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cesses. Under some Lipschitz-type conditions, the existence of a 7-weakly
dependent strictly stationary and ergodic solution is established. We pro-
vide conditions for the strong consistency and derive the asymptotic dis-
tribution of the quasi-maximum likelihood estimator (QMLE), both when
the true parameter is an interior point of the parameters space and when
it belongs to the boundary. A significance Wald-type test of parameter is
developed. This test is quite extensive and includes the test of nullity of
the parameter’s components, which in particular, allows us to assess the
relevance of the exogenous covariates. Relying on the QMLE of the model,
we also propose a penalized criterion to address the problem of the model
selection for this class. The weak and the strong consistency of the pro-
cedure are established. Finally, Monte Carlo simulations are conducted to
numerically illustrate the main results.
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1. Introduction

Autoregressive time series with exogenous covariates provide effective ways to
take into account some available extra information in the models. The well
known example that has been widely studied is the ARMAX model, see Hannan
(1976) [13], Hannan and Deistler (2012) [14]. The GARCH-type models with
exogenous covariates have recently attracted much attention in the literature,
see for instance Han and Kristensen (2014) [11] for GARCH-X, Francq and
Thieu (2019) [8] for APARCH-X. Guo et al. (2014) [10] considered the factor
double autoregressive model, whose ARX and ARCH-X are particular cases.
We consider a large class of causal time series models, whose ARMAX and
GARCH-X type models are specific examples.

Let Xy = (X1, Xot,--., Xa,t) € R4 be a vector of covariates, with d, € N.
Consider the class of affine causal models with exogenous covariates,

Class AC-X(Mpy, fo) : A process {Y;, t € Z} belongs to AC-X(My, fo) if it
satisfies:

Y= Mp(Yiot,.. s Xoo1,-. )&+ fo(Yimt, 1 Xomn, .. ), (1.1)

where My, fp : RY x (R%)N — R are two measurable functions and assumed
to be known up to the parameter 6, which belongs in a compact subset © C
R? (d € N); and (&)¢ez is a sequence of zero-mean independent, identically
distributed (i.i.d) random variable satisfying E(£]) < oo for some r > 2 and
E(£2) = 1. Remark that, if X; = C for some constant C' (absence of covariates),
then (1.1) reduces to the classical affine causal models that has already been
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considered in the literature (see, for instance, Bardet and Wintenberger (2009)
[2], Bardet et al. (2012) [1], Bardet et al. (2020) [3]). One can see that, the
ARMAX, GARCH-X, APARCH-X models belong to the class AC-X (My, fo).

There exist several important contributions devoted to autoregressive models
with covariates; we refer to Hannan and Deistler (2012) [14], Han and Kristensen
(2014) [11], Sucarrat et al. (2016) [29], Francq and Sucarrat (2017) [7], Pedersen
and Rahbek (2018) [25], Francq and Thieu (2019) [8], Grgnneberg and Holcblat
(2019) [9], Zambom and Gel (2020) [31] and the references therein for some
developments on ARMAX and conditional volatility type models with exogenous
covariates. The class AC-X (My, fp) is more general than the models considered
in the aforementioned works, as well as the factor double autoregressive model
proposed by Guo et al. (2014) [10] which is a particular case of the model (1.1).
Note as well that, the class AC-X (Mjy, fo) provides a more general way to take
into account covariates in the model, and one can see that the linear covariates
regressors considered by Francq and Thieu (2019) [8] and many other works is a
specific case. Compared to Bardet and Wintenberger (2009) [2], besides taking
into account covariates in the model (1.1), we address the inference when the
true parameter belongs to the boundary of the parameter set ©® and the model
selection question.

In this new contribution, we consider the class of model (1.1) and address
the following issues.

(i) Existence of a stationary solution. We provide sufficient conditions
that ensure the existence of a 7-weakly dependent stationary and ergodic
solution Z; = (Y, X¢) of (1.1). At a first glance, one might think that these
conditions are the same as those obtained by Bardet and Wintenberger
(2009) [2], but in our case, the existence of the covariates must be taken
into account.

(ii) Inference for the class AC-X(Mp«, fo~). An inference based on the
quasi likelihood of the model is carried out. The consistency of the quasi-
maximum likelihood estimator (QMLE) is established and we derived the
asymptotic distribution of this estimator (even when 6* belongs to the
boundary of ©).

(iii) Significance test of parameter. A Wald-type significance test of pa-
rameter of the model (1.1) is conducted. The proposed test is quite ex-
tensive and includes the test of nullity of the parameter’s components. An
asymptotic study is carried out, which shows in particular that, when the
true parameter belongs to the boundary of ©, the asymptotic distribution
of the test statistic under the null hypothesis is quite different from the
classical chi-square distribution.

(iv) Model selection. A penalized criterion based on the quasi likelihood of
the model is proposed for model selection in the class AC-X(Mpy-, fg+).
We provides conditions that ensure the weak and the strong consistency
of the proposed procedure. These conditions shows in particular that, the
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Hannan-Quinn information Criterion (HQC) with a regularization param-
eter k, = cloglogn (see (3.2)) is strongly consistent for sufficiently large
c.

The article is organized as follows. In Section 2, firstly, we provide conditions for
stability properties. Secondly, we give the definition of the QMLE and study its
asymptotic properties; a significance test of parameter with an asymptotic study
is also addressed. Section 3 focuses on the model selection and the consistency of
the proposed procedure. Some classical examples of processes belonging to the
class AC-X (Mp+, fg+) are detailed in Section 4. Section 5 gives some empirical
results, whereas Section 6 is devoted to a summary and conclusion. Section 7
contains the proofs of the main results.

2. Assumptions, inference and test of the parameters
2.1. Assumptions

Throughout the sequel, the following norms will be used:
o |[z]| = />, a?, for any x € RP, p € N;
o |V = /30, ;1.:1 vzj, for any matriz V€ M, ,(R), where M, ,(R)

denotes the set of matrices of dimension p X q with coefficients in R, for

D,q €N;

e |lgllc = supgex ([9(0)|]) for any compact set K C R and function g :
K — M, 4(R);

o Y], =E (HYHr)l/T, if Y is a random vector with finite r-order moments,
forr > 0.

We will denote by 0 the null vector of any vector space. Let ¥y be the generic
symbol for any of the functions fy or My. We set the following classical Lipschitz-
type conditions for any compact set I C O.

Assumption A;(Vy, K) (i = 0, 1,2): For any (y,z) € RN x (R% )N the function

0 — Wy(y) is i times continuously differentiable on K with || g ggL 0 ||,C < oo; and

there exists two sequences of non-negative real numbers (ak y(\I’e, K))k>1 and
(a,(c)x(\llg,lC))kzl satisfying: > 77, al(i)y(\lle,lC) < 00, Doplg () «(Uy,K) < o0
for i = 0,1,2; such that for any (y,z), (/,2') € RN x (R% )N,

8i\119 , L 8“119 Z‘
H w,2) W6l H <Za (Yo, K)|yk — il

06° 06°

Zak x (Yo, K) ||k — i,
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where || - || denotes any vector, matrix norm.

The following assumption is considered on the function Hy = M in the cases
of ARCH-X type process.

Assumption A;(Hy,K) (i = 0,1,2): Assume that fy = 0. There exists two
sequences of non-negative real numbers (Oé](;;)y(Hg, K))k>1 and (oz,(~C )X(Hg, K))k>1
satisfying: > -, a( ) v(Hp, K) < 00, Y72, a,(;))((Hg, K) < oo for i = 0,1, 2; such
that for any (y, ), (y , ') € R® x (Rde)>®

e

2
|yk Y

k=1

+Za (Ho, KO)l|lxk: — il

In the whole paper, we impose an autoregressive-type structure on the covari-

ates:
Xt :g(thlaXt72a-";nt)7 (21)

where (1;)tez is a sequence of zero-mean random variables such as (9, &;)iez is
i.i.d and g is a function with values in R% satisfying for all z, 2" € (R% )N,

E[lg(0,n0)[I"] < oo and |lg(z;m0) — g(2’smo)l,, < Zak lee — 23]l (2.2)
for some r > 1 and non-negative sequence (ax(g))x>1 such that >-22 | ax(g) < 1.
For r > 1, when (2.2) holds, we define the set

o(r) = {9 e R/ Ao(fy, {0}) and Ao(Mj, {#}) hold with

5 max (o). 0%} (. 01) + ol (M. (03} <1}
k=1
U {9 €R? / fo =0 and Ag(Hy, {0}) holds with

||so|\iimax{ak<g>, o} (Ho, {01)} < 1}.

k=1

In the sequel, we make the convention that if A;(My, ©) holds then al(f,)y (Hy, ©)

= o}y (Hp,©) = 0 for all k € N and if A;(Hp,©) holds then o’} (M, 0) =

a,ggAM@,@) =0 for all k € N.
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The condition (2.2) allows to assure the stability of the process X;. Together
the aforementioned assumptions assure the existence of a stationary and weakly
dependent solution of order r to the model (1.1), as shown in the following
proposition.

Proposition 1. Assume that Ao(fy,0), Ao(My,©) (or Ag(Hy,0)) and (2.2)
hold. If 6* € © N O(r) with r > 1, then there exists a T-weakly dependent
stationary, ergodic and non anticipative solution (Zy)iez Zy = (Yi, Xy), to (1.1),
satisfying E[|| Zo||"] < .

2.2. Inference and significance test of parameter

In this paragraph, we describe the use of the Gaussian quasi-maximum likeli-
hood to obtain an estimator of the parameters of the model (1.1). The main
asymptotic properties of this estimator are also established. Assume that the
observations (Y1, X1),...,(Y,, X,) are generated from (1.1) and (2.1) accord-
ing to the true parameter 8* € © which is unknown. For all ¢ € Z, denote
by Fi = o((Ys, Xs), s < t) the o-field generated by the whole past at time t.
The mean and the variance of Y;|F;—1 and fg« (Y;—1,...; X¢—1,...) and variance
MGZ* (Yi—1,...;X¢—1,...) respectively. For any 6 € O, the conditional Gaussian
quasi-log-likelihood is given by (up to an additional constant)

n ) Y, — ft 2
Sa) wih q0) = T o
0
where f§ = fo(YVie1,Yi—o.. s Xoo1, Xe—o,...), Mf = Mp(Yi—1,Yio...; Xy,
Xi_9,...) and HY := (M})%
Since (Y, Xo), (Y—_1,X_1),... are not observed, L, (f) is approximated by

- 1N _ R Y, — f1)2 .
Ea0) = =3 > a0) with o) = T g iy,
t=1 0

where [ = fo(Yii1,...,Y1,0 X, 1,...,X1,0), M} := My(Yi_1,...,Y1,0;

..., X1,0) and ﬁé = (M\g)z Thus, the QMLE of 6* is defined by

~

0, = argmax(L,(0)).
o

We set the following regularity conditions to assure the identifiability of the
model and to derive the asymptotic behavior of the QMLE.

(AO0): for all § € © and some t € Z, (fg = f} and H}. = H} a.s.) = 0 =10
(A1): 3h > 0 such that infpee Hy(y,x) > h, for all (y,z) € RN x (RN,
(A2): for all § € ©, c € RY, ( c’%fg* =0 or c’%Hg* =0 ) a.s. = ¢ =0,

where ’ denotes the transpose.



122 M. L. Diop and W. Kengne

Assumption (AO0) is an identifiability condition and it will be discussed in detail
for each of the examples of processes studied in the paper. From (A1), the quasi
likelihood is well defined, whereas (A2), which is classical (see for instance
[2]) allows to derive the asymptotic distribution of the QMLE. The following
theorem addresses the strong consistency of the QMLE.

Theorem 2.1. Assume that (A0), (A1), Ao(fo,0), Ao(My,O) and (2.2) (with
r > 2) hold with

ozz(c(?g/(fe, 0) + Oz,(c(g((fe, )+ ag?%,(Me, 0) + oél(c(’)g((zwe7 o)
+ o} (Hy, 0) + ik (Hy, ©) = O(k™7), (2.3)
for some v > 3/2.
If0* € ©NO(r) with r > 2, then
0, =5 0"

n—oo

To derive the asymptotic distribution of the QMLE, it is necessary to take into
account the constraints in the parameter space © corresponding to the model.
For example, in some processes belonging to (1.1), such as the ARCH-X models
(see below), the components of §* are constrained to be positive or equal to zero.
In order to propose a parsimonious representation, it is often required to test
whether or not the exogenous covariates are relevant. For example, in an ARCH-
X (1) model defined by Y; = &0y with 07 = o + a{Yf_k + v*'X,_1, the true
parameter vector is 0* = (af, o, 7*) € © CJ0, 0o[ X0, oo[* 1 The significance
test of the covariate X; consists to verify the nullity of the parameter v*; that
is, if the true parameter vector can be of the form 0y = (g, a1,0) which is not
an interior point of ©. In this situation, it is impossible to apply the asymptotic
normality results based on the classical assumption of “interior point” to derive
the asymptotic behavior of the test statistic used. To take into account such a
scenario in the general class (1.1), we will consider that the component ¢ of 6*
is constrained if the i-th section of © is of the form [6;, §;] with 8, < ;. Assume
that the dy (with dy € {0,...,d}) last components of #* are constrained, and
let dy = d — dy. Therefore, if do > 1 and 07 € {6,,0;} with i > dy, then 6* is
not an interior point of ©. For instance, in a scenario where 6} = ,, with the
QMLE 0,, = (é\l,m . 7§d,n)a it holds that \/ﬁ(@n — 67) € [0,00) which cannot
tend to a Gaussian distribution with mean 0. By convention, it is assumed that

0* € © if dy = 0. When dy > 1 and the set © is assumed to be large enough,
then the following relation holds:

d
U {Vr@-07), 6c0}=C with c=]]c, (2.4)
n>1 1=1
where C; = [0, oo[ when i > d; and 0} = 0,, C; =]o0,0] when i > d; and 6} = 0;,
0.

and C; = R otherwise. The set C is a convex cone which is equal to R if §* €
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Let us define the following matrices

qo(6%) 9q0(0”) 9q0(0")

0006’ 0o 20 1
Under the assumptions A;(fp, ®), A;(Mp,0) (with ¢ = 0,1,2), one can show
the existence of F' and G. In addition, in view to (A2), the same arguments
as in [2] allow to establish that matrix F' is positive definite. Consider then the
F-scalar product (z,y)r = 2’Fy and the norm Hx||% = 2'Fz for z,y € R%.
Let us define the F-orthogonal projection of a vector Z € R? on the cone C as
follows:

F:E[ } and G=E (2.5)

Z¢ = arg inf ||C — Z|| .
arg inf [|C' —Z|
This definition is equivalent to
Z¢eC with (Z-2°C-2Z <0, VCeC. (2.6)

[e]
Note that, when #* € ©, we have Z¢ = Z. Combining all the regularity condi-
tions and definitions given above, we obtain the following main result.

Theorem 2.2. Assume that (A0)-(A2), (Ai(f9,9)), (Ai(My,0)) (for i =
0,1,2) and (2.2) (with r > 4) hold with
oy (f0,©) + 0y (fo, ©) + 0]y (My, ©) + yx (My, ©)
+al) (He, ©) + ol (He,©) = O(k™7), (2.7)
fori=0,1,2 and some v > 3/2.
o If0* € ©NO(r) with r > 4, then

Vn (é\n — 9*) £y Z° with Z~ N, (0,%), where ¥ := F'GF™*.

n—-+o0o

o IfO* ¢ (%ﬂ@(r) with r > 4, then
6. _ g :O< /loglogn>
n

The matrix ¥ can be consistently estimated by 5,, = Fn(én)’lGn(gn)Fn(gn)’l,
where

S 1 q(6,) ~ 1N 99:(0,) 9g4(6,,)
Fal0) =53 T e Ol =03 55

Now, we are interested to investigate whether or not a given subset of com-
ponents of 8* are equal to some fixed vector. To do so, consider the following
hypothesis testing:

Hy: T0* =1 against Hy: T6* # 9, (2.8)
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where I' is a dy x d full-rank matrix and g is a vector of dimension dy. Define
the Wald-type test statistic given by

W, = n(T8, — 9o) (IS, IY) " (T'6, — ). (2.9)

Under H, the asymptotic behavior of W, is given by the following theorem.

Theorem 2.3. Under Hy, assume that the assumptions of Theorem 2.2 hold.
Then
W, nﬁm (TZC)(TST) T2  with  Z ~ Ny (0,%).

By the above theorem, at a nominal level « € (0, 1), the critical region of
the test is (W), > ¢o), where ¢, is the (1 — a)-quantile of the distribution of
(TZ€)(I'ST")~'T'ZC. The critical value g, can be computed through Monte-
Carlo simulations. The following corollary follows immediately when 6* belongs

to the interior of the parameter space.

Corollary 1. Assume that the conditions of Theorem 2.3 hold. If * € ©, then
W,, converges to a chi-square distribution with do degrees of freedom.

Under Hj, one can easily see that W,, =3 +o00; which shows that the test
n—oo

is consistent in power. In the empirical studies, we will restrict our attention
to test the relevance of the exogenous covariates by using the hypothesis (2.8)
with %9 = 0 and an appropriate matrix I'.

3. Model selection
3.1. Model selection framework

Assume that (Y7,...,Y},) is a trajectory of the process Y = {Y;, t € Z} satisfying
AC-X (Mpy+, fg~) (defined as in (1.1)), where the true parameter 6* is unknown.
Let M be a finite collection of models belonging to AC-X(My, fo) with 0 €
O. Assume that M contains at least the true model m* corresponding to the
parameter #*. Our objective is to develop a procedure that allows to select
the “best model” (that we denote by m,,) among the collection M such that
it is “close” to m* for n large enough. To this end, we consider the following
definitions and notations in the sequel:

e a model m € M is considered as a subset of {1,...,d} and denote by |m/|
the dimension of m (i.e, |m| = #(m));

o form e M, ©,, = {(8i)1<i<q € © with 6, = 0if i ¢ m} is a compact set
containing 6(m), where 6(m) denotes the parameter vector associated to
the model m;

e M is considered as a subset of the power set of {1,...,d}; that is, M C

PU{L,...,d}).

For instance, when the observations Y7, . ..,Y,, are generated from a ARMAX(p*
,q", s*) model (defined below), the collection M of the competing models could



Inference and model selection in general causal time series with exogenous covariates 125

be considered as a family of ARMAX(p, q,s) with (p,q,s) € {0,1,...,Pmaz } X
{0,1,...,Gmaz} X {0,1,..., Smaz}, Where Prazs Gmaz, Smaz are the fixed upper
bounds of the orders satisfying pmaz = 0, Gmaz = ¢, Smaz > $*. The parameter
space © is a compact subset of RPmasTdme+smar and thus a model m is a subset

Of {1?27 A ,pmaz + Qma;v + Smaz}~

3.2. Model selection criterion and asymptotic results

Note that, under the identifiability assumption (A0), one can show that, for all
m € M, the function § — —E[go(6)] has a unique maximum in ©,, (see proof of
Theorem 2.1). Let us thus define the “best” parameter associated to the model
m as
0% (m) := argmin (E[go(0)]) .
0co,,

When m D m*, we have 6*(m) = 6*(m*) = 6*; that is, 0*(m) will play the role
of the true parameter 6* in cases of “true” or overfitted model. For m € M, we
define the QMLE of 6*(m) as

6(m) := argmax (L, (0)) . (3.1)
0€O0,,

Now, define the penalized criteria by

Ch(m) := —2L,(0(m)) + kn|m|, for all m € M, (3.2)

where (K, )nen is an increasing sequence of the regularization parameter (possi-
bly data-dependent) that will be used to calibrate the penalty term, and |m| is
the number of non-zero components of 6*(m) € ©,, that will be called the di-
mension of the model m. The selection of the “best” model M, is then obtained
by minimizing the penalized contrast; that is,

My 1= argri\l/iln <6n(m)) . (3.3)
me

Using the results of Theorems 2.1 and 2.2, we establish the asymptotic behavior
of the model selection procedure, as shown in the following theorem.

Theorem 3.1. Let (Y1,...,Y,,) be a trajectory of a process belonging to AC-
X (M=, for), where 0* € ©NO(r) with r > 4. Assume that (A0)-(A2), (A:(fo,
©)), (A;(My,0)) (or (Ai(Hy,0))) (fori=0,1,2) and (2.2) (with r > 4) hold

with k,/n — 0. Suppose that when 6* € O,
n—oo

ZWZZ{ f@a (f07 )+Oé Y(M97@)+a;i)x(M9a@)
k>1

a%/(He, 0) + a§f;(H9, @)} <oo. (3.4)
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(i.) If kn/\/loglogn —7 09, then
M, Pyomr

n— oo

(ii.) When 0* € O, there exists a constant ¢ such that if lirginf(/s:n/ loglogn) >

c, then
~ a.s, *
My —b m
n—,oo

(ii3.) If 6% € O and (3.4) holds, then

O(iy) — 0% = 0(1 /long“g”)_

Remark that, 1sz O{Q(z) (fo, )+a§®((f9, )+a§l%/(M9,@)+a§Z;((M9,@)+

( ) v (Hp, ©) —l—a(l) (Hp,©)} = O(j™") for some v > 3/2, then (3.4) is satisfied.
The first and second parts of Theorem 3.1 show the consistency of the selection
procedure; in particular, the second part provides sufficient conditions for the
consistency of the HQC procedure. The last part establishes that the estimator
of the parameter of the selected model 6(m,,) obeys the law of iterated logarithm.

4. Some examples

In this section, we detail some particular processes satisfying the class (1.1). We
show that the regularity conditions required for the main results are satisfied
for these processes, with a particular emphasis on the identifiability assumption.
For each example discussed, we consider that X; = (X714, Xa4,..., X4, ) € R
(d € N) represents a vector of covariates; and (& )icz is a sequence of zero-mean
i.i.d. random variable satisfying E(£}) < oo for some r > 2 and E(£3) = 1.

4.1. Threshold ARX(oco0) models

Consider the threshold autoregressive model with exogenous covariates (TARX
(00)) defined by,

Yi=10(6") JrZ(lZ’k (0") max(Y;_g, 0)+1;, (6%) min(Y;_x, 0 )+Z% ) Xi—k
k>1 k1

+&, VEZ, (4.1)

where 0% is the true parameter and vo(-), ¥; (+), ¥y (), () (for k& > 1) are
assumed to be twice continuously differentiable functions on ©. This model is
a generalization of the threshold AR process of Tong (1990) [30]. Also, the AR-
MAX process (see Hannan and Deistler (2012) [14]) is a specific example of the
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model (4.1). Set f§ = 1o(0) + Yo (w,j(e) max(Y;_g, 0) + oy (8) min(Yy_y, 0))

+ o1 V() Xy for all 0 € ©.IF 37 o) [|73,(07)]| < o0 and 37, - max {ar(g),
[k (0%)], [y (0%)|} < 1, then, assumption Ag(fp, {6*}) holds and there exists
a stationary and ergodic solution with r-order moment. The assumption (A1)
holds with h = 1. Denote for t,i € Z,

ft,i = O—(gtfjmj > i) thku k> 0)7 (42)

the o-field generated by {&—;,j >4, Xi—x,k > 0}. Let us set following addi-
tional conditions:

(BO): E[¢Xy] =0 for all (t,t') € Z2;

(B1): for ¢t,c¢™ € Rsuch that ¢™#0 or ¢ #0, ¢ max(Y;_;,0)+¢~ min(Y;_;,0)
given F ; is non-degenerate;

(B2): if (cx)ren is a sequence of vector of R% such as 3y, # 0 (with kg € N),
then >, <, ¢, X¢— is non-degenerate;

(B3): the function 6 — ;" (0) or 0 — ¢ (0), for some ko > 1 is injective;

(B4): The function 0 — g(0) (or 6 — i, (0) for some kg > 0) is is injective
and holds (B2).

To ensure the identifiability, both the assumptions (B3) and (B4) are not
necessary; that is, the model is identifiable if (B1) and ((B3) or (B4)) hold.
Indeed, let § € © such that ff = f£.. Then,

S (07 = w7 (0) max(Vy-1,0) + (45 (6°) = v (6)) min(Y;-1,0))
E>1

= 00(0) = vo(07) + Y (7(0) — 4 (67)) Xi—k.  (43)

k>1

By contradiction, assume that ;" (6%) — ;5 (6) # 0 or ¥, (0*) — ¢, () # 0 for
some k > 0 and let m > 0 be the smallest integer satisfying ;! (6*) — ;% (8) # 0
or ¢, (0*) — .. (8) # 0. It holds from (4.3) that,

(U (67) = ¥ (0)) max(Yim, 0) + (4,(67) = ¥, (9)) min(Yim, 0)
= Yo(0) —¢o(07)
= (@ (07) = 0 (0) max(Yio, 0) + (457 (6%) — 5 (6) min(Yiy,0))

k>m

+ 30 (hO) = O Xek (44)

k>1

Since the right-hand side of (4.4) is F; ,,-measurable (thanks to the non antici-
pative property of the process (Y3)), (¢ (0%) =, (0)) max(Y;—m, 0)+ (¢, (0%)—
w;z(b‘)) min(Y;_,,,0) given F;,, is degenerate, which contradicts the assump-
tion (B1). Thus, ¢; (0%) — 1 (0) = 0 and ¢, (0%) — ¢, (§) = 0 for all k& > 1.
Therefore,
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e if (B3) holds, then 6 = 6*;
e clse, if (B4) holds, then we have from (4.4),

> (i (0)) Xtk = Yo(6) — o (67),

k=1

which implies that v (0*) = v (8) Vk > 1 (by the assumption (B2)); and
consequently, 1y(0) = ¥o(0*). Hence, 6 = 6*.

In the case of the ARX(co) models (obtained when ;" (0%) = 1, (6*), for all
k > 1), the condition (B1) is not necessary; the identifiability holds with (B0)
and ((B3) or (B4)).

4.2. Asymmetric Power ARCH-X(d,00) models

Consider the Asymmetric Power ARCH with with exogenous covariates (APA
RCH-X(6, 00)) defined by,

Y;g = é}at((ﬁ*) with

oS (6%) = +Z(¢k (0)( max(Yg,k,O))é-l—(;ﬁ,;(ﬁ*)(max(—Yt,k,O))é)

k=1

+ka )Xi_k, VEEZ,  (45)

where 6* is the true parameter, ¢o(-), ¢ (-), 5 (), (), k > 1 are non-negative
(componentwise for v, (0*)) functions assumed to be twice continuously differ-
entiable on ©, with (¢o(6)) > 0 for all # € ©, X, is a vector of non-negative
(componentwise) covariates, and ¢ > 0. This process is an example of the class
(1.1) with f} = 0 and M} = 04(0). Numerous classical ARCH-type parametriza-
tions, for instance, GARCH-X (obtained with § = 2 and ¢; (0*) = ¢; (6%)),
TARCH-X (obtained with ¢ = 1) are specific example of (4.5). There are sev-
eral works in the literature based on the GARCH-X model, see for instance
Han and Kristensen (2014) [11], Nana et al. (2013) [22], Han (2015) [12]. Model
(4.5) is a generalization of the class of APARCH-X(4,p, q) studied by Francq
and Thieu (2019) [8]. Assume that 0* € ©(r), where ©(r) is given by

o) = {8 e R/ Y max {aula) Wl 167 O)1 . ol 165 917} <1

k>1

and Z ()1 < 4o for some vy > O}
E>1

Therefore, Ag(Hy,{6*}) holds; and a stationary and ergodic solution with 7-
order moment exists. If infgpco ¢o(#) > 0, then the assumption (A1) is satisfied.
The following assumptions are needed to ensure the identifiability.
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(B5): for all ¢ > 1 and ¢ € Z, the support of the distribution of &_; given F; ;
is not included in [0, 00) or in (—o0, 0] and contains at least three points.

(B6): the function 6 +— d)ﬁ() (0) or 0 — ¢, (0) for some ko > 0, is injective.

(B7): The function § — ¢o(6) (or 0 — 7k, (6*) for some ko > 0) is injective,
and the condition (B2) holds for this model.

By going along similar lines as in the Subsection 4.1 and by using the Lemma
4 in [8], one get that, if (B5) and ((B6) or (B7)) hold, then the model (4.5) is
identifiable.

Let us stress that, the i.i.d. assumption for (&;):cz is a bit strong for the model
(4.5). This assumption, which is needed to the large class AC-X (Mg, fo«) can
be relaxed to (&, Fi0)ez is a martingale difference sequence (see, for instance,
[8] in the case of APARCH-X(J, p, ¢) model) when checking the identifiability.
Also, as pointed out by Francq and Thieu (2019) [8], in the absence of covariates
and when (&) is i.i.d (i.e., the case of the APARCH(o00) model), the assumption
(B5) can be automatically reduced to: P(& > 0) € (0,1) and the support of
the distribution of £ contains at least three points. Moreover, Assumption (B5)
prevents taking redundant covariate; for instance, it excludes the situation where
X, 1 = max(Y;_4,0)? or max(—Y;_;,0)° for some i > 1.

4.3. ARX(00)-ARCH(o0) models

Consider the ARX(00)-ARCH(00) model given by,
Y =o(0%) + > vn(0%)Yiok + > (0°) Xik + &
k=1 k=1

et = &ou(07) with o (6%) = ¢o(0%) + kg O(0%)e}_s,
>1

(4.6)

where 6* is the true parameter, and ¥o(-), ¥i(-), v&(*), ¢o(), dx(-), k > 1 are
assumed to be twice continuously differentiable on ©, and satisfying ¢o(6) > 0
for all @ € ©. Model (4.6) is an extension of the ARMA-GARCH, ARMAX-
GARCH processes. This model belongs to the class AC-X (Mp«, fp«) with

fo= ¢0(9)+Z wk(9)YLk+Zv,’c(9)Xt,k and

k>1 k>1

M} = \/¢>O(9)+Z ¢ (0) (Yt—k_wo(e)—zwj(e)yt*k*j_Z%‘(e)Xt*k*j)Z’

k>1 j>1 j>1

for all § € ©. Hence, the assumption Ag(fs, {0}) holds with af’},(fs, {0}) =
|k (6)] and a,(g((fg, {6}) = || (9)]]. From an expansion of M}, one can easily
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get that, Ag(Mp,{0}) holds with
o’} (Mo, {0}) = v/3x(0) and
aECOY (Mo, {0}) = \/or(0) + S \/mhﬂkﬂ‘(@ﬂ for k > 2;

ol (Mo, {0}) =0 and o'y (Mp, {6}) = 320" /6i(0) | yk—i
for k > 2.

Therefore, the stationarity set ©(r) is defined by

O(r) {9 eRr?/ Zmax{oék |1k (6)]

k>1
k—1
+lioll (v/61(0) + > Vo)) } <1

and Z [l7£(8)]] < ~vu for some vy > 0}
k>1

Assumption (A1) is satisfied if infgpco ¢o(0) > 0. The identifiability conditions
can be obtained as in Subsection 4.1 and 4.2.

5. Simulation study

In this section, we consider a double autoregressive model with exogenous co-
variates, defined by

P1 g1 P2 q2
= ¢o+ Z oY+ Z ViXei+ & | oo+ Z Y2, + Z Bi(Xi—i © Xi—i),
i=1 i=1 i=1 i=1
(5.1)
where (Xi):ecz is an exogenous multivariate covariate process with values in
R (dﬂ? € N)7 P1,P2,41,92 € N7 ¢07¢1a"' a¢p1 € Ra ¢1,"' aw(h € Rdma Qg >
0, gy yap, >0, Bi, -+, By € [0,00)%, ® denotes the Hadamard product
(componentwise multiplication), & is a white noise with E¢Z = 1. This model is
a generalization of the factor double autoregressive (FDAR) process introduced
by Guo et al. (2014) [10] to extend the double AR(p) model proposed by Ling
(2007) [21]. The ARX(p) and ARCH-X(p) are particular cases of the model
(5.1). We assume that (X;)iez is a VAR(1) (vector autoregressive) process:

Xi=po+ 1 Xi—1+ 1 forallteZ, (5.2)

where g € R, ¢ is a real coefficients (d, x d,.)-matrix and 7; is a white noise
with E(nony) = 5. If ||p1]] < 1, then the stability condition (2.2) holds with
a1(g9) = |l¢1] and ax(g) = 0 for k > 2. The stationarity set O(r) is
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@(T) = {9 = (¢0a¢17"' 7¢p17a07a1,"' 7041727,(/):/[7"' 7¢¢;15617"' 76;2) S 67
where © C RP* ™! x (0, 00) x [0, 00)P2 x Ré=q1 [O,oo)qu? and

max(1,p1,p2)

Z max {a;(g), |#i| + [[€ollrai} < 1}’

i=1

with ¢; = 0if ¢ > p; and a; = 0 if ¢ > p,. Based on the examples discussed
in Section 4, if the conditions (B0) and (B3) hold for (5.1), then to satisfy the
identifiability condition, it suffices to impose the following assumption on the
covariate:

(B7): if (cp1)1<k<q, and (cr2)i<k<q, are sequences of vector of R% such as
E|Ck1,1 7é 0 and E|Ck272 7é 0 (Wlth 1 S k‘l S qi1, 1 S k‘g S QQ), then 231:1 C;CJXt—k
and Y32, ¢} ,X; , © X;_ are not degenerated.

Set ¥ = (Y1,...,¢¢) and B = (B1,...,Bq); the true parameter is 6* =
(¢0, &1, ap, 1,0, B8). In the sequel, we focus on the following two cases.

Case 1. We consider an example of model (5.1) with univariate covariates where
p1 = p2 = 1 and ¢; = ¢2 = ¢; the AR parameter is set to (¢g,¢1) = (0.5,0.5)
and X, = 1.

Case 2. In this second example, model (5.1) is considered with univariate/multi-
variate covariates where py = ps = 1, ¢ = 1 and g2 = 0; thus, the true
parameter is 8* = (¢o, 1, o, 1,17 ). This second example is related to the real
data application (see Section 6).

5.1. Estimation and significance test

Some results from Monte Carlo simulations are displayed to assess the asymp-
totic properties of the QMLE, as well as to investigate the empirical size and
power of the proposed procedure on testing the significance of the covariate X;.
We will consider samples where the innovation (&;):cz is generated from Gaus-
sian and Student distributions (with 5 with degrees of freedom). The model (5.1)
is considered in the Case 1 with p; = p2 = ¢1 = g2 = 1 (scenario Sg, Sy, S’
and S’y below). In the Case 2 (p; = p2 = ¢1 = 1, ¢2 = 0), we consider scenarios
with univariate covariate (scenario S”g and S”; below), the AR parameter are
(o, ¢1, 2y) = (23.61,0.7,21.56).

scenario Sy: 6* = (0.15,—-0.2,0.4,0.3,0,0);
scenario S;: 60* = (0.15,—0.2,0.4,0.3,0.08,0);
scenario S’y: 0* = (1,0.4,0.5,0.2,0,0);

scenario S’;: 6* = (1,0.4,0.5,0.2,0.07,0.07).
scenario S”: 6* = (37.95,0.33,32.11,0.02,0);
scenario S”;: 6* = (37.95,0.33,32.11,0.02, —0.21).
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The scenarios Sg, S’y and S correspond to cases where the covariate is absent;
S”y and S”; are related to the real data application. We consider the following
significance tests:

Hp : 0" = (0.15,-0.2,0.4,0.3,0,0) (Sp) against
Hy : 6" #(0.15,-0.2,0.4,0.3,0,0);

Hy: 6* = (1,0.4,0.5,0.2,0,0) (S}) against Hy: 6* # (1,0.4,0.5,0.2,0,0).

Hy : 6% = (37.95,0.33,32.11,0.02,0) (Sy) against
Hy: 0" #(37.95,0.33,32.11,0.02,0).

In each of the scenarios Sg, Sy, S’, S’1, S”¢ and S, we simulate 200 replica-
tions with the sample size n = 500, 1000 and test the nullity of the vector (v, )
after estimating the parameters of interest. Table 1 contains the empirical mean
and root mean square error (RMSE) of each component of the estimator. The
last column of Table 1 indicates the empirical levels and powers of the above
tests at the nominal level o = 0.05, where the empirical powers are computed
under the alternative H; respectively in the scenario S;, S’y and S”;. For the
scenario S’q, the histograms and estimated densities of the estimates are plotted
in Figure 1.

From these findings, one can see that, in all scenarios, the performance of the
QMLE is satisfactory in terms of the mean and that, the RMSE of the estima-
tors decreases when n increases. This is consistent with the results of Theorem
2.1. Also remark that, the fact of computing the QMLE with (1, 8) for trajec-
tories generated without covariates (see the scenarios Sg, S’y and S”() does not
affect the performance of the QMLE, which again confirms its good theoretical
properties. As seen in Figure 1, for each component of 6,,, the estimated density
is very close to that of the normal distribution; which is in accordance with the

[e]
asymptotic results obtained from Theorem 2.2 when 6* € ©. The results of the
test (see Table 1) show that, the statistic W), is slightly oversized for n = 500
in cases where the innovation is generated from Student distributions, but the
empirical levels are reasonable when n = 1000 in the sense that, they are very
close to the nominal one. Further, the empirical powers displayed increases with
the sample size and are quite accurate.

5.2. Model selection

Now, we are going to carry out other simulation experiments aimed at evaluating
the effectiveness of the proposed model selection procedure in the model (5.1)
for choosing the order g1 = g2 = ¢ in the Case 1. To this end, ¢ = 2 is set as
the “true” model m* and that the following scenarios are considered:
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e scenario Sj: 6* = (0.6,0.45,0.5,0.15,1,0.7,0.6,0.35);
e scenario S3: 6* = (0.15,0.4,0.5,0.2,0.1,0.1,0.03,0.3).

The competing models used are all process satisfying (5.1) with ¢ € {0,1,...,9},
which leads us to a collection of 10 models.

In the Case 2, consider the multivariate covariate X; = (X¢1,Xv2,-- , Xt 5),
a VAR(1) (see (5.2)) with parameter ¢y = (23.61,4.95,12.12,716.70,13.01)’,
¢1 = diag(0.7,0.57,0.51,0.26,0.56) and

42.62 —259 11.14 281.05 —14.65
-2.59  7.50 —1.29 200.64 —8.24
Y¥p=1 11.14 -1.29 41.13 1019.57 —1.10
281.05 200.64 1019.57 64948.60 —745.27
—14.64 —-8.24 —-1.10 —745.27  59.00

Consider the scenario S”; with the covariate X;; as the true model. The Case
2 with all the combination of the covariates is performed on the data; that is,
there are 32 competing models. This example is related and close to the real
data application.

For n = 100,125,150, ...,1000, we simulate 100 independent replications in
each of the three scenarios S7, S5 and S”;. We compare the performances of
the procedure with x,, = logn (see (3.2)) linked to the Bayesian Information
Criteria (BIC) and the procedure with x,, = cloglogn (c € {2, 3.5, 5}) linked to
the Hannan-Quinn information Criterion (HQC). For the scenarios S} and S3,
Figures 2 displays the points (n, ¢, ), where @, denotes the average of the orders
selected with trajectories of length n, as well as the curve of the proportions
of number of replications (frequencies) where the associated criterion selects
the true order. For the scenario of the Case 2 (i.e, S”1), the probabilities of
choosing the true covariate are displayed in Figure 3.

From these figures, the first remark is that, for all the penalties, the performances
of the procedure increase with n in each scenario. Further, the probability of
selecting the true order is very close to 1 when n = 1000. This shows that, these
procedures are in accordance with the results of Theorem 3.1. One can notice
that, in the scenario S7, the logn penalty is more interesting for selecting the
true order than the others penalties for a small sample size (see Figure 2 ((a)
and (b)) for n < 250), while in the scenarios S5 and S”;, the HQC with ¢ = 2
slightly outperforms the BIC penalization when n < 350 (see Figure 2 ((c¢) and
(d)) and Figure 3). However, the larger the sample size, the cloglogn penalty
(except for the case where ¢ = 2) provides the same accuracies in comparison
with the logn penalty, and displays satisfactory results. The results also show
that, as ¢ increases, the performances of the cloglogn penalty increase, which
reveals that the common use of the classical HQC penalization (i.e, the cloglogn
penalty with ¢ = 2) is not always the optimal choice to select the best model
with this information criterion.
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TABLE 1
Sample mean and RMSE of the QMLE for the model (5.1) following the scenarios So, S1,
S, 8’1, 8§70 and 8”1, where G and St refers to the Gaussian and Student innovation. The
last column shows the empirical levels (scenarios So, S, S”0) and powers (scenarios Si,
S’1, 8”1) at the nominal level 0.05 for the test of the relevance of the exogenous covariates.

QMLE
Scenario n b0 $1 ag aq b B W
Sg G 500 Mean 0.1488 —0.2001 0.3887 0.2987 0.0019 0.0033 0.035
Rmse 0.0435 0.0607 0.0421 0.0924 0.0276 0.0063
1000 Mean 0.1502 —0.2023 0.3911 0.2979 —0.0006 0.0032 0.045
Rmse 0.0326 0.0370 0.0288 0.0704 0.0832 0.0055
Sg St 500 Mean 0.1511 —0.1956 0.3820 0.3332  —0.0013  0.00585 0.070
Rmse 0.0445 0.0711 0.0630 0.1934 0.0286 0.0115
1000 Mean 0.1475 —0.1998 0.3902 0.3071 0.0004 0.0049 0.055
_______________ Rmse _ 0.0302 __ 0.0400 __ 0.0545 _0.1394 _ _0.0180 _ _0.0092 _ __ _____
S, G 500 Mean 0.1520 —0.2012 0.3857 0.2997 0.0806 0.0049 0.750
Rmse 0.0488 0.0547 0.0439 0.0902 0.0316 0.0095
1000  Mean 0.1511 —0.1996 0.3889 0.3006 0.0793 0.0031 0.970
Rmse 0.0327 0.0365 0.0295 0.0672 0.0212 0.0055
Sy St 500 Mean 0.1518 —0.2004 0.3790 0.3149 0.0803 0.0089 0.825
Rmse 0.0396 0.0616 0.0695 0.1734 0.0275 0.0178
1000 Mean 0.1497 —0.1977 0.3862 0.3076 0.0805 0.0047 0.990
Rmse 0.0295 0.0452 0.0512 0.1334 0.0198 0.0090
s’g G 500 Mean 1.0003 0.4009 0.4793 0.2004 0.0020 0.0065 0.030
Rmse 0.0815 0.0447 0.0672 0.0285 0.0383 0.0126
1000 Mean 1.0015 0.4005 0.4854 0.1986  —0.0012 0.0050 0.055
Rmse 0.0481 0.0277 0.0485 0.0200 0.0295 0.0095
S’g St 500 Mean 1.0061 0.3957 0.4734 0.2011 0.0005 0.0101 0.075
Rmse 0.0830 0.0465 0.1230 0.0583 0.0393 0.0197
1000 Mean 1.0025 0.3967 0.4852 0.1976 0.0003 0.0088 0.065
_______________ Rmse _ 0.0554 __ 0.0296 __ 0.0880 _0.0349 _ _0.0245 _ _0.0181 _ _______
s G 500 Mean 1.0022 0.3993 0.4943 0.2005 0.0704 0.0702 0.795
Rmse 0.0821 0.0443 0.0803 0.0293 0.0449 0.0315
1000 Mean 1.0019 0.3970 0.5052 0.1979 0.0680 0.0672 0.975
Rmse 0.0587 0.0310 0.0548 0.0217 0.0322 0.0224
S’; St 500 Mean 1.0098 0.3979 0.5015 0.1956 0.0711 0.0759 0.665
Rmse 0.0837 0.0461 0.1575 0.0576 0.0431 0.0522
1000 Mean 0.9996 0.3990 0.4949 0.2034 0.0733 0.0692 0.930
Rmse 0.0576 0.0318 0.1119 0.0420 0.0295 0.0399
S”g G 500 Mean 37.9776 0.3259 32.2873 0.0198 0.0025 0.085
Rmse 2.4524 0.0373 2.8635 0.0021 0.0350
1000  Mean  37.7283 0.3274 31.9529  0.0200 0.0042 0.060
Rmse 2.2560 0.0302 2.7856 0.0018 0.0325
8”7 St 500 Mean 38.0380 0.3254 32.0056 0.0194 0.0027 0.065
Rmse 2.3269 0.04313 2.8796 0.0036 0.0370
1000 Mean 37.8905 0.3279 31.7781 0.0199 0.0019 0.040
,,,,,,,,,,,,,,, Rmse ~_ 2.1403 _ 0.0273 _ 2.8731 _0.0026__ _0.0290 _ ______________.
s G 500 Mean  37.9698 0.3265 33.0176  0.0189  —0.2092 0.985
Rmse 2.4005 0.0401 2.6480 0.0040 0.0310
1000  Mean  38.1928 0.3255 32.7826  0.0193  —0.2113 1.000
Rmse 2.1828 0.0289 2.5628 0.0031 0.0263
8”1 St 500 Mean 38.2794 0.3232 32.5255 0.0194 —0.2117 0.995
Rmse 2.2897 0.0397 2.8555 0.0065 0.0282
1000 Mean 38.3885 0.3288 32.1560 0.0198 —0.2147 1.000

Rmse 2.1398 0.0258 2.7629 0.0046 0.02653
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Fic 1. Histograms of the components of §n in the scenario S’ with sample size n = 1000.
The overlaying curves are the density estimates and the dotted vertical lines represent the

true values of the parameters.

(a) Avarage of the selected orders in the scenario s (b) Probability of selecting the true order in the scenario S‘1
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on 100 independent replications depending on sample’s length in the scenarios ST and Sj.
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Probability of selecting the true covariate in the Case 2
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Fia 3. The frequencies of selecting the true covariate based on 100 independent replications
depending on sample’s length in the scenario S”1.

6. Real data example

We consider the daily concentrations of the PM;jo (particulate matter with a
diameter less than 10 pm) in the Vitdria metropolitan area; see Figure 4(a).
These data as well as those of the other meteorological variables (see below)
are obtained from the State Environment and Water Resources Institute, and
were collected at eight monitoring stations. We focus on the data from January
21st, 2005 to March 04th 2006, these observations on 408 days are a part of
a large dataset (available at https://rss.onlinelibrary.wiley.com/pb-assets/hub-
assets/rss/Datasets/RSSC%2067.2/C1239deSouza-1531120585220.zip)  which
were analyzed by Souza et al. (2018) [26] to quantify the association between
respiratory disease and air pollution concentrations.

The variables considered are: the average concentration for the particulate
matter (PMyg, pgm—2), sulphur dioxide (SOs, ugm~3), nitrogen dioxide (NO,,
pugm=3), carbon monoxide (CO, ugm=3), ozone (O3, pgm=3); and Air relative
humidity (RH, %). Table 2 displays some elementary statistics of these variables.

As pointed out by Ng and Awang (2018) [24], PM;, is a notorious air pollu-
tant associated in particular with detrimental health impacts; it affects the res-
piratory and cardiopulmonary functions and increases the morbidity and mor-
tality rate of related diseases. Therefore, forecasting the PM;(y concentration
and understanding its relation with other factors is an important issue. Several
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TABLE 2
Some elementary statistics of the variables PMio, SO2, NO2, CO, Os, RH, for the
period from January 21st, 2005 to March 04th 2006.

Variable Mean SD Min Q1 Med Qs Max
PMig (ugm ™) 32.04 8.62 11.16 26.19 31.87 36.92 66.60
SO, (ugm™3) 11.64 2.74 4.89 9.75 11.63 13.48 19.29
NOs (ugm™2) 24.57 6.41 10.47 19.93 23.79 28.84 46.84

CO (ugm™32) 969.70  254.85  456.00 785.10  951.00 1129.70  2141.50
O3 (;Lgm_s) 29.96 7.68 16.76 24.79 28.46 33.96 66.52

RH (%) 79.21 6.52 62.45 74.36 78.67 83.62 95.39

models, including among others models, ARIMA, MLR (multiple linear regres-
sion), RTSE (Regression with time series error), were considered; we refer to
Ng and Awang (2018) [24] and Ng (2017) [23] and the references therein for an
overview of this issue.

In this section, we focus on the forecast of the PM;y concentration from
some meteorological variables of the previous day. One know that (see for in-
stance, Ng and Awang (2018) [24] and the references therein), the RTSE can
be used for such data. We apply the model (5.1) (whose the RTSE is a spe-
cific case when p; = g2 = 0) with p1,p2,q1,92 € {0,1}, and the covariate
X = (8024, NO3,,CO, 03,4, RH;)' (the value of the corresponding variable
at day t). The following issues are addressed.

1. Model selection. The aim is to select the orders p1,p2,q1,q2 and the
“best” subset of the covariates that are the major factor related to the
next-day PMjg concentration. For this purpose, we consider all the com-
bination of the covariates with pi,p2,q1,92 € {0, 1}; which represents a
collection of 376 models. The procedure based on the penalized crite-
ria Cy,(m) (see (3.2)) is applied with the regularization parameter x,, =
logn, 2loglogn, 3.5loglogn, 5loglogn. These criteria (BIC and HQC)
select the model with p; = po = g1 = 1, g2 = 0 and the covariate RH. This
result shows that, compared to the RTSE, the selected model is preferred.
This result is in accordance with some existing works (see, for instance,
[24] and [23]) which have found that the air humidity of the previous day
is an important factor related to PM;y concentration.

2. Estimation and significance test. The estimated model is:

PMlO,t = 37946 + 0.330PM10¢,1 - 0210RH15,1
(2.671) (0.024) (0.028)

+ 32.108 4+ 0.023 PM?2 ,
5t\/(?..362) + (0.003) 10,t—1

where in parentheses are the standard errors of the estimators obtained
from the robust sandwich matrix. The test (2.8) with ¥y = 0 is now applied
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(a) Concentration of PM10 (b) Histogram of residuals
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F1G 4. (a) The daily concentrations of the PMio from January 21st, 2005 to March 04th 2006;
(b), (c) the histogram and the cumulative periodogram of the residuals; (d) the autocorrelation
functions of the squared residuals.

for testing the significance of the covariate. At the nominal level o = 0.05,
the critical value of the test, computed from (I'Z€) (TSTY)~'T'Z¢ is 2.68
and the statistic, computed from W,, (see (2.9)) is 10.86. Thus, the null
hypothesis is rejected. Figure 4 displays the histogram and cumulative
periodogram of the residuals as well as the autocorrelation functions of
the squared residuals. From these findings, the residuals do not show any
signs of correlation.

In conclusion of this section, let us stress that, several authors have applied the
MLR and the RTSE on other data and have found that NOs, CO, O3 were also
important factors associated to the PMjo concentration (see [24] and [23]) and
the references therein). For the data considered here, and by applying the model
(5.1), it appears that these variables were less important in for forecasting the
PM;( concentrations.

7. Summary and conclusion

This paper considers a general class of causal processes with exogenous covari-
ates in a semiparametric framework. This class is quite extensive and many
classical processes such as ARMA-GARCH, ARMAX-GARCH-X, APARCH-
X,--- are particular cases. Sufficient conditions for the existence of a stationary
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and ergodic solution are provided.

A quasi likelihood estimator is performed for inference; the consistency of this
estimator is established and the asymptotic distribution is derived. This distri-
bution coincides with the Gaussian one, when the true parameter is an interior
point of the parameter’s space.

A Wald-type statistic is proposed for testing the significance test of parameter.
The asymptotic studies show that, this test has correct size asymptotically and
is consistent in power. In certain cases, this test can be used in particular to
test the relevance of the exogenous covariates.

The model selection question for the class AC-X (Mpy-, fo~) is carried out by a
penalized quasi likelihood contrast. The weak and the strong consistency of the
proposed procedure is established. These results provide sufficient conditions for
the consistency of the BIC and the HQC procedures. Simulation study shows
that, the empirical and the theoretical results are overall in accordance.

An extension of this works is to address the inference, the significance test
of parameter, the model selection problem for the class AC-X (Mp-, fp-) with a
non Gaussian quasi likelihood. For instance, as pointed out by Kengne (2021)
[18], the use of the Laplacian quasi likelihood will allow to reduce the order of
moments imposed to the process. Other topics of a research project, are the
change-point detection and the prediction question (see for instance Ing (2003)
[15], Ing and Wei (2003, 2005) [16, 17]) for this class of models.

8. Proofs of the main results

To simplify the expressions, in the proofs of Theorems 2.1, 2.2 and 3.1, we will
use the conditional Gaussian quasi-log-likelihood given by L, (8) = — ;" ; ()
and L, (0) = — >t @:(0). Throughout the sequel, C' denotes a positive constant
whom value may differ from an inequality to another.

8.1. Proof of Proposition 1

We verify that the process Z; := (Y;; X;) satisfies the conditions required for
the Theorem 3.1 in Doukhan and Wintenberger [6]. According to (1.1), for all
teZ,

Zy = (Mg-(Yeo1, .. s Xom1, .. )+ for Viet, o5 X1, -); 9(Xim1, - 5me))
=F(Zi-1,Z9,...;Uy),

with Uy = (&, m) and F(z;Uy) = (M(;* (Y1, 321,-- )&+ for (Y1, -5 21, . .);
g(z1,...5my)) for all z = ((yk,l'k))keN € (R4=*+1HN Thus, the equation (1.1)
of [6] holds for (Z;)ez. For a vector z = (y,r) € R%*+1 define the norm
Izllw = |y| + wg||z|| for some w, > 0. According to Doukhan and Wintenberger
(2008) [6], it suffices to show that:

(i) E||F(z;Up)||, < oo for some z € (R%+1)N;
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(ii) there exists a non-negative sequence (o (F'))g>1 satisfying 2@1 an(F) <
1 such that, for all z,z € (Rdw"l‘l)N’

E[|F(z; Up) — F'(2;Uo)ll;, < Zak Mzk = Zkllw-

k>1

Using the condition (2.2), the part (i) is directly obtained from the assumptions
AO(fev@)7 Ao(Mg,e).
To prove (ii), let z = (z1,...), 2 = (1,...) € (R%=+1)N such that z; = (yx, %)
and Zx = (Jg, Zx) for all k > 1. From Aq(fy, O), Ag(Mp,O) and (2.2), we get
II1F(z; Uo) = F(2;Uo)ll,, I,
<My, -5 21,-0) = Mp(gn, . 521, )) ollg
+er(y1,--~, w1,.) = folGu 321 e |,
+wg (g, . 5m0) = 9(F1, - 5m0)l,
o
<> (% (o, ©) + li€ollra iy (Mo, ©) ) Iy —

k=

=

£ 3 (al%(10,0) + ool (Mo, ©)) zn — |
k=1

+ w, Zak e

NE

<3 () (10, ©) + ol f’} (Mo, ©) ) e — i
k=1
— (1 (0) _
tu Y (- (ol (o, 0) + ol ok (Mo, ©)) + an9)) s — ]
k=1 z
<Y an(F))lzk = il
k=1
with

o (F) = max {af’} (0, 0) + |€ollral’y (Mo, ©),

(0l (. 0) + 6ol ailk (Mo, ©)) + anly) )

Thus, to get > p, ax(F) < 1, it suffices to choose w, sufficiently large, such
that

S Lok (fo. ©) + 6l (Mo, @)}
1= Yoy max {ar(g), o} (0, 0) + llcollaly (Mo, ©) )

This completes the proof of the proposition. |

Wy >
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8.2. Proof of Theorem 2.1

We consider the following lemma.

Lemma 1. Assume that the assumptions of Theorem 2.1 hold. Then

141

1~ a.s;
L2,0) - L,(0)] =5 0.
Proof of Lemma 1
Remark that
1 ~
NLn(9) = La(@)]le < ~ Z 13(0) — a(0)]e-
Hence, by Corollary 1 of Kounias and Weng (1969) [19]., with 2 < 7 < min{3,r}
(without loss of generality), it suffices to show that
3
Z B (13060) - a@)13°) < o (8.1)

For any 6 € O, by applying the mean value theorem at the functions x — w%

and z — log x, we have

|2:(6) — q:(8)]

Y,‘]/f\tz Y*ft2 -

< ( tﬁte) ! tHée) ’+|logH5—logHg|
6

Y= > (Y- fD)? =
- (tz\%)g ~ Ry |+ 2] tog 375 — log |
%

v ( (55)2 - ) + g (0= o = = 27)|

IN

hl/g‘MO M5|

— 1 2~
éhwm To P05 = Myl + £ 1Js = FollFy + fo = 2Yil + 75 Mg — Myl

< O((IY: — F512 + 1)IME — M|+ | — F511 75 + fo — 2Y4)).
This implies

E[la0) - a@)lg°] < C(E[(1v: - £113 + 1) 1305 — g1

+E[I1fi - £518° (1 F3lle + 53lle +21%:) "] ).
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Moreover, since 8* € O(r) for some r > 2, by Assumption Ay(¥y,O), one can
easily show that:

T r/2 r/2
o« E |7+ 550 + 1750 + 18115 + IAT3II5 + Il + 1516 < oo

(8.2)

E(17; ~ fille) < O( 3 {3 (. ©) + ok (10,0)})
. N = o (83)
E(| M - M) < (g{ Y (M, ©) +afly (My,0)})".

Then, by the Holder’s inequality, we have
E[15 - 751> (175 e + 155 0le + 20v2l)°]
70 e\ 2 7r v 7/2\ /3
< (B[ - £515)) (E[erue +11£5lle +20v:l] %)
7/3
< (Y {alh (fo.0) + ok (f0.0)}) .

k>t
Again, by the Holder’s inequality, from (8.2) and (8.3), we obtain
7/3 3
E[(I¥: — #5113 + 1) I35 — Mp1°]
<[ + 5 + 1187165 - Mg’
F1\2/3 1/3
< E[Iv:+£5 + 1\\9}) (E[I1MG - M8))

<C’(Z{a (My,© ;}((Me,@)}) i

k>t
Hence, from (2.3), we deduce

> 2k (l6) - a@)13°) <

>1

7/
O i ({0l (0,0) + 0%k (0, 0) +al®} (M3, ) + ol (M, 0)})

>1 k>t
1 1 \7/3 1
<Y rlE) <Crmm<x
>1 >1

where the last inequality holds since v > 3/2. Thus, the condition (8.1) is
satisfied. This completes the proof Lemma 1. |

To complete the proof of Theorem 2.1, we will show that: (1.) E[[|q:(8)|lg] < oo
and (2.) the function 6 — —E[go(0)] has a unique maximum at 6*.
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(1.) For all 8 € ©, using the inequality |log(x)| < |z — 1] for all z > 1, we have
1 o}
l9:O)] < gl Ye = J)" + [log (57) +log(B)]
6

1 t
< TOF 4 (4 2% 5) + ] 52— 1] + |log(a)
<O (Y2 + (F6)? +2Yifs + M) + C
Hence, from (8.2), we deduce
Elllallo) < C (B2 +Elf3I13 + 2BV El A1) 2)
+E[|M513]) + € < oo,

which shows that (1.) holds.
(2.) Let 6 € © with 6 # 6*. We have

Elg0(0)] — Elgo(6*)] = E[E [(g0(0) — qo(67)) | F_1]]. (8.4)
Moreover,

E[(g0(0) — qo(67)) |F-1]

_ r0)\2 _£0 2
o (e L ELOO- S FA] B[ - 5377 ]

Hy HY HY.

- E [(Yo— f9. + f8- — £)?|F-
——log(}é—eg)—1+ [0 — £y +Hf§ 1§)%F]
H). HO, 0 _ f0y2

_Heg_log(H@g)_H%.

Therefore, using (8.4) and by applying the Jensen’s inequality, we get

0 0
Elgo(0)] — Elqo(67)] =E[§?§ _bg(%;) 1 (fe*Hefg) |
g 9 0 _ £0)2
EE[%] 10g(E[II§ED1+E[W]'

Since z —log(z) — 1 > 0 for any = > 0, x # 1; and  — log(z) — 1 = 0 for
r = 1, we deduce:

if £9. 4 f0 hen E[Ye=—fa) d Elgo(6)] — E[go(6*
o if fp. # fj a.s., then [ i ] > 0 and E[go(0)] [q0(0)] > 0,
o if f0. = f§ a.s., then

Elgo ()] — Elgo(67)] = E[]:;g* — log (i’[eg ) —1]
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From the identifiability condition (AO), when 6* # 0 and o =
f§ a.s., we necessarily have H{. 73 H{ a.s.. This 1mphes ;é la.s.,
and thus E[qo(0)] — E[go(0*)] >
The equality E[go(0)] = E[go(6*)] holds a.s. if and only if §* = 6. This
achieves the proof of (2.).

Since {(Y%, X¢), t € Z} is stationary and ergodic, the process {¢(0), ¢t € Z} is
also a stationary and ergodic sequence. Then, according to (1.), by the uniform
strong law of large number applied on the process {¢:(0), t € Z}, it holds that

5206)+ BlaoloDl = 117, 3o 0:0) = Blaio)g =5 o

n—oo

Then, by Lemma 1, we obtain

1,~
H_ 0) + E(g0(9))| < EHLn(Q) O + H 0) +E(g0(9))]|,
a.s.
— 0. (8.5)
The part (2.) and (8.5) lead to conclude the proof of the theorem. [ |

8.3. Proof of Theorem 2.2

The following lemma is needed.

Lemma 2. Assume that the conditions of Theorem 2.2 hold. Then

i 1 ||9Ln(6) _ 9L, (6) _
() B[] g lle) =2 0
(it.) 1”80000?) aagge(/e) |® n%)}o 0;
(i) (15 i G — B e 2%, 0
Proof of Lemma 2
(i.) Remark that
dL,(0) 9:(6 6qt )
H 00 H EH H@ (8.6)
Moreover, for all § € O,
0q: (0 9 LOH! N
00— () 2HYY: ~ )0t + (s 15T + (1)
8 H 6Ht
0 52 2

(8.7)
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which implies

6/\9 6‘ 0 ~ 8 a
qéé)‘ qéé)\f?\%) R HE ff’ —HYT Y= 15y f9
O(HE) ! O(H
+]m—f9>2—( s t—f5>2—< i
~ 8ﬁt OH?
55 - oy |

USiIlg the relation |a1b101 — a2b202| S |a1 — a2||b2||02| + |a1||b1 — bg”CQl —+
la1[|b1]ler — cal, Va1, az,b1,b2,c1,c2, € R, we get

s

S?(H(Hé) () ol¥e = Bl ]

D T - 5] 22

oY - felleHaf" o) )

TR T e e H r2mIR - sl 2

R o | 2 - 28|y — oo
<2 (1% - 51|22

¥ sile| 208 - 08| 4 1|22 _ 20

+2||(H) '~ (HY) 1||@|Y;5 fa\leHang

- Fyp| 2D AT

21¥ilfi - 2o 2B e - | 2

By applying the Holder’s inequality to the terms of the right hand side of
(8.8), we have

=[5 - %5

(E[Hféffélle )1/4< H‘afe 4/3])3/4

 (m1Y; - A1) (]| 2 - 2 )

<C




%8 - 2D

+ ([l - ) ( [, - f9||@)1/4(E
(B - fe”e) ([H H D/?

+ (BN (EIF - f9||@]) ( H H Dm

R T

Moreover, since 8* € ©(r), using A;(fp, ©) and A;(My, ©) (with i =0, 1),
one can go along similar lines as in [2] to establish the following results:

HaHe 6H6

+

]

)

+ (E[l

o IE[ o |I" 6_1?9 aMa 3Mg 8H0
+ H H:} <oo,  (8.9)
E[H***H | <oz foly 0 +aikism )"
E[H Hy)™ = (H5) ¢ } < C( Z {afy (Mo, ©) + ok (My, @)})T,

S - 4] <o g oo sofanon)
E\](?(%%) ) H <c(§j{a,§0§,M 0) + o'k (Mj, @)})%.
k>t

(8.10)
Thus, using (8.2), (8.3), (8.9) and (8.10) with r = 4, we obtain

H

"5~ 50l

o (ENf; - feue) +(EH%7% g
oH}, 8H9 D /2 v (e[l - ])1/4
BN+ ( 07— sa1)

1/4

+ (5[]
(e[|

- (E[H( — (H}) lu

S|
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<cy. {ak Y (f0,0) + 0% (f0,0) + afl} (1o, ©) + afk (/0. ©)

k>t

o} (Mo, ©) + o) (Mo, 0) + af1}, (My,0) + af k (Mo, ©) }.

Therefore, in view of the condition (2.7), it holds that

9q: (0 5% v L
020 | cos i

By the inequality (8.6), we deduce

75 - T L) <o S o

This proves the part (i.) of Lemma 2.

(ii.) This part can be established by using the same arguments as in the proof
of Lemma 1.

(iii.) Let us show that E[ i @} < o0, foralli,j e {1,...,d}.

From (8.7), for any i,j € {1,...,d}, we have
82qt(9)

900:0,
_ 82f aQ(Ht)fl
_ t L Jo _ 2 [

afg ( )*1 Ofg O(Hg) ™"

_ _ ft 0 0 “Je 0

2% f‘?)(aei a6, o6, 08 )

718_-1058_% 8(H5)71 aH; ( t)fl azHé
00; 90; 20;  06; o 96,00;

+ 2(Hj)

Therefore, according to (A1), we get

|,
< O(Y: = f)llex

2 rt

(Ha‘ZézH @u@ 22 )
v |2+ >
+nm—fsmau—@zfézjue o D) e
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Moreover, by As(fg,©) and Ay(My, ®), one can show that

2 rt 2 17t 2 t
st + Ve s + 1o

96,00, le " 116,00, 99 ao H | <o

Thus, by applying the Holder’s inequality to the terms of the right hand
side of (8.11), it suffices to use (8.2) and (8.9) to obtain ]EH‘ 94,(0) ] <

90,00,
] < oo for all 4,5 € {1,...,d}, from the stationarity

o 2? qt
Slnce ]E |:H W

e
and ergodicity properties of {885500,), t e Z} and the uniform strong law

of large numbers, it holds that

2 2
H_ aagéef _E(aagg(aaf)w@ vl

This completes the proof of Lemma 2. |

The following lemma is also needed.
Lemma 3. Assume that the conditions of Theorem 2.2 hold. Then

i) {%f”}},l,t € Z} is a stationary ergodic martingale difference se-
quence with covariance matrix G,

(ii.) —%af—ngn(én) 25 F, for any sequence (én)n>1 with values in © and
n—oo -
satisfying 6,, =35 6*,
n— oo

where G and F are defined in (2.5).

Proof of Lemma 3

(1) Recall that G = E[ 240 905 | and that for all 6 € ©,

2011 % = )5 — (Flt) g+ a1 O

8%(9) _
00

o0 00

. . afs OH}
Since the functions f}, Hf, % and —;* are JF;_j-measurable, we have

E[aqt [Fia] = (H5*>‘18§{3* (Hy) "B [(Yi— fi)2|Fia] —1) =0,

which shows that (i.) holds.
(ii.) Let (An)nen be a sequence satisfying 6, =% * For any i,j = 1,...,d,
n—oo

we have

’% i aefaeiqt(én) - E(aefaaiqow*))’

t=1
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1< 90 ~ d ~
<] ; 59,50, %) ~ (aa 7, 0 (0n )
o - ) )
+ ‘E(aa 5, 90 0n ) - (39 a9, (0 )
I~ 0
= HE ; 70,06, *E(ae 79, 0! )H

‘E<ae 90, 00 (0 )) (aeaae qu))’

— 0 (by virtue of Lemma 2 (iii.)).

n— oo
Thus,
1 92 sl 9 o as 0?
—————1L = — E * F.
n o60g () aeaef‘”(e ) 25 B gggn®) =
We conclude the proof of the part (ii.) by using Lemma 2 (ii.). |

Now, we use the results of Lemma 2 and 3 to prove the first part of Theorem 2.2.
The second part can be established by going along similar lines as in Kengne
(2021) [18].

By applying a second-order Taylor expansion to the function 6 — En(e), for all
0 € O, there exists 0 between 6 and 6* such that

%{En(e) Lu(0%)} = :LaLag, )(6—9*)—%(9—9*)’F(6—6*)—|—Rn(9), (8.12)
where

T (p* * 2
R, (0) = %{aLge(f) )—angf) )}(979*)%(979*)'(%%Ln(e)w)(979*).

Let us define the vector

Ly 1 OL,(8)

Zp=F
Jn 09

Then, we can rewrite (8.12) as

1 (=~ ~ 1 1 o2
A{Lu0) = La(0)} = 5 1Zult = 3= 120 = VRO = 0")|[5. + Ra(0). (8.13)
Define also

ozn = argeuel(g) ||Zn - \/ﬁ(ﬁ -0 )HF
Then, by (2.4), for n large enough, we have

Vitlz, —07) = 75,
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where ZC is the F-projection of Z, on C. Using this relation and the definition
of 0z, , we have

120 = V@ = 0 = 1120 = 25N = 1120 = Vi@ = 07)][5
|20 = vtz — 0|3 2 0.
Furthermore, from (8.13) and the definition of 8,., it holds that
120 = Vi@ = 07) | = |1 20 = V02, = 0°)|[;

-0
= {Ln(02,) = Ln(0n)} + 20{ R0 (0n) — Rn(02z,)}
< Qn{Rn( n) - Rn(eZn)}-

Therefore,

(||zn — (B~ 0%~ || 20 — ngQF\ < 20{Rn(B,) — Ru(67,)}.  (8.14)
Let us consider the following Lemma.

Lemma 4. Assume that the conditions of Theorem 2.2 hold. Then
n{Rn(é\n) — Rn(0z,)} = op(1).
By Lemma 4 and (8.14), it follows that
1Z0 — V(8 — 09)||5 — 125 — Za|| 7 = 0 (1) (8.15)

Moreover, according to the equivalent definition of the F-orthogonal projection
n (2.6), we get

12, = V(B — 6]
= (128 = V/r@n — 0[5 + 1125 = Zall3. — 2( 25 — VA — 0°), 25 — Z0)
> 125 = @ = )| + 1125~ Zall
Therefore, from (8.15), we obtain
125 = Vil =) [ < 120 = Va@n = 67)

Now, using Lemma 3 (i.), we apply the central limit theorem for the stationary
ergodic martingale difference sequence {8(13(90 )\]-"t_l, te Z}. It follows that

12— 128 — Z.|[5 = op(1). (8.16)

1 0L, (60%) 1 =0q:(0*) ¢
- £, 1
n 00 n ; o0 n—+00 Nd (0’ G) ’ (8 7)
and thus
1 OL,(0* e
Z, _p1 L0 c Z~Ng(0,F'GF™). (8.18)

i 00 notee
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L

Hence, Z¢ 7 Z€. From this, it suffices to use (8.16) to conclude the proof
n—-+0oo
of Theorem 2.2. [ ]

Proof of Lemma 4.
Recall that

R, (0) = %{aLge(,e*)—ang,a*) }(9—9*)%(9—9*) (;ajagf (0)+F>(0—9*).

According to Lemmas 2 (i.) and 3 (ii.), when 6,, — 6* = op(1), we have

nRu(0,) = op (vl — 0%)) + op(n]|fn — 0*[?). (8.19)

This implies
nR,(0,) = op(1) when /n(8, —6*) = Op(1). (8.20)

It comes from the definition of 6, that
[vn(0z

Moreover, the convergence in (8.18) implies || Z, || = Op(1); and consequently,
Vn(lz, —6*) = Op(1). Thus, nR,(0z,) = op(1) by virtue (8.20).

W < VA2, 0% = Zal| 4+ 1 Zal < 21120l

We now show that, it also holds nR,(6,) = op(1). From (8.13), we have

~

1Zall% = || Zn — V/7(Bn — ) || + 20R,(B) = 2{L(8) — L (67)} > 0,

where the inequality holds since 8, = argmax (L, (6)). Thus, it holds that
fco

IVaB, — 095 < 2120 — VB, — 6|5 + 1 Zal% )
< 4||Z, |3 + 4n Ry (8,,).

Furthermore, since 8, <% 6%, by (8.19), it follows that nR,,(6,) = op (H\/_
n—oo

— 6°)||3.). Consequently, \/n(d, — 6%) = Op(1), and an(an) = op(1) holds

according to (8.20). This achieves the proof of the lemma. |

8.4. Proof of Theorem 2.3
Under Hy, we have rﬁn — ¥y = F(,H\n — 0*). Then, we get

(Fen - 190) (PE F) (1, — )
= n(@n - 9*) (rzr )" 'Ty/n(6, — 6%)



152 M. L. Diop and W. Kengne

+ /a0, — 0T’ ((rinr’)—l - (rzr’)—l) Va0, —6%).  (8.21)

Recall that, by Theorem 2.3, we have \/ﬁ(é\n —6%) £y 7€ with Z ~

n—-+oo
Ny (0,%). R
Furthermore, (I'S,I7)~! — (I'XIY)~! = op(1). Thus, from (8.21), it holds that

Wy = (0, — 0%)T'(CST) ' Ty/n(0, — 0) + 0p(1)
£, (rz°(rer)rz,

n—-+oo

which establishes the theorem. [ |

Proof of Corollary 1.

When 6% € ©, we have W,, —= Z'T'(I'SIY)"'T'Z = |U|? with U =

n—-+4oo
(TETY)~Y2I'Z and Z ~ Ny (0,%). Since ¥ is symmetric, the vector U follows
a multivariate Gaussian distribution with mean 0 and covariance matrix Iy,
where I, is the identity matrix of size dy. Therefore, all components of U are
independent, standard normal distributed random variables. This leads to the
conclusion. |

8.5. Proof of Theorem 3.1

Consider the following lemma.

Lemma 5. Assume that the conditions of Theorem 3.1 hold. Then

\/@WHMQ” - aLge(a)H@ e O

Proof of Lemma 5.
Using the inequality (8.6) and Corollary 1 of [19], it suffices to show that

;M [Haqk a% H } < o0 (8.22)

In the proof of Lemma 3, we have established that

|5 - 5~ H

<cd> {a (0) 2 (f0,0) + ' (fo,0) + al) (f5,0) + af % (f6,0)
i>k
+ ol (Mg, 0) + a% (Mg, ©) + o) (My, ©) + o} (M, @)}
1

=33 {ald (50, 0) + 0l (10, 0) + all) (Mo, ©) + ok (M, 0) }

j>k i=0
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Then, from the condition (3.4), we obtain

> e 175" -

1
3 1 Y (i) (i) (i)
- = Vkloglogk {aj’Y(f"’@) +a; x(fo,0) + ajy (Mo, ©)

>k i=0

+ Oé§»g((Mg, 0)} < .
Hence, (8.22) is satisfied, and Lemma 5 holds. |

Let us prove the part (i.) of the theorem.

(i.) We have
P(My, =m*) =1— P(in, 2 m*) — P(in, 2 m").

=

Therefore, it suffices to show that

lim P(m, 2 m*) = lim P(m, 2 m")=0. (8.23)

n—00 n—oo

1. Let m € M such as m 2 m*. We have,

1 N .
——(C(m") - C
loglogn( (m”) (m))
2 SN SN K
=—= (L,(0 —L, ) = ——— —|m*|). (8.24
e (L (Bm) = 2o (Bl0n)) = i~ '] (.20
Let us establish that
1 ~ o~ ~ o~
— (L, (0 — L, 1)) = Op(1). 8.25
(L (0m) ~ L, (")) = 0p(). (529
From the Taylor expansion of L,,, we can find 8(m) between 6(m) and 6*
such that

Lo (0(m)) = Ln(67) = aLgée*) (6(m) —07)

- %\/ﬁ(é(m) — 0%)'F(6*,m)v/n(8(m) — 6%) + nR.,(m), (8.26)
where
R om) = H{ PEl0)_ OLl0ON Gy — )
+ %(A(m) - 9*)/(%%:1(5(771)) + F(",m)) (B(m) - 07)
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and

F(67,m) = (E[%Dﬂem

Moreover, since g(m), f(m) £ 0*, in this case of overfitting, the same
n—00

arguments as in the proof of Lemma 3 (ii.) lead to

1L, (6(m)) s
———— — F(6",m).
n 0000 n—oo (6%, m)
Then, one can show as in the proof of Theorem 2.2 that nR, (m) = op(1).
Also, we have y/n(6(m)—6*) = Op(1). In addition, {%U}_l, teZ}
is a stationary ergodic square integrable martingale difference sequence
(see above). Hence, from the law of iterative logarithm for martingales
(see for instance [27, 28]), we get,

1 OL,(6%)
vnloglogn 00
Thus, we have from (8.26),

1 T (D T *
W(Ln (6(m)) — Ln(67))

B 1 0L, (6%) ~ X
~ Vnloglogn 00 \/ﬁ(ﬂm) -0 )
1 ~ o/ « ~ *

= 0(1).

1
S——y >
+ \/loglognn (m)
= O(l)Op(l) + O(l)OP(l)Op(l) + Op(l) = Op(l). (827)
By using the same arguments with m = m*, we get
1 ~ o~ ~

————(L,(0(m™)) — L,(0")) = Op(1). 8.28

e (L Bm) = Lu(67)) = 00 () (3.25)

Hence, (8.25) holds from (8.27) and (8.28).

Therefore, since x,/v/1oglogn — oo and |m| > |m*|, then (8.24) and
n— oo
(8.25) lead to

I T P

This implies that, for large n,
C(m)—C(m*) >0
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with probability one; that is, P(m, 2 m*) — 0.

2. Let m € M such as m ;é m*. We have,
(@) ~Cm)) = 2 (En(Bm) ~ L (0lm))) = " (|~ ). (329)

Using the same arguments in the proof of Theorem 3.1 of Bardet et al.
(2020) [3], we get

L~ > T (D * * *
—(Ly (6(m)) — L (6(m*))) = L(6*(m)) — L(0*) + o(1) a.s.,

n

where L(8) = —E[go(8)], for all # € ©. Note that, the function L : © — R
has a unique maximum at 6* (see the proof of Theorem 2.1). Since m 2
m*, it holds that 6* ¢ ©(m); and consequently, L(6*(m))—L(0*) < 0 a.s.
Thus, according to (8.29) and since &, /n favd 0, we get

1~ N N N
lim —(C(m*)—C(m))<0 a.s.and C(m)—C(m*)>0 a.s. for large n.

n—oo M

This implies that P(im,, 2 m*) — 0. Hence, the condition (8.23) holds;
n— oo

and the part (i.) of the theorem is established.
(ii.) Let m € M such as m 2 m*. We have

logllogn (é(m) B a(m*)) = @(EH(A@”*)) - En(A(m)))
+ mﬂ”ﬂ —|m*|).

Moreover, from the same arguments as in the proof of Theorem 3.1 in [18],
one can show that

(B (Bm")) ~ L (8m)) = O01) as.

loglogn
Thus, we can find a constant ¢ such that if hnrg igfnn /loglogn > ¢, then
lim inf #(6(7)1) - @(m*)) >0 a.s.
n—oo loglogn
This implies that
C(m) —C(m*) >0 a.s. for large n. (8.30)

Note that, the inequality (8.30) also holds when m 2 m* (see the part

2. of the proof of (i.)). Hence, we deduce that m, = argmin C(m) =
meM
argmin(C(m) — C(m*)) =% m*; which establishes the strong consis-
meM n—o0
tency of m,.
(iii.) Using Lemma 5, this part can be proved by going along similar lines as in
[18]. |
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