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Abstract: The problem of endogeneity in statistics and econometrics is
often handled by introducing instrumental variables (IV) which fulfill the
mean independence assumption, i.e. the unobservable is mean independent
of the instruments. When full independence of IV’s and the unobservable is
assumed, nonparametric IV regression models and nonparametric demand
models lead to nonlinear integral equations with unknown integral kernels.
We prove convergence rates for the mean integrated square error of the
iteratively regularized Newton method applied to these problems. Com-
pared to related results we derive stronger convergence results that rely on
weaker nonlinearity restrictions. We demonstrate in numerical simulations
for a nonparametric IV regression that the method produces better results
than the standard model.
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1. Introduction

Dependence of an unobservable error term and covariates is a frequent problem
in statistical and econometrical modeling known as endogeneity. An efficient way
to deal with endogeneity is to use instrumental variables (IV) in the estimation.
These are additional variables which can assumed to be independent or mean
independent of the unobservable. In the context of nonparametric estimation
the IV approach usually leads to ill-posed problems with an unknown operator
that needs to be estimated. The solution ϕ of the nonparametric IV problem
can be characterized by a possibly nonlinear operator equation

F(ϕ) = ψ. (1)

In some regression models ψ = 0, in others ψ is a function that has to be es-
timated from observations by some estimator ψ̂. The operator F : X → Y is
an integral operator between some Banach or Hilbert spaces X and Y which is
unknown in applications. Only an estimator F̂ is available. The inverse of the

6151

https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/21-EJS1938
mailto:fabian.dunker@canterbury.ac.nz
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


6152 F. Dunker

operators F or F̂ is usually not continuous. Even with an arbitrarily small vari-
ance in ψ̂ and F̂ we usually have Var(‖F̂−1ψ̂‖X) = ∞ and the straightforward

estimator ϕ̂ = F̂−1ψ̂ is typically inconsistent. We discuss specific examples for
nonparametric IV models and the related operators together with the respective
literature in Section 2.

In this paper we describe and analyze a consistent estimator for this type of
problem, when F is an operator between Hilbert spaces. The estimator is based
on the iteratively regularized Gauß-Newton method (IRGNM) with iterated
Tikhonov regularization defined below in (11). Details about the method will
be given in Section 3.

This method was suggested by Bakushinskĭı (1992). Important monographs
on this topic are Bakushinskĭı and Kokurin (2004) and Kaltenbacher, Neubauer
and Scherzer (2008). These contributions consider only problems with known
operators and deterministic right hand side in equation (1). The use of IRGNM
for nonparametric IV problems was proposed and analyzed by Dunker et al.
(2014). They derived rates for convergence in probability with a priori parameter
choice using variational methods.

The novelty of this paper is that we prove significantly faster convergence
rates for the mean integrated squared error (MISE) rather than convergence in
probability under a different set of assumptions. In addition, we propose adap-
tive estimation with Lepskĭı’s principle and prove rates for this case. Further-
more, we assume a significantly weaker nonlinearity condition for the operator
F which has a clear interpretation and is reasonable for most applications while
the nonlinearity condition in Dunker et al. (2014) is difficult to interpret and
to check. We also prove faster rates of convergence when the regression func-
tion is smooth enough. Our proofs do not use variational methods. Instead we
rely on spectral methods as in Bauer, Hohage and Munk (2009). We also use a
modification of Hoeffding’s inequality from McDiarmid (1989).

The paper is organized as follows. We discuss in Section 2 some IV models
which fit into the framework of this paper and explain the estimator. The esti-
mator is introduced in Section 3. Section 4 contains convergence rate theorems.
Finally, we present some numerical simulations in Section 5. All proofs are in
the Appendix.

2. Nonparametric instrumental variable models

In our general framework a function ϕ† is characterized by the possibly nonlinear
operator equation

F(ϕ†) = 0, (2)

i.e. ϕ† is the true solution. Here F : B2R(ϕ0) ⊆ X → Y is an operator between
Hilbert spaces with norms ‖ · ‖X and ‖ · ‖Y respectively. Tyical examples for X
and Y are L2 and L2 based Sobolev spaces Hi for i = 1, 2, . . .. A ball B2R(ϕ0)
with radius 2R around an initial guess ϕ0 is contained in the domain of F .
In practice, large values of R are possible. The operator equation is allowed to
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be ill-posed, i.e. F−1 may not be continuous. Furthermore, the operator F is
not known in applications. Only a series of estimators F̂n : B2R(ϕ0) ⊆ X → Y

are available where n denotes the sample size. We assume that ϕ† is a unique
solution to (2) in B2R, i.e. the problem is locally identified. In the following we
discuss econometric examples for this setup.

2.1. Quantile regression and non-separable models

Nonparametric IV quantile regression The first example is nonparamet-
ric IV quantile regression proposed by Horowitz and Lee (2007). For q ∈ [0, 1]
the q-th quantile regression function ϕq is characterized by

Y = ϕq(X) + U P(U ≤ 0|Z = z) = q for all z. (3)

Here and in all following models Y and U are univariate random variables, while
X and Z can be multivariate and their dimensions do not have to coincide. The
regressor X, the instrument Z and the response Y are observed, while the error
term U is unobservable. If the joint density fY XZ exists, the model is equivalent
to an operator equation Fq(ϕq) = 0 with

(Fq(ϕ))(z) :=

∫
FY XZ(ϕ(x), x, z) dx− qfZ(z) (4)

where FY XZ(y, x, z) :=
∫ y
−∞ fY XZ(ỹ, x, z) dỹ. Different estimation procedures

for this model were proposed and analyzed in Horowitz and Lee (2007), Chen
and Pouzo (2012), Gagliardini and Scaillet (2012a) Dunker et al. (2014), Breunig
(2015), and Kaido and Wüthrich (2021). Local identification properties of this
and related models are discussed in Chen et al. (2014).

We can write (Fq(ϕ))(z) =
∫
kq(ϕ(x), x, z)dx with integral kernel

kq(y, x, z) := FY XZ(y, x, z)− qfXZ(x, z).

Replacing qfZ(z) by
∫
qfXZ(x, z)dx is impractical in applications but makes it

easier to discuss properties of (4) in this paper. Fq and kq are unknown and

have to be estimated. If we plug-in a density estimator f̂Y XZ , we get straight
forward estimators k̂q and F̂q.

Non-separable model A related example that falls in our framework is non-
parametric IV regression with unseparable error, wich was proposed in Cher-
nozhukov, Imbens and Newey (2007). See also Chernozhukov and Hansen (2005).
The model is

Y = φ(X,U) with U ⊥⊥ Z and

φ(x, u) strictly monotonic increasing in u.
(5)

It was pointed out in Horowitz and Lee (2007), and Chernozhukov, Imbens
and Newey (2007) that this model is already contained in model (3). Let FU
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be the cumulative distribution function of U . Normalize Ũ := FU (U) and

φ̃(x, ũ) := φ(x, F−1
U (ũ)). Then Ũ is uniformly distributed on [0, 1]. The value of

Ũ corresponds to a quantile in model (3). This reduces (5) to model (3) with

ϕq(x) = φ̃(x, q).

2.2. Nonparametric IV regression

Mean independence The simplest nonparametric IV regression model has
a separable error term and a mean independence condition

Y = ϕ(X) + U with E[U |Z] = 0. (6)

This model was proposed by Newey and Powell (2003) and Florens (2003). It
was further studied and applied in Hall and Horowitz (2005), Blundell, Chen
and Kristensen (2007), Chen and Reiss (2011), Darolles et al. (2011) Florens,
Johannes and Van Bellegem (2011), Horowitz (2011), Johannes, Van Bellegem
and Vanhems (2011), Gagliardini and Scaillet (2012b), Chen and Pouzo (2012),
Horowitz (2014a), Chen and Christensen (2015), Breunig and Johannes (2016),
Chen and Christensen (2018), as well as Babii (2020) among others. For an
overview see Horowitz (2014b).

We can write (6) equivalently as E[ϕ(X)|Z] = E[Y |Z] and if the conditional
densities fX|Z and fY |Z exist, as∫

fX|Z(x|z)ϕ(x)dx =

∫
yfY |Z(y|z)dy for all z ∈ supp (Z). (7)

We define the linear integral operator (Fceϕ)(z) :=
∫
fX|Z(x|z)ϕ(x)dx with

integral kernel fX|Z(x|z) and the function ψ(z) :=
∫
yfY |Z(y|z)dy. Model (6)

can be given in operator form (Fceϕ)(z) = ψ(z). The integral kernel fX|Z and
thereby Fce as well as the function ψ are unknown and have to be estimated
from a sample of Y,X,Z. An Density estimators f̂X|Z and f̂Y |Z give estimators

F̂ce and ψ̂ in a natural way. While the main focus of this paper is on nonlinear
operator equations, we use model (6) as a benchmark for the IRGNM applied
to model (8) below.

The model identifies the regression function ϕ if and only if Fce is injective.
This property is called completeness, see D’Haultfoeuille (2011), D’Haultfoeuille
and Février (2015), Andrews (2017), and Babii and Florens (2020).

Full independence In many applications the error term can be assumed to
be independent of the instrument. Hence, mean independence of the instrument
can be replace by full independence as proposed in Dunker et al. (2014)

Y = ϕ(X) + U with U ⊥⊥ Z and E[U ] = 0. (8)

Since the new assumptions U ⊥⊥ Z and E[U ] = 0 imply E[U |Z] = 0 but not
vice versa model (8) makes stronger assumptions than model (6). Consequently,
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whenever (6) identifies the solution so does (8). Furthermore, there are cases
in which (8) can identify a solution, while (6) fails. This is for example the
case with discrete instruments and continuous regressors as discussed in Dunker
et al. (2014), Torgovitsky (2015), D’Haultfoeuille and Février (2015), and Loh
(2019).

We can translate model (8) into an operator equation by defining the operator

(F̃ind(ϕ))(u, z) :=

(
P[Y − ϕ(X) ≤ u]− P[Y − ϕ(X) ≤ u|Z = z]

E[Y − ϕ(X)]

)
. (9)

When Y,X,Z have a joint density fY XZ , taking the derivative with respect to
u yields the alternative operator

(Find(ϕ))(u, z) :=

(∫
fY XZ(u+ ϕ(x), x, z)− fY X(u+ ϕ(x), x)fZ(z) dx∫

ϕ(x)fX(x) dx−
∫
yfY (y) dy

)
. (10)

Model (8) is equivalent to the operator equations F̃ind(ϕ) = 0 or Find(ϕ) =
0. Note that the operators are nonlinear due to the first line of (9) or (10).
Furthermore, the operators are not known and have to be estimated. A density
estimator f̂Y XZ gives a straight forward estimator F̂ind.

For any ϕ that sets the first line of the operator Find to 0 also c + ϕ with
c ∈ R sets it to 0. In addition, for any ϕ, the second line of Find is set to 0
by ϕ− E[Y − ϕ(X)]. Hence, for any solution ϕ of the first line of the operator
we have Find

(
ϕ − E[Y − ϕ(X)]

)
= 0. The nonlinear inverse problem is to find

a ϕ that solves the first line of Find. The second line is a parametric problem
that can be estimated with the parametric rate. When we discuss this example
below we will only consider the first line of the operator as this is dominating
the convergence rate.

Let us denote the integral kernel of the first line of the operator (10) and its

estimator by kind(y, x, z) := fY XZ(y, x, z)− fY X(y, x)fZ(z) and k̂ind(y, x, z) :=

f̂Y XZ(y, x, z) − f̂Y X(y, x)f̂Z(z) respectively. Then the first component of the
operator reads (Find(ϕ))(u, z) =

∫
kind(u+ ϕ(x), x, z)dx.

Further examples We briefly comment on further econometric models that
fall into the framwork of this paper. A problem that has a similar mathematical
structure as IV regression appears in some nonparametric demand models for
differentiated products. It was considered with mean independence assumption
similar to (6) in Berry and Haile (2011), Berry and Haile (2014) and with full in-
dependence similar to (8) in Dunker, Hoderlein and Kaido (2014). Some models
for games of incomplete information lead to a nonlinear inverse problem with de-
terministic operator, see for example Florens and Sbäı (2010). Nonlinear inverse
problems with deterministic operators also occur in functional linear quantile
regression (without instrumental variables) as in Kato (2012). The estimator in
this paper can be applied to these type of problems. However, the error analysis
would be different since there is no randomness in the operator. Also related
are nonparametric ARCH(∞) models which can be treated as linear inverse
problem, see Linton and Mammen (2005). Further linear inverse problems in
econometrics are discussed in Carrasco, Florens and Renault (2007).
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3. Estimation

3.1. The estimator

Remember that ϕ† denotes the true solution and let ϕ0 be an initial guess. Our
method is based on linearizing F which motivates the following assumption.

Assumption 1. 1. ‖ϕ† − ϕ0‖X < R

2. F and all F̂n are Fréchet differentiable onB2R(ϕ0) with Fréchet derivatives

F ′ and F̂ ′
n respectively.

The iteratively regularized Gauß-Newton method with iterated Tikhonov reg-
ularization consists of two nested iterations. The outer iteration is a Newton
method. It starts at ϕ0 and produces in the j-th step the estimate ϕ̂j+1. In

the j-th step the operator is linearized as F̂(ϕ) ≈ F̂ ′
n[ϕ̂j ](ϕ − ϕ̂j) + F̂n(ϕ̂j).

A regular Newton method would invert the linear operator F̂ ′
n[ϕ̂j ] to compute

the next step. Due to the ill-posedness, this would be unstable and we use a
regularized inverse instead. The regularized inverse is computed by m-times it-
erated Tikhonov regularization which is the inner iteration of the method. In
the following scheme the Newton iteration is indexed by j and the Tikhonov
iteration by i, and αj > 0 is a regularization parameter

for j = 0 to J

ϕj+1,0 := ϕ̂j

for i = 0 to m− 1

ϕj+1,i+1 := argmin
ϕ∈X

(
‖F̂ ′

n[ϕ̂j ](ϕ− ϕ̂j) + F̂n(ϕ̂j)‖2Y + αj‖ϕ− ϕj+1,i‖2X
)

end

ϕ̂j+1 := ϕj+1,m

stop if ‖ϕ̂j − ϕ0‖X > 2R and set ϕ̂j+1 = ϕ0

end.

(11)

As usual for Newton methods, convergence can fail if the initial guess ϕ̂0 is too
far from the true solution ϕ†. In practice and in simulations the method proves
to be quite robust to the choice of ϕ̂0. If no a priori information about ϕ† is
available, ϕ̂0 = 0 is usually a good choice.

With a small αj the method has a large variance due to the ill-posedness of
F . While a larger αj controls the variance but adds some bias. We choose α0

large enough to stabilize the problem and let αj decay in every Newton step by

αj+1 = qααj with some fixed 0 < qα < 1 (12)

to reduce the bias. A second parameter that has to be chosen is the number
of inner iterations m. A large m is of advantage for very smooth ϕ†. We will
address the choice of α0 and m in Section 4.1.1 and Assumption 3. The Newton
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iteration needs to be stopped at an appropriate iteration step. The size of the
regularization parameter is linked to the number of steps. Hence, the number
of steps corresponds to a bias variance trade-off. We will investigate parameter
choice with a priori knowledge in Section 4.2 and fully data driven in Section
4.4.

We introduce the following notations for shorter formulas

T† := F ′[ϕ†] T̂n,j := F̂ ′
n[ϕ̂j ] T̂n† := F̂ ′

n[ϕ
†].

An alternative formulation of the method can be obtained by using the func-
tional calculus. Let T̂ ∗

n,j denote the adjoint operator of T̂n,j and set

gα(λ) :=
(λ+ α)m − αm

λ(λ+ α)m
. (13)

Then (11) is equivalent to

for j = 0 to J

ϕ̂j+1 = ϕ0 + gαj (T̂
∗
n,j T̂n,j)T̂

∗
n,j

(
T̂n,j(ϕ̂j − ϕ0)− F̂n(ϕ̂j)

)
stop if ‖ϕ̂j − ϕ0‖X > 2R and set ϕ̂j+1 = ϕ0

end.

(14)

Example 1 (Fréchet differentiability). Assumption 1 is usually fulfilled in our
examples. The operators are well defined and Fréchet differentiable on the whole
space under mild integrability conditions on the joint density fY XZ . The Fréchet
derivative of the operator in (10) exists when fY XZ is partially differentiable in
the first variable. The operator in (4) is differentiable without further assump-
tions.

(F ′
ind[ϕ]ψ)(u, z) =

⎛⎝
∫ [

∂
∂yfY XZ(u+ ϕ(x), x, z)

− ∂
∂yfY X(u+ ϕ(x), x)fZ(z)

]
ψ(x) dx∫

ψ(x)fX(x) dx

⎞⎠ ,

(F ′
q[ϕ](ψ))(z) =

∫
fY XZ(ϕ(x), x, z)ψ(x) dx.

The derivatives are linear integral operators with kernels ∂
∂ykind(ϕ(x), x, z) and

∂
∂ykq(ϕ(x), x, z) respectively.

4. Convergence Rates

The convergence theory is presented in four steps. We start by introducing
assumptions for the general operator equation (2) as well as for the IV regression
models (10) and (4). Afterwards, we state convergence rate result for the MISE
with a priori choice of the stopping parameter j. Then we compare the result
to Horowitz and Lee (2007). The last step is a theorem with data driven choice
of j by Lepskĭı’s principle.
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4.1. Assumptions

4.1.1. Smoothness condition

As usual for nonparametric methods a smoothness assumption has to be im-
posed on the true solution ϕ† to get convergence rates. In our setup with an
ill-posed operator equation (1) it is necessary to link the smoothness of ϕ† to
the smoothing properties of the operator F . An efficient and popular way to
formulate this is a source condition. The following definition uses the functional
calculus.

Definition 1. Let Λ : [0,∞) → [0,∞) be continuous, strictly increasing with
Λ(0) = 0. A representation of the initial error as

ϕ0 − ϕ† = Λ(T ∗
† T†)ω , ω ∈ X with ρ := ‖ω‖X (15)

is called a spectral source condition and Λ is called an index function.

When T† is a linear integral operator with kernel ∂
∂yk(ϕ

†(x), x, z) as in Ex-
ample 1, this definition can be interpreted in the following way. We assume for
simplicity that T† is compact which is for example the case if ∂

∂yk(ϕ
†(x), x, z) is

continuous. It was shown in Reade (1984) and Little and Reade (1984) that the
singular values of such an operator decay at least polynomially if ∂

∂yk(ϕ
†(x), x, z)

belongs to a Sobolev space, and exponentially if ∂
∂yk(ϕ

†(x), x, z) is analytic.

Let (σt, ut, vt) be a singular system for T†. The source condition (15) implies
for e0 = ϕ0 − ϕ†

ω =
∑
t∈N

〈e0, vt〉
Λ(σ2

t )
ut ∈ X and thereby

∞∑
t=1

(
〈e0, vt〉
Λ(σ2

t )

)2

< ∞.

Hence, a ω fulfilling (15) only exists if Λ compensates the decay of the singular
values in a way that 〈e0, vt〉Λ(σ2

t )
−1 is square summable. The decay of singular

values describes the smoothing properties of the T† with respect to the singular
vectors. While the decay of 〈e0, vt〉 describes the smoothness of e0 with respect
to the singular vectors. Thus, the rate of decay for Λ(x) when x ↘ 0 compares
these two degrees of smoothness. For the examples above the source condition
compares the smoothness of fY XZ with the smoothness of the regression func-
tion ϕ†.

When σt and 〈e0, vt〉 both decay polynomially or both decay exponentially,
i.e. σt � exp(−cσt) and 〈e0, vt〉 � exp(−ce0t) with some constants cσ and ce0 ,
the source condition is fulfilled with Λ(x) = xμ. Where μ > 0 is a sufficiently
small constant. A source condition with polynomial Λ is called a Hölder source
condition, which is a concept that goes back to Lavrent′ev (1962) and Morozov
(1968). For exponential decay of σt but only polynomial decay of 〈e0, vt〉 the
source condition holds when the operator is rescaled to ‖T†‖ < 1 and Λ(x) =
(− ln(x))−p with some 0 < p. This choice of Λ was proposed by Mair (1994) and
Hohage (1997) and is called logarithmic source condition.
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Despite the word “condition” in the name “source condition” it is rather
a relation that selects an index function. Corollary 2 in Mathé and Hofmann
(2008) shows that for any compact injective operator T† and any e0 exists an
index function Λ such that a source condition is fulfilled.

In this paper we focus on Hölder source conditions with μ > 1/2. Notice
that this implies e0 ∈ Range(F ′[ϕ†]∗). The case of μ ≤ 1/2 and logarithmic
source conditions was analyzed in Dunker et al. (2014). We make the formal
assumption:

Assumption 2. The true solution ϕ† fulfills a source condition (15) with suffi-
ciently small ρ and with an index function that satisfies Λ(x) = O(xμ) for x ↘ 0
with μ > 1/2.

Example 2. For the nonparametric IV examples (10) and (4) Assumption 2 im-
plies that ϕ0−ϕ† is in some Sobolev class if ∂

∂ykind(ϕ(x), x, z) or
∂
∂ykq(ϕ(x), x, z)

have Sobolev smoothness. If ∂
∂ykind(ϕ(x), x, z) or

∂
∂ykq(ϕ(x), x, z) are analytic,

ϕ0 − ϕ† must be infinitely smooth.

Closely related to the smoothness of the true solution is the choice of the
parameters α0 and m for the IRGNM. In the following assumption ‖T‖L(X,X) :=
supϕ{‖Tϕ‖X | ‖ϕ‖X = 1} denotes the usual operator norm for linear operators.

Assumption 3. 1. The number of iterations of the Tikhonov regularization
m is larger or equal to μ in the source conditions m ≥ μ, i.e. Λ(x)−1xm =
O(1) for x ↘ 0.

2. The initial regularization parameter α0 is large enough such that α0 ≥
‖T̂ ∗

n†T̂n†‖L(X,X)/(1− qα).

Both parameters need to be large enough but there is not much harm in
choosing them larger than necessary. Any α0 and m fulfilling Assumption 3 will
lead to comparable estimates. However, increasing α0 will lead to a few more
Newton steps. The lower bound of α0 depends on the derivative of the estimated
operator and is thereby random but not unknown.

As usual for nonparametric methods the rate of convergence increases if the
true solution ϕ† is smoother, i.e. if μ is larger. But this increase is only realized if
m ≥ μ. However, m does not act as a regularization parameter. Since the inner
iteration is numerically cheap it is save to chose a larger value for m without
having a significant disadvantage.

4.1.2. Nonlinearity restriction

The non-linearity of F needs to be restricted for the algorithm to work. We use
a Lipschitz condition on the derivative for this purpose.

Assumption 4. There exists L > 0 such that

‖F̂ ′
n[ξ1]− F̂ ′

n[ξ2]‖L(X,Y) ≤ L‖ξ1 − ξ2‖X (16)

almost surely for all ξ1, ξ2 ∈ BR(ϕ
†) and large n.
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The special structure of the of Find and Fq allows us to replace Assumption
4 for the IV regression examples by the following alternative. Lemma 2 in the
appendix shows that Assumption 5 implies Assumption 4.

Assumption 5. For the operators (10) and (4) the integral kernels kind, kq,
and their estimates are twice differentiable with respect to y with bounded
derivative and the support of the instrument has finite measure μ(supp (Z)) <
∞. Furthermore, the integral kernels are estimated by an estimator which is
strongly consistent for the second derivative. There exists L > 0 such that√

μ(supp (Z)) sup
y,z,w

∣∣∣∣ ∂2

∂y2
k(y, z, w)

∣∣∣∣ < L

with k = kind or k = kq respectively.

Common nonparametric density estimators are strongly consistent. Assump-
tion 5 implies for the operators (10) and (4)

sup
y,x,z

∣∣∣∣ ∂2

∂y2
fY XZ(y, x, z)

∣∣∣∣ < ∞ or sup
y,x,z

∣∣∣∣ ∂∂y fY XZ(y, x, z)

∣∣∣∣ < ∞

respectively.

4.1.3. Concentration inequalities

The estimation error in the operator and its derivative needs to be bounded by
exponential inequalities.

Assumption 6. There are constants c1, c2, c3, c4 ≥ 0 such that for all n ∈ N

and all τ ≥ 0

P

{∣∣∣‖F̂n(ϕ
†)‖Y − E‖F̂n(ϕ

†)‖Y
∣∣∣ ≥√τ Var

(
‖F̂n(ϕ†)‖Y

)}
≤ c1e

−c2τ and (17)

P

{∣∣∣‖T̂n† − T†‖1+μ
D − E

(
‖T̂n† − T†‖1+μ

D

)∣∣∣ ≥√
τ Var

(
‖T̂n† − T†‖1+μ

D

)}
≤ c3e

−c4τ .

(18)

Where ‖ · ‖D is the operator norm ‖ · ‖L(X,Y) or some norm that dominates the
operator norm.

The following lemma shows that Assumption 6 holds for the IV regression
applications (10) and (4) under mild conditions when Y is a L2 space and
‖ · ‖D is the Hilbert-Schmidt norm. The Hilbert-Schmidt norm bounds the op-
erator norm from above and is denoted by ‖ · ‖HS . For linear integral opera-
tors it coincides with the L2 norm of the integral kernel. We denote the space
L2(supp (U), supp (Z)) by L2(U,Z) and the space L2(supp (Z)) by L2(Z).
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Lemma 1. Consider the operators (10) and (4) as maps into L2(U,Z) or L2(Z)
respectively. Assume that fY XZ is estimated by a kernel density estimator with
a product kernel composed of a one-dimensional kernel KY and two multivari-
ate kernels KX and KZ corresponding to the dimensions dim(X) = dX and
dim(Z) = dZ with joint bandwidth h. Assume for (10) that n−1h−dz−1 = O(1),
and n−1−2μh−(1+μ)(dx+dz+3) = O(1). Assume for (4) that n−1h−dz = O(1),
and n−1−2μh−(1+μ)(dx+dz+2) = O(1). Then constants c2, c4 > 0 exist such that
for all τ ≥ 0

P

{∣∣∣‖F̂n(ϕ
†)‖L2 − E‖F̂n(ϕ

†)‖L2

∣∣∣ ≥√τ Var
(
‖F̂n(ϕ†)‖L2

)}
≤ 2e−c2τ (19)

and

P

{∣∣∣‖T̂n† − T†‖1+μ
HS − E

(
‖T̂n† − T†‖1+μ

HS

)∣∣∣ ≥√τ Var
(
‖T̂n† − T†‖1+μ

HS

)}
≤ 2e−c4τ .

(20)

4.2. Convergence rates with a priori parameter choice

Our first convergence rate theorem assumes that μ in Assumption 2 is known,
i.e. the smoothness of the true solution is known. Adaptive estimation will be
discussed in the next section.

Theorem 1. Let Assumptions 1, 2, 3, 4, and 6 hold. Define the stopping index
as

J := argmin
j∈N

(
αμ
j + α

−1/2
j E

[
‖F̂n(ϕ

†)‖2Y
])

and set

J∗ :=

{
J if ϕ̂j ∈ B2R(ϕ0) for j = 1, . . . , J

0 else.
(21)

Then,

E
[
‖ϕ̂J∗ − ϕ†‖2

X

]
= O
((

E
[
‖F̂n(ϕ

†)‖2
Y

]) 2μ
2μ+1

+ E
[
‖T̂n† − T†‖2+2μ

L(X,Y)

])
.

In the special cases of the IV regression examples in L2 spaces, the conver-
gence rate can be given more explicitly.

Corollary 1. Let X be an L2 space and let Assumptions 1, 2, 3, 5 and the
conditions of Lemma 1 hold. Assume that in the case of operator (10) the density
fY XZ and that in case of operator (4) the function FY XZ is r times differentiable
and is estimated with a kernel estimator where the kernel is of order at least r.
If J∗ is chosen as in Theorem 1, then

E
[
‖ϕ̂J∗ − ϕ†‖2L2

]
= O
(
(n−1h−(dZ+1))

2μ
2μ+1 + n−1−μh−((1+2μ)(dX+dZ+2)+1) + h

4μr
2μ+1

)
.
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4.3. Comparison to an alternative quantile regression estimator

We can compare our result to the rates for nonparametric quantile regression
in Horowitz and Lee (2007). They use nonlinear Tikhonov regularization for
the operator Fq and proved optimal rates under assumptions which are more
restrictive than ours. In contrast to our rates, their rates do not depend on the
derivative T̂n†. The main challenge for nonlinear Tikhonov regularization

ϕ̂ = argmin
ϕ

‖Fqϕ‖2Y + α‖ϕ‖2
X

is to find the minimizer of the nonlinear functional ‖Fqϕ‖2Y + α‖ϕ‖2
X

which
usually has multiple local minima. In Horowitz and Lee (2007) it is assumed that
this minimum is known exactly which is unrealistic in practice. A convergence
analysis which takes the performance of a minimization algorithm into account
would typically lead to a different rate which also depends on some derivative
depending on the particular minimization algorithm. The IRGNM does not have
this problem since we only have to solve a linear least squares problem in every
Newton step. For a fair comparison of the convergence rates, we will assume

that the term
(
E
[
‖F̂n(ϕ

†)‖2
Y

]) 2μ
2μ+1

dominates our rate. For sake of simplicity

we assume dz = 1. Hence, our rate in the case of X = L2 is

E
[
‖ϕ̂J∗ − ϕ†‖2L2

]
= O
(
(n−1h−2 + h2r)

2μ
2μ+1

)
,

while the rate in Horowitz and Lee (2007) is O
(
n−(2β−1)/(2β+a)

)
with a and

β defined an their paper as α and β. Horowitz and Lee (2007) restricts the
bandwidth choice to

h = Chn
−γ with

2β + a− 1)

2r(2β + a
< γ <

a

2(2β + a)
.

Under their assumptions on a and β, the density estimator achieves the rate

n−1h−2 + h2r = O
(
n− 2β+a−1

2β−1

)
.

Note that this will only coincide with the optimal rate n− 2r
2r+2 in special cases.

Futhermore, in their notation the source condition in our Assumption 2 holds
for any μ < (β − 1

2 )/a. Hence, 2μ/(2μ + 1) < (2β − 1)/(2β + a − 1), where μ
can be chosen such that the left hand side is arbitrarily close to the right hand
side. Therefore, under their assumptions our rate is arbitrarily close to

(
n− 2β+a−1

2β−1

) 2β−1
2β+a−1

= n− 2β−1
2β+a ,

which is also the optimal rate in Theorem 2 and 3 in Horowitz and Lee (2007).
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Our assumptions are less restrictive which leads to faster rates of convergence
in many cases compared to Horowitz and Lee (2007). Firstly, we have no restric-

tions on h which means we can chose the optimal bandwidth h = O
(
n− 1

2r+2

)
and achieve

E
[
‖ϕ̂J∗ − ϕ†‖2L2

]
= O
(
n− 2r

2r+2
2μ

2μ+1

)
This has also the advantage that we can choose h by standard data driven
bandwidth selectors like cross-validation. It is pointed out in Horowitz and Lee
(2007) that a bandwidth selector for their assumptions does not yet exist.

Secondly, we have no upper bound on μ while their method requires μ ≤
1. Hence, our rate can be significantly better for smooth ϕ†. This is not a
contradiction to their optimality result, as their result only holds under their
more restrictive assumptions.

4.4. Convergence rates for adaptive estimation

The parameter choice (21) in Theorem 1 and Corollary 1 depends on the un-
known μ, which is unfeasible in practice. We present in this section convergence
rates for a data driven choice of the stopping parameter J by Lepskĭı’s princi-
ple. This is a popular parameter choice rule in the context of statistical inverse
problems, see Tsybakov (2000), Bauer and Hohage (2005), Mathé (2006), Bauer,
Hohage and Munk (2009), and Hohage and Werner (2016). In the context of
nonparametric IV, Lepskĭı’s principle was used for adaptive estimation in Chen
and Christensen (2015). The following theorem gives convergence rates of the
MISE with a Lepskĭı type parameter choice. We lose a logarithmic factor com-
pared to Theorem 1. The constant Cd and γnl used in the theorem are specified
in the appendix in formula (31) and in Lemma 4 respectively.

Theorem 2. Let the assumptions of Theorem 1 hold. For all sequences δnoin ,
σnoi
n , δdern , and σder

n such that

δnoin ≥ E(‖F̂n(ϕ
†)‖Y), (σnoi

n )2 ≥ Var(‖F̂n(ϕ
†)‖Y),

δdern ≥ E(‖T̂n† − T†‖1+μ
L(X,Y)), (σder

n )2 ≥ Var(‖T̂n† − T†‖1+μ
L(X,Y))

set

Φ̃noi
n (j) :=

√
m

αj

(
δnoin + ln((σnoi

n )−2)σnoi
n

)
+ Cdρ(δ

der
n + ln((σder

n )−2)σder
n )

and define the Lepskĭı stopping parameter by

JLep :=min
{
j ≤ Jmax

∣∣∣‖ϕ̂i − ϕ̂j‖X ≤ 4(1 + γnl)Φ̃
noi
n (j) for all i = 1, . . . , Jmax

}
and the stopping parameter by

J∗ :=

{
JLep if ϕ̂j ∈ B2R(ϕ0) for j = 1, . . . , Jmax

0 else.
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Then

E
[
‖ϕ̂J∗ − ϕ†‖2

X

]
= O
([

(δnoin )2 + ln
(
(σnoi

n )−1
)
(σnoi

n )2
] 2μ

2μ+1 + (δdern )2 + ln
(
(σder

n )−1
)
(σder

n )2
)
.

This result still depends on expectation and variance of ‖F̂n(ϕ
†)‖Y and

‖T̂n† − T†‖L(X,Y) and usually on some smoothing parameter for the estimator

F̂n, like the bandwidth h in the examples above. There are several strategies to
derive these quantities depending on how F̂n is estimated. Examples 3 and 4 in
the appendix show that parameter choice for ‖F̂n(ϕ

†)‖Y and ‖T̂n† − T†‖L(X,Y)

is equivalent to parameter choice in multivariate density estimation. Hence, the
smoothing parameter or bandwidth can be chosen by adaptive density estima-
tion, such as cross-validation. Simple variance bounds are available for most
density estimators which can be used to derive σ2

noi and σ2
der. For kernel den-

sity estimation such bounds are given in Corollary 2. A pilot estimate ϕ̃ for
ϕ† gives an estimator ‖F̂n(ϕ̃)‖Y for E[‖F̂n(ϕ

†)‖Y]. The last unknown quantity

E(‖T̂n† − T†‖L(X,Y)) can be derived from the bias of T̂n† which can be esti-
mated by a bootstrap or an oracle inequality, see Efron and Tibshirani (1994),
Tsybakov (2008).

A simple alternative to the method above is to calibrate the unknown value
of δnoin +ln((σnoi

n )−2)σnoi
n +Cdρ(δ

der
n +ln((σder

n )−2)σder
n ) in Φ̃noi

n (j) with Monte
Carlo simulations. We can design test examples that are similar to the data
set at hand but with known true solution. Synthetic data is generated for these
examples and the Lepskĭı parameter choice for different possible values of δnoin +
ln((σnoi

n )−2)σnoi
n +Cdρ(δ

der
n +ln((σder

n )−2)σder
n ) is compared to the true solution.

The value that produces the best results over different test examples and many
repetitions is used to set up a surrogate for Φ̃noi

n (j) which is then used for the
parameter choice on real data.

5. Numerical examples

We evaluate the small sample behavior of the estimator based on the IRGNM
with simulated data. As a test problem we use a nonparametric IV regression
consistent with models (6) and (8), with univariate covariate X and instrument
Z. This setup allows to compare our estimator with an estimator which solves
(7) with iterated Tikhonov regularization.

5.1. Implementation

The test problem described in the next section is solved on the domain

supp (Y )× supp (X)× supp (Z) = [−1/2, 1/2]× [0, 1]× [0, 1]

discretized by an equidistant grid with 100×100×100 nodes. The joint density is
estimated on this grid by a standard adaptive density estimator. Trying different
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density estimators, we found that both method are quite robust with respect to
the density estimate. They tolerate some undersmoothing of the density as long
as the stopping index J and the regularization parameter α are chosen properly.
In the simulations below the same density estimate is used for both the IRGNM
and the iterated Tikhonov regularization which allows for a fair comparison of
the methods. The initial guess for both methods is the constant function with
the value E[Y ], and the penalty functional for both methods is the squared H1

norm.

The Fréchet derivative is implemented as in Example 1. The partial deriva-
tive of the density and the derivatives for the H1 norm are computed by the
central differencing scheme. Operators and norms are evaluated using numerical
integration. We tried rectangle rule, trapezoid rule and Simpson’s rule but could
not find a significant difference in the output of the estimator.

The least squares problems in each step of the iterated Tikhonov regulariza-
tion and in the inner iteration of the IRGNM are computed by QR decomposi-
tion. Note that only one QR decomposition is needed in every Newton step and
it avoids the explicit computation of the adjoint operator. We tried different
numbers of iterations m in the inner iteration of the IRGNM and the iterated
Tikhonov regularization for the test example below. No significant difference in
the results was observed, which indicates that μ is not large.

The regularization parameters for the example below are α0 = 1 and αn+1 =
0.9αn. Lepskĭı’s principle is used to find the stopping parameter of the New-
ton iteration. For the alternative estimator using model (6) the regularization
parameter α has to be chosen instead, which is done by Lepskĭı’s principle as
well. The iterated Tikhonov regularization is computed for a large number of
different α. Then one of these approximation is chosen by Lepskĭı’s principle.
We calibrated Lepskĭı’s principle for both methods in Monte Carlos simulations
as described in Section 4.4. Hence, both methods are fully data driven.

5.2. Simulations

The regressor of the test example is generated by some function g and a random
variable V such that X = g(Z) + V and V ⊥⊥ Z. In addition, an exact solution
ϕ† and an error term U depending on V but not on Z are chosen. Then Y is
defined as Y := ϕ†(X) + U . With this construction both models (6) and (8)
identify the true solution. The functions and probability densities that were used
for the test example are

ϕ†(x) =
1

6
sin(2π(x+ 0, 25)),

fZ(z) =
9

7

√
z +

1

7
on the interval [0, 1],

g(z) = 0, 8z + 0, 1,
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fV (v) =
1

0, 08
√
2π

exp

(
−1

2

(
v

0, 08

)2
)
, and

fU (y, v) =
1

0, 07
√
2π

exp

(
−1

2

(
y − 2v

0, 07

)2
)
.

The densities of V and U are constructed with Gaussians in a way that the
expectation of U . Figure 1 shows the exact solution (blue) compared to the
solution a nonparametric regression without instrumental variables would yield
asymptotically (green).

Fig 1: Necessity of the instrument: A standard nonparametric regression would
asymptotically yield the green curve which is considerably different from the
true curve ϕ† (blue).

Both methods were tested on samples of 500 and 1000 observations. For each
of the two sample sizes 1000 samples were generated and the joint density fY XZ

was estimated by a kernel method.
Figures 2 and 3 show histograms for the L2 error of the reconstructions for

both methods and different sample sizes. The values are normed by the initial
error, so that on this scale the initial error becomes 1.

In Figure 2 we compare the errors of both methods for the sample size
n = 500. Both methods produce acceptable results. The variance as well as
the number of outliers observed for the method with independent instrument
are significantly smaller than the variance or number of outliers of the method
with the conditional mean assumption. The latter method produces a consid-
erable number of outliers with the same or even larger errors than the initial
guess. This cannot be observed for the IRGNM. In addition, the mean error of
the IRGNM is smaller.

Similar histograms for sample size n = 1000 are displayed in Figures 3. Both
methods perform well. The advantages of the IRGNM with less outliers, smaller
variance and smaller mean error can be observed again. The following table
provides the mean and some quantiles of the errors normed by the initial error.
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Fig 2: L2 error for the sample size n = 500. Left panel: IRGNM with the
assumption U ⊥⊥ Z. Right panel: iterated Tikhonov regularization with the
assumption E[U |Z] = 0

Fig 3: L2 error for the sample size n = 1000. Left panel: IRGNM with the
assumption U ⊥⊥ Z. Right panel: iterated Tikhonov regularization with the
assumption E[U |Z] = 0.

sample size method mean quantiles
q = 0.25 q = 0.5 q = 0.75 q = 0.9

n = 500 U ⊥⊥ W 0.2535 0.2012 0.2398 0.2940 0.3495

n = 500 E[U |W ] = 0 0.4042 0.2738 0.3437 0.4475 0.6407

n = 1000 U ⊥⊥ W 0.2152 0.1780 0.2064 0.2439 0.2868

n = 1000 E[U |W ] = 0 0.3067 0.2339 0.2846 0.3482 0.4325

We close this section with examples of median reconstructions for both sample
sizes displayed in Figure 4. They illustrate the advantage of the regression model
with independent instruments solved with the IRGNM.

These results suggest that both methods give consistent estimators for the
nonparametric instrumental regression with clear advantages for the regression
model with independent instruments (8) and the IRGNM.
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Fig 4: Examples for reconstructions with sample size n = 500 (left) and n = 1000
(right). The blue line shows the exact solution, the red curve the reconstruction
with the conditional mean assumption and the green curve the reconstruction
with independent instrument.

Appendix A: Proofs

A.1. Nonlinearity restriction

We prove in this section that for the IV regression examples Assumption 5 is
an alternative to Assumption 4.

Lemma 2. For the operator equations (10) and (4) Assumption 5 implies As-
sumption 4.

Proof. Let k̂n(ξ1(x), x, z) denote the estimate for kind or kq. Since the second
derivatives with respect to y are bounded we have

‖F̂ ′
n[ξ1]− F̂ ′

n[ξ2]‖L(X,Y) ≤

√∫∫ (
∂

∂y
k̂n(ξ1(x), x, z)−

∂

∂y
k̂n(ξ2(x), x, z)

)2

dx dz

≤

√√√√∫∫ (sup
y,x̃

∣∣∣∣ ∂2

∂y2
k̂n(y, x̃, z)

∣∣∣∣ (ξ1(x)− ξ2(x))

)2

dx dz

=
√

μ(supp (Z)) sup
y,x,z

∣∣∣∣ ∂2

∂y2
k̂n(y, x, z)

∣∣∣∣ ‖ξ1 − ξ2‖X

If k̂n is a strongly consistent estimator, for any constant c > 0

sup
y,x,z

∣∣∣∣ ∂2

∂y2
k̂n(y, x, z)

∣∣∣∣ ≤ sup
y,x,z

∣∣∣∣ ∂2

∂y2
k(y, x, z)

∣∣∣∣+ c almost surely for large n.

Hence, Assumption 4 holds with

L =
√
μ(supp (Z)) sup

y,x,z

∣∣∣∣ ∂2

∂y2
k(y, x, z)

∣∣∣∣+ c

for any c > 0.
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A.2. Concentration inequalities

This section proves Lemma 1 using McDiamid’s extension of Hoeffding’s in-
equality.

Theorem 3 (McDiarmid (1989)). Let W1, . . . ,Wn be independent random vari-
ables. If f : supp (W1, . . . ,Wn) → R satisfies for 1 ≤ i ≤ n

sup
(w1,...,wn),(w

′
1,...,w

′
n)

∈supp (W1,...,Wn)

|f(w1, . . . , wn)− f(w1, . . . , wi−1, w
′
i, wi+1, . . . , wn)| ≤ ci. (22)

Then for τ ≥ 0

P{|f(W1, . . . ,Wn)− Ef(W1, . . . ,Wn)| ≥
√
τ} ≤ 2 exp

(
−2τ∑n
i=1 c

2
i

)
.

Now we can prove Lemma 1.

Proof. (of Lemma 1) Denote the kernels by

KY,h(y) =
1

h
KY

(y
h

)
, KX,h(x) =

1

hdX
KX

(x
h

)
, KZ,h(z) =

1

hdZ
KZ

( z
h

)
.

The proof has 4 parts in which we prove for each of the operators (10) and (4)
the inequalities (19) and (20).

part 1 (19) for operator (10)
We show (22) with W = (Y,X,Z) and

f
(
(y1, x1, z1), . . . , (yn, xn, zn)

)
:= ‖F̂ind(ϕ

†)(u, z)‖L2(U,Z)

=
∥∥∥∫ n−1

n∑
k=1

KY,h(ϕ
†(x)− u− yk)KX,h(x− xk)KZ,h(z − zk)

− n−2
n∑

k=1

n∑
l=1

KY,h(ϕ
†(x)− u− yk)KX,h(x− xk)KZ,h(z − zl)dx

∥∥∥
L2(U,Z)

.

Iterated application of the triangular inequality and dropping the terms that
cancel in the sums yields

|f(w1, . . . , wn)− f(w1, . . . , wi−1, w
′
i, wi+1, . . . , wn)|

≤ n−1
∥∥∥ ∫ KY,h(ϕ

†(x)− u− yi)KX,h(x− xi)KZ,h(z − zi)

−KY,h(ϕ
†(x)− u− y′i)KX,h(x− x′

i)KZ,h(z − z′i)dx
∥∥∥
L2(U,Z)

+ n−2
∥∥∥∫ ∑

k �=i

KY,h(ϕ
†(x)− u− yk)KX,h(x− xk)

[
KZ,h(z − z′i)−KZ,h(z − zi)

]
dx
∥∥∥
L2(U,Z)
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+ n−2
∥∥∥∫ ∑

l �=i

[
KY,h(ϕ

†(x)− u− y′i)KX,h(x− x′
i)

−KY,h(ϕ
†(x)− u− yi)KX,h(x− xi)

]
KZ,h(z − zl)dx

∥∥∥
L2(U,Z)

+ n−2
∥∥∥∫ KY,h(ϕ

†(x)− u− y′i)KX,h(x− x′
i)KZ,h(z − z′i)

−KY,h(ϕ
†(x)− u− yi)KX,h(x− xi)KZ,h(z − zi)dx

∥∥∥
L2(U,Z)

We use the triangular inequality again and substitute xi, yi, zi for x
′
i, y

′
i, z

′
i and

for xk, yk, zl.

≤ 2n−1
∥∥∥ ∫ KY,h(ϕ

†(x)− u− yi)KX,h(x− xi)KZ,h(z − zi)dx
∥∥∥
L2(U,Z)

+ 2n−2
∥∥∥ ∫ ∑

k �=i

KY,h(ϕ
†(x)− u− yk)KX,h(x− xk)KZ,h(z − zi)dx

∥∥∥
L2(U,Z)

+ 2n−2
∥∥∥ ∫ ∑

l �=i

KY,h(ϕ
†(x)− u− yi)KX,h(x− xi)KZ,h(z − zl)dx

∥∥∥
L2(U,Z)

+ 2n−2
∥∥∥ ∫ KY,h(ϕ

†(x)− u− y′i)KX,h(x− x′
i)KZ,h(z − z′i)dx

∥∥∥
L2(U,Z)

≤
(
2

n
+

4(n− 1)

n2
+

2

n2

)∥∥∥∫ KY,h(ϕ
†(x)− u− y′i)KX,h(x− x′

i)

KZ,h(z − z′i)dx
∥∥∥
L2(U,Z)

< 6n−1
∥∥∥ ∫ KY,h(ϕ

†(x)− u− y′i)KX,h(x− x′
i)KZ,h(z − z′i)dx

∥∥∥
L2(U,Z)

= 6n−1

(∫ (∫
KY,h(ϕ

†(hx+ xi)− u− yi)KX(x)KZ,h(z − zi)dx
)2

d(u, z)

)1/2

≤ 6n−1

(∫
K2

X(x)

∫
K2

Y,h(ϕ
†(hx+ xi)− u− yi)K

2
Z,h(z − zi)d(u, z) dx

)1/2

= 6n−1

(∫
K2

X(x)‖KY,h(u)KZ,h(z)‖2L2(U,Z)dx

)1/2

= 6n−1‖KX‖L2‖KY,h(u)KZ,h(z)‖L2(U,Z)

= 6n−1h−(dZ+1)/2‖KX‖L2‖KY (u)KZ(z)‖L2(U,Z).

We used the standard substitution arguments for kernel methods to get from
KX,h toKX and fromKY,hKZ,h toKY KZ . Together with Theorem 3 this proves

P

{ ∣∣∣‖F̂ind(ϕ
†)‖L2 − E‖F̂ind(ϕ

†)‖L2

∣∣∣ ≥ √
τ
}

≤ 2 exp

(
−τnhdZ+1

18‖KX‖2L2‖KY KZ‖2L2

)
.

(23)
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Hence, there exists a constant c2 > 0 such that

P

{∣∣∣‖F̂ind(ϕ
†)‖L2− E‖F̂ind(ϕ

†)‖L2

∣∣∣≥√τ Var
(
‖F̂ind(ϕ†)‖L2

)}
≤2 exp (−c2τ) .

part 2 (19) for operator (4)
A similar argument applies to the quantile regression operator in (4). We set

K̄Y,h(y) =
∫ y
−∞ KY (ỹ)dỹ and C̄Y := | supy K̄Y,h(y) − inft K̄Y,h(y)|. Note that

C̄Y = | supy K̄Y,1(y) − infy K̄Y,1(y)| does not depend on h. Theorem 3 is now
applied with

f(w1, . . . , wn) = ‖F̂q(ϕ
†)‖L2

=
∥∥∥n−1

∫
K̄Y,h(ϕ

†(x)− yi)KX,h(x− xi)KZ,h(z − zi)dx− qKZ,h(z − zi)
∥∥∥
L2(z)

.

The estimation

|f(w1, . . . , wn)− f(w1, . . . , wi−1, w
′
i, wi+1, . . . , wn)|

= n−1
∥∥∥ ∫ K̄Y,h(ϕ

†(x)− yi)KX,h(x− xi)KZ,h(z − zi)dx− qKZ,h(z − zi)

−
∫

K̄Y,h(ϕ
†(x)− y′i)KX,h(x− x′

i)KZ,h(z − z′i)dx+ qKZ,h(z − z′i)
∥∥∥
L2

≤ n−1
∥∥∥C̄Y

∫
KX,h(x− xi)KZ,h(z − zi)dx

∥∥∥
L2

+ 2qn−1
∥∥∥KZ,h(z − zi)

∥∥∥
L2

= C̄Y (1 + 2q)n−1‖KZ,h‖L2

= C̄Y (1 + 2q)‖KZ‖L2n
−1h−dZ/2.

proves together with Theorem 3

P

{∣∣∣‖F̂q(ϕ
†)‖L2−E‖F̂q(ϕ

†)‖L2

∣∣∣≥√
τ
}
≤2 exp

(
−2τnhdZ

C̄2
Y (1 + 2q)2‖KZ‖2L2

)
. (24)

Hence, there exists a constant c2 > 0 such that (20) holds for F̂q.

part 3 (20) for operator (10)
We follow the same strategy and adopt the notation above. Theorem 3 is

applied with W = (Y,X,Z) with

f
(
(y1, x1, z1), . . . , (yn, xn, zn)

)
:= ‖T̂n† − T†‖1+μ

HS

=

∥∥∥∥n−1
n∑

i=1

K ′
Y,h(ϕ

†(x)− u− yi)KX,h(x− xi)KZ,h(z − zi)

− n−2
n∑

k=1

n∑
l=1

K ′
Y,h(ϕ

†(x)− u− yk)KX,h(x− xk)KZ,h(z − zl)
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− ∂

∂y
fY XZ(ϕ

†(x)− u, x, z) +
∂

∂y
fY X(ϕ†(x)− u, x)fZ(z)

∥∥∥∥1+μ

L2

where K ′
Y,h is the derivative of KY,h. With the same steps as in part 1 with

repeated application of the triangular inequality and substitution we get

|f(w1, . . . , wn)− f(w1, . . . , wi−1, w
′
i, wi+1, . . . , wn)|

≤
∥∥n−1K ′

Y,h(ϕ
†(x)− u− yi)KX,h(x− xi)KZ,h(z − zi)

− n−1K ′
Y,h(ϕ

†(x)− u− y′i)KX,h(x− x′
i)KZ,h(z − z′i)

− n−2
n∑

k=1

n∑
l=1

K ′
Y,h(ϕ

†(x)− u− yk)KX,h(x− xk)KZ,h(z − zl)

− n−2
n∑

k=1

n∑
l=1

K ′
Y,h(ϕ

†(x)− u− y′k)KX,h(x− x′
k)KZ,h(z − z′l)

∥∥1+μ

L2

≤ 61+μn−1−μ
∥∥K ′

Y,h(ϕ
†(x)− u− yi)KX,h(x− xi)KZ,h(z − zi)

∥∥1+μ

L2

= 61+μn−1−μ‖K ′
Y,h‖1+μ

L2
‖KX,h‖1+μ

L2
‖KZ,h‖1+μ

L2

= 61+μn−1−μh− (1+μ)(dX+dZ+3)

2 ‖K ′
Y ‖1+μ

L2
‖KX‖1+μ

L2
‖KZ‖1+μ

L2
.

Hence,

P

{∣∣∣‖T̂n† − T†‖1+μ
HS − E

(
‖T̂n† − T†‖1+μ

HS

) ∣∣∣ ≥ √
τ
}

≤ 2 exp

(
−2τn1+2μh(1+μ)(dX+dZ+3)

361+μ‖KX‖2+2μ
L2 ‖KY ‖2+2μ

L2 ‖KZ‖2+2μ
L2

)
.

(25)

Thus, there exist a constant c4 such that

P

{∣∣∣‖T̂n† − T†‖1+μ
HS − E

(
‖T̂n† − T†‖1+μ

HS

)∣∣∣ ≥√τ Var
(
‖T̂n† − T†‖1+μ

HS

)}
≤ 2 exp (−c4τ) .

part 4 (20) for operator (4)
A similar argument holds for the instrumental quantile regression problem.

The kernel of the Fréchet derivative of the operator Fq in (4) at ϕ† is simply
fY XZ(ϕ

†(x), x, z). So Theorem 3 is applied to

f
(
(y1, x1, z1), . . . , (yn, xn, zn)

)
:= ‖T̂n† − T†‖1+μ

HS

=
∥∥∥n−1

n∑
i=1

KY,h(ϕ
†(x)−yi)KX,h(x−xi)KZ,h(z−zi)−fY XZ(ϕ

†(x), x, z)
∥∥∥1+μ

L2

.

Note that supy
(
KY,h(y)

)
− infy

(
KY,h(y)

)
=h−1

[
supy

(
KY (y)

)
− infy

(
KY (y)

)]
and set CY =

∣∣supy (KY (y)
)
− infy

(
KY (y)

)∣∣. This allows for the following es-
timation

|f(w1, . . . , wn)− f(w1, . . . , wi−1, w
′
i, wi+1, . . . , wn)|
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≤ n−1−μ
∥∥KY,h(ϕ

†(x)− yi)KX,h(x− xi)KZ,h(z − zi)

−KY,h(ϕ
†(x)− y′i)KX,h(x− x′

i)KZ,h(z − z′i)
∥∥1+μ

L2

≤ n−1−μh−1−μCY

∥∥KX,h(x− x′
i)KZ,h(z − z′i)

∥∥1+μ

L2

= n−1−μh− (1+μ)(2+dX+dZ )

2 CY ‖KX‖1+μ
L2

‖KZ‖1+μ
L2

.

This implies

P

{∣∣∣‖T̂n† − T†‖1+μ
HS − E

(
‖T̂n† − T†‖1+μ

HS

)∣∣∣ ≥ √
τ
}

≤ 2 exp

(
−2τn1+2μh(1+μ)(2+dX+dZ)

C2
Y ‖KX‖2+2μ

L2
‖KZ‖2+2μ

L2

)
.

(26)

Hence, there exist a constants c4 such that

P

{∣∣∣‖T̂n† − T†‖1+μ
HS − E

(
‖T̂n† − T†‖1+μ

HS

)∣∣∣ ≥√τ Var
(
‖T̂n† − T†‖1+μ

HS

)}
≤ 2 exp (−c4τ) .

Corollary 2. Under the assumptions of Lemma 1 we have for the operator Find

in (10)

Var
(
‖F̂ind(ϕ

†)‖L2

)
≤

18‖KX‖2L2‖KY KZ‖2L2

nhdZ+1
= O(n−1h−dZ−1)

Var
(
‖T̂n† − T†‖1+μ

HS

)
≤

361+μ‖KX‖2+2μ
L2 ‖KY ‖2+2μ

L2 ‖KZ‖2+2μ
L2

2n1+2μh(1+μ)(dX+dZ+3)
,

and for the operator Fq in (4)

Var
(
‖F̂q(ϕ

†)‖L2

)
≤

C̄2
Y (1 + 2q)2‖KZ‖2L2

2nhdZ
= O(n−1h−dZ )

Var
(
‖T̂n† − T†‖1+μ

HS

)
≤

C2
Y ‖KX‖2+2μ

L2
‖KZ‖2+2μ

L2

2n1+2μh(1+μ)(2+dX+dZ)

Proof. It follows from (23) that ‖F̂ind(ϕ
†)‖L2 is a subgaussian random variable.

The moment condition for subgaussian variables implies that

Var
(
‖F̂ind(ϕ

†)‖L2

)
=

18‖KX‖2L2‖KY KZ‖2L2

nhdZ+1
.

The other three statements follow in the same way from (25), (24), and (26)
respectively.

A.3. Error analysis

In this section we prepare the proofs of the convergence rate theorems by decom-
pose the error ej+1 := ϕ̂j+1 − ϕ† of our method (14) into different components
and derive estimates for each component.
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A.3.1. Error decomposition

The error in the j + 1-th Newton step is

ej+1 = ϕ̂j+1 − ϕ† = ϕ0 − ϕ† + gαj (T̂
∗
n,j T̂n,j)T̂

∗
n,j

(
T̂n,j(ϕ̂j − ϕ0)− F̂n(ϕ̂j)

)
.

We decompose the error into four parts. These are an approximation error, a
propagated noise error, an error due to noise in the derivative, and a nonlinearity
error

ej+1 = eappj+1 + enoij+1 + ederj+1 + enlj+1.

In the decomposition we use a function rα defined as rα(λ) := 1−λgα(λ). With

gα as in (13) we have: rα(λ) =
(

α
λ+α

)m
.

approximation error eappj+1 := rαj (T̂
∗
n†T̂n†)Λ(T̂

∗
n†T̂n†)ω

propagated noise error enoij+1 := gαj (T̂
∗
n,j T̂n,j)T̂

∗
n,j [−F̂n(ϕ

†)]

derivative noise error ederj+1 := rαj (T̂
∗
n,j T̂n,j)[Λ(T

∗
† T†)− Λ(T̂ ∗

n†T̂n†)]ω

nonlinearity error enlj+1 := gαj (T̂
∗
n,j T̂n,j)T̂

∗
n,j [F̂n(ϕ

†)−F̂n(ϕ̂j)+T̂n,j(ϕ̂j−ϕ†)]

+[rαj (T̂
∗
n,j T̂n,j)− rαj (T̂

∗
n†T̂n†)]Λ(T̂

∗
n†T̂n†)ω

A similar related decomposition without ederj+1 was proposed in Bakushinskĭı
(1992) for the case of known operators. In the rest of the section we will derive
bounds on each error component.

A.3.2. Approximation error

Assumption 3 implies the existence of a constant CΛ such that

sup
0<x≤‖T̂∗

n†T̂n†‖
rα(x)Λ(x) ≤ CΛΛ(α) for all α ≥ 0.

Hence, with ρ = ‖ω‖ the approximation error is bounded by

‖eappj+1‖X ≤ CΛΛ(αj)ρ. (27)

Furthermore, in our setting with αj := qααj−1 the following inequalities hold
with γapp := q−m

α

‖eappj+1‖X ≤ ‖eappj ‖X ≤ γapp‖eappj+1‖X for j ≥ 1

and ‖eapp0 ‖X ≤ γapp‖eapp1 ‖X since α0 ≥
‖T̂ ∗

n†T̂n†‖L(X,X)

1− qα
.

(28)

Note that the bound on the approximation error behave like a bias term. It tends
to 0 with increasing j because αj is decreasing while Λ is strictly increasing and
Λ(0) = 0.
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A.3.3. Propagated noise error

The propagated noise error enoij+1 := gαj (T̂
∗
n,j T̂n,j)T̂

∗
n,j [−F̂n(ϕ

†)] can be bounded
by using some standard estimates and the functional calculus. Note that for any
linear bounded operator T : X → Y and ψ ∈ Y

‖gα(TT ∗)‖L(Y,Y) ≤ ‖gα‖∞ = sup
x≥0

(
(x+ α)m − αm

x(x+ α)m

)
≤ m

α
,

‖gα(TT ∗)TT ∗‖L(Y,Y) ≤ sup
x≥0

|gα(x)x| = sup
x≥0

(
(x+ α)m − αm

(x+ α)m

)
= 1 , and

‖gα(T ∗T )T ∗ψ‖2X = 〈gα(TT ∗)ψ, gα(TT
∗)TT ∗ψ〉Y

≤ sup
x≥0

|xgα(x)|‖gα‖∞‖ψ‖2
Y
≤ m

α
‖ψ‖2

Y
.

(29)

where ‖ · ‖∞ denotes the sup norm. Hence,

‖enoij+1‖X = ‖gαj (T̂
∗
n,j T̂n,j)T̂

∗
n,jF̂n(ϕ

†)‖X ≤
√

m

αj
‖F̂n(ϕ

†)‖Y and

E
(
‖enoij+1‖2X

)
≤ m

αj
E

(
‖F̂n(ϕ

†)‖2Y
)
. (30)

Note that this bound does not depend on the noise in the derivative T̂n,j but

only on the error in the operator F̂n at ϕ†. It behaves like a variance term,
i.e. it increases with a decreasing regularization parameter αj . In addition to
the bound (30) a concentration inequality is needed to bound the MISE of the
Newton method. This is part of Assumption 6. The following example illustrates
the asymptotic behavior of the bound (30) for the nonparametric IV operators
(10) and (4).

Example 3. We work under the assumptions of Lemma 1. We need different
smoothness condition for the operators Find and Fq. Assume for Find that all
derivatives of degree r of the density fY XZ exist and are bounded. For the oper-
ator in (4) we assume less smoothness. Derivatives of degree r of FY XZ should
exist and be bounded. Let the joint density fY XZ be estimated by a kernel den-
sity estimator f̂Y XZ with a kernel of sufficiently high order and with a common
bandwidth h. This also gives straight forward estimators f̂Y , f̂Y Z , F̂Y XZ , f̂XZ ,
and consequently for k̂ind and F̂ind, and for k̂q and F̂q. The convergence rates

of kind and kq will be dominated by f̂Y XZ and F̂Y XZ respectively.
With these smoothness assumptions, sample size n, and bandwidth h the

estimators k̂ind and k̂q converge in both cases with the rate

E(‖k − k̂‖2L2) = O(n−1h−dX−dZ−1 + h2r).

It follows from Corollary 2 that

E(‖F̂ind(ϕ)−Find(ϕ)‖2L2) = O(n−1h−dZ−1 + h2r)
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= O(n
− 2r

2r+dZ+1 ) when h ∼ n
− 1

2r+dZ+1 and

E(‖F̂q(ϕ)−Fq(ϕ)‖2L2) = O(n−1h−dZ + h2r) = O(n
− 2r

2r+dZ ) when h∼n
− 1

2r+dZ .

With the bound in (30) the rate of the MISE of the propagated noise error is

E
(
‖enoij+1‖2L2

)
≤ m

αj
E

(
‖F̂ind(ϕ

†)‖2L2

)
= O
(
α−1
j (n−1h−dZ−1 + h2r)

)
for Find,

E
(
‖enoij+1‖2L2

)
≤ m

αj
E

(
‖F̂q(ϕ

†)‖2L2

)
= O
(
α−1
j (n−1h−dZ + h2r)

)
for Fq.

A.3.4. Derivative noise error

The simple observation that rα(x) =
(

α
x+α

)m
≤ 1 for x ∈ [0, ∞) independent

of α or m leads to the estimate ‖ederj+1‖X ≤ ρ‖Λ(T ∗
† T†)−Λ(T̂ ∗

n†T̂n†)‖L(X,X). Here
the norm on the right hand side of the inequality is the usual operator norm.
A way to simplify the term ‖Λ(T ∗

† T†) − Λ(T̂ ∗
n†T̂n†)‖L(X,X) is provided by the

following lemma.

Lemma 3 (Egger (2005) Lemma 3.2.). For two linear bounded operators be-
tween Hilbert spaces A and B and μ > 1

2 there exists a constant cμ such that
with the corresponding operator norms

‖(A∗A)μ − (B∗B)μ‖ ≤ cμ‖A−B‖
∣∣‖A‖ − ‖B‖

∣∣μ .

Hence, with some constant Cd and a norm ‖ · ‖D which is either the operator
norm or some norm dominating the operator norm

‖ederj+1‖X ≤ Cdρ‖T̂n† − T†‖1+μ
D . (31)

The bound in (31) is independent of the regularization parameter α and of the
number of Newton steps j. It depends only on the noise in the Fréchet deriva-
tive of F at ϕ†. In addition to this bound we have to assume a concentration
inequality for the right hand side of (31) which is part of Assumption 6.

The following example interprets ‖ederj+1‖L2 for the IV regression operators
(10) and (4) in the setup of the previous example.

Example 4. We adopt the assumptions and constructions of F̂ind, F̂q, k̂ind and

k̂q from Example 3. When Assumption 1 holds, the Fréchet derivatives have the
form

F̂ ′
ind[ϕ]ψ(u, z) =

∫
∂

∂y
k̂ind(ϕ(x) + u, x, z)ψ(z) dz,

F̂ ′
q[ϕ]ψ(z) =

∫
∂

∂y
k̂q(ϕ(x), x, z)ψ(z) dz.

The Hilbert-Schmidt norm bounds the operator norm from above and is the
L2 norm of the integral kernels ∂

∂y k̂ind(ϕ(x) + u, x, z) and ∂
∂y k̂q(ϕ(x), x, z). We
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will denote the Hilbert-Schmidt norm by ‖ · ‖HS . We introduce the notation

κ(u, x, z) := ∂
∂ykind(u, x, z) and κ̂n,h(u, x, z) := ∂

∂y k̂ind(u, x, z) when a sample

of size n and the bandwidth h are used to estimate k̂ind. Accordingly, κ̂1,1 stands
for the partial derivative of the unscaled kernel.

E
(
‖ederj+1‖2X

)
≤ CdρE

(
‖T̂n† − T†‖2(1+μ)

HS

)
= CdρE

(∫
(κ̂n,h(ϕ(x) + u, x, z)− κ(ϕ(x) + u, x, z))

2
d(u, x, z)

)1+μ

= CdρE

(∫
(κ̂n,h(ϕ(x) + u, x, z)− Eκ̂n,h(ϕ(x) + u, x, z))

2

+ (Eκ̂n,h(ϕ(x) + u, x, z)− κ(ϕ(x) + u, x, z))
2
d(u, x, z)

)1+μ

≤ 21+μCdρ

∫
E
∣∣κ̂n,h(ϕ(x) + u, x, z)− Eκ̂n,h(ϕ(x) + u, x, z)

∣∣2(1+μ)
d(u, x, z)

+ 21+μCdρ

(∫ (
Eκ̂n,h(ϕ(x) + u, x, z)− κ(ϕ(x) + u, x, z)

)2
d(u, x, z)

)1+μ

.

Jensen’s inequality was used in the last inequality. We analyze the second term
first. Here E κ̂n,h(ϕ(x)+u, x, z)−κ(ϕ(x)+u, x, z) is the bias of a partial derivative
of a 1 + dX + dZ -dimensional kernel density estimator. Hence,(∫ (

E κ̂n,h(ϕ(x)+u, x, z)−κ(ϕ(x)+u, x, z)
)2
d(u, x, z)

)1+μ

=O
(
h2(r−1)(1+μ)

)
.

The expectation in the first term can be analyzed with the usual change in
variables

E
∣∣κ̂n,h(ϕ(x) + u, x, z)− Eκ̂n,h(ϕ(x) + u, x, z)

∣∣2(1+μ)

=

∫ ∣∣κ̂n,h(ϕ(x) + u, x, z)− Eκ̂n,h(ϕ(x) + u, x, z)
∣∣2(1+μ)

fY XZ(ỹ, x̃, z̃)d(ỹ, x̃, z̃)

=
h(dX+dZ+1)

n1+μh2(1+μ)(dX+dZ+2)

∫ ∣∣κ̂1,1(ū, x̄, z̄)− Eκ̂1,1(ū, x̄, z̄)
∣∣2(1+μ)

fY XZ(y − h(ϕ(x) + ū), x+ hx̄, z + hz̄)d(ȳ, x̄, z̄)

= n−1−μh−((1+2μ)(dX+dZ+2)+1)
(
CfY XZ(y, x, z) +O(h)

)
+O(n−1−μ).

The constant C in the last line does not depend on n or h. Combining the
analysis of both terms yields

E
(
‖ederj+1‖2X

)
= O
(
n−1−μh−((1+2μ)(dX+dZ+2)+1) + h2(r−1)(1+μ)

)
.

A similar computation can be carried out for the quantile regression problem
with operator (4).
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A.3.5. Nonlinearity error

A restriction on the nonlinearity of F̂n is necessary to control ‖enlj+1‖.A suitable
constraint is the Lipschitz condition (16) in Assumption 4. It allows to bound
the Taylor reminder of the first term in the nonlinearity error by

‖F̂n(ϕ
†)− F̂n(ϕ̂j) + T̂n,j(ϕ̂j − ϕ†)‖Y ≤ L

2
‖ϕ̂j − ϕ†‖2

X
=

L

2
‖ej‖2X.

For the norm of the second term in enlj+1 an additional inequality is needed. It

was shown in Bakushinskĭı and Kokurin (2004) Chapter 4.1 that for every μ ≥ 1
2

there is a constant Cμ, such that for two linear operators A,B : X → Y between
Hilbert spaces ‖[rα(A∗A) − rα(B

∗B)](B∗B)μ‖L(X,Y) ≤ Cμ‖A − B‖L(X,Y). This
yields in our case

‖[rαj (T̂
∗
n,j T̂n,j)− rαj (T̂

∗
n†T̂n†)]Λ(T̂

∗
n†T̂n†)ω‖L(X,X) ≤ Cμ‖T̂n,j − T̂n†‖L(X,Y)ρ

≤ CμρL‖ϕ̂j − ϕ†‖X
= CμρL‖ej‖X.

Putting both estimates together and use (29) gives

‖enlj+1‖X ≤ L
√
m

2
√
αj

‖ej‖2X + CμρL‖ej‖X. (32)

The next Lemma computes an appropriate stopping parameter Jmax such
that ‖enlj ‖ is dominated by the other error components for all j ≤ Jmax.

Lemma 4. Let Assumptions 1, 2, 4, 3 hold true with a sufficiently small ρ in
Assumption 2. Assume that B2R(ϕ0) ⊂ dom(F) and that ϕ† ∈ BR(ϕ0). Choose
a monotonically increasing function Φ such that ‖enoij + ederj ‖X ≤ Φ(j) for all
j ≥ 0. Define

Jmax := max

{
j ∈ N :

Φ(j)
√
αj

≤ Cstop

}
with 0 < Cstop ≤ min

{
1

8L
√
m
,

R

4
√
α0

}
.

(33)

Then it holds for all j := 1, 2, . . . , Jmax that

‖enlj ‖X ≤ γnl
(
‖eappj ‖X +Φ(j)

)
and ϕ̂j ∈ BR(ϕ

†),

with γnl := 8L
√
mCstop ≤ 1.

Proof. We generalize the proof strategy of Lemma 2.2 in Bauer, Hohage and
Munk (2009) to our setting. The proposition follows by induction in j. We
start with the induction step. Assume that the proposition holds for j − 1 with
2 ≤ j ≤ Jmax. Since Φ is increasing and by (28)

‖ej−1‖ ≤ (1 + γnl)
(
‖eappj−1‖+Φ(j − 1)

)
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≤ (1 + γnl)
(
γapp‖eappj ‖+Φ(j)

)
.

Combining this with inequality (32) and using (a+ b)2 ≤ 2a2 + 2b2 yields

‖enlj ‖ ≤ CμρL(1 + γnl)
(
γapp‖eappj ‖+Φ(j)

)
+

L
√
m

√
αj

(1 + γnl)
2
(
γ2
app‖eappj ‖2 +Φ(j)2

)
.

(34)

If ρ ≤ γnl/(2Cμ(1+γnl)γapp), the first line on the right hand side is bounded
by 1/2γnl

(
‖eappj ‖+Φ(j)

)
. To bound the second line, we assume that ρ ≤

γnl/(2CΛα
μ−1/2
0 L

√
m(1 + γnl)

2γ2
app). It follows from (27) that

‖eappj ‖
√
αj

≤ CΛρα
μ− 1

2
j ≤ CΛρα

μ− 1
2

0 ≤ γnl
2L(1 + γnl)2γ2

app

.

Thus, L/
√
αj(1 + γnl)

2γ2
app‖eappj ‖2 ≤ 1

2γnl‖e
app
j ‖. By the definition of Jmax the

fact that γnl ≤ 1 we have

L
√
m

√
αj

(1 + γnl)
2Φ2(j) ≤ 4L

√
m

√
αj

Φ2(j) ≤ 4L
√
mCstopΦ(j) ≤

γnl
2

Φ(j).

Therefore, the second line on the right hand side of (34) is also bounded by
1
2γnl(‖e

app
j ‖+Φ(j)). Together with the estimation of the first line this gives

‖enlj ‖ ≤ γnl
(
‖eappj ‖+Φ(j)

)
.

The base case j = 1 of the induction follows in exactly the same way, as long
as α0 is large enough which is guaranteed by Assumption 3 and (28).

Finally, we have to show that ϕ̂j ∈ BR(ϕ
†). If ρ ≤ R/ (2CΛα

μ
0 (1 + γnl)), then

‖eappj ‖ ≤ CΛρα
μ
j ≤ CΛρα

μ
0 ≤ R

2(1 + γnl)
.

Moreover, the monotonicity of Φ and the definitions of Jmax, Cstop and γnl
imply:

Φ(j) ≤ Φ(Jmax) ≤ Cstop
√
αJmax ≤ Cstop

√
α0 ≤ R

4
≤ R

2(1 + γnl)
.

This shows together with the first part of the proof that

‖ej‖ ≤ (1 + γnl)
(
‖eappj ‖+Φ(j)

)
≤ R.

Hence, ϕ̂j ∈ BR(ϕ
†) ⊂ dom(F).

The assumption that ρ is sufficiently small means that the initial guess must
be close enough to the true solution. As always for Newton type methods we
get only local convergence. In practice, the convergence radius seems to be quite
large and does usually not restrict the applicability of the method.
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A.4. Convergence rates with a priori parameter choice

This section presents the proof to Theorem 1. We generalize the proof strategy in
Bauer, Hohage and Munk (2009) to our setting. We start with a lemma about

deterministic errors, i.e. 0 = Var(‖F̂(ϕ†)‖Y) = Var(‖T̂n†‖L(X,Y)). The crucial
point is to show that the maximal stopping parameter Jmax from in Lemma 4
is larger or equal to a suitable stopping parameter.

Lemma 5. Suppose that the Assumptions 1, 2, 3, and 4 are fulfilled. Assume
that B2R(ϕ0) ⊂ dom(F), and that ρ is small enough as in Lemma 4. Let δ̃noin

and δ̃dern be a sequence such that δ̃noin ≥ ‖F̂n(ϕ
†)‖Y and δ̃dern ≥ ‖T̂n†−T†‖1+μ

L(X,Y).
Set

J̃ := argmin
j∈N

(
‖eappj ‖X +

√
m

αj
δ̃noin

)
and J := min{Jmax, J̃}.

Then there exists a constant C such that

‖ϕ̂J − ϕ†‖X ≤ C inf
j∈N

(
‖eappj ‖X +

√
m

αj
δ̃noin + Cdρδ̃

der
n

)
.

Proof. Notice that J also minimizes

argmin
j∈N

(
‖eappj ‖+

√
m

αj
δ̃noin + Cdρδ̃

der
n

)
because Cdρδ̃

der
n does not depend on j. Set Φ(j) :=

√
m/αj δ̃

noi
n + Cdρδ̃

der
n . If

J̃ ≤ Jmax, the theorem is proven by Lemma 4 with C = 1 + γnl.
If J̃ > Jmax, then J̃ ≥ Jmax + 1 and Φ(Jmax + 1)/Cstop ≥ √

αJmax+1. Hence,
by the monotonicity of Φ(

1 +
CΛρα

μ− 1
2

0

Cstop
√
qα

)(
‖eappJ ‖+Φ(J̃)

)
≥
(
1 +

CΛρα
μ− 1

2
0

Cstop
√
qα

)
Φ(Jmax + 1)

≥ Φ(Jmax) + CΛρ
Φ(Jmax + 1)α

μ− 1
2

0

Cstop
√
qα

≥ Φ(Jmax) + CΛρ

√
αJmax+1α

μ− 1
2

0√
qα

= Φ(Jmax) + CΛρ
√
αJmaxα

μ− 1
2

0

≥ Φ(Jmax) + CΛρα
μ
Jmax

≥ Φ(Jmax) + ‖eappJmax
‖.

This proves the lemma when J̃ > Jmax with

C =

(
1 +

CΛρα
μ− 1

2
0

Cstop
√
qα

)
(1 + γnl).
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This lemma implies convergence in probability of the estimator with the same
rate. We can now proof Theorem 1.

Proof. (of Theorem 1) We introduce the notation

δnoin = E
[
‖F̂n(ϕ

†)‖Y
]
, (σnoi

n )2 = Var
(
‖F̂n(ϕ

†)‖Y
)
,

δdern = E
[
‖T̂n† − T†‖1+μ

L(X,Y)

]
, (σder

n )2 = Var
(
‖T̂n† − T†‖1+μ

L(X,Y)

)
.

Similar to the last proof J is also a minimizer of

J = argmin
j∈N

(
‖eappj ‖+

√
m

αj
(δnoin + σnoi

n ) + Cdρ(δ
der
n + σder

n )

)
.

The proof uses a threshold argument. The key tool is the following construction.
Define a chain of events with increasing noise level containing each other as
A1 ⊂ A2 ⊂ . . . ⊂ Akmax by

Ak :=
{
ϕ̂j ∈B2R(ϕ0) and ‖enoij + ederj ‖ ≤ Φnoi

n (τk, j) for all j = 1, . . . , J
}

(35)

and

kmax := max

{⌊
ln
(
(σnoi

n )−2
)

c2

⌋
,

⌊
ln
(
(σder

n )−2
)

c4

⌋}
with c2 and c4 from (17) and (18), and with

Φnoi
n (τ, j) :=

√
m

αj
δnoin + Cdρδ

der
n +

√
τ(j)

(√
m

αj
σnoi
n + Cdρσ

der
n

)
. (36)

Set τk(j) := k + c−1
2 ln(κ)(J − j) with some κ > 1 small enough such that

τ(j + 1)qα ≥ τ(j) (37)

with qα as in (12) for all j. Consequently, Φnoi
n (τk, j) is monotonically increasing

in j as required for the application of Lemma 4. Notice that kmax is chosen in
a way such that

max
{
e−c2kmax , e−c4kmax

}
≤ max{(σnoi

n )2, (σder
n )2}.

Lemma 4 and Lemma 7 below show that ‖enoij + ederj ‖ ≤ Φnoi
n (τk, j) implies

ϕ̂j ∈ B2R(ϕ0) when σnoi
n is sufficiently small, i.e. the second condition in the

definition of Ak implies the first one.
In order to prepare the final step of the proof, we bound the probability of

Ak\Ak−1 and the probability of the event complementary to Ak. The following
computation uses (16), (17), (18).

P (Ak\Ak−1)=P
{
Φnoi

n (τk−1, j)<‖enoij +ederj ‖≤Φnoi
n (τk, j) for all j = 1, . . . , J

}
≤ P
{
Φnoi

n (τk−1, j) < ‖enoij + ederj ‖ for all j = 1, . . . , J
}
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≤
J∑

j=1

c1e
−c2τk(j) + c3e

−c4τk(j) ≤ (c1e
−c2k + c3e

−c4k)

J∑
j=1

κj−J

≤ (c1e
−c2k + c3e

−c4k)

∞∑
j=0

κj =
c1e

−c2k + c3e
−c4k

1− κ−1

P (CAk) ≤ P
{
Φnoi

n (τk−1, j) < ‖enoij + ederj ‖ for all j = 1, . . . , J
}

≤ (c1e
−c2k + c3e

−c4k)

∞∑
j=0

κj =
c1e

−c2k + c3e
−c4k

1− κ−1
.

In every event Ak we have J = J∗. The assumptions of Lemma 4 are fulfilled
in Ak. This implies the following error bound

‖ϕ̂J−ϕ†‖2≤
[
‖eappJ ‖+

√
m

αJ
δnoin +Cdρδ

der
n +

√
τk(J)

(√
m

αJ
σnoi
n +Cdρσ

der
n

)]2
≤10‖eappJ ‖2+10

m

αJ
(δnoin )2+10(δdern )2C2

dρ
2+10k

m

αJ
(σnoi

n )2+10kC2
dρ

2(σder
n )2

=: Ck.

By the construction of the algorithm (11) the worst case error is ‖ϕ̂J∗ − ϕ†‖ ≤
3R. This will serve as an error bound in the event CAkmax . Putting everything
together yields

E(‖ϕ̂J∗ − ϕ†‖2) ≤ P (A1)C1 +

kmax∑
k=2

P (Ak\Ak−1)Ck + P (CAkmax)9R
2

≤ 10

(
‖eappJ ‖2 + m

αJ
(δnoin )2 + (δdern )2C2

dρ
2

)
+ 10P (A1)

(
m

αJ
(σnoi

n )2 + (σder
n )2C2

dρ
2

)
+

kmax∑
k=2

P (Ak\Ak−1)

(
10k

m

αJ
(σnoi

n )2 + 10k(σder
n )2C2

dρ
2

)
+ P (CAkmax)9R

2

≤ 10

(
‖eappJ ‖2 + m

αJ
(δnoin )2 + (δdern )2C2

dρ
2

)
+ P (CAkmax)9R

2

+ 10

(
m

αJ
(σnoi

n )2 + (σder
n )2C2

dρ
2

)(
2 +

kmax∑
k=3

kP (Ak\Ak−1)

)

≤ 10

(
‖eappJ ‖2 + m

αJ
(δnoin )2 + (δdern )2C2

dρ
2

)
+

(
c1e

−c2kmax + c3e
−c4kmax

1− κ−1

)
9R2

+ 10

(
m

αJ
(σnoi

n )2 + (σder
n )2C2

dρ
2

)(
2 +

kmax−1∑
k=2

(k + 1)
c1e

−c2k + c3e
−c4k

1− κ−1

)
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≤ 10

(
‖eappJ ‖2 + m

αJ
(δnoin )2 + (δdern )2C2

dρ
2

)
+ (c′ max{(σnoi

n )2, (σder
n )2})9R2

+ 10

(
m

αJ
(σnoi

n )2 + (σder
n )2C2

dρ
2

)(
2 +

∞∑
k=2

(k + 1)
c1e

−c2k + c3e
−c4k

1− κ−1

)

≤ 10

(
‖eappJ ‖2 + m

αJ
(δnoin )2 + (δdern )2C2

dρ
2

)
+ (c′ max{(σnoi

n )2, (σder
n )2})9R2

+ 10c′′
(

m

αJ
(σnoi

n )2 + (σder
n )2C2

dρ
2

)

≤ C

(
‖eappJ ‖2 + m

αJ

[
(δnoin )2 + (σnoi

n )2
]
+ C2

dρ
2
[
(δdern )2 + (σder

n )2
])

= C

(
‖eappJ ‖2 + m

αJ
E
[
‖F̂n(ϕ

†)‖2
Y

]
+ C2

dρ
2
E
[
‖T̂n† − T†‖2+2μ

L(X,Y)

])
= O
((

E(‖F̂n(ϕ
†)‖2Y)

) 2μ
2μ+1

+ E

(
‖T̂n† − T†‖2+2μ

L(X,Y)

))
.

We used P (A1)+
∑kmax

k=2 P (Ak\Ak−1)+P (CAkmax) = 1 and P (A1)+P (A2\A1) ≤
1. Furthermore, c′ > 0, c′′ > 0 and C > 0 are generic constants.

The following two lemmas are needed for the proof of Theorem 1 above.

Lemma 6. Let the assumptions of Theorem 1 hold and define:

Φ̃(j) :=

√
m

αj
(δnoin + σnoi

n ) + Cdρ(δ
der
n + σder

n )

Γnoi :=

√
m/(qαα1)(δ

noi
n + σnoi

n ) + Cdρ(δ
der
n + σder

n )√
m/α1(δnoin + σnoi

n ) + Cdρ(δdern + σder
n )

Γnoi := q
− 1

2
α .

The following two bounds hold for the stopping index J in Theorem 1:

(1− Γ−1
noi)Φ̃(J) ≤ (γapp − 1)‖eappJ ‖, (38)

J ≥ sup

{
k ∈ N

∣∣∣∣‖eapp1 ‖γ1−k
app > inf

l∈N

(
CΛρ

√
αl + Φ̃(1)Γ

l−1

noi

)}
. (39)

Proof. Note that (28) implies

1 < Γnoi ≤
Φ̃(j + 1)

Φ̃(j)
≤ Γnoi, for all j ∈ N. (40)

We start with inequality (38). Assume the opposite holds true

(1− Γ−1
noi)Φ̃

noi
n (J) > (γapp − 1)‖eappJ ‖.
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It would follow from (28) and (40) that

‖eappJ−1‖+ Φ̃(J − 1) ≤ γapp‖eappJ ‖+ Γ−1
noiΦ̃(J) < ‖eappJ ‖+ Φ̃(J).

This is a contradiction to the definition of J and therefore proves (38).

In order to prove (39) assume that for some k, and some l ≥ 1

‖eapp1 ‖γ1−k
app > CΛρ

√
αl + Φ̃(1)Γ

l−1

noi .

It follows from (27), (28) and (40) that for all j ≤ k

‖eappl ‖+ Φ̃(l) ≤ CΛρ
√
αl + Φ̃(1)Γ

l−1

noi < ‖eapp1 ‖γ1−k
app ≤ ‖eappk ‖ ≤ ‖eappj ‖

≤ ‖eappj ‖+ Φ̃(j).

As J is the minimizer for ‖eappj ‖+ Φ̃(j) this implies J > k. Taking the infimum
over l and the supremum over k proves the lemma.

Lemma 7. Let the assumptions of Theorem 1 hold true. Define Jmax as in

Lemma 4 with τk(j) := k + ln(κ)
c2

(J − j)

Jmax(k) := max

{
j ∈ N

∣∣∣∣[√m

αj
δnoin + Cdρδ

der
n

+
√
τk(j)

(√
m

αj
σnoi
n + Cdρσ

der
n

)]
α
− 1

2
j ≤ Cstop

}
.

There exist σ̄noi
n > 0 and σ̄der

n > 0 such that for all σnoi
n ≤ σ̄noi

n and σder
n ≤ σ̄der

n

and for all k = 1, . . . , kmax it holds that J ≤ Jmax.

Proof. Since τk(j) fulfills inequality (37) for k ≤ kmax and j ≤ J ,

τk(J) ≤ τkmax(J) ≤ max
{
ln((σnoi

n )−2)/c2, ln((σ
der
n )−2)/c4

}
.

Hence,(√
m

αj
δnoin + Cdρδ

der
n +

√
τk(j)

(√
m

αj
σnoi
n + Cdρσ

der
n

))
α
− 1

2
j

≤
(√

m

αJ
δnoin + Cdρδ

der
n +

√
τkmax(J)

(√
m

αJ
σnoi
n + Cdρσ

der
n

))
α
− 1

2

J

≤ max

⎧⎨⎩
√

ln((σnoi
n )−2)

c2
,

√
ln((σder

n )−2)

c4

⎫⎬⎭ Φ̃(J)α
− 1

2

J

≤ max

⎧⎨⎩
√

ln((σnoi
n )−2)

c2
,

√
ln((σder

n )−2)

c4

⎫⎬⎭ γapp − 1

1− Γ−1
noi

‖eappJ ‖α− 1
2

J

≤ Cmax

{√
ln((σnoi

n )−2),
√
ln((σder

n )−2)

}
α
μ− 1

2

J
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with C :=
ρCΛ(γapp − 1)

min{c2, c4}(1− Γ−1
noi)

.

Moreover, we have to take into account that in inequality (39)

inf
l∈N

(
CΛρ

√
αl + Φ̃(1)Γ

l−1

noi

)
= inf

l∈N

(
CΛρ

√
αl +

(
α
− 1

2
1 (δnoin + σnoi

n ) + Cdρ(δ
der
n + σder

n )
)
Γ
l−1

noi

)
decays with a polynomial rate in σnoi

n and σder
n . Therefore, there exists a constant

b for which J ≥ −bmax{ln(σnoi
n ), ln(σder

n )}, while lim
x→∞

xqcxα goes to 0 for every

c as qα < 1. Hence, there are σ̄noi
n and σ̄der

n such that for all σnoi
n ∈ ]0, σ̄noi

n ] and
for all σder

n ∈ ]0, σ̄der
n ] it holds:

Cmax

{√
ln((σnoi

n )−2),
√

ln((σder
n )−2)

}
α
μ− 1

2

J

≤ Cmax

{√
ln((σnoi

n )−2),
√
ln((σder

n )−2)

}(
α0

qα

)
qξnα

≤ Cstop

with ξn = max
{√

ln((σnoi
n )−2),

√
ln((σder

n )−2)
}

b
2 (μ − 1

2 ). Together with the

first estimate this proves the lemma.

Finally, we can proof Corallary 1.

Proof. (of Corollary 1)
Combining the results of Theorem 1 and Examples 3 and 4 we get the rate

E(‖ϕ̂J∗ − ϕ†‖2
X
)

= O
(
ρ

2
2μ+1 (n−1h−(dZ+1))

2μ
2μ+1 + n−1−μh−((1+2μ)(dX+dZ+2)+1) + h

4μr
2μ+1

)
.

A.5. Convergence rates for adaptive estimation

Proof. (of Theorem 2) When Φ̃noi
n is used in the definition of Jmax in (33),

it follows that Jmax = O
[
ln((σnoi

n )−1) + ln((σder
n )−1)

]
. Consider the event A

defined as in (35) with

τ(j) := max

{
ln
(
(σnoi

n )−2
)

c2
,
ln
(
(σder

n )−2
)

c4

}
.

Applying the Lepskĭı principle (e.g. Corollary 1 in Mathé (2006)) in this event
gives the estimate

‖ϕ̂Lep − ϕ†‖ ≤ 6q
− 1

2
α (1 + γnl) min

j=1, ..., Jmax

(
‖eapp‖+ Φ̃noi

n

)
.
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In Lemma 7 it was shown that for sufficiently small values of δnoin , σnoi
n , δdern

and σder
n the parameter Jmax is large enough. Hence, in the asymptotics we can

take the infimum over N

‖ϕ̂Lep − ϕ†‖ ≤ 6q
− 1

2
α (1 + γnl) inf

j∈N

(
‖eapp‖+ Φ̃noi

n

)
.

In addition, we estimate the probability of the opposite event of A by

P (CA) ≤
Jmax∑
j=1

c1 exp(− ln((σnoi
n )−2) + c3 exp(− ln((σder

n )−2)

≤ Jmax

(
c1(σ

noi
n )2 + c3(σ

der
n )2

)
≤ C ′ max

{
ln((σnoi

n )−1)(σnoi
n )2, ln((σder

n )−1)(σder
n )2

}
≤ C ′′ min

j∈N

(
‖eappj ‖2 + m

αj

[
(δnoin )2 + ln((σnoi

n )−1)(σnoi
n )2
]

+ C2
dρ

2
[
(δdern )2 + ln((σder

n )−1)(σder
n )2

])
with two constants C ′ and C ′′. We used in the third row the fact that Jmax =

O
[
ln((σnoi

n )−1)+ln((σder
n )−1)

]
and in the fourth row that α

− 1
2

j is monotonically
increasing in j.

We finish the proof with the estimation of the MISE

E[‖ϕ̂Lep − ϕ†‖2] ≤ P (A)36q−1
α (1 + γnl)

2 inf
j∈N

(
‖eapp‖+ Φ̃noi

n

)2
+ P (CA)9R2

≤ Cmin
j∈N

(
‖eappj ‖2 + m

αj

[
(δnoin )2 + ln((σnoi

n )−1)(σnoi
n )2
]

+ C2
dρ

2
[
(δdern )2 + ln((σder

n )−1)(σder
n )2

])
.

The rate in the theorem follows from the last line and the bound (27) on ‖eappj ‖.
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