oracle fused LogOR filter
indicating that the proposed slicing scheme using sample quantitles is as good
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as using the oracle information about the theoretical quantiles. In addition,
Theorem 1 provides guidance on choosing the partition Hl

xj
because it requires

H l
xj

≤ 
logn�. Therefore, combining this requirement and suggestions in the

literature [5, 22], we set H l
xj

= 3, . . . , 
logn� to ensure a sufficient sample size
within each slice.

From the results, we can see that both the oracle fused LogOR filter and
the fused LogOR filter possess the sure screening property with a probability
tending to 1 if

ΔD �
√

lognlog(pN logn)

n
.

For N ≤ logn, if there exists a constant o < κ < 1 such that ΔD � n−κ,
above condition on ΔD is equivalent to logp � nξ for any ξ ∈ (0, 1− 2κ). This
requirement on the order of p is same as many existing methods require [e.g.,
10]. However, the fused LogOR filter is fully nonparametric and, hence, is more
flexible.

It is worth noting that η is independent of dn. Therefore, as long as we
choose a sufficiently large dn such that dn ≥ |D|, the sure screening property
is guaranteed. In our simulation, we use the conventional value dn = 
n/logn�
suggested by [19].

4.3. Regularity conditions for sufficient screening

In the sufficient screening step of the SVS-I procedure, the major difference is
to replace R̂∗

Y |Xj
by R̂∗

Xk|Xj
. To establish the sure screening property of using

Û∗
Xk|Xj

, we need to make assumptions similar to conditions (C1) and (C2) based

on the conditional c.d.f. F (Xk|Xj) instead of F (Y |Xj). Then we could obtain
similar results as Theorem 1. Given its similarity, we omit the discussions for
this case, but focus on the SVS-II procedure which is a more complicated case
because V̂ ∗

Xk|Xj ;Y
in (3.10) involves partitions of both Xj and Y .

The second step in SVS-II procedure is based on selecting additional features
that are marginally independent of the response. We can define the oracle filter
for (3.10) as

V̂
(o)
Xk|Xj ;Y

= max
j∈Â1

⎧⎨⎩ 1

Hy

Hy∑
hy=1

R̂
(o)
Xk|Xj

|Ỹ = hy

⎫⎬⎭ , (4.5)

of which the corresponding population parameter is

V
(o)
Xk|Xj ;Y

= max
j∈A1

{
E
[
R

(o)
Xk|Xj

|Y
]}

.

Note that the population index set for the sufficient variable screening step is

A2 = {k : Xk � Xj |Y for all j such that Xj � Y } .



Log odds ratio filter 513

We define the screening sets using V̂
(o)
Xk|Xj ;Y

and V̂ ∗
Xk|Xj ;Y

as

Â2

(
V̂

(o)
Xk|Xj ;Y

)
={

k : V̂
(o)
Xk|Xj ;Y

is among the d′n largest V̂
(o)
Xk|Xj ;Y

for j ∈ Â1

}
,

(4.6)
and

Â2

(
V̂ ∗
Xk|Xj ;Y

)
={

k : V̂ ∗
Xk|Xj ;Y

is among the d′n largest V̂ ∗
Xk|Xj ;Y

for j ∈ Â1

}
,

(4.7)
for some pre-determined d′n.

In order to establish the sure screening properties of Â2

(
V̂

(o)
Xk|Xj ;Y

)
and

Â2

(
V̂ ∗
Xk|Xj ;Y

)
for A2, we need to assume the following regularity conditions.

(C1∗) There exists a set D2 such that A2 ⊂ D2 and

ΔD2 = min
k∈D2

V
(o)
Xk|Xj ;Y

− max
k �∈D2

V
(o)
Xk|Xj ;Y

> 0.

(C2∗) The observations are i.i.d. and conditions (C1) and (C2) hold within

each slice of Y . Denote the logOR statistic RXk|Xj

(
Hl

o(xj)

)
within

the slice hy by RXk|Xj ,hy

(
Hl

o(xj)

)
. Then, for any hy, there exists a

set D such that A1 ⊂ D and

0 ≤ Δ
hy

D =

min
l

(
min
j∈D

RXk|Xj ,hy

(
Hl

o(xj)

)
−max

j �∈D
RXk|Xj ,hy

(
Hl

o(xj)

))
≤ ΔD2

N
,

(C2∗a)

Let ΔD∗ = maxhy Δ
hy

D .

Moreover, within each slice of Y (i.e., given Ỹ = hy), consider a pair
of random variables (Xk, Xj). Denote the conditional c.d.f. of Xk|Xj

within the slice hy by FXk|Xj ,hy
(·). Let Hmin

xj
= minl{H l

xj
} where H l

xj

is the number of slices considered in the partition Hl
xj
. Then for any

b1, b2 such that Pr (Xj ∈ [b1, b2)) ≤ 2/Hmin
xj

, we have

0 < τ1 ≤ FXk|Xj ,hy
(x0|Xj ∈ [b1, b2)) ≤ τ2 < 1, (C2∗b)

for some constants 0 < τ1 ≤ τ2 < 1 and denote min(τ1, 1− τ2) by τ∗;
and ∣∣∣∣log( FXk|Xj ,hy

(x0|Xj = x1)

1− FXk|Xj ,hy
(x0|Xj = x1)

)
−log

(
FXk|Xj ,hy

(x0|Xj = x2)

1− FXk|Xj ,hy
(x0|Xj = x2)

)∣∣∣∣ ≤ Δ
hy

D
8

,

(C2∗c)
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for all x0, j and x1, x2 ∈ [b1, b2).
(C3∗) For any interval [k1, k2), we have

inf
y∈[k1,k2)

(
R

(o)
Xk|Xj

|Y = y
)

≤
(
R

(o)
Xk|Xj

|Y ∈ [k1, k2)
)
≤ sup

y∈[k1,k2)

(
R

(o)
Xk|Xj

|Y = y
)
.

(C3∗a)
Furthermore, for any ε > 0, if 1/Hy−ε ≤ Pr{Y ∈ [k1, k2)} ≤ 1/Hy+ε,
then for any y1, y2 ∈ [k1, k2),∣∣∣(R(o)

Xk|Xj
|Y = y1

)
−
(
R

(o)
Xk|Xj

|Y = y2

)∣∣∣ ≤ ε/2. (C3∗b)

Assumption (C1∗) ensures that the proposed screening statistic V
(o)
Xk|Xj ;Y

has

a clear separation between the features in D2 and features Dc
2. Assumption

(C2∗) ensures the rank consistency of R̂
(o)
Xk|Xj ,hy

and R̂∗
Xk|Xj ,hy

in each slice by

assuming the same conditions of Theorem 1 within each slice. Hence, it is gener-
ally true if conditions of Theorem 1 hold. Finally, condition (C3∗) assumes that
when we slice Y for conditioning using partition Hy, for any given values y1 and

y2 within a particular slice, the conditional dependencies R
(o)
Xk|Xj

|Y = y1 and

R
(o)
Xk|Xj

|Y = y2 are close to each other (i.e. their difference is bounded). As a

consequence, it ensures that the expected conditional association E
[
R

(o)
Xk|Xj

∣∣∣Ỹ ]
based on the discretized Ỹ well approximates the expected conditional associa-

tion E
[
R

(o)
Xk|Xj

|Y
]
based on the original continuous Y . This condition is com-

monly used in sufficient dimension reduction literature [13, 4] when the slicing
is used.

4.4. Sure screening property for sufficient screening

Theorem 2. Assume conditions (C1∗)–(C3∗). If H l
xj

≤ 
logn� for all l and

d′n ≥ |A2|, then, for the screening sets Â2

(
V̂

(o)
Xk|Xj ;Y

)
and Â2

(
V̂ ∗
Xk|Xj ;Y

)
de-

fined in (4.6) and (4.7), we have

Pr
(
A2 ⊂ Â2

(
V̂

(o)
Xk|Xj ;Y

))
≥ 1− ς and Pr

(
A2 ⊂ Â2

(
V̂ ∗
Xk|Xj ;Y

))
≥ 1− ς,

(4.8)

where

ς = CNp2(log2n)exp

(
−Cn

τ2∗Δ
2
D∗

logn

)
+ CNp2exp

(
−C

n

log2n

)
+ Cp2exp

(
−CnΔ2

D∗
)

for some generic positive constant C.



Log odds ratio filter 515

The results of Theorem 2 indicate that the SVS step using the fused LogOR
filter also enjoys the sure screening property if

ΔD∗ �
√

lognlog(p2N logn)

n
.

5. Numerical studies

In this section, we evaluate the performance of the proposed fused LogOR filter
under sufficient variable screening framework through simulations and a real
data example.

5.1. Simulations

In [22], the fused Kolmogorov filter has been compared with several other exist-
ing screening methods in the literature, including marginal correlation screening
[10], nonparametric independence screening [8], distance correlation screening
[19], rank correlation screening [18], empirical likelihood screening [2], and the
quantile adaptive screening [15]. The fused Kolmogorov filter demonstrated su-
perior performance over these methods due to its unique characteristics such as
being fully nonparametric, model-free and invariant to monotone transforma-
tion. Our proposed fused LogOR filter shares the same advantages as the fused
Kolmogorov filter and is expected to be more sensitive to the tail-distribution,
i.e. F (Y |Xj) is closer to 0 or 1. Hence, we focus on comparing the fused Lo-
gOR filter to the fused Kolmogorov filter [22] in our simulations. Our empirical
results indicate that the fused Kolmogorov filter and the fused LogOR filter
is advantageous in different situations and one is not consistently better than
the other. Hence, we consider the ensemble filter which combines the two filters
together following the ensemble procedure described in Section 2 to take the ad-
vantages of the both filters. We denote these methods as “K”, “LogOR”, “Ens”
respectively. Not only we demonstrate the effectiveness of the fused LogOR
filter for marginal variable screening, we also demonstrate that the sufficient
variable screening procedures described are useful to improve the marginal vari-
able screening results. In addition, we will show that the ensemble of the fused
Kolmogorov filter and the fused LogOR filter significantly improve the perfor-
mance of variable screening for the cases where neither approach is unable to
identify all active features.

For each of our simulated models, we repeat each experiment 200 times and
report the following criteria to evaluate the variable screening results.

• Pi: the proportion that an individual active predictor is selected out of
the total number of replicates.

• Pa: the proportion that all active predictors are selected out of the total
number of replicates.

Note that the results are better when Pi and Pa are closer to 1. For each simu-
lated model, we consider various settings of n = 200, 400 and p = 500, 2000, 5000.
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Table 1

Simulation results for models (M1a)–(M1c)

.

Pi Pa

Model p n Method X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 All

(M1a)

500
200

K 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LogOR 0.985 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.980 0.965

400
K 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

LogOR 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995

2000
200

K 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LogOR 0.965 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.950 0.910

400
K 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

LogOR 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995

5000
200

K 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990
LogOR 0.895 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.940 0.850

400
K 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

LogOR 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.980

(M1b)

500
200

K 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LogOR 0.985 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.980 0.965

400
K 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

LogOR 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995

2000
200

K 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LogOR 0.965 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.950 0.910

400
K 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

LogOR 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995

5000
200

K 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990
LogOR 0.895 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.940 0.850

400
K 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

LogOR 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.980

(M1c)

500
200

K 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LogOR 0.985 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.980 0.965

400
K 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

LogOR 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995

2000
200

K 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LogOR 0.965 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.950 0.910

400
K 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

LogOR 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995

5000
200

K 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990
LogOR 0.895 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.940 0.850

400
K 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

LogOR 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.980
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Example 1. Consider the semiparametric model Ty(Y ) = T(X)Tβ + ε, where
T = (T1, . . . , Tp) and Ty, T1, . . . , Tp are strict monotone univariate transforma-
tions. Let β = 0.8 × (110,0p−10)

T, T(X) ∼ N(0,Σ) where Σ follows an au-
toregressive structure with elements σij = 0.7|i−j|, and ε be a standard normal
random variable. We consider the following setting of Ty(Y ) and T(X):

Ty(Y ) = Y, Tj(Xj) = Xj ; (M1a)

Ty(Y ) = Y, Tj(Xj) =
1

2
log(Xj); (M1b)

Ty(Y ) = log(Y ), Tj(Xj) = Xj . (M1c)

The models in Example 1 are considered by [22] and they are designed under
strict monotone univariate transformations. From the results presented in Ta-
ble 1, we observe that both the fused Kolmogorov filter and the fused LogOR
filter perform well for all models and there is no obvious difference between the
two. Therefore, the fused LogOR filter shares the same advantages of the fused
Kolmogorov filter in the marginal screening.

Since the proposed fused logOR filter is more robust to detect the active fea-
tures that are associated with the response variable at the tail of the conditional
distribution, In the next example, we consider models with different conditional
cumulative FY |Xj

(y|Xj).

Example 2. Let X1 be a Bernoulli(0.5) random variable and X2, . . . , Xp be
i.i.d. standard normal random variables. Then Y = ε1 if X1 = 1 and Y = ε2 if
X1 = 0. We consider the following settings for ε1 and ε2:

ε1 ∼ N(0, 1), and ε2 ∼ t(1); (M2a)

ε1 ∼ N(0, 1), and ε2 ∼ 0.5N(0, 1) + 0.5N(−1, 3). (M2b)

In this example, since X1 is the only active predictor, we report only the Pi

in Table 2 from which we observe that the proposed fused LogOR filter signifi-
cantly outperforms the fused Kolmogorov filter.

Table 2

Simulation results for models (M2a) and (M2b)

Model n Method p = 500 p = 2000 p = 5000

(M2a)
200

K 0.070 0.010 0.005
LogOR 0.830 0.605 0.350

400
K 0.120 0.020 0.005

LogOR 1.000 0.985 0.980

(M2b)
200

K 0.190 0.085 0.035
LogOR 0.820 0.645 0.475

400
K 0.555 0.335 0.215

LogOR 0.995 0.985 0.930

In the following example, we consider a slightly more complicated case than
Example 2 by introducing additional active predictors. We will also show that in
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Table 3

Simulation results for Example 3.

p = 500 p = 2000 p = 5000

n Method X1 X2 All X1 X2 All X1 X2 All

200

K 0.020 1.000 0.020 0.000 0.945 0.000 0.000 0.976 0.000
LogOR 0.695 0.250 0.170 0.445 0.135 0.050 0.164 0.152 0.035
Ens 0.600 1.000 0.600 0.365 0.920 0.325 0.117 0.929 0.105

ESVS-I 0.590 1.000 0.590 0.345 0.915 0.300 0.117 0.917 0.094
ESVS-II 0.590 1.000 0.590 0.345 0.915 0.300 0.117 0.917 0.094

400

K 0.070 1.000 0.070 0.005 1.000 0.005 0.012 1.000 0.012
LogOR 1.000 0.210 0.210 0.960 0.080 0.070 0.951 0.084 0.072

EM 1.000 1.000 1.000 0.945 1.000 0.945 0.879 1.000 0.879
ESVS-I 0.995 1.000 0.995 0.945 1.000 0.945 0.843 1.000 0.843
ESVS-II 0.995 1.000 0.995 0.945 1.000 0.945 0.843 1.000 0.843

this example, the ensemble of the two filters can improve the variable screening
results.

Example 3. Let X1 be a Bernoulli(0.5) random variable, and X2, . . . , Xp are
i.i.d. standard normal random variables. Then Y = 0.5X2 + ε1 if X1 = 1 and
Y = 0.5X2 + ε2 if X1 = 0 where ε1 ∼ N(0, 1) and ε2 ∼ t(1).

From Table 3, we can see that neither of the fused Kolmogorov filter nor
the fused LogOR filter is able to identify both active predictors as marginal
screening procedures. Hence, we consider the ensemble of the two as well as the
ensemble SVS procedures. As a result, the ensemble filter brings the substantial
improvement, especially when the sample size is large enough. In this case, the
SVS procedures perform similarly to marginal screening procedure using the
ensemble filter.

Example 4. Let X1 be a Bernoulli(0.5) random variable, and (X2, . . . , Xp)
T

follow a multivariate normal distribution with mean 0 and covariance matrix
Σ = (σij) for i, j = 2, . . . , p with σii = 1; σi5 = σ5i = ρκ for i �= 5; and σij = ρ
for i �= j, i �= 5, j �= 5. Consider a general model:

Y = β2X2 + β3X3 + β4X4 + β5T (X5) +

{
ε1, if X1 = 1,

ε2, if X1 = 0;

where ε1 ∼ N(0, 1) and ε2 ∼ t(1). We consider the following settings:

κ = 0.5, T (X5) = X5, β2 = β3 = β4 = 1, β5 = −3ρκ; (M4a)

κ = 0.7, T (X5) = exp(X5), β2 = β3 = β4 = 0.5, β5 = −1.5e0.5ρκ; (M4b)

κ = 0.7, T (X5) = X3
5 , β2 = β3 = β4 = 0.5, β5 = −0.3ρκ. (M4c)

In all models of Example 4, the predictors X2, . . . , Xp, except for X5 are
equally correlated with coefficient ρ, while X5 has correlation ρκ with all other
p − 2 predictors. In these models, X1–X4 are active predictors and X5 is also
an active variable that is marginally independent of the response. The results
of Example 4 are gathered in Tables 4–6 which demonstrate that the ESVS-I
and ESVS-II procedures significantly improve the marginal screening proce-
dures.
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Table 4

Simulation results for model (M4a).

ρ = 0.5 ρ = 0.8

p n Method X1 X2 X3 X4 X5 All X1 X2 X3 X4 X5 All

500

200

K 0.010 0.885 0.875 0.895 0.025 0.000 0.020 0.495 0.455 0.430 0.055 0.000
LogOR 0.440 0.215 0.250 0.245 0.025 0.000 0.685 0.090 0.115 0.105 0.050 0.000
Ens 0.330 0.860 0.830 0.825 0.020 0.005 0.590 0.410 0.330 0.395 0.050 0.000

ESVS-I 0.325 0.840 0.830 0.815 1.000 0.225 0.590 0.385 0.330 0.385 0.975 0.045
ESVS-II 0.325 0.840 0.830 0.815 0.995 0.225 0.590 0.390 0.335 0.385 0.990 0.050

400

K 0.010 1.000 0.995 0.995 0.090 0.005 0.065 0.685 0.755 0.780 0.065 0.005
LogOR 0.940 0.190 0.240 0.255 0.105 0.005 0.995 0.120 0.160 0.150 0.080 0.000
Ens 0.915 0.985 0.985 0.995 0.065 0.065 0.980 0.640 0.700 0.700 0.030 0.025

ESVS-I 0.910 0.985 0.985 0.995 1.000 0.875 0.980 0.630 0.690 0.705 1.000 0.470
ESVS-II 0.910 0.990 0.985 0.995 1.000 0.880 0.980 0.640 0.695 0.700 1.000 0.470

2000

200

K 0.005 0.730 0.735 0.715 0.010 0.000 0.005 0.220 0.250 0.220 0.005 0.000
LogOR 0.245 0.090 0.125 0.100 0.005 0.000 0.480 0.035 0.020 0.030 0.000 0.000
Ens 0.125 0.670 0.660 0.650 0.010 0.000 0.390 0.155 0.210 0.190 0.000 0.000

ESVS-I 0.120 0.655 0.660 0.650 0.995 0.025 0.370 0.145 0.200 0.185 0.925 0.000
ESVS-II 0.120 0.655 0.660 0.650 0.995 0.025 0.370 0.150 0.200 0.185 0.905 0.000

400

K 0.010 0.965 0.980 0.975 0.005 0.000 0.015 0.575 0.570 0.575 0.010 0.000
LogOR 0.745 0.050 0.070 0.105 0.030 0.000 0.915 0.020 0.030 0.050 0.005 0.000
Ens 0.630 0.960 0.980 0.965 0.005 0.000 0.865 0.505 0.490 0.515 0.005 0.000

ESVS-I 0.615 0.955 0.980 0.960 1.000 0.575 0.860 0.495 0.480 0.510 1.000 0.225
ESVS-II 0.615 0.955 0.980 0.960 1.000 0.575 0.860 0.500 0.480 0.510 1.000 0.225

5000

200

K 0.000 0.609 0.682 0.573 0.000 0.000 0.011 0.151 0.162 0.197 0.000 0.000
LogOR 0.061 0.061 0.146 0.097 0.012 0.000 0.291 0.000 0.011 0.034 0.000 0.000
Ens 0.036 0.597 0.561 0.524 0.012 0.000 0.174 0.069 0.127 0.093 0.000 0.000

ESVS-I 0.036 0.597 0.548 0.524 1.000 0.012 0.162 0.069 0.127 0.093 0.791 0.000
ESVS-II 0.036 0.597 0.548 0.524 1.000 0.012 0.162 0.069 0.127 0.093 0.791 0.000

400

K 0.000 0.975 0.987 0.914 0.000 0.000 0.000 0.402 0.451 0.475 0.000 0.000
LogOR 0.634 0.121 0.048 0.048 0.012 0.000 0.891 0.024 0.061 0.000 0.000 0.000
Ens 0.536 0.939 0.951 0.902 0.012 0.000 0.853 0.292 0.353 0.426 0.000 0.000

ESVS-I 0.524 0.939 0.951 0.902 1.000 0.439 0.853 0.292 0.353 0.414 1.000 0.085
ESVS-II 0.524 0.939 0.951 0.902 1.000 0.439 0.853 0.292 0.353 0.414 1.000 0.085
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Table 5

Simulation results for model (M4b).

ρ = 0.5 ρ = 0.8

p n Method X1 X2 X3 X4 X5 All X1 X2 X3 X4 X5 All

500

200

K 0.000 0.805 0.785 0.825 0.180 0.000 0.000 0.305 0.335 0.360 0.185 0.000
LogOR 0.360 0.185 0.190 0.140 0.110 0.000 0.325 0.145 0.135 0.110 0.070 0.000
Ens 0.275 0.720 0.710 0.705 0.175 0.005 0.225 0.280 0.295 0.245 0.140 0.000

ESVS-I 0.270 0.720 0.695 0.695 0.490 0.025 0.225 0.260 0.275 0.240 0.415 0.000
ESVS-II 0.270 0.720 0.700 0.695 0.570 0.025 0.225 0.255 0.280 0.235 0.410 0.000

400

K 0.000 0.985 0.985 1.000 0.360 0.000 0.000 0.600 0.655 0.665 0.385 0.000
LogOR 0.905 0.145 0.195 0.185 0.150 0.000 0.850 0.105 0.125 0.145 0.145 0.000
Ens 0.850 0.960 0.965 0.990 0.275 0.220 0.760 0.460 0.545 0.550 0.270 0.010

ESVS-I 0.850 0.960 0.965 0.990 0.990 0.770 0.760 0.440 0.555 0.530 0.925 0.090
ESVS-II 0.850 0.960 0.965 0.990 0.990 0.770 0.760 0.445 0.550 0.530 0.950 0.095

2000

200

K 0.000 0.525 0.545 0.555 0.060 0.000 0.000 0.135 0.140 0.135 0.065 0.000
LogOR 0.185 0.060 0.055 0.060 0.020 0.000 0.130 0.025 0.025 0.030 0.015 0.000
Ens 0.135 0.420 0.430 0.475 0.050 0.000 0.100 0.115 0.090 0.095 0.030 0.000

ESVS-I 0.135 0.405 0.430 0.475 0.215 0.005 0.095 0.115 0.085 0.090 0.140 0.000
ESVS-II 0.135 0.405 0.430 0.475 0.275 0.000 0.095 0.115 0.085 0.090 0.130 0.000

400

K 0.000 0.925 0.890 0.920 0.115 0.000 0.000 0.380 0.365 0.335 0.125 0.000
LogOR 0.705 0.045 0.045 0.085 0.095 0.000 0.550 0.025 0.035 0.055 0.020 0.000
Ens 0.595 0.870 0.840 0.870 0.095 0.020 0.475 0.245 0.250 0.225 0.085 0.000

ESVS-I 0.585 0.870 0.835 0.865 0.895 0.330 0.470 0.225 0.245 0.220 0.685 0.000
ESVS-II 0.585 0.870 0.835 0.865 0.925 0.340 0.470 0.230 0.245 0.225 0.730 0.000

5000

200

K 0.000 0.421 0.373 0.361 0.000 0.000 0.000 0.071 0.112 0.112 0.014 0.000
LogOR 0.048 0.000 0.048 0.024 0.012 0.000 0.028 0.000 0.028 0.028 0.014 0.000
Ens 0.024 0.313 0.289 0.277 0.000 0.000 0.014 0.042 0.084 0.098 0.000 0.000

ESVS-I 0.024 0.313 0.289 0.277 0.096 0.000 0.014 0.042 0.084 0.098 0.098 0.000
ESVS-II 0.024 0.313 0.289 0.277 0.192 0.000 0.014 0.042 0.084 0.098 0.071 0.000

400

K 0.000 0.879 0.783 0.771 0.072 0.000 0.000 0.214 0.202 0.178 0.035 0.000
LogOR 0.578 0.024 0.000 0.024 0.024 0.000 0.523 0.011 0.011 0.035 0.000 0.000
Ens 0.518 0.783 0.711 0.674 0.072 0.000 0.441 0.154 0.131 0.107 0.011 0.000

ESVS-I 0.518 0.771 0.711 0.674 0.746 0.144 0.428 0.142 0.119 0.107 0.476 0.000
ESVS-II 0.518 0.771 0.711 0.674 0.843 0.132 0.428 0.142 0.119 0.107 0.452 0.000
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Table 6

Simulation results for model (M4c).

ρ = 0.5 ρ = 0.8

p n Method X1 X2 X3 X4 X5 All X1 X2 X3 X4 X5 All

500

200

K 0.000 0.865 0.830 0.855 0.145 0.000 0.000 0.545 0.505 0.510 0.125 0.000
LogOR 0.350 0.195 0.210 0.195 0.130 0.000 0.265 0.145 0.145 0.130 0.070 0.000
Ens 0.225 0.765 0.750 0.770 0.120 0.015 0.200 0.460 0.400 0.400 0.115 0.000

ESVS-I 0.205 0.760 0.735 0.765 0.520 0.045 0.195 0.455 0.395 0.395 0.390 0.000
ESVS-II 0.205 0.760 0.735 0.765 0.465 0.035 0.195 0.455 0.390 0.390 0.360 0.000

400

K 0.000 0.990 0.990 1.000 0.350 0.000 0.000 0.790 0.870 0.805 0.345 0.000
LogOR 0.920 0.185 0.225 0.210 0.150 0.005 0.865 0.185 0.195 0.150 0.135 0.000
Ens 0.865 0.980 0.975 0.990 0.220 0.185 0.800 0.645 0.770 0.770 0.200 0.070

ESVS-I 0.850 0.975 0.975 0.985 0.995 0.805 0.800 0.655 0.765 0.765 0.920 0.310
ESVS-II 0.850 0.975 0.975 0.985 0.975 0.780 0.800 0.645 0.760 0.760 0.910 0.285

2000

200

K 0.000 0.655 0.595 0.680 0.025 0.000 0.000 0.265 0.260 0.295 0.015 0.000
LogOR 0.140 0.100 0.090 0.095 0.015 0.000 0.160 0.070 0.045 0.035 0.015 0.000
Ens 0.080 0.520 0.475 0.590 0.025 0.000 0.100 0.200 0.220 0.190 0.020 0.000

ESVS-I 0.075 0.520 0.460 0.550 0.225 0.000 0.100 0.205 0.220 0.180 0.175 0.000
ESVS-II 0.075 0.520 0.460 0.550 0.215 0.000 0.100 0.195 0.220 0.180 0.090 0.000

400

K 0.000 0.960 0.955 0.960 0.090 0.000 0.000 0.560 0.580 0.565 0.090 0.000
LogOR 0.705 0.070 0.060 0.080 0.055 0.000 0.725 0.035 0.005 0.050 0.050 0.000
Ens 0.600 0.940 0.910 0.930 0.040 0.010 0.580 0.470 0.440 0.430 0.060 0.000

ESVS-I 0.590 0.930 0.910 0.930 0.865 0.410 0.575 0.470 0.435 0.420 0.680 0.015
ESVS-II 0.590 0.930 0.910 0.930 0.855 0.425 0.575 0.470 0.430 0.420 0.750 0.030

5000

200

K 0.000 0.540 0.482 0.471 0.011 0.000 0.000 0.232 0.151 0.139 0.000 0.000
LogOR 0.034 0.057 0.034 0.022 0.000 0.000 0.046 0.046 0.023 0.011 0.000 0.000
Ens 0.011 0.459 0.391 0.367 0.000 0.000 0.023 0.162 0.081 0.093 0.000 0.000

ESVS-I 0.011 0.459 0.367 0.344 0.080 0.000 0.023 0.162 0.081 0.093 0.093 0.000
ESVS-II 0.011 0.459 0.367 0.344 0.126 0.000 0.023 0.162 0.081 0.093 0.034 0.000

400

K 0.000 0.881 0.892 0.940 0.047 0.000 0.646 0.012 0.024 0.012 0.012 0.000
LogOR 0.535 0.071 0.059 0.083 0.011 0.000 0.000 0.414 0.378 0.317 0.024 0.000
Ens 0.416 0.869 0.809 0.904 0.011 0.011 0.573 0.353 0.268 0.256 0.000 0.000

ESVS-I 0.416 0.857 0.809 0.892 0.809 0.178 0.573 0.353 0.268 0.231 0.573 0.000
ESVS-II 0.416 0.857 0.809 0.892 0.678 0.166 0.573 0.353 0.268 0.231 0.487 0.000
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Fig 1. Variable importance of the NO2 dataset

5.2. Real data example

In this section, we use the NO2 dataset to illustrate the methods. The NO2
dataset was a subsample of n = 500 observations from a data set collected by the
Norwegian Public Roads Administration that is originated in a study where air
pollution at a road is related to traffic volume and meteorological variables. This
dataset is available at http://lib.stat.cmu.edu/datasets/NO2.dat. The re-
sponse variable consist of hourly values of the logarithm of the concentration of
NO2 (particles), measured at Alnabru in Oslo, Norway, between October 2001
and August 2003. The seven predictor variables are the logarithm of the num-
ber of cars per hour, temperature 2 meter above ground (◦C), wind speed (me-
ters/second), the temperature difference between 25 and 2 meters above ground
(◦C), wind direction (degrees between 0 and 360), hour of day and day number
from October 1. 2001. Figure 1 seems indicating that the seventh predictor is
the least important.

Following the approach in [22], in addition to the 7 predictors in the original
dataset, we added 493, 1993, 4993 independent noise variables following the stan-
dard norm distribution, such that p = 500, p = 2000, p = 5000, respectively. We
apply the fused Kolmogorov filter, the fused LogOR filter, and ensemble of the
two for marginal variable screening, and the ESVS-I, and ESVS-II for sufficient
variable screening. We random split the dataset as the training set (n1 = 400)
and the validation set (n2 = 100) with 100 replications. In each replication, we
examine whether the screening methods can distinguish the useful predictors
from the noise variables. For the fused filters, we consider the combination of
Gi = 3, . . . , 6, as in the simulation studies. For each screening method we select
the top 7 predictors as the active predictors, treating other 493, 1993, or 4993

http://lib.stat.cmu.edu/datasets/NO2.dat
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as noise predictors. We report the variable screening results in Table 7. From
the results, it seems that all marginal screening methods have difficulty identi-
fying X7 as an active predictor but the proposed SVS procedures significantly
improve the chance of selecting it. We also observe that the fused LogOR filter
is more competent to select X2 and X5 than the fused Kolmogorov filter.

Table 7

Variable screening results of the NO2 dataset

p Method X1 X2 X3 X4 X5 X6 X7 All

500

K 1.000 0.100 1.000 1.000 0.240 1.000 0.100 0.010
LogOR 1.000 0.860 1.000 0.810 0.710 0.990 0.010 0.010
Ens 1.000 0.860 1.000 0.810 0.710 1.000 0.010 0.010

ESVS-I 1.000 0.950 1.000 1.000 0.670 1.000 0.500 0.300
ESVS-II 1.000 0.950 1.000 1.000 0.700 1.000 0.470 0.300

2000

K 1.000 0.030 1.000 0.980 0.070 1.000 0.020 0.000
LogOR 1.000 0.730 1.000 0.730 0.600 0.920 0.000 0.000
Ens 1.000 0.730 1.000 0.730 0.580 1.000 0.000 0.000

ESVS-I 1.000 0.880 1.000 0.960 0.540 1.000 0.350 0.160
ESVS-II 1.000 0.890 1.000 1.000 0.570 1.000 0.270 0.160

5000

K 1.000 0.000 1.000 0.940 0.020 1.000 0.010 0.000
LogOR 1.000 0.650 1.000 0.560 0.440 0.880 0.000 0.000
Ens 1.000 0.640 1.000 0.560 0.420 1.000 0.000 0.000

ESVS-I 1.000 0.790 1.000 0.970 0.390 1.000 0.240 0.090
ESVS-II 1.000 0.800 1.000 1.000 0.420 1.000 0.170 0.090

We further examine how variable screening step helps predicting the response
variable by fitting a generalized additive model (GAM) and a random forest
(RF) model using the selected top 7 predictors. We report the mean and stan-
dard deviation of prediction mean squared error (PMSE) on the validation data
based on 100 replications.

Table 8

Average PMSE (and its standard deviation) using the selected top 7 predictors over 100
replications

p = 500 p = 2000 p = 5000
Method GAM RF GAM RF GAM RF

K
average 0.276 0.050 0.287 0.051 0.290 0.052

sd (0.043) (0.020) (0.041) (0.020) (0.043) (0.021)

LogOR
average 0.265 0.047 0.282 0.051 0.294 0.054

sd (0.043) (0.020) (0.052) (0.022) (0.054) (0.024)

Ens
average 0.266 0.047 0.282 0.051 0.293 0.054

sd (0.043) (0.020) (0.052) (0.022) (0.054) (0.023)

ESVS-I
average 0.257 0.045 0.265 0.047 0.269 0.049

sd (0.040) (0.019) (0.043) (0.020) (0.042) (0.021)

ESVS-II
average 0.257 0.045 0.263 0.047 0.267 0.050

sd (0.040) (0.019) (0.042) (0.020) (0.042) (0.021)

As a reference, which can be treated as an oracle approach, we compute the
average and standard deviation of the PMSE using original 7 variables over
the validation data with 100 observations randomly selected from the 500 data
points. It turned out to be that the average PMSE using original 7 variables is
0.2467 for GAM and 0.0418 for RF with 0.035 and 0.017 as standard deviations
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respectively. From Table 8, we can observe that as a marginal screening method,
the fused LogOR filter and the ensemble fitler outperform the fused Kolmogorov
filter by itself. Both SVS procedures further improve the prediction accuracy.

6. Discussions

In this paper, we propose a general sufficient variable screening framework that
works for any dependence measure that is defined to measure the statistical
association between two univariate random variables. Two separate sufficient
variable screening procedures are proposed to overcome the limitations of the
marginal screening methods when the active variables are marginally indepen-
dent of the response variable. In addition, an ensemble approach is proposed
to combine advantages of different dependence measures to further boost the
screening performance. In addition, a new dependence measure, the log odds
ratio statistic, is proposed for variable screening which enjoys the sure screen-
ing properties for both marginal and sufficient variable screening. The fused
logOR filter overcomes the challenge for the fused Kolmogorov filter when the
conditional c.d.f is close to 0 or 1. It has been demonstrated empirically that
the ensemble of the fused logOR filter and the fused Kolmogorov filter deliv-
ers superior screening results in most cases. While under the current ensemble
framework, all candidate screening methods are treated equally in the ensemble
step, obtaining an optimal weighting over all candidate screening methods is an
interesting direction for future research.
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and technical proofs for the propositions and theorems. We also provide a de-
tailed algorithm on how we combine the proposed log odds ratio filter and the
Kolmogorov filter to achieve supreme screening results.
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