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Abstract: In this paper, we study a general class of causal processes
with exogenous covariates, including many classical processes such as the
ARMA-GARCH, APARCH, ARMAX, GARCH-X and APARCH-X pro-
cesses. Under some Lipschitz-type conditions, the existence of a τ -weakly
dependent strictly stationary and ergodic solution is established. We pro-
vide conditions for the strong consistency and derive the asymptotic dis-
tribution of the quasi-maximum likelihood estimator (QMLE), both when
the true parameter is an interior point of the parameters space and when
it belongs to the boundary. A significance Wald-type test of parameter is
developed. This test is quite extensive and includes the test of nullity of
the parameter’s components, which in particular, allows us to assess the
relevance of the exogenous covariates. Relying on the QMLE of the model,
we also propose a penalized criterion to address the problem of the model
selection for this class. The weak and the strong consistency of the pro-
cedure are established. Finally, Monte Carlo simulations are conducted to
numerically illustrate the main results.
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1. Introduction

Autoregressive time series with exogenous covariates provide effective ways to
take into account some available extra information in the models. The well
known example that has been widely studied is the ARMAX model, see Hannan
(1976) [13], Hannan and Deistler (2012) [14]. The GARCH-type models with
exogenous covariates have recently attracted much attention in the literature,
see for instance Han and Kristensen (2014) [11] for GARCH-X, Francq and
Thieu (2019) [8] for APARCH-X. Guo et al. (2014) [10] considered the factor
double autoregressive model, whose ARX and ARCH-X are particular cases.
We consider a large class of causal time series models, whose ARMAX and
GARCH-X type models are specific examples.

Let Xt = (X1,t, X2,t, . . . , Xdx,t) ∈ Rdx be a vector of covariates, with dx ∈ N.
Consider the class of affine causal models with exogenous covariates,

Class AC-X(Mθ, fθ) : A process {Yt, t ∈ Z} belongs to AC-X(Mθ, fθ) if it
satisfies:

Yt = Mθ(Yt−1, . . . ;Xt−1, . . .)ξt + fθ(Yt−1, . . . ;Xt−1, . . .), (1.1)

where Mθ, fθ : RN × (Rdx)N → R are two measurable functions and assumed
to be known up to the parameter θ, which belongs in a compact subset Θ ⊂
Rd (d ∈ N); and (ξt)t∈Z is a sequence of zero-mean independent, identically
distributed (i.i.d) random variable satisfying E(ξr0) < ∞ for some r ≥ 2 and
E(ξ20) = 1. Remark that, if Xt ≡ C for some constant C (absence of covariates),
then (1.1) reduces to the classical affine causal models that has already been
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considered in the literature (see, for instance, Bardet and Wintenberger (2009)
[2], Bardet et al. (2012) [1], Bardet et al. (2020) [3]). One can see that, the
ARMAX, GARCH-X, APARCH-X models belong to the class AC-X(Mθ, fθ).

There exist several important contributions devoted to autoregressive models
with covariates; we refer to Hannan and Deistler (2012) [14], Han and Kristensen
(2014) [11], Sucarrat et al. (2016) [29], Francq and Sucarrat (2017) [7], Pedersen
and Rahbek (2018) [25], Francq and Thieu (2019) [8], Grønneberg and Holcblat
(2019) [9], Zambom and Gel (2020) [31] and the references therein for some
developments on ARMAX and conditional volatility type models with exogenous
covariates. The class AC-X(Mθ, fθ) is more general than the models considered
in the aforementioned works, as well as the factor double autoregressive model
proposed by Guo et al. (2014) [10] which is a particular case of the model (1.1).
Note as well that, the class AC-X(Mθ, fθ) provides a more general way to take
into account covariates in the model, and one can see that the linear covariates
regressors considered by Francq and Thieu (2019) [8] and many other works is a
specific case. Compared to Bardet and Wintenberger (2009) [2], besides taking
into account covariates in the model (1.1), we address the inference when the
true parameter belongs to the boundary of the parameter set Θ and the model
selection question.

In this new contribution, we consider the class of model (1.1) and address
the following issues.

(i) Existence of a stationary solution. We provide sufficient conditions
that ensure the existence of a τ -weakly dependent stationary and ergodic
solution Zt = (Yt, Xt) of (1.1). At a first glance, one might think that these
conditions are the same as those obtained by Bardet and Wintenberger
(2009) [2], but in our case, the existence of the covariates must be taken
into account.

(ii) Inference for the class AC-X(Mθ∗ , fθ∗). An inference based on the
quasi likelihood of the model is carried out. The consistency of the quasi-
maximum likelihood estimator (QMLE) is established and we derived the
asymptotic distribution of this estimator (even when θ∗ belongs to the
boundary of Θ).

(iii) Significance test of parameter. A Wald-type significance test of pa-
rameter of the model (1.1) is conducted. The proposed test is quite ex-
tensive and includes the test of nullity of the parameter’s components. An
asymptotic study is carried out, which shows in particular that, when the
true parameter belongs to the boundary of Θ, the asymptotic distribution
of the test statistic under the null hypothesis is quite different from the
classical chi-square distribution.

(iv) Model selection. A penalized criterion based on the quasi likelihood of
the model is proposed for model selection in the class AC-X(Mθ∗ , fθ∗).
We provides conditions that ensure the weak and the strong consistency
of the proposed procedure. These conditions shows in particular that, the
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Hannan-Quinn information Criterion (HQC) with a regularization param-
eter κn = c log logn (see (3.2)) is strongly consistent for sufficiently large
c.

The article is organized as follows. In Section 2, firstly, we provide conditions for
stability properties. Secondly, we give the definition of the QMLE and study its
asymptotic properties; a significance test of parameter with an asymptotic study
is also addressed. Section 3 focuses on the model selection and the consistency of
the proposed procedure. Some classical examples of processes belonging to the
class AC-X(Mθ∗ , fθ∗) are detailed in Section 4. Section 5 gives some empirical
results, whereas Section 6 is devoted to a summary and conclusion. Section 7
contains the proofs of the main results.

2. Assumptions, inference and test of the parameters

2.1. Assumptions

Throughout the sequel, the following norms will be used:

• ‖x‖ :=
√∑p

i=1 x
2
i , for any x ∈ Rp, p ∈ N;

• ‖V ‖ :=
√∑p

i=1

∑q
j=1 v

2
i,j, for any matrix V ∈ Mp,q(R), where Mp,q(R)

denotes the set of matrices of dimension p × q with coefficients in R, for
p, q ∈ N;

• ‖g‖K := supθ∈K (‖g(θ)‖) for any compact set K ⊆ Rd and function g :
K −→ Mp,q(R);

• ‖Y ‖r := E (‖Y ‖r)1/r, if Y is a random vector with finite r-order moments,
for r > 0.

We will denote by 0 the null vector of any vector space. Let Ψθ be the generic
symbol for any of the functions fθ orMθ. We set the following classical Lipschitz-
type conditions for any compact set K ⊆ Θ.

Assumption Ai(Ψθ,K) (i = 0, 1, 2): For any (y, x) ∈ RN×(Rdx)N, the function

θ �→ Ψθ(y) is i times continuously differentiable on K with
∥∥∂iΨθ(0)

∂θi

∥∥
K < ∞; and

there exists two sequences of non-negative real numbers (α
(i)
k,Y (Ψθ,K))k≥1 and

(α
(i)
k,X(Ψθ,K))k≥1 satisfying:

∑∞
k=1 α

(i)
k,Y (Ψθ,K) < ∞,

∑∞
k=1 α

(i)
k,X(Ψθ,K) < ∞

for i = 0, 1, 2; such that for any (y, x), (y′, x′) ∈ RN × (Rdx)N,

∥∥∥∂iΨθ(y, x)

∂θi
− ∂iΨθ(y

′, x′)

∂θi

∥∥∥
K
≤

∞∑
k=1

α
(i)
k,Y (Ψθ,K)|yk − y′k|

+

∞∑
k=1

α
(i)
k,X(Ψθ,K)‖xk − x′

k‖,
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where ‖ · ‖ denotes any vector, matrix norm.

The following assumption is considered on the function Hθ = M2
θ in the cases

of ARCH-X type process.

Assumption Ai(Hθ,K) (i = 0, 1, 2): Assume that fθ = 0. There exists two

sequences of non-negative real numbers (α
(i)
k,Y (Hθ,K))k≥1 and (α

(i)
k,X(Hθ,K))k≥1

satisfying:
∑∞

k=1 α
(i)
k,Y (Hθ,K) < ∞,

∑∞
k=1 α

(i)
k,X(Hθ,K) < ∞ for i = 0, 1, 2; such

that for any (y, x), (y′, x′) ∈ R∞ × (Rdx)∞,

∥∥∥∂iHθ(y, x)

∂θi
− ∂iHθ(y

′, x′)

∂θi

∥∥∥
K
≤

∞∑
k=1

α
(i)
k,Y (Hθ,K)|y2k − y′

2
k|

+
∞∑
k=1

α
(i)
k,X(Hθ,K)‖xk − x′

k‖.

In the whole paper, we impose an autoregressive-type structure on the covari-
ates:

Xt = g(Xt−1, Xt−2, . . . ; ηt), (2.1)

where (ηt)t∈Z is a sequence of zero-mean random variables such as (ηt, ξt)t∈Z is
i.i.d and g is a function with values in Rdx satisfying for all x, x′ ∈ (Rdx)N,

E [‖g(0, η0)‖r] < ∞ and ‖g(x; η0)− g(x′; η0)‖r ≤
∞∑
k=1

αk(g) ‖xk − x′
k‖ (2.2)

for some r ≥ 1 and non-negative sequence (αk(g))k≥1 such that
∑∞

k=1 αk(g) < 1.

For r ≥ 1, when (2.2) holds, we define the set

Θ(r) =
{
θ ∈ Rd

/
A0(fθ, {θ}) and A0(Mθ, {θ}) hold with

∞∑
k=1

max
{
αk(g), α

(0)
k,Y (fθ, {θ}) + ‖ξ0‖rα(0)

k,Y (Mθ, {θ}
}
< 1
}

⋃{
θ ∈ Rd

/
fθ = 0 and A0(Hθ, {θ}) holds with

‖ξ0‖2r
∞∑
k=1

max
{
αk(g), α

(0)
k,Y (Hθ, {θ})

}
< 1
}
.

In the sequel, we make the convention that if Ai(Mθ,Θ) holds then α
(i)
k,Y (Hθ,Θ)

= α
(i)
k,X(Hθ,Θ) = 0 for all k ∈ N and if Ai(Hθ,Θ) holds then α

(i)
k,Y (Mθ,Θ) =

α
(i)
k,X(Mθ,Θ) = 0 for all k ∈ N.
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The condition (2.2) allows to assure the stability of the process Xt. Together
the aforementioned assumptions assure the existence of a stationary and weakly
dependent solution of order r to the model (1.1), as shown in the following
proposition.

Proposition 1. Assume that A0(fθ,Θ), A0(Mθ,Θ) (or A0(Hθ,Θ)) and (2.2)
hold. If θ∗ ∈ Θ ∩ Θ(r) with r ≥ 1, then there exists a τ -weakly dependent
stationary, ergodic and non anticipative solution (Zt)t∈Z Zt = (Yt, Xt), to (1.1),
satisfying E[‖Z0‖r] < ∞.

2.2. Inference and significance test of parameter

In this paragraph, we describe the use of the Gaussian quasi-maximum likeli-
hood to obtain an estimator of the parameters of the model (1.1). The main
asymptotic properties of this estimator are also established. Assume that the
observations (Y1, X1), . . . , (Yn, Xn) are generated from (1.1) and (2.1) accord-
ing to the true parameter θ∗ ∈ Θ which is unknown. For all t ∈ Z, denote
by Ft = σ((Ys, Xs), s ≤ t) the σ-field generated by the whole past at time t.
The mean and the variance of Yt|Ft−1 and fθ∗(Yt−1, . . . ;Xt−1, . . .) and variance
M2

θ∗(Yt−1, . . . ;Xt−1, . . .) respectively. For any θ ∈ Θ, the conditional Gaussian
quasi-log-likelihood is given by (up to an additional constant)

Ln(θ) := −1

2

n∑
t=1

qt(θ) with qt(θ) =
(Yt − f t

θ)
2

Ht
θ

+ logHt
θ,

where f t
θ := fθ(Yt−1, Yt−2 . . . ;Xt−1, Xt−2, . . .), M

t
θ := Mθ(Yt−1, Yt−2 . . . ;Xt−1,

Xt−2, . . .) and Ht
θ := (M t

θ)
2.

Since (Y0, X0), (Y−1, X−1), . . . are not observed, Ln(θ) is approximated by

L̂n(θ) = −1

2

n∑
t=1

q̂t(θ) with q̂t(θ) =
(Yt − f̂ t

θ)
2

Ĥt
θ

+ log Ĥt
θ,

where f̂ t
θ := fθ(Yt−1, . . . , Y1, 0;Xt−1, . . . , X1, 0), M̂ t

θ := Mθ(Yt−1, . . . , Y1, 0;
Xt−1,

. . . , X1, 0) and Ĥt
θ := (M̂ t

θ)
2. Thus, the QMLE of θ∗ is defined by

θ̂n = argmax
θ∈Θ

(
L̂n(θ)

)
.

We set the following regularity conditions to assure the identifiability of the
model and to derive the asymptotic behavior of the QMLE.

(A0): for all θ ∈ Θ and some t ∈ Z,
(
f t
θ∗ = f t

θ and Ht
θ∗ = Ht

θ a.s.
)
⇒ θ = θ∗;

(A1): ∃h > 0 such that infθ∈Θ Hθ(y, x) ≥ h, for all (y, x) ∈ RN × (Rdx)N;

(A2): for all θ ∈ Θ, c ∈ Rd,
(
c′ ∂

∂θf
0
θ∗ = 0 or c′ ∂

∂θH
0
θ∗ = 0

)
a.s. =⇒ c = 0,

where ′ denotes the transpose.
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Assumption (A0) is an identifiability condition and it will be discussed in detail
for each of the examples of processes studied in the paper. From (A1), the quasi
likelihood is well defined, whereas (A2), which is classical (see for instance
[2]) allows to derive the asymptotic distribution of the QMLE. The following
theorem addresses the strong consistency of the QMLE.

Theorem 2.1. Assume that (A0), (A1), A0(fθ,Θ), A0(Mθ,Θ) and (2.2) (with
r ≥ 2) hold with

α
(0)
k,Y (fθ,Θ) + α

(0)
k,X(fθ,Θ) + α

(0)
k,Y (Mθ,Θ) + α

(0)
k,X(Mθ,Θ)

+ α
(0)
k,Y (Hθ,Θ) + α

(0)
k,X(Hθ,Θ) = O(k−γ), (2.3)

for some γ > 3/2.
If θ∗ ∈ Θ ∩Θ(r) with r ≥ 2, then

θ̂n
a.s.−→

n→∞
θ∗.

To derive the asymptotic distribution of the QMLE, it is necessary to take into
account the constraints in the parameter space Θ corresponding to the model.
For example, in some processes belonging to (1.1), such as the ARCH-X models
(see below), the components of θ∗ are constrained to be positive or equal to zero.
In order to propose a parsimonious representation, it is often required to test
whether or not the exogenous covariates are relevant. For example, in an ARCH-
X(1) model defined by Yt = ξtσt with σ2

t = α∗
0 + α∗

1Y
2
t−k + γ∗′Xt−1, the true

parameter vector is θ∗ = (α∗
0, α

∗
1, γ

∗) ∈ Θ ⊂]0,∞[×[0,∞[
dx+1

. The significance
test of the covariate Xt consists to verify the nullity of the parameter γ∗; that
is, if the true parameter vector can be of the form θ0 = (α0, α1, 0) which is not
an interior point of Θ. In this situation, it is impossible to apply the asymptotic
normality results based on the classical assumption of “interior point” to derive
the asymptotic behavior of the test statistic used. To take into account such a
scenario in the general class (1.1), we will consider that the component i of θ∗

is constrained if the i-th section of Θ is of the form [θi, θi] with θi < θi. Assume
that the d2 (with d2 ∈ {0, . . . , d}) last components of θ∗ are constrained, and
let d1 = d − d2. Therefore, if d2 ≥ 1 and θ∗i ∈ {θi, θi} with i > d1, then θ∗ is
not an interior point of Θ. For instance, in a scenario where θ∗i = θi, with the

QMLE θ̂n = (θ̂1,n, . . . , θ̂d,n), it holds that
√
n(θ̂i,n − θ∗i ) ∈ [0,∞) which cannot

tend to a Gaussian distribution with mean 0. By convention, it is assumed that

θ∗ ∈
◦
Θ if d2 = 0. When d2 ≥ 1 and the set Θ is assumed to be large enough,

then the following relation holds:

⋃
n≥1

{√
n (θ − θ∗) , θ ∈ Θ

}
= C with C =

d∏
i=1

Ci, (2.4)

where Ci = [0,∞[ when i > d1 and θ∗i = θi, Ci =]∞, 0] when i > d1 and θ∗i = θi,

and Ci = R otherwise. The set C is a convex cone which is equal to Rd if θ∗ ∈
◦
Θ.
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Let us define the following matrices

F = E
[∂2q0(θ

∗)

∂θ∂θ′

]
and G = E

[∂q0(θ∗)
∂θ

∂q0(θ
∗)

∂θ′

]
. (2.5)

Under the assumptions Ai(fθ,Θ), Ai(Mθ,Θ) (with i = 0, 1, 2), one can show
the existence of F and G. In addition, in view to (A2), the same arguments
as in [2] allow to establish that matrix F is positive definite. Consider then the

F -scalar product 〈x, y〉F = x′Fy and the norm ‖x‖2F = x′Fx for x, y ∈ Rd.
Let us define the F -orthogonal projection of a vector Z ∈ Rd on the cone C as
follows:

ZC = arg inf
C∈C

‖C − Z‖F .

This definition is equivalent to

ZC ∈ C with
〈
Z − ZC , C − ZC〉 ≤ 0, ∀C ∈ C. (2.6)

Note that, when θ∗ ∈
◦
Θ, we have ZC = Z. Combining all the regularity condi-

tions and definitions given above, we obtain the following main result.

Theorem 2.2. Assume that (A0)-(A2), (Ai(fθ,Θ)), (Ai(Mθ,Θ)) (for i =
0, 1, 2) and (2.2) (with r ≥ 4) hold with

α
(i)
k,Y (fθ,Θ) + α

(i)
k,X(fθ,Θ) + α

(i)
kθ,Y

(Mθ,Θ) + α
(i)
k,X(Mθ,Θ)

+ α
(i)
kθ,Y

(Hθ,Θ) + α
(i)
k,X(Hθ,Θ) = O(k−γ), (2.7)

for i = 0, 1, 2 and some γ > 3/2.

• If θ∗ ∈ Θ ∩Θ(r) with r ≥ 4, then

√
n
(
θ̂n − θ∗

)
L−→

n→+∞
ZC with Z ∼ Nd (0,Σ) , where Σ := F−1GF−1.

• If θ∗ ∈
◦
Θ ∩Θ(r) with r ≥ 4, then

θ̂n − θ∗ = O

(√
log logn

n

)
a.s.

The matrix Σ can be consistently estimated by Σ̂n = Fn(θ̂n)
−1Gn(θ̂n)Fn(θ̂n)

−1,
where

Fn(θ̂n) =
1

n

n∑
t=1

∂2qt(θ̂n)

∂θ∂θ′
and Gn(θ̂n) =

1

n

n∑
t=1

∂qt(θ̂n)

∂θ

∂qt(θ̂n)

∂θ′
.

Now, we are interested to investigate whether or not a given subset of com-
ponents of θ∗ are equal to some fixed vector. To do so, consider the following
hypothesis testing:

H0 : Γθ∗ = ϑ0 against H1 : Γθ∗ �= ϑ0, (2.8)
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where Γ is a d0 × d full-rank matrix and ϑ0 is a vector of dimension d0. Define
the Wald-type test statistic given by

Wn = n(Γθ̂n − ϑ0)
′(ΓΣ̂nΓ

′)−1(Γθ̂n − ϑ0). (2.9)

Under H0, the asymptotic behavior of Wn is given by the following theorem.

Theorem 2.3. Under H0, assume that the assumptions of Theorem 2.2 hold.
Then

Wn
L−→

n→+∞
(ΓZC)′(ΓΣΓ′)−1ΓZC with Z ∼ Nd (0,Σ) .

By the above theorem, at a nominal level α ∈ (0, 1), the critical region of
the test is (Wn > qα), where qα is the (1 − α)-quantile of the distribution of
(ΓZC)′(ΓΣΓ′)−1ΓZC . The critical value qα can be computed through Monte-
Carlo simulations. The following corollary follows immediately when θ∗ belongs
to the interior of the parameter space.

Corollary 1. Assume that the conditions of Theorem 2.3 hold. If θ∗ ∈
◦
Θ, then

Wn converges to a chi-square distribution with d0 degrees of freedom.

Under H1, one can easily see that Wn
a.s−→

n→∞
+∞; which shows that the test

is consistent in power. In the empirical studies, we will restrict our attention
to test the relevance of the exogenous covariates by using the hypothesis (2.8)
with ϑ0 = 0 and an appropriate matrix Γ.

3. Model selection

3.1. Model selection framework

Assume that (Y1, . . . , Yn) is a trajectory of the process Y = {Yt, t ∈ Z} satisfying
AC-X(Mθ∗ , fθ∗) (defined as in (1.1)), where the true parameter θ∗ is unknown.
Let M be a finite collection of models belonging to AC-X(Mθ, fθ) with θ ∈
Θ. Assume that M contains at least the true model m∗ corresponding to the
parameter θ∗. Our objective is to develop a procedure that allows to select
the “best model” (that we denote by m̂n) among the collection M such that
it is “close” to m∗ for n large enough. To this end, we consider the following
definitions and notations in the sequel:

• a model m ∈ M is considered as a subset of {1, . . . , d} and denote by |m|
the dimension of m (i.e, |m| = #(m));

• for m ∈ M, Θm = {(θi)1≤i≤d ∈ Θ with θi = 0 if i /∈ m} is a compact set
containing θ(m), where θ(m) denotes the parameter vector associated to
the model m;

• M is considered as a subset of the power set of {1, . . . , d}; that is, M ⊂
P({1, . . . , d}).

For instance, when the observations Y1, . . . , Yn are generated from a ARMAX(p∗

, q∗, s∗) model (defined below), the collection M of the competing models could
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be considered as a family of ARMAX(p, q, s) with (p, q, s) ∈ {0, 1, . . . , pmax} ×
{0, 1, . . . , qmax} × {0, 1, . . . , smax}, where pmax , qmax , smax are the fixed upper
bounds of the orders satisfying pmax ≥ p∗, qmax ≥ q∗, smax ≥ s∗. The parameter
space Θ is a compact subset of Rpmax+qmax+smax , and thus a model m is a subset
of {1, 2, . . . , pmax + qmax + smax}.

3.2. Model selection criterion and asymptotic results

Note that, under the identifiability assumption (A0), one can show that, for all
m ∈ M, the function θ �→ −E[q0(θ)] has a unique maximum in Θm (see proof of
Theorem 2.1). Let us thus define the “best” parameter associated to the model
m as

θ∗(m) := argmin
θ∈Θm

(E[q0(θ)]) .

When m ⊇ m∗, we have θ∗(m) = θ∗(m∗) = θ∗; that is, θ∗(m) will play the role
of the true parameter θ∗ in cases of “true” or overfitted model. For m ∈ M, we
define the QMLE of θ∗(m) as

θ̂(m) := argmax
θ∈Θm

(
L̂n(θ)

)
. (3.1)

Now, define the penalized criteria by

Ĉn(m) := −2L̂n(θ̂(m)) + κn|m|, for all m ∈ M, (3.2)

where (κn)n∈N is an increasing sequence of the regularization parameter (possi-
bly data-dependent) that will be used to calibrate the penalty term, and |m| is
the number of non-zero components of θ∗(m) ∈ Θm that will be called the di-
mension of the model m. The selection of the “best” model m̂n is then obtained
by minimizing the penalized contrast; that is,

m̂n := argmin
m∈M

(
Ĉn(m)

)
. (3.3)

Using the results of Theorems 2.1 and 2.2, we establish the asymptotic behavior
of the model selection procedure, as shown in the following theorem.

Theorem 3.1. Let (Y1, . . . , Yn) be a trajectory of a process belonging to AC-
X(Mθ∗ , fθ∗), where θ∗ ∈ Θ∩Θ(r) with r > 4. Assume that (A0)-(A2), (Ai(fθ,
Θ)), (Ai(Mθ,Θ)) (or (Ai(Hθ,Θ))) (for i = 0, 1, 2) and (2.2) (with r > 4) hold

with κn/n −→
n→∞

0. Suppose that when θ∗ ∈
◦
Θ,

∑
k≥1

1√
k log log k

∑
j≥k

2∑
i=0

{
α
(i)
j,Y (fθ,Θ)+α

(i)
j,X(fθ,Θ)+α

(i)
j,Y (Mθ,Θ)+α

(i)
j,X(Mθ,Θ)

+ α
(i)
j,Y (Hθ,Θ) + α

(i)
j,X(Hθ,Θ)

}
< ∞. (3.4)
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(i.) If κn/
√
log logn −→

n→∞
∞, then

m̂n
P−→

n→∞
m∗.

(ii.) When θ∗ ∈
◦
Θ, there exists a constant c such that if lim inf

n→∞
(κn/ log logn) >

c, then
m̂n

a.s.−→
n→∞

m∗.

(iii.) If θ∗ ∈
◦
Θ and (3.4) holds, then

θ̂(m̂n)− θ∗ = O

(√
log log n

n

)
.

Remark that, if
∑2

i=0

{
α
(i)
j,Y (fθ,Θ)+α

(i)
j,X(fθ,Θ)+α

(i)
j,Y (Mθ,Θ)+α

(i)
j,X(Mθ,Θ)+

α
(i)
j,Y (Hθ,Θ) + α

(i)
j,X(Hθ,Θ)

}
= O(j−γ) for some γ > 3/2, then (3.4) is satisfied.

The first and second parts of Theorem 3.1 show the consistency of the selection
procedure; in particular, the second part provides sufficient conditions for the
consistency of the HQC procedure. The last part establishes that the estimator
of the parameter of the selected model θ̂(m̂n) obeys the law of iterated logarithm.

4. Some examples

In this section, we detail some particular processes satisfying the class (1.1). We
show that the regularity conditions required for the main results are satisfied
for these processes, with a particular emphasis on the identifiability assumption.
For each example discussed, we consider that Xt = (X1,t, X2,t, . . . , Xdx,t) ∈ Rdx

(dx ∈ N) represents a vector of covariates; and (ξt)t∈Z is a sequence of zero-mean
i.i.d. random variable satisfying E(ξr0) < ∞ for some r ≥ 2 and E(ξ20) = 1.

4.1. Threshold ARX(∞) models

Consider the threshold autoregressive model with exogenous covariates (TARX
(∞)) defined by,

Yt=ψ0(θ
∗)+
∑
k≥1

(
ψ+
k (θ

∗)max(Yt−k, 0)+ψ−
k (θ

∗)min(Yt−k, 0)
)
+
∑
k≥1

γ′
k(θ

∗)Xt−k

+ ξt, ∀t ∈ Z, (4.1)

where θ∗ is the true parameter and ψ0(·), ψ+
k (·), ψ−

k (·), γk(·) (for k ≥ 1) are
assumed to be twice continuously differentiable functions on Θ. This model is
a generalization of the threshold AR process of Tong (1990) [30]. Also, the AR-
MAX process (see Hannan and Deistler (2012) [14]) is a specific example of the
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model (4.1). Set f t
θ = ψ0(θ)+

∑
k≥1

(
ψ+
k (θ)max(Yt−k, 0)+ψ−

k (θ)min(Yt−k, 0)
)

+
∑

k≥1 γ
′
k(θ)Xt−k for all θ ∈ Θ. If

∑
k≥1 ‖γ′

k(θ
∗)‖ < ∞ and

∑
k≥1 max

{
αk(g),

|ψ+
k (θ

∗)|, |ψ−
k (θ

∗)|
}
< 1, then, assumption A0(fθ, {θ∗}) holds and there exists

a stationary and ergodic solution with r-order moment. The assumption (A1)
holds with h = 1. Denote for t, i ∈ Z,

Ft,i = σ(ξt−j , j > i, Xt−k, k > 0), (4.2)

the σ-field generated by {ξt−j , j > i, Xt−k, k > 0}. Let us set following addi-
tional conditions:

(B0): E [ξtXt′ ] = 0 for all (t, t′) ∈ Z2;
(B1): for c+, c− ∈ R such that c+ �=0 or c− �=0, c+ max(Yt−i, 0)+c− min(Yt−i, 0)

given Ft,i is non-degenerate;
(B2): if (ck)k∈N is a sequence of vector of Rdx such as ∃ck0 �= 0 (with k0 ∈ N),

then
∑

k≥1 c
′
kXt−k is non-degenerate;

(B3): the function θ �→ ψ+
k0
(θ) or θ �→ ψ−

k0
(θ), for some k0 ≥ 1 is injective;

(B4): The function θ �→ ψ0(θ) (or θ �→ γk0(θ) for some k0 > 0) is is injective
and holds (B2).

To ensure the identifiability, both the assumptions (B3) and (B4) are not
necessary; that is, the model is identifiable if (B1) and ((B3) or (B4)) hold.
Indeed, let θ ∈ Θ such that f t

θ = f t
θ∗ . Then,∑

k≥1

((
ψ+
k (θ

∗)− ψ+
k (θ)
)
max(Yt−k, 0) +

(
ψ−
k (θ

∗)− ψ−
k (θ)
)
min(Yt−k, 0)

)
= ψ0(θ)− ψ0(θ

∗) +
∑
k≥1

(
γ′
k(θ)− γ′

k(θ
∗)
)
Xt−k. (4.3)

By contradiction, assume that ψ+
k (θ

∗) − ψ+
k (θ) �= 0 or ψ−

k (θ
∗) − ψ−

k (θ) �= 0 for
some k > 0 and let m > 0 be the smallest integer satisfying ψ+

m(θ∗)−ψ+
m(θ) �= 0

or ψ−
m(θ∗)− ψ−

m(θ) �= 0. It holds from (4.3) that,(
ψ+
m(θ∗)− ψ+

m(θ)
)
max(Yt−m, 0) +

(
ψ−
m(θ∗)− ψ−

m(θ)
)
min(Yt−m, 0)

= ψ0(θ)− ψ0(θ
∗)

−
∑
k>m

((
ψ+
k (θ

∗)− ψ+
k (θ)
)
max(Yt−k, 0) +

(
ψ−
k (θ

∗)− ψ−
k (θ)
)
min(Yt−k, 0)

)
+
∑
k≥1

(
γ′
k(θ)− γ′

k(θ
∗)
)
Xt−k. (4.4)

Since the right-hand side of (4.4) is Ft,m-measurable (thanks to the non antici-
pative property of the process (Yt)),

(
ψ+
m(θ∗)−ψ+

m(θ)
)
max(Yt−m, 0)+

(
ψ−
m(θ∗)−

ψ−
m(θ)
)
min(Yt−m, 0) given Ft,m is degenerate, which contradicts the assump-

tion (B1). Thus, ψ+
k (θ

∗) − ψ+
k (θ) = 0 and ψ−

k (θ
∗) − ψ−

k (θ) = 0 for all k ≥ 1.
Therefore,
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• if (B3) holds, then θ = θ∗;
• else, if (B4) holds, then we have from (4.4),

∞∑
k=1

(γ′
k(θ

∗)− γ′
k(θ))Xt−k = ψ0(θ)− ψ0(θ

∗),

which implies that γk(θ
∗) = γk(θ) ∀k ≥ 1 (by the assumption (B2)); and

consequently, ψ0(θ) = ψ0(θ
∗). Hence, θ = θ∗.

In the case of the ARX(∞) models (obtained when ψ+
k (θ

∗) = ψ−
k (θ

∗), for all
k ≥ 1), the condition (B1) is not necessary; the identifiability holds with (B0)
and ((B3) or (B4)).

4.2. Asymmetric Power ARCH-X(δ,∞) models

Consider the Asymmetric Power ARCH with with exogenous covariates (APA
RCH-X(δ,∞)) defined by,

Yt = ξtσt((θ
∗) with

σδ
t (θ

∗) = φ0(θ
∗) +

∞∑
k=1

(
φ+
k (θ

∗)
(
max(Yt−k, 0)

)δ
+ φ−

k (θ
∗)
(
max(−Yt−k, 0)

)δ)
+

∞∑
k=1

γ′
k(θ

∗)Xt−k, ∀t ∈ Z, (4.5)

where θ∗ is the true parameter, φ0(·), φ+
k (·), φ

−
k (·), γk(·), k ≥ 1 are non-negative

(componentwise for γk(θ
∗)) functions assumed to be twice continuously differ-

entiable on Θ, with (φ0(θ)) > 0 for all θ ∈ Θ, Xt is a vector of non-negative
(componentwise) covariates, and δ > 0. This process is an example of the class
(1.1) with f t

θ = 0 and M t
θ = σt(θ). Numerous classical ARCH-type parametriza-

tions, for instance, GARCH-X (obtained with δ = 2 and φ+
k (θ

∗) = φ−
k (θ

∗)),
TARCH-X (obtained with δ = 1) are specific example of (4.5). There are sev-
eral works in the literature based on the GARCH-X model, see for instance
Han and Kristensen (2014) [11], Nana et al. (2013) [22], Han (2015) [12]. Model
(4.5) is a generalization of the class of APARCH-X(δ, p, q) studied by Francq
and Thieu (2019) [8]. Assume that θ∗ ∈ Θ(r), where Θ(r) is given by

Θ(r) =
{
θ ∈ Rd

/ ∑
k≥1

max
{
αk(g), ‖ξ0‖r|φ+

k (θ)|1/δ, ‖ξ0‖r|φ
−
k (θ)|1/δ

}
< 1

and
∑
k≥1

‖γk(θ)‖1/δ < γU for some γU > 0
}
.

Therefore, A0(Hθ, {θ∗}) holds; and a stationary and ergodic solution with r-
order moment exists. If infθ∈Θ φ0(θ) > 0, then the assumption (A1) is satisfied.
The following assumptions are needed to ensure the identifiability.
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(B5): for all i ≥ 1 and t ∈ Z, the support of the distribution of ξt−i given Ft,i

is not included in [0,∞) or in (−∞, 0] and contains at least three points.
(B6): the function θ �→ φ+

k0
(θ) or θ �→ φ−

k0
(θ) for some k0 > 0, is injective.

(B7): The function θ �→ φ0(θ) (or θ �→ γk0(θ
∗) for some k0 > 0) is injective,

and the condition (B2) holds for this model.

By going along similar lines as in the Subsection 4.1 and by using the Lemma
4 in [8], one get that, if (B5) and ((B6) or (B7)) hold, then the model (4.5) is
identifiable.

Let us stress that, the i.i.d. assumption for (ξt)t∈Z is a bit strong for the model
(4.5). This assumption, which is needed to the large class AC-X(Mθ∗ , fθ∗) can
be relaxed to (ξt,Ft,0)t∈Z is a martingale difference sequence (see, for instance,
[8] in the case of APARCH-X(δ, p, q) model) when checking the identifiability.
Also, as pointed out by Francq and Thieu (2019) [8], in the absence of covariates
and when (ξt) is i.i.d (i.e., the case of the APARCH(∞) model), the assumption
(B5) can be automatically reduced to: P (ξ0 > 0) ∈ (0, 1) and the support of
the distribution of ξ0 contains at least three points. Moreover, Assumption (B5)
prevents taking redundant covariate; for instance, it excludes the situation where
Xt−1 = max(Yt−i, 0)

δ or max(−Yt−i, 0)
δ for some i ≥ 1.

4.3. ARX(∞)-ARCH(∞) models

Consider the ARX(∞)-ARCH(∞) model given by,

⎧⎪⎨⎪⎩
Yt = ψ0(θ

∗) +
∑
k≥1

ψk(θ
∗)Yt−k +

∑
k≥1

γ′
k(θ

∗)Xt−k + εt

εt = ξtσt(θ
∗) with σ2

t (θ
∗) = φ0(θ

∗) +
∑
k≥1

φk(θ
∗)ε2t−k,

(4.6)

where θ∗ is the true parameter, and ψ0(·), ψk(·), γk(·), φ0(·), φk(·), k ≥ 1 are
assumed to be twice continuously differentiable on Θ, and satisfying φ0(θ) > 0
for all θ ∈ Θ. Model (4.6) is an extension of the ARMA-GARCH, ARMAX-
GARCH processes. This model belongs to the class AC-X(Mθ∗ , fθ∗) with

f t
θ = ψ0(θ)+

∑
k≥1

ψk(θ)Yt−k+
∑
k≥1

γ′
k(θ)Xt−k and

M t
θ =

√
φ0(θ)+

∑
k≥1

φk(θ)
(
Yt−k−ψ0(θ)−

∑
j≥1

ψj(θ)Yt−k−j−
∑
j≥1

γ′
j(θ)Xt−k−j

)2
,

for all θ ∈ Θ. Hence, the assumption A0(fθ, {θ}) holds with α
(0)
k,Y (fθ, {θ}) =

|ψk(θ)| and α
(0)
k,X(fθ, {θ}) = ‖γk(θ)‖. From an expansion of M t

θ, one can easily
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get that, A0(Mθ, {θ}) holds with⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

α
(0)
1,Y (Mθ, {θ}) =

√
φk(θ) and

α
(0)
k,Y (Mθ, {θ}) =

√
φk(θ) +

∑k−1
i=1

√
φi(θ)|ψk−i(θ)| for k ≥ 2;

α
(0)
1,X(Mθ, {θ}) = 0 and α

(0)
k,X(Mθ, {θ}) =

∑k−1
i=1

√
φi(θ)‖γk−i(θ)‖

for k ≥ 2.

Therefore, the stationarity set Θ(r) is defined by

Θ(r) =
{
θ ∈ Rd

/ ∑
k≥1

max
{
αk(g), |ψk(θ)|

+ ‖ξ0‖r
(√

φk(θ) +

k−1∑
i=1

√
φi(θ)|ψk−i(θ)|

)}
< 1

and
∑
k≥1

‖γk(θ)‖ < γU for some γU > 0
}
.

Assumption (A1) is satisfied if infθ∈Θ φ0(θ) > 0. The identifiability conditions
can be obtained as in Subsection 4.1 and 4.2.

5. Simulation study

In this section, we consider a double autoregressive model with exogenous co-
variates, defined by

Yt = φ0 +

p1∑
i=1

φiYt−i +

q1∑
i=1

ψ′
iXt−i + ξt

√√√√α0 +

p2∑
i=1

αiY 2
t−i +

q2∑
i=1

β′
i(Xt−i �Xt−i),

(5.1)
where (Xt)t∈Z is an exogenous multivariate covariate process with values in
Rdx (dx ∈ N), p1, p2, q1, q2 ∈ N, φ0, φ1, · · · , φp1 ∈ R, ψ1, · · · , ψq1 ∈ Rdx, α0 >
0, α1, · · · , αp2 ≥ 0, β1, · · · , βq2 ∈ [0,∞)dx , � denotes the Hadamard product
(componentwise multiplication), ξt is a white noise with Eξ20 = 1. This model is
a generalization of the factor double autoregressive (FDAR) process introduced
by Guo et al. (2014) [10] to extend the double AR(p) model proposed by Ling
(2007) [21]. The ARX(p) and ARCH-X(p) are particular cases of the model
(5.1). We assume that (Xt)t∈Z is a VAR(1) (vector autoregressive) process:

Xt = ϕ0 + ϕ1Xt−1 + ηt for all t ∈ Z, (5.2)

where ϕ0 ∈ Rdx , ϕ1 is a real coefficients (dx×dx)-matrix and ηt is a white noise
with E(η0η′0) = Ση. If ‖ϕ1‖ < 1, then the stability condition (2.2) holds with
α1(g) = ‖ϕ1‖ and αk(g) = 0 for k ≥ 2. The stationarity set Θ(r) is
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Θ(r) =
{
θ = (φ0, φ1, · · · , φp1 , α0, α1, · · · , αp2 , ψ

′
1, · · · , ψ′

q1 , β
′
1, · · · , β′

q2) ∈ Θ,

where Θ ⊂ Rp1+1 × (0,∞)× [0,∞)p2 × Rdxq1 × [0,∞)dxq2 and

max(1,p1,p2)∑
i=1

max {αi(g), |φi|+ ‖ξ0‖rαi} < 1
}
,

with φi = 0 if i > p1 and αi = 0 if i > p2. Based on the examples discussed
in Section 4, if the conditions (B0) and (B3) hold for (5.1), then to satisfy the
identifiability condition, it suffices to impose the following assumption on the
covariate:

(B7): if (ck,1)1≤k≤q1 and (ck,2)1≤k≤q2 are sequences of vector of Rdx such as
∃ck1,1 �= 0 and ∃ck2,2 �= 0 (with 1 ≤ k1 ≤ q1, 1 ≤ k2 ≤ q2), then

∑q1
i=1 c

′
k,1Xt−k

and
∑q2

i=1 c
′
k,2Xt−k �Xt−k are not degenerated.

Set ψ = (ψ1, . . . , ψq) and β = (β1, . . . , βq); the true parameter is θ∗ =
(φ0, φ1, α0, α1, ψ, β). In the sequel, we focus on the following two cases.

Case 1. We consider an example of model (5.1) with univariate covariates where
p1 = p2 = 1 and q1 = q2 = q; the AR parameter is set to (ϕ0, ϕ1) = (0.5, 0.5)
and Ση = 1.

Case 2. In this second example, model (5.1) is considered with univariate/multi-
variate covariates where p1 = p2 = 1, q1 = 1 and q2 = 0; thus, the true
parameter is θ∗ = (φ0, φ1, α0, α1, ψ

′
1). This second example is related to the real

data application (see Section 6).

5.1. Estimation and significance test

Some results from Monte Carlo simulations are displayed to assess the asymp-
totic properties of the QMLE, as well as to investigate the empirical size and
power of the proposed procedure on testing the significance of the covariate Xt.
We will consider samples where the innovation (ξt)t∈Z is generated from Gaus-
sian and Student distributions (with 5 with degrees of freedom). The model (5.1)
is considered in the Case 1 with p1 = p2 = q1 = q2 = 1 (scenario S0, S1, S’0
and S’1 below). In the Case 2 (p1 = p2 = q1 = 1, q2 = 0), we consider scenarios
with univariate covariate (scenario S”0 and S”1 below), the AR parameter are
(ϕ0, ϕ1,Ση) = (23.61, 0.7, 21.56).

• scenario S0: θ
∗ = (0.15,−0.2, 0.4, 0.3, 0, 0);

• scenario S1: θ
∗ = (0.15,−0.2, 0.4, 0.3, 0.08, 0);

• scenario S’0: θ
∗ = (1, 0.4, 0.5, 0.2, 0, 0);

• scenario S’1: θ
∗ = (1, 0.4, 0.5, 0.2, 0.07, 0.07).

• scenario S”0: θ
∗ = (37.95, 0.33, 32.11, 0.02, 0);

• scenario S”1: θ
∗ = (37.95, 0.33, 32.11, 0.02,−0.21).
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The scenarios S0, S’0 and S”0 correspond to cases where the covariate is absent;
S”0 and S”1 are related to the real data application. We consider the following
significance tests:

H0 : θ∗ = (0.15,−0.2, 0.4, 0.3, 0, 0) (S0) against

H1 : θ∗ �= (0.15,−0.2, 0.4, 0.3, 0, 0);

H0 : θ∗ = (1, 0.4, 0.5, 0.2, 0, 0) (S′
0) against H1 : θ∗ �= (1, 0.4, 0.5, 0.2, 0, 0).

H0 : θ∗ = (37.95, 0.33, 32.11, 0.02, 0) (S′′
0 ) against

H1 : θ∗ �= (37.95, 0.33, 32.11, 0.02, 0).

In each of the scenarios S0, S1, S’0, S’1, S”0 and S”1, we simulate 200 replica-
tions with the sample size n = 500, 1000 and test the nullity of the vector (ψ, β)
after estimating the parameters of interest. Table 1 contains the empirical mean
and root mean square error (RMSE) of each component of the estimator. The
last column of Table 1 indicates the empirical levels and powers of the above
tests at the nominal level α = 0.05, where the empirical powers are computed
under the alternative H1 respectively in the scenario S1, S’1 and S”1. For the
scenario S’1, the histograms and estimated densities of the estimates are plotted
in Figure 1.

From these findings, one can see that, in all scenarios, the performance of the
QMLE is satisfactory in terms of the mean and that, the RMSE of the estima-
tors decreases when n increases. This is consistent with the results of Theorem
2.1. Also remark that, the fact of computing the QMLE with (ψ̂, β̂) for trajec-
tories generated without covariates (see the scenarios S0, S’0 and S”0) does not
affect the performance of the QMLE, which again confirms its good theoretical
properties. As seen in Figure 1, for each component of θ̂n, the estimated density
is very close to that of the normal distribution; which is in accordance with the

asymptotic results obtained from Theorem 2.2 when θ∗ ∈
◦
Θ. The results of the

test (see Table 1) show that, the statistic Wn is slightly oversized for n = 500
in cases where the innovation is generated from Student distributions, but the
empirical levels are reasonable when n = 1000 in the sense that, they are very
close to the nominal one. Further, the empirical powers displayed increases with
the sample size and are quite accurate.

5.2. Model selection

Now, we are going to carry out other simulation experiments aimed at evaluating
the effectiveness of the proposed model selection procedure in the model (5.1)
for choosing the order q1 = q2 = q in the Case 1. To this end, q = 2 is set as
the “true” model m∗ and that the following scenarios are considered:
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• scenario S∗
1: θ

∗ = (0.6, 0.45, 0.5, 0.15, 1, 0.7, 0.6, 0.35);
• scenario S∗

2: θ
∗ = (0.15, 0.4, 0.5, 0.2, 0.1, 0.1, 0.03, 0.3).

The competing models used are all process satisfying (5.1) with q ∈ {0, 1, . . . , 9},
which leads us to a collection of 10 models.

In the Case 2, consider the multivariate covariate Xt = (Xt,1, Xt,2, · · · , Xt,5),
a VAR(1) (see (5.2)) with parameter ϕ0 = (23.61, 4.95, 12.12, 716.70, 13.01)′,
ϕ1 = diag(0.7, 0.57, 0.51, 0.26, 0.56) and

Ση =

⎛⎜⎜⎜⎜⎝
42.62 −2.59 11.14 281.05 −14.65
−2.59 7.50 −1.29 200.64 −8.24
11.14 −1.29 41.13 1019.57 −1.10
281.05 200.64 1019.57 64948.60 −745.27
−14.64 −8.24 −1.10 −745.27 59.00

⎞⎟⎟⎟⎟⎠
Consider the scenario S”1 with the covariate Xt,1 as the true model. The Case
2 with all the combination of the covariates is performed on the data; that is,
there are 32 competing models. This example is related and close to the real
data application.

For n = 100, 125, 150, . . . , 1000, we simulate 100 independent replications in
each of the three scenarios S∗

1, S
∗
2 and S”1. We compare the performances of

the procedure with κn = logn (see (3.2)) linked to the Bayesian Information
Criteria (BIC) and the procedure with κn = c log logn (c ∈ {2, 3.5, 5}) linked to
the Hannan-Quinn information Criterion (HQC). For the scenarios S∗

1 and S∗
2,

Figures 2 displays the points (n, q̂n), where q̂n denotes the average of the orders
selected with trajectories of length n, as well as the curve of the proportions
of number of replications (frequencies) where the associated criterion selects
the true order. For the scenario of the Case 2 (i.e, S”1), the probabilities of
choosing the true covariate are displayed in Figure 3.

From these figures, the first remark is that, for all the penalties, the performances
of the procedure increase with n in each scenario. Further, the probability of
selecting the true order is very close to 1 when n = 1000. This shows that, these
procedures are in accordance with the results of Theorem 3.1. One can notice
that, in the scenario S∗

1, the logn penalty is more interesting for selecting the
true order than the others penalties for a small sample size (see Figure 2 ((a)
and (b)) for n ≤ 250), while in the scenarios S∗

2 and S”1, the HQC with c = 2
slightly outperforms the BIC penalization when n ≤ 350 (see Figure 2 ((c) and
(d)) and Figure 3). However, the larger the sample size, the c log logn penalty
(except for the case where c = 2) provides the same accuracies in comparison
with the logn penalty, and displays satisfactory results. The results also show
that, as c increases, the performances of the c log log n penalty increase, which
reveals that the common use of the classical HQC penalization (i.e, the c log logn
penalty with c = 2) is not always the optimal choice to select the best model
with this information criterion.
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Table 1

Sample mean and RMSE of the QMLE for the model (5.1) following the scenarios S0, S1,
S’0, S’1, S”0 and S”1, where G and St refers to the Gaussian and Student innovation. The
last column shows the empirical levels (scenarios S0, S’0, S”0) and powers (scenarios S1,
S’1, S”1) at the nominal level 0.05 for the test of the relevance of the exogenous covariates.

QMLE

Scenario n φ̂0 φ̂1 α̂0 α̂1 ψ̂ β̂ Wn

S0 G 500 Mean 0.1488 −0.2001 0.3887 0.2987 0.0019 0.0033
0.035

Rmse 0.0435 0.0607 0.0421 0.0924 0.0276 0.0063

1000 Mean 0.1502 −0.2023 0.3911 0.2979 −0.0006 0.0032
0.045

Rmse 0.0326 0.0370 0.0288 0.0704 0.0832 0.0055

S0 St 500 Mean 0.1511 −0.1956 0.3820 0.3332 −0.0013 0.00585
0.070

Rmse 0.0445 0.0711 0.0630 0.1934 0.0286 0.0115

1000 Mean 0.1475 −0.1998 0.3902 0.3071 0.0004 0.0049
0.055

Rmse 0.0302 0.0400 0.0545 0.1394 0.0180 0.0092

S1 G 500 Mean 0.1520 −0.2012 0.3857 0.2997 0.0806 0.0049
0.750

Rmse 0.0488 0.0547 0.0439 0.0902 0.0316 0.0095

1000 Mean 0.1511 −0.1996 0.3889 0.3006 0.0793 0.0031
0.970

Rmse 0.0327 0.0365 0.0295 0.0672 0.0212 0.0055

S1 St 500 Mean 0.1518 −0.2004 0.3790 0.3149 0.0803 0.0089
0.825

Rmse 0.0396 0.0616 0.0695 0.1734 0.0275 0.0178

1000 Mean 0.1497 −0.1977 0.3862 0.3076 0.0805 0.0047
0.990

Rmse 0.0295 0.0452 0.0512 0.1334 0.0198 0.0090

S’0 G 500 Mean 1.0003 0.4009 0.4793 0.2004 0.0020 0.0065
0.030

Rmse 0.0815 0.0447 0.0672 0.0285 0.0383 0.0126

1000 Mean 1.0015 0.4005 0.4854 0.1986 −0.0012 0.0050
0.055

Rmse 0.0481 0.0277 0.0485 0.0200 0.0295 0.0095

S’0 St 500 Mean 1.0061 0.3957 0.4734 0.2011 0.0005 0.0101
0.075

Rmse 0.0830 0.0465 0.1230 0.0583 0.0393 0.0197

1000 Mean 1.0025 0.3967 0.4852 0.1976 0.0003 0.0088
0.065

Rmse 0.0554 0.0296 0.0880 0.0349 0.0245 0.0181

S’1 G 500 Mean 1.0022 0.3993 0.4943 0.2005 0.0704 0.0702
0.795

Rmse 0.0821 0.0443 0.0803 0.0293 0.0449 0.0315

1000 Mean 1.0019 0.3970 0.5052 0.1979 0.0680 0.0672
0.975

Rmse 0.0587 0.0310 0.0548 0.0217 0.0322 0.0224

S’1 St 500 Mean 1.0098 0.3979 0.5015 0.1956 0.0711 0.0759
0.665

Rmse 0.0837 0.0461 0.1575 0.0576 0.0431 0.0522

1000 Mean 0.9996 0.3990 0.4949 0.2034 0.0733 0.0692
0.930

Rmse 0.0576 0.0318 0.1119 0.0420 0.0295 0.0399

S”0 G 500 Mean 37.9776 0.3259 32.2873 0.0198 0.0025
0.085

Rmse 2.4524 0.0373 2.8635 0.0021 0.0350

1000 Mean 37.7283 0.3274 31.9529 0.0200 0.0042
0.060

Rmse 2.2560 0.0302 2.7856 0.0018 0.0325

S”0 St 500 Mean 38.0380 0.3254 32.0056 0.0194 0.0027
0.065

Rmse 2.3269 0.04313 2.8796 0.0036 0.0370

1000 Mean 37.8905 0.3279 31.7781 0.0199 0.0019
0.040

Rmse 2.1403 0.0273 2.8731 0.0026 0.0291

S”1 G 500 Mean 37.9698 0.3265 33.0176 0.0189 −0.2092
0.985

Rmse 2.4005 0.0401 2.6480 0.0040 0.0310

1000 Mean 38.1928 0.3255 32.7826 0.0193 −0.2113
1.000

Rmse 2.1828 0.0289 2.5628 0.0031 0.0263

S”1 St 500 Mean 38.2794 0.3232 32.5255 0.0194 −0.2117
0.995

Rmse 2.2897 0.0397 2.8555 0.0065 0.0282

1000 Mean 38.3885 0.3288 32.1560 0.0198 −0.2147
1.000

Rmse 2.1398 0.0258 2.7629 0.0046 0.02653
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Fig 1. Histograms of the components of θ̂n in the scenario S’1 with sample size n = 1000.
The overlaying curves are the density estimates and the dotted vertical lines represent the
true values of the parameters.

Fig 2. The averages of the orders selected and the frequencies of selecting the true order based
on 100 independent replications depending on sample’s length in the scenarios S∗

1 and S∗
2.
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Fig 3. The frequencies of selecting the true covariate based on 100 independent replications
depending on sample’s length in the scenario S”1.

6. Real data example

We consider the daily concentrations of the PM10 (particulate matter with a
diameter less than 10 μm) in the Vitória metropolitan area; see Figure 4(a).
These data as well as those of the other meteorological variables (see below)
are obtained from the State Environment and Water Resources Institute, and
were collected at eight monitoring stations. We focus on the data from January
21st, 2005 to March 04th 2006, these observations on 408 days are a part of
a large dataset (available at https://rss.onlinelibrary.wiley.com/pb-assets/hub-
assets/rss/Datasets/RSSC%2067.2/C1239deSouza-1531120585220.zip) which
were analyzed by Souza et al. (2018) [26] to quantify the association between
respiratory disease and air pollution concentrations.

The variables considered are: the average concentration for the particulate
matter (PM10, μgm

−3), sulphur dioxide (SO2, μgm
−3), nitrogen dioxide (NO2,

μgm−3), carbon monoxide (CO, μgm−3), ozone (O3, μgm
−3); and Air relative

humidity (RH, %). Table 2 displays some elementary statistics of these variables.

As pointed out by Ng and Awang (2018) [24], PM10 is a notorious air pollu-
tant associated in particular with detrimental health impacts; it affects the res-
piratory and cardiopulmonary functions and increases the morbidity and mor-
tality rate of related diseases. Therefore, forecasting the PM10 concentration
and understanding its relation with other factors is an important issue. Several
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Table 2

Some elementary statistics of the variables PM10, SO2, NO2, CO, O3, RH, for the
period from January 21st, 2005 to March 04th 2006.

Variable Mean SD Min Q1 Med Q3 Max

PM10 (μgm−3) 32.04 8.62 11.16 26.19 31.87 36.92 66.60

SO2 (μgm−3) 11.64 2.74 4.89 9.75 11.63 13.48 19.29

NO2 (μgm−3) 24.57 6.41 10.47 19.93 23.79 28.84 46.84

CO (μgm−3) 969.70 254.85 456.00 785.10 951.00 1129.70 2141.50

O3 (μgm−3) 29.96 7.68 16.76 24.79 28.46 33.96 66.52

RH (%) 79.21 6.52 62.45 74.36 78.67 83.62 95.39

models, including among others models, ARIMA, MLR (multiple linear regres-
sion), RTSE (Regression with time series error), were considered; we refer to
Ng and Awang (2018) [24] and Ng (2017) [23] and the references therein for an
overview of this issue.

In this section, we focus on the forecast of the PM10 concentration from
some meteorological variables of the previous day. One know that (see for in-
stance, Ng and Awang (2018) [24] and the references therein), the RTSE can
be used for such data. We apply the model (5.1) (whose the RTSE is a spe-
cific case when p2 = q2 = 0) with p1, p2, q1, q2 ∈ {0, 1}, and the covariate
Xt = (SO2,t, NO2,t, COt, O3,t, RHt)

′ (the value of the corresponding variable
at day t). The following issues are addressed.

1. Model selection. The aim is to select the orders p1, p2, q1, q2 and the
“best” subset of the covariates that are the major factor related to the
next-day PM10 concentration. For this purpose, we consider all the com-
bination of the covariates with p1, p2, q1, q2 ∈ {0, 1}; which represents a
collection of 376 models. The procedure based on the penalized crite-
ria Ĉn(m) (see (3.2)) is applied with the regularization parameter κn =
logn, 2 log logn, 3.5 log logn, 5 log log n. These criteria (BIC and HQC)
select the model with p1 = p2 = q1 = 1, q2 = 0 and the covariate RH. This
result shows that, compared to the RTSE, the selected model is preferred.
This result is in accordance with some existing works (see, for instance,
[24] and [23]) which have found that the air humidity of the previous day
is an important factor related to PM10 concentration.

2. Estimation and significance test. The estimated model is:

PM10,t = 37.946
(2.671)

+ 0.330
(0.024)

PM10,t−1 − 0.210
(0.028)

RHt−1

+ ξt

√
32.108
(3.362)

+ 0.023
(0.003)

PM2
10,t−1,

where in parentheses are the standard errors of the estimators obtained
from the robust sandwich matrix. The test (2.8) with ϑ0 = 0 is now applied
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Fig 4. (a) The daily concentrations of the PM10 from January 21st, 2005 to March 04th 2006;
(b), (c) the histogram and the cumulative periodogram of the residuals; (d) the autocorrelation
functions of the squared residuals.

for testing the significance of the covariate. At the nominal level α = 0.05,
the critical value of the test, computed from (ΓZC)′(ΓΣΓ′)−1ΓZC is 2.68
and the statistic, computed from Wn (see (2.9)) is 10.86. Thus, the null
hypothesis is rejected. Figure 4 displays the histogram and cumulative
periodogram of the residuals as well as the autocorrelation functions of
the squared residuals. From these findings, the residuals do not show any
signs of correlation.

In conclusion of this section, let us stress that, several authors have applied the
MLR and the RTSE on other data and have found that NO2, CO, O3 were also
important factors associated to the PM10 concentration (see [24] and [23]) and
the references therein). For the data considered here, and by applying the model
(5.1), it appears that these variables were less important in for forecasting the
PM10 concentrations.

7. Summary and conclusion

This paper considers a general class of causal processes with exogenous covari-
ates in a semiparametric framework. This class is quite extensive and many
classical processes such as ARMA-GARCH, ARMAX-GARCH-X, APARCH-
X,· · · are particular cases. Sufficient conditions for the existence of a stationary
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and ergodic solution are provided.
A quasi likelihood estimator is performed for inference; the consistency of this
estimator is established and the asymptotic distribution is derived. This distri-
bution coincides with the Gaussian one, when the true parameter is an interior
point of the parameter’s space.
A Wald-type statistic is proposed for testing the significance test of parameter.
The asymptotic studies show that, this test has correct size asymptotically and
is consistent in power. In certain cases, this test can be used in particular to
test the relevance of the exogenous covariates.
The model selection question for the class AC-X(Mθ∗ , fθ∗) is carried out by a
penalized quasi likelihood contrast. The weak and the strong consistency of the
proposed procedure is established. These results provide sufficient conditions for
the consistency of the BIC and the HQC procedures. Simulation study shows
that, the empirical and the theoretical results are overall in accordance.

An extension of this works is to address the inference, the significance test
of parameter, the model selection problem for the class AC-X(Mθ∗ , fθ∗) with a
non Gaussian quasi likelihood. For instance, as pointed out by Kengne (2021)
[18], the use of the Laplacian quasi likelihood will allow to reduce the order of
moments imposed to the process. Other topics of a research project, are the
change-point detection and the prediction question (see for instance Ing (2003)
[15], Ing and Wei (2003, 2005) [16, 17]) for this class of models.

8. Proofs of the main results

To simplify the expressions, in the proofs of Theorems 2.1, 2.2 and 3.1, we will
use the conditional Gaussian quasi-log-likelihood given by Ln(θ) = −

∑n
t=1 qt(θ)

and L̂n(θ) = −
∑n

t=1 q̂t(θ). Throughout the sequel, C denotes a positive constant
whom value may differ from an inequality to another.

8.1. Proof of Proposition 1

We verify that the process Zt := (Yt;Xt) satisfies the conditions required for
the Theorem 3.1 in Doukhan and Wintenberger [6]. According to (1.1), for all
t ∈ Z,

Zt =
(
Mθ∗(Yt−1, . . . ;Xt−1, . . .)ξt + fθ∗(Yt−1, . . . ;Xt−1, . . .); g(Xt−1, . . . ; ηt)

)
= F (Zt−1, Zt−2, . . . ;Ut),

with Ut = (ξt, ηt) and F (zzz;Ut) =
(
Mθ∗(y1, . . . ;x1, . . .)ξt + fθ∗(y1, . . . ;x1, . . .);

g(x1, . . . ; ηt)
)
for all zzz =

(
(yk, xk)

)
k∈N

∈ (Rdx+1)N. Thus, the equation (1.1)

of [6] holds for (Zt)t∈Z. For a vector z = (y, x) ∈ Rdx+1, define the norm
‖z‖w = |y|+wx‖x‖ for some wx > 0. According to Doukhan and Wintenberger
(2008) [6], it suffices to show that:

(i) E‖F (zzz;U0)‖rw < ∞ for some zzz ∈ (Rdx+1)N;
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(ii) there exists a non-negative sequence (αk(F ))k≥1 satisfying
∑

k≥1 αk(F ) <

1 such that, for all zzz, z̃zz ∈ (Rdx+1)N,

E‖F (zzz;U0)− F (z̃zz;U0)‖rw ≤
∑
k≥1

αk(F )‖zk − z̃k‖w.

Using the condition (2.2), the part (i) is directly obtained from the assumptions
A0(fθ,Θ), A0(Mθ,Θ).
To prove (ii), let zzz = (z1, . . .), z̃zz = (z̃1, . . .) ∈ (Rdx+1)N such that zk = (yk, xk)
and z̃k = (ỹk, x̃k) for all k ≥ 1. From A0(fθ,Θ), A0(Mθ,Θ) and (2.2), we get

‖‖F (zzz;U0)− F (z̃zz;U0)‖w‖r
≤
∥∥ ‖(Mθ(y1, . . . ;x1, . . .)−Mθ(ỹ1, . . . ; x̃1, . . .)) ξ0‖Θ

+ ‖fθ(y1, . . . ;x1, . . .)− fθ(ỹ1, . . . ; x̃1, . . .)‖Θ
∥∥
r

+ wx ‖g(x1, . . . ; η0)− g(x̃1, . . . ; η0)‖r

≤
∞∑
k=1

(
α
(0)
k,Y (fθ,Θ) + ‖ξ0‖rα(0)

k,Y (Mθ,Θ)
)
|yk − ỹk|

+

∞∑
k=1

(
α
(0)
k,X(fθ,Θ) + ‖ξ0‖rα(0)

k,X(Mθ,Θ)
)
‖xk − x̃k‖

+ wx

∞∑
k=1

αk(g) ‖xk − x̃k‖

≤
∞∑
k=1

(
α
(0)
k,Y (fθ,Θ) + ‖ξ0‖rα(0)

k,Y (Mθ,Θ)
)
|yk − ỹk|

+ wx

∞∑
k=1

( 1

wx

(
α
(0)
k,X(fθ,Θ) + ‖ξ0‖rα(0)

k,X(Mθ,Θ)
)
+ αk(g)

)
‖xk − x̃k‖

≤
∞∑
k=1

αk(F )‖zk − z̃k‖w

with

αk(F ) = max
{
α
(0)
k,Y (fθ,Θ) + ‖ξ0‖rα(0)

k,Y (Mθ,Θ),

1

wx

(
α
(0)
k,X(fθ,Θ) + ‖ξ0‖rα(0)

k,X(Mθ,Θ)
)
+ αk(g)

}
.

Thus, to get
∑∞

k=1 αk(F ) < 1, it suffices to choose wx sufficiently large, such
that

wx >

∑
k≥1

{
α
(0)
k,X(fθ,Θ) + ‖ξ0‖rα(0)

k,X(Mθ,Θ)
}

1−
∑

k≥1 max
{
αk(g), α

(0)
k,Y (fθ,Θ) + ‖ξ0‖rα(0)

k,Y (Mθ,Θ)
} .

This completes the proof of the proposition. �
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8.2. Proof of Theorem 2.1

We consider the following lemma.

Lemma 1. Assume that the assumptions of Theorem 2.1 hold. Then

1

n

∥∥L̂n(θ)− Ln(θ)
∥∥
Θ

a.s.−→
n→∞

0.

Proof of Lemma 1
Remark that

1

n
‖L̂n(θ)− Ln(θ)‖Θ ≤ 1

n

n∑
t=1

‖q̂t(θ)− qt(θ)‖Θ.

Hence, by Corollary 1 of Kounias and Weng (1969) [19]., with 2 ≤ r̃ ≤ min{3, r}
(without loss of generality), it suffices to show that

∑
�≥1

1

�r̃/3
E
(
‖q̂�(θ)− q�(θ)‖r̃/3Θ

)
< ∞. (8.1)

For any θ ∈ Θ, by applying the mean value theorem at the functions x �→ 1
x2

and x �→ log x, we have

|q̂t(θ)− qt(θ)|

≤
∣∣∣ (Yt − f̂ t

θ)
2

Ĥt
θ

− (Yt − f t
θ)

2

Ht
θ

∣∣∣+ | log Ĥt
θ − logHt

θ|

≤
∣∣∣ (Yt − f̂ t

θ)
2

(M̂ t
θ)

2
− (Yt − f t

θ)
2

(M t
θ)

2

∣∣∣+ 2
∣∣ log |M̂ t

θ| − log |M t
θ|
∣∣

≤
∣∣∣(Yt − f̂ t

θ)
2
( 1

(M̂ t
θ)

2
− 1

(M t
θ)

2

)
+

1

(M t
θ)

2

(
(Yt − f̂ t

θ)
2 − (Yt − f t

θ)
2
) ∣∣∣

+
2

h1/2
|M̂ t

θ −M t
θ|

≤ 2

h3/2
|Yt − f̂ t

θ|2|M̂ t
θ −M t

θ|+
1

h
|f̂ t

θ − f t
θ||f̂ t

θ + f t
θ − 2Yt|+

2

h1/2
|M̂ t

θ −M t
θ|

≤ C
(
(|Yt − f t

θ|2 + 1)|M̂ t
θ −M t

θ|+ |f̂ t
θ − f t

θ||f̂ t
θ + f t

θ − 2Yt|
)
.

This implies

E
[
‖q̂t(θ)− qt(θ)‖r̃/3Θ

]
≤ C
(
E
[(
‖Yt − f t

θ‖2Θ + 1
)r̃/3‖M̂ t

θ −M t
θ‖

r̃/3
Θ

]
+ E
[
‖f̂ t

θ − f t
θ‖

r̃/3
Θ

(
‖f̂ t

θ‖Θ + ‖f t
θ‖Θ + 2|Yt|

)r̃/3])
.
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Moreover, since θ∗ ∈ Θ(r) for some r ≥ 2, by Assumption A0(Ψθ,Θ), one can
easily show that:

• E
[
|Yt|r + ‖f t

θ‖rΘ + ‖f̂ t
θ‖rΘ + ‖M t

θ‖rΘ + ‖M̂ t
θ‖rΘ + ‖Ht

θ‖
r/2
Θ + ‖Ĥt

θ‖
r/2
Θ

]
< ∞;

(8.2)

•

⎧⎪⎪⎨⎪⎪⎩
E(‖f̂ t

θ − f t
θ‖rΘ) ≤ C

( ∑
k≥t

{
α
(0)
k,Y (fθ,Θ) + α

(0)
k,X(fθ,Θ)

})r
;

E(‖M̂ t
θ −M t

θ‖rΘ) ≤ C
( ∑

k≥t

{
α
(0)
k,Y (Mθ,Θ) + α

(0)
k,X(Mθ,Θ)

})r
.

(8.3)

Then, by the Hölder’s inequality, we have

E
[
‖f̂ �

θ − f �
θ‖

r̃/3
Θ

(
‖f̂ �

θ‖Θ + ‖f �
θ‖Θ + 2|Y�|

)r̃/3]
≤
(
E
[
‖f̂ �

θ − f �
θ‖r̃Θ
])1/3(

E
[
‖f̂ �

θ‖Θ + ‖f �
θ‖Θ + 2|Y�|

]r̃/2)2/3
≤ C
(∑

k≥t

{
α
(0)
k,Y (fθ,Θ) + α

(0)
k,X(fθ,Θ)

})r̃/3
.

Again, by the Hölder’s inequality, from (8.2) and (8.3), we obtain

E
[(
‖Yt − f �

θ‖2Θ + 1
)r̃/3‖M̂ �

θ −M �
θ‖

r̃/3
Θ

]
≤ E
[
‖Yt + f �

θ + 1‖2r̃/3Θ ‖M̂ �
θ −M �

θ‖
r̃/3
Θ

]
≤
(
E
[
‖Yt + f �

θ + 1‖r̃Θ
])2/3(

E
[
‖M̂ �

θ −M �
θ‖r̃Θ
])1/3

≤ C
(∑

k≥t

{
α
(0)
k,Y (Mθ,Θ) + α

(0)
k,X(Mθ,Θ)

})r̃/3
.

Hence, from (2.3), we deduce∑
�≥1

1

�r̃/3
E
(
‖q̂�(θ)− q�(θ)‖r̃/3Θ

)
≤

C
∑
�≥1

1

�r̃/3

(∑
k≥�

{
α
(0)
k,Y (fθ,Θ) + α

(0)
k,X(fθ,Θ) + α

(0)
k,Y (Mθ,Θ) + α

(0)
k,X(Mθ,Θ)

})r̃/3
≤ C
∑
�≥1

1

�r̃/3

( 1

�γ−1

)r̃/3
≤ C
∑
�≥1

1

�r̃γ/3
< ∞,

where the last inequality holds since γ > 3/2. Thus, the condition (8.1) is
satisfied. This completes the proof Lemma 1. �

To complete the proof of Theorem 2.1, we will show that: (1.) E [‖qt(θ)‖Θ] < ∞
and (2.) the function θ �→ −E[q0(θ)] has a unique maximum at θ∗.
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(1.) For all θ ∈ Θ, using the inequality | log(x)| ≤ |x− 1| for all x > 1, we have

|qt(θ)| ≤
1

Ht
θ

|Yt − f t
θ)|2 +

∣∣ log (Ht
θ

h

)
+ log(h)

∣∣
≤ 1

h
(Y 2

t + (f t
θ)

2 + 2Ytf
t
θ) +
∣∣Ht

θ

h
− 1
∣∣+ | log(h)|

≤ C
(
Y 2
t + (f t

θ)
2 + 2Ytf

t
θ + |M t

θ|2
)
+ C.

Hence, from (8.2), we deduce

E [‖qt‖Θ] ≤ C
(
E[Y 2

t ] + E‖f t
θ‖2Θ + 2

(
(E[Y 2

t ])
1/2(E[‖f t

θ‖2Θ])1/2
)

+ E[‖M t
θ‖2Θ]
)
+ C < ∞,

which shows that (1.) holds.
(2.) Let θ ∈ Θ with θ �= θ∗. We have

E[q0(θ)]− E[q0(θ
∗)] = E

[
E [(q0(θ)− q0(θ

∗)) |F−1]
]
. (8.4)

Moreover,

E [(q0(θ)− q0(θ
∗)) |F−1]

= E
[ (Y0 − f0

θ )
2

H0
θ

+ logH0
θ − (Y0 − f0

θ∗)2

H0
θ∗

− logH0
θ∗
∣∣F−1

]
= − log

(H0
θ∗

H0
θ

)
+

E
[
(Y0 − f0

θ )
2
∣∣F−1

]
H0

θ

−
E
[
(Y0 − f0

θ∗)2
∣∣F−1

]
H0

θ∗

= − log
(H0

θ∗

H0
θ

)
− 1 +

E
[
(Y0 − f0

θ∗ + f0
θ∗ − f0

θ )
2
∣∣F−1

]
H0

θ

=
H0

θ∗

H0
θ

− log
(H0

θ∗

H0
θ

)
− 1 +

(f0
θ∗ − f0

θ )
2

H0
θ

.

Therefore, using (8.4) and by applying the Jensen’s inequality, we get

E[q0(θ)]− E[q0(θ
∗)] = E

[H0
θ∗

H0
θ

− log
(H0

θ∗

H0
θ

)
− 1 +

(f0
θ∗ − f0

θ )
2

H0
θ

]
≥ E
[H0

θ∗

H0
θ

]
− log

(
E
[H0

θ∗

H0
θ

])
− 1 + E

[ (f0
θ∗ − f0

θ )
2

H0
θ

]
.

Since x− log(x)− 1 > 0 for any x > 0, x �= 1; and x− log(x)− 1 = 0 for
x = 1, we deduce:

• if f0
θ∗ �= f0

θ a.s., then E
[ (f0

θ∗−f0
θ )

2

H0
θ

]
> 0 and E[q0(θ)]− E[q0(θ∗)] > 0,

• if f0
θ∗ = f0

θ a.s., then

E[q0(θ)]− E[q0(θ
∗)] = E

[H0
θ∗

H0
θ

− log
(H0

θ∗

H0
θ

)
− 1
]
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From the identifiability condition (A0), when θ∗ �= θ and f0
θ∗ =

f0
θ a.s., we necessarily have H0

θ∗ �= H0
θ a.s.. This implies

H0
θ∗

H0
θ

�= 1 a.s.,

and thus E[q0(θ)]− E[q0(θ∗)] > 0.

The equality E[q0(θ)] = E[q0(θ∗)] holds a.s. if and only if θ∗ = θ. This
achieves the proof of (2.).

Since {(Yt, Xt), t ∈ Z} is stationary and ergodic, the process {qt(θ), t ∈ Z} is
also a stationary and ergodic sequence. Then, according to (1.), by the uniform
strong law of large number applied on the process {qt(θ), t ∈ Z}, it holds that

∥∥ 1
n
Ln(θ) + E(q0(θ))

∥∥
Θ
=
∥∥ 1
n

n∑
t=1

qt(θ)− E(q0(θ))
∥∥
Θ

a.s.−→
n→∞

0.

Then, by Lemma 1, we obtain∥∥ 1
n
L̂n(θ) + E(q0(θ))

∥∥
Θ
≤ 1

n

∥∥L̂n(θ)− Ln(θ)
∥∥
Θ
+
∥∥ 1
n
Ln(θ) + E(q0(θ))

∥∥
Θ

a.s.−→
n→∞

0. (8.5)

The part (2.) and (8.5) lead to conclude the proof of the theorem. �

8.3. Proof of Theorem 2.2

The following lemma is needed.

Lemma 2. Assume that the conditions of Theorem 2.2 hold. Then

(i.) E
[

1√
n

∥∥∂L̂n(θ)
∂θ − ∂Ln(θ)

∂θ

∥∥
Θ

]
−→
n→∞

0;

(ii.) 1
n

∥∥∂2L̂n(θ)
∂θ∂θ′ − ∂2Ln(θ)

∂θ∂θ′

∥∥
Θ

a.s.−→
n→∞

0;

(iii.)
∥∥ 1
n

∑n
t=1

∂2qt(θ)
∂θ∂θ′ − E

(∂2q0(θ)
∂θ∂θ′

)∥∥
Θ

a.s.−→
n→∞

0.

Proof of Lemma 2

(i.) Remark that∥∥∥∂L̂n(θ)

∂θ
− ∂Ln(θ)

∂θ

∥∥∥
Θ
≤

n∑
t=1

∥∥∥∂q̂t(θ)
∂θ

− ∂qt(θ)

∂θ

∥∥∥
Θ
. (8.6)

Moreover, for all θ ∈ Θ,

∂qt(θ)

∂θ
= −(Ht

θ)
−2
(
2Ht

θ(Yt − f t
θ)
∂f t

θ

∂θ
+ (Yt − f t

θ)
2 ∂H

t
θ

∂θ

)
+ (Ht

θ)
−1H

t
θ

∂θ

= −2(Ht
θ)

−1(Yt − f t
θ)
∂f t

θ

∂θ
+ (Yt − f t

θ)
2 ∂(H

t
θ)

−1

∂θ
+ (Ht

θ)
−1 ∂H

t
θ

∂θ
,

(8.7)
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which implies∣∣∣∂q̂t(θ)
∂θ

− ∂qt(θ)

∂θ

∣∣∣ ≤ 2
∣∣∣(Ĥt

θ)
−1(Yt − f̂ t

θ)
∂f̂ t

θ

∂θ
− (Ht

θ)
−1(Yt − f t

θ)
∂f t

θ

∂θ

∣∣∣
+
∣∣∣(Yt − f̂ t

θ)
2 ∂(Ĥ

t
θ)

−1

∂θ
− (Yt − f t

θ)
2 ∂(H

t
θ)

−1

∂θ

∣∣∣
+
∣∣∣(Ĥt

θ)
−1 ∂Ĥ

t
θ

∂θ
− (Ht

θ)
−1 ∂H

t
θ

∂θ

∣∣∣.
Using the relation |a1b1c1 − a2b2c2| ≤ |a1 − a2||b2||c2|+ |a1||b1 − b2||c2|+
|a1||b1||c1 − c2|, ∀a1, a2, b1, b2, c1, c2,∈ R, we get∥∥∥∂q̂t(θ)

∂θ
− ∂qt(θ)

∂θ

∥∥∥
Θ

≤ 2
(∥∥(Ĥt

θ)
−1 − (Ht

θ)
−1
∥∥
Θ
‖Yt − f̂ t

θ‖Θ
∥∥∥∂f t

θ

∂θ

∥∥∥
Θ

+
∥∥(Ĥt

θ)
−1
∥∥
Θ
‖f̂ t

θ − f t
θ‖Θ
∥∥∥∂f̂ t

θ

∂θ

∥∥∥
Θ

+
∥∥(Ĥt

θ)
−1
∥∥
Θ
‖Yt − f t

θ‖Θ
∥∥∥∂f̂ t

θ

∂θ
− ∂f t

θ

∂θ

∥∥∥
Θ

)
+ ‖(Yt − f̂ t

θ)‖2Θ
∥∥∥∂(Ĥt

θ)
−1

∂θ
− ∂(Ht

θ)
−1

∂θ

∥∥∥
Θ
+ 2|Yt|‖f̂ t

θ − f t
θ‖Θ
∥∥∥∂(Ht

θ)
−1

∂θ

∥∥∥
Θ

+
∥∥(Ĥt

θ)
−1
∥∥
Θ

∥∥∥∂Ĥt
θ

∂θ
− ∂Ht

θ

∂θ

∥∥∥
Θ
+
∥∥(Ĥt

θ)
−1 − (Ht

θ)
−1
∥∥
Θ

∥∥∥∂Ht
θ

∂θ

∥∥∥
Θ

≤ 2(h)−1
(
‖f̂ t

θ − f t
θ‖Θ
∥∥∥∂f̂ t

θ

∂θ

∥∥∥
Θ

+ ‖Yt − f t
θ‖Θ
∥∥∥∂f̂ t

θ

∂θ
− ∂f t

θ

∂θ

∥∥∥
Θ
+

1

2

∥∥∥∂Ĥt
θ

∂θ
− ∂Ht

θ

∂θ

∥∥∥
Θ

)
+ 2
∥∥(Ĥt

θ)
−1 − (Ht

θ)
−1
∥∥
Θ
‖Yt − f̂ t

θ‖Θ
∥∥∥∂f t

θ

∂θ

∥∥∥
Θ

+ ‖(Yt − f̂ t
θ)‖2Θ
∥∥∥∂(Ĥt

θ)
−1

∂θ
− ∂(Ht

θ)
−1

∂θ

∥∥∥
Θ

+ 2|Yt|‖f̂ t
θ − f t

θ‖Θ
∥∥∥∂(Ht

θ)
−1

∂θ

∥∥∥
Θ
+
∥∥(Ĥt

θ)
−1 − (Ht

θ)
−1
∥∥
Θ

∥∥∥∂Ht
θ

∂θ

∥∥∥
Θ
. (8.8)

By applying the Hölder’s inequality to the terms of the right hand side of
(8.8), we have

E
[∥∥∥∂q̂t(θ)

∂θ
− ∂qt(θ)

∂θ

∥∥∥
Θ

]
≤ C

[(
E[‖f̂ t

θ − f t
θ‖4Θ]
)1/4 (

E
[∥∥∥∂f̂ t

θ

∂θ

∥∥∥4/3
Θ

])3/4
+
(
E[‖Yt − f t

θ‖
4/3
Θ ]
)3/4(

E
[∥∥∥∂f̂ t

θ

∂θ
− ∂f t

θ

∂θ

∥∥∥4
Θ

])1/4
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+
(
E
[∥∥∥∂Ĥt

θ

∂θ
− ∂Ht

θ

∂θ

∥∥∥2
Θ

])1/2
+
(
E
[∥∥(Ĥt

θ)
−1 − (Ht

θ)
−1
∥∥4
Θ

])1/4 (
E[‖Yt − f̂ t

θ‖4Θ]
)1/4 (

E
[∥∥∥∂f t

θ

∂θ

∥∥∥2
Θ

])1/2
+
(
E[‖(Yt − f̂ t

θ)‖4Θ]
)1/2 (

E
[∥∥∥∂(Ĥt

θ)
−1

∂θ
− ∂(Ht

θ)
−1

∂θ

∥∥∥2
Θ

])1/2
+
(
E[|Yt|4]

)1/4 (
E[‖f̂ t

θ − f t
θ‖4Θ]
)1/4

×
(
E
[∥∥∥∂(Ht

θ)
−1

∂θ

∥∥∥2
Θ

])1/2
+
(
E
[∥∥(Ĥt

θ)
−1 − (Ht

θ)
−1
∥∥4
Θ

])1/4 (
E
[∥∥∥∂Ht

θ

∂θ

∥∥∥4/3
Θ

])3/4]
.

Moreover, since θ∗ ∈ Θ(r), using Ai(fθ,Θ) and Ai(Mθ,Θ) (with i = 0, 1),
one can go along similar lines as in [2] to establish the following results:

• E
[∥∥∥∂f t

θ

∂θ

∥∥∥r
Θ
+
∥∥∥∂f̂ t

θ

∂θ

∥∥∥r
Θ
+
∥∥∥∂M t

θ

∂θ

∥∥∥r
Θ
+
∥∥∥∂M̂ t

θ

∂θ

∥∥∥r
Θ
+
∥∥∥∂Ht

θ

∂θ

∥∥∥r/2
Θ

+
∥∥∥∂(Ht

θ)
−1

∂θ

∥∥∥r/2
Θ

]
< ∞, (8.9)

•⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
[∥∥∥∂f̂t

θ

∂θ − ∂ft
θ

∂θ

∥∥∥r
Θ

]
≤ C
( ∑

k≥t

{
α
(1)
k,Y (fθ,Θ) + α

(1)
k,X(fθ,Θ)

})r
,

E
[∥∥(Ĥt

θ)
−1 − (Ht

θ)
−1
∥∥r
Θ

]
≤ C
( ∑

k≥t

{
α
(0)
k,Y (Mθ,Θ) + α

(0)
k,X(Mθ,Θ)

})r
,

E
[∥∥∥∂Ĥt

θ

∂θ − ∂Ht
θ

∂θ

∥∥∥r/2
Θ

]
≤ C
( ∑

k≥t

{
α
(0)
k,Y (Mθ,Θ) + α

(1)
k,X(Mθ,Θ)

})r/2
,

E
∥∥∥∂(Ĥt

θ)
−1

∂θ − ∂(Ht
θ)

−1

∂θ

∥∥∥ r
2

Θ
≤ C
( ∑

k≥t

{
α
(0)
k,Y (Mθ,Θ) + α

(1)
k,X(Mθ,Θ)

}) r
2

.

(8.10)

Thus, using (8.2), (8.3), (8.9) and (8.10) with r = 4, we obtain

E
[∥∥∥∂q̂t(θ)

∂θ
− ∂qt(θ)

∂θ

∥∥∥
Θ

]
≤ C

[(
E[‖f̂ t

θ − f t
θ‖4Θ]
)1/4

+
(
E
[∥∥∥∂f̂ t

θ

∂θ
− ∂f t

θ

∂θ

∥∥∥4
Θ

])1/4
+
(
E
[∥∥∥∂Ĥt

θ

∂θ
− ∂Ht

θ

∂θ

∥∥∥2
Θ

])1/2
+
(
E
[∥∥(Ĥt

θ)
−1 − (Ht

θ)
−1
∥∥4
Θ

])1/4
+
(
E
[∥∥∥∂(Ĥt

θ)
−1

∂θ
− ∂(Ht

θ)
−1

∂θ

∥∥∥2
Θ

])1/2
+
(
E[‖f̂ t

θ − f t
θ‖4Θ]
)1/4

+
(
E
[∥∥(Ĥt

θ)
−1 − (Ht

θ)
−1
∥∥4
Θ

])1/4 ]



Inference andmodel selection in general causal time series with exogenous covariates 147

≤ C
∑
k≥t

{
α
(0)
k,Y (fθ,Θ) + α

(0)
k,X(fθ,Θ) + α

(1)
k,Y (fθ,Θ) + α

(1)
k,X(fθ,Θ)

+ α
(0)
k,Y (Mθ,Θ) + α

(0)
k,X(Mθ,Θ) + α

(1)
k,Y (Mθ,Θ) + α

(1)
k,X(Mθ,Θ)

}
.

Therefore, in view of the condition (2.7), it holds that

E
[∥∥∥∂q̂t(θ)

∂θ
− ∂qt(θ)

∂θ

∥∥∥
Θ

]
≤ C
∑
k≥t

k−γ = C
1

tγ−1
.

By the inequality (8.6), we deduce

E
[ 1√

n

∥∥∥∂L̂n(θ)

∂θ
− ∂Ln(θ)

∂θ

∥∥∥
Θ

]
≤ C

1√
n

n∑
t=1

1

tγ−1
= C

1√
n
(1 + n2−γ)

−→
n→∞

0.

This proves the part (i.) of Lemma 2.

(ii.) This part can be established by using the same arguments as in the proof
of Lemma 1.

(iii.) Let us show that E
[∥∥∥∂2qt(θ)

∂θi∂θj

∥∥∥
Θ

]
< ∞, for all i, j ∈ {1, . . . , d}.

From (8.7), for any i, j ∈ {1, . . . , d}, we have

∂2qt(θ)

∂θ∂iθj

= −2(Ht
θ)

−1(Yt − f t
θ)

∂2f t
θ

∂θi∂θj
+ (Yt − f t

θ)
2 ∂

2(Ht
θ)

−1

∂θi∂θj

− 2(Yt − f t
θ)
(∂f t

θ

∂θi

∂(Ht
θ)

−1

∂θj
+

∂f t
θ

∂θj

∂(Ht
θ)

−1

∂θi

)
+ 2(Ht

θ)
−1 ∂f

t
θ

∂θi

∂f t
θ

∂θj
+

∂(Ht
θ)

−1

∂θj

∂Ht
θ

∂θi
+ (Ht

θ)
−1 ∂2Ht

θ

∂θi∂θj
.

Therefore, according to (A1), we get∥∥∥∂2qt(θ)

∂θ∂iθj

∥∥∥
Θ

≤ C‖(Yt − f t
θ)‖Θ×(∥∥∥ ∂2f t
θ

∂θi∂θj

∥∥∥
Θ
+
∥∥∥∂f t

θ

∂θi

∥∥∥
Θ

∥∥∥∂(Ht
θ)

−1

∂θj

∥∥∥
Θ
+
∥∥∥∂f t

θ

∂θj

∥∥∥
Θ

∥∥∥∂(Ht
θ)

−1

∂θi

∥∥∥
Θ

)
+ C
(∥∥∥∂f t

θ

∂θi

∥∥∥
Θ

∥∥∥∂f t
θ

∂θj

∥∥∥
Θ
+
∥∥∥ ∂2Ht

θ

∂θi∂θj

∥∥∥
Θ

)
+ ‖(Yt − f t

θ)‖
2

Θ

∥∥∥∂2(Ht
θ)

−1

∂θi∂θj

∥∥∥
Θ
+
∥∥∥∂(Ht

θ)
−1

∂θj

∥∥∥
Θ

∥∥∥∂Ht
θ

∂θi

∥∥∥
Θ
. (8.11)
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Moreover, by A2(fθ,Θ) and A2(Mθ,Θ), one can show that

E
[∥∥∥ ∂2f t

θ

∂θi∂θj

∥∥∥4
Θ
+
∥∥∥ ∂2Ht

θ

∂θi∂θj

∥∥∥2
Θ
+
∥∥∥∂2(Ht

θ)
−1

∂θi∂θj

∥∥∥2
Θ

]
< ∞.

Thus, by applying the Hölder’s inequality to the terms of the right hand

side of (8.11), it suffices to use (8.2) and (8.9) to obtain E
[∥∥∥∂2qt(θ)

∂θi∂θj

∥∥∥
Θ

]
<

∞.
Since E

[∥∥∥∂2qt(θ)
∂θi∂θj

∥∥∥
Θ

]
< ∞ for all i, j ∈ {1, . . . , d}, from the stationarity

and ergodicity properties of
{∂2qt(θ)

∂θ∂θ′ , t ∈ Z
}
and the uniform strong law

of large numbers, it holds that∥∥∥ 1
n

n∑
t=1

∂2qt(θ)

∂θ∂θ′
− E
(∂2q0(θ)

∂θ∂θ′

)∥∥∥
Θ

a.s.−→
n→∞

0.

This completes the proof of Lemma 2. �

The following lemma is also needed.

Lemma 3. Assume that the conditions of Theorem 2.2 hold. Then

(i.)
{∂qt(θ

∗)
∂θ |Ft−1, t ∈ Z

}
is a stationary ergodic martingale difference se-

quence with covariance matrix G,

(ii.) − 1
n

∂2

∂θ∂θ′ L̂n(θ̃n)
a.s.−→

n→∞
F , for any sequence (θ̃n)n≥1 with values in Θ and

satisfying θ̃n
a.s.−→

n→∞
θ∗,

where G and F are defined in (2.5).

Proof of Lemma 3

(i.) Recall that G = E
[
∂qt(θ

∗)
∂θ

∂qt(θ
∗)

∂θ′

]
and that for all θ ∈ Θ,

∂qt(θ)

∂θ
= −2(Ht

θ)
−1(Yt − f t

θ)
∂f t

θ

∂θ
−
(Yt − f t

θ

Ht
θ

)2 ∂Ht
θ

∂θ
+ (Ht

θ)
−1 ∂H

t
θ

∂θ
.

Since the functions f t
θ, H

t
θ,

∂ft
θ

∂θ and
∂Ht

θ

∂θ are Ft−1-measurable, we have

E
[∂qt(θ∗)

∂θ

∣∣Ft−1

]
=−(Ht

θ∗)−1 ∂H
t
θ∗

∂θ

(
(Ht

θ∗)−1E
[
(Yt−f t

θ∗)2|Ft−1

]
−1
)
=0,

which shows that (i.) holds.

(ii.) Let (θ̃n)n∈N be a sequence satisfying θ̃n
a.s.−→

n→∞
θ∗. For any i, j = 1, . . . , d,

we have∣∣∣ 1
n

n∑
t=1

∂

∂θj∂θi
qt(θ̃n)− E

( ∂

∂θj∂θi
q0(θ

∗)
)∣∣∣
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≤
∣∣∣ 1
n

n∑
t=1

∂

∂θj∂θi
qt(θ̃n)− E

( ∂

∂θj∂θi
q0(θ̃n)

)∣∣∣
+
∣∣∣E( ∂

∂θj∂θi
q0(θ̃n)

)
− E
( ∂

∂θj∂θi
q0(θ

∗)
)∣∣∣

≤
∥∥∥ 1
n

n∑
t=1

∂

∂θj∂θi
qt(θ)− E

( ∂

∂θj∂θi
q0(θ)

)∥∥∥
Θ

+
∣∣∣E( ∂

∂θj∂θi
q0(θ̃n)

)
− E
( ∂

∂θj∂θi
q0(θ

∗)
)∣∣∣

−→
n→∞

0 (by virtue of Lemma 2 (iii.)).

Thus,

− 1

n

∂2

∂θ∂θ′
Ln(θ̃n) =

1

n

n∑
t=1

∂2

∂θ∂θ′
qt(θ̃n)

a.s.−→
n→∞

E
( ∂2

∂θ∂θ′
q0(θ

∗)
)
= F.

We conclude the proof of the part (ii.) by using Lemma 2 (ii.). �

Now, we use the results of Lemma 2 and 3 to prove the first part of Theorem 2.2.
The second part can be established by going along similar lines as in Kengne
(2021) [18].

By applying a second-order Taylor expansion to the function θ �→ L̂n(θ), for all
θ ∈ Θ, there exists θ̃ between θ and θ∗ such that

1

n

{
L̂n(θ)− L̂n(θ

∗)
}
=

1

n

∂Ln(θ
∗)

∂θ′
(θ−θ∗)− 1

2
(θ−θ∗)′F (θ−θ∗)+Rn(θ), (8.12)

where

Rn(θ) =
1

n

{∂L̂n(θ
∗)

∂θ′
−∂Ln(θ

∗)

∂θ′

}
(θ−θ∗)+

1

2
(θ−θ∗)′

( 1
n

∂2

∂θ∂θ′
L̂n(θ̃)+F

)
(θ−θ∗).

Let us define the vector

Zn = F−1 1√
n

∂Ln(θ
∗)

∂θ
.

Then, we can rewrite (8.12) as

1

n

{
L̂n(θ)− L̂n(θ

∗)
}
=

1

2n
‖Zn‖2F − 1

2n

∥∥Zn −
√
n(θ − θ∗)

∥∥2
F
+Rn(θ). (8.13)

Define also
θZn = arg inf

θ∈Θ

∥∥Zn −
√
n(θ − θ∗)

∥∥
F
.

Then, by (2.4), for n large enough, we have

√
n(θZn − θ∗) = ZC

n ,
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where ZC
n is the F -projection of Zn on C. Using this relation and the definition

of θZn , we have∥∥Zn −
√
n(θ̂n − θ∗)

∥∥2
F
−
∥∥Zn − ZC

n

∥∥2
F
=
∥∥Zn −

√
n(θ̂n − θ∗)

∥∥2
F

−
∥∥Zn −

√
n(θZn − θ∗)

∥∥2
F
≥ 0.

Furthermore, from (8.13) and the definition of θ̂n, it holds that∥∥Zn −
√
n(θ̂n − θ∗)

∥∥2
F
−
∥∥Zn −

√
n(θZn − θ∗)

∥∥2
F

= {L̂n(θZn)− L̂n(θ̂n)}+ 2n{Rn(θ̂n)−Rn(θZn)}
≤ 2n{Rn(θ̂n)−Rn(θZn)}.

Therefore,∣∣∣∥∥Zn −
√
n(θ̂n − θ∗)

∥∥2
F
−
∥∥Zn − ZC

n

∥∥2
F

∣∣∣ ≤ 2n{Rn(θ̂n)−Rn(θZn)}. (8.14)

Let us consider the following Lemma.

Lemma 4. Assume that the conditions of Theorem 2.2 hold. Then

n{Rn(θ̂n)−Rn(θZn)} = oP (1).

By Lemma 4 and (8.14), it follows that∥∥Zn −
√
n(θ̂n − θ∗)

∥∥2
F
−
∥∥ZC

n − Zn

∥∥2
F
= oP (1). (8.15)

Moreover, according to the equivalent definition of the F -orthogonal projection
in (2.6), we get∥∥Zn −

√
n(θ̂n − θ∗)

∥∥2
F

=
∥∥ZC

n −
√
n(θ̂n − θ∗)

∥∥2
F
+
∥∥ZC

n − Zn

∥∥2
F
− 2
〈
ZC
n −

√
n(θ̂n − θ∗), ZC

n − Zn

〉
≥
∥∥ZC

n −
√
n(θ̂n − θ∗)

∥∥2
F
+
∥∥ZC

n − Zn

∥∥2
F
.

Therefore, from (8.15), we obtain∥∥ZC
n −

√
n(θ̂n − θ∗)

∥∥2
F
≤
∥∥Zn −

√
n(θ̂n − θ∗)

∥∥2
F
−
∥∥ZC

n −Zn

∥∥2
F
= oP (1). (8.16)

Now, using Lemma 3 (i.), we apply the central limit theorem for the stationary

ergodic martingale difference sequence
{∂qt(θ

∗)
∂θ |Ft−1, t ∈ Z

}
. It follows that

1√
n

∂Ln(θ
∗)

∂θ
=

1√
n

n∑
t=1

∂qt(θ
∗)

∂θ

L−→
n→+∞

Nd (0, G) , (8.17)

and thus

Zn = F−1 1√
n

∂Ln(θ
∗)

∂θ

L−→
n→+∞

Z ∼ Nd

(
0, F−1GF−1

)
. (8.18)
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Hence, ZC
n

L−→
n→+∞

ZC . From this, it suffices to use (8.16) to conclude the proof

of Theorem 2.2. �

Proof of Lemma 4.
Recall that

Rn(θ) =
1

n

{∂L̂n(θ
∗)

∂θ′
−∂Ln(θ

∗)

∂θ′

}
(θ−θ∗)+

1

2
(θ−θ∗)′

( 1
n

∂2

∂θ∂θ′
L̂n(θ̃)+F

)
(θ−θ∗).

According to Lemmas 2 (i.) and 3 (ii.), when θ̃n − θ∗ = oP (1), we have

nRn(θ̃n) = oP (
√
n(θ̃n − θ∗)) + oP (n‖θ̃n − θ∗‖2). (8.19)

This implies

nRn(θ̃n) = oP (1) when
√
n(θ̃n − θ∗) = OP (1). (8.20)

It comes from the definition of θZn that∥∥√n(θZn − θ∗)
∥∥
F
≤
∥∥√n(θZn − θ∗)− Zn

∥∥
F
+ ‖Zn‖F ≤ 2 ‖Zn‖F .

Moreover, the convergence in (8.18) implies ‖Zn‖F = OP (1); and consequently,√
n(θZn − θ∗) = OP (1). Thus, nRn(θZn) = oP (1) by virtue (8.20).

We now show that, it also holds nRn(θ̂n) = oP (1). From (8.13), we have

‖Zn‖2F −
∥∥Zn −

√
n(θ̂n − θ∗)

∥∥2
F
+ 2nRn(θ̂n) = 2{L̂n(θ̂n)− L̂n(θ

∗)} ≥ 0,

where the inequality holds since θ̂n = argmax
θ∈Θ

(L̂n(θ)). Thus, it holds that

∥∥√n(θ̂n − θ∗)
∥∥2
F
≤ 2
(∥∥Zn −

√
n(θ̂n − θ∗)

∥∥2
F
+ ‖Zn‖2F

)
≤ 4 ‖Zn‖2F + 4nRn(θ̂n).

Furthermore, since θ̂n
a.s.−→

n→∞
θ∗, by (8.19), it follows that nRn(θ̂n) = oP

(∥∥√n(θ̂n

− θ∗)
∥∥2
F

)
. Consequently,

√
n(θ̂n − θ∗) = OP (1), and nRn(θ̂n) = oP (1) holds

according to (8.20). This achieves the proof of the lemma. �

8.4. Proof of Theorem 2.3

Under H0, we have Γθ̂n − ϑ0 = Γ(θ̂n − θ∗). Then, we get

Wn = n(Γθ̂n − ϑ0)
′(ΓΣ̂nΓ

′)−1(Γθ̂n − ϑ0)

= n(θ̂n − θ∗)′Γ′(ΓΣ̂nΓ
′)−1Γ(θ̂n − θ∗)

=
√
n(θ̂n − θ∗)′Γ′(ΓΣΓ′)−1Γ

√
n(θ̂n − θ∗)
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+
√
n(θ̂n − θ∗)′Γ′

(
(ΓΣ̂nΓ

′)−1 − (ΓΣΓ′)−1
)
Γ
√
n(θ̂n − θ∗). (8.21)

Recall that, by Theorem 2.3, we have
√
n(θ̂n − θ∗)

L−→
n→+∞

ZC with Z ∼
Nd (0,Σ).

Furthermore, (ΓΣ̂nΓ
′)−1 − (ΓΣΓ′)−1 = oP (1). Thus, from (8.21), it holds that

Wn =
√
n(θ̂n − θ∗)′Γ′(ΓΣΓ′)−1Γ

√
n(θ̂n − θ∗) + oP (1)

L−→
n→+∞

(ΓZC)′(ΓΣΓ′)−1ΓZ,

which establishes the theorem. �

Proof of Corollary 1.

When θ∗ ∈
◦
Θ, we have Wn

L−→
n→+∞

Z ′Γ′(ΓΣΓ′)−1ΓZ = ‖U‖2 with U =

(ΓΣΓ′)−1/2ΓZ and Z ∼ Nd (0,Σ). Since Σ is symmetric, the vector U follows
a multivariate Gaussian distribution with mean 0 and covariance matrix Id0 ,
where Id0 is the identity matrix of size d0. Therefore, all components of U are
independent, standard normal distributed random variables. This leads to the
conclusion. �

8.5. Proof of Theorem 3.1

Consider the following lemma.

Lemma 5. Assume that the conditions of Theorem 3.1 hold. Then

1√
n log logn

∥∥∥∂L̂n(θ)

∂θ
− ∂Ln(θ)

∂θ

∥∥∥
Θ

a.s.−→
n→∞

0.

Proof of Lemma 5.
Using the inequality (8.6) and Corollary 1 of [19], it suffices to show that∑

k≥2

1√
k log log k

E

[∥∥∥∂q̂k(θ)
∂θ

− ∂qk(θ)

∂θ

∥∥∥
Θ

]
< ∞. (8.22)

In the proof of Lemma 3, we have established that∥∥∥∂q̂k(θ)
∂θ

− ∂qk(θ)

∂θ

∥∥∥
Θ

≤ C
∑
j≥k

{
α
(0)
j,Y (fθ,Θ) + α

(0)
j,X(fθ,Θ) + α

(1)
j,Y (fθ,Θ) + α

(1)
k,X(fθ,Θ)

+ α
(0)
j,Y (Mθ,Θ) + α

(0)
j,X(Mθ,Θ) + α

(1)
j,Y (Mθ,Θ) + α

(1)
j,X(Mθ,Θ)

}
= C
∑
j≥k

1∑
i=0

{
α
(i)
j,Y (fθ,Θ) + α

(i)
j,X(fθ,Θ) + α

(i)
j,Y (Mθ,Θ) + α

(i)
j,X(Mθ,Θ)

}
.
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Then, from the condition (3.4), we obtain

∑
k≥2

1√
k log log k

E

[∥∥∥∂q̂k(θ)
∂θ

− ∂qk(θ)

∂θ

∥∥∥
Θ

]

≤
∑
k≥2

1√
k log log k

∑
j≥k

1∑
i=0

{
α
(i)
j,Y (fθ,Θ) + α

(i)
j,X(fθ,Θ) + α

(i)
j,Y (Mθ,Θ)

+ α
(i)
j,X(Mθ,Θ)

}
< ∞.

Hence, (8.22) is satisfied, and Lemma 5 holds. �

Let us prove the part (i.) of the theorem.

(i.) We have

P (m̂n = m∗) = 1− P (m̂n � m∗)− P (m̂n � m∗).

Therefore, it suffices to show that

lim
n→∞

P (m̂n � m∗) = lim
n→∞

P (m̂n � m∗) = 0. (8.23)

1. Let m ∈ M such as m � m∗. We have,

1√
log logn

(
Ĉ(m∗)− Ĉ(m)

)
=

2√
log logn

(
L̂n

(
θ̂(m)

)
− L̂n

(
θ̂(m∗)

)
− κn√

log logn
(|m| − |m∗|). (8.24)

Let us establish that

1√
log logn

(
L̂n

(
θ̂(m)

)
− L̂n

(
θ̂(m∗)

))
= OP (1). (8.25)

From the Taylor expansion of L̂n, we can find θ(m) between θ̂(m) and θ∗

such that

L̂n

(
θ̂(m)

)
− L̂n

(
θ∗
)
=

∂Ln(θ
∗)

∂θ

(
θ̂(m)− θ∗

)
− 1

2

√
n
(
θ̂(m)− θ∗

)′
F (θ∗,m)

√
n
(
θ̂(m)− θ∗

)
+ nR′

n(m), (8.26)

where

R′
n(m) =

1

n

{∂L̂n(θ
∗)

∂θ′
− ∂Ln(θ

∗)

∂θ′

}(
θ̂(m)− θ∗

)
+

1

2

(
θ̂(m)− θ∗

)′( 1
n

∂2

∂θ∂θ′
L̂n(θ(m)) + F (θ∗,m)

)(
θ̂(m)− θ∗

)
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and

F (θ∗,m) =
(
E
[∂2q0(θ

∗)

∂θi∂θj

])
i,j∈m

.

Moreover, since θ̂(m), θ(m)
a.s.−→

n→∞
θ∗, in this case of overfitting, the same

arguments as in the proof of Lemma 3 (ii.) lead to

− 1

n

∂2L̂n

(
θ(m)

)
∂θ∂θ′

a.s.−→
n→∞

F (θ∗,m).

Then, one can show as in the proof of Theorem 2.2 that nR′
n(m) = oP (1).

Also, we have
√
n
(
θ̂(m)− θ∗

)
= OP (1). In addition,

{∂qt(θ
∗)

∂θ |Ft−1, t ∈ Z
}

is a stationary ergodic square integrable martingale difference sequence
(see above). Hence, from the law of iterative logarithm for martingales
(see for instance [27, 28]), we get,

1√
n log logn

∂Ln(θ
∗)

∂θ
= O(1).

Thus, we have from (8.26),

1√
log log n

(
L̂n

(
θ̂(m)

)
− L̂n

(
θ∗
))

=
1√

n log logn

∂Ln(θ
∗)

∂θ

√
n
(
θ̂(m)− θ∗

)
+

1

2
√
log logn

√
n
(
θ̂(m)− θ∗

)′
F (θ∗,m)

√
n
(
θ̂(m)− θ∗

)
+

1√
log logn

nR′
n(m)

= O(1)OP (1) + o(1)OP (1)OP (1) + oP (1) = OP (1). (8.27)

By using the same arguments with m = m∗, we get

1√
log logn

(
L̂n

(
θ̂(m∗)

)
− L̂n

(
θ∗)
)
= OP (1). (8.28)

Hence, (8.25) holds from (8.27) and (8.28).

Therefore, since κn/
√
log logn −→

n→∞
∞ and |m| > |m∗|, then (8.24) and

(8.25) lead to

1√
log logn

(
Ĉ(m∗)− Ĉ(m)

) P−→
n→∞

−∞ .

This implies that, for large n,

Ĉ(m)− Ĉ(m∗) > 0
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with probability one; that is, P (m̂n � m∗) −→
n→∞

0.

2. Let m ∈ M such as m � m∗. We have,

1

n

(
Ĉ(m∗)−Ĉ(m)

)
=

2

n

(
L̂n

(
θ̂(m)

)
−L̂n

(
θ̂(m∗)

))
−κn

n
(|m|−|m∗|). (8.29)

Using the same arguments in the proof of Theorem 3.1 of Bardet et al.
(2020) [3], we get

1

n

(
L̂n

(
θ̂(m)

)
− L̂n

(
θ̂(m∗)

))
= L(θ∗(m))− L(θ∗) + o(1) a.s.,

where L(θ) = −E[q0(θ)], for all θ ∈ Θ. Note that, the function L : Θ → R
has a unique maximum at θ∗ (see the proof of Theorem 2.1). Since m �
m∗, it holds that θ∗ /∈ Θ(m); and consequently, L(θ∗(m))−L(θ∗) < 0 a.s.
Thus, according to (8.29) and since κn/n −→

n→∞
0, we get

lim
n→∞

1

n

(
Ĉ(m∗)−Ĉ(m)

)
<0 a.s. and Ĉ(m)−Ĉ(m∗)>0 a.s. for large n.

This implies that P (m̂n � m∗) −→
n→∞

0. Hence, the condition (8.23) holds;

and the part (i.) of the theorem is established.
(ii.) Let m ∈ M such as m � m∗. We have

1

log logn

(
Ĉ(m)− Ĉ(m∗)

)
=

2

log logn

(
L̂n

(
θ̂(m∗)

)
− L̂n

(
θ̂(m)

))
+

κn

log logn
(|m| − |m∗|).

Moreover, from the same arguments as in the proof of Theorem 3.1 in [18],
one can show that

1

log logn

(
L̂n

(
θ̂(m∗)

)
− L̂n

(
θ̂(m)

))
= O(1) a.s.

Thus, we can find a constant c such that if lim inf
n→∞

κn/ log logn > c, then

lim inf
n→∞

1

log log n

(
Ĉ(m)− Ĉ(m∗)

)
> 0 a.s.

This implies that

Ĉ(m)− Ĉ(m∗) > 0 a.s. for large n. (8.30)

Note that, the inequality (8.30) also holds when m � m∗ (see the part

2. of the proof of (i.)). Hence, we deduce that m̂n = argmin
m∈M

Ĉ(m) =

argmin
m∈M

(
Ĉ(m) − Ĉ(m∗)

) a.s.−→
n→∞

m∗; which establishes the strong consis-

tency of m̂n.
(iii.) Using Lemma 5, this part can be proved by going along similar lines as in

[18]. �
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