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Abstract: The generalized gamma convolutions class of distributions ap-
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literature. Furthermore, only one projection procedure for the univariate
case was recently constructed, and no estimation procedures are available.
By expanding the densities of multivariate generalized gamma convolutions
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vergent series for the density of multivariate gamma convolutions, which
is shown to be more stable than Moschopoulos’s and Mathai’s univariate
series. We furthermore discuss some examples.
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1. Introduction

Olof Thorin introduced the Generalized Gamma Convolutions (GGC) class of
distributions in 1977 as a tool to study the infinite divisibility of Pareto [56]
and log-Normal [57] distributions. The quite natural and pragmatic question of
identifying if some distributions are infinitely divisible or not turned out to be
theoretically fruitful, and notably gave rise to the concepts of hyperbolic com-
pletely monotony and generalized gamma convolutions. Later, Lennart Bondes-
son extended these concepts in a book [5] which is still today a good reference
on the subject. An introduction to more recent literature about GGC can be
found in the two surveys [26, 7], on the probabilistic side of the problem.

The GGC class contains a lot of known and commonly used distributions,
including heavy-tailed distributions such as Pareto, log-Normal and α-stable
distributions. This versatility makes the class appealing for the statistical prac-
titioners working in various fields such as life and non-life insurance, reinsurance,
anomaly or fraud detection, floods analysis and meteorology, etc. Other classes
of general approximating distributions with high-order features can be consid-
ered. Mixtures of Erlangs [11, 33, 58], for example, have the property of being
dense in L2 [58] and allow for fast k-MLE estimation algorithms [47]. On the



5160 O. Laverny et al.

other hand, they lack crucial closure properties and interpretability that the
generalized gamma convolutions have.

Surprisingly, on the statistical side, very little work can be found about es-
timation of generalized gamma convolutions. Only one projection procedure,
that is a procedure that projects generalized gamma convolutions onto convolu-
tions of a finite number of gammas, was published recently in [41, 20], Although
the resulting convergence result is stunning, this procedure cannot handle cases
where the incoming density is not already inside the class. This typically hap-
pens for any empirical distribution, due to sampling noise, even if the sampling
density is in the class. Furthermore, we show that the theoretical background
of the estimation procedure in [41, 20] is inherently univariate, and no direct
extension to a multivariate case is possible.

The multivariate analogue is still an active research field, and, as far as we
know, has never been considered as a statistical tool in the literature. In applica-
tions, however, statisticians might deal with marginals that are in this class. A
way to handle dependence structure in this interpretable framework seems there-
fore appealing as it would allow studying functions of the random vector, like
the sum of components, under dependence assumptions. Therefore, an estima-
tion procedure for multivariate generalized gamma convolutions that takes into
account the dependence structure could be useful. The probabilistic background
is already developed: based on an original idea from [8], Bondesson introduces
a bivariate extension of the Thorin class, and gives some properties about these
distributions. Later, [6] extends this concept to the multivariate case. More
recently, [48, 49] propose another equivalent framework allowing extension on
any cone, with application to matrix gamma convolutions. On the other hand,
no estimation procedure nor explicit density exist. We discuss this multivari-
ate class and show that the produced dependence structures are highly flexible:
non-exchangeability, left tail and right tail dependency are easily achievable.

Regarding tools, the literature gives two series expansions for the density
of univariate gamma convolutions: Mathai [36] proposes a density based on
Kummer’s confluent geometric functions and Moschopoulos [43] refined it as a
convergent gamma series, with an explicit truncation error. Both these densities
have the problem of being based on the smallest scale parameter, and are not
well conditioned when the smallest scale is too small. Unfortunately, this is
typically the case when approximating a log-Normal or a Pareto distribution by
a finite convolution of gammas. Therefore, no stable procedure for the density
computation is available for the entirety of the parameter range. We are not
aware of any density estimation available in the literature for the multivariate
case.

We consider here the problem of estimation from samples of multivariate
generalized gamma convolutions. Indeed, in some practical cases such as insur-
ance losses modeling, the random variable we model is supposed to be the sum
of a random number of independent and identically distributed (i.i.d.) random
amounts, and hence is inherently divisible. This is one of the reason that led
Thorin to study these concepts: he wanted to ensure that the approximating
models (a log-Normal or Pareto distribution for example) fulfil this property.
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We want to leverage this divisibility for joint statistical analysis. The paramet-
ric divisibility, i.e., the possibility of constructing the parametric distribution
of the piece easily, is therefore an appealing property for a model. The multi-
variate generalized gamma convolution class is one of these models that allows
easy parametric division of the estimated distributions in a multivariate setting,
while staying general enough and allowing for a variety of dependence structure
and marginal behaviors.

By the introduction of a specific Laguerre basis, which was already consid-
ered for non-parametric deconvolution problems by [18, 35, 2], we manage to
obtain a series expansion for the density. Classical deconvolution problems usu-
ally consider only one source of signal and one source of noise [37, 39, 60, 54].
Although we have here a finite number of signals to be estimated, the Laguerre
expansion is still a useful tool. We show that this expansion is quite natural
for our problem, as it includes and generalizes Moschopoulos’s univariate se-
ries. Moreover, we introduce a new quantification of the “well-behavior” of a
multivariate gamma convolution, that we show to be equivalent to the exponen-
tial decay of Laguerre coefficients. Using this quantification, we bridge the gaps
and provide a new stable algorithm for the evaluation of theoretical densities in
both the univariate and multivariate cases, as well as consistent parameter es-
timation procedures which handle both clean data (the density to be estimated
is given as a formal function) and dirty data (such as an empirical dataset in
64 bits precision). The resulting algorithms are implemented in the Julia pack-
age ThorinDistributions.jl, available on GitHub1 under a MIT License and
archived in Zenodo [32].

After fixing notations, Section 2 covers some definitions, properties, and al-
gorithms to set up the stage. Section 3 considers the Laguerre expansion of
densities in the multivariate Thorin class, studies their regularity and discusses
the control of their error through the new quantification and develops an estima-
tion procedure for these distributions. In Section 4, we investigate the numerical
results of our estimation procedure on several examples. Section 5 concludes and
gives leads for further work.

2. Gamma convolutions classes

As we deal with a lot of multivariate objects, we start by fixing some notations.
We use bold letters such as a to designate generally indexable objects, e.g.,

vectors or matrices, and corresponding indexed and possibly unbolded letters,
such as ai, designate values in these objects. We use Cartesian indexing. For
example, if we consider a row-major matrix r, then ri denotes the ith row of
that matrix, ri,j the jth value of that row and if k = (i, j), then rk = ri,j .

We denote |x| = x1+ . . .+xd the sum of components of a vector x. The prod-
uct of factorials of component of an integer vector k is denoted k! = k1!...kd!,
and we set xk = xk1

1 . . . xkd

d . We denote derivatives of a multivariate function
f by f (k)(x) = ∂

∂k1x1
. . . ∂

∂kdxd
(x) and scalar products of vectors by 〈x,y〉 =

1ThorinDistributions.jl: https://github.com/lrnv/ThorinDistributions.jl.

https://github.com/lrnv/ThorinDistributions.jl
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x1y1 + . . . + xdyd. Finally, we denote
(
x
y

)
=

∏
i

(
xi

yi

)
the product of binomial

coefficients.
Inequalities, sums, and products between vectors of same shape are always

intended componentwise, and standard broadcasting between objects of different
shapes applies. For example, 1+2x, 1+2x and (1+2x)x∈x all denote the same
object, which has same shape as x.

All over the paper, d ∈ N∗ and X = (X1, ..., Xd) will denote a d-variate
positive and real-valued random vector, abbreviated X = X1 when d = 1.

To characterize the distribution of the random vectorX, we might use several
functions of the slack variables x ∈ Rd

+ and t ∈ Cd, with the same convention
that x = x1, t = t1 if d = 1. For a (real-valued) random vector X of dimension
d ≥ 1, the cumulative distribution function (cdf) of X is F (x) = P (X ≤ x).
When they exist, the probability density function (pdf) of X, f(x) = ∂

∂xF (x),

its moment generating function (mgf) M(t) = E
(
e〈t,x〉

)
or its cumulant gen-

erating function (cgf) K(t) = ln(M(t)) can also be used to characterize the
distribution. Note that moment generating functions and cumulant generating
functions are not always defined on the whole Cd. We nevertheless consider by
default t ∈ Cd as there is usually no ambiguity on their domains.

We denote by L2(Rd
+, w) the set of functions that are Lebesgue square-

integrable on the space Rd
+ w.r.t. a weight function w, and we abbreviate it

by L2(Rd
+) when w is the identity function.

The following subsections set the stage of our analysis by reviewing common
tools from the literature.

2.1. Definitions and first properties

A random variable X is said to be Gamma distributed with shape α ∈ R∗
+,

scale s ∈ R∗
+ and rate 1

s , which we denote X ∼ G1,1(α, s), if it admits the
cumulant generating function (cgf):

K(t) = lnE
(
etX

)
= −α ln (1− st) .

We denote by G1,1 this class of distributions. Recall that the cumulant gen-
erating function of the sum of independent random variables is the sum of their
cumulant generating functions. Therefore, gamma distributions are clearly in-
finitely divisible with gamma distributed pieces (same scale and smaller shape).
We now consider independent convolutions of these distributions:

Definition 2.1.1 (G1,n and G1). Let X be a random variable with support R+.

(i) X is a gamma convolution with shapes α ∈ Rn
+ and scales s ∈ Rn

+, denoted
X ∼ G1,n(α, s), if it has cgf:

K(t) = −
n∑

i=1

αi ln (1− sit) .

We denote this class of distributions G1,n.
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(ii) X is an (untranslated) generalized gamma convolutions with Thorin mea-
sure ν, denoted X ∼ G1(ν), if its cgf writes:

K(t) = −
∞∫
0

ln (1− st) ν(ds),

where ν is such that:∫
[1,+∞)

| ln(s)| ν(ds) < ∞ and

∫
(0,1)

s ν(ds) < ∞.

We denote by G1 this class of distributions.

In both cases, K is defined on its (complex) domain of convergence.

The generalized gamma convolutions class G1, which is commonly called the
one dimensional Thorin class, has received a lot of interest in the literature.
These limits of convolutions are not dense in the set of positive continuous
random variables, but they contain many interesting distributions, including
the log-Normal and Pareto distributions as historically important cases [56, 57].
They have several interesting properties: noteworthy is the fact that the G1 class
is closed with respect to independent sums of random variables, by construction,
but also, as a more recent result shows, by independent products of random
variables [7]. In fact, G1 can be defined as the smallest class that is closed through
convolution and that contains gamma distributions. See [5] for an extensive
study of these distributions2.

Remark that if the Thorin measure ν of X ∼ G1(ν) has a finite discrete
support of cardinal n, then X ∼ G1,n(α, s) for α, s vectors such that ν =∑

i αiδsi (where δx is the Dirac measure in x).
Mathai [36] provides a series expression for the density of G1,n random vari-

ables based on Kummer’s confluent hypergeometric functions. Later, Moscho-
poulos [43] refined the result by providing the following gamma series:

Property 2.1.2 (Moschopoulos expansion). For X ∼ G1,n(α, s), denoting
without loss of generality s1 = min s, the density f of X is given by the fol-
lowing uniformly convergent series:

f(x) =
∞∑
k=0

δkfG1,1

(
|α|+k, 1

s1

) (x), ∀x ∈ R+,

where coefficients δk are given in [43].

The dependence of this expansion onto the smallest scale parameter s1 has
a major drawback. When the smallest scale is close to zero, the corresponding
truncated series is quite unstable. A simple show-case is the simulation of ran-
dom numbers from a G1,2

((
10, 10−3

)
,
(
1, 10−3

))
distribution (which has, e.g.,

2Note that in [5], distributions were parametrized through rates β = 1
s
instead. We chose

here to parametrize by scales, as it simplifies some of our notations.
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mean 10.000001 and variance 10.000000001): the Moschopoulos implementation
from the R package coga [25] gives a density that evaluates to 0 on all ran-
dom numbers it itself simulated, which is obviously wrong. Mathai’s method,
implemented in the same package, produces the same result. Sadly, as later
implementation will show, parameters that correspond to approximations of
useful distributions such as log-Normal, Weibull or Pareto usually have very
small scales and trigger the same instability.

A likelihood approach to fit distributions in the Thorin class is therefore not
practical, as there is no stable density, which is part of the reason for which
there are currently no estimation procedures in the literature.

In [5, 6], Bondesson defined a class of multivariate convolutions of gamma
distributions based on the following idea from Cherian [8]. Suppose that Z0, Z1

and Z2 are three independent gamma random variables with (respective) shapes
αi and scales si, with w.l.o.g. s0 = 1. Then the random vector (s1Z0+Z1, s2Z0+
Z2) has a meaningful structure of dependence, while retaining gamma marginals.
Indeed, its cgf writes:

K(t) = −α1 ln (1− s1t1)− α2 ln (1− s2t2)− α0 ln (1− s1t1 − s2t2) .

This construction can be extended to what Bondesson called multivariate
generalized gamma convolutions:

Definition 2.1.3 (Gd,n and Gd). Let X be a d-variate random vector with
support Rd

+.

(i) X is a multivariate gamma convolution with shapes α ∈ Rn
+ and scale ma-

trix s = (si,j) ∈ Mn,d (R+), denoted by X ∼ Gd,n(α, s) if it has cumulant
generating function:

K(t) =
n∑

i=1

−αi ln (1− 〈si, t〉) .

We denote by Gd,n this class of distributions.
(ii) X is an (untranslated) multivariate generalized gamma convolutions with

Thorin measure ν, denoted X ∼ Gd(ν), if it is a weak limit of d-variates
gamma convolutions. Its cgf writes:

K(t) = −
∫

ln (1− 〈s, t〉) ν(ds),

for a positive measure ν of Rd
+, the Thorin measure, with suitable integra-

tion conditions (see [48]). We denote by Gd this class of distributions. In
both cases, K is defined on its (complex) domain of convergence.

Note that X ∼ Gd,n(α, s) if and only if there exists a vector Z of n inde-
pendent unit scale gamma random variables with shapes α1, ..., αn such that
X = s′Z. The jth marginal Xj has distribution G1,n(α, s.,j). We can interpret
this as a decomposition of the random vector X into an additive risk factor
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model with gamma distributed factors. Note that we allow scales to be zero,
and some factors might therefore appear only in some marginals. As in the uni-
variate case, we close the class by taking convolutional limits. For the analysis of
these distributions, we refer to [5, 6], but also [48] which uses a slightly different
but equivalent parametrization, allowing a generalization to other cones than
Rd
+.
Consider a distribution F , not necessarily in Gd, that generates our observa-

tions. We are here interested in parametric estimators in Gd of this distribution,
with particular interest for estimators in Gd,n � Gd. Indeed, Gd,n models have
a structure that allows fast simulation, and that provides meaningful insight
about the dependence structure, since a Gd,n distribution follows an additive
risk factor model. On the other hand, distributions in Gd with a non-atomic
Thorin measure are hard to sample (see [4, 50] for potential solutions to this
problem). They have no known closed-form density or distribution function, and
even the cumulant generating function requires integration to be evaluated.

Before diving into statistical considerations and estimation of these distribu-
tions in Section 3, we give here some properties about the dependence structure
that can be achieved in the Gd class, and about the regularity of the density.

Recall that a real valued random vector X with distribution function F and
marginal distribution functions F1, ..., Fd is said to be independent if F (x) =∏d

i=1 Fi(xi) and comonotonic if F (x) = min (F1(x1), ..., Fd(xd)). For more de-
tails on dependence structures, see [45], in particular Theorems 2.3.3 (Sklar),
2.5.4 and 2.5.5 (Fréchet-Hoeffding bounds). Note that Gd,1 random vectors are,
by construction, comonotonic.

Between these two extreme cases, there are many available structures of de-
pendence for a Gd random vector. The following properties give more insights
about the relation between the dependence structure of the random vector and
the dependence structure of its Thorin measure:

Property 2.1.4 (The support of the Thorin measure). Let X ∼ Gd(ν), and let
Sup(ν) be the support of ν. Then we have:

(i) The marginals of X are mutually independent if and only if

Sup(ν) ⊂ S⊥⊥ =

d⋃
j=1

(
j−1×
i=1

{0}
)

× R∗
+ ×

(
d×

i=j+1

{0}
)
.

In this case, if we denote for all j ∈ 1, ..., d, Ωj = {s ∈ Rd
+, ∀k ∈ {1, ..., d}\

{j}, sk = 0} the different parts of the support, ν(s) =
∑d

j=1 νj(sj)1s∈Ωj

where νj denotes the Thorin measure of the jth marginal, and the total

masses of ν, ν1, ..., νd are such that ν(Rd
+) = ν(S⊥⊥) =

∑d
i=1 νi(R+).

(ii) The marginals of X are comonotonic if and only if there exists a constant
c ∈ Rd

+, ‖c‖ = 1 such that

Sup(ν) ⊂ Sc =

{
r ∈ Rd

+,
r

‖r‖ = c

}
.
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In this case, the multivariate Thorin measure and its marginals have all
the same total mass.

(iii) The r.v. X has a Lebesgue-square-integrable density if D ≥ d, where D
denotes the minimum integer such that there exists constants c1, ..., cD
such that Sup(ν) ⊂

⋃d
i=1 Sci . On the other hand if D < d, X is a singular

random vector with a D-dimensional support (which is obviously the case
when ν is atomic with less than d atoms).

Proof. See Appendix A.

The link given at point (iii) of Property 2.1.4 between the regularity of the
density and the constant D (which, for atomic Thorin measures, is the rank of
the matrix s), will be investigated and quantified further in the next section.

Between the independent and the comonotonic cases, there is a wide range
of achievable dependence structures. For example, since the class Gd is closed
w.r.t. convex convolution, every (positive) value of dependence measures, such
as Kendall tau or Spearman rho, are achievable. Some examples in Section 4
also exhibit highly asymmetrical dependence structure and tail dependency.

For the study of the relation between the dependence structure of X and
the dependence structure of ν, the distribution proposed in Example 2.1.5 is of
interest.

Example 2.1.5 (A curious distribution). Let ν be a one-dimensional measure
defined through ν(dx) = 1x∈[0,1]dx. Then G1(ν) has cumulant generating func-
tion:

K(t) = 1− (t− 1)

t
ln(1− t)

Moreover, if for all n ∈ N, Gj,n ∼ G1,1

(
1
n ,

j
n+1

)
are independent, then:

n∑
j=1

Gj,n −−−−→
n→∞

G1(ν) (in distribution).

Proof. See Appendix A.

This random variable has the nice property that its Thorin measure is uniform
on [0,1]. However, its use is limited by the following negative result:

Remark 2.1.6 (The no-bijection result). Let X ∼ Gd(ν) have marginal cdf
F1, ..., Fd, and denote by G the cdf associated to the distribution of Example
2.1.5. Then, assuming that ν is absolutely continuous, the random vector(

G−1 (Fi(Xi))
)
i∈1,...,d

has uniform marginal Thorin measures, but is not Gd(cν)-distributed, where cν
is the copula of ν.

There is in fact a bijection between the copula of the random vector and the
copula of its Thorin measure, but conditionally on the marginal distributions.
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Therefore, an estimation scheme that separates the dependence structure from
the marginals seems not possible.

Before discussing the estimation of these distributions, we still need to intro-
duce in the next subsection some specific integrals, which correspond to deriva-
tives of the moment generating function and the cumulant generating function
of a random vector.

2.2. Shifted moments and shifted cumulants

We formally introduce the shifted moments and the cumulants of a random
vector, and present a known and useful result that maps moments to cumulants
and vice-versa.

Recall that X is a random vector of dimension d, with moment generating
function M and cumulant generating function K defined by:

∀t ∈ Cd, M(t) = E
(
e〈t,X〉

)
and K(t) = lnM(t).

We now introduce specific notations for the derivatives of these two functions.

Definition 2.2.1 (Shifted moments and cumulants). For X a random vector
of dimension d, for i ∈ Nd, define the t-shifted ith moments μi,t and cumulants
κi,t as the ith derivatives of (respectively) M and K, taken at t:

μi,t = M (i)(t) and κi,t = K(i)(t).

They correspond to the moment and cumulants of an exponentially tilted
version of the random vector X, sometimes called the Escher transform [19] of
X. Although standard Monte-Carlo estimators for shifted moments are unbiased
and easy to compute, shifted cumulants are a little harder to estimate from i.i.d.
samples of a random vector. We refer to [53, 52] for some unbiased estimators of
multivariate cumulants, and [31] for an application to the estimation of stable
laws. To switch from moments to cumulants, Property 2.2.2 gives a bijection
between the two:

Property 2.2.2 (Bijection between moments and cumulants). For a given shift
t ∈ Cd and m ∈ Nd, the sets (μi,t)i≤m and (κi,t)i≤m are in bijection.

Proof. Since (μi,t)i≤m and (κi,t)i≤m are respective Taylor coefficients at t of
exp ◦K and K, they are in bijection through the multivariate Faà Di Bruno
formula [10, 42, 17].

Remark that this bijection can be expressed in many ways: most analysis in
the literature uses multivariate Bell Polynomials [3, 12, 28, 38] for this task. For
computational purposes, there exists some practical functions that give coeffi-
cients of Bell polynomials [59, 21], and a generalized implementation is provided
by the R package kStatistics [16, 17], available on CRAN3, for d ≥ 1. However,

3kStatistics: https://cran.r-project.org/package=kStatistics.

https://cran.r-project.org/package=kStatistics
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in all generality, the number of coefficients to compute and store is exponen-
tial with m making this method quite unpractical, as the Bell polynomials are
combinatorial in nature.

To switch from cumulants to moments, the good property of the exponential
function of being its own derivative allows a recursive approach, which is de-
scribed in full details in [40]. We adapted the notation and simplified the indexes
conventions from [40], which allowed, after adding a slack variable to handle the
dimensionality index, for an even faster implementation.

The expression in Algorithm 1 below uses derivatives of the cgf and mgf as
it is the case that we need, but the derivative of the exponential of any function
could be computed through exactly the same algorithm, knowing the derivatives
of the exponent.

Algorithm 1: Recursive computation of μ from κ. (see [40])

Input: m ∈ Nd, Shifted Cumulants (κk,t)k≤m

Result: Shifted Moments (μk,t)k≤m

Set μ0,t = exp (κ0,t)
Set μk,t = 0 for all k �= 0
foreach k : 0 �= k ≤ m do

Set d as the index of the first ki that is non-zero.
Set p = k
Set pd = pd − 1
foreach l : l ≤ p do

μk,t += (μl,t) (κk−l,t)
(
p
l

)
end

end
Return μ

Note that the main loop of Algorithm 1 must be done in the right order
such that each μk is computed before being used. This recursive formulation
has stunning results and is at the moment the fastest way this computation can
be done4. Unfortunately, no equivalently fast procedure can be found the other
way around, as the derivatives of the log function are more complicated.

We now dive into the estimation of multivariate gamma convolutions. We
highlight in the next subsection the univariate projection procedure from [20,
41].

2.3. Projection from G1 to G1,n

Suppose that we have a density in G1, given as a formal function. Then, for a
certain n ∈ N, the procedure provided by Miles, Furman & Kuznetsov in [41, 20],
hereafter called “the MFK procedure”, gives expression for the shapes α and
scales s of a G1,n(α, s) that is exponentially close to the desired density. We will

4The complexity is not exponentially increasing in the size of the arrays, on the contrary
to naive implementations of Faà Di Bruno’s formula, see [40].
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not describe the algorithm here, we refer to the original article for the details
as the exposition is quite long, but we will comment on the results and caveats
and use it as a comparison basis for later experiments.

The MFK procedure solves a univariate moment problem for the Thorin
measure. This moment problem can be highlighted by deriving the cumulant
generating function of a G1 random vector. Indeed, remark that, for X ∼ G1(ν)
and t ≥ 0,

κk,−t = (k − 1)!

∫
sk

(1 + st)
k
ν(ds),

and use the change of variables x = s
1+st , mapping R+ to

[
0, 1

t

]
. You obtain a

moment problem of the form:

ξk =

∫
[0, 1t ]

xk ξ(dx), ∀k ≤ m,

where ξ = (ξk)k∈N =
(

κk,−t

(k−1)!

)
k∈N

are moments that the measure ξ needs to fit.

We can then obtain a solution with n atoms for the measures ξ and ν by
solving a truncated version of this moment problem. In the univariate case,
K(1) is a one-dimensional Stieltjes function, and therefore this moment problem
can be efficiently solved via Padé approximants (see [13]).

The first drawback of MFK is that the computed moments ξ need to be
inside the moment cone of positive measure on

[
0, 1

t

]
. For the projection of

a formal density already in G1 on G1,n, this condition imposes estimations of
shifted moments (from which ξ are derived) with at least 1024 bits of precision
(about 300 digits). On the other hand, if ξ is not a sequence of moments of
some measure on

[
0, 1

t

]
, then the moment problem becomes unsolvable, and

MFK fails to provide correct (within boundaries) atoms and weights for the
measures ξ and ν. From an empirical dataset, even if the true distribution lies
in G1, evaluation of μ through Monte-Carlo with enough precision is therefore
impossible.

Through this moment problem interpretation, the approach could neverthe-
less be carried out in higher dimensions, for projections of densities from Gd to
Gd,n, with an even stronger integration precision requirement as the dimension
increases. However, the results about the complete factorization of the Padé
approximants denominator of a Stieltjes function, which drastically simplifies
the solution of the moment problem, are not true for d > 1. This possibility is
nevertheless discussed in the next section.

3. Construction of an estimator in Gd,n

We attempt a multivariate extension of the MFK algorithm. In a multivariate
setting, through the moment problem interpretation of MFK algorithm devel-
oped in Subsection 2.3, we can express the corresponding multivariate moment
problem.
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For X ∼ Gd (ν), consider K the cumulant generating function of X, given in
Definition 2.1.3 as:

K(t) = −
∫

ln (1− 〈s, t〉) ν(ds),

where t is in the (complex) domain of convergence of K.
Assuming |i| ≥ 1 and the real parts � (t) of t are all non-positives, we have

that
∂i

∂it
ln (1− 〈s, t〉) = −si (|i| − 1)! (1− 〈s, t〉)−|i|

,

and, therefore,

κi,t = K(i)(t) = − ∂i

∂it

∫
ln (1− 〈s, t〉) ν(ds)

=

∫
si (|i| − 1)! (−1)

|i|−1
(1− 〈s, t〉)−|i|

ν(ds)

= (|i| − 1)!

∫
si

(1− 〈s, t〉)|i|
ν(ds). (1)

Note that � (t) ≤ 0 is inside the region of convergence of the function, and
use now the (bijective, continuous) change of variables:

x =
s

1− 〈s, t〉 ⇐⇒ s =
x

1 + 〈x, t〉 ,

which goes from Rd
+ to the simplex Δd(−t) =

{
x ∈ Rd

+, 〈x,−t〉 ≤ 1
}
, yielding

an equivalent problem of finding the measure ξ that solves the more standard
moment problem:

∀ i ≤ m, ξi =

∫
Δd(−t)

xiξ (dx) , (2)

where we denoted ξ =
(

κi,t

(|i|−1)!

)
i≤m

the moments that ξ needs to match ac-

cording to Equation (1).
Finding an n-atomic measure ξ solution to these equations is equivalent to

finding the parametrization of a Gd,n distribution that fulfills the cumulant con-
straints. The corresponding Generalized Moment Problem is known as a hard
problem in the literature, but can be solved through semi-definite positive relax-
ations, following, e.g., [22, 46, 23]. Sadly, these algorithms and the corresponding
literature focus on the first case, where ξ are, indeed, moments of a measure
supported on the simplex Δd(−t), which is the case only if X ∈ Gd,n and if ξ
are computed with enough precision, as it was in univariate settings.

If the knowledge about the distribution of X is given through empirical ob-
servations, with sampling noise, or if the true distribution is not in the Gd,n class,
these moments will not belong to the moment cone, and the moment problem
will have no solution. By projecting the moments onto the moment cone, we
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could force the known algorithms to provide a solution, but the projection onto
this cone is not an easy task (see [14, 15] for details on moment cones).

The estimation of an n-atomic Thorin measure from samples of the random
vector X therefore rises several questions, both in univariate and multivariate
cases. If we empirically compute cumulants, we will stand outside the moment
cone and the moment problem will have no solution. Then, should we consider
Equation (2) as a multi-objective optimization problem? Do we seek a Pareto
front, or can we consider that some moments are less important than others? If
we do, how do we weight the several objectives?

To produce a meaningful loss to minimize, we will weight these moment
conditions. For this purpose, we leverage a certain Laguerre basis of L2(Rd

+) to
expand the density of random vectors in Gd,n, and to construct a coherent loss
for this, potentially impossible to solve, moment problem.

3.1. The tensorized Laguerre basis

The standard Laguerre polynomials [44] form an orthogonal basis of the set
L2(R+, e

−x) of square integrable functions with respect to the weight function
x �→ e−x. From these polynomials, we can extract the following orthonormal
basis of the set L2(Rd

+) of functions that are Lebesgue square-integrable on Rd
+:

Definition 3.1.1 (Laguerre function). [9, 35, 18] For all k ∈ Nd, define the
Laguerre functions ϕk with support Rd

+ by:

ϕk(x) =
d∏

i=1

ϕki(xi) where for k ∈ N, ϕk(x) =
√
2e−x

k∑
�=0

(
k

	

)
(−2x)�

	!
.

For every function f ∈ L2(Rd
+), for every k ∈ Nd, coefficients of f in the basis

are denoted by:

ak (f) =

∫
Rd
+

f(x)ϕk(x) dx,

and we have, since the basis is orthonormal, that f(x) =
∑

k∈Nd ak(f)ϕk(x)
and that ‖f‖22 =

∑
k∈Nd a2k(f).

Furthermore, for X a random vector with density f ∈ L2

(
Rd
+

)
and shifted

moments μ, we have by simple plug-in of f and ϕk into the expression of ak
that:

ak(f) =
√
2
d ∑
�≤k

(
k

�

)
(−2)|�|

�!
μ�,−1. (3)

We now denote ak(α, s) the kth Laguerre coefficient of the Gd,n(α, s) distri-
bution.

Example 3.1.2 (X ∼ Gd,1(α, s)). For X ∼ Gd,1(α, s), there exists an explicit
bijection between the d+ 1 first Laguerre coefficients (with index k s.t. |k| ≤ 1)
and the d+ 1 parameters, whose expression is given in the proof.
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Proof. See Appendix A.

This example is quite peculiar since by Property 2.1.4 the random vector is
singular. Note that the edge case ∃i ∈ 1, .., d, ri = 0, in which the ith marginal
is identically zero, is included in the previous result.

We do not know if the same kind of inversion could be carried out analytically
for the coefficients of Gd,n densities, since Laguerre coefficients are not as trivially
expressed in all generality. Furthermore, this kind of parametric inversion would
not work for empirical datasets or densities outside the class, and is therefore not
our focus here. However, we can efficiently compute coefficients from parameters
of a Gd,n random vector through Algorithm 2, based on Algorithm 1:

Algorithm 2: Laguerre coefficients of Gd,n(α, s) distributions.

Input: Shapes α ∈ Rn
+, scales s ∈ Mn,d (R+), and truncation threshold

m ∈ Nd

Result: Laguerre coefficients a = (ak)k≤mof the Gd,n (α, s) density
Side-product: −1-shifted cumulants κ and moments μ op to order m of

the Gd,n(α, s) distribution.
Compute the simplex version of the scales xi =

si

1+|si| for all i ∈ 1, ..., n.

Let κ0 =
n∑

i=1

αi ln (1− |xi|)

Let a0 = μ0 = exp (κ0)
foreach 0 �= k ≤ m do

Let ak = μk = 0
Let d be the index of the first ki that is non-zero.
Let p = k
Set pd = pd − 1

Let κk = (|k| − 1)!
n∑

i=1

αix
k
i according to Eq. (1)

foreach l ≤ p do
Set μk += (μl) (κk−l)

(
p
l

)
according to Algorithm 1

Set ak += μl

(
k
l

) (−2)|l|

l! according to Eq. (3)

end

Set ak += μk
(−2)|k|

k!

end

a =
√
2
d
a

Return a

The complexity of Algorithm 2 is quadratic in |m|. Note that, as in Algo-
rithm 1, computations need to be performed in the right order. Sometimes,
the Laguerre coefficients a = (ak)k≤m overflow the Float64 limits, but the im-
plementation we provide in the Julia package ThorinDistributions.jl [32],
ensures that the computations do not overflow by using multiple precision arith-
metic when needed. Furthermore, as in Algorithm 1, the use of Miatto’s fast re-
cursion gives this algorithm a good efficiency, even for reasonably large d, n,m.
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By reordering the coefficients and leveraging generalizations of Laguerre poly-
nomials, we have the following link with Moschopoulos’s density:

Remark 3.1.3 (Generalized Laguerre basis and Moschopoulos density). Note
that Laguerre expanded densities are expressed as (infinite) gamma mixtures, as
was Moschopoulos’s density in the univariate case (see Property 2.1.2). Further-
more, following [9], the Laguerre basis is defined through univariate orthogonal
polynomials w.r.t the weight function e−x, i.e a G1,1(1, 1) density. If, instead,
we use the weight function xρe−x, ρ ≥ 0, corresponding to a G1,1(1 + ρ, 1) den-
sity, the associated orthogonal polynomials are the so-called generalized Laguerre
polynomials, and a slightly different associated orthonormal basis of L2(Rd

+) is
obtained. In the one-dimensional case, if we chose ρ to be the total mass of
the Thorin measure, we retrieve Moschopoulos series from Property 2.1.2 as a
Laguerre expansion.

Sadly, even if mixtures of gammas are easier to fit by k-MLE procedure [47,
51], we have no way of identifying the subspace of coefficients that would match
a true convolution of gammas: as [5] noted in the univariate case, generalized
gamma convolutions can be expressed as mixtures of gammas, but there is no
simple reverse mapping. Last but not least, if the expansion through generalized
Laguerre polynomials with a parameter corresponding to the total mass of the
Thorin measure would converge faster, we would have no way of estimating this
parameter beforehand from data, and for many useful cases it would be infinite
(log-Normals among others).

We can now compute efficiently these Laguerre coefficients for Gd,n distribu-
tions. In the next subsection, we provide a control on their decay.

3.2. Exponential decay of Laguerre coefficients

We now consider the convergence of these Laguerre expansions. Under simple
technical assumptions on the parameters of a Gd,n random vector, Laguerre
coefficients are (uniformly) exponentially decreasing. Theorem 3.2.1 provides
this bound:

Theorem 3.2.1 (Exponential decay of Laguerre coefficients). For any ε, ε′

s.t. ε > ε′ > 0 and any dimension d, there exists a finite positive constant
B(d, ε′) such that the Laguerre coefficients (ak)k∈Nd of any d-variate ε-well-
behaved gamma convolution satisfy:

|ak| ≤ B(d, ε′)(1 + ε′)−|k|.

Of course, we did not define yet the concept of ε-well-behaved gamma con-
volution, which will be central in the proof. Before exposing the main proof, we
start by a few technical statements. Lemma 3.2.2 gathers some useful properties
about a particular univariate Möbius transform.
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Lemma 3.2.2 (Property of a Möbius transform). Let h be the Möbius trans-
form:

h(t) =
t+ 1

t− 1
.

For a ∈ C and b ∈ R+, we denote the disc with center a and radius b by:

D(a, b) = {t ∈ C, |t− a| < b} .

Also denote c(t) = t2+1
t2−1 and r(t) =

∣∣∣ 2t
t2−1

∣∣∣, and finally denote C− and C+ the

left half and right half of the complex plane. The following holds:

(i) h is its own inverse, i.e., h(h(t)) = t, and h has a simple pole at t = 1
which has limit +∞ if Re(t) > 1 and −∞ if Re(t) < 1, t → 1.

(ii) h(1/t) = −h(t) for all t ∈ C and |h(t)| > 1 for all Re(t) > 0, Im(t) < +∞
(iii) h(D(0, 1)) = C−
(iv) If b < 1, h(D(0, b)) = D(c(b), r(b)) ⊂ C−
(v) If b > 1, C \ h(D(0, b)) = D(c(b), r(b)) ⊂ C+

Proof. See Appendix A.

We are now in position to define the concept of ε-well-behaved gamma convo-
lutions, which is a specific regularity assumption on a parametrization of gener-
alized gamma convolutions. Unfortunately, it is a little cumbersome to describe
as Definition 3.2.3 shows.

Definition 3.2.3 (ε-well-behaved gamma convolutions). A gamma convolution
Gd,n(α, s) is said to be ε-well-behaved, in short ε-w.b., if |α| > 1 and ∀I ⊆
{1, ..., n} such that

∑
i∈I αi >

∑
i/∈I αi, denoting sI = (si)i∈I , for any (complex)

solution t∗ of the linear system of equations sIt = 1, at least for one j ∈ 1, ..., d,
|h(t∗j )| > 1 + ε.

An equivalent statement when d = 1 is simply that |α| > 1 and s ∈] ε
2+ε ,

2+ε
ε [n.

If there exists ε > 0 such that the model is ε-w.b., we say that the model is
well-behaved, in short w.b.

Of course, any ε1-w.b. gamma convolution is ε2-w.b. for any 0 < ε2 < ε1.
Property 3.2.4 gives equivalent statements for the well-behavior of a gamma
convolution, hopefully clarifying the requirements from Definition 3.2.3.

Property 3.2.4 (Well-behaved gamma convolution). For a gamma convolution
Gd,n(α, s) with Thorin measure ν, the following statements are equivalent:

(i) Gd,n(α, s) is well-behaved.
(ii) ∃ ε > 0 such that Gd,n(α, s) is ε-well-behaved.
(iii) |α| > 1 and ∀I ⊆ {1, . . . , n} such that

∑
i∈I αi >

∑
i/∈I αi, Ker(sI) =

{0}.
(iv) ν(Rd

+) > 1 and there exists no c1, . . . , cp linearly independent, p < d, such
that

ν

(
p⋃

i=1

Sci

)
>

ν(Rd
+)

2
,
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where Sc is as defined in Property 2.1.4.

Proof. First, (i) ⇐⇒ (ii) is just the definition of well-behavior. Furthermore,
(iv) is equivalent to (iii): a subset of scales sI such that

∑
i∈I αi >

∑
i/∈I αi

is a subset of scale that has the majority of the weight of the Thorin measure
assigned to it, and Ker(sI) = 0 if and only if at least d linearly independent
directions are inside sI . Therefore, we only show (ii) ⇐⇒ (iii).

By Rouché-Capelli’s Theorem, see [55], any complex solution (if there are
some) of the linear system sIt = 1 is unique if and only if Ker(sI) = {0}. If it
exists, call this solution t∗ ∈ Cd.

Now, since for a given i ∈ I, si,j are all non-negative reals and one of them
must not be zero, t∗ must have at least one component t∗j that has a positive
real part. Furthermore, this component is clearly of bounded modulus since the
solution is unique and all si,j are finite.

Finally, the requirement |h(t∗j )| > 1 + ε is equivalent, through Lemma 3.2.2,
point (v), to |t∗j−c(1+ε)| < r(1+ε) (where c and r were defined in Lemma 3.2.2).

Since the disk D(c(1 + ε), r(1 + ε)) is in C+, and tends to the whole C+ as
ε goes to 0 by Lemma 3.2.2, point (iv), there always exist an ε > 0 so that a
bounded t∗j with positive real part is inside this disk.

The proof of Property 3.2.4 gives a generic way of finding the greatest ε that
makes a well-behaved gamma convolution ε-w.b. for the general multivariate
case. In a certain sense, the ε-w.b. property is a quantification of the statements
from Property 2.1.4: the Thorin measure must not assign half of its mass or more
to any subset that would correspond to a non absolutely continuous gamma
convolution. It is therefore stronger than the absolute continuity of the density.
A surprise comes in the next examples, where we show the unexpected fact that
the w.b. subclass of gamma convolutions is closed w.r.t finite convolutions.

Example 3.2.5 (Simple w.b. examples). As soon as the total mass of their
Thorin measure is greater than one, the following gamma convolutions are well-
behaved:

(i) Any univariate gamma convolution (the best ε is given in Definition 3.2.3).
(ii) Any independent random vector in Gd,n.
(iii) Any invertible linear transformation of a well-behaved (multivariate) gam-

ma convolution
(iv) Any finite convolution of well-behaved (multivariate) gamma convolutions.

Proof. See Appendix A.

We are now ready to prove the statement of Theorem 3.2.1.

Proof of Theorem 3.2.1. The theorem stated that, for any ε, ε′ s.t. ε > ε′ >
0 and any dimension d, there exists a finite positive constant B(d, ε′) such
that the Laguerre coefficients (ak)k∈Nd of any d-variate ε-well-behaved gamma
convolution verify:

|ak| ≤ B(d, ε′)(1 + ε′)−|k|.
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The sketch of the proof is as follows: we construct a multivariate complex
function R that has the Laguerre coefficients as its Taylor coefficients, and we
show by a singularity analysis that this function is analytic around the origin, in
a polydisc with polyradius 1+ ε. We conclude by applying Cauchy’s inequality.
As the one-dimensional case allows for more detailed computations, we start by
working for all d, and split later into the two cases d = 1 and d > 1.

We follow the path of [27] to express the Laguerre coefficients (ak)k∈Nd as
the Taylor coefficients of a certain (d-variate, complex) function R. From the
computation of the moment generating function M(t) of the Laguerre expanded
density f(x) =

∑
k∈Nd akϕk(x), we have:

M(t) =

∫
Rd
+

e〈t,x〉f(x) dx =
√
2
d ∑
k∈Nd

ak

d∏
i=1

ki∑
j=0

(
ki
j

)
(−2)j

j!

∫
R+

e(ti−1)xixj
i dxi

=
√
2
d ∑
k∈Nd

ak

d∏
i=1

ki∑
j=0

(
ki
j

)
(−2)j

(1− ti)j+1

=
√
2
d
(1− t)−1

∑
k∈Nd

ak

(
1− 2

1− t

)k

=
√
2
d
(1− t)−1

∑
k∈Nd

ak

(
t+ 1

t− 1

)k

,

which implies that:

∑
k∈Nd

ak

(
t+ 1

t− 1

)k

=
√
2
−d

(1− t)1M(t).

Now denote h(t) = (h(t))t∈t, so that h applies the Möbius transform h(t) =
t+1
t−1 from Lemma 3.2.2 componentwise. Using the substitutions y = h(t) ⇐⇒
t = h(y) (since h is its own inverse), which implies that (1− t)

1
= 2d (1− y)

−1
,

we define the function R as:

R(y) :=
∑
k∈Nd

aky
k =

√
2
−d

M (h(y)) (1− h(y))
1

=
√
2
d
M (h(y)) (1− y)

−1
.

We now study the regularity of the function R, which is tightly related to the
regularity of M . Recall first the expression of the moment generating function
for our random vector:

M(t) =
n∏

i=1

(1− 〈si, t〉)−αi
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Denote by VR the singular variety of R, i.e., the set of points where R is not
analytic. From the singularities of y �→ (1−y)−1 and from those of M , we have:

VR ⊆ {y : ∃j, yj = 1}
⋃ n⋃

i=1

{y : 〈si,h(y)〉 = 1} .

Consider first the fact that, since the model is ε-w.b., |α| > 1. Hence,
M(h(y)) dominates (1− y)−1 when y goes to 1 (as h(y) goes to infinity) and
therefore R is analytic at 1. Thus, we only need to consider the singularities of
M(h(y)), and we can further restrict VR:

VR ⊆
n⋃

i=1

{y : 〈si,h(y)〉 = 1} .

We now split the argument into the cases d = 1 and d > 1, to show that
the ε-w.b. condition is equivalent to the analyticity of R on the polydisc with
polyradius 1 + ε.

When d = 1, all singularities of R are such that sh(y) = 1 for a scale s ∈ s.
In other words, the singularities are at the points y = h(1s ) for each scale s ∈ s.
Recall that −h(x) = h(x−1), and that h is (strictly) decreasing before and after
its vertical asymptote at 1. Three cases arise:

• If s ∈]0, 1[, then |y| = |h
(
1
s

)
| = h

(
1
s

)
> 1 + ε ⇐⇒ 1

s < h(1 + ε) ⇐⇒
s > h(1 + ε)−1 = ε

2+ε .

• If s ∈]1,+∞[, then |y| = |h
(
1
s

)
| = h(s) > 1 + ε ⇐⇒ s < h(1 + ε) = 2+ε

ε .

• If s = 1, h
(
1
s

)
= ±∞ and there is no singularity.

Hence,

min
y∈VR

|y| > 1 + ε ⇐⇒ ε

2 + ε
< s <

2 + ε

ε
,

which corresponds (with |α| > 1) to the one-dimensional ε-w.b. condition.
We now turn ourselves to the multivariate case. When d > 1, the singularities

of t �→ M(t) are the zeros of the function:

G : t �→
n∏

i=1

(1− 〈si, t〉)αi .

Any zero t∗ of G must satisfy the system of equations sIt
∗ = 1 for a given

non-empty I ⊆ {1, ..., n}. However, for t∗ to be unbounded, we must have∑n
i=1 αi1i∈I ≥

∑n
i=1 αi1i/∈I .

By the definition of a ε-w.b. model, there exist no such unbounded zeros as,
for any t∗ zero of G s.t.

∑n
i=1 αi1i∈I ≥

∑n
i=1 αi1i/∈I , we have that:

∃i ∈ 1, ..., d, |h(t∗i )| > 1 + ε.

Thus, the singularities of R, which are images by h of the zeros of G, must
have at least one dimension that is outside the centered polydisc with radius
1 + ε.
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Hence, whatever d, R is analytic on the centered polydisc with polyradius
1 + ε.

Now, for any d, by Cauchy’s inequality, see Theorem 2.2.7 in [24], by taking
a ε′ strictly between 0 and ε we have the wanted finite upper bound on the
coefficients:

B(d, ε′) = sup
(α,s):Gd,n(α,s) is ε-w.b.

∀i,|yi|<1+ε′

R(y) < ∞.

We can now compute efficiently the Laguerre coefficients of densities in Gd,n,
with an insurance that they would decrease fast if the model is well-behaved.
We propose in the next subsection to finally discuss an estimation algorithm
based on an Integrated Square Error loss that leverages these coefficients.

3.3. Consistency of the induced empirical loss

Expressing the density of Gd,n random vectors into the basis from Definition 3.1.1
allows us to truncate the basis and effectively compute an approximated den-
sity. From this, by evaluating empirical Laguerre coefficients from data, we will
fit the parameters to data by minimizing the L2 distance between coefficients
(since the basis is orthonormal).

For parameters α, s, denote by fα,s the density of the Gd,n(α, s) distribution.
For a number of observations N ∈ N, suppose X1, ...XN are i.i.d. random

vectors from a true unknown density f with support Rd
+.

We would like to minimize the integrated square error:

‖f − fα,s‖22 =
∑
k∈Nd

(ak(f)− ak(α, s))
2
.

Estimating ak(f) =
∫
f(x)ϕk(x) dx by a simple Monte-Carlo plug-in

âk =
1

N

N∑
i=1

ϕk(Xi), (4)

we could compute an approximation of this loss. However, we cannot compute
all couples of coefficients âk and ak(α, s) for all k ∈ Nd, so that we are forced
to truncate the basis.

Definition 3.3.1 (Gd,n parameters estimator). For a set of i.i.d. random vec-
tors X = (X1, ...,XN ), we define parameters estimator of a well-behaved Gd,n

distribution that matches the observations as:

(α̂, ŝ) = argmin
Gd,n(α,s)w.b.

Lm(X,α, s),

where the approximated truncated loss Lm is given by:

Lm(X,α, s) =
∑
k≤m

(âk − ak(α, s))
2
,

and where the empirical Laguerre coefficients âk are given by (4).
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The loss Lm(X,α, s) can be efficiently computed through Algorithm 2. It will
be 0 if the first coefficients of the Laguerre expansion of f and of our estimator
match perfectly, i.e., assuming f ∈ Gd,n and m big enough, if we found the
right Thorin measure. Note that if the goal was given theoretically, like in a
projection from Gd to Gd,n, we could compute âk by formal integration with
high precision instead of Monte-Carlo. We will discuss this option in the next
section. However, even in this case, the error that comes from the truncation of
the basis cannot be computed.

To show the consistency of this loss, we use in the following the results from
Theorem 3.2.1.

Property 3.3.2 (Consistency). Consider that f ∼ Gd,n(α0, s0) is well-behaved,
and denote X a set of N i.i.d. random vectors with this distribution. Fix m ∈
Nd. Suppose that we have a global minimizer

(α̂, ŝ) = argmin
Gd,n(α,s)w.b.

Lm(X,α, s),

which depends on the threshold m and on the N observations X. Then:

‖f − fα̂,ŝ‖22
a.s−−−−→

N→∞
m→∞

0.

Proof. To show the result, we start by expressing the loss in the Laguerre basis,
and we split the basis on indices smaller and greater than m. For the sake of
simplicity, we will omit f in ak(f) and denote ak = ak(f). We have:

‖f − fα̂,ŝ‖22 =
∑
k∈Nd

(ak − ak(α̂, ŝ))
2

=
∑
k≤m

(ak − ak(α̂, ŝ))
2

︸ ︷︷ ︸
A

+
∑
k>m

(ak − ak(α̂, ŝ))
2

︸ ︷︷ ︸
B

,

where k > m ⇐⇒ ∃i ∈ 1, ..., d : ki > mi.
We first show that A

a.s.−−−−→
N→∞

0 for any fixed m. For A, we can treat each term

in the summation independently as the sum is finite. A can be then expanded
further by plugging-in the Monte-Carlo estimator âk = 1

N

∑N
i=1 ϕk(Xi) and

expanding the square:

A =
∑
k≤m

(ak − âk)
2

︸ ︷︷ ︸
A1

+2
∑
k≤m

(ak − âk) (âk − ak(α̂, ŝ))︸ ︷︷ ︸
A2

+
∑
k≤m

(âk − ak(α̂, ŝ))
2

︸ ︷︷ ︸
Lm(X,α̂,ŝ)

.

Now, since âk
a.s.−−−−→

N→∞
ak by the strong law of large numbers, A1

a.s.−−−−→
N→∞

0.

Furthermore, since we restricted the optimization to well-behaved estimators,

each ak(α̂, ŝ) is bounded by Theorem 3.2.1. Now |âk| ≤
√
2
d
because |ϕk(x)| ≤
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√
2
d
whatever x ∈ Rd

+. Therefore, for any k, (âk − ak(α̂, ŝ)) is bounded and

(ak − âk) −−−−→
N→∞

0, which makes A2
a.s.−−−−→

N→∞
0.

Last but not least, by definition of (α̂, ŝ) as global minimizers,

Lm(X, α̂, ŝ) ≤ Lm(X,α0, s0)
a.s.−−−−→

N→∞
0,

since Monte-Carlo estimators are not biased, and (α0, s0) is inside the range of

optimizations. Therefore, we can conclude that A
a.s.−−−−→

N→∞
0 for any m fixed.

Now consider the remainder B. We show that B
a.s.−−−−→

m→∞
0 uniformly in N .

Since both the true model and the approximation are well-behaved, there exists
ε > ε′ > 0 so that they are both ε-w.b. By Theorem 3.2.1 we have then,

|ak| ≤ B(d, ε′)(1 + ε′)−|k|

and |ak(α̂, ŝ)| ≤ B(d, ε′)(1 + ε′)−|k|.

Therefore:

B =
∑
k>m

(ak − ak(α̂, ŝ))
2

≤ 4B(d, ε′)2
∑
k>m

(
(1 + ε′)2

)−|k| a.s.−−−−→
m→∞

0,

uniformly in N , which concludes the argument.

Although the consistency result restricts the parameter space to only well-
behaved Thorin measures, in practice we run our optimization procedures with-
out this restriction, and simply check at the end that the resulting estimators are
well-behaved. When d = 1, we can always fix ε to make the estimated gamma
convolution ε-w.b. if |α̂| > 1. In practice, numerical computations have troubles
producing collinear scales, so every estimated multivariate gamma convolution
is usually well-behaved as soon as the total mass of the produced Thorin mea-
sure is greater than 1. Recall that univariate distributions like log-Normal and
Pareto have an infinite total mass for the Thorin measure.

We now have a reliable loss to minimize and an efficient algorithm to com-
pute it, allowing us to estimate multivariate gamma convolutions from data.
To test the approach, we propose in the next section to discuss some potential
applications.

4. Investigation of performance

In this section, we show the results of our algorithm on several examples, both
in univariate and multivariate settings.

Note that, through the recursive Faà di Bruno’s formula in Algorithm 2,
we produce Laguerre coefficients as high degree multinomials into α, μ0 and ξ
(the simplex projection of the scales). The loss will therefore have a myriad of
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local minima, making it non-convex and forcing us to use global minimization
routines. We found the Particle Swarm [30, 34] global optimization routine to
work particularly well.

All the implementation was gathered in the provided Julia package, along
with the code corresponding to this investigation. Indeed, Julia allowed the use
of high-precision arithmetic together with compiled code and global optimiza-
tions routines without the (potentially error-prone) reimplementation of at least
one of these three features5, which was not possible in Python, R, Matlab or
C++ for example.

We start by the projection of known densities onto the G1,n class, differen-
tiating the cases when the known density is inside G1 or not. Then we discuss
the estimation of G1,n models from empirical data, with heavy tailed simulated
data, and we finally look at the estimation of Gd,n models from multivariate
empirical data, with a particular emphasis on the properties of the dependence
structure underlying the data. We conclude by a direct application on a real
dataset, using the Loss-Alae dataset from Klugman & Parsa [29].

4.1. Projection from a known density

The two first examples are a log-Normal and a Weibull, that have the partic-
ularity of being respectively inside and outside G1. We will also take a look at
the Pareto case, which is inside G1, but might be outside L2(R+).

We want to compare our algorithm to the MFK procedures, discussed in
Section 2.3 on fair grounds. Therefore, we slightly modify our algorithm to use
coefficients based on the theoretical integrals μk,−1, as MFK. The choice of the
input distributions is also guided by [41, 20]. The experiment is as follows:

• We compute shifted moments (μk,−1)k≤2n of the distribution through di-

rect integration of the density, at 1024 bits of precision (to match the 300
digits that MFK requires).

• We use MFK to fit a G1,n based on these moments.
• Through Eq (3), we compute Laguerre coefficients based on the same

shifted moments μk,−1, and we minimize the loss given through Algorithm
2 to obtain our approximation.

• We compute Kolmogorov-Smirnov (one-sample, exact) distances between
N = 10 000 simulations from the estimated G1,n model to the theoretical
distribution, on B = 100 different simulations.

4.1.1. Projection from G1 densities to G1,n

The log-Normal distribution is a fundamental distribution in the G1 class. The
proof that it belongs to G1 is actually what historically initiated the study of the
class by Thorin. To match MFK’s experiment, we conduct our first comparison

5For more details about Julia, see julialang.org.
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with a log-Normal LN(μ = 0, σ = 0.83) density. The resampled Kolmogorov-
Smirnov distances are summarized, for several n and for both algorithms, in
Figure 1.

Fig 1. Violin densities of resampled KS distances (smaller is better). In abscissa is n ∈
{2, 3, 4, 5, 10, 20, 30, 40}, the number of gammas used in the approximation.

Although MFK has a very strong convergence result, for n = 2 gammas our
estimator performs better with the same information (theoretical shifted mo-
ments given with 1024 bits precision), and that for n > 2, the performance is
overall the same. Indeed, we see that in most cases the two algorithms found
parameters that are close to each other. We reported the shapes and scales that
both algorithms produced for n = 2, 3, 4 and 5 in Table 1.

Table 1

Estimated parameters from both algorithms on the log-Normal example

MFK Laguerre

α̂ ŝ α̂ ŝ

n=2 0.5688 1.5622 0.5458 1.6283
2.4596 0.1941 2.4539 0.1999

n=3 0.2195 2.4902 0.2070 2.5781
0.8934 0.6718 0.8919 0.6875
2.6081 0.0972 2.6071 0.0987

n=4 0.0919 3.4076 0.0844 3.5307
0.4596 1.2208 0.4555 1.2513
1.0042 0.3737 1.0063 0.3792
2.6956 0.0588 2.6957 0.0594

n=5 0.0398 4.3466 0.0346 4.5447
0.2569 1.7963 0.2492 1.8576
0.5708 0.7234 0.5721 0.7394
1.0576 0.2399 1.0609 0.2428
2.7574 0.0396 2.7582 0.0399

Although the produced estimations are close to each other on this example,
our method has several clear benefits: the full density does not need to belong



Estimation of multivariate generalized gamma convolutions 5183

to G1, and we do not require shifted moments up to 300 digits precision. In the
next subsection, we describe the same experiment on a Weibull density that is
known to make MFK simply fail, even with accurate enough computations.

4.1.2. Projection from densities outside G1 to G1,n

Let X be a Weibull r.v. with shape k > 0. Its pdf can then be written as:

f(x) = kxk−1e−xk

1x≥0.

When k > 1, this distribution does not belong to G1. In [41, 20], authors
report negative shapes for the MFK approximation in G1,2 of the Weibull with
shape k = 3

2 , which is clearly a failure. This failure is occurring because the
truncated moment problem that MFK is solving has no solution, as we detailed
in Section 2.3, since the (normalized) cumulants ξ are not inside the moment
cone.

However, the Laguerre basis is an orthonormal basis of L2(R+), which con-
tains this density. The projection procedure detailed at the top of Subsection 4.1
still works correctly: it produces meaningful shapes and scales that are positive,
whatever the number of gammas we ask for. Figure 2 displays a Violin plot of
KS distances for several numbers of gammas:

Fig 2. Violin densities of resampled KS distances for approximation of a Weibull(k = 1.5).
In abscissa is n ∈ {2, 3, 4, 5, 10, 20, 30, 40}, the number of gammas used in the approximation.
Only the Laguerre approximation results are presented.

On Figure 2, we see that the KS distance is decreasing for an increasing num-
ber of gammas n, when n is small, but reaches a minimum quite quickly. Indeed,
the distance is lower-bounded since the target is not in the class. Although none
of the proposed approximations passes the KS test, we will revisit this example
later from an estimation point of view to show that the projection is still an
acceptable approximation of the input Weibull distribution.

Note that the KS distance is not stable for increasing n: the algorithm has
troubles to fix parameters to 0 if needed. An additional penalty term in this
direction might be a good solution to overcome this behavior.
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Through these two first examples, we showed the projection possibilities of
our algorithm, and compared them with MFK, the only existing method in the
literature. We saw that for input densities inside the G1 class our method per-
forms as good as MFK. Moreover, our method still works properly and produces
meaningful results for examples outside the class, contrary to MFK which does
not give any result. We will now talk about estimation from data, a problem that
has never been solved for gamma convolutions, and showcase how our algorithm
can find a good representation for a given dataset, whatever the dimension of
the dataset.

In the following, we will treat empirical datasets given in standard IEE 745

float64 precision.

4.2. Estimation from univariate empirical data

Before coming back in more details to the Weibull case, we wanted to perform
some tests with empirical data coming from simulations of two heavy-tailed
distributions: log-Normal and Pareto.

4.2.1. Heavy-tailed examples

We consider first a dataset of 100′000 samples from a log-Normal distribution
with the same parameter values as in Section 4.1, LN(μ = 0, σ = 0.83), in 64
bits precision.

From this sample, we compute empirical Laguerre coefficients, and then we
optimize the set of shapes and scales of the estimated density to minimize the
truncated L2 loss between them and the ones produced through Algorithm
2. Following [20, 41], we choose the size of the basis as being m = 2n + 1,
such that if we remove the first moment that is irrelevant, we have a number
of moments equal to the number of parameters6. We ran the experiment for
different number of gammas n = 10, 20 and 40. The corresponding results are
respectively available in Figure 3 for n = 10, and in Figures 12 and 13 for
n = 20, 40, see Appendix B.

We see on these graphs that the approximation is good enough to fool the
Kolmogorov-Smirnov test. The absolute pointwise error between the Laguerre
approximation of the density of the gamma convolution and the true log-Normal
density is lower than 0.005 for n = 10, 20, and twice smaller for n = 40. A
positive but surprising result is that, although the distance between the Laguerre
approximation and the true density does not reduce with increasing m, the
distance between the gamma approximation and the true density does.

The KS test setup is as follows: we simulate 250 resamples of 100′000-sized
dataset from the estimated density, and compare it with a one-sample exact
KS test to the true density (and not to the samples that the estimator was

6Since Julia starts counting at 1 and not 0, we actually have m moments and not m + 1
as we did in the previous theoretical analysis.
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Fig 3. Log-Normal results with 10 gammas: Upper left: the comparison of the density approx-
imations. Lower left: the difference of to the true density. Upper right: a quantile-quantile
plot of the approximation against the true distribution. Lower right: p-values of one-sample
KS tests of simulations from the estimator against the true distribution.

computed from). For all values of n, we observe close-to-uniform distribution of
the p-values, which is a good result.

We also treated several datasets simulated from Pareto’s distribution, with
exactly the same experiment. Pareto’s distribution has a shape parameter k > 0
that influences the thickness of the tail: the distribution has a variance if and
only if k > 2, an expectation if and only if k > 1 and the density belongs to L2

if and only if k > 1/2. Note that these inequalities are strict.
The fact that the distribution has no variance or no expectation is not really

a problem for our procedure, since we use only shifted moments that all Pareto
distributions have, but our convergence result requires a square-integrable den-
sity. Therefore, we propose to check several values of the shape parameter k,
covering all cases, while varying the number n of gammas. Figure 4 summarizes
the results by only showing quantile-quantile plots of the estimated distribu-
tions against the starting Pareto distribution. All the models follow the same
procedure as for the previous log-Normal estimators.

Note that even quantile-quantile plots between two simulations from the same
Pareto distribution have a tendency to deviate in the extremes (due to the fat
tail), which is why we excluded the last points. In each case, we also ran the same
Kolmogorov-Smirnov testing procedure as for the log-Normal, and obtained very
good uniformity of the p-values, except for k = 0.25 when n is too small. We
see on the graph that increasing the number of gammas usually produces better
results, but also that the heavier the tail (smaller shapes) the harder it is to get
a good fit.
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Fig 4. Quantile-quantile plots for Pareto experiments, with N = 1000 samples (log-scaled).
We only show the 995 first points: 5 points are excluded in the tail for clarity. Each row
corresponds to a shape parameter for the Pareto, and each column to a number of gammas.

We see on these graphs that the method is accurate enough for reasonably
high quantiles, and very good in the body of the distribution. The k = 0.25 case
is not in the theoretical boundaries for the convergence result to take place, we
have to wait until at least 20 gammas to have an acceptable fit.

4.2.2. An example outside the class

We revisit the Weibull(k = 1.5) case of Section 4.1, a distribution that is not
inside the class. We ran our algorithm on 100′000 samples from a Weibull with
shape k = 3

2 , with successive numbers of gammas of 2, 10, 20 and 40. The cor-
responding graphs are shown in Figure 5. Here, we show only the difference on
the density estimation and the quantile-quantile plot as one notable thing is
that the Laguerre expansion of the density gets better and better as we increase
the size of the basis (jointly with the number of gammas), but the estimator
does not: the difference to the density is always the same, and always makes
Kolmogorov-Smirnov reject the proposed estimator, although quantile-quantile
plots indicate correct fits.

On these estimations, several things should be noted:

• The KS tests reject the hypothesis that the distributions are the same
whatever the number of gammas, which was expected.

• The pointwise difference on the density of the estimator does not match
the error of the Laguerre expansion (which is getting smaller as the basis
grows) but stays the same whatever the size of the basis and the number of
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Fig 5. Weibull results with 2, 10, 20 and 40 gammas. Same legend as Figure 3.

gammas. This error represents some kind of distance between the Weibull
distribution and the class.

• The quantile-quantile plot however indicates a correct fit on all the distri-
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bution except maybe the left tail.

These three points show that our procedure works even for data that are far
from the G1 class, finding some orthogonal projection, relative to the basis, onto
the class. This is a very good point for the procedure.

In the next examples, we will showcase some multivariate uses of the proce-
dure, with a particular emphasis on the dependence structure of the simulated
data and of the produced estimators.

4.3. Estimation from multivariate empirical data

We now discuss multivariate capabilities of our algorithm. As no known al-
gorithm estimates multivariate gamma convolutions, we are not able to com-
pare our results to other procedures. However, we can still check quantile-
quantile plots for marginals and verify that the shape of the dependence struc-
ture matches the inputted one.

As use-cases might vary, we propose two different examples: a multivariate
log-Normal, with a Gaussian copula that induces no tail dependency, and a (sur-
vival) Clayton copula, including a strong tail dependency. Note that we reduced
the exposition to estimation from empirical data, but formal integration to ob-
tain (μk,−1)k≤m from a formal density at any desired computational precision is
also a perfectly fine use case. However, we do not have a clever way of choosing
the parameter m yet. We found that setting all mi’s equal to n provide enough
evaluation points to obtain a good fit on our simple examples.

4.3.1. A Gaussian example

We do not know if the d-variate log-Normal, defined as the componentwise
exponentiation of a d-variate Gaussian random vector, is inside Gd. However,
we can still run our procedure and observe the resulting approximations.

A first result is given in Figure 6, that corresponds to a G2,10 estimation
taken from 100′000 data points simulated from a MLN(μ = 0,σ = 1, ρ =
0.5). Figure 6 proposes quantile-quantile plots for the marginals, and a simple
Gaussian kernel density estimator for the pseudo-observations on the original
and estimated models.

We see on Figure 6 that the dependence structure was correctly reproduced
by the approximation as a convolution of 10 (comonotonic) gamma random
vectors, but marginal tails are not estimated correctly. Thankfully, pushing the
number of multivariate gammas to n = 20 solves this issue, as shown in Figure 7:

On Figure 7, we see that the dependence structure is still very good, and
that the problem of the marginal tails has been solved by adding a few more
gammas. Note that since we have 100′000 points in the quantile-quantile plots,
one point out of the line corresponds to a deviation at the 0.00001-quantiles,
which are of little importance in many use cases.
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Fig 6. Multivariate log-Normal results with 10 gammas. Top left and bottom right: quantile-
quantile plots for the two marginals. Bottom left and top right: levels plots of pseudo-
observations from simulations from, respectively, the estimated model and the dataset.

Fig 7. Multivariate log-Normal results with 20 gammas. Same legend as Figure 6.

Overall, marginal quantile-quantile plots are correct when the number of
gammas is big enough, and the Gaussian dependence structure is well-fitted.
The Gaussian copula is a copula that exhibits no tail dependency. We already
know that our model can exhibit asymmetric behaviors, but the possibility of
tail dependency is also an important feature to have. Therefore, in the next
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example we run the model on datasets that have such a feature.

4.3.2. A copula with tail dependency

We fit data whose dependence structure is given through a (survival) Clayton
copula. This copula is a symmetric copula that exhibits upper tail dependency.
We took here a parameter θ = 7, yielding a strong positive dependence structure.

In Figure 8, you can see the results corresponding to data sampled from
a Clayton copula, a Pareto(k = 2.5) marginal and a log-Normal LN(0, 0.83)
marginal. The conditions of the experiments are identical to the previous sub-
section.

Fig 8. Results with 20 gammas. Same legend as Figure 6.

We note that marginal upper tails are not perfectly fitted: this could probably
be overcome by taking a greater number of gammas. However, we see that the
shape of the estimated copula is not perfectly symmetric: there is no constraint
on the model to produce a symmetric dependence structure, and therefore pro-
ducing one is hard. The small misfit around the (0.25, 0.02) quantile is probably
due to this: marginals are not on the same scale, and therefore the Laguerre
coefficients with k1 � k2 are probably on a different scale than those with
k2 � k1. The goodness of fit is therefore not symmetric.

4.3.3. A real dataset

To test the algorithm on more realistic data, we chose the Loss-Alae dataset
from Klugman & Parsa [29]. This dataset features 1500 observations of two
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Fig 9. The original Loss-Alae dataset: On the left, a log-scale joint plot of the dataset. On
the right, from top to bottom, Gaussian kernel density estimates of the copula and of the two
marginals (both log-scale).

variables: “Loss” and “Alae”. We refer to [29] for description of this (quite
standard) dataset in insurance valuations and copula estimations fields.

On Figure 9, we see that the dependence is somewhat strong between the two
marginals. We observe both left and right tail dependencies, and the marginals
are clearly heavy-tailed.

We ran the algorithm with numbers of gammas n = 2, 3, 4, 5, 10 and 20.
We also fixed m = (n, n), arbitrarily. The obtained shapes and rates are given
in Table 2, in Appendix B. We note that all estimators are ε-well-behaved,
and that, sometimes, the algorithm uses zero scales. Quantile-quantile plots of
the marginals and kernel density estimations of the dependence structures for
n = 2, 5, 10, 20 are reported in Figure 10.

We observe on the two first lines of Figure 10 a strange behavior for the
dependence structure. This is due to the fact that only one marginal has zeros
in the scale matrices (see Table 2 in Appendix B). Although unusual, this kind
of structure is quite expressive, and indeed for bigger values of n, where we
convoluted several of them, we managed to capture the dependence structure
of the data. However, we have to wait until n = 20 to obtain good fits on the
marginals as well. Figure 11 reports more information about the final fits n = 20,
which shows the parametric smoothing on the marginals and the dependence
structure.

Simulation from the obtained model is trivial, thanks to its additive struc-
ture. Moreover, the distribution of any linear combination 〈c,X〉 (c ≥ 0) is
also given as a G1,n(α, 〈c, s〉). This additive property is a computationally valu-
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Fig 10. Results of the estimation on the Loss-Alae dataset. Each line correspond to a different
number of gammas n = 2, 3, 10 and 20. The first column gives marginal quantile-quantile
plots of Loss and Alae, the middle column gives a joint plot on log-scale, and the last column
represents the dependence structure on the copula scale.

able feature of the model: any result and potential code routine that computes
statistics on G1,n distribution can be directly used for the marginals and for
all linear combinations of them. Finally, Theorem 4.1.1 in [5] provides a neat
mixture of gammas representation for G1,n distributions, with easily computable
mixture weights from parameters (see the proof in [5]), which can be useful for
applications.
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Fig 11. Further visualizations of the n = 20 model. Top left: density of the sum Loss + Alae.
Top right: marginal densities. Bottom: A comparison between pseudo-observations from a
simulation (right) and the original dataset (left).

5. Conclusion

Although the class of gamma convolutions has very appealing properties for
the practitioner, the estimation of gamma convolutions from empirical data had
not been considered in the literature. The closest algorithm we could find is the
recent MFK algorithm, that we described in Subsection 2.3, which projects den-
sities from the G1 class to the G1,n class. Unfortunately, extending this algorithm
for general estimation purposes is hard if not impossible.

Using a well-chosen Laguerre basis, we constructed a series expansion for the
density of a distribution in Gd,n. Coupled with a simple L2 loss for the density, we
were able to project densities from Gd, d > 1 onto Gd,n, which was not possible,
but also to project any density onto Gd,n, which was not possible either. Finally,
through the same loss, we can estimate Gd,n distributions from empirical data
for any reasonable d, n, which was also not treated in the literature.

Although the convergence result is not as strong as MFK’s one, the numerical
precision needs and computational speeds are far better. We saw that given the
same information, shifted moments of the random variable with high precision,
the performance of the two algorithms is overall the same, except maybe for
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small numbers of gammas where we beat MFK. For both algorithms, Figure 1
also shows that the model’s goodness of fit seems to be decreasing for large
numbers of gammas, and an adaptive estimator might be a suitable way out.

Maybe a better loss could be found for the estimation of these gamma con-
volutions. Furthermore, automatic penalization of the model could be done
through the number of gammas, but also through sparsity of the Thorin mea-
sure, according to Property 2.1.4, yielding more independent factors when pos-
sible. Such a modification will also provide a clearer view at the additive risk
factor structure.

The rate of the estimator will be explored further in future work, using results
from the parametric contrast estimators literature, as a referee pointed out.

Last but not least, many features are still to be discovered about multivariate
Thorin classes. The estimation of multiplicative structures could yield interest-
ing results. Bondesson showed that the product of random variables in G1 is also
in G1, but we still do not have a way of constructing the corresponding Thorin
measure, neither a corresponding result for the multivariate case.

Appendix A: Proofs of auxiliary results

Proof of Property 2.1.4. Consider first atomic Thorin measures, so that X ∼
Gd,n(α, s).

For (i) and (ii), consider that there exists a matrix Y of gamma random
variables Yi,j ∼ G1,1(αj , si,j) such that

Xi = Yi,1 + . . .+ Yi,n,

where row vectors Yi,. are independent and column vectors Y.,j have two sep-
arate groups of marginals: a first comonotonic group (with gamma marginals)
corresponding to scales si,j that are strictly positive and a second group (with
identically 0 marginals) corresponding to null scales. Note that one of these two
groups might be empty. From this expansion, we can easily deduce the structure
of maximal supports for ν that leads to independent or comonotonic random
vectors X.

For (iii), note that D is the rank of the matrix s, hence D ≤ min(n, d). If
D = d = n, then X is by definition an invertible linear transformation of an
independent, d-dimensional random vector, and therefore has a density in L2

that we can express easily. If D = d < n, then X is the convolution of the
previous case with something else, and therefore also has a density in L2. The
last case, D < d, gives a random vector X that is a linear transformation of
a set of D < d independent variables, which is therefore clearly not absolutely
continuous as claimed.

Consider non-atomic Thorin measures as limits of the previous case.

Proof of Example 2.1.5. For the first result, note that ν satisfies the integra-
tion constraints given by Definition 2.1.1. Then, simply compute the cumulant
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generating function as:

K(−t) = −
∞∫
0

ln (1 + rt) 1r∈[0,1] dr = −
1∫

0

ln (1 + rt) dr

= −1

t

1+t∫
1

ln(x) dx = 1− 1 + t

t
ln(1 + t).

The second result comes from a discretization of the Thorin measure, from

continuously uniform on [0, 1] to uniform on
{

j
n+1 , j ∈ {1, ..., n}

}
. Note that

the cumulant generating functions converges on its domain of definition, that
includes a real interval, hence the convergence in distribution.

Proof of Example 3.1.2. The bijection is given through the following equations:

ak(α, s) =
√
2
d ∑
�≤k

(
k

�

)
(−2s)�

�!

Γ (α+ |�|)
Γ (α)

(1 + |s|)−α−|�|
,

on one hand, and

α =

{
1

c2
− 1

ln (c1)
W0

(
ln (c1)

c2
e

ln(c1)
c2

)}
si =

a0 − a1(i)

2αa0
for all i ∈ 1, .., d

reciprocally, where:

• 1(i) is the d-variate vector with jth component equal to 1i=j , for all j.

• c1 = a0
√
2
−d

and c2 = d
2 − 1

2a0

∑d
i=1 a1(i)

• W0 is the zeroth branch of the Lambert function W defined by:

y = W (x) ⇐⇒ x = yey.

To prove the first part, note that there exists X0 ∼ G1,1(α, 1) such that
X = 〈s, (X0, ..., X0)〉. Therefore, denoting by M the mgf of X0,

μk,−1 = E
(
Xke−〈1,X〉

)
= skE

(
X

|k|
0 e−|s|X0

)
= skM (|k|)(−|s|)

= sk
Γ (α+ |k|)

Γ (α)
(1 + |s|)−α−|k|.

Therefore, the Laguerre coefficients ak (α, s) of X are given by:

ak(α, s) =
√
2
d ∑
�≤k

(
k

�

)
(−2s)�

�!

Γ (α+ |�|)
Γ (α)

(1 + |s|)−α−|�|
.
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Then, for the reverse assertion, consider the expression of the first Laguerre
coefficients of X:

a0 =
√
2
d
(1− |s|) and a1(i) = a0

(
1− 2α

si
1 + |s|

)
.

Use the simplex transformation x = s
1+|s| to solve for s as a function of α in

the second equation, and inject in the first. We obtain an equation of the form
aex+bx+c which is solved by the zeroth branch of the Lambert W function.

Proof of Lemma 3.2.2. Point (i) and (ii) are obvious. To prove the 3 remaining
points, we use the fact that h is a Möbius transform, see [1], and hence maps
generalized circles to generalized circles. Furthermore, h maps reals to reals, and
we obtain c(b) and r(b) from the expression of h(b) and h(−b). Last, by checking
if the disk with center c(b) and radius r(b) contains h(0) = −1, we conclude.

Proof of Example 3.2.5. The three first cases are deduced directly from Defini-
tion 3.2.3 and Property 3.2.4. For point (iv), recall that for two gamma convo-
lutions with Thorin measures ν1 and ν2, the Thorin measure of the sum is:

ν(s) = ν1(s) + ν2(s).

Now, according to the reading of Property 3.2.4, point (iv), no set of p < d
rays Sc1 , ..., Scp concentrate more than half of ν1 weights and more than half
of ν2 weights. Hence, no set of p < d rays can concentrate more than half of ν
weights. Therefore, the class of w.b. gamma convolutions is closed w.r.t finite
convolutions.
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Appendix B: Auxiliary figures and tables

Fig 12. Log-Normal results with 20 gammas. Same legend as Figure 3.

Fig 13. Log-Normal results with 40 gammas. Same legend as Figure 3.
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Table 2

Estimated Thorin measures on Loss-Alae dataset, for several number of atoms. Scales below
10−10 are considered to be 0.

α̂ ŝ.,1 ŝ.,2

n = 2 8.0530e − 01 1.7859e + 04 0
3.7345e − 01 1.9294e + 04 3.9144e + 04

n = 3 6.2517e − 01 0 9.4232e + 03
4.0146e − 01 5.9577e + 04 2.8870e + 03
2.8491e − 02 7.4721e + 05 5.1605e + 05

n = 4 4.2930e − 01 8.9338e + 02 4.5100e + 02
2.7618e − 01 7.5227e + 03 2.1992e + 04
1.6763e − 01 1.1016e + 05 2.1315e + 03
2.9678e − 02 7.7123e + 05 1.6315e + 05

n = 5 4.4402e − 01 1.9749e + 02 1.2632e + 03
3.8222e − 01 2.5404e + 04 3.2267e + 02
3.0692e − 01 6.8942e + 03 1.8928e + 04
4.9173e − 02 3.0236e + 05 4.9963e + 03
4.3674e − 02 4.0133e + 05 7.5906e + 04

n = 10 5.8686e − 01 6.7317e + 01 0
4.1458e − 01 0 4.2265e + 03
3.8097e − 01 0 4.2032e + 03
1.8363e − 01 3.0710e + 04 0
1.4472e − 01 2.0463e + 04 1.6083e + 04
5.8809e − 02 3.0346e + 04 0
5.3588e − 02 5.8625e + 03 5.0686e + 04
4.9132e − 02 1.8103e + 05 1.6242e + 03
3.9180e − 02 1.9806e + 05 4.0709e + 04
1.8969e − 02 9.4263e + 05 6.6635e + 04

n = 20 5.4500e − 01 0 4.4628e + 03
2.3101e − 01 3.4445e + 03 0
1.8010e − 01 0 4.4628e + 03
1.5530e − 01 3.2021e + 04 5.7533e + 02
1.5374e − 01 3.4445e + 03 0
1.0508e − 01 3.4445e + 03 0
9.4038e − 02 3.4445e + 03 0
8.6941e − 02 9.6571e + 04 7.8920e + 01
8.3410e − 02 1.3871e + 04 2.0096e + 04
5.0148e − 02 3.4445e + 03 0
4.0136e − 02 1.3871e + 04 2.0096e + 04
3.4315e − 02 0 4.4628e + 03
3.3641e − 02 2.3235e + 05 3.6468e + 04
3.1375e − 02 1.3289e + 05 5.2870e + 04
3.0619e − 02 0 4.4628e + 03
1.4615e − 02 1.3871e + 04 2.0096e + 04
1.4270e − 02 6.5957e + 05 3.1213e + 04
8.5642e − 03 3.9661e + 03 3.3040e + 05
4.6750e − 03 4.5138e + 04 2.3531e + 05
1.2388e − 13 4.1893e + 03 0
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[12] Cvijović, D. (2011). New Identities for the Partial Bell Polynomials. Ap-
plied Mathematics Letters 24 1544–1547. MR2803706

[13] Derevyagin, M. S. and Derkach, V. A. (2007). On the Convergence of
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