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Abstract: The asymptotic behaviour of Linear Spectral Statistics (LSS)
of the smoothed periodogram estimator of the spectral coherency matrix
of a complex Gaussian high-dimensional time series (yn)nez with inde-
pendent components is studied under the asymptotic regime where the
sample size N converges towards +oo while the dimension M of y and
the smoothing span of the estimator grow to infinity at the same rate in
such a way that % — 0. It is established that, at each frequency, the esti-
mated spectral coherency matrix is close to the sample covariance matrix
of an independent identically N¢(0,I,s) distributed sequence, and that its
empirical eigenvalue distribution converges towards the Marcenko-Pastur
distribution. This allows to conclude that each LSS has a deterministic be-
haviour that can be evaluated explicitly. Using concentration inequalities,
it is shown that the order of magnitude of the supremum over the frequen-
cies of the deviation of each LSS from its deterministic approximation is

of the order of % + @ + (%)3 where N is the sample size. Numerical
simulations supports our results.
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1. Introduction
1.1. The addressed problem and the results

We consider an M—variate zero-mean complex Gaussian stationary time series
L (¥n)nez and assume that the samples y1,...,yn are available. We introduce
the traditional frequency smoothed periodogram estimate é(u) of the spectral
density of y at frequency v defined by

B/2

S = %ﬂ 3 g, <y+ %) £, (u+ %) (1.1)

b=—B/2

where B is an even integer, which represents the smoothing span, and

N
1 —2im(n—1)v
€)= = >y (12
n=1

is the renormalized Fourier transform of (y,)n=1... n. The corresponding esti-
mated spectral coherency matrix is defined as:

C(v) = diag (S(u)) o S(v)diag (s(u)) o (1.3)

where diag(S(v)) = S(v) ® I, with ® denoting the Hadamard product (ie.
entrywise product) and I, is the M—dimensional identity matrix. Under the
hypothesis H, that the M components (y1,n)nez; - - -, (Yr,n)nez of y are mutu-
ally uncorrelated, we evaluate the behaviour of certain Linear Spectral Statistics
(LSS) of the eigenvalues of C(v) in asymptotic regimes where N — 400 and
both M = M(N) and B = B(N) converge towards +oo in such a way that

M(N) = O(N®) for a € (1/2,1) and ¢ny = % — ¢ where ¢ € (0,1). We
(c)

denote by p;/p the Marcenko-Pastur distribution with parameter ¢ < 1 defined
by

VO =N =)
2meA

and define the sequences (uny)n>1 and (vn)n>1 by

Al (N) = Taepo o VAN, A = (1+e)?

1 VB (B\®

uN—§+T+ (N) (1.4)
and ,
B/2 2
1 b
= — - . 1.
WS HTT 2 (N) (15)
b=—B/2

lany finite linear combination = of the components of (y»)nez is a complex Gaussian
random variable, i.e. Re(z) and Im(z) are independent zero-mean Gaussian random variables
having the same variance
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We notice that

1 B B\*
unN = O (§> 1%§0¢§% +O <§> 1%S0¢S% +O <N) 1(12

and vy = O ((§)?), as well as 2 — 0 if @ > 2/3 and %2 — fo0 if a <
2/3. Then, if (S )m=1,...,m represent the spectral densities of the scalar time
series ((Ym,n)nez)m=1....m, for each function f defined on RT and C* in a
neighbourhood of the support [A_;Ay] of ug\f[)P, it holds that for each € > 0,
there exists a y(€) := v > 0 such that for each N large enough:

(1.6)

IS

LT (F(6W)) - / S — ) O () o Ly

> Nun] <exp—N" (1.7)

P | sup
ve(0,1]

where ry(v) is defined by
Moo, 2
() = (% > :8) (19

and where ¢n(f) is a deterministic O(1) term which coincides with the ac-

tion of the function f on a certain compactly supported distribution Dy (to

be made precised later) depending on the Marcenko-Pastur distribution ug\?}).

In other words, under Ho, uniformly w.r.t. the frequency v, 2Tr (f(C(y))

behaves as fRfdug\Z]},). If o < 2/3, with high probability, the order of mag-

nitude of the corresponding error is not larger than uy = % = (’)(%) If
a>2/3, & Tr (f(C(I/))) -z fdus\fpr) behaves as the deterministic O(£)? term

rn (V) ¢n(f) vn, and the rate of convergence towards 0 of the corrected statis-

tics 5 Tr (f(@(u))) — Jp+ fdpg\f[’}) —rn(v) on(f) vn 1as2/3 appears to be uy
which satisfies 32 — 0.

Our approach is based on the observation that in the above asymptotic
regime, S(V) can be interpreted as the sample covariance matrix of the large vec-
tors (&, (v + %))b:_B/Q,_N’B/Q. Classical time series analysis results suggest that
the vectors (&, (v + %))b:,g/g,“,,g/g appear as “nearly” i.i.d. zero mean com-
plex random vectors with covariance matrix S(v) where S(v) = diag(s1(v), ...,
sy (). C(v) can be interpreted as the sample autocorrelation matrix of the
above vectors. As it is well-known that the empirical eigenvalue distribution of
the sample autocorrelation matrix of i.i.d. large random vectors converges to-
wards the Marcenko-Pastur distribution (see e.g. [21]), it is not surprising that

+Tr (f(C(l/))) behaves as [p, fduS\ZNP). Our main results are thus obtained

using tools borrowed from large random matrix theory (see e.g. [30], [1]) and
from frequency domain time series analysis techniques (see e.g. [4]).
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1.2. Motivation

This paper is motivated by the problem of testing whether the components of
y are uncorrelated or not when the dimension M of y is large and the number
of observations N is significantly larger than M. For this, a possible way would
be to estimate the spectral coherency matrix, equal to I, at each frequency v
under Ho, by the standard estimate C(v) defined by (1.3) for a relevant choice
of B, and to compare, for example, the supremum over v of the spectral norm
|C(v) —I5]| to a threshold. To understand the conditions under which such an
approach should provide satisfying results, we mention that under some mild
extra assumptions, it can be shown that

sup [S(v) =S =7 0
as well as R
sup ||C(v) — || 2% 40
v N—+4oc0

in asymptotic regimes where N, B, M converge towards +o0o in such a way that
L 5 0and % — 0. Therefore, C(v) is likely to be close to Iy, for each v if both
% and % are small enough. However, if M is large and the number of available
samples N is not arbitrarily large w.r.t. M, it may be impossible to choose the
smoothing span B in such a way that % < 1and % < 1. In such a context, the
predictions provided by the asymptotic regime % — 0 and % — 0 will not be

accurate, and any test comparing C(l/) to I for each v will provide poor results.
To solve this issue, we propose to choose B of the same order of magnitude as
M. In this case, C(V) has of course no reason to be close to I for each v. If
%, or equivalently if % is small enough, the asymptotic regime where both M
and B converge towards +o0o at the same rate appears relevant to understand
the behaviour of C(v). We mention in particular that the condition o > 1/2
implies that the rate of convergence of % towards 0 is moderate, which is in
accordance with practical situations in which the sample size is not arbitrarily
large. Our asymptotic results thus suggest that if % is small enough and if B
is chosen of the same order of magnitude as M, then it seems reasonable to test
that the components of y are uncorrelated by comparing

ST (F(6W)) - /R TS () () oy Lasays

to a well chosen threshold, where 7y (v) represents an estimate of ry(v) accu-
rate enough to keep equal to uy the convergence rate towards 0 of the modified
statistics. We notice that our results just characterize the order of magnitude of
the above statistics under Hg, and that we do not provide asymptotic approxi-
mation of its distribution. While the derivation of such an approximation would
be quite useful to design a well defined statistical test and to study and compare
its performance with existing approaches, our results represent a first necessary
step that has its own interest. We notice that we consider the supremum on
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the whole frequency interval [0,1] because, compared to a solution where the
maximum is over a low number of fixed frequencies, this allows to increase the
power of the test in contexts of alternatives for which, under 1,

v— ‘%Tr (r€wy) - /R+ FAusyy) —in(v) on(f) on Tasays|  (19)

exhibits narrow peaks that would not be visible on a low density frequency grid.
We also mention that other statistics could also be considered, e.g. the integral
on the frequency domain of the function (1.9) or of the square of this function.

We finally remark that the most usual asymptotic regime considered in the
context of large random matrices is M — 400, N — 400 in such a way that
% converges towards a non zero constant. In this regime, it is still possible to
develop large random matrix-based approaches testing that the components of
y are uncorrelated or not, see e.g. the contribution [29] to be presented below
which, under the extra assumption that the components of y share the same
spectral density, is based on a Gaussian approximation of linear spectral statis-

tics of the empirical covariance matrix Ry defined by

N
A 1 N

under Hy. However, when the ratio % is small enough, the asymptotic regime

considered in the present paper seems more relevant than the standard large
random matrix regime M — +o0o, N — +o00, and test statistics that depend
on the estimated spectral coherency matrix C(u) should provide better perfor-
mance than functionals of the matrix RN.

1.3. On the literature

The problem of testing whether various jointly stationary and jointly Gaussian
time series are uncorrelated is an important problem that was extensively ad-
dressed in the past. Apart from a few works that will be discussed later, almost
all the previous contributions addressed the case where the number M of avail-
able time series remains finite as the sample size increases. Two classes of meth-
ods were mainly studied. The first class uses lag domain approaches based on
the observation that M jointly stationary time series (y1,n)nez, - - -, (YUMn)nez
are mutually uncorrelated if and only if for each integer L, the covariance matrix
of the M L dimensional vector y%L) defined by
%L) = (Y1ns - YLt L—1s- - UMy - - - ayM,n+L71)T

is block diagonal. The lag domain approach was in particular used in [17] for
M =2, and extended and developed in [24], [25], [19], [20], [8] and [12].
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The second approach is based on the observation that the M jointly station-
ary time series (Y1.n)nez, - - - » (Ynm,n)nez are uncorrelated if and only the spectral
density matrix S(v) of ¥, = (Y1.n,---,Ynmn)? is diagonal for each frequency v,
or equivalently, if its spectral coherence matrix C(v) is reduced to I,; for each
v. [35] is one of the first related contribution. This work was followed by [10],
[33], as well as [11].

We now review the existing works devoted to the case where the number M
of time series converges towards 4+oc. The particular context where the observa-
tions yi,...,yn are i.i.d. and where the ratio % converges towards a constant
d € (0,1) is the most popular. In contrast to the asymptotic regime considered
in the present paper, M and N are of the same order of magnitude. This is be-
cause, in this context, the time series are mutually uncorrelated if and only the
covariance matrix Ely,y;] is diagonal. Therefore, it is reasonable to consider
test statistics that are functionals of the sample covariance matrix Ry defined
by (1.10). In particular, when the observations are Gaussian random vectors, the
generalized likelihood ratio test (GLRT) consists in comparing the test statis-
tics log det(é ~) to a threshold, where C represents the sample autocorrelation
matrix. [21] proved that under Ho, the empirical eigenvalue distribution of Cy

converges almost surely towards the Marcenko-Pastur distribution US\?P and

therefore, that ﬁTr ( f (C N)) converges towards [ fdug\(/i[)P for each bounded

continuous function f. In the Gaussian case, [23] also established a central limit
theorem (CLT) for logdet(Cy) under o using the moment method. In the
N/2

real Gaussian case, [7] remarked that (deté N) / is the product of indepen-
dent beta distributed random variables. Therefore, log det (C ~) appears as the
sum of independent random variables, thus deducing the CLT. More recently, in
[28] is established a CLT on LSS of Cy in the Gaussian case using large random
matrix techniques when the covariance matrix E[y,y] is not necessarily diag-
onal. This allows studying the asymptotic performance of the GLRT under a
certain class of alternatives. We also mention that [22] studied the behaviour of
max; ; [(Cx); ;| under Ho, and established that max; j |(Cy )i |, after recenter-
ing and appropriate normalization, converges in distribution towards a Gumbel
distribution, which, of course, allows to test the hypothesis Hg. This first contri-
bution was extended later in several works, in particular in [6] who considered
the case where the samples yq,...,yn have some specific correlation pattern.
Still, in the asymptotic regime % — d, [29] proposed to test hypothesis Hy when
the components of y share the same spectral density. In this case, the rows of the
M x N matrix (yi,...,yn~) are independent and identically distributed under
Ho. [29] established a central limit theorem for linear spectral statistics of the
empirical covariance matrix Ry defined by (1.10), and used this test statistics
to check whether Hg holds or not. We notice that the results of [29] are valid in
the non-Gaussian case.

In our knowledge, no existing work studied the behaviour of linear spectral
statistics of the matrix C(V) in the asymptotic regime defined in the present
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paper. However, we mention that this regime was considered in [3] to solve a
completely different problem, i.e. the use of shrinkage in the frequency domain
in order to enhance the performance of the spectral density estimate (1.1) when

the components of y are not uncorrelated. We notice that %/2 is supposed to
converge towards 0 in [3]. When B = O(N®), this condition is equivalent to o <
2/3, while we rather study situations where oz > 1/2. We finally mention that
our works [27] and [31] also consider the present asymptotic regime and study
respectively the behaviour of sup;_; ,eg, |Cij(v)] (Gn is the set {kEH |k =
0,..., BLH}) and the largest eigenvalues of C(l/) in the presence of an extra
signal, independent from y, and having a low-rank spectral density matrix.

1.4. General approach

To simplify the notations, we denote by ¥ (f,v) the statistics defined by

1

un(fr) = 37T (FOWD) = [ Fauiy) =) on(h) o Lasaja. (111)

To study the behaviour of sup, |¢)n(f, V)|, we establish exponential concentra-
tion inequalities that allow to evaluate P(|¢n (f, V)| > Nuy) for each v as well
as P(sup,cy,, [V~ (f,v)| > Nuy) for some relevant finite discrete grid Vy of
the interval [0,1]. (1.7) is then obtained by using Lipschitz properties of the
function v — Y (f, v).

To evaluate P(|¢n (f,v)| > Nuy) for each v, we use the following approach:
e We first study the behaviour of the modified sample spectral coherency
matrix C(v) defined by
C(v) = diag (S(v)) "% S(v)diag (S(v)) 2 . (1.12)
We notice that C(v) is obtained from C(v) by replacing the estimated
diagonal matrix diag <§(u)) by its true value diag (S(v)). Using classical
results of [4], we establish that for each v, C(r) can be represented as

Cl) = %ﬁ(”) +A(v) (1.13)

where X (v) is an M x (B + 1) random matrix with Nc(0,1) ii.d. entries,
and A(v) is another matrix such that, for any € > 0, there exists v > 0,
independent from v, such that for each large enough N € N:

~ B
P ||A(V)||>NEN <exp—N".

We deduce from (1.13) that C(v) can be written as

X@)X*(v)

Cw)="p 1

+ A(v) (1.14)
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where A(v) satisfies the concentration inequality

Pllawl >~ (5 + 5 )| om0

for each € > 0, where v does not depend on v. Using (1.13) and (1.14), we
establish that the eigenvalues of C(v) and C(v) are localized with high
probability in a neighbourhood of the support of the Marcenko-Pastur
distribution u( )

C(v) appears as a useful intermediate matrix because the study of
ﬁTr (f(C ) — fR+ fd,u(pN is based on the evaluation of each term

of the following decomposition:

%TY / Fduly) = —Tr (f(C(z/))) - %Tr (f(C(V))) +
%Tr (f((”;@))) ~-E %Tr (f(C(v)))} +

E{%Tr(f(c —%Tr( XB+1 ))%

B4 ()| - [ raip.

(1.15)

Using the above-mentioned results related to the localization of the eigen-
values of C(v) and C(v), we also argue that it is sufficient to do so when
f is compactly supported.

The term 5;Tr (f(é(y))) - Tr (f(é(y))) is studied using the Helffer-
Sjostrand formula which allows, in a certain sense, to be back to the study
of 57 Tr (Q(z) - Q(z)) for z € CT, where Q(z) and Q(z) represent the
resolvents of matrices C(v) and C(v) (see below for a formal definition).
Using (1.13) and (1.14), we express 77Tt (Q( ) — Q(z)) in terms of the

resolvent Q(z) of the matrix %’fl(”) As the matrix X(v) is Gaussian,
it is possible to use standard Gaussian tools (Poincaré-Nash inequality
and the integration by parts formula) to have a good understanding of
the behaviour of Q(z), and to prove that for each € > 0, there exists =

independent from v such that

P ('%Tr (f(C(V))) — %TI" <f(é(1/))) -

1 X s (v)
<sz—18 (v)

where QZN( f) is a deterministic term defined as the action of f on a com-

pactly supported distribution Dn depending on ug\?}’p).

) N (f) vn Lasays

> NeuN> < exp—N"
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e Using a standard Gaussian concentration inequality as well as the struc-
ture of the matrix C(v), we obtain that for each € > 0, there exists «
independent from v such that

HM GCONEE {%Tr (f(C(V)))H > Neé} < exp—N7
for each N large enough. (1.16)

e We then analyse the deterministic term E[ﬁTr (f(é(u))) -
& Tr ( f (W)) } using the Helffer-Sj6strand formula. We first show
that for each z € C*, E {%Tr(@(z) - Q(z))} is a O(£)? term, a non ob-
vious result because the equation (1.13) just leads to the conclusion that

the above term is (9( ). Moreover, using long and very tedious Gaussian
calculations, we obtaln that if o > £, it holds that

B | 400 - Q)| = - (W SZ@)) P () un+
M

2/1 2 3
(% > ;;g;;) )y +0 (£)

where py and py are the Stieltjes transforms of the compactly supported
distributions Dy and Dy introduced previously. This immediately implies
that if o < %, then

E [%T‘r (£Con) - %TY (ﬂ%}fﬁl@)))}

B\’ 1
while if o > %, then,

E [%Tr (rew)) - %Tr (f(%ﬁ(”))ﬂ _
2
(S EG) v (3725 25) entnn
+ O(un)

because (£)3 <« uy if 2/3 < a < 4/5 and (£)? is equivalent to uy if
a>4/5.
e Finally, classical results imply that

[ ()] () -
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Gathering the above approximations and using the Lipschitz properties of the
function v — ¥(f,v), we finally obtain (1.7).

We also indicate how the use of lag window estimators of the spectral densities
(Sm)m=1,...,m allows to design an estimator 7 (v) of ry(v) defined by (1.8) for
which the rate of convergence towards 0 of the statistics 1/3N( f,v) obtained by
replacing 7y (v) by 75 (v) in Eq. (1.11) is still uy. In particular, we establish that

for each € > 0, P (sup, [¢n (f,v)| > Neuy ) converges towards 0 exponentially.

1.5. Assumptions and general notations

Assumption 1.1. For each m > 1, (Ym n)nez i @ zero mean stationary com-
plex Gaussian time series, ie.

1. Elymn] =0 for anym > 1 and anyn € Z

2. every finite linear combination x of the random variables (Ym.n)nez 1S @
Nc(0,0?) distributed random variable for some o2, i.e. Re(x) and Im(x)
are independent and N(0,0?%/2) distributed.

Assumption 1.2. If m; # ma, then the scalar time series (Ym, n)nez and
(Yma,n)nez are independent.

We now formulate the following assumptions on the growth rate of the quan-
tities N, M, B:

Assumption 1.3.

—_— = S 0,1).
B+1 CN:  CN N—>+ooce(7)

B, M = O(N®) where % <a<l,

As M = M(N) converges towards +00, we assume that an infinite sequence
(Y1,n)nezs (Y2,n)nezs - - - » (Ykn)nez, - - - of mutually independent zero mean com-
plex Gaussian time series is given.

We denote by (sm)m>1 the corresponding sequence of spectral densities (i.e.
Sm coincides with the spectral density of the times series (ym n)nez). For each
m > 1, we denote by 7, = (T, u)uecz the autocovariance sequence of (Y n)nez,
ie. rpy = E[yanruy;n] We formulate the following assumptions on (S, )m>1
and (7p)m>1:

Assumption 1.4. The time series ((Ymn)nez)m>1 are such that:

inf inf [s,(v)] > 0 1.17
Ly e @) (1.17)

and
sup > (L4 [u])|rm | < +00 (1.18)

m>1 weZ
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where vy > 3. Assumption (1.18) of course implies that the spectral densities
(Sm)m>1 are C3 and that

sup sup |s')(v)| < 400 (1.19)
m>1ve[0,1]

for i =0,1,2,3 (55,’2 represents the derivative of order ¢ of s,,). We notice that
(1.18) holds as soon as we have

C

sup [T, < W

m>1

for each u # 0 as well as sup,,>; [rm,o| < oo (C > 0 and § > 0 represent
constants). If z represents the backward shift operator, a simple example of time
series satisfying Assumption 1.4 is to consider an ARMA time series generated
as

Ymn = [hm(z)]em,n

where ((€m,n)nez)m>1 are mutually independent i.i.d. Ng(0,1) sequences, and

b (2)
am(z)

the closed unit disk . Moreover, sup,),s; max(deg(ap, ), deg(bm)) < 400, and
if (2k,m)k=1,....deg(bn) AN (D, m)k=1,...,deg(an,) are the zeros of by, and a,,, then
we should have

where h,,(2) = , @ and b, being 2 polynomials having no pole or zero in

inf inf di m, D inf inf di D
Jnf in dist (2k,m, D) > 0, nf in dist(pg,m,D) >0

SUp SUP | 2k,m| < 400, sup sup |pg,m| < +oo.
m>1 k m>1 k

It is easy to check that (1.18) holds for each vy > 0, and that (1.17) is verified
as well.

Notations. A zero mean complex valued random vector y is said to be
Nc(0,%) distributed if E(yy*) = X and if each linear combination x of the
entries of y is a complex Gaussian random variable, i.e. Re(z) and Im(z) are
independent Gaussian random variables sharing the same variance. If z is a
random variable, we denote by z° the random variable defined by

z° =z — E[z]. (1.20)

If A is a Px @ matrix, |A| and ||A || denote its spectral norm and Frobenius
norm respectively. If P = @ and A is Hermitian, A;(A) > ... > Ap(A) are the
eigenvalues of A. The spectrum of A, which is here the set of its eigenvalues
(A (A))g=1,...,p, is denoted by o(A). For A and B square Hermitian matrices,
if all the eigenvalues of A — B are non negative, we write A > B. We define
ReA = (A+A*)/2and Im A = (A—A*)/2 where A* is the conjugate transpose
of the matrix A.
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CP represents the set of all real-valued functions defined on R whose first p
derivatives exist and are continuous, and C? is the set of all compactly supported
functions of CP.

We recall that S(v) represents the M x M diagonal matrix S(v) = diag(s;(v),
..., $m(v)). We notice that S depends on M, thus on N (through M := M(N)),
but we often omit to mention the corresponding dependency in order to simplify

the notations. In the following, we will denote by y,, the N—dimensional vector
T

Ym = (ym,ly-“aym,N) .

A nice constant is a positive a constant that does not depend on the fre-
quency v, the time series index m, the complex variable z of the various re-
solvents and Stieltjes transforms used throughout the paper, as well as on the
dimensions B, M and N. A nice polynomial is a polynomial whose degree and
coefficients are nice constants. If z € C* and if P; and P, are two nice polyno-
mials, terms such as Pl(z)Pg(ﬁ) play an important role in the following. C'
and C(z) will represent a generic notation for respectively a nice constant and
a term Py (2)P2(52;), and the values of C' and C(z) may change from one line
to the other.

If (an)n>1 and (by)n>1 are two sequences of positive real numbers, we write
any < by if‘g—x—ﬂ)when]\f—)—l-oo.

We also recall how a function can be applied to Hermitian matrices. For
an M x M Hermitian matrix A with spectral decomposition UAU* where
A = diag(A\p,,m =1,...,M) and the (Ay,)m=1,... a are the real eigenvalues of
A then for any function f defined on R, we define f(A) as:

f(A)
f(A)=U U
f(Aar)

C™T is the upper half-plane of C, i.e. the set of all complex numbers z for
which Im z > 0.

For o a probability measure, its Stieltjes transform s, is the function defined
on C\ Supp i as

su(2) = i“_(l?. (1.21)

We recall that

su(2)] < ﬁ (1.22)

for each z € C*. Moreover, if u is carried by R, then for any a > 0, the function
—m is also the Stieljes transform of a probability distribution carried
u
by R, a property which implies that
1
1+ asu(2)

2|
< 1.2
< tms (1.23)
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for each z € C* (see [15], Proposition 5-1, item 4).

If A\1,..., A denote the eigenvalues of a Hermitian matrix A and if y :=
& Zf\il 0y, denotes the empirical eigenvalue distribution of A, then we have
the following relation:

3u(z) = 278 Qa(2)

where Qa (2) represents the resolvent of A defined by
Qa(z) = (A —2Iy) " n (1.24)

We finally mention the following useful control for the norm Qa. For each
z € C*, we have
1
1Qall < — (1.25)

~Imz
1.6. Overview of the paper

We first recall in Section 2 useful technical tools: in Paragraph 2.1, the concept
of stochastic domination adapted from [13] which allows to considerably simplify
the exposition of the following results, in Paragraph 2.2 some useful properties
of the extreme eigenvalues and of the resolvent of large Wishart matrices, two
well-known Gaussian concentration inequalities expressed using the stochastic
domination framework in Paragraphs 2.3 and 2.4, and the Helffer-Sjostrand for-
mula in Paragraph 2.5. We establish in Section 3 the stochastic representations
(1.13) and (1.14) of C(v) and C(v). In Section 4, we prove for each v the con-
centration of |¢n(f,v)| defined by (1.11), and indicate how it is possible to
estimate the term ry(v) in order to keep equal to uy the rate of convergence
of the statistics ¢ (f, ) obtained by replacing ry(v) by #x(v) in (1.11). In
Section 5, we establish Lipschitz properties for the functions v — ¥y (f,v) and
v — hn(f,v) that allow to establish the concentration of sup, [¢n(f, )| and
sup,, |1ZJ ~(f,v)|. We finally provide in Section 6 some numerical simulations that
support our results.

2. Useful technical tools
2.1. Stochastic domination

We now present the concept of stochastic domination introduced in [13]. A nice
introduction to this tool can also be found in the lecture notes [2].

Definition 2.1. Stochastic Domination. Let

X=XMw):NeNueUM), v=¥MN(@w):NeNuecUM)
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be two families of nonnegative random variables, where UN) is a set that may
possibly depend on N. We say that X is stochastically dominated by Y if for all
(small) € > 0, there exists some v > 0 (which of course depends on €) such that:

P [X(N) (u) > N°YW™ (u)} < exp—N7

for each u € UN) and for each large enough N > Ny(€), where No(e) is inde-
pendent of u, or equivalently

sup P [X(N)(u) > NSY(N)(u)} <exp—N". (2.1)

ueU )

for each large enough N > No(e). If X is stochastically dominated by Y we
use the notation XN (u) < YN (u). To simplify the notations, we will very
often denote XN < Y(N) or X <Y when the context will be clear enough.

Moreover, if for some complex valued family X we have | X| <Y we also write
X =0<(Y).

Finally, we say that a family of events = = E(N)(u) holds with exponentially
high (small) probability if there exists No and v > 0 such that for N > Ny,
P[En(u)] > 1 —exp—N7 (P[Ex(u)] < exp —N7) for each u € UM,

Remark 2.1. Suppose (Xn)nen is a sequence of positive random variables,
satisfying Xy < anyN€ for any € > 0 for some positive real numbers sequence
(an)Nen- It turns out that this precisely means that Xy < an. Indeed, consider
an arbitrary € > 0. By the stochastic domination property of Xn, one can take
€ such that 0 < e < € and write

IP[XN>aN><N6’ <P |Xy>ayx N x N°~¢| <P[Xy > ay x NY|
>1

which goes to zero exponentially since X < anN€ for the € chosen. This argu-
ment will be used in the proof of Lemma 4.2.

Lemma 2.1. Take four families of non negative random variables X1, Xs,Y:
and Ys defined as in Definition 2.1. Then the following holds:

X1 <YTand Xo <Yy = X7 +Xo<YV14+Y; and X1 X9 < Y1Y5.

We omit the proof of this lemma.

Remark 2.2. Note that Definition 2.1 is slightly different from the original one
[13] which states that the left hand side of (2.1) should be bounded by a quantity
of order N=P for any finite D > 0. In the present paper, all the random variables
are Gaussian, and exponential concentration rates can be achieved.
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2.2. Properties of the eigenvalues and of the resolvent of large
Wishart matrices

In this paper we will at multiple occasion use properties of the eigenvalues of

matrices Xg_i(lf*V where Xy is an M x (B + 1) complex Gaussian matrix with

i.i.d. Mc(0,1) entries when M = M(N) and B = B(N) follow Assumption 1.3.

2.2.1. Concentration of the largest and the smallest eigenvalues

We first recall concentration results of the largest and smallest eigenvalue of

ngfv due to [14]. We have for any € > 0
P {AM ();Nfﬁ <(1—-+0e) - e} < (B+1)exp—C(B+1)& (2.2)
XN XY 9 5
e >(1+ve)+el < (B+1)exp—C(B+1)e (2.3)

for some nice constant C.

Consider for € > 0, the e-expansion of the support of the Marchenko-Pastur

distribution MEEI)P:

Supp pi7p + € 1= [(1 = V2)? — &, (1 +vV2)? + €]

and the event:

X v X* .
Ane= {o ( B f’) - Suppugw)P + e}. (2.4)

It is clear that using (2.2) and (2.3), An. holds with exponentially high
probability for any € > 0. This will be of high importance in the following since

it will enable us to work on events of exponentially high probability where the
Xy X%

BT and the norm of its inverse are bounded.

norm of

Finally, the following (weaker) statement is a simple consequence of the equa-
tions (2.2) and (2.3), which will sometimes be enough in the following:

XX 1
Am ( B+1 )

We finally notice that if we consider a family Xy (u) € CM*(B+1) with i.i.d.
Nc(0,1) entries, u € UM where UWNY) is a certain set possibly depending on
N, then (2.2) and (2.3) hold for each u € UN) because the constant C in (2.2)
and (2.3) is universal. This implies that the stochastic domination (2.5) is still
satisfied by the family Xy (u), u € UN). Moreover, the family of events Ay . (u)
defined by (2.4) when Xy is replaced by Xy (u) still holds with exponentially
high probability.
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XX
B+1

2.2.2. Asymptotic behaviour of the resolvent of

We next review known results related to the asymptotic behaviour of the re-
solvent Qn(2) of the matrix ngﬁ that can be deduced from standard Gaus-
sian tools. The Poincaré-Nash inequality (see e.g. [30, Proposition 2.1.6] in the
Gaussian real case and Eq. (18) in [16] in the complex Gaussian case) implies

immediately that the following Lemma holds.

Lemma 2.2. Consider deterministic M x M and (B + 1) x (B + 1) matrices
A and A. Then, it holds that

1 ; C(z) 1 .
Var Mtr AQi(2) < e Mtr AA (2.6)
1 XAX* C(z) 1 -
— —Q < ——tr AA* 2.
Vathr ( Bl QN(2)> < e B+1tr (2.7)

fori=1,2

We recall that C(z) represents a generic notation for Py (2) Pz () where Py
and P, are nice polynomials.

The integration by parts formula states that if (X, X*) is a C! function of
the entries of X and X* with polynomially bounded first derivatives, then, it

holds that oh
E(X;;h(X,X*)) = E|X;;|°E [af (X, X*)] . (2.8)

)

(2.8), in conjunction with the Poincaré-Nash inequality, allows to evaluate easily
the asymptotic behaviour of the entries of E(Qn(z)) (see e.g. [30]). We first
notice that properties of the distribution of the matrix X immediately imply
that E(Qn(2)) is reduced to Sy (2)In where Sy (2z) coincides with E(Q, m(2))
for each m. Then, it holds that

5]\[(2) :tN(Z) +6N(Z) (29)

where the error term ey (z) satisfies |en(2)] < C]V(IZ) and where ty(z) is the

Stieltjes transform of the Marcenko-Pastur distribution pg\?’P). In other words,
tn(z) is the unique Stieltjes transform satisfying the equation

1

in(2) = ———. (2.10)
-z + 1+CNtN(Z)
It is also convenient to define #x(z) by
- 1
tn(z) = 2.11
w(e) z(1+entn(2)) B0
so that ty(2) is also given by
1
tn(z) = ——— (2.12)
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It is well-known that #x(2) is the Stieltjes transform of the probability distri-
bution cN,u( °x) 4 (1 = en)do.

We finally mention that E(Q/y(2)) = E(Q%(2)) = By (2)In (where ’ stands
for the derivative w.r.t. z), and that €, (z) = ﬁN(z) Qv(z) still satisfies
C(z
@< S (213)

2.3. Concentration of functionals of Gaussian entries

It is well-known (see e.g. [34, Th. 2.1.12]) that for any 1-Lipschitz real val-
ued function f defined on RY and any N-dimensional random variable X ~
N(0,Iy), there exists a universal constant C' such that:

P[f(X) —Ef(X)| > t] < Cexp—Ct>. (2.14)

This inequality continues to remain valid when X ~ N (0,Iy): in this context,
f(X) is replaced by a real-valued function f(X, X*) depending on the entries of

X and X*. f(X, X*) can of course be written as f(X,X*) = f(v2Re(X), v2Im(X))
for some function f defined on R?N. As (v/2Re(X), \/_Im( ) is NV (0, IgN) dis-
tributed, the concentration inequality is still valid for f(X,X*) = f(v/2Re(X),
v2Im(X)). We just finally mention that f, considered as a function of (X, X*),
and f have Lipschitz constants that are of the same order of magnitude. More
precisely, if we define the differential operators % and 5= by

9 0 9 9 _ 9 .0
0z 0Ox Oy 9z 0Ox Oy

we can verify immediately that

> (|7

of
oX;

i=1

2
= AP =4 £ 2
) 1D 2 =4 (VF) o]

Within the stochastic domination framework, the concentration inequality
(2.14) implies that for a family X (u) ~ N (0,Iy) for u € UWN):

|f(Xn(u) —Ef(Xn(u)| <1
The proof is immediate: consider € > 0 and obtain that
Pllf(Xn(u)) — Ef(Xn(u)| > N < Cexp-CN*

for each u as expected. This result can easily be extended in the complex case,
ie. when Xy (u) ~ Ng(0,Iy).
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2.4. Hanson- Wright inequality

The Hanson-Wright inequality [32] is useful to control deviations of a quadratic
form from its expectation. While it is proved in the real case in [32], it can
easily be understood that it can be extended in the complex case as follows: let
X ~ Nc(0,Iy) and A € CN*N, Then

t2 t
*AX — EX* < —Cmin | ——,— . .

P[X*AX — EX*AX]| > ¢] < 2exp —C min <||A||%’ ||A|> (2.15)

We now write (2.15) in the stochastic domination framework. Consider a

family of independent Ng(0,1) random variables (X, (u))n=1,.. .~ where u €

UN) and a sequence of N x N matrices AN (u) that possibly depend on w.

Take ¢ > 0 and t = N¢||Apy(u)||r. Since ||[An(uw)|| > 0, [|[An(uw)|F > 0, and
[AN(w)]| < [|An(u)]|F:

(o 2N (AWl oA
(AN<u>||’||AN<u>|2F) (N TAn(l |AN<u>||%>

> min(N°¢, N%) = N°©.

Denote Xy (u) = (X1 (u),..., Xn(u))T. For any u € UM it holds that:

PIXN (w)An (u)Xy(u) = EXy () Ay (u) Xy (u)| > N[ AN (u)]|F]
<2exp—-CN°¢. (2.16)

We can therefore rewrite (2.16) as the following stochastic domination:

(XN (W) An () Xy (u) = EXy () Ay (u) Xy (w)] < [An(u)]|F- (2.17)

2.5. Helffer-Sjostrand formula

If 14 is a probability measure, the Helffer-Sjostrand formula can be seen as an
alternative to the Stieltjes inversion formula that allows to express f fdu in
terms of the Stieltjes transform s, (z) of u (see (1.21)) when f is a regular enough
compactly supported function. In order to introduce this tool, we consider a
class C**1 compactly supported function f for a certain integer k, and denote
by @k (f) : C — C the function defined on C by

N " (iy)! )
Pr(f)(w +iy) =D O @)oly)

=0

where p : R — R7T is smooth, compactly supported, with value 1 in a neigh-
bourhood of 0. Function ®(f) coincides with f on the real line and extends it
to the complex plane. Let 0 = 0, + i0,. It is well-known that

i k
9 (1) (o + i9) = " 40 ) (2.18)
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(a proof of this result can be found in [9] or [18]) if y belongs to the neighbour-
hood of 0 in which p is equal to 1. The Helffer-Sjostrand formula can be written
as

/fd,u = %Re/(C+ 01 (f)(2)s,(2) dz dy. (2.19)

In order to understand why the integral at the right hand side of (2.19) is well
defined, we take, to fix the ideas, p € C* such that p(y) = 1 for |y| < 1 and
ply) = 0 for |y| > 2, and denote by [a1, az] an interval containing the support
of f. Then, it appears that the integral on C* is in fact over the compact set
D= {z+iy:x € [a,a),y € [0,2]}. Moreover, as [s,(z)| < % if z € D (see
(1.22)), (2.18) for k =1 leads to the conclusion that

0®1(f)(2)su(2)] < C

for z € {x + iy € D,y < 1}. Therefore, the right hand side of (2.19) is well
defined.

We finally mention that the Helffer-Sjostrand formula remains still valid for
any compactly supported distribution D (see e.g. [26], section 9). The Stieltjes
transform of D, denoted by sp(z), is defined for each 2 € CT as the action of

1

the function A — 1~ on D, i.e. sp(z) =< D, v~ >, and satisfies

ol <0 (14 b )

(Imz)mo

for each z € Ct where ng is related to the order of the distribution. We refer
the reader to [5] (Theorem 4.3) and the references therein for more details on
Stieltjes transforms of distributions. Then, if f is a C*° function supported by
[a1,as], < D, f > is given by

<D,f>= %Re/D 0%, (f)(2)sp(2) dzdy (2.20)

for k£ > ng. We also recall that an alternative expression for < D, f > is given
by the Stieltjes inversion formula, also valid for distributions, i.e.

1 a2
<D, f>=—lim FN) Imsp (A + iy) dA. (2.21)
T y—0

ai

3. Stochastic representations of C(v) and C(v)

The first step is to show that C(v) and C(v) can be approximated by the sample
covariance matrix of a sequence of i.i.d. Gaussian random vectors, and to control
the order of magnitude of the corresponding errors. This is the objective of the
following result.



5400 P. Loubaton and A. Rosuel

Theorem 3.1. Under Assumptions 1.1, 1.2, 1.3 and 1.4, for any v € [0,1],
there exists a M x (B + 1) random matriz Xy (v) with Nc(0,1) d.i.d. entries,
and two matrices (An(v), An(v)) such that:

vt = XXX A, jaxml< 2 (3.1)
Cvr) = XML Avw) Jav0Il< b 62

Remark 3.1. Therefore, up to small additive perturbations, Cn (v) and Cy(v)
appear as empirical covariance matrices of i.i.d. Nc(0,1p) random vectors. We
thus expect that CN(V) and CN(I/) will satisfy a number of useful properties of
empirical covariance matrices of i.i.d. Ng(0,1p) random vectors.

In particular, Theorem 3.1 allows to make precise the location of the eigen-
values of Cx(v) and Cy(v). In order to formulate the corresponding result, we

define some notations. We introduce the events A%E(V) and Ag,e(y) defined by

AS.(v) = {o(Cn(v)) C Suppullp + €} (3.3)
AS. () = {o(Cn() C Suppullp + €} (3.4)

Then, we establish in the following the Corollary:

Corollary 3.1. For each € > 0, the family of events Ag’e(u),N >1,v e 0,1]
and ACNA,e(V)a N >1,v € 0,1] hold with exponential high probability.

Remark 3.2. In the following, we will often omit to mention that the vari-
ous matrices under consideration depend on N and v. Matrices Cn(v), Cn(v),

XN (), AN (v),... will therefore be denoted by C(Au)7(~3(u),X(~V),A(u)7.~.. or
CiC,X7A,:.., We will also denote A%,e(u) and A%e(y) by A€(v) or A€ and
AC(v) or AC.

The proof of Theorem 3.1 will proceed in three steps: first we provide the
result for matrix C(v), then control the deviations between diag(S(r))~2 and
diag(S(v))~2, and finally extend the stochastic representation of C(v) to C(v).

3.1. Step 1: stochastic representation of C

In order to establish (3.1), we prove the following Proposition.

Proposition 3.1. Under Assumptions 1.1, 1.2, 1.3 and 1.4, for any v € [0, 1],
there exists a M X (B + 1) random matriz Xy (v) with Nc(0,1) i.i.d. entries,
and another matriz 'y (v) such that:

Cn(v) = Xy () + FN(ul)g) ELX1N(V) FTa(v)

(3.5)
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where the family of random variables M, v € [0,1] satisfies

B+1
r 2 B?
B+1 N2
Proof. Denote by X the M x (B + 1) random matrix defined by
B B
Y = (Ey(V—W),...,gy(V—f— ﬁ)> (37)

where we recall that the normalized Fourier transform £ is defined in (1.2),

so that S defined in (1.1) is equal to £X*/(B + 1). Denote by w,, the m-th
row of 3. In other words, w,, coincides with the (B + 1)-dimensional Gaussian
complex row vector defined by:

B B
Wy, = <§ym(z/ ﬁ),...,ﬁym(er 2]\7)> .

The covariance matrix E[w?, wy,] of w is given by:

lonts g0 ) ]

bl,bzz—B/Q

Ew) wn] =E

By Lemma A.1 in Appendix, we have for b and by # bo:

(oo 2o ()
E |:£ym(V + bﬁl)*fym(z/ + %)} —0 <%)

where the error is uniform over m > 1 and v € [0, 1]. Therefore one can claim
that there exists some Hermitian matrix Y,,(v) and some nice constant C' such
that:

E

Elw} w,,] = diag (sm (VJr %) b= B/2,...,B/2> + Y,

where Y ,, satisfies
sup <
m2>1,b1,b2

(Tm)bl,bg

=

Moreover, the regularity of the mapping v +— s,,,(v) specified in Assumption
1.4 implies that there exists quantities €, such that:

b L oob 1, b, b
sm (v + N)ZSm(V)+Sm(V)N+§Sm(V)(N) +6m(V+N)

where:

b B\*
sup sup em(v+ =) <C (—)
m>1 —B/2§b§B/2| ( N)l N
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for some nice constant C'. Therefore, it holds that
. b
diag | sm (v + N) :b=-B/2,...,B/2
b
= sm(v)Ipy1 + s, (v) diag (N :b= —B/2,...,B/2) +
1s" (v) diag (2)2 :b=-B/2,...,B/2 ) +
2 m N ) )
b
diag (em(qu N) :b=-B/2,.. .,B/2> .

If we define matrix ®,,, as:

&, - - [rm + diag (sm(u—i— %) (V) b= —B/2,...,B/2)]

Sm

then Elw?,wm] = sm (Ip4+1 + @) with

C CB
sup (P )by b < 5 sup [(Bm)os| < — (3.8)
m>1,b1#bs N i N
as well as
1 18 (v) B\? 1
S P = oll~+ - 3.9
Brit T o) T ((N) TN (3:9)

where we recall that vy is defined by (1.5). The spectral norm of ®,, can be
roughly bounded by the following inequality:

B/2 B
sup ml| < sup sup P, <C-—.
H | m>1-B/2<b1<B/2, 2;3/2 I( )bl’bz | N
Moreover, it is easily checked that the Frobenius norm of BJ:H satisfies
o VB
— =0 . 3.10
l5z| <e% o (3.10)

Using the Gaussianity of the vector w,, and the expression (3.8), we obtain
that w,, can be represented as

= VS Xm T+ @)Y Xy ~ Ne(0, Ip41) (3.11)

where x,,, and x,,,, are independent for m; # mg. This comes from the mutual

independence of the time series ((Ym,n)nez)m=1,....m- It is clear that (I + @m)l/Q
can be written as
I+@,) =1+, (3.12)
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where the matrix ¥,, satisfies
B
sup || P, || < C —= (3.13)
m N

Therefore, it holds that:

Wm = VSmXm (I + \Ilm) = VSm (Xm + Xm\Ilm)

We denote by X and I the M x (B + 1) matrices with rows (X, )m=1,...m, and
(%m¥m),,—1. s respectively. Then, it holds that

Y =diag (v/sm,m=1,...,M) (X +T) (3.14)

where we recall that 3 is defined by (3.7). We recall the definition of the matrix
C given by

C = diag( sm,m:1,...,M)*1/29diag( Sm,m =1,...,M)"1/2(3.15)

b)Y
= diag(y/sm, m = 1,...,M)_1/2

B+1dlag( Sin, M = 1,...,M)_1/2.

The representation (3.14) implies that C can also be written as

= X+D)(X+T)*
C= B+1

Equivalently, for each m1,ma, the entry (C)um, m, is given by

1

T (T @) 2+ @) o (3.16)

Xy

(é)ml,mz =

This completes the proof of (3.5). It remains to show (3.6). We denote by Z

the M x M matrix Z = B}HIT As || Z|| satisfies

1Z]| <12 — EZ]| + [[EZ]
it is enough to prove the two following facts:

B2

IEZ| < ¢ 5 (3.17)
B2

1Z - Bz < - (3.18)

We start with (3.17). The definition of T" leads to

1 1
E[Z; ;] = Bl Elx; %, ¥;x}] = 0; tr U,

E[LT]; ; = i g

1
B+1
so that it is clear that E[Z] is the diagonal matrix with diagonal entries
(istr W, T m)m=1,....M. By the estimation in equation (3.13), we easily have

B+1
(3.17).
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It remains to prove (3.18). We use the observation that |Z — E[Z]| =
max| =1 |h*(Z — E[Z])h][, and use a classical e-net argument that allows to de-
duce the behaviour of || Z—E[Z]|| from the behaviour of any recentered quadratic
form g*Zg —Eg*Zg where g € CM is a deterministic unit norm vector. We thus
first concentrate g*Zg — Eg*Zg using the Hanson-Wright inequality (2.17). For
this, we need to express g*Zg as a quadratic form of a certain complex Gaussian
random vector with i.i.d. entries. We denote by z the M—dimensional random

vector z = %Lﬁf. Its covariance matrix G = G(v) is equal to

M
G(v) = E[zz Z |8m[* (i () o (v).

Therefore, z can be written as z = G'/?w for some w ~ N¢(0,Iy;) random
vector. As a consequence, the quadratic form g*Zg — Eg*Zg can be written as

g*Zg —Eg*Zg = w'Gw — Ew*Gw.
The Hanson-Wright inequality (2.17) can now be applied:
[w'Gw — Ew*Gw| < |G| F. (3.19)

Since Zi\j:l lgm|? = 1, it is clear that |G| < JE%~_1511pT,L:1 ____ 1 () ]2
Therefore, (3.13) and the rough evaluation ||G|% < (B + 1)||G|? leads to

1 (BY° 1 /B\*
”G|§CB+1(N> , G”%SCB—H(N> (3.20)

The substitution of (3.20) in equation (3.19) gives the following control of
g'Zg — Eg*Zg:

lg"Zg — Eg"Zg| < VA (3.21)

Consider € > 0, and an e-net N, of CM, that is a set of C™ unit norm vectors
{hy : k =1,...,K} such that for each unit norm vector u € CM, there exists
a vector h € N, for which |ju — h|| < e. Tt is well known that the cardinality

of N¢ is bounded by Cj ( )2M where Cj is a universal constant. Then, denote
gs a (random) unit norm vector such that |g*Zg; — Eg*Zg;| = ||Z — IEZ|| and
define hy € N, as the closest vector from gg. Therefore, we have

|Z - EZ| = |g5(Z — EZ)g;|
= |(gs — h; + h})(Z — EZ)(g; — hs + h)|
< |(g: —h})(Z -EZ)(g, — h,)| + |(g; — h})(Z — EZ)h,]
+ b3 (Z — EZ)(gs — hy)| + |h3(Z — EZ)h,|.
It is clear that:

(g; —h%)(Z - EZ)(g, — h,)| < €||Z — EZ||
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(g5 —h{)(Z —EZ)h,| < €|Z — EZ||

and
|1Z —EZ| < |hi(Z — EZ)hy| + e2||Z — EZ|| + 2¢||Z — EZ||

which leads to
(1 —2¢ —€?)|Z —EZ|| < |hi(Z — EZ)h,|.
This implies that for each ¢ > 0,

{IZ —EZ| >t} C Unen.{

h*(Z — EZ)h| > C4t}
where C; = (1 — 2¢ — €2). Using the union bound, we obtain that

P[|Z - EZ| ># < Y P[h*(Z—EZ)h| > Cyt]. (3.22)
heN.

Here, we would like to use equation (3.21). By the definition of <, (3.21) is
valid uniformly on any set of vector with cardinality polynomial in N. Here,
the cardinality of the set N, is a O(¢72M) term and therefore exponential in
M. As a consequence, we have to accept to lose some speed when going from
the stochastic domination of |g*(Z — EZ)g]| for a fixed g to the same stochastic
domination but uniformly over V..

More specifically, write again (3.21) but here without the notation < in order
to understand precisely how a change in speed affects the probability. Take ty a
sequence of positive numbers such that ¢ty > B2/N?2. Using the estimates (3.20)
of |G|l and ||G|%, and the fact that min(ai,az) > min(by, bs) when a; > by
and as > by, we obtain that there exists some nice constant C' > 0 such that:

2
(& ag) 2o (v () (= (5)
min | ——, >CBmin |ty | =) ,|tn| =
(IIGII G B B

The Hanson-Wright inequality (2.15) provides:

P(lg" |Z - EZ)|g| > Citn] < 2 exp {_CB(;/_NN)Q}

for some nice constant C' that depends on C;. Finally, the union bound on N,
gives:
P[|Z - E(Z)| > tn] < ) P[|h*(Z — EZ)h| > Cyty]
hEN.

tn 1
<2 —CB———+—=+2Mlog— ;. 2
<2Cy oxp{ C (B/N)? + og 6} (3.23)
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If we take ty = N¢ (B2/N?), then, there exists v > 0 such that

tn 1
—CB————= +2CMlog - 3 < —N7
exp{ C (B/N)2+ C oge}_exp

holds for each N large enough. (3.22) thus implies (3.18). This completes the
proof of (3.5). O

Corollary 3.2 is a rewriting of Proposition 3.1 in a more concise way. Define:

XI* + I'X* +I'T"

A= 3.24
B+1 (3:24)
Corollary 3.2. For any v € [0,1], C(v) can be written as
N X(v)X*(v) <
C(v) Bl +A(v) (3.25)
where the family of random variable |A(v)||, v € [0,1] satisfies
~ B
A —. 3.26
INPE (3.20)

Proof. Let v € [0,1]. By equation (3.6) from Theorem 3.1 and equation (2.5)
from Paragraph 2.2, we have the two following estimates:

il B _IXI]

— <=, — =<1
vB+1 N /B+1
The result is immediate using decomposition A from (3.24): O

We now take benefit of Corollary 3.2 to establish the first part of Corollary
3.1 and to analyse the location of the eigenvalues of matrices S. We denote by D
and D the matrices D = D(v) := diag(S(v))z and D = D(v) := diag(S(v))z.
Denote by 5 and s the quantities such that:

s:= inf inf s, (v 5:=sup sup Sm,(v
T m21vel0,1] m(¥) m>1ve[0,1] m()

which are by Assumption 1.4 in (0,400). We consider the event:
A30) = {80 < Swpp sl x 5.5+ (3.27)

where the notation Supp u\7,, x [s, 5] stands for [(1 — v/c)2s, (1 + /¢)23]. Note

that in our settings, ¢ € (0, 1) so Supp M%Z)P is bounded and away from zero. In

conjunction with Assumption 1.4, the same holds for Supp ME\Z)P X [s, 5]. We also

note that A?(V) of course depends on N.
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Corollary 3.3. For any € > 0, the families of events A?(V), v € [0,1] and
AS(v), v € [0,1] hold with exponentially high probability.
Proof. Equation (3.25) implies that
XX* ~ - XX* ~
—|AIy £ C <L ATy,
T Al <€ < 22+ ALy

Therefore, the event {\;(C) > (14 /¢)? + ¢} is included in {)\1()55—351) + A >
(1 + /)% + €}, which is itself included in

{Al(gf*l) > (1++e)? +e/2} U {||AH > e/2} :

Therefore,

XX*
B+1

P[Al(é)><1+\/5)2+e} SP{)\l( )>(1+\/E)2+e/2}

+P {||A|| > e/z}.

Equations (2.3) and (3.26) imply that P [Al(é) > (14 +/0)* + e] converges to-
wards 0 exponentially. A similar evaluation of P {)\ m(C) < (1—+/c)? - e} leads

to the same conclusion. This, in turn, establishes that A?(z/), v € [0,1] holds
with exponential high probability. A

In order to establish that the same property holds for AS(v),v € [0,1], we
just need to write (1.12) as S = DY/2CD'/2. Therefore, for each k = 1,..., M,

the eigenvalues of S satisfy

s A (C) < M(S) < 5M,(C).

This, of course, implies that AeS (v),v € ]0,1] holds with exponential high prob-
ability (indeed, one can change € to € such that (Supp us\f[)P +€é) x [s8,5] C

Supp /,LS\Z)P X [s,5] + €. ]

Remark 3.3. Corollary 3.3 implies the following weaker property, which will
be useful: R
IS(¥)|| < 1. (3.28)

Before ending the section and proving Theorem 3.1, we need some stochastic
control on the diagonal elements of S in order to evaluate ® defined by

®©=C-C. (3.29)
Using the definition of C from (1.3) and C from (1.12), © can be written as

©= (D2 D VHSD V2 L D V2§D /2 - D12, (3.30)
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Since we proved that ||S|| < 1, it remains to show that |[D~1/2|| and |[D~1/2 —
D~ '/2|| can also be stochastically dominated by some relevant quantity in order
to control ||©||. Define

Sm (V) == Spm.m(v) (3.31)

the diagonal elements of S(v) spectral density estimator (note that they coincide
with the traditional smoothed periodogram estimator of the spectral density
Sm ). The aim of the following Paragraph 3.2 is to establish stochastic domination
results for &, |[D~1/2| and |D~1/2 - D~1/2|.

3.2. Step 2: estimates for §,(v)

We write $,,, (V) := $m, D(v) := D, in order to simplify the notations. Define as
in (3.27) the following quantity

AP(v) = {o(D(v)) C [s, 5] + €}. (3.32)

Lemma 3.1. Let € > 0. The family of events A?(l/),l/ € [0,1] holds with
exponentially high probability.

Proof. See Appendix A.2. O

Roughly speaking, this ensures that with exponentially high probability, s,
stays bounded and away from zero. This result implies the following (weaker)
statement, but will still be enough for some proofs and reduces the complexity
of the arguments.

Lemma 3.2. The family of random variables (|5m(v)| + 13 (V)I) 1,..M, V E
[0,1], satisfies
1
(|5m—|— E |> < 1.
Proof. Immediate from Lemma 3.1. O

Lemma 3.3. The set of random variable (|5, (v)~/? — Sm(l/)_l/2|)m:1)m7M

and (| % = 1)m=1,...m, v € [0, 1], satisfies

~1/2_ g-1/2 B2
1571/ / H N2’ ’,/ ' + 3 (3.33)

Proof. See Appendix A.3 O

3.8. Step 3: stochastic representation of C

We are now in a position to prove the result concerning C of Theorem 3.1 and
of Corollary 3.1.
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Proof. We have first to control the operator norm of:

—C-C+C-

B FLi-@tA (3.34)

The operator norm of HAH has already been proved in Corollary 3.2 to satisfy
A < (%) Moreover, recall that @ can be written as a function of D=1/2 —
D~/ in (3.30), so that one can use Lemma 3.2 and Lemma 3.3 to dominate
each term and get:

19 < =+ —- (3.35)

Summing the estimate of © and the one of A, one gets:
1 B
VBN
which is the desired result. O

1Al =<

As a consequence, we state here Corollary 3.4 about the localization of the
eigenvalues of C(v).

Corollary 3.4. For each € > 0, we define A?(z/) as the event
AC(v) = {U(é(l/)) C Supp ug\c}P + 6} . (3.36)

Then, the family of events A? (v),v € [0,1] holds with exponentially high prob-
ability.

Proof. We simply write:

XX* A XX*
— ATy <C< AT
S - lAlLy < € < 27 + ALy
and use the same arguments as in the proof of Corollary 3.3. O

4. Stochastic domination of the family ¥n(f,v), N > 1,v € [0,1]

We have first to define the distribution Dy introduced in the definition (1.11)
of ¥ (f,v). For this, we consider the function py(z) defined by

en (ztn(2)tn(2))?
1—c(ztn(2)tn(2))?

where we recall that ty and fy are defined by (2.10) and (2.11). Then (see
Lemma 9.2 in [26]), py is the Stieltjes transform of a distribution whose sup-
port is contained in the support Suppugfﬁj) = [(1 — Ven)? (1 + ey)?] of
the Marcenko-Pastur distribution u(;/}). This distribution is Dy introduced in
(1.11). In the following, we consider LSS for function f satisfying the following

assumptions.

pn(2) = — (4.1)
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Assumption 4.1. f is defined on Ry and there exists some € > 0 such that its
restriction on Suppg\f[)P +€ is C*=.

We now state the main result of this section.

Theorem 4.1. Let f be a function satisfying the conditions of Assumption
4.1. Then, under Assumptions 1.1, 1.2, 1.3 and 1.4, the family |Yn(f,v)|, N >
1,v € [0,1] satisfies

|¢N(f, V)| < UN- (42)

Before starting the proof of Theorem 4.1, we first mention that it is suffi-
cient to establish (4.2) when f is compactly supported by a neighbourhood of
Supp quI)P. To justify this claim, we consider x > 0 and define y : R — R as a

C®° function such that:

1 if A € Supp (©) + K
xX(A) = { Harp (4.3)

0 if A ¢ Supp uE\Z)P + 2k.

We consider the function f given by f = f x x. Then, as ¢y — ¢, for N
large enough, Supp ;Lg&NP) is contained in Supp ug\f[)P + k. Therefore, f = f on
Supp ME\Z]}) for N large enough, and it holds that < Dy, f >=< Dy, f > and

[ fdpls) = [ Fdulsy). For cach € > 0, we express P(|y (f,v)] > Neuy) as
P(low (£0)] > Neu)
= P(lun (/)] > Nun, AS (1)) + B(|on (/. 1)] > Nuy, (AL (1))°)
< P(low(f,0)] > Neun, AS () + P (A ())°)
< P(low () > Neun) + P ((AS())°)

where the last inequality follows from the observation that 7tr f (C) =
tr F(€) on AS(v). Moreover, the family of eveAntS AC(v) holds with expo-
nential high probability, which implies that P ((AS(V))C> converges towards 0

exponentially fast. Therefore, |¢n(f,v)| < ux implies (4.2) as expected. From
now on, we thus assume that the function f is supported by Supp ,ug\?}, + 2K

In order to establish (4.2), we evaluate the four terms of the righhandside of
(1.15).

4.1. Step 1: evaluation of E [ﬁ’I‘r (f(%j_?"(u)))} — Ja+ fdug\leP)

We evaluate this term using the Helffer-Sjostrand formula. We keep the nota-
tions of paragraphs 2.5 and 2.2: we assume that the support of f is included
in [a1,a2] with a1 = (1 — /ey)? — 26 and az = (1 + v/ey)? + 25. More-
over, the resolvent of the matrix nglf*v is denoted Qn(2z) (we omit to men-
tion that the matrices depend on v), and Sy (z) represents E((Qn(2))mm) for
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each m. We also denote by en(2) the error term defined by (2.9) which satisfies

len(2)| < 572 P1(]2]) P2(£55) on CT for some nice polynomials Py and P,. Then,
for k > deg(Pg) it holds that

By ()| - [ sy

= —Re/ 0P, (f)(2)(Bn(2) — tn(2)) dzdy
m D

where D is defined as in paragraph 2.5. [, |09k (f)(2)| Pi(|2])P2(57) dz dy is
finite, and by (2.9), the following bound holds:
1 X)X (CN)
Bl (EE )| - [y
C
M2 |8‘Dk ()] Pl=D Py )dwdy <5

for some nice constant C'. We have therefore established the following result.

Lemma 4.1. There exists a nice constant C such that, for each v,
1 X)X (c )
E|—=T dpuyy

’ [M ' (f( B+ 1 ﬂ / /

4.2. Step 2: evaluation of ﬁTr (f(é(u))) —E [%Tr (f(é(l/)))}

(4.4)

In order to evaluate the above term, we use the Gaussian concentration in-
equality introduced in Paragraph 2.3. We recall that C can be interpreted as a

function of (X,X*) (see (3.16))). Therefore, - Tr (f(é(z/))) can be written as

g9(X, X*) for some real valued function g. We establish in the following that g
is O(4)-Lipschitz, which in turn, will imply that

‘%ﬁ (f€w)) & &Tr (f(é(y)))H < %. (4.5)
For this, we evaluate
Vg%, X)) = 3 |22 ]+\ Z\ (16)
g , i aXi,j 8X1] 8X7.] .

Using classic identities for the derivation of Hermitian matrices, we obtain

that ) )
1ot f(€) 1 Y Te
M0X, s <f (C) )
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Straightforward calculations lead to

ag 2 _ * pl ([
;’axiﬂ» = B+ 22( )X +T)(I+®)(X+T) f(C))“_
Using sup; ||I + ®;|| < C for some nice constant C' as well as C = %H(X +

I')(X 4+ I')*, we obtain immediately that

2 01

dg < ¢
- B2 M

% ~tr (f’Q(C)C).

As f € C* and is compactly supported, the function A — X f’2()) is bounded
by some constant, and there exists a nice constant C' such that

990, %) < .

This proves that g is O(%)fLipschitz. Paragraph 2.3 thus leads to (4.5).

4.3. Step 3: evaluation of ﬁTr (f(é(l/))) — ﬁTr (f(é(u)))

The goal of this paragraph is to establish the following Proposition.

Proposition 4.1. Let Dy the distribution supported by Supp(uS&NP)) with Stielt-
jes transform

z z 7 z 2
Pn(2) = (ztn(2)) = 1 _( c?zvt(zv)(zj;lzgzv)()z))T (4.7)
Then, if we denote < Dy, f > by ¢n(f), we have
’%T‘r (f(C(V))) - %Tr (f(@(y)))
1) - 4
S\ m=1 $m (V) on(f) vy lasoss| < un. (4.8)

a < 2/3. If a > 2/3, the dominant term of MTr( (C

D) - 4T (F(E0))

Remark 4.1 (4.8). implies that ’ﬁTr (f(é(y))) - L Tr (f(C )‘ < = if
(v
(f) vn, and its substrac-

is the deterministic O (N) term (% M = ) oN

m=1 s,, (l/)
tion from 57 Tr (f(C(l/))) - LTr (f(C(z/))) allows to retrieve a term stochas-
tically dominated by uy .
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Remark 4.2. We notice that (3.35) leads immediately to

B n 1

N /B
an approzimation which is considerably more pessimistic than (4.8). As seen
below, the derivation of (4.8) is rather demanding, and is based on subtle effects.

In order to understand why (4.9) can be improved, we consider the simple case
f(X) =log\. We thus have

L f(©)W) - —tr f(E)w)| <

7 7 (4.9)

1 ) M
St () (v )f—tr f(C Zz (log 5 (V) — log $m (V)

which depends only on the estimators ($;,(V))m=1,...m. We just provide a brief
analysis of the above term. For this, we first remark that it is possible to study
& errvle (log 8, (v) — log 8, () on the event AP (v) defined by (3.32). For each
m, we expand around s,, the logarithm up to the second order, and obtain that

M
Z (log spm (V) — log $m (v))

1 & 1 1 &1 /5, —sm\°
= _ S — S ) — + — Z( I Tm 4.1
W sy g (M) )

where for each m, 0,, is located between s,, and S,,. Lemma A.5 allows to
conclude that the second term of the right hand side of (4.10) is dominated by
% + (%)4 = O(uy) term. In order to evaluate the first term of the r.h.s. of
(4.10), we note that (A.9) leads to

M M 3
1 ) 1 1 s B 1
a2 B = om)) = o 2 ?”N+O<<N> +N>'

As ﬁ’” = % we finally remark that

can be interpreted as a recentered quadratic form of the M (B + 1)—dimensional

vector x = (x1,...,x,)T. The stochastic domination relation
1 & s —EGm)| 1
M Sm B
m=1

then follows from the Hanson-Wright inequality. Putting all the pieces together,
and using that & + O ((%)3 + %) = O(uy) and that vy = o(un) if o < 2/3,
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we obtain that

v)

v)

1 1 < s
i (log s (V) — log §,m(v)) + Vi Z sm( N Loaso/3| < un.
m=1"""

Comparing this result with (4.8), we deduce that < bN, f >=—1. We just check
this formula directly. For this, we notice that function z — log z is holomorphic
inside a neighbourhood of the interval (a1, az). We consider the expression (2.21)
of < Dy, f > and remark that if (OR.)_ denotes the negatively oriented contour

(ORe)_ ={Atie, X € [ar,a2]} U{a1 +iy,y € [—¢, €]} U{az + iy,y € [e, —€]}

then, by (2.21), < Dy, f > can also be written as the contour integral

e—0 20T

~ 1
< Dn, f >=lim —/ log z pn(2) dz.
(ORe) -

But, the above contour integral does not depend on €, so that for each e, we have

~ 1
<Dy, f>=— log z pn(z) dz.
20w (OR)—

Using the expression of pn(z) and the integration by part trick, we get that

~ 1
2im Jior.) -

Taking the limit € — 0, and using the Stieltjes inversion formula for the Mar-
cenko-Pastur distribution MS\ZNP)f we finally obtain that
- 1 az
<Dy, f>=——lim [ Im(ty(A+ie) dA = —pi7y) ([a1, as]) = ~1

™ a1

which is the expected result.

Proof. We now establish (4.8). In order to simplify the notations, we put

M v
v =3 SmlV), (4.11)

The Helffer-Sjostrand formula implies that

1

70 (€)= St F(8) — () B () on Lasags =

%Re/odx dy 0% (f)(2) [%(‘sr Q(2) — tr Q(2)) — *n(v) pn(2) vn loso/3] -
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4.8.1. Reduction to the study of ¢

We define

M 5
¢~ [araom(ney; Y 6@, (B2 -1)

m=1

where we recall that the row vectors (X, )m=1,...m are the rows of the i.i.d.
matrix X. We establish in this paragraph that

/Dda:dyé(bk(f)(z) (%tr {Q - Q} —7n (V) pn(2) vn 1a>2/3> — C‘ < upn-
(4.13)

It turns out that by Lemma 4.2 and Lemma 4.4 in Paragraph 4.3.2 below, ¢
satisfies the key properties:

1
< 1¢ ~ B+ [BC| < .
(4.8) will then follow directly from (4.13).

Plugging in the integral expression of ¢, and using the expression (4.7), we
get:

/D 2, (f)(2) <A14tr {Q-Q} —in(w) pn(2) vn 1(x>2/3> dedy — C‘

[ e (1)) (G700 1@ - Q) = i Gin () oy Lasar

L mi@q);nm (B - 1>> ’ |

=1

We recall the definition of © := C — C from (3.29). We will proceed in three
steps, which, in turn, will imply (4.13):

1.

Az dy 90, ()(2) [t {Q— Q} + —tr (@O} )| <un  (41)
/, (3 N
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’ /D 4z dy D4 (f) (=) x

1 XX* R _
(2 tr Q*(I- D '?DYV?) — iy (2tn(2)) vn Lasa/z—

M~ B+1
M
1 o (w3
- 1
Step 1. Using the well-known identity A~! —B~! = B~1(B — A)A~! we
express Q —Q as:

< Uun (416)

Q-Q=-QeqQ. (4.17)
We claim that it is possible to approximate tr Q@Q by tr QOQ. Indeed, we
have
[tr QOQ - tr QOQ|
= |tr QOQ — tr QOQ + tr QOQ — tr QOQ + tr QOQ — tr QOQ)|
< [tr QOQ - tr QOQ| + [tr QOQ — tr QOQ| + [tr QOQ — tr QOQ)
=T+ T + Ts.
The following rough bounds are enough to control Tj (we used (1.25) to control
the norm of the resolvents):
1
Im®z
Concerning T, and T3, we write similarly that Q- Q = —QAQ, and obtain
that

Ty = |tr QO(Q - Q)| = [tr Q©QOQ| < M|Q|*|Qll[II®|* < M.

. - - - 1 ~
7, - ir QOQ - tr QOQ| < M[QI*|QI|A 6] < ——M[A[ @]
7, - |- QOQ - - QOQ| < M Q| [QI*Al0] < - M|A]|©).

Plugging these estimations into the left hand side of (4.14), we obtain that

/D dz dy 904 (f)(2) (%tr {Q-Q} - %tr {Q2®}>‘

S/Ddxdy@fbk(f)(zﬂ% (Th + To + T5)
<C(|e]*+2|A|e]).

Moreover, the concentration results (3.35) for ||©| and (3.26) for |A[ from
Proposition 3.1, imply that

. 1 1 B B\?
249 Al<=+—=4+(2) =uxn.
[©[° +2[ e ||<B+ EBN+(N> un

This finally establishes (4.14).
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Step 2. We claim that:
XX* . XX*
B+1 B+1

H@ - ((15—1/2D1/2 -1 (DY/2D1/% — 1)) H <uy. (4.18)

We recall that S can be ‘written using the definition (1.12) of C, and use the
decomposition (3.25) of C from Corollary 3.2. Using these results, we get that

§_DY2EDY2 _ pl/2 g—i—i DY/2.
B+1

Plugging this expression of S into (3.30), we obtain easily that

. XX*
e —(D-12pY/2 _1
( ) B+1

+ A) D/2DH-1/2

XX* ~ A
A D1/2D_1/2—I
(Grra) )

=0 + Os.

As A'is a negligible quantity, one should expect that the leadlng quantity in
©, and ©; is respectively (D~/2D/2 1) XX -D'/2D~1/2 and XX ~(D'/?D~1/2
—1I). To prove it, write:

XX

H@l _ (]5—1/2D1/2 _ I)B D1/2D 1/2

_ H D-1/2pl/2 _ I)ADl/Q]f)_l/QH
< |D7V2DY2 1| | A[IDYEDVR). (4.19)
A is controlled by (3.26) from Corollary 3.2, and D~/2D'/2 —T is controlled
by (3.33) from Lemma 3.3 (it is a diagonal matrix which elements are stochas-

tically dominated by Lemma 3.3). Moreover, from Lemma 3.3, it holds that
|DY/2D~1/2|| < 1. Combining these estimates into (4.19), one gets:

< (5 + §_> B o).
(4.20)

Using that |[D~1/2D1/2 —1|| < % + f,—z as well as (2.5) from Paragraph 2.2
to control the norm of XX*/(B+1), one can further approximate (D-1/2D1/2

XX*

H®1 ( -1/2p1/2 _ >B+1D1/2D 1/2

B XX D'/?2D~1/2 by (D-1/2D'/2 ~ 1) X% . In particular, it is easy to check that
A XX*
e, — (D~Y/?D'/2 - I)B—le < un. (4.21)

Similarly for ®2, one would obtain:

XX* R
0, — =——_(DV2D 2 _1)|| < un. (4.22)
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Combining (4.21) and (4.22), we obtain (4.18). To finish the proof of Step 2,
it remains to consider tr Q?® and prove (4.15). Remark that XX* /(B +1) and
its resolvent Q commutes.

- XX* XX* A
t 2 D—1/2D1/2 -1 D1/2D_1/2—I
rQ (( 531 Bl )
XX* A
=2tr ———Q*D/?D'/? -1 4.23
e XX gy ) (4.23)
Therefore, using (4.23):
L 2 L XX* 217201
—t ©—-2—tr ——Q*D VDYV -1
‘M rQ MBI )
XxX*  XX*

< 2
=il B+1+B+1

e - ((ﬁ1/2D1/2 —1) (D/2D~1/2 1)) H (4.24)

so that the left hand side of (4.18) is recognised in the right hand side of (4.24).
We can finally prove (4.15) by following the same idea as in Step 1:

Y i 2 _ XX* 2 A—1/2 1/2_

/Dd:cdyé?q)k(f)(z) = (tr (@%0) ~ 2 2 Q(D~/?D!/2 1)
- XX* XX* A
< _ —-1/21y1/2 _ Inleniali inlanliall 1/2vy-1/2

H@ ((D D2 - D)= + 22 (DD 1))H

— 1

< [ B0y dedy.
D Im“z
<

+oo

This proves (4.15) and ends Step 2.

oy . . . XX*
Step 3. By definition of the resolvent, the following identity holds (B_+1 —

21 M)Q(z) = I, which leads to the so-called resolvent identity:

XX
B+1

Q=Iy+2Q. (4.25)

Using (4.25) as well the identity Q’(z) = Q?(z) one can write:

Lo XX" 1/20—1/2y _ L 1/283—1/2

7t QU= DYDY = i (14:Q)Q- DD 2
LS an, (1-/). )
- M m=1 e Am . .

To handle 1—, /2= we use the following Taylor expansion: define the function

Sm

h by h(u) =1 — ﬁ, with A/(u) = %uS—I/z and h"(u) = —3-4.. A Taylor

4 y5/2"
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expansion to the second order of h around 1 provides:

(1) s (=) ()

R L6
= E(Sm — Sm) + 5 ) (8m — Sm)

where 6,, is some random quantity between §,, and s,,. Therefore (4.26) be-
comes

%tr ((zQ)’(I—D1/215—1/2))

1 S 8m — Sm . LH(00)(8m — 5m)?
_Mtr ((zQ) dlag( . —|—§ 2 :me{l,...,M})|.

Lemma 3.1 implies that the set A]?(V) defined by (3.32) holds with exponentially

high probability. Therefore, it is sufficient to study the term - tr (2Q)'(I —

D!/2D~1/2) on the event AP (v). If AP (1) holds, 6, belongs to [s, 5] + € for each

m € {1,..., M}, and sup,, >, |h"(6,,)| is bounded by a nice constant. Moreover,
as inf, inf,,>1 $,, (V) is bounded away from zero, there exists a nice constant C
for which the inequality

’% or <(2Q)’diag (%h”(em)(jg_sm)Q m e L. ’M}>>’

M

QI+ 2RI 55 3 (6m — sm)* < C(2) 57

m=1

HME

holds on A?(V), where we recall that C(z) can be written as P;(|z |)P2(Imz)
for some nice polynomials P; and Ps. Following again the same argument as in
Step 1, we obtain that

= 1
[ asagne) {5 o Q- DD

1 BT f§7n_5m.

oL S

m=1

Sm
on A?(u) provided k > Deg(P,). Lemma A.5 in Appendix implies that

1 & 1 B!

m=1
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We have thus shown that

> 1 -1 1
[ asapnse) {5 Q- b

1 / §m_s'ﬂl
- i —_ 1,....M
i tr (2Q) d1ag( . me{l,..., }> H
< Upn.

We denote by nx(z) the term defined by

_MZ(’ZQ)mm( Sm _(B+1_>>

- — () (2t (2)) o Tasays (4.27)

and define dy as
ON :/ dxdyéfbk(f)(z) nn(2).
D

In order to establish (4.16), it is sufficient to prove that |dx| < up. For this, we

first remark that 3,, = sm% so that ny(z) can also be written as

M
1 X PrmX), .
n(z) = 47 (2Q)mm Br1 Py (2tn(2)) vnLas2/s. (4.28)
m=1

We express Ny (z) as nn(z) = n1,8(2) + 12,8 (2) + 13,5 (2) where (1, n)i=1,2,3 are
defined by

1 U Xy P X 1
M) = 3 26 (T gyt @)

M
1 -
12, N = M Z Ttr P, — TN(ZtN(Z))/UN1a>2/3
al 1
3~ (2 mZ: (2Q)7m) B+1trq>m

and denote by (0; n)i=1,2,3 the contributions of (1; n)i=1,2,3 to dn. We recall
the definition (1.20) of ((2Q)},,,)°- In order to evaluate 1 n, we remark that
|(2Q)hm| = |Qmm + 2Q2,,,| < C(z) and that

X P X, 1

<
M) £ CE) s |Fmn

m=1,....M

tr @m‘.

Xm, ‘§7nxm _

Therefore, for k large enough, 01y satisfies |01, x| < Csup,,,—; yemm

=1,.,.M

5 +1tr ®,,|. The Hanson-Wright inequality as well as the bound (3.10) of the
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Frobenius norm of @®,, imply that |§; x| < un. We now evaluate d, . For this,
we notice that the results reviewed in Paragraph 2.2.2 imply that ]E(zQ)mm =

(288 (2)) = (2tn(2)) + (zen(2)) where |(zen(2))'] < S, Therefore, using
(3.9), we obtain that

n2,N (2 <MZ > (ztn(2)) vn + e1,n(2) — T (2tn(2) N Lasoys

m=1 Sm
=7y (2tn(2)) v La<ays + €1,8(2)
where €1 n(z) satisfies |e1 n(2)|] < C(z) un. We then deduce that |ne n(2)] <
C(z)un because if a < 2/3, vy < uy. This implies that |02 x| = O(un). In
order to address d3 n, we interpret d3 y as a function g of (X, X*), and use the

Gaussian concentration inequality presented in Paragraph 2.3. In particular, we
verify that

Vsl < ¢ (%) — ofun).

As E(03,n) = 0, this leads immediately to |93 n| < un. We just check that

< cé (%)4. (4.29)

For this, we express (2Q)’,,,, as (2Q)"..., = Qmm + 2Q?2,,,, and notice that

anm X
= - Qmi <—Q) 4
jm

892

BXij

0Xi; B+1
Q2. 9 X* X*
aXij ~(Q)mi B-I—lQ _le B+1Q jm.
Using the Jensen inequality, we obtain that
dyg 2 = 0(zQ)! 2
< [ dady|o®g( )2 mim tr @, | .
’axij —/D vdy02u(N) )1 37 e B+1r L

Summing over 4, j leads to the expected evaluation of (4.29) and to |03 x| < un-.
This, in turn, completes the proof of (4.16) and of (4.13).
Up to the Lemma 4.2 and Lemma 4.4, Theorem 4.1 is proved. O

4.8.2. Proof of Lemma 4.2 and Lemma 4.4

We now establish Lemma 4.2 and Lemma 4.4.

Lemma 4.2. The family of random variables ¢(v) — E¢(v), v € [0,1] satisfies
the following property:

€0~ ECW)| < 3. (130
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Proof. ¢ defined by (4.12) can be written as
1+ ESE
_ B = mil2
C—/Ddxdyafbk(f)(z)MmE:lQmm(B+1 1)+
L ESE
_ 2 "
/Ddxdyﬁq)k E 2(Q mm( Bl 1)

m:l

= (1 + Co.

In the following, we omit to evaluate |[(1(v) — E((1(v))], and just establish that
|C2(v) —E((2(v))] < 4 using the Gaussian concentration inequality from Para-
graph 2.3.

Recall that [|x,,]|3 is a x§( p+1) random variable. Therefore it is clear that:

[[xm]13 1 1
B+1 v B
Knowing this, the idea is to show that, conditioned on the event where the
2
random variables (% — 1) are localized, which holds with expo-
m=1,..., M

nentially high probability, (s is a O(#%Lipschitz function of the entries of
the matrix X for any ¢ > 0. Let 0 < € < and define the family of events
Ape(v), m=1,...,M, v €[0,1] given by

Ap(v) = {M e [1 _5 s i” (4.31)

1
29

B+1 VB VB

as well as A.(v) = NM_ A, o(v). Tt is clear that the family of events A,, (),
m=1,...,M, v € [0,1] holds with exponentially high probability, and that the
same property holds for the family A.(v),v € [0,1]. We claim that there exists
a family of C* functions (¢9p,)p>1 satisfying

t—1 ifte[l— B2 14 B
gBe(t):{ \/§ VB

. B‘
0 if g [1-22 1+ 22

and
€

B
su (] <C , suplgp . (t)] <C 4.32
lgn (0] < C 2 sl (0) (432)

for each B, where C' is a nice constant. Indeed consider h € C'° such that it
satisfies |h(t)| < 2|t| for each t and

o iftel-1,1
h(t)_{o if t ¢ [—2,2].

Then, it is easy to check that the family (g9p.)p>1 defined by

gB,E(t)=f%h< ?(f—l))
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satisfies the requirements (4.32).

We define 52’5 by

¢ =/ de dyddy(f)(2)— §(2Q2> <o 13
2,¢ D Y k M — mm 9B,e B+1

m=1

and notice that (s and 6276 coincide on the exponentially high probability event
Ac(v). We claim that if [(2.c —E(C2,e)| < 5=, then |[¢o —E((2)| < 5= Since €
is arbitrary and B¢ = O(N“°), Remark 2.1 will imply that [z —E((2)| < 5. To
justify this, we evaluate P (|§2,€ - E(§2€)| > %N‘s) for each 6 > 0. It holds
that

oet+od aet+d

) <P (|<2 SEG) >

RS A0) B

As P(AS) converges towards zero exponentially, we have just to consider

Nae+6
P (G- Bl > 5 4l

and write, since (2 and (s  coincide on A,

oet+o

N B Naets
P (16 - Bl > T a) =P (G~ Bl > 25 )

oe+o

<P (|<§2,e CEGl) > 1B - 52,e>|,Ae) .

We now prove that [E(Cy — Ca.c)| converges towards 0 exponentially. For this,
we notice that as (o and (s  coincide on A, then

EG — Gl = [E((G2 = Goe)lae)

) " sy,

oN 1/2 oy 1/2
) leads to (E‘(Q—C% ) < C

o\ 1/2
) (IP’(A?))UQ, and thus

< (E\@ — o

A rough evaluation of (IE )Cz — 52,6

for some nice constant C. Therefore, (IE ‘(2 - 52,5

E(¢2 — 62,€)|, converge towards 0 exponentially. For each N large enough, we
thus have

B ~ Na5+5 -
P (I - B0l > 2 ~[B(G - Gl A
ae+d/2
e Ae)

<P (1o~ Bl > g
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N N Naet+d/2
<P (Jo. B > T ).

We have therefore established that

aets B _ ae+d/2
P (|C2 —E(¢2)] > NTw‘le) <P (|C2,e —E(C,e)| > NT>

which finally justifies that if |Gy, — E(Ca.c)| < Z5, then [¢o — E(¢2)| < Zr.

Therefore, it remains to prove that (o — E((o.c)| < %. This is true by
Lemma 4.3 below. The stochastic domination relation |¢(; —E¢y| < % is proved
similarly. This completes the proof of Lemma 4.2. O

Lemma 4.3. .

G~ B0l < =

Proof. In the following, we evaluate the norm square of the gradient of 5276 w.r.t.

-2 S 2
the variables X; j, X, and just compute Zij ‘gg?ff because ), i ‘gg?: is of
: , y i -
the same order of magnitude.
We recall that
a 2 mm 2 mi X* im mi X 2 im
0X; B+1 B+1

Moreover it is clear that

d 1% I3 X, j [[%mll3
¢ = = 6im—"L g, miz ). 4.34
X, <gB7 (B+1 B+198<\By1 (4.34)

Collecting the derivatives (4.33) and (4.34) we get after some algebra that

d (&, %13 Xy o (IxBY o
8Xij (Z(Q )77ngB,e(B+1> —B+1g,3,€ <B+1)(Q )“

m=1

M
HXmH% (QQ)mz (X*Q) jm sz (X*QQ) im
_;QB‘(BH)( Bril T Byl ) (4.35)

- 2 _
It remains to control ), j ‘ggﬁj‘j ‘ . From the integral representation of (s ,
. i

the derivative with respect to X;; is applied only on the integrand as follows:

0o 1 - 0 [~ o % 13
671-]- = /Ddfdya‘bk(f)(z)axij <mz: 2(Q*)mmYB,e (B—+1>> .

=1

Plugging in the derivative computed in (4.35) we get:

0 1 - Xy o (IxdBY o
ot ap L arandnne {5 (52 ) @)
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M
Pemll3 ) ((Q%)mi(X*Q)jm |, Qmi(X*Q?)jm
_mz_lgB’e(BH)( Bri T Bil )}

Using the bounds of gg . and 919,5 from inequalities (4.32), the observation
that g (t) =0if [t — 1] > 2—\/%5, and that |z| is bounded on D, one can write:

2
9Ga,e ¢ 5 2| Xij o, (Ixil3Y o2
<l < = :
|8ng = M2 /Ddxdy|3(bk(f)(z)| B—l—lgB’e B+1 (Q )LZ
M . i} 2
3" g (B (@K Qi | QX Q)
2 Be\B+1 B+1 B+1
2
C 2 Xz ||Xi||2 2B¢
ST / dedy |09(f)(2)]" | 577(Q@%a 11( e Ry

M 2
|(Q2)mi| |(X*Q)]m‘
D

)

+% /Ddxdy |5<I>k(f)(2)|2<

2
C A 2 ( B° & |Qm1||(X*Q2)Jm|
+W/Ddxdyyaq>k(f)(z)y <\/§) > 51
_C ) @ 0
It remains to sum over i, j.
> 1
7,7=1
M 2
5 2 Xij (2 BE 2B°
= > ) < ==
f e PRI 3 |55 @ (|l ) <22
2o 1113 ’
< P 2y..12 A7ell2 4
< [aeavfpn@f L@t (|5 1)< 2 )Z b
c 2 - I<ili3 o (| il 2B¢
_ 3 2y 2 1%ill2 ill2 4| « 22
gt [ el @t (|l )< 22)
C 2B° - 2 — 2 12
< — ]2,
< G+ %) [ draypri(n(o) > 1@
Since

M
31(Q2)ul? < MiQl*
=1
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it can be written that:

M —
ZﬂlcﬁﬁAMM%MWﬁmW

3,j=1

Inspecting T’ fj ), one can see that by Jensen’s inequality
2 M ,

* 2
<MY (Q)mi] (X" Q)jm]

m=1

M
> Q)i (X7 Q)

m=1

so summing over ¢ and j provides:

S < s
it (B+1)3
M

x/Ddxdy\écbk(f) Z <Z| (Q*)mi ) 21X Q)
m=1

Notice that since vail |(Q2)mi‘2 is the square euclidean norm of line m of Q?:

M
S1Q%)mi* < 1Q2)% < QI

i=1

Moreover,

Z Z|x* )ml? | = tr X*QQ*X

= (B+1tr (I+2Q)Q") <M(B+1)(|Qll + |-lQI*)

therefore

Sr < (G [ ey maneF itioal + el

i,7=1

and similarly for 7}(;3) one gets:

3) 2¢ M ’ 9 2 2 3 4
St B<Eﬁ)émwwwmwmmm+4mm

i,j=1

Collecting the terms in 7M. 7% and T( ) , and since M/(B+1) = O(1) by

1] Zj
Assumption 1.3, we can write:

~ 2
8<2,6
8Xij

C
= M2

B* /D dz dy [004(£)(2)|* (1QI* + Q]| +|211Q°))
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As ||Q[I* + |Q°| + |2]||Q8|| < C(z), we obtain that for k large enough,

326
-o(%)

as expected. O

~ 2
8<2,6
6Xij

)3

,J

It remains to study E[(], and establish the following Lemma.

l=0(5).

Proof. As in the proof of Lemma 4.2, we only consider

8161 = [ arayo (o) gy > o8 [ (@ (2l )]

m=1

Lemma 4.4.

as E[(1] is shown to be also O(+%) with the same argument. As E {% - 1] =

0, we have

(@ (L2282 —1)] < £ (@)~ E(@01) (22 - 1))

Apply now the Cauchy-Schwartz inequality:

2

1 ||xm||2
Blcll < [ dedy o1 Z 21/ Var(@ o B | el
(4.36)
2
As it is clear that E H]’;ﬁ‘llz — 1‘ =0 (%), it remains to control Var(Q?),,m =

Var(tr Q%enel)) where (€,,)m=1, . is the canonical basis of CM. A direct
application of (2.6) for i = 2 leads immediately to

Var(Q?),m < % (4.37)

for some nice constant C. Using (4.37) in (4.36), we get that for k large enough:

Bl < 5 [ dedy 00.(5)(2)|VET)
D
< /D o dy [08,(1)(2)|(1 + C(2) < O

This completes the proof of Lemma 4.4. O
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Remark 4.3. We notice that, instead of using (1.15), an alternative approach

to study -tr f(Cw)) — [ fd,u(‘N) could have been based on the decomposition
—Tr / fdu g;fg__Tr( ) - E[ T (£(€ ))_+
E[]\ZTr(f } E[lTr € ))i+
fimtren) (55

i ()] i
(4. 38)

The first term of the r.h.s. of (4.38) can be addressed using the Gaussian con-
centration inequality. However, the calculations are more complicated than the

evaluation of 57 Tr (f(é(u))) —-E [%Tr (f(@(u)))] because, considered as a
function of (X,X*), +;Tr (f(C(V))) is not a Lipschitz function. Using tech-

niques similar to those developed to evaluate { —E(() (see Lemma 4.2), it could
however be shown that

27T (1€w) -5 | g (rew) || < 5 (439)

In order to evaluate the second term of the r.h.s. of (4.38), one should prove
that

E {/D dz dy <3<I>k(f)(z)%tr {Q-Q} —"n(v) pn(2) vn 1a>2/3> - C}
— O(uy) (4.40)

and E(¢) = (9(%). The proof of (4.40) does not appear simpler than the proof
of (4.13): the 3 steps that allowed to establish (4.13) should still be used, ex-
cept that the stochastic domination properties should be replaced by properties
of the mathematical expectation of the various terms. However, proving stochas-
tic domination appears simpler than showing the desired properties of the above
mathematical expectations. In sum, while the use of decomposition (4.38) al-
lows to avoid Lemma 4.2, the justification of (4.39) needs to develop tools that
are similar to those of Lemma 4.2, and the proof of (4.40) tends to be more
complicated than the proof of (4.13). This explains why we have chosen to use
decomposition (1.15) rather than (4.38).

4.4. Step 4: evaluation of E { (f(C(I/))) (f(x(lgil(y)))}

The Helffer-Sjostrand formula implies that

E {%Tr (r€wy) - %Tr (ﬂw))]
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1 _ 1 ~
- 1re [ deayom())E [Mtr (@Qn(2) - QW))] |

Therefore, we are back to evaluate E [%tr (Qn(2) — QN(Z))}

In order to simplify the exposition of the results of this paragraph, we in-
troduce the following notation. If (hx(2))n>1 is a sequence of complex-valued
functions defined on C* and if (wy)n>1 is a sequence of positive real numbers,
the notation hy(z) = O,(wy) means that there exists two nice polynomials Py
and P, such that |hy(2)| < wyPi(]z])Pe(+=) for each z € Ct.

Imz
In this paragraph, we establish the following Proposition.

Proposition 4.2. E [ﬁtr (Qn(z) — QN(Z)):| can be written as

1 - Mg\
E {Mtf (Qn(z) — QN(Z))} = (M Z s—m> pN(2) vn—

M 3
1 s\ B 1
<2]\47n=1 S7n> pN(Z) UN +OZ ((N) + N) . (441)

The Helffer-Sjostrand formula thus leads to the following Corollary:

Corollary 4.1. E [ﬁTr (f(é(y))> — 5 Tr <f(%)ﬁ(”)))} is given by

B |y (160) - g (FEGE)] -

1 &Ly ’ = ~ B\® 1
(Mzs_m> ¢N(f)UN—<mZS—m> ¢N(f)UN+O<<N> +N>
m=1 "M m=1 "
(

Corollary 4.1 first implies that E {ﬁTr (f(C(V))) - &Tr (f(%fz(”)))} is

@ (%) , a result which is not a priori obvious. In particular, the stochastic rep-

resentation (3.1) of the matrix C can be shown to provide the more pessimistic

O(£) rate of convergence. The comparison of (4.42) with (4.8) also leads to

the conclusion that if o > 2/3, the dominant O (%)2 deterministic term of
a5 tr (f(C(v))— f(C(v)) is cancelled by the secontherm of the righthandside of
(4.42), thus explaining the structure of the O (%) deterministic correction of
tr (f(Cw)) — ffdug\f[NP). In particular, establishing (4.41) (and thus (4.42))
will complete the proof of Theorem 4.1.

Proof. The proof of (4.41) is based on the Gaussian tools reviewed in Paragraph
2.2.2, and needs long and very tedious calculations. Therefore, we just provide
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a sketch of proof. In particular, we justify that E [ﬁtr (QN(Z) - QN(Z))} is a
0. (%)2 term, but do not establish its expression (4.41).

The starting point of the proof is to express Q —Q as
Q-Q=-QAQ=-QAQ+QAQAQ-Q AQAQAQ.

Therefore, E {ﬁtr (Qn(z) — QN(z))} can be written as

=
)
=)
|
e
I

~E L\lltr (QzA)} +E []\Ztr (QQAQA)]
—E {%tr (QAQAQA)} . (4.43)

It is clear that the moduli of the second and third terms of the right hand side of
(4.43) are controlled by C(2)E(||A]|?) and C(2)E(||A||?) respectively. We now
state the following useful Lemma, proved in the Appendix, which implies that
these terms are O, (%)2 and O, (%)3 respectively.

Lemma 4.5. For each k > 1, it exist a nice constant C' depending on k such

that E (||A\|’€) <c (&)

In order to prove that E [ﬁtr (Qn(z) — QN(z))] =0, (%)27 we thus have
to check that )
1 x| B

For this, we first express E {ﬁtr QQA] as

1 ox | 1 5 I'X* 1 5 XTI
E{MtrQA}E<MtrQ )+IE< tr Q )

B+1 M B+1
1 IT*
E( —tr Q2 )
+ (MYQB+1>

The third term of the right hand side is clearly O, ((£)?). We thus need to check
that the first two terms are also O.((£)?). We just verify this property for the

first term. For this, we evaluate E (ﬁtr QE—’ﬂ) using the Gaussian tools, and

take the derivative w.r.t. z to obtain the expression of E (ﬁtr QQ};—)_S)

In order to simplify the notations, we denote by W the matrix W = \/é(iﬂ,
and denote by w; = \/%H,...,WM = \/’EBLH its M rows. In particular, the
r

row m of the matrix T coincides with w,, ¥, where we recall that matrix
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¥, is defined by (3.12). If (ey,...,e,,) represents the canonical basis of CM,
( tr QB+1) can be written as

M

X*
<—t QB+1) Z (Wi ¥, W*Qe,,) .

We now state the following Lemma whose proof is given in Appendix. We recall
that By (2) = E((Qn(2))mm for each m.

Lemma 4.6. If A represents a (B+1) x (B + 1) matriz, the following equality
holds

E(w,AW*Qe,,) = p Lt A-E [(BJrl

1+pBcB+1

Be 1 )1 .
H&EKBHMWAW Q) B_i_ltrQ} (4.45)

Using (1.23) in the case s,(z) = B(z) as well as (2.9), we easily obtain that
%{30 = 15 +ea(z) = —2t(2)H(2) + e1(2) where €1(2) = O.(5z). Moreover, it
follows from (2.13) that € (2) is also a O.(5z). We now use (4.45) for A = ¥,,,,
and differentiate (4.45) for A = ¥,,, w.r.t. z. Using the Schwartz inequality the

inequalities (2.6) and (2.7), and (3.13), we obtain immediately that

1 B\? 1

tr WAW*Q> Q;’m] +

E (WU W*Qer) = — (21(2)8(2))

and that

1, TX"\ NV 1 -
E (Mtr Q B 1) = — (2t(2)i(2)) B 1tr i Z \Ilm>
o

m=1
B\* 1
+0. (<) +0. (==
(N <\/§N>
It is easily checked that
1
U, =1+®,)/2-1= §¢~m — gcp; + 2,

N
where ||E,,|| < C (%)3. It is easily seen that B—Htr P2 = (2—;) on+O((£)3+
+). Using (3.9), we thus obtain that

% M // 7 \2
B (7 Qg ) = (etwin < pUEE s ))vN+oz<uN>
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because

B\’ 1 1
O,.|=) +0,| ——=—=)+0. | =] =0.(un).
(%) +o-(Gaw) ~o: () o)
We have thus established that E (%tr Q2E—§*1) isa O, (%)2 term, and have

evaluated the corresponding principal term. Using similar calculations, we can
obtain easily the expression of the O, (%)2 term of E (%tr QQA). In

order to establish (4.42), it is necessary to evaluate the O, (%)2 term of

E (%tr QAQAQ). This step needs very long calculations that are omitted.
O

4.5. Estimation of rn (V)

The term sup, |¢¥n(f,v)| depends on the unknown true spectral densities
(Sm)m=1,...m through the term ry(v) defined by (1.8). In order to be able
to use Theorem 4.1 in practice, it appears necessary to estimate ry(v) by an
accurate enough estimate 7 (v), and to replace ¥ (f,v) by ql}N(f, v) defined by

dn(f) = 37T (FEOD) = [ 7 = i) v () on Tasags (4:46)

7 (v) has to be chosen in such a way that [y (f, )| < uy, a condition that will
be verified if |Fn (V) —rn (V)| < 22 if o > 2. A natural choice for 7y (1) would be
to replace the true spectral densities (S;,)m=1,....; by their frequency smoothed
estimates ($y,)m=1,... m defined by (3.31), and the derivatives (s},)m=1,...m by
(8, )m=1,....m- However, &, is not an accurate estimate of s/, so that the corre-
sponding estimate of rx (v) does not satisfy |Fn(v) —rn(v)| < 32 if > 2 If
L < N is an integer, we introduce the lag window estimator ,, j, of s, defined
by
1 L

Snn0) = [ e P = = 3 g (1.47)

I=—L

where wr,(v) = ZlL:7 ; €2 is the Fourier transform of the rectangular win-
dow and 7, ; represents the biased estimate of the autocovariance coefficient
Tm,i of ym, at lag [ defined by

| N
TAm,l == N Z ym,n+ly:n7n (448)
n=1
and 7, = f;“n’l for [ > 0. Then, the following result holds.

Proposition 4.3. Assume that L = L(N) = O(NZW}“), where vo > 3 is
defined by (1.18). Then, the estimate 7 n(v) defined by

M

n () = (;4 3 Sm>L(")) (4.49)

m=1 §m7L(V)
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satisfies
. 1
2
in@w) —rn)] < NifasZ (4.51)
UN 3
as well as .
[UN(f, V)] < un. (4.52)
Proof. We denote by dn(v) the N-dimensional vector defined by dy(v) =
(1,e=2mv . e 2m(N=DT e recall that y,, is the N-dimensional vector
Ym = Ym1,---,Ym.n)? which can be written as y,, = R%2Zm where R,,, =

E(ymys,) and z,, is N¢(0,Iy) distributed. It is clear that §,, 1,(v) can be written
as
Sm,1(v) = 25, RyPQW)R 2

with
) = 5 [ dv(0dx (0wl - p)d

while 87, ; (v) is equal to
8L (v) = 2, R (VR P,

with

L
1 _ -2 * —2iml(v—p)
(V)= —— [ dv(pw)dn(p) l;iLle M) dp
. ’ 13/2 1/2 7
It is easy to check that || (v)|[r = O(577z) and therefore that ||R., "' (v) x

R/ 2H F = O(%) The Hanson-Wright inequality leads immediately to

18,0 (v) — E(3, . (V)] < L°” Moreover, it is easy to check that (1.18) im-

N1/2
plies that
. C
B3 0) = smW)l < 5o

where C is a nice constant. For L = L(N) in such a way that O(Jf,l//z) = #,

ie. L=0O(N o1 ), we obtain that

1
|8, (V) = 8p (V)] < NG/t
Moreover, a similar analysis leads to
1

[$m, (V) = sm W) < e

from which we deduce that the estimate 7y (v) defined by (4.49) satisfies (4.50).
It is then easily checked that if 79 > 3, then (4.51) holds, which implies that
[N (f, V)| < un holds. O
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5. Use of Lipschitz properties of the functions v — YN (f,v) and
v = Yn(f,v)

In this section, we establish Lipschitz properties of v — ¥y (f,v) and v —
¥y (f,v), and deduce that the stochastic domination properties (4.2) and (4.52)

are still valid for sup,, ¢ 1) [~ (f,v)| and sup,¢( 1) lon (f, V)] where ¥n (f,v) is
defined by (4.46), (4.49).

5.1. Lipschitz properties

The goal of this paragraph is to prove the following Proposition.

Proposition 5.1. Functions v — {n(f,v) and v — )y (f,v) satisfy

VN (f,v) = n(f,v+9)]

sup sup < MN3/2 (5.1)
540 ve0,1] |6
sup sup H’l/)N(f7 V) _wN(faV_F(S)” = MN3/2 (52)
540 ve[0,1] 6]

In the following, we just establish (5.2). For this, we evaluate separately the
Lipschitz constants of v — F;tr F(C(v)) and of v — 7y (v).

5.1.1. Lipschitz constant of v — Fptr f(Cw))

To show that v — Ftr f(C(v)) is MN3/2-Lipschitz with overwhelming proba-
bility, we need to establish a number of intermediate properties.

Proposition 5.2. It holds that

wp sup 1800 =S +0)]

< MN®/2, (5.3)
570 v€[0,1] |6

Proof. Let 6 € Rand v € [0, 1]. As the random variables (Y n)m=1,....M,n=1,...N
are complex Gaussian and that sup,,>; Elymal> < +oo, the family
(Ymn)m=1,....Mn=1,... N satisfies |ym, n| < 1. Therefore, it holds that

1 N
T~ | m,n| < \/N (5.4)
VN ; Y

For the same reasons, the family &, (v),m=1,..., M, v € [0, 1] satisfies.

[y (V)] < 1. (5.5)

We also claim that

sup [&y,, (v)] < 1. (5.6)
ve(o,1]
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In order to verify (5.6), we first observe that for any n > 1, we have the following
control:
le=2immv _ o= 2mn(v+9)| < 9| sinwnd| < 2mnl|d|.

(5.4) implies that

sup sup S (V) = 9 (v +9) ’
570 ve[0,1] d

—2iTny —2imn(v+9)

N

> hmn
Ym,n 5

n=1

=sup sup ——
§#0 ve[0,1] VN

1 N
S 271N —= |ym,n|
UF 2
< N3/2, (5.7)

We consider a frequency v, € [0,1] (depending on m) where [§,, (v)| is maxi-
mum, and have thus to establish that for each € > 0, then there exists v > 0
depending only on € such that

P([€y,, ()] > N¢) < exp—N”

for each N larger than a certain integer Ny(e). We introduce the discrete set

w I * pero Nv o1 5.8
f={ ket ) (53)

whose cardinality is |VX,| = NP. We notice that (5.5) in conjunction with the
union bound implies that Sup,, ey, &y, (Vp)| < 1. We denote by v, ,, the element

of VX for which |v, — v,| is minimum, and notice that v, — v | < 5. Then,
we have the following inequality

P(|€y,, ()] > N°)
€ NE

N
<P (160 0) = 60l > ) + P (I > )

N¢ N¢
<P (1600 0) = 60 > )+ s 16, )] > 5 )
vp VY,
(5.9)
As sup, eyr |€y,, (1p)| < 1, the second term of the right hand side of (5.9)

converges exponentially towards 0. In order to evaluate the first term of the
r.hs. of (5.9), we use (5.7), and obtain that

€

N
N 1 i
_ — )< — > N°
P <|§ym(y*) Eyn (V)| > ) <P (N = n; |Ymn| = s = V*)p|N >
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1 N s
Pl — > —NPtel |
- (Wn—l -2 )

We choose p so that p — 1 > 3/2, and use (5.4) to conclude that P(|¢,,, (v.) —
Ey (Wap)| > NT) converges towards 0 exponentially. This establishes (5.6).

In order to complete the proof of Proposition 5.2, we consider an individual
entry 3,;(v) of S(v) for ¢, j < M, and write that

185 (V) — 845 (v + )]
B/2

1 b b\"

= BT1| 2 gi(Hﬁ)fj(HN)
b=—B/2

—&<u+5+ > <1/+5+b>

1 22 b b

S—B—i—l Z fz( )(5]( N

b=—B/2

)
s lem)-sleons))

Using the estimations (5.6) and (5.7), we get:

b *
ofere )

b *

supsup sup
i,j 6#0 ve[0,1]

$ij(v) — 8i;(v + 5)‘ < N3/ (5.10)
; .

and deduce (5.3) from the rough bound

sup [[S(v) —=S(v +6)| < sup SUPZ|Sm —3i;(v +9)|
velo,1] vel0,1] ¢

<M sup sup|sij(1/) —8(v+9)l. O
vel0,1] 4,J

Combining the eigenvalue localisation result from Corollary 3.3 and the Lip-
schitz behaviour of S from Proposition 5.2, the following statement holds.

Corollary 5.1 (v uniform version of Corollary 3.3.). Denote for e > 0:
48 = { € 0,11 0(80) < Supp g x [55 +
AP = {vy € 10,1 : (D)) C [s,5] + e} .

Then, A? and AP hold with exponentially high probability.
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Proof. As the proof for A? is strictly similar to the one of A§, we will only write

the arguments for AS. For any fixed v € [0, 1], Corollary 3.3 ensures that AS(v)
holds with exponentially high probability. For p > 1, we still consider the set
Vi, defined by (5.8) and denote by A2 the event defined by

AS, = {VVp € V% 1 0(S(vp)) C Supp yp x [, 5] + e}

which is A? but where v runs only on the finite grid V5. It is immediate (by the
union bound) that AESJ) holds with exponentially high probability for any fixed

p € N. Moreover, it is clear from the definitions of AeS and AEP that Af’ C Asp.
We now show the following inclusion:

(42) < (452)

U {31/ e0,1]:[S(v) — g(V;)” > €/2 where v, € argmin |v — zxp|} :

vp€ Vﬁ,

(5.11)

Suppose that (AES)c is realized, and denote by v* € [0,1] a frequency such
that o(S)(v*) ¢ Suppg\?P X[s,5] + €. Denote also v, € argmin,, cyr |v, — 7]

We just consider the case where A1 (S(v*)) > 5(1 + /¢)? + ¢, since in the case
where Ay (S(v*)) < s(1 — \/c)? — ¢, the proof is similar. Then, either:

1. HS(V;) — S(v*)|| < €/2, which implies the following estimation for the
location of Al(S(V;)):

M) = 5 < M(8(15)) < M(S(r7)) +

N

and in particular, Al(S(V;)) > 5(1++/c)?+¢€/2. This means that <A§/2’p)
holds. i
2. [IS(v;) — S(v*)|| > €/2, which exactly means that {EIV € [0,1] : |IS(v) —

S(vp)ll > €/2 where v} € argmin,, cyr |V — I/p|} is realized

(5.11) is now proved.

We already showed that (AES/ZP

and establish now that the set

) holds with exponentially small probability,

{31/ €[0,1]: ||S(1/;) —S()|| > €/2 where v, € argmin |[v — Vp|}

vpEVR
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has the same property. To justify this claim, we remark that Proposition 5.2
implies that for each x > 0, the probability

P Hau, v € 0,1], w > N“MN3/2H

v —v/|

converges to 0 exponentially fast. As the following inclusion

S(v) —S(v*
Jv € [0,1], M, > N®MN®/2, where v, € argmin |v — v,|
‘V_Vp| vpEVY
Q Q)
C {ﬂu,u' € 10,1], —|S(|V) —S,(|U)| > N”“MN3/2}
v—v

holds, we get that
i [{au € [0,1], [IS(v) — S| > v — V;|N”’MN3/2H =0

1

~7» We obtain that

exponentially fast. Moreover, as for each v, |[v —v;| <
Q Q% 1 K 3/2
P Hay € [0,1], IS(v) =Sl > {7 N"MN / H -0

exponentially fast as well. For p large enough, N ”ﬁM N3/2 will finally become
smaller than /2. This proves that

{HV € [0,1], ||S(u;) —S()|| > €/2 where v, € argmin |v — up|}
v VY
holds with exponentially small probability.
The same argument can be used to control A?. This completes the proof of
Corollary 5.1. O

We deduce immediately from Corollary 5.1 the following result that can be
seen as a refinement of (3.28) and of Lemma 3.1.

Corollary 5.2. It holds that

sup [D()""2| <1, sup [S()| < 1.
velo,1] velo,1

A useful consequence of this is the following Corollary, which states that the
Lipschitz result holds for C(v).

Corollary 5.3. It holds that

Cv)—Cv+9)
5 < MN3/? (5.12)

sup sup
§£0 ve[0,1]
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Proof. For more clarity in the following argument, denote v1 = v and v = v+9.
Recall that D = diagS. Using the definition of C from equation (1.3), we write:

C(rz) — C(v1) = D™V2(10)S(v2)D~V/2 (1) = D™V2(11)S(11)D~V/2 (1)
= (D"(1z) - D~ 1/2( 1))S(2) D12 (1)
+D72(11)(S(r2)D ™2 (1) — S(v1)D ™2 (1)),

Moreover, we write

S(r2)D ™2 (1p) = S(1)D 2 (1n)
= (S(2) = S(1))D™?(2) + S(11) (D2 () = D™/*(1n)).
Therefore, applying the operator norm, we get by the triangle inequality:
IC(v2) = Cl)ll < [D™V2 () = DV2() | [S(v2) [ D™V2 (1)
+ [D2@)IS(v2) = S() D2 (w)|
+ D2 ) [IS@)l[D ™2 (v2) = D72 ()|

It is easy to check that

1571/2(1/2) _ ]jfl/Q(Vl)
6

sup  sup
870 |vg—vy | =6

‘<N3/2

holds. Therefore, Proposition 5.2 and Corollary 5.2 immediately imply (5.12).
U

Finally, we can write for the spectrum of C the same kind of result as in
Corollary 5.1.

Corollary 5.4. For each € > 0, we define A? as the event
c_ . (€ (o)
AY = {VV €10,1]: o(C(v)) C Supp fiy;p + € -

Then, A? holds with exponentially high probability.
Proof. The proof is similar to the proof of Corollary 5.1 and is thus omitted. O

We finally use the above results to prove that v — - a7 tr f -[f du(cN

is M N3/2-Lipschitz with overwhelming probability. For this, we estabhsh the
following Proposition.

Proposition 5.3. It holds that

11
sup sup =

520 ve(o1) 19| tr f(C(v)) - %tr F(CW +4))| < MN*2. (5.13)
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Proof. By Corollary 5.4, the event AEc holds with exponentially high probability.
Therefore, it is sufficient to establish that

1,6 sup sup — itlr F(C(v +0)) — —tr f(C(v))| < MN3/?

€ 640 ve0,1] 6]

We express tr f(C(v+0)) — &t f(C(v)) as

1 . 1 . 1 — . .
a7t (G +0) = 7tr fCW) = 37 > FOm(CW +9))) = FAm(CW)).

As f is C*° on a neighborhood of Supps\‘/})P7 on the set A?, there exists some

random quantities (A, )1<m<as between A, (C(v)) and A, (C(v + 6)) such that

(@l

M
Z Cv+9))) = f(Am(

m=1

()

= Z (A€ +8) = A (€@)) £/ (im).
Using the following eigenvalue inequality for Hermitian matrices:
A (€ +8) = An(C))| < 1C(v + ) - CW)

in conjunction with the fact that sup;<,,<ys |f'(Am| is bounded by some nice

constant C on the event A?, we obtain that

M
1 < R .
P [sup sup |+ Z I Om) A (C(v +6)) — A (C(v))
0#0 ve(0,1] m=1
> 5|N"MN3/2, A?]
<P lsup sup C||C(v +0) — C(v)| > |5|N*MN>/2, AS}
570 ve[0,1]
(5.12) finally leads to (5.13). O

5.1.2. Lipschitz constant of v — #n(v).

The function v — 7 (v) satisfies the following property:

Proposition 5.4.

sup sup in (v 4 6) — P (v)| < N3/t (5.14)

60 v€0,1] |5|
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We just provide the main steps the proof, and leave the details to the reader.
We first prove that sup,¢jg 1) Z%zl m < 1 by verifying that the event
{Ww € [0,1,Ym = 1,..., M, 5y, 1(v) € [8,5] + €} holds with exponentially
high probability. Then, we establish that v — 5, (v) and v — &) (v) are

N?2/(2v+1) Lipschitz and N3/(2%+1) Lipschitz with overwhelming probability.
This leads immediately to (5.14).

As vy N3/(r+1) « MN3/2 Propositions 5.3 and 5.4 lead to (5.2). This
completes the proof of Proposition 5.1.

5.2. Stochastic domination of sup,¢ 1) [¥~n(f,V)| and
Sup,cjo,1] [N (fsv)l
We are now in a position to establish the main result of this paper.

Theorem 5.1. sup,cp 1) [¥n(f,7)| and sup, ¢ 1 [N (f,v)| satisfy the follow-
ing stochastic domination property:

sup |[Un(f,v)] < un (5.15)
velo,1]
sup |1/A)N(f,u)| < up. (5.16)
velo,1]

Proof. We just establish (5.16). We consider € > 0 and evaluate
P| sup [dw(fov)|> Neun |
vel0,1]

We denote by v* € [0,1] an element where the supremum is achieved, and

consider v} the closest element of V§ to v*, where we recall that VY, is defined

by (5.8). Therefore, one can write:

P l sup [P (f, V)‘ > NCUN] <P |:‘7;N(fa v*) = (f, V;))‘ > 1NEUN] +

vel0,1] 2
N * 1 €
i Uq/w(f, yp)‘ >SN uN} .

(4.52) implies that P H&N(f, )
0. It thus remains to study P HzﬁN(f, ) — On(f, V;))‘ > %NEUN]. For this, we

of course use (5.2), Corollary 5.3, and write

> %N ‘u N} converges exponentially towards

P |[én (%) = ()] > 5Vun ]

b [ In(f,v") = dn (s, u,‘;))‘ 1 N%N]
vr— vk 2lv* — v
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<r|

If we choose p large enough, MN3/2 satisfies MN3?2 <« NPuy, and
P [ Iy (Fr) =y (fv5))

pected. This completes the proof of (5.16). O

’l;N(f,l/*)—lﬁN(f,V;))

* _ g%
14 I/p

1
‘ > §NPNEUN] .

> %N PN€upn | converges towards 0 exponentially as ex-

6. Numerical simulations

N

))-

In this section we examine the impact of the correction quantity r N( Vo
when o > % and see how it improves the estimation of the LSS tr f(
More precisely, we start by examining the behaviour of the LSS

‘—trf /fd e

and the impact of the correction term

N(f
Cv

1 & (v ’ 1 5/z b ’
(Mmz: sZE;&) v\ 5171 > (N) =rn(W)on(f)on

- b=—B/2
RN m (V) 1 5/ b ’ X
(M mzl Sm<V)> N (f) B_i_lb_;gm (N> =rn(W)on(fon

under Ho. We recall that ¢ (f) is the deterministic term defined as the action
of f on the compactly supported distribution Dy, whose Stieltjes transform is:

en(ztn(2)in(2))?
1 —cen(ztn(2)in(2))2

Motivated by [28], we consider f(A) = (A — 1)? where it can be verified with a
bit of algebra and residue calculus that

/f dgvcfl\zg) )_CN~

pN(2) = —

and ¢n(f) = en. Take y,, generated by the following simple model:

Yni1 = Ayn + €, (6.1)

where (€)nez is an independent sequence of N¢(0,I,) distributed random
vectors, and where A is the diagonal matrix defined by A = 01, for § € C
such that |0] < 1. Under (6.1), each time series is independent AR(1) pro-
cesses. In Figure 1 is represented on the left the values of the LSS associated
to f(A) = (A —1)2 for each v € (0,1) when (N, B, M) = (10119, 1600, 800) (so
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—— LSS(f,v) —— LSS(f,v)
FN(V)VN¢N(f) (I)N(f: v)
003{ —— ry(v)vndn(f) \ — wnlf,v)

-0.01

FIG 1. Linear Spectral Statistics vs the correction term. f(\) = (A —1)2, (N,B,M,L) =
(10119, 1600, 800, 21), and 6 = 0.4.

a = 0.8 and ¢ = 1/2) and 6 = 0.4. We see that the correction term captures the
majority of the deviation of the LSS from zero. Moreover, the correction where
the spectral densities s, and s/, are estimated still provide a good approxi-
mation of the O(£)? term. On the right side is represented the LSS against
N (f,v) and ’(/AJN(f, v). We again observe that the majority of the deviation
from zero of the LSS is corrected by the (’)(%)2 terms. Around v = #£0.1, the
corrections’ precision seems to have degraded. This can be understood since
v = £0.1 corresponds to peaks in s/ , which leads to greater estimation errors
for &/ at this frequency than for the other ones.

We now check the derived speed of convergence towards zero in Theorem 5.1,
and more precisely that the following estimations hold true:

s - / Fdp L)y o5 211
up |—tr f — N b N
VE[Opl] M B 1/2<a<2/3 N >2/3
sup [¢(f,v)] = O(un
vel0,1]
and we abbreviate tr f — Ja fd,u(CN by LSS(f,v). In the following
we take ¢ = Bi—&-l =1and a = 4/5. In this case we recall that uy = O(£)3.

On the left of Figure 2 is represented for M € {20,30,...,1500} the value
of sup,¢io,1) |LSS(f,v)| against SUP,c0,1] [&(f,v)| and SUP,c0,1] [¥(f,v)]. On
the right of Figure 2 we rescale all quantities by (%)2 and observe, in ac-
cordance with Theorem 4.1 that LSS(f,v) remains O(1) while the corrected
quantities are o(1). Finally, in Figure 3 are represented sup, (o q;[¢(f,v)| and
SUpP, (0,1 [ (f,v)| rescaled by (%), and observe that these quantities are now
O(1), again in accordance with Theorem 4.1.

Finally in Figure 4 is represented 20000 realisations of the LSS

sup,c 7, | a7tr f(C —f fdu(cN )| against its improved estimations

Sup,e 7y [N (f, 1/)| and sup,cr, [N (f,v)]. We see that the oracle corrected
statistics ¥ (f, v) is more concentrated around 0, and that its estimated counter-
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225
S N2
0.30 mvax |LSS(f, vl 2.00 B_zmuax |LSS(f, v)|
max |y(f, v)| N2
025 v 175 gmvax |w(f, v)|
—— max |g(f,v)| N2 N
v 1.50 _———
020 gz max [@(f,v)] —
125 et
0.15 |
1.00
0.10
0.75
0.05 0.50
0.00 0.25
o 200 400 600 800 1000 1200 1400 o 200 400 600 800 1000 1200 1400
M M

FIG 2. sup, ¢ 7 ﬁtr f(Cw)) - ffdug\fll}’,) against sup, ¢ xy YN (f,v) and sup, ¢ £, on (f,

v) as functions of M. On the right the quantities are rescaled by (%)2. a=038,c=1/2
0=04

_ g’—jmsax |w(f, v)|

§smax [g(f, v)|

\“'\\/\
24 \\,J"
200 400 600 800 1000 1200 1400

M

oA

FIG 3. sup, ¢ 7, YN (f,v) and SUP, ey 1/A)N(f, v) rescaled by (%)3 as functions of M. a = 0.8,
c=1/2, 0= 0.4.

part ¢(f,v) is close to ¢ (f,v) but exhibits more spread due to the additional
estimation step of §,,(v).

Appendix A: Appendix
A.1. Proof of Lemma A.1

Lemma A.1 is a slight variation of Theorem 4.3.2 [4].

Lemma A.1. For any vy and v in [0,1], such that there exists k € {0,1,..., N
— 1} satisfying vo —v1 = k/N, the following bound holds:

s E[65, ()60, 02)'] = 50 ()0l =0 () (A)
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250 4 sup |L55(f, V)l
v

sup |gn(f, v)|
200 v

sup |yn(f, v)|
v
150 A

100 4

50 -

0.01 0.02 0.03 0.04 0.05

FIc 4. sup,er, |7 tr fCw) — [ fdugvcf}’,)| against  sup,cx, [Un(f,v)] and
SUD,c Fy [Yn(f,v)|. (N,B, M, L) = (4254, 800, 400, 16), 6 = 0.4.

Proof.

E [gym (Vl)fym (vo *]

~—

1 N
_ * —2im(n1—1)vy J2im(ne—1)ve
— AT § E[ym,nlym,ng]e ( ) € ( )
N
ni,ne=1
1 N
_ —2im(n1—1)v1+2ir(na—1)re
- XNr rm,nlfnge
N
nl,n2::1
(N-1)
_ i r 672i7rn1u1+2i77n2u2
- E m,u E
N
u=—(N-1),n1,n2€0,...,N—1 ni—n2=u

Splitting this expression for u = 0,4 > 0 and u < 0 provides

N-1
* 1 —2imny (va—v
El&y,, (11)€y., (v2)"] = Srm.0 D emmmbam)

n1=0
1 (N-1) N—1—u ) )
+ N Z T Z e—2wr(u+n2)1/16217m21/2
u=1 no=0
1 —1 N-—-1 ) ‘
+ N Z T Z 672171'(’(1/4*?’7,2)1/1 62”1—”21/2. (AQ)
u=—(N-1) n2=—u

The first term of the right hand side of (A.2) can be computed in the case
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V1 = V3.
N-1
1 .
§ : —2imny (va—v
Nrm70 € 1(vz—r1) =Tm,0
TLl:O

and in the case v; # 1o,

1 N—-1
—2imn, &
Nrmp E e N =0.

ni =0
Therefore, the first term of the right hand side of (A.2) is equal t0 7,000, =, -
Consider now the second term of (A.2) (where u > 0):

N—-1—u

E T E 672z7r(u+n2)1/1 6217rn21/2

TLQO
N—-1-u

Z Tom, ue—QMruz/l Z e—217rn2(1/2 1/1) (A3)

n20

The right hand side of (A.3) can also be explicitly written in the case 11 = vs:

N—-1—-u
E :Tm ue—217ru1/1 § 6—217m2(1/2 V1)
N
ng = =0
1 N-1
_ § : r e—2wru1/1(N o u)
= m,u
N
u=1
N-1
o r 6721'71'1“/1 —u
= m,u
’ N
u=1
N-1 N-1
_ —2imur, 2iTur,
= Tm,u UTm.uC
u=1 u=1

By Assumption 1.4, sup,,,~; Eue

E u Tm ue2z7rul/1

bup
m> 1

Therefore:

1
~o(v)
N—-1-u

N-1
1 —2iTury —2imng(v2—v1) —2imury 1
sup NE T, u€ E e E T, u€ =0 ~
u=1

m>1

’ngZO
(A.4)
In the case where 11 # vg, note that vy — vy = k/N with k # 0, therefore:
N-1 N-1
e—QzTrng ve—v1) _ Z 6—2z7rn2N =0. (A5)

no=0 no=0
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Using (A.5), one can rewrite the right hand side of (A.3) as
N— N—-1—u
Z —2i7ru1/1 Z e—2i7rn2(l/2—u1)
u=1 n2:0
1 N-1 N
_ '_N rm’ue—Qzﬂ'ul/l Z e—QlTI"I'LQ(Vg—I/l)
u=1 no=N—u
1 N-1
< N Zl |7l
u=

which, again by Assumption 1.4, provides the bound:

N-1 N—-1—u
—2iTury —2imtng(ve—r1
Tm,u€ E € ( )

u=1 no=0

(L) e

Combining (A.4) and (A.6), the second term of the right hand side of (A.2)
can be estimated as follow:

(Nl) N—-1—u

sup E Tm u672z7ru1/1 § ef2z7rn2 Vo — 1/1) _ 5y1 Vo E Tm u€7217ru1/1

le ng= =0
1
-9 (N) |

The term for v < 0 in equation (A.2) is similar. Gathering the three terms
of equation (A.2) leads to

N-1

* —2iTur 1
sup |E[Sy,, (11)&y,, (12)"] = 6v1=u, Z Tm,u€ rm =0 < ).
m>1 N
= u=—(N-1)
A7)
Finally, using again Assumption 1.4 we have:
—2iTur 1
Y rm(ue <+ Z ullrm(u)] =0 5 |-
|u|>N \u|>N
Inserting this into equation (A.7), we obtain equation (A.1) O

A.2. Proof of Lemma 3.1

Proof. Consider the complement of the event A?(V) and notice that:

AP c{me{l,... . M} :4n>5+efU{me{l,... . M}, <s—e}
(A.8)
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We start by proving that the first set of the right hand side of (A.8) holds
with exponentially small probability, ie. for any € > 0, there exist v > 0 such
that:

PEme{l,...,.M}:38, >5+¢ <exp—N".

By Lemma A.2 (see below), [E3,, — s,,| = O(B?/N?) so for N large enough,
this bias term will be smaller than €/2. Moreover, for any m € {1,..., M},
Sm — § < 0. Therefore, one can write for large enough N:

PEme{l,...,.M}: 5, >5+¢

=P sup (8 —ESp, + ESpy — S+ 8m — 8) > €
me{l,...,M}

<P sup |8 — Eép| > €/2
me{l,...,M}

which holds with exponentially high probability by Lemma A.3 (see below). The
proof for the lower bound is similar. O

It remains to prove Lemma A.2 and Lemma A.3. Concerning the proof of
Lemma A.2, we follow the same approach as the one used in Theorem 5.4.2 in
[4].

Lemma A.2. For any v € [0, 1], the following results hold:

3
E(8m () = sm(v) = m2(V) oy + O <<%> + %) (A.9)

and

sup  [Eém(v) — sm(v)] = O (§>2 . (A.10)

m=1,....M N

Proof. Tt is clear that §,,(v) = Sp.m(¥) = $m(¥)Com.m (V) can be written as

. T (T4 @)

(1) = s (1) 222 (A1)
Therefore, E(3,,(v)) = sm(v)(1 + BLHtr ®,,). (A.9) thus follows immediately
from (3.9). (A.10) is an immediate consequence of (A.9). O

Lemma A.3. The family of random variables sup,,_y s [8m (V) —E[sm (V)]|, v
€ [0,1] satisfies

su Sm — E[sn]| < —=. A.12

m:l,P,M| m — E[3n]] 75 (A.12)

Proof. (A.11) implies that §,, — E[§,,] can be written as §,, — E[5,,] =

Sm (I’"(IE%W — 5 Tr(l+ <I>m)) It is clear that sup,, || (Igf;’l) |r < § for

some nice constant C. Therefore, (A.12) leads immediately to (2.17). d
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A.3. Proof of Lemma 3.3

Proof. These estimates can be proved in a compact way by using the calculus
rules available in the stochastic domination framework introduced in Definition
2.1 and proved in Lemma 2.1. Using Lemma 3.2 and Lemma A.4 (see below):

v

S Vol | Emom

/1 1
S‘\/sm_\/ém‘x — | X ‘
Sm Sm
B2 v
Ox(5+52) 0<(1) 0<(1)
1 B?
<=+

VBN

The second inequality is similar to prove:

[/

Vi l-

Sm

14 B2 —_—
O*(\/§+N2) O<(1)

< ‘Sm_§m| X
—_———

- 1 +B2
VBN

Lemma A.4. The family of random variables (sup,,—1 s [3m (V) — sm(¥)|),
v € [0,1] satisfies

O

BQ
S =<
Lo |8m — Sml \/— ek
Proof. Tt is sufficient to check that the family of random variables (|§,, —
Sm|)m=1,...m,V € [0,1] satisfies |5, — Sy | < \/LE + ﬁ—z. Using Lemma A.2 and
Lemma A.3, we obtain as expected that

BQ
13m —Sm| = |$m —Edm+Edm —m| < [$m — Edm| + [Eém — sm|<\/_ 3
o(23) 0 (%)

A.4. Proof of Lemma A.5

Lemma A.5. The set of random variable (Zf\le 18m (V) — sm(V)]?), v € [0,1]
satisfies
5

§m — Sm|2 <1+ m

1M

m=
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Proof. Using Lemma A.4, we have

2 B!
[8m — Sml <§—|—N4

and summing over m = 1...M, one immediately get:

M
. B®
Z|sm—sm|2<1—|—m. O

m=1

A.5. Proof of Lemma 4.5

We express Aas A= Therefore, we have

B+1 + B+1 + B+1

k r

Al <o (H\/W VBTl

k)
Using the Schwartz inequality, we obtain that

1/2
K\ Y rr* ||
B+1 B—|—1

It is well-known that E (‘ XX- H ) < C for some nice constant depending on

B+
k. Therefore, we establish that
k 2%
B

< i

<c ( N)
a property which will imply that E||A|* < C ( ) For this, we put Z= B—+1
As (3.17) holds, it remains to verify that E(||Z — E(Z)||*) = (N) . For this,

we use the concentration inequality (3.23). We choose ty = w'/*(£)2, and
obtain that

b l|z “E@)| i
(3

B+1

XX
B+1

E|AJ* < C (@‘

T
B+1

< 2Cyexp —CB(w/* — wé/k) (A.13)

for some wy > 0. If we denote by zxy the random variable zy = (%) ,
N

we have to establish that E(zy) = O(1). For this, we express E(zx) as
+o0 wo +o0
E(zy) = / P(zny > w)dw = / P(zy > w)dw +/ P(zny > w) dw.
0 0 wo

As Plzy > w) = IP’(lev/k > w'/*), (A.13) immediately implies that E(zy) =
o).
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A.6. Proof of Lemma 4.6
We denote by 7,, the term of interest, i.e. 1, = E(w,,AW*Qe,,). It can be

written as

Nm = Z Z E(Wm,nzwm/,nl Qm’,m)Anz,nl

ni ng,m’

The integration by parts formula (2.8) leads to

]E(Wm,ng Wm’ n1 Qm’ ,m) =

1 1 _
6m7m’5n17n2 B—HE(Qm,m) - B—HE [Wm’,nl (Qw)m’,ng Qm,m] .
Therefore, we obtain that
Z E(Wm,ngwm’,nlQm’,m)Ang,nl
ng,m/’
—  B(Quun) Ay — 5 EIW QWAL 1, Qo
- B—|—1 m,m mni,mn1 B—|—1 ni,ni m,m
and that
1
m = E[Qm.m|=——tr A—E t * A m.m
= ElQunl gy A B | (e Woawa ) )
P a-r <B+1trWQW )
1 o
—-E tr W"QWA ° . A4
(primwawa) @] @

In order to evaluate E (BLHtr W*QWA), we note that

M

m=1

1 1 M
E (Mtr W*QWA> == i

=B

1 1
A—-pcE( — * A ) —
B+1tr Be (MtrW QW. )

1 * ° 1 (e}
E{<B+1tr W QWA) —MtrQ ]
from which we deduce that

51
A
1+8cB+1

1 1 °1
- E * A — °l.
1T 5e [<B+1trWQW ) MtrQ}

Plugging this relation into (A.14) leads immediately to (4.45).

E <A14tr W*QWA> =
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