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1. Introduction

Poisson regression is a popular tool for modeling the relationship between a
count response (such as the number of cases of a specific disease in epidemi-
ology, or the number of insurance claims within a given period of time) and a
set of predictors or covariates. Over the past years, Poisson regression has been
extended to accommodate censored count data. Although censoring is usually
associated to lifetime data analysis, count data can also be censored, the most
common type being right-censoring, which occurs when it is only known that
the true count is higher than the observed one. For example, consider a study
investigating the smoking habits of some population, where people report their
number of cigarettes smoked per day. If one possible answer is “20 cigarettes
or more”, all cigarettes counts greater than 20 are right-censored at 20. Ignor-
ing censoring is known to yield biased estimates and thus, incorrect inferences.
Statistical inference in censored Poisson regression and extensions was therefore
addressed by several authors; see, for example, [39], [8], [11], [50], [26] for cen-
sored generalized Poisson regression, [22] for finite mixtures of censored Poisson
regressions and [33], [29] for zero-inflated censored Poisson regression.

Censored models for count data can be conveniently specified by introducing
a censoring indicator which is set to 1 if the observed count is not censored
and 0 otherwise. In this paper, we consider the situation where the censor-
ing indicator is missing for some sample individuals. In the context of survival
analysis, this issue has been considered by several authors. For example, [24]
and [36, 37] address estimation of the survival function of a random survival
time with missing censoring indicators. [27], [9] and [5] consider estimation in
the proportional hazards and additive hazard regression models with missing
censoring indicators. [45], [46] and [6] propose various nonparametric estimates
of the hazard and conditional hazard functions with censoring indicators miss-
ing at random. [44] and [52] estimate the linear regression and partially linear
single-index models for survival data with missing censoring indicators. A sim-
ilar issue arises in competing risks data analysis with missing cause of failure,
see for example [2, 3, 51, 28].

Estimation in censored Poisson regression with missing censoring information
is still an open problem. Our aim in this paper is to provide and compare several
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estimates adapted to this setting.
Missing data problems have given rise to a rich literature and several adapted

estimation methods have been proposed. A common and simple approach, called
complete-case analysis, is to exclude individuals with missing data. This method
can induce bias and substantial variance increase. Two alternatives are regres-
sion calibration and multiple imputation. Regression calibration is a general
method for handling missing or mismeasured variables. It consists in replacing
missing data by their conditional expectation given observed data. We refer to
[7] for a detailed account of this method, which has been used in a variety of
contexts, including the linear regression model [19], proportional hazards re-
gression model for survival data [43, 10, 25], generalized linear models [16, 47].
In multiple imputation, missing data are replaced by data generated from an
imputation model. This imputation is repeated M times, generating M com-
pleted data sets. Each of them is analysed and an overall estimator is obtained
by combining the estimates of the M completed samples. Multiple imputation
was also used in a number of settings, including linear regression [17], gener-
alized linear models [21], proportional hazards regression [49, 20] and count
data models [23]. Both regression calibration and multiple imputation require a
model for the missing data given the observed data. Inverse probability weight-
ing constitutes another alternative method for dealing with missing data (see
for example [34] for a review of this method). Similarly to the complete-case
analysis, inverse probability weighting only uses complete cases, but weights are
used to rebalance the set of complete cases. Calculating these weights requires
a model for the probability that an individual has complete data. Augmented
inverse probability weighting was then proposed to ensure robustness against
misspecification of the missingness model (see, for example, [40] for a detailed
account on the method).

In this paper, we investigate, both theoretically and numerically, the regres-
sion calibration, multiple imputation and augmented inverse probability weight-
ing estimators of the regression parameter in the censored Poisson regression
model with missing censoring indicators. Our analysis of these estimates will be
based on parametric assumptions for the conditional models for missing data
and the missingness mechanism. The plan of the paper is as follows. In Section
2, we describe the model setup and we introduce the notations that will be
used throughout the paper. In Section 3, we introduce our regression calibra-
tion estimator and we establish its consistency and asymptotic normality. In
Sections 4 and 5, we propose our multiple imputation and augmented inverse
probability weighted estimators, and we derive their asymptotic properties. All
our theoretical derivations are based on an incomplete gamma function formu-
lation of the distribution function of the Poisson regression model. Consistent
asymptotic variance estimates are also proposed for the regression calibration,
multiple imputation and augmented inverse probability weighted estimators. In
Section 6, we conduct a simulation study to assess the finite sample performance
and robustness to parametric assumptions of the proposed estimates. We also
illustrate the proposed estimates on a real data set. Discussion and perspectives
are given in Section 7. All proofs are deferred to appendices.
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2. Model, data, notations

Let Y denote the count of interest and X = (1, X2, . . . , Xp)
� be a p-vector of

covariates (� denotes the transpose operator). We assume that the conditional
distribution of Y given X is given by a Poisson regression model with parameter
λ = exp(β�X), where β ∈ R

p is a vector of unknown parameters.
We consider the situation where Y can be right-censored, that is, instead of

the true Y , we eventually observe a value which is smaller than Y . This can
be formalised by introducing a finite random variable C such that we observe
either Y if Y < C or C if Y ≥ C, and an indicator δ (called censoring indicator
thereafter) which is equal to 1 if Y < C and 0 if Y ≥ C. In what follows,
we assume that Y and C are independent conditionally on X and that the
distribution of C does not depend on β. These conditions are reminiscent of
survival analysis, where they are called the independent censoring and non-
informative censoring hypotheses respectively. These hypotheses are reasonable
if censoring is due to an external event (i.e., the value of C is not directly driven
by the value of Y ) or is fixed by design. Otherwise, one needs to model the
joint distribution of (Y,C). We denote by Y ∗ the observed count value (that is,
Y ∗ = min(Y,C)).

Assume that n independent individuals are available and that for each of
them, we observe the triplet (Y ∗

i ,Xi, δi) (with i ∈ {1, . . . , n}). Under the above
hypotheses, the likelihood of β is calculated as:

Ln(β) =

n∏
i=1

P(Yi = Y ∗
i |Xi)

δiP(Yi ≥ Y ∗
i |Xi)

1−δi ,

from which we easily deduce the loglikelihood �n(β) = logLn(β):

�n(β) =

n∑
i=1

{
δi

(
Y ∗
i β

�Xi − eβ
�Xi − log(Y ∗

i !)
)
+

(1− δi) log

⎛⎝1−
Y ∗
i −1∑
k=0

e− exp(β�Xi)+kβ�Xi

k!

⎞⎠⎫⎬⎭ (2.1)

Standard asymptotic theory implies that the maximum likelihood estimator
β̂n = argmaxβ �n(β) is consistent and asymptotically normal with variance
−E[∂2�1(β)/∂β∂β

�].

Remark. The censoring variable C does not have to be a count. For example,
if Yi = 4 and Ci = 2.5, then Y ∗

i = 2.5 (and δi = 0) and the contribution of the
observation (Y ∗

i , δi) = (2.5, 0) to the likelihood is P(Yi ≥ 2.5|Xi). But Yi is dis-
crete, hence P(Yi ≥ 2.5|Xi) = P(Yi ≥ 3|Xi) and (2.1) is still valid if we write the
contribution of a censored observation as P(Yi ≥ �Y ∗

i �|Xi), where �Y ∗
i � denotes

the smallest integer not less than Y ∗
i . If C is continuous, contributions of uncen-

sored observations are unchanged since these observations are integer values.
Overall, the loglikelihood (2.1) remains valid when C is continuous, with the

appropriate change of notation P(Yi ≥ �Y ∗
i �|Xi) for censored observations. In
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order to keep notations simple, and without loss of generality, we assume that
C is discrete (as is also the case in most applications).

Now, we consider the situation where some additional uncertainty can arise
in the observations. Precisely, we consider the situation where the censoring
indicator δi is missing for some individuals. Let ξ be a missingness indicator, that
is, ξ = 1 if δ is observed and ξ = 0 otherwise. Then, for individual i ∈ {1, . . . , n},
the observed data are

(Y ∗
i ,Xi, δi, ξi = 1) or (Y ∗

i ,Xi, ξi = 0). (2.2)

We consider a missing at random (MAR) mechanism, which means that ξ
and δ are independent given all other observed variables (a more restrictive
assumption is that ξ and δ are independent, which is called “missing completely
at random”). In the next sections, we propose, investigate and compare several
estimators of β in this context.

3. Regression calibration estimation

3.1. The proposed estimator

Our first estimator is based on the regression calibration idea. It consists in
replacing any missing δi in (2.1) by its conditional expectation E(δi|Wi), where
Wi contains the observed variables Y ∗

i andXi and eventually (if available) some
observed surrogate variables Vi for δi. Thus, we let Wi = (Y ∗

i ,X
�
i ,V

�
i )

� (we
denote by q the dimension of Wi). An approximated version of δi can then be
defined as:

δ̂i = ξiδi + (1− ξi)E(δi|Wi).

The conditional expectation E(δi|Wi) (or conditional probability P(δi = 1|Wi))
will generally be unknown and will have to be estimated. As is usual with the
regression calibration approach, we assume that E(δi|Wi) can be specified by
a parametric model m(Wi, θ), where θ is an unknown q-dimensional parameter
with true value θ0.

Remark. A convenient candidate for m(·, ·) is the logistic regression model
m(Wi, θ) = logit−1(θ�Wi) but other choices, such as the probit, are possible.
One may also allow for polynomial, spline and interaction terms in these models,
in order to make them as flexible as desired. In what follows, we assume a general
model m(Wi, θ) with some regularity conditions stated in section 3.2.

At a first stage, we estimate θ0 by maximizing a likelihood based on complete
cases i ∈ {1, . . . , n|ξi = 1} only:

θ̂n = argmax
θ

n∏
i=1

m(Wi, θ)
ξiδi(1−m(Wi, θ))

ξi(1−δi). (3.1)
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Let

ṁ(Wi, θ) =
∂m(Wi, θ)

∂θ
, m̃i(θ) =

ṁ(Wi, θ)

m(Wi, θ)(1−m(Wi, θ))
,

and

Θ(θ) = E

[
ṁ⊗2(W, θ)

m(W, θ)(1−m(W, θ))
ξ

]
,

where for any column vector u, u⊗2 = uu�. Then it is rather straightforward to
see that θ̂n is asymptotically linear with influence function Θ−1(θ0)m̃i(θ0)ξi(δi−
m(Wi, θ0)), that is:

√
n(θ̂n − θ0) =

1√
n

n∑
i=1

Θ−1(θ0)m̃i(θ0)ξi(δi −m(Wi, θ0)) + oP(1). (3.2)

Finally, it will be useful to note that if Y is distributed as Poisson with parameter
λ, then for any u ∈ N, P(Y ≤ u) =

∑u
k=0 exp(−λ)λk/k! = Γ(u + 1, λ)/u!

where Γ(u, λ) =
∫∞
λ

tu−1 exp(−t)dt is the incomplete gamma function, whose
derivative with respect to λ is given by ∂Γ(u, λ)/∂λ = − exp(−λ)λu−1.

Now, letting δ̂i(θ) = ξiδi+(1−ξi)m(Wi, θ) be the approximation of δi based
on model m(Wi, θ), we define our regression calibration estimator of β as

β̃n = argmax
β

�̃n(β, θ̂n),

where

�̃n(β, θ̂n) =

n∑
i=1

{
δ̂i(θ̂n)

(
Y ∗
i β

�Xi − eβ
�Xi − log(Y ∗

i !)
)

+(1− δ̂i(θ̂n)) log

⎛⎝1−
Γ
(
Y ∗
i , e

β�Xi

)
(Y ∗

i − 1)!

⎞⎠⎫⎬⎭
is an approximated version of (2.1).

3.2. Regularity conditions and asymptotic results

The following regularity conditions are needed to establish the asymptotic prop-
erties of the regression calibration estimator. We assume:

C1 The covariates vectors Xi and Vi are bounded, for every i = 1, 2, . . .
C2 The true parameter values β0 and θ0 lie in the interior of some bounded

sets B ⊂ R
p and Θ ⊂ R

q respectively.
C3 We have P(Y ∗ ≥ 1|ξδ = 0) = 1 and P(δ = 1) > 0.
C4 The function m(w, θ) is differentiable with respect to θ, for every w. For

every θ, θ̃ ∈ Θ, |m(w, θ) − m(w, θ̃)| ≤ h(w)‖θ − θ̃‖ for some bounded
function h, with E[h(W)] = v.



Censored count data regression 4349

Remark. Condition C3 requires that a minimum amount of information is
available on the count response when it is either censored (δ = 0) or its censoring
status is unknown (ξ = 0). Intuitively, the observation {Y ∗ = 0} carries no
information if it is unknown that δ = 1 (i.e., that it is a “genuine” zero count),
since all counts are non-negative.

Before stating the asymptotics of β̃n, we introduce some further notations.
Let hβ be the function defined by:

hβ(y, x) =
e−eβ

�x+β�xy

(y − 1)!− Γ(y, eβ�x)
(3.3)

for any β ∈ R
p, x ∈ R

p and y ∈ N\{0}. Let also π(W) = P(ξ = 1|W) and
define the matrices

Σ1(β) = E

[
XX�

(
δeβ

�X + (δ − 1)
{
Y ∗ − eβ

�X − hβ(Y
∗,X)

}
hβ(Y

∗,X)
)]

,

Σ2(β, θ) = E

[
Xṁ�(W, θ)

(
Y ∗ − eβ

�X − hβ(Y
∗,X)

)
(1− π(W))

]
,

Σ3(β, θ) = E

[
Xṁ�(W, θ)

(
Y ∗ − eβ

�X − hβ(Y
∗,X)

)]
.

We are now in position to state our first theorem. The proof is given in Appendix
A.

Theorem 3.1. Assume that conditions C1-C4 hold. Then β̃n
P−→ β0 as n → ∞

and
√
n(β̃n−β0) is asymptotically normal with mean zero and variance Σ, where

Σ = Σ−1
1 (β0)

{
Σ1(β0) + (2Σ3(β0, θ0)− Σ2(β0, θ0))Θ

−1(θ0)Σ
�
2 (β0, θ0)

}
Σ−1

1 (β0).

Remark. If π(W) is identically equal to 1 (that is, if there is no missing data),

Σ reduces to the asymptotic variance of the maximum likelihood estimator β̂n in

(2.1), which in turn reduces to the usual asymptotic variance (E[XX�eβ
�
0 X])−1

in Poisson regression if m(W, θ0) is identically equal to 1 (that is, no censoring
can affect the data).

A consistent estimator of Σ is given by

Σn = Σ−1
1,n(β̃n, θ̂n)

{
Σ1,n(β̃n, θ̂n)+(

2Σ3,n(β̃n, θ̂n)− Σ2,n(β̃n, θ̂n)
)
Θ−1

n (θ̂n)Σ
�
2,n(β̃n, θ̂n)

}
Σ−1

1,n(β̃n, θ̂n),

where

Σ1,n(β, θ) =
1

n

n∑
i=1

XiX
�
i

(
δ̂i(θ)e

β�Xi+

(δ̂i(θ)− 1)
{
Y ∗
i − eβ

�Xi − hβ(Y
∗
i ,Xi)

}
hβ(Y

∗
i ,Xi)

)
,

Σ2,n(β, θ) =
1

n

n∑
i=1

Xiṁ
�(Wi, θ)

(
Y ∗
i − eβ

�Xi − hβ(Y
∗
i ,Xi)

)
(1− ξi),
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Σ3,n(β, θ) =
1

n

n∑
i=1

Xiṁ
�(Wi, θ)

(
Y ∗
i − eβ

�Xi − hβ(Y
∗
i ,Xi)

)
,

Θn(θ) =
1

n

n∑
i=1

ṁ⊗2(Wi, θ)

m(Wi, θ)(1−m(Wi, θ))
ξi.

The consistency proof of the variance estimator uses similar arguments as the
proof of consistency of β̃n, it is thus omitted. The estimator β̃n will be evaluated
in the simulation study of Section 6.

Several methods have been proposed to address missing data problems in re-
gression. Among them is the multiple imputation, which provides an alternative,
popular and widely-used approach. The basic idea is to create several (say M)
completed data sets, by filling in plausible values for the missing data. Then,
each filled sample is analysed as if it were the complete data set. Finally, the M
imputed-samples inferences are combined into a single overall inference. In the
next section, we investigate this approach for estimating β in our problem.

4. Multiple imputation

In this section, we assume, as in Section 3, that the conditional expectation
E(δi|Wi) can be specified by a parametric model m(Wi, θ0), and we denote

by θ̂n the maximum likelihood estimator of θ0 based on the complete cases
i ∈ {1, . . . , n|ξi = 1}.

The imputation procedure is as follows. Each missing δi is replaced by a ran-
dom draw from the Bernoulli distribution B(m(Wi, θ̂n)). We obtain a completed
data set. This procedure is repeated M times to form M imputed data sets. For
a given θ, let Di,j(θ) ∼ B(m(Wi, θ)) denote the imputation of δi in the j-th
completed data set (j = 1, . . . ,M). Let also

δ∗i,j(θ) = ξiδi + (1− ξi)Di,j(θ)

be the random variable which is equal to δi is ξi = 1 (that is, if δi is observed)
and to Di,j(θ) if ξi = 0 (that is, if δi is missing) (note the difference between
the imputation method, where δ∗i,j(θ) ∈ {0, 1}, and the regression calibration

approach, where δ̂i(θ) ∈ [0, 1]). A single-imputation estimator β̂∗
n,j of β0 is

obtained by maximizing the imputed log-likelihood

�∗n,j(β, θ̂n) =

n∑
i=1

{
δ∗i,j(θ̂n)

(
Y ∗
i β

�Xi − eβ
�Xi − log(Y ∗

i !)
)

+(1− δ∗i,j(θ̂n)) log

⎛⎝1−
Γ
(
Y ∗
i , e

β�Xi

)
(Y ∗

i − 1)!

⎞⎠⎫⎬⎭ .

The final multiple imputation estimator β̂∗
n is obtained by averaging the M
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estimators β̂∗
n,j as:

β̂∗
n =

1

M

M∑
j=1

β̂∗
n,j .

The next theorem gives the asymptotic properties of β̂∗
n. Its proof is given in

Appendix B.

Theorem 4.1. For j = 1, . . . ,M , let fβ,θ,j(Oi) = Xi{δ∗i,j(θ)[Y ∗
i − eβ

�Xi −
hβ(Y

∗
i ,Xi)] + hβ(Y

∗
i ,Xi)}, where Oi denotes the observation (2.2). Let also

Σ∗
1(β, θ) = var( 1

M

∑M
j=1 fβ,θ,j(O1). If conditions C1-C4 hold, then β̂∗

n
P−→ β0 as

n → ∞ and
√
n(β̂∗

n−β0) is asymptotically normal with mean zero and variance
Σ∗, where Σ∗ =

Σ−1
1 (β0)

{
Σ∗

1(β0, θ0) + (2Σ3(β0, θ0)− Σ2(β0, θ0))Θ
−1(θ0)Σ

�
2 (β0, θ0)

}
Σ−1

1 (β0).

A consistent estimator of Σ∗ can be obtained as

Σ∗
n = Σ̄−1

1,n(β̂
∗
n, θ̂n)

{
Σ∗

1,n(β̂
∗
n, θ̂n)+(

2Σ3,n(β̂
∗
n, θ̂n)− Σ2,n(β̂

∗
n, θ̂n)

)
Θ−1

n (θ̂n)Σ
�
2,n(β̂

∗
n, θ̂n)

}
Σ̄−1

1,n(β̂
∗
n, θ̂n),

where Σ∗
1,n(β, θ) is the empirical covariance of the vectors 1

M

∑M
j=1 fβ,θ,j(Oi)

(i = 1, . . . , n), Σ̄1,n(β, θ) is the average 1
M

∑M
j=1 Σ1,n,j(β, θ), with

Σ1,n,j(β, θ) =
1

n

n∑
i=1

XiX
�
i

(
δ∗i,j(θ)e

β�Xi

+(δ∗i,j(θ)− 1)
{
Y ∗
i − eβ

�Xi − hβ(Y
∗
i ,Xi)

}
hβ(Y

∗
i ,Xi)

)
,

and Σ2,n,Σ3,n and Θn are as given in Section 3.
Regression calibration and multiple imputation rely on the ability of the in-

vestigator to formulate an appropriate model for E(δ|W). Misspecifying this
model is likely to yield biased estimates of the parameters of interest. An alter-
native approach is to specify the selection probabilities π(Wi) = P(ξi = 1|Wi)
and to use the inverse probability weighting (IPW) of complete-case technique
of [18]. The basic idea of IPW is to adjust a complete-case analysis by weighting
individuals with no missing data by the inverse of their selection probability.
Selection probabilities are generally unknown and have to be estimated. Again,
misspecifying the π(Wi), i = 1, . . . , n is likely to yield biased inference. More-
over, by discarding individuals with missing data, IPW is also known to yield
loss of efficiency.

For these reasons, the augmented IPW approach [AIPW henceforth, see 32]
was proposed to improve the basic IPW. Since its introduction, the method has
been shown to be doubly robust in several models, such as the proportional
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hazards model [42], the single-index model [14], the additive hazards model [38]
and the accelerated failure time model [35]. Double robustness refers to the fact
that the AIPW estimates are consistent as long as either the selection probability
model or the conditional expectation of the missing data is correctly specified.
In the next section, we propose an augmented IPW estimating equation adapted
to our problem, and we investigate the asymptotic properties of the resulting
estimator.

5. Augmented inverse probability weighted estimation

Inspired by [18], the inverse probability weighting of complete cases has become
a classical estimation method in missing data problems. One drawback of the
method is that the observed variables of subjects with missing data are not
fully used, except through the estimation of the unknown selection probabilities.
The AIPW method improves IPW by introducing an additional term involving
contributions from individuals with some missing data (we refer to [40] for a
detailed account on the method and numerous references). Adapting this idea,
we propose the following augmented IPW estimating equation for β:

n∑
i=1

Xi

[{
ξiδi

π(Wi)
+

(
1− ξi

π(Wi)

)
E(δi|Wi)

}(
Y ∗
i − eβ

�Xi − hβ(Y
∗
i ,Xi)

)
+hβ(Y

∗
i ,Xi)] .

The quantities E(δi|Wi) and π(Wi) are unknown and have to be estimated. We
assume that they can be specified by some parametric models m(Wi, θ) and
π(Wi, γ) respectively, where θ and γ are unknown q-dimensional parameters

with true values θ0 and γ0. Let θ̂n and γ̂n be the maximum likelihood estimates
of θ0 and γ0. θ̂n is given by (3.1). Similarly, γ̂n can be obtained as

γ̂n = argmax
γ

n∏
i=1

π(Wi, γ)
ξi(1− π(Wi, γ))

1−ξi .

Finally, our AIPW estimator β̆n of β solves the estimating equation �̆n(β, θ̂n,
γ̂n) = 0, where

�̆n(β, θ̂n, γ̂n) =

n∑
i=1

Xi

[{
ξiδi

π(Wi, γ̂n)
+

(
1− ξi

π(Wi, γ̂n)

)
m(Wi, θ̂n)

}
×
(
Y ∗
i − eβ

�Xi − hβ(Y
∗
i ,Xi)

)
+ hβ(Y

∗
i ,Xi)

]
.

Before stating the asymptotic properties of β̆n, we introduce some further no-
tations and regularity conditions. For any θ, γ ∈ R

q, we let

δ̆i(θ, γ) =
ξiδi

π(Wi, γ)
+

(
1− ξi

π(Wi, γ)

)
m(Wi, θ).
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Assuming the parametric model π(Wi, γ) for the selection probabilities, the
maximum likelihood estimator γ̂n is asymptotically linear with influence func-
tion Σ−1

4 (γ0)π̃i(γ0)(ξi − π(Wi, γ0)), where

π̇(Wi, γ) =
∂π(Wi, γ)

∂γ
, π̃i(γ) =

π̇(Wi, γ)

π(Wi, γ)(1− π(Wi, γ))
,

and

Σ4(γ) = E

[
π̇⊗2(W, γ)

π(W, γ)(1− π(W, γ))

]
.

That is:

√
n(γ̂n − γ0) =

1√
n

n∑
i=1

Σ−1
4 (γ0)π̃i(γ0)(ξi − π(Wi, γ0)) + oP(1). (5.1)

If the models m(Wi, θ) and π(Wi, γ) are misspecified, then by [48], there exists

θ∗ and γ∗ such that θ̂n
P→ θ∗ and γ̂n

P→ γ∗. Moreover, the asymptotic linear
expansions for θ̂n and γ̂n are given by (3.2) and (5.1), with θ0 and γ0 replaced
by θ∗ and γ∗ respectively. If the model m(Wi, θ) (respectively π(Wi, γ)) is
correctly specified, then θ∗ = θ0 (respectively γ∗ = γ0).

Finally, let

Σ5(β, θ, γ) = E

[
X
(
Y ∗ − eβ

�X − hβ(Y
∗,X)

)(
1− ξ

π(W, γ)

)
ṁ�(W, θ)

]
,

Σ6(β, θ, γ) = E

[
X
(
Y ∗ − eβ

�X − hβ(Y
∗,X)

)
ξ
π̇�(W, γ)

π2(W, γ)
(m(W, θ)− δ)

]
,

Σ7(β, θ, γ) = Σ1(β) + (2Σ3(β, θ)− Σ5(β, θ, γ))Θ
−1(θ)Σ�

5 (β, θ, γ),

and

Σ8(β, θ, γ) = Σ1(β)− Σ6(β, θ, γ)Σ
−1
4 (γ)Σ�

6 (β, θ, γ),

We assume the following additional regularity conditions:

C5 The parameter space for γ is a bounded set G ⊂ Rq and the true parameter
value γ0 lies in the interior of G.

C6 The function π(w, γ) is strictly greater than 0 for all value of w in the
support of W and all γ ∈ G.

C7 The function π(w, γ) is differentiable with respect to γ, for every w. For
every γ, γ̃ ∈ G, |π(w, γ) − π(w, γ̃)| ≤ g(w)‖γ − γ̃‖ for some bounded
function g with E[g(W)] = u.

Conditions C5 and C7 for γ and π(·, ·) are similar to conditions C2 and C4 for
θ and m(·, ·). We are now in position to state the asymptotic properties of our
AIPW estimator of β.
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Theorem 5.1. Assume that conditions C1-C7 hold. If either or both of the

models m(Wi, θ) and π(Wi, γ) are well specified, then β̆n
P−→ β0 as n → ∞.

From this result, the proposed estimator β̆n is doubly robust, in the sense
that it estimates consistently β0 as long as one of m(Wi, θ) and π(Wi, γ) is
correctly modeled.

Remark. The basic idea of regression calibration and multiple imputation is to
replace a missing δi by an approximation whose conditional expectation given
observed variables is equal to E(δi|Wi) (one can check that E(δ̂i(θ0)|Wi) =
E(δ∗i,j(θ0)|Wi) = E(δi|Wi)), so that the expectation of the corresponding es-
timating equations coincide with the expectation of the estimating equation
with no missing data. Similarly, one can easily check that if m(Wi, θ) (respec-

tively π(Wi, γ)) is correctly specified, then E(δ̆i(θ0, γ
∗)|Wi) = E(δi|Wi) (re-

spectively E(δ̆i(θ
∗, γ0)|Wi) = E(δi|Wi)). Here is the intuition underlying the

AIPW method, and the seemingly complicated expression of δ̆i(θ, γ).

The proof of Theorem 5.1 is given in Appendix C. The next theorem describes
the asymptotic distribution of β̆n. Its proof is given in Appendix D.

Theorem 5.2. Assume that conditions C1-C7 hold. Then, as n → ∞,
√
n(β̆n−

β0) converges in distribution to the Gaussian random vector N (0,J), where

J =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Σ−1

1 (β0)Σ7(β0, θ0, γ
∗)Σ−1

1 (β0) if m(Wi, θ) is correctly specified,

Σ−1
1 (β0)Σ8(β0, θ

∗, γ0)Σ
−1
1 (β0) if π(Wi, γ) is correctly specified,

Σ−1
1 (β0) if both m(Wi, θ) and π(Wi, γ) are correctly specified.

In order to estimate the asymptotic variance of β̆n, let:

Σ̆1,n(β, θ, γ) =
1

n

n∑
i=1

XiX
�
i

(
δ̆i(θ, γ)e

β�Xi

+(δ̆i(θ, γ)− 1)
{
Y ∗
i − eβ

�Xi − hβ(Y
∗
i ,Xi)

}
hβ(Y

∗
i ,Xi)

)
,

Σ4,n(γ) =
1

n

n∑
i=1

π̇⊗2(Wi, γ)

π(Wi, γ)(1− π(Wi, γ))
,

Σ5,n(β, θ, γ) =
1

n

n∑
i=1

Xi

(
Y ∗
i − eβ

�Xi − hβ(Y
∗
i ,Xi)

)
×
(
1− ξi

π(Wi, γ)

)
ṁ�(Wi, θ),

Σ6,n(β, θ, γ) =
1

n

n∑
i=1

Xi

(
Y ∗
i − eβ

�Xi − hβ(Y
∗
i ,Xi)

)
ξi

× π̇�(Wi, γ)

π2(Wi, γ)
(m(Wi, θ)− δi) ,
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Σ7,n(β, θ, γ) = Σ̆1,n(β, θ, γ) + (2Σ3,n(β, θ)− Σ5,n(β, θ, γ))Θ
−1
n (θ)Σ�

5,n(β, θ, γ),

and

Σ8,n(β, θ, γ) = Σ̆1,n(β, θ, γ)− Σ6,n(β, θ, γ)Σ
−1
4,n(γ)Σ

�
6,n(β, θ, γ),

where Σ3,n and Θn are as given in Section 3. Then a consistent estimator of J
is given by:

Jn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Σ̆−1
1,n(β̆n, θ̂n, γ̂n)Σ7,n(β̆n, θ̂n, γ̂n)Σ̆

−1
1,n(β̆n, θ̂n, γ̂n)

if m(Wi, θ) is correctly specified,

Σ̆−1
1,n(β̆n, θ̂n, γ̂n)Σ8,n(β̆n, θ̂n, γ̂n)Σ̆

−1
1,n(β̆n, θ̂n, γ̂n)

if π(Wi, γ) is correctly specified,

Σ̆−1
1,n(β̆n, θ̂n, γ̂n)
if both m(Wi, θ) and π(Wi, γ) are correctly specified.

(5.2)

The proof of consistency of Jn is omitted.

6. Numerical results

6.1. A simulation study

6.1.1. Simulation design

In this section, we investigate the finite sample performance of the regression
calibration (RC), multiple imputation (MI) and AIPW estimators. The simu-
lation design is as follows. For each of n individuals, the count response Y is
simulated from a Poisson regression model with parameter

λ = exp(β1 + β2X2 + β3X3 + β4X4 + β5X5),

where β = (0.2,−0.1, 0.4, 0.3, 0.5), X2 ∼ N (0, 1), X3 ∼ Bernoulli(0.3), X4 ∼
N (0, 1.5) and X5 ∼ uniform[2, 5]. The censoring and missingness mechanisms
are set to be logit(m(W, θ)) = θ1 + θ2X2 + θ3X3 + θ4X4 + θ5X5 + θ6Y and
logit(π(W, γ)) = γ1 + γ2X2 + γ3X3 + γ4X4 + γ5X5 + γ6Y

∗ respectively, where
θ and γ are chosen to yield the desired fractions of censored and missing data.
We run a series of experiments in order to assess the effect of the sample size,
censoring rate (CR) and missing rate (MR) on estimation:

• experiment 1: we take n = 250, CR = 20%, MR = 20%,
• experiment 2: we take n = 500, CR = 20%, MR = 20%,
• experiment 3: we take n = 500, CR = 20%, MR = 40%,
• experiment 4: we take n = 500, CR = 40%, MR = 20%,
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We can assess the effect of the sample size by comparing results of experiments
1 and 2. Similarly, by comparing experiments 2 and 3 (respectively 2 and 4),
we can assess the effect of the missing rate (respectively censoring rate). Within
each experiment, we compare the RC, MI and AIPW estimates under three sce-
nario: (i) only m(W, θ) is correctly modeled, (ii) only π(W, γ) is correctly mod-
eled, (iii) bothm(W, θ) and π(W, γ) are correctly modeled. In the first scenario,
π(W, γ) is incorrectly modeled as logit(π(W, γ)) = γ1 + γ2X2 + γ3X3 + γ4Y

∗.
In the second scenario, m(W, θ) is incorrectly modeled as logit(m(W, θ)) =
θ1 + θ2X2 + θ3X3 + θ4Y

∗.
Our simulation results are based on N = 1000 simulated samples. For each

estimator, we report the average bias, average standard error (SE), empirical
root mean square error (RMSE) and empirical coverage probability (CP) of 95%-
level confidence intervals. MI estimates are obtained with M = 50 (from our
numerical experiments, this is large enough to ensure stability of the estimates).
To establish a benchmark for comparisons, we also include an estimator based
on the full data set with no missing censoring indicators and the complete-case
(CC) estimator which maximizes the log-likelihood (2.1) on the subsample of
complete cases only. Results of experiment j are summarized in Table j, for
j = 1, . . . , 4. All estimates are obtained using the Newton-Raphson algorithm,
implemented in R [31].

Remark. The EM algorithm is a popular tool for calculating maximum likeli-
hood estimates in missing data problems. In the context of Poisson regression
with missing data, it has been used by several authors. For example, [12], [4]
and [22] use EM in finite mixtures of Poisson, bivariate Poisson and censored
Poisson regression models. In these works, the EM algorithm is motivated by
the missing data formulation of mixture models, where the unknown mixture
component indicator is treated as the missing data. EM was also used in zero-
inflated Poisson regression [15]. Here, the missing data is the unobserved state
variable (zero state vs Poisson state). [1] use EM in bivariate Poisson regression
with missing outcome. The EM algorithm could also be used in our setting, and
it would be interesting to investigate the convergence rate of the sequence of EM
estimates. This, however, falls beyond the scope of our paper and constitutes a
topic for future work.

6.1.2. Results

As expected, the performance of the estimators improve when sample size in-
creases. In the first scenario of each experiment, the RC, MI and AIPW methods
appear to have similar performance. Coverage probabilities are close to the nom-
inal confidence level, indicating that the asymptotic variances are appropriately
estimated.

In the second scenario, the AIPW method generally achieves the smallest SE
and RMSE, while the bias of the RC and MI estimates increase substantially,
resulting in coverage probabilities smaller than desired (this is particularly no-
ticeable when the censoring rate is large, see Table 4). This result was expected
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since m(W, θ) is misspecified. On the other hand, when censoring is moderate
(Table 1-Table 3), the bias of the AIPW estimate stays moderate and of the
same order of magnitude (but generally slightly larger, see our explanation be-
low) as in the first scenario, which is also expected due to the double robustness
property stated in Theorem 5.1. When the censoring rate is high, the bias of
the AIPW estimate is more important and coverage probabilities can be affected
(but less than for the RC and MI methods). This suggests that in finite samples,
the AIPW estimator is more sensitive to a misspecification of m(W, θ) than of

π(W, γ). This can be explained by the expression of δ̆i(θ, γ), which is equal

to m(Wi, θ) if ξi = 0 and to m(Wi, θ) +
(δi−m(Wi,θ)

π(Wi,γ)
if ξi = 1. Indeed, when

m(W, θ) is wrong, every individual i contributes to the likelihood with a mis-
specified term, whatever ξi is. On the other hand, when π(W, γ) is wrong, only
individuals with ξi = 1 contribute to the likelihood with a misspecified term,
since π(W, γ) does not appear in the contribution of individuals with ξi = 0.
This unbalance may explain the greater sensitivity of the AIPW estimate to a
misspecification of m(W, θ).

Finally, when both models are correct (third scenario), all three methods
perform similarly (results for the RC and MI methods are the same as for the
first scenario).

Overall, this simulation study confirms the theoretical results stated in the
previous sections. The regression calibration, multiple imputation and robust
IPW methods provide similar results when either m(W, θ) or both m(W, θ)
and π(W, γ) are correctly specified. When m(W, θ) is misspecified, the AIPW
approach performs better than RC and MI, in particular in terms of point
estimation (with substantially smaller bias for AIPW). The CC estimates are
outperformed by the three methods in all scenarios.

6.1.3. Asymptotic variance estimation

Estimation of Σ,Σ∗ and J (the asymptotic variances of the RC, MI and AIPW
estimates respectively) is a crucial issue for statistical inference purpose. In this
section, we investigate the accuracy of their respective estimates Σn,Σ

∗
n and Jn.

First, note that although Σ,Σ∗ and J have explicit expressions, they cannot
be calculated analytically, due to the complex expectations involved in the Σj ,
j = 1, . . . , 8. Therefore, we propose to compare Σn (respectively Σ∗

n,Jn) to some
“oracle” estimate Σor (respectively Σ∗,or,Jor), which is obtained as follows: we
simulate a very large number (here, 15000) of observations (Y ∗

i ,Xi, δi, ξi), and
we calculate empirical versions of the Σj where all expectations are replaced
by sample averages and parameters are fixed at their true value (hence the
name oracle). We expect these oracles to be as close as possible of the true
unknown asymptotic variances. Comparisons between Σn,Σ

∗
n,Jn and the oracles

are based on the results of the above simulation study.
For each experiment and each of the RC, MI and AIPW method, we cal-

culate the relative differences 100 × |Σ1/2
n,(j,j) − (Σor

(j,j))
1/2|/(Σor

(j,j))
1/2, 100 ×

|(Σ∗
n,(j,j))

1/2 − (Σ∗,or
(j,j))

1/2|/(Σ∗,or
(j,j))

1/2 and 100× |J1/2
n,(j,j) − (Jor

(j,j))
1/2|/(Jor

(j,j))
1/2
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(where A(j,j) is the j-th diagonal element of a matrix A) between the estimated
and oracle standard deviations of βj (j = 1, . . . , 5) (we calculate the relative
error for standard deviations rather than for variance, since standard deviations
are used to obtain confidence intervals and Wald test statistics, which are the
cornerstones of statistical inference in regression models). Results are averaged
over the N simulated samples and reported in Table 5. We also report the RMSE
of the RC, MI and AIPW variance estimates (the corresponding oracle variance
estimates are used as reference). For example, the RMSE of the RC variance
estimate of βj is calculated as√√√√ 1

N

N∑
	=1

(
Σ

(	)
n,(j,j) − Σor

(j,j)

)2
,

where Σ
(	)
n,(j,j) denotes the RC variance estimate of βj in the �-th simulated

sample. Results are given in Table 6. Regarding AIPW, we evaluate the three
variance estimates given in (5.2) (results are reported at line “AIPW1” for
misspecified π(W, γ), “AIPW2” for misspecified m(W, θ), “AIPW3” when both
models are correct, in both Tables 5 and 6).

From these results, it appears that both RMSE and relative differences be-
tween estimated and oracle standard deviations decrease when sample size in-
creases and censoring and missing rates decrease. Relative errors and RMSE are
the smallest for the AIPW estimate when both m(W, θ) and π(W, γ) are cor-
rectly specified (line AIPW3). In each scenario, the relative errors and RMSE of
AIPW are smaller when π(W, γ) is misspecified than when m(W, θ) is misspec-
ified. In fact, relative errors and RMSE show little sensitivity to misspecification
of π(W, γ) (lines AIPW1 and AIPW3 are close to each other). On the other
hand, when m(W, θ) is misspecified and censoring is high, the AIPW relative
error can be substantial (around 20%, yielding the low coverage probabilities
– around 75% – reported for β1, β4, β5 in Table 4). But overall, all variance
estimates essentially provide low relative errors (most of them being less than
6%). When m(W, θ) is well specified and π(W, γ) is misspecified: i) the RC
(respectively MI) variance estimate performs slightly better (respectively a lit-
tle less well) than AIPW in terms of relative error, ii) AIPW variance estimate
performs better than RC and MI in terms of RMSE. These observations sug-
gest that the AIPW variance estimator is superior to RC and MI when both
m(W, θ) and π(W, γ) are correct, and that AIPW and RC variance estimates
have similar performance when π(W, γ) is misspecified.

6.2. A real data analysis

We apply the proposed estimates to a data set from a survey of daily fruits
and vegetables intake. The data were collected by the Office for National Statis-
tics (UK), as part of a larger opinion survey. Respondents were asked about
their usual daily intake of fruits and vegetables. Precisely, we have the number
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of portions of fruits and vegetables eaten by each respondent the day before
the survey, and we know whether this number coincides with the respondent’s
usual intake or whether it is less than the usual intake. In this latter case, the
usual intake is right-censored. The total sample size is n = 928. The censor-
ing information is missing for 228 respondents (that is, 24.6% of the sample)
and 29.6% of the respondents with known censoring information have a right-
censored daily intake. Covariates are gender, age, marital status (married vs
single/divorced/separated), educational level (with three levels: “General Cer-
tificate of Secondary Education (GCSE) or no qualification”, “A-level or equiv-
alent”, “higher education”) and a factor coding respondents appreciation of
their daily intake of fruits and vegetables (“enough”, “not enough”, “more than
enough”). We use logistic regression models (with covariates the number of por-
tions reported by the respondents and the five variables mentioned above) for
the conditional expectation of the censoring indicator and the selection proba-
bilities. A forward-and-backward elimination strategy based on the AIC is used
to select the final models. Finally, we calculate the RC, MI (with M = 50 com-
pleted data sets) and AIPW estimates in a Poisson regression model for the
usual daily intake of fruits and vegetables.

Results are presented in Table 7 (in this table, gender=1 for male and 0 for
female; single=1 for a single/divorced/separated respondent and 0 for a married
respondent; GCSE/no qualif.=1 if the respondent has either no qualification or
has obtained a GCSE, and 0 otherwise, A-level or equiv.=1 if the respondent
has obtained a A-level or an equivalent diploma; more than enough=1 if the
respondent considers that her/his daily intake of fruits and vegetables is more
than enough and 0 otherwise, not enough=1 if the respondent considers that
her/his daily intake is not enough and 0 otherwise).

All methods conclude that age has a significant effect on the daily intake of
fruits and vegetables, with older people consuming more than younger ones. The
gender effect is not significant (at level 5%) for the CC, RC and AIPW analysis
but is significant for the MI method, with women consuming more fruits and
vegetables than men. All methods find that being married is associated with in-
creased fruits and vegetables intakes, while being single, separated or divorced is
associated with lower consumption. For example, using the MI estimate, we find
that on average, being single yields a (1− e−0.0944)× 100 ≈ 9% decrease in the
daily intake (holding fixed all the other effects). Our results also suggest that
individuals with higher education have a higher consumption of fruits and veg-
etables than those with lower education (the reference level in Table 7 is “higher
education”). The difference in daily intake between respondents with an A-level
or equivalent diploma and respondents with a higher degree is not significant (al-
though not being far from it, for all methods except the complete-case analysis)
but there is a very significant difference between respondents with a GCSE or no
qualification and those with a high degree. Finally, respondents who perceive
their intake as more than enough (respectively not enough) indeed consume
more (respectively less) fruits and vegetables, which may reflect the fact that
respondents are well-informed on the usual recommandations about fruits and
vegetables intake. Our results are coherent with the findings of previous stud-
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Table 1. Simulation results for n = 250, censoring rate = 20%, missing rate = 20%. SE: average standard error. RMSE: root mean square error.
CP: empirical coverage probability of 95%-level confidence intervals.

correct m(W, θ) / incorrect π(W, γ) incorrect m(W, θ) / correct π(W, γ) both models correct
estimator β1 β2 β3 β4 β5 β1 β2 β3 β4 β5 β1 β2 β3 β4 β5

bias -0.0097 -0.0001 0.0005 0.0009 0.0021 -0.0097 -0.0001 0.0005 0.0009 0.0021 -0.0097 -0.0001 0.0005 0.0009 0.0021
full data SE 0.1092 0.0213 0.0459 0.0164 0.0267 0.1092 0.0213 0.0459 0.0164 0.0267 0.1092 0.0213 0.0459 0.0164 0.0267

RMSE 0.1549 0.0307 0.0643 0.0232 0.0380 0.1549 0.0307 0.0643 0.0232 0.0380 0.1549 0.0307 0.0643 0.0232 0.0380
CP 0.9571 0.9397 0.9510 0.9540 0.9581 0.9571 0.9397 0.9510 0.9540 0.9581 0.9571 0.9397 0.9510 0.9540 0.9581
bias 0.0624 -0.0033 -0.0062 -0.0096 -0.0082 0.0624 -0.0033 -0.0062 -0.0096 -0.0082 0.0624 -0.0033 -0.0062 -0.0096 -0.0082

CC SE 0.1235 0.0233 0.0500 0.0187 0.0295 0.1235 0.0233 0.0500 0.0187 0.0295 0.1235 0.0233 0.0500 0.0187 0.0295
RMSE 0.1842 0.0334 0.0698 0.0281 0.0423 0.1842 0.0334 0.0698 0.0281 0.0423 0.1842 0.0334 0.0698 0.0281 0.0423
CP 0.9326 0.9418 0.9571 0.9142 0.9540 0.9326 0.9418 0.9571 0.9142 0.9540 0.9326 0.9418 0.9571 0.9142 0.9540
bias -0.0062 0.0001 -0.0003 0.0004 0.0014 0.0256 0.0026 -0.0069 -0.0042 -0.0061 -0.0062 0.0001 -0.0003 0.0004 0.0014

RC SE 0.1111 0.0217 0.0469 0.0167 0.0273 0.1095 0.0217 0.0470 0.0164 0.0268 0.1111 0.0217 0.0469 0.0167 0.0273
RMSE 0.1568 0.0311 0.0653 0.0235 0.0386 0.1615 0.0316 0.0666 0.0242 0.0396 0.1568 0.0311 0.0653 0.0235 0.0386
CP 0.9540 0.9438 0.9510 0.9540 0.9540 0.9387 0.9336 0.9428 0.9234 0.9305 0.9540 0.9438 0.9510 0.9540 0.9540
bias -0.0119 -0.0002 0.0008 0.0012 0.0026 -0.0133 -0.0002 0.0014 0.0016 0.0029 -0.0100 -0.0001 0.0005 0.0010 0.0021

AIPW SE 0.1089 0.0213 0.0458 0.0162 0.0267 0.1058 0.0211 0.0453 0.0159 0.0260 0.1092 0.0213 0.0460 0.0164 0.0268
RMSE 0.1557 0.0308 0.0646 0.0232 0.0383 0.1609 0.0316 0.0660 0.0243 0.0395 0.1557 0.0308 0.0648 0.0233 0.0383
CP 0.9510 0.9397 0.9428 0.9499 0.9459 0.9152 0.9183 0.9275 0.9122 0.9142 0.9520 0.9397 0.9459 0.9520 0.9489
bias -0.0069 0.0000 -0.0001 0.0005 0.0015 0.0241 0.0024 -0.0065 -0.0040 -0.0058 -0.0069 0.0000 -0.0001 0.0005 0.0015

MI SE 0.1091 0.0212 0.0457 0.0163 0.0267 0.1124 0.0219 0.0476 0.0168 0.0274 0.1091 0.0212 0.0457 0.0163 0.0267
RMSE 0.1556 0.0308 0.0646 0.0233 0.0383 0.1633 0.0317 0.0671 0.0245 0.0399 0.1556 0.0308 0.0646 0.0233 0.0383
CP 0.9520 0.9418 0.9479 0.9489 0.9489 0.9459 0.9397 0.9510 0.9356 0.9408 0.9520 0.9418 0.9479 0.9489 0.9489
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Table 2. Simulation results for n = 500, censoring rate = 20%, missing rate = 20%.

correct m(W, θ) / incorrect π(W, γ) incorrect m(W, θ) / correct π(W, γ) both models correct
estimator β1 β2 β3 β4 β5 β1 β2 β3 β4 β5 β1 β2 β3 β4 β5

bias -0.0060 -0.0008 0.0014 0.0005 0.0013 -0.0060 -0.0008 0.0014 0.0005 0.0013 -0.0060 -0.0008 0.0014 0.0005 0.0013
full data SE 0.0766 0.0150 0.0323 0.0115 0.0188 0.0766 0.0150 0.0323 0.0115 0.0188 0.0766 0.0150 0.0323 0.0115 0.0188

RMSE 0.1099 0.0215 0.0453 0.0162 0.0269 0.1099 0.0215 0.0453 0.0162 0.0269 0.1099 0.0215 0.0453 0.0162 0.0269
CP 0.9460 0.9490 0.9500 0.9560 0.9420 0.9460 0.9490 0.9500 0.9560 0.9420 0.9460 0.9490 0.9500 0.9560 0.9420
bias 0.0688 -0.0038 -0.0051 -0.0109 -0.0092 0.0688 -0.0038 -0.0051 -0.0109 -0.0092 0.0688 -0.0038 -0.0051 -0.0109 -0.0092

CC SE 0.0866 0.0163 0.0350 0.0131 0.0207 0.0866 0.0163 0.0350 0.0131 0.0207 0.0866 0.0163 0.0350 0.0131 0.0207
RMSE 0.1421 0.0238 0.0493 0.0213 0.0310 0.1421 0.0238 0.0493 0.0213 0.0310 0.1421 0.0238 0.0493 0.0213 0.0310
CP 0.8676 0.9388 0.9519 0.8656 0.9188 0.8676 0.9388 0.9519 0.8656 0.9188 0.8676 0.9388 0.9519 0.8656 0.9188
bias -0.0022 -0.0006 0.0008 0.0000 0.0005 0.0311 0.0021 -0.0065 -0.0048 -0.0073 -0.0022 -0.0006 0.0008 0.0000 0.0005

RC SE 0.0780 0.0153 0.0329 0.0117 0.0192 0.0769 0.0153 0.0330 0.0115 0.0188 0.0780 0.0153 0.0329 0.0117 0.0192
RMSE 0.1114 0.0218 0.0463 0.0163 0.0273 0.1177 0.0220 0.0476 0.0174 0.0286 0.1114 0.0218 0.0463 0.0163 0.0273
CP 0.9490 0.9490 0.9520 0.9570 0.9430 0.9100 0.9450 0.9330 0.9160 0.9120 0.9490 0.9490 0.9520 0.9570 0.9430
bias -0.0078 -0.0009 0.0020 0.0007 0.0017 -0.0069 -0.0008 0.0018 0.0009 0.0015 -0.0060 -0.0008 0.0017 0.0006 0.0013

AIPW SE 0.0765 0.0150 0.0322 0.0114 0.0187 0.0747 0.0149 0.0319 0.0112 0.0183 0.0766 0.0150 0.0323 0.0115 0.0188
RMSE 0.1106 0.0217 0.0459 0.0161 0.0271 0.1151 0.0221 0.0474 0.0170 0.0280 0.1106 0.0217 0.0459 0.0162 0.0271
CP 0.9410 0.9450 0.9430 0.9500 0.9390 0.8990 0.9280 0.9290 0.9150 0.9070 0.9420 0.9420 0.9450 0.9520 0.9420
bias -0.0026 -0.0006 0.0009 0.0000 0.0006 0.0301 0.0019 -0.0062 -0.0047 -0.0071 -0.0026 -0.0006 0.0009 0.0000 0.0006

MI SE 0.0772 0.0150 0.0324 0.0115 0.0189 0.0805 0.0155 0.0340 0.0120 0.0196 0.0772 0.0150 0.0324 0.0115 0.0189
RMSE 0.1109 0.0216 0.0460 0.0162 0.0272 0.1199 0.0222 0.0482 0.0177 0.0290 0.1109 0.0216 0.0460 0.0162 0.0272
CP 0.9410 0.9450 0.9430 0.9460 0.9380 0.9340 0.9500 0.9470 0.9330 0.9300 0.9410 0.9450 0.9430 0.9460 0.9380
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Table 3. Simulation results for n = 500, censoring rate = 20%, missing rate = 40%.

correct m(W, θ) / incorrect π(W, γ) incorrect m(W, θ) / correct π(W, γ) both models correct
estimator β1 β2 β3 β4 β5 β1 β2 β3 β4 β5 β1 β2 β3 β4 β5

bias -0.0015 -0.0001 -0.0001 0.0006 0.0003 -0.0015 -0.0001 -0.0001 0.0006 0.0003 -0.0015 -0.0001 -0.0001 0.0006 0.0003
full data SE 0.0765 0.0150 0.0323 0.0115 0.0188 0.0765 0.0150 0.0323 0.0115 0.0188 0.0765 0.0150 0.0323 0.0115 0.0188

RMSE 0.1100 0.0213 0.0447 0.0162 0.0270 0.1100 0.0213 0.0447 0.0162 0.0270 0.1100 0.0213 0.0447 0.0162 0.0270
CP 0.9370 0.9450 0.9520 0.9540 0.9440 0.9370 0.9450 0.9520 0.9540 0.9440 0.9370 0.9450 0.9520 0.9540 0.9440
bias 0.1224 0.0121 -0.0128 -0.0177 -0.0152 0.1224 0.0121 -0.0128 -0.0177 -0.0152 0.1224 0.0121 -0.0128 -0.0177 -0.0152

CC SE 0.0993 0.0186 0.0391 0.0151 0.0233 0.0993 0.0186 0.0391 0.0151 0.0233 0.0993 0.0186 0.0391 0.0151 0.0233
RMSE 0.1864 0.0289 0.0562 0.0275 0.0363 0.1864 0.0289 0.0562 0.0275 0.0363 0.1864 0.0289 0.0562 0.0275 0.0363
CP 0.7500 0.8940 0.9400 0.7800 0.8920 0.7500 0.8940 0.9400 0.7800 0.8920 0.7500 0.8940 0.9400 0.7800 0.8920
bias 0.0065 0.0004 -0.0021 -0.0006 -0.0013 0.0779 0.0010 -0.0173 -0.0113 -0.0181 0.0065 0.0004 -0.0021 -0.0006 -0.0013

RC SE 0.0793 0.0154 0.0336 0.0119 0.0196 0.0764 0.0153 0.0335 0.0115 0.0187 0.0793 0.0154 0.0336 0.0119 0.0196
RMSE 0.1134 0.0217 0.0465 0.0167 0.0281 0.1387 0.0220 0.0504 0.0204 0.0335 0.1134 0.0217 0.0465 0.0167 0.0281
CP 0.9430 0.9480 0.9580 0.9490 0.9460 0.7750 0.9420 0.9200 0.8080 0.7920 0.9430 0.9480 0.9580 0.9490 0.9460
bias -0.0052 0.0000 0.0004 0.0010 0.0012 -0.0061 -0.0005 0.0008 0.0014 0.0013 -0.0017 0.0000 -0.0002 0.0007 0.0003

AIPW SE 0.0765 0.0150 0.0322 0.0112 0.0188 0.0698 0.0149 0.0310 0.0105 0.0173 0.0765 0.0150 0.0323 0.0115 0.0188
RMSE 0.1115 0.0215 0.0455 0.0163 0.0276 0.1185 0.0225 0.0480 0.0177 0.0291 0.1113 0.0216 0.0455 0.0164 0.0275
CP 0.9390 0.9400 0.9410 0.9470 0.9370 0.8501 0.9080 0.8925 0.8273 0.8635 0.9410 0.9410 0.9430 0.9550 0.9420
bias 0.0056 0.0004 -0.0018 -0.0005 -0.0011 0.0763 0.0010 -0.0168 -0.0110 -0.0177 0.0056 0.0004 -0.0018 -0.0005 -0.0011

MI SE 0.0777 0.0150 0.0326 0.0116 0.0191 0.0822 0.0156 0.0352 0.0125 0.0200 0.0777 0.0150 0.0326 0.0116 0.0191
RMSE 0.1124 0.0215 0.0458 0.0165 0.0278 0.1412 0.0222 0.0514 0.0209 0.0340 0.1124 0.0215 0.0458 0.0165 0.0278
CP 0.9440 0.9420 0.9440 0.9470 0.9420 0.8330 0.9450 0.9390 0.8690 0.8440 0.9440 0.9420 0.9440 0.9470 0.9420
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Table 4. Simulation results for n = 500, censoring rate = 40%, missing rate = 20%.

correct m(W, θ) / incorrect π(W, γ) incorrect m(W, θ) / correct π(W, γ) both models correct
estimator β1 β2 β3 β4 β5 β1 β2 β3 β4 β5 β1 β2 β3 β4 β5

bias 0.0039 0.0002 -0.0005 -0.0002 -0.0007 0.0039 0.0002 -0.0005 -0.0002 -0.0007 0.0039 0.0002 -0.0005 -0.0002 -0.0007
full data SE 0.0907 0.0180 0.0402 0.0144 0.0233 0.0907 0.0180 0.0402 0.0144 0.0233 0.0907 0.0180 0.0402 0.0144 0.0233

RMSE 0.1285 0.0256 0.0573 0.0199 0.0327 0.1285 0.0256 0.0573 0.0199 0.0327 0.1285 0.0256 0.0573 0.0199 0.0327
CP 0.9587 0.9518 0.9420 0.9676 0.9538 0.9587 0.9518 0.9420 0.9676 0.9538 0.9587 0.9518 0.9420 0.9676 0.9538
bias 0.0764 -0.0033 -0.0062 -0.0116 -0.0115 0.0764 -0.0033 -0.0062 -0.0116 -0.0115 0.0764 -0.0033 -0.0062 -0.0116 -0.0115

CC SE 0.1049 0.0202 0.0451 0.0168 0.0263 0.1049 0.0202 0.0451 0.0168 0.0263 0.1049 0.0202 0.0451 0.0168 0.0263
RMSE 0.1668 0.0289 0.0645 0.0261 0.0387 0.1668 0.0289 0.0645 0.0261 0.0387 0.1668 0.0289 0.0645 0.0261 0.0387
CP 0.8702 0.9440 0.9479 0.8899 0.9272 0.8702 0.9440 0.9479 0.8899 0.9272 0.8702 0.9440 0.9479 0.8899 0.9272
bias 0.0221 0.0012 -0.0037 -0.0027 -0.0051 0.1838 0.0123 -0.0361 -0.0271 -0.0464 0.0221 0.0012 -0.0037 -0.0027 -0.0051

RC SE 0.0960 0.0190 0.0429 0.0152 0.0250 0.0903 0.0192 0.0441 0.0142 0.0231 0.0960 0.0190 0.0429 0.0152 0.0250
RMSE 0.1356 0.0269 0.0605 0.0208 0.0349 0.2279 0.0299 0.0720 0.0346 0.0577 0.1356 0.0269 0.0605 0.0208 0.0349
CP 0.9548 0.9548 0.9469 0.9676 0.9587 0.4808 0.9036 0.8673 0.5152 0.5034 0.9548 0.9548 0.9469 0.9676 0.9587
bias -0.0036 -0.0004 0.0022 0.0010 0.0011 0.0199 0.0017 -0.0038 -0.0028 -0.0047 0.0046 0.0002 0.0003 -0.0002 -0.0010

AIPW SE 0.0899 0.0178 0.0398 0.0138 0.0231 0.0681 0.0169 0.0366 0.0110 0.0173 0.0907 0.0180 0.0402 0.0144 0.0233
RMSE 0.1296 0.0263 0.0589 0.0198 0.0332 0.1332 0.0273 0.0617 0.0216 0.0340 0.1302 0.0264 0.0589 0.0201 0.0333
CP 0.9508 0.9292 0.9272 0.9489 0.9489 0.7443 0.8741 0.8348 0.7443 0.7345 0.9479 0.9292 0.9361 0.9626 0.9459
bias 0.0203 0.0010 -0.0031 -0.0025 -0.0046 0.1781 0.0117 -0.0344 -0.0262 -0.0449 0.0203 0.0010 -0.0031 -0.0025 -0.0046

MI SE 0.0933 0.0183 0.0412 0.0147 0.0241 0.1011 0.0199 0.0467 0.0162 0.0258 0.0933 0.0183 0.0412 0.0147 0.0241
RMSE 0.1337 0.0264 0.0594 0.0205 0.0343 0.2281 0.0301 0.0728 0.0348 0.0577 0.1337 0.0264 0.0594 0.0205 0.0343
CP 0.9430 0.9390 0.9381 0.9587 0.9508 0.5821 0.9145 0.9046 0.6332 0.5929 0.9430 0.9390 0.9381 0.9587 0.9508
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Table 5. Relative errors (in %) of estimated standard deviations for the RC, MI and AIPW methods (with oracle standard deviations as reference
values).

experiment 1 experiment 2
β1 β2 β3 β4 β5 β1 β2 β3 β4 β5

RC 3.5064 4.5296 3.5551 4.3983 3.6484 2.4176 3.3005 2.4370 3.0294 2.4596
MI 5.8060 7.7976 6.0465 6.9825 6.0021 3.9850 5.7020 4.3539 5.0137 4.1130
AIPW1 3.5505 4.6329 3.5394 4.5765 3.6785 2.4617 3.3519 2.4448 3.1441 2.5167
AIPW2 4.4184 4.6137 3.7427 5.2623 4.2667 2.8580 3.4715 2.5475 3.6508 2.7213
AIPW3 3.2736 4.4388 3.4035 4.2700 3.3965 2.2022 3.2673 2.3002 2.9241 2.2328

experiment 3 experiment 4
β1 β2 β3 β4 β5 β1 β2 β3 β4 β5

RC 2.5299 3.2919 2.7640 3.1681 2.6332 3.1954 3.7548 3.4727 3.6572 3.3338
MI 4.1904 5.4829 4.4390 5.0557 4.2105 4.9915 5.6509 5.0467 5.6463 5.0811
AIPW1 2.5886 3.3626 2.7770 3.6558 2.7379 3.1904 4.0247 3.5270 4.1102 3.4390
AIPW2 6.2583 3.2878 3.7213 7.3639 5.5936 21.6887 5.0476 6.9504 20.6814 21.9974
AIPW3 2.2943 3.2301 2.4348 2.9428 2.3428 2.7317 3.5375 3.0144 3.3137 2.8459

Table 6. Root mean square errors of the RC, MI and AIPW variance estimates (with oracle variances as reference values).

experiment 1 experiment 2
β1 β2 β3 β4 β5 β1 β2 β3 β4 β5

RC 0.2761 0.0141 0.0512 0.0078 0.0173 0.1837 0.0098 0.0342 0.0052 0.0114
MI 0.4431 0.0227 0.0835 0.0117 0.0277 0.3012 0.0162 0.0584 0.0084 0.0186
AIPW1 0.2710 0.0138 0.0483 0.0078 0.0169 0.1801 0.0096 0.0328 0.0051 0.0111
AIPW2 0.3556 0.0133 0.0515 0.0091 0.0206 0.2327 0.0100 0.0353 0.0065 0.0128
AIPW3 0.2467 0.0129 0.0464 0.0072 0.0153 0.1615 0.0094 0.0309 0.0048 0.0099

experiment 3 experiment 4
β1 β2 β3 β4 β5 β1 β2 β3 β4 β5

RC 0.2039 0.0100 0.0398 0.0059 0.0128 0.3637 0.0173 0.0829 0.0106 0.0261
MI 0.3242 0.0158 0.0599 0.0089 0.0198 0.5520 0.0241 0.1112 0.0155 0.0376
AIPW1 0.1927 0.0096 0.0371 0.0059 0.0122 0.3254 0.0163 0.0725 0.0098 0.0234
AIPW2 0.4568 0.0094 0.0531 0.0114 0.0249 0.9898 0.0185 0.1106 0.0248 0.0650
AIPW3 0.1694 0.0093 0.0323 0.0050 0.0105 0.2801 0.0146 0.0637 0.0085 0.0193
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Table 7. Analysis results for the daily fruits and vegetables intake.

CC RC MI AIPW
est se p-value est se p-value est se p-value est se p-value

constant 1.6372 0.0897 0.0000 1.6042 0.0785 0.0000 1.5980 0.0632 0.0000 1.6187 0.0766 0.0000
gender -0.0721 0.0452 0.1107 -0.0699 0.0402 0.0818 -0.0701 0.0353 0.0470 -0.0715 0.0385 0.0636
age 0.0027 0.0013 0.0343 0.0027 0.0011 0.0163 0.0028 0.0009 0.0033 0.0026 0.0011 0.0239
single -0.1175 0.0444 0.0082 -0.0979 0.0382 0.0104 -0.0944 0.0329 0.0041 -0.1039 0.0382 0.0065
GCSE/no qualif. -0.2600 0.0535 0.0000 -0.2392 0.0477 0.0000 -0.2389 0.0405 0.0000 -0.2389 0.0455 0.0000
A-level or equiv. -0.1196 0.0797 0.1335 -0.1182 0.0710 0.0961 -0.1195 0.0630 0.0577 -0.1236 0.0675 0.0669
more than enough 0.3749 0.0679 0.0000 0.3746 0.0610 0.0000 0.3753 0.0582 0.0000 0.3712 0.0574 0.0000
not enough -0.5611 0.0546 0.0000 -0.5045 0.0478 0.0000 -0.5029 0.0424 0.0000 -0.5072 0.0459 0.0000
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ies that investigated factors that influence fruits and vegetables consumption,
see [30] for example. Although here, the complete-case analysis yields the same
conclusions as the RC, MI and AIPW methods, we observe some differences
between the CC estimates and the RC, MI and AIPW estimates, which might
reflect the bias of the CC method observed in the simulation study. Moreover,
the CC estimates have usually larger standard errors, which reflects the loss of
efficiency of the method.

In this example, the three AIPW variance estimates given in (5.2) are equal
up to 3 digits (for this reason, only one standard error is reported in Table
7). This suggests that both the missingness model and conditional model for
the censoring indicators given observed variables are correctly specified. For
this reason and in view of the conclusions of the simulation study, we would
recommand to use the AIPW estimate for further statistical inference on this
data set.

Remark. A naive (but easy to implement, using standard statistical softwares)
estimation method consists in fitting an uncensored Poisson regression model to
the data (that is, the censored intakes are treated as if they were uncensored).
Using this method, the estimated constant is 1.338 (from Table 7, a consensus
estimate is around 1.6). As expected, this naive method underestimates the
baseline level of fruits and vegetables consumption.

7. Discussion

In this article, we have investigated several estimators of the regression param-
eter of the censored Poisson regression model when censoring indicators are
partially missing. The regression calibration and multiple imputation estimates
and their asymptotic variance estimators lead to reliable inferences when the
model for the missing data given the observed variables is correctly specified,
while the augmented inverse probability weighted estimator is asymptotically
robust against misspecification of either the model for the missing data or the
missingness mechanism. In finite samples, the AIPW estimator seems to be be
more sensitive to a misspecification of the censoring mechanism than of the
missingness mechanism.

Now, several issues deserve attention. First, in this work, we considered miss-
ing censoring indicators in the Poisson regression model, which assumes equidis-
persion. A similar issue may arise with under- or over-dispersed counts. The gen-
eralized Poisson regression model (see [11] for example) is an appealing model
for such data. The negative binomial regression model is an other option for
modeling over-dispersed counts. When over-dispersion is due to zero-inflation,
zero-inflated regression models (such as zero-inflated Poisson, zero-inflated gen-
eralized Poisson or zero-inflated negative binomial models) are appropriate. The
estimates proposed in our paper may be adapted to these models and similar
techniques could be used to investigate their asymptotic properties.

An other topic for further research is as follows. Our estimators rely on para-
metric models for the missing data and missingness mechanism. It is important
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to assess the sensitivity of the statistical inference to deviations to these models.
An alternative estimation strategy may use semiparametric or nonparametric
estimation of the models for missing data and missingness mechanism, and is
also the topic for our future work.

Appendix A: Proof of Theorem 3.1

Consistency. The consistency of β̃n can be proved by verifying the conditions
of the inverse function theorem [13]. We describe the main steps of the proof
and omit calculation details.

Let
˙̃
�n(β, θ) := ∂�̃n(β, θ)/∂β. Straightforward calculations yield:

˙̃
�n(β, θ) =

n∑
i=1

Xi

[
δ̂i(θ)

(
Y ∗
i − eβ

�Xi

)
+ (1− δ̂i(θ))hβ(Y

∗
i ,Xi)

]
,

where hβ(y, x) is given by (3.3). We first need to show that ∂
˙̃
�n(β, θ̂n)/∂β

�

exists and is continuous in a neighborhood of β0. The map β �→ ˙̃
�n(β, θ̂n) is

trivially differentiable with respect to β and its derivative is given by:

∂
˙̃
�n(β, θ̂n)

∂β� =
n∑

i=1

XiX
�
i

(
−δ̂i(θ̂n)e

β�Xi

+(1− δ̂i(θ̂n))
{
Y ∗
i − eβ

�Xi − hβ(Y
∗
i ,Xi)

}
hβ(Y

∗
i ,Xi)

)
,

which is continuous in β.

Secondly, we need to show that n−1 ˙̃
�n(β0, θ̂n) = oP(1). To see this, we de-

compose n−1 ˙̃
�n(β0, θ̂n):

1

n
˙̃
�n(β0, θ̂n) =

1

n

(
˙̃
�n(β0, θ̂n)− ˙̃

�n(β0, θ0)
)
+

1

n
˙̃
�n(β0, θ0).

By the weak law of large numbers, n−1 ˙̃
�n(β0, θ0) converges in probability to

E

[
X
(
δ̂(θ0)(Y

∗ − eβ
�
0 X) + (1− δ̂(θ0))hβ0(Y

∗,X)
)]

= E

[
X
(
E(δ̂(θ0)|W)(Y ∗ − eβ

�
0 X) + (1− E(δ̂(θ0)|W))hβ0(Y

∗,X)
)]

,(7.1)

where the second line follows by taking the conditional expectation given W.
Under the missing at random assumption,

E(δ̂(θ0)|W) = E(ξδ + (1− ξ)E(δ|W)|W)

= E(ξ|W)E(δ|W) + (1− E(ξ|W))E(δ|W)

= E(δ|W).
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Therefore, (7.1) is equal to

E

[
X
(
E(δ|W)(Y ∗ − eβ

�
0 X) + (1− E(δ|W))hβ0(Y

∗,X)
)]

= E

[
X
(
δ(Y ∗ − eβ

�
0 X) + (1− δ)hβ0(Y

∗,X)
)]

,

which is equal to 0 (this can be seen by taking successively the conditional expec-

tations given {δ = 1} and X). Convergence to 0 of n−1(
˙̃
�n(β0, θ̂n)− ˙̃

�n(β0, θ0))

is a consequence of the consistency of θ̂n and of assumptions C1, C2, C4. Details
are omitted.

Thirdly, we need to show that n−1∂
˙̃
�n(β, θ̂n)/∂β

� converges in probability
to a fixed matrix, uniformly in an open neighborhood of β0. We have:

1

n

∂
˙̃
�n(β, θ)

∂β� =
1

n

n∑
i=1

XiX
�
i

(
−δ̂i(θ)e

β�Xi

+(1− δ̂i(θ))
{
Y ∗
i − eβ

�Xi − hβ(Y
∗
i ,Xi)

}
hβ(Y

∗
i ,Xi)

)
.

We proceed as above and decompose n−1∂
˙̃
�n(β, θ̂n)/∂β

� as

1

n

∂
˙̃
�n(β, θ̂n)

∂β� =
1

n

(
∂
˙̃
�n(β, θ̂n)

∂β� − ∂
˙̃
�n(β, θ0)

∂β�

)
+

1

n

∂
˙̃
�n(β, θ0)

∂β� .

The first term converges to 0 (by the consistency of θ̂n and assumptions C1, C2,

C4) and n−1∂
˙̃
�n(β, θ0)/∂β

� converges in probability to −Σ1(β) (by the weak

law of large numbers). Therefore, n−1∂
˙̃
�n(β, θ̂n)/∂β

� converges in probability

to −Σ1(β). Under conditions C1 and C2, the derivative of n−1∂
˙̃
�n(β, θ̂n)/∂β

�

with respect to β is bounded, for every n. Hence the sequence (n−1∂
˙̃
�n(β, θ̂n)/

∂β�)n is equicontinuous. It follows from Ascoli theorem that the convergence

of n−1∂
˙̃
�n(β, θ̂n)/∂β

� to −Σ1(β) is uniform around β0.
Having proved the conditions of the inverse function theorem, we conclude

that β̃n converges in probability to β0.

Asymptotic normality. A Taylor’s expansion of
˙̃
�n(β̃n, θ̂n) around (β0, θ0)

yields

√
n(β̃n − β0) =

(
− 1

n

∂
˙̃
�n(β0, θ0)

∂β�

)−1

×
(

1√
n

˙̃
�n(β0, θ0) +

1

n

∂
˙̃
�n(β0, θ0)

∂θ�
√
n(θ̂n − θ0)

)
+ oP(1).

We have:

1

n

∂
˙̃
�n(β, θ)

∂θ�
=

1

n

n∑
i=1

Xi

(
Y ∗
i − eβ

�Xi − hβ(Y
∗
i ,Xi)

)
(1− ξi)ṁ

�(Wi, θ)
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= Σ2(β, θ) + oP(1).

Combining this and (3.2), we can write:

√
n(β̃n − β0) =

(
− 1

n

∂
˙̃
�n(β0, θ0)

∂β�

)−1

1√
n

n∑
i=1

[
Xi

{
δ̂i(θ0)(Y

∗
i − eβ

�
0 Xi)

+(1− δ̂i(θ0))hβ0(Y
∗
i ,Xi)

}
+Σ2(β0, θ0)Θ

−1(θ0)m̃i(θ0)ξi(δi −m(Wi, θ0))
]
+ oP(1)

:=

(
− 1

n

∂
˙̃
�n(β0, θ0)

∂β�

)−1

1√
n

n∑
i=1

Ui + oP(1).

Now, note that

var
(
Xi

{
δ̂i(θ0)(Y

∗
i − eβ

�
0 Xi) + (1− δ̂i(θ0))hβ0(Y

∗
i ,Xi)

})
= Σ1(β0),

and

var
(
Σ2(β0, θ0)Θ

−1(θ0)m̃i(θ0)ξi(δi −m(Wi, θ0))
)

= Σ2(β0, θ0)Θ
−1(θ0)E

[
m̃i

⊗2
(θ0)ξi(δi −m(Wi, θ0))

2
]

×Θ−1(θ0)Σ
�
2 (β0, θ0)

= Σ2(β0, θ0)Θ
−1(θ0)Σ

�
2 (β0, θ0),

since under the missing at random assumption, we have:

E

[
m̃i

⊗2
(θ0)ξi(δi −m(Wi, θ0))

2
]

= E

[
ṁ⊗2(Wi, θ0)

{m(Wi, θ0)(1−m(Wi, θ0))}2
E
[
ξi(δi −m(Wi, θ0))

2|Wi

]]
= E

[
ṁ⊗2(Wi, θ0)

{m(Wi, θ0)(1−m(Wi, θ0))}2
E [ξi|Wi]E [δi − 2δim(Wi, θ0)

+m2(Wi, θ0)|Wi

]]
= E

[
ṁ⊗2(Wi, θ0)

m(Wi, θ0)(1−m(Wi, θ0))
π(Wi)

]
= Θ(θ0).

We consider now the covariance structure of Ui. We have

cov
(
Xi

{
δ̂i(θ0)(Y

∗
i − eβ

�
0 Xi) + (1− δ̂i(θ0))hβ0(Y

∗
i ,Xi)

}
,

Σ2(β0, θ0)Θ
−1(θ0)m̃i(θ0)ξi(δi −m(Wi, θ0))

)
= E

[
Xim̃i

�
(θ0)E

[(
δ̂i(θ0)(Y

∗
i − eβ

�
0 Xi − hβ0(Y

∗
i ,Xi)) + hβ0(Y

∗
i ,Xi)

)
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× ξi(δi −m(Wi, θ0))|Wi]]×Θ−1(θ0)Σ
�
2 (β0, θ0),

and

E

[(
δ̂i(θ0)(Y

∗
i − eβ

�
0 Xi − hβ0(Y

∗
i ,Xi)) + hβ0(Y

∗
i ,Xi)

)
ξi(δi −m(Wi, θ0))|Wi

]
= E

[
ξiδi(1−m(Wi, θ0))(Y

∗
i − eβ

�
0 Xi − hβ0(Y

∗
i ,Xi))

+ ξihβ0(Y
∗
i ,Xi)(δi −m(Wi, θ0))|Wi]

= (1−m(Wi, θ0))(Y
∗
i − eβ

�
0 Xi − hβ0(Y

∗
i ,Xi))m(Wi, θ0)π(Wi),

therefore,

cov
(
Xi

{
δ̂i(θ0)(Y

∗
i − eβ

�
0 Xi) + (1− δ̂i(θ0))hβ0(Y

∗
i ,Xi)

}
,

Σ2(β0, θ0)Θ
−1(θ0)m̃i(θ0)ξi(δi −m(Wi, θ0))

)
= E

[
Xim̃i

�
(θ0)(1−m(Wi, θ0))(Y

∗
i − eβ

�
0 Xi − hβ0(Y

∗
i ,Xi))

×m(Wi, θ0)π(Wi)] Θ
−1(θ0)Σ

�
2 (β0, θ0)

= E

[
Xiṁi

�(Wi, θ0)(Y
∗
i − eβ

�
0 Xi − hβ0(Y

∗
i ,Xi))π(Wi)

]
Θ−1(θ0)Σ

�
2 (β0, θ0)

= (Σ3(β0, θ0)− Σ2(β0, θ0))Θ
−1(θ0)Σ

�
2 (β0, θ0).

It follows that

var(Ui) = Σ1(β0) + (2Σ3(β0, θ0)− Σ2(β0, θ0))Θ
−1(θ0)Σ

�
2 (β0, θ0).

Finally, Theorem 3.1 follows from the multivariate central limit theorem and
Slutsky’s theorem. �

Appendix B: Proof of Theorem 4.1

Consistency can be proved in much the same way as β̃n; the proof is therefore
omitted. We turn to asymptotic normality. A technical lemma is needed. For
j = 1, . . . ,M , let

�̇∗n,j(β, θ) =
∂�∗n,j(β, θ)

∂β

=
n∑

i=1

Xi

(
δ∗i,j(θ)

[
Y ∗
i − eβ

�Xi − hβ(Y
∗
i ,Xi)

]
+ hβ(Y

∗
i ,Xi)

)
(7.2)

:=

n∑
i=1

fβ,θ,j(Oi).

Then the following holds:
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Lemma 7.1. Under conditions C1, C2 and C4:

1√
n

[
�̇∗n,j(β0, θ̂n)− nE[�̇∗1,j(β0, θ̂n)]−

(
�̇∗n,j(β0, θ0)− nE[�̇∗1,j(β0, θ0)]

)]
P−→ 0(7.3)

as n → ∞.

Proof of Lemma 7.1. In this proof, for notational simplicity, we will write
fθ instead of fβ0,θ,j . First, note that

1√
n

[
�̇∗n,j(β0, θ)− nE[�̇∗1,j(β0, θ)]

]
=

1√
n

[
n∑

i=1

fθ(Oi)− nE[fθ(O1)]

]
= Gnfθ,

where Gnfθ denotes the empirical process evaluated at fθ. To prove the lemma,
we first prove that the class of functions {fθ : θ ∈ Θ} is Donsker (see, for
example, [41] for a detailed account on empirical processes and Donsker classes).
For that purpose, we decompose fθ in (7.2) as fθ(Oi) = Xi(f1,θ(Oi)+f2,θ(Oi)+

f3,θ(Oi)), where f1,θ(Oi) = −δ∗i,j(θ)e
β�
0 Xi + hβ0(Y

∗
i ,Xi), f2,θ(Oi) = δ∗i,j(θ)Y

∗
i

and f3,θ(Oi) = −δ∗i,j(θ)hβ0(Y
∗
i ,Xi) and we show that the classes F1 := {f1,θ :

θ ∈ Θ}, F2 := {f2,θ : θ ∈ Θ} and F3 := {f3,θ : θ ∈ Θ} are Donsker.

For illustration purpose, we show that F1 is Donsker. Here, it is useful to
see Di,j(θ) ∼ B(m(Wi, θ)) as the random variable 1{Ui≤m(Wi,θ)}, where Ui is a
uniform random variable on [0, 1], independent of Oi.

Let d := diam(Θ) denote the diameter of Θ ⊂ R
q. Then the size of Θ in every

direction is at most d and thus, we can cover Θ with fewer than (d/κ)q cubes of
length κ. The circumscribed balls have radius a multiple κ∗ := ακ of κ (α > 0)
and these balls also cover Θ. Now, for a given θ ∈ Θ, consider the set

{f1,θ̃ : θ̃ ∈ Θ ∩ B(θ, κ∗)},

where B(θ, κ∗) = {θ̃ ∈ Rq : ‖θ − θ̃‖ ≤ κ∗} is the ball of radius κ∗ and center θ.
If θ̃ ∈ B(θ, κ∗), condition C4 implies that

|m(w, θ)−m(w, θ̃)| ≤ h(w)κ∗,

hence m(w, θ) − h(w)κ∗ ≤ m(w, θ̃) ≤ m(w, θ) + h(w)κ∗ and thus we have
1{Ui≤m(w,θ)−h(w)κ∗} ≤ 1{Ui≤m(w,θ̃)} ≤ 1{Ui≤m(w,θ)+h(w)κ∗}. From this, we can
see that

fL
θ (Oi) ≤ f1,θ̃(Oi) ≤ fU

θ (Oi),

where

fL
θ (Oi) = hβ0(Y

∗
i ,Xi)− (ξiδi + (1− ξi)1{Ui≤m(Wi,θ)+h(Wi)κ∗})e

β�
0 Xi ,

fU
θ (Oi) = hβ0(Y

∗
i ,Xi)− (ξiδi + (1− ξi)1{Ui≤m(Wi,θ)−h(Wi)κ∗})e

β�
0 Xi .



4372 B. Bousselmi et al.

Moreover, under conditions C1, C2 and C4, there exists a finite positive constant
c1 such that

E

[(
fU
θ (Oi)− fL

θ (Oi)
)2] ≤ 2c1κ

∗v.

Therefore, [fL
θ , f

U
θ ] is an ε-bracket for {f1,θ̃ : θ̃ ∈ Θ ∩ B(θ, κ∗)}, with ε2 =

2c1κ
∗v. Since we can cover Θ with fewer than (d/κ)q balls of radius κ∗, we

can cover F1 = {f1,θ̃ : θ̃ ∈ Θ} with fewer than (d/κ)q ε-brackets [fL
θ , f

U
θ ],

with ε =
√
2c1κ∗v. The number of such ε-brackets is thus bounded by (αd/

κ∗)q = (2αc1dv/ε
2)q, which is order ε−2q. Hence, the bracketing integral is of

order
∫ 1

0

√
−2q log ε dε, which is finite. Therefore, the class of functions F1 is

Donsker, by Theorem 19.5 of [41].
By using similar arguments, we can prove that F2 and F3 are also Donsker

classes. It follows that the class of functions {f1,θ+f2,θ+f3,θ : θ ∈ Θ} is Donsker
(sums of Donsker classes are Donsker). Finally, X is bounded (by condition C1),
thus the class of functions {fθ : θ ∈ Θ} is Donsker.

It follows that the sequence of processes {Gnfθ : θ ∈ Θ} converges in distribu-
tion to a tight limit process, and as such, is stochastically equicontinuous. Thus,

Lemma 14.3 of [40] and the consistency of θ̂n imply that Gnfθ̂n −Gnfθ0
P−→ 0,

which is exactly (7.3). This concludes the proof. �

We come back to the proof of asymptotic normality. By a Taylor expansion
of �̇∗n,j(β̂

∗
n,j , θ̂n) around β0 (for j = 1, . . . ,M), we have:

0 =
1√
n
�̇∗n,j(β̂

∗
n,j , θ̂n)

=
1√
n
�̇∗n,j(β0, θ̂n) +

1

n

∂�̇∗n,j(β0, θ̂n)

∂β�
√
n(β̂∗

n,j − β0) + oP(1).

Then, using Lemma 7.1, we obtain:

0 =
1√
n
�̇∗n,j(β0, θ0)−

√
nE[�̇∗1,j(β0, θ0)] +

√
nE[�̇∗1,j(β0, θ̂n)]

+
1

n

∂�̇∗n,j(β0, θ̂n)

∂β�
√
n(β̂∗

n,j − β0) + oP(1)

=
1√
n
�̇∗n,j(β0, θ0) +

√
n

(
∂E[�̇∗1,j(β0, θ0)]

∂θ�
(θ̂n − θ0) + oP(‖θ̂n − θ0‖)

)

+
1

n

∂�̇∗n,j(β0, θ̂n)

∂β�
√
n(β̂∗

n,j − β0) + oP(1), (7.4)

where the second line follows from a Taylor expansion of E[�̇∗1,j(β0, θ̂n)] around
θ0. Two technical lemmas are now needed:

Lemma 7.2. For j = 1, . . . ,M , we have

∂E[�̇∗1,j(β, θ)]

∂θ�
= Σ2(β, θ).
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Proof of Lemma 7.2. First, we note that

E[δ∗1,j(θ)|W1] = E[ξ1δ1 + (1− ξ1)D1,j(θ)]

= π(W1)m(W1, θ0) + (1− π(W1))m(W1, θ). (7.5)

Hence, using (7.2) and iterating the expectation with conditioning on W1, we
obtain:

E[�̇∗1,j(β, θ)] = E

[
X1

(
δ∗1,j(θ)

[
Y ∗
1 − eβ

�X1 − hβ(Y
∗
1 ,X1)

]
+ hβ(Y

∗
1 ,X1)

)]
= E [X1 ((π(W1)m(W1, θ0) + (1− π(W1))m(W1, θ))

×
[
Y ∗
1 − eβ

�X1 − hβ(Y
∗
1 ,X1)

]
+ hβ(Y

∗
1 ,X1)

)]
.

Finally, straightforward calculations yield

∂E[�̇∗1,j(β, θ)]

∂θ�
= E

[
X1(1− π(W1))ṁ

�(W1, θ)
(
Y ∗
1 − eβ

�X1 − hβ(Y
∗
1 ,X1)

)]
= Σ2(β, θ).

�
Lemma 7.3. For j = 1, . . . ,M ,

1

n

∂�̇∗n,j(β0, θ̂n)

∂β�
P−→ −Σ1(β0).

Proof of Lemma 7.3. Let j = 1, . . . ,M . Straightforward calculations yield:

∂�̇∗n,j(β0, θ̂n)

∂β� =

n∑
i=1

XiX
�
i

[
−δ∗i,j(θ̂n)e

β�
0 Xi

+(1− δ∗i,j(θ̂n))hβ0(Y
∗
i ,Xi)

(
Y ∗
i − eβ

�
0 Xi − hβ0(Y

∗
i ,Xi)

)]
.

Then we decompose n−1∂�̇∗n,j(β0, θ̂n)/∂β
� as:

1

n

∂�̇∗n,j(β0, θ̂n)

∂β� =

(
1

n

∂�̇∗n,j(β0, θ̂n)

∂β� − 1

n

∂�̇∗n,j(β0, θ0)

∂β�

)
+

1

n

∂�̇∗n,j(β0, θ0)

∂β�

=
1

n

n∑
i=1

XiX
�
i

[
−eβ

�
0 Xi(1− ξi)(Di,j(θ̂n)−Di,j(θ0))

+hβ0(Y
∗
i ,Xi)

(
Y ∗
i − eβ

�
0 Xi − hβ0(Y

∗
i ,Xi)

)
× (1− ξi)(Di,j(θ0)−Di,j(θ̂n))

]
+

1

n

∂�̇∗n,j(β0, θ0)

∂β�

=
1

n

n∑
i=1

XiX
�
i (1− ξi)

[
eβ

�
0 Xi + hβ0(Y

∗
i ,Xi)
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×
(
Y ∗
i − eβ

�
0 Xi − hβ0(Y

∗
i ,Xi)

)]
×(Di,j(θ0)−Di,j(θ̂n)) +

1

n

∂�̇∗n,j(β0, θ0)

∂β�

=
1

n

n∑
i=1

Zi(1{Ui,j≤m(Wi,θ0)} − 1{Ui,j≤m(Wi,θ̂n)})

+
1

n

∂�̇∗n,j(β0, θ0)

∂β� , (7.6)

where Zi := XiX
�
i (1− ξi)[e

β�
0 Xi + hβ0(Y

∗
i ,Xi)(Y

∗
i − eβ

�
0 Xi − hβ0(Y

∗
i ,Xi))] (in

what follows, we will denote by Zi,(	,k) the (�, k)-th element of Zi) and Ui,j is a
uniform random variable on [0, 1], independent of all other random variables.

Consider the first term in the right-hand side of (7.6). The random variable
|1{Ui,j≤m(Wi,θ0)} − 1{Ui,j≤m(Wi,θ̂n)}| is equal to 0 or 1 and takes the value 1

with probability |m(Wi, θ0)−m(Wi, θ̂n)|. Let ε > 0. Then, for �, k ∈ {1, . . . , p},
Markov’s inequality implies that

P

(∣∣∣∣∣ 1n
n∑

i=1

Zi,(	,k)(1{Ui,j≤m(Wi,θ0)} − 1{Ui,j≤m(Wi,θ̂n)})

∣∣∣∣∣ > ε

)

≤ 1

ε
E

[∣∣∣∣∣ 1n
n∑

i=1

Zi,(	,k)(1{Ui,j≤m(Wi,θ0)} − 1{Ui,j≤m(Wi,θ̂n)})

∣∣∣∣∣
]
.

Under conditions C1 and C2, there exists a finite positive constant c2 such that
|Zi,(	,k)| ≤ c2. Thus,

P

(∣∣∣∣∣ 1n
n∑

i=1

Zi,(	,k)(1{Ui,j≤m(Wi,θ0)} − 1{Ui,j≤m(Wi,θ̂n)})

∣∣∣∣∣ > ε

)

≤ c2
εn

n∑
i=1

|m(Wi, θ0)−m(Wi, θ̂n)|

≤ c2
εn

n∑
i=1

h(Wi)‖θ0 − θ̂n‖

≤ c2
ε
‖θ0 − θ̂n‖(v + oP(1)),

where the last two lines follow from the condition C4. Finally, consistency of
θ̂n implies that 1

n

∑n
i=1 Zi,(	,k)(1{Ui,j≤m(Wi,θ0)}−1{Ui,j≤m(Wi,θ̂n)}) converges in

probability to 0, and the first term in the right-hand side of (7.6) also converges
to 0.

We consider now the second term in the right-hand side of (7.6). By the weak
law of large numbers, n−1∂�̇∗n,j(β0, θ0)/∂β

� converges in probability to

E

[
X1X

�
1

[
−δ∗1,j(θ0)e

β�
0 X1 + (1− δ∗1,j(θ0))hβ0(Y

∗
1 ,X1)
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×
(
Y ∗
1 − eβ

�
0 X1 − hβ0(Y

∗
1 ,X1)

)]]
. (7.7)

Using the fact that E[δ∗1,j(θ0)|W1] = m(W1, θ0) (see (7.5)), and iterating the
expectation in (7.7) with conditioning on W1, we easily show that (7.7) is equal
to −Σ1(β0).

Thus, we have shown that n−1∂�̇∗n,j(β0, θ̂n)/∂β
� converges in probability to

−Σ1(β0), which concludes the proof. �

By combining (7.4) with Lemmas 7.2 and 7.3, we obtain the following ap-

proximation of β̂∗
n,j :

√
n(β̂∗

n,j − β0)

= Σ−1
1 (β0)

1√
n

n∑
i=1

[
Xi

{
δ∗i,j(θ0)[Y

∗
i − eβ

�
0 Xi − hβ0(Y

∗
i ,Xi)] + hβ0(Y

∗
i ,Xi)

}
+ Σ2(β0, θ0)Θ

−1(θ0)m̃i(θ0)ξi(δi −m(Wi, θ0))
]
+ oP(1),

which in turn implies the approximation of the multiple imputation estimator
β̂∗
n:

√
n(β̂∗

n − β0)

=
1

M

M∑
j=1

(√
n(β̂∗

n,j − β0)
)

= Σ−1
1 (β0)

1√
n

n∑
i=1

⎡⎣ 1

M

M∑
j=1

Xi

{
δ∗i,j(θ0)[Y

∗
i − eβ

�
0 Xi − hβ0(Y

∗
i ,Xi)]

+hβ0(Y
∗
i ,Xi)}+Σ2(β0, θ0)Θ

−1(θ0)m̃i(θ0)ξi(δi −m(Wi, θ0))
]
+ oP(1)

:= Σ−1
1 (β0)

1√
n

n∑
i=1

⎡⎣ 1

M

M∑
j=1

fβ0,θ0,j(Oi) + Vi

⎤⎦+ oP(1), (7.8)

where Vi := Σ2(β0, θ0)Θ
−1(θ0)m̃i(θ0)ξi(δi−m(Wi, θ0)). We have already shown

(see proof of Theorem 3.1) that

var(Vi) = Σ2(β0, θ0)Θ
−1(θ0)Σ

�
2 (β0, θ0).

Similar calculations as in the proof of Theorem 3.1 yield:

cov(fβ0,θ0,j(Oi),Vi) = (Σ3(β0, θ0)− Σ2(β0, θ0))Θ
−1(θ0)Σ

�
2 (β0, θ0).

Therefore,

var

⎛⎝ 1

M

M∑
j=1

fβ0,θ0,j(Oi) + Vi

⎞⎠
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= var

⎛⎝ 1

M

M∑
j=1

fβ0,θ0,j(Oi)

⎞⎠+ var(Vi) +
2

M

M∑
j=1

cov(fβ0,θ0,j(Oi),Vi)

= Σ∗
1(β0, θ0) + Σ2(β0, θ0)Θ

−1(θ0)Σ
�
2 (β0, θ0)

+2 (Σ3(β0, θ0)− Σ2(β0, θ0))Θ
−1(θ0)Σ

�
2 (β0, θ0)

= Σ∗
1(β0, θ0) + (2Σ3(β0, θ0)− Σ2(β0, θ0))Θ

−1(θ0)Σ
�
2 (β0, θ0). (7.9)

Finally, it follows from (7.8), (7.9) and the multivariate central limit theorem

that
√
n(β̂∗

n−β0) converges in distribution to a Gaussian vector with mean zero
and variance

Σ−1
1 (β0)

{
Σ∗

1(β0, θ0) + (2Σ3(β0, θ0)− Σ2(β0, θ0))Θ
−1(θ0)Σ

�
2 (β0, θ0)

}
Σ−1

1 (β0),

which concludes the proof. �

Appendix C: Proof of Theorem 5.1

Assume that the model m(Wi, θ) is correctly specified. It is straightforward

to check that the map β �→ ∂�̆n(β, θ̂n, γ̂n)/∂β exists and is continuous in a
neighborhood of β0 (condition i).

Now, we show that n−1�̆n(β0, θ̂n, γ̂n) = oP(1) (condition ii). To see this,

decompose n−1�̆n(β0, θ̂n, γ̂n) as:

1

n
�̆n(β0, θ̂n, γ̂n) =

1

n

n∑
i=1

Xi
ξi

π(Wi, γ̂n)

(
δi −m(Wi, θ̂n)

)
×
(
Y ∗
i − eβ

�
0 Xi − hβ0(Y

∗
i ,Xi)

)
+
1

n

n∑
i=1

Xi

{
m(Wi, θ̂n)

(
Y ∗
i − eβ

�
0 Xi

)
+
(
1−m(Wi, θ̂n)

)
hβ0(Y

∗
i ,Xi)

}
,

:= Q(1)
n (θ̂n, γ̂n) +Q(2)

n (θ̂n).

First, we consider the termQ
(1)
n (θ̂n, γ̂n). LetQi ≡ Xiξi(Y

∗
i −eβ

�
0 Xi−hβ0(Y

∗
i ,Xi)).

We have:

Q(1)
n (θ̂n, γ̂n) =

1

n

n∑
i=1

1

π(Wi, γ̂n)
(δi −m(Wi, θ̂n))Qi,

=
1

n

n∑
i=1

(
1

π(Wi, γ̂n)
− 1

π(Wi, γ∗)
+

1

π(Wi, γ∗)

)
×(δi −m(Wi, θ̂n))Qi,

=
1

n

n∑
i=1

(
1

π(Wi, γ̂n)
− 1

π(Wi, γ∗)

)
(δi −m(Wi, θ̂n))Qi
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+
1

n

n∑
i=1

1

π(Wi, γ∗)
(δi −m(Wi, θ0))Qi

+
1

n

n∑
i=1

1

π(Wi, γ∗)
(m(Wi, θ0)−m(Wi, θ̂n))Qi

:= Q
(1)
n,1 +Q

(1)
n,2 +Q

(1)
n,3.

Now, letting Q
(1)
n,1,	 and Qi,	 denote the �-th component of the vectors Q

(1)
n,1 and

Qi respectively (for � = 1, . . . , p), we have:

|Q(1)
n,1,	| ≤

1

n

n∑
i=1

∣∣∣∣π(Wi, γ
∗)− π(Wi, γ̂n)

π(Wi, γ̂n)π(Wi, γ∗)

∣∣∣∣ |δi −m(Wi, θ̂n)||Qi,	|.

Conditions C1 and C6 ensure that there exists a finite positive constant c3 such
that

|Q(1)
n,1,	| ≤

c3
n

n∑
i=1

|π(Wi, γ
∗)− π(Wi, γ̂n)| ,

and the condition C7 implies that

|Q(1)
n,1,	| ≤ c3

n

n∑
i=1

g(Wi)‖γ∗ − γ̂n‖,

≤ c3(u+ oP(1))‖γ∗ − γ̂n‖.

Finally, the convergence of γ̂n to γ∗ implies that Q
(1)
n,1,	 (� = 1, . . . , p), and thus

Q
(1)
n,1, converge to 0 as n → ∞. Similarly, under conditions C1 and C6, there

exists a finite positive constant c4 such that

|Q(1)
n,3,	| ≤

c4
n

n∑
i=1

∣∣∣m(Wi, θ0)−m(Wi, θ̂n)
∣∣∣ , � = 1, . . . , p,

and condition C4 implies

|Q(1)
n,3,	| ≤ c4(v + oP(1))‖θ0 − θ̂n‖.

If the model m(Wi, θ) is correctly specified (that is, if θ̂n is consistent for θ0),

Q
(1)
n,3,	 (� = 1, . . . , p), and thus Q

(1)
n,3, converge to 0 as n → ∞. Finally, by the

law of large numbers, Q
(1)
n,2 converges in probability to

E

[
1

π(Wi, γ∗)
(δi −m(Wi, θ0))Qi

]
= E

[
Xi(Y

∗
i − eβ

�
0 Xi − hβ0(Y

∗
i ,Xi))

π(Wi, γ∗)
E(ξi|Wi)(E(δi|Wi)−m(Wi, θ0))

]
,
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which equals 0 if the modelm(Wi, θ) is correctly specified (in this case,m(Wi, θ0) =

E(δi|Wi)). It follows that Q
(1)
n (θ̂n, γ̂n) = oP(1). Therefore,

1

n
�̆n(β0, θ̂n, γ̂n) = Q(2)

n (θ̂n) + oP(1).

With obvious notations, we have Q
(2)
n (θ̂n) = Q

(2)
n (θ̂n)−Q

(2)
n (θ0) +Q

(2)
n (θ0). By

the law of large numbers,Q
(2)
n (θ0) converges in probability to E[X{m(W, θ0)(Y

∗−
eβ

�
0 X)+ (1−m(W, θ0))hβ0(Y

∗,X)}], which is equal to 0 (see proof of Theorem
3.1). We also have

Q(2)
n (θ̂n)−Q(2)

n (θ0)

=
1

n

n∑
i=1

Xi(m(Wi, θ̂n)−m(Wi, θ0))(Y
∗
i − eβ

�
0 Xi − hβ0(Y

∗
i ,Xi)),

and using similar arguments as for Q
(1)
n,3, we can show that this converges to

0 if model m(Wi, θ) is correctly specified. Finally, Q
(2)
n (θ̂n) = oP(1), which

concludes the proof of condition ii.
Now, we prove that n−1∂�̆n(β, θ̂n, γ̂n)/∂β

� converges to −Σ1(β), uniformly

in a neighborhood of β0 (condition iii). To see this, let Qi,β = (Y ∗
i − eβ

�Xi −
hβ(Y

∗
i ,Xi))hβ(Y

∗
i ,Xi). Some easy calculations yield:

1

n

∂�̆n(β, θ, γ)

∂β� =
1

n

n∑
i=1

XiX
�
i

[
−δ̆i(θ, γ)(e

β�Xi +Qi,β) +Qi,β

]
,

= − 1

n

n∑
i=1

XiX
�
i (e

β�Xi +Qi,β)m(Wi, θ) +
1

n

n∑
i=1

XiX
�
i Qi,β

+
1

n

n∑
i=1

XiX
�
i

ξi
π(Wi, γ)

(m(Wi, θ)− δi)(e
β�Xi +Qi,β).

Now, decompose n−1∂�̆n(β, θ̂n, γ̂n)/∂β
� as

1

n

∂�̆n(β, θ̂n, γ̂n)

∂β� =
1

n

∂�̆n(β, θ̂n, γ̂n)

∂β� − 1

n

∂�̆n(β, θ0, γ
∗)

∂β� +
1

n

∂�̆n(β, θ0, γ
∗)

∂β� ,

=
1

n

n∑
i=1

XiX
�
i (e

β�Xi +Qi,β)(m(Wi, θ0)−m(Wi, θ̂n))

+
1

n

n∑
i=1

XiX
�
i ξi(e

β�Xi +Qi,β)
m(Wi, θ̂n)− δi

π(Wi, γ̂n)

− 1

n

n∑
i=1

XiX
�
i ξi(e

β�Xi +Qi,β)
m(Wi, θ0)− δi

π(Wi, γ∗)

+
1

n

∂�̆n(β, θ0, γ
∗)

∂β� ,
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≡ T (1)
n + T (2)

n + T (3)
n +

1

n

∂�̆n(β, θ0, γ
∗)

∂β� .

Using similar arguments as for Q
(1)
n,3 (respectively Q

(1)
n and Q

(1)
n,2), we can show

that T
(1)
n (respectively T

(2)
n and T

(3)
n ) converge to 0 as n → ∞. Details are

omitted. Now, n−1∂�̆n(β, θ0, γ
∗)/∂β� converges to E[XiX

�
i (−δ̆i(θ0, γ

∗)(eβ
�Xi+

Qi,β) +Qi,β)] in probability. If the model m(Wi, θ) is correctly specified (that
is, m(Wi, θ0) = E(δi|Wi)), we have

E[δ̆i(θ0, γ
∗)|Wi] =

E[ξi|Wi]E[δi|Wi]

π(Wi, γ∗)
+

(
1− E[ξi|Wi]

π(Wi, γ∗)

)
m(Wi, θ0),

= E[δi|Wi],

thus

E

[
XiX

�
i

(
−δ̆i(θ0, γ

∗)(eβ
�Xi +Qi,β) +Qi,β

)]
= E

[
XiX

�
i

(
−E[δi|Wi](e

β�Xi +Qi,β) +Qi,β

)]
= −E

[
XiX

�
i

(
δie

β�Xi + (δi − 1)Qi,β

)]
= −Σ1(β).

It follows that n−1∂�̆n(β, θ̂n, γ̂n)/∂β
� converges in probability to −Σ1(β). Uni-

formity of the convergence follows by the same arguments as in the proof of
Theorem 3.1.

Finally, having proved conditions i, ii and iii, we apply the inverse function
theorem of [13] and conclude that β̆n converges in probability to β0 ifm(Wi, θ) is

correctly specified. The consistency proof of β̆n when model π(Wi, γ) is correctly
specified proceeds along the same lines and is omitted. �

Appendix D: Proof of Theorem 5.2

First, we have

∂δ̆i(θ, γ)

∂θ�
=

(
1− ξi

π(Wi, γ)

)
ṁ�(Wi, θ)

and

∂δ̆i(θ, γ)

∂γ� = (m(Wi, θ)− δi)ξi
π̇�(Wi, γ)

π2(Wi, γ)
.

Using this, it is straightforward to see that

1

n

∂�̆n(β0, θ
∗, γ∗)

∂θ�
P−→ Σ5(β0, θ

∗, γ∗),
1

n

∂�̆n(β0, θ
∗, γ∗)

∂γ�
P−→ Σ6(β0, θ

∗, γ∗) (7.10)
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as n → ∞ (calculations are omitted). Moreover, if the model m(Wi, θ) is cor-
rectly specified (that is, θ∗ = θ0), then Σ6(β0, θ0, γ

∗) = 0. Similarly, if model
π(Wi, γ) is correctly specified (and thus, γ∗ = γ0), then Σ5(β0, θ0, γ

∗) = 0.

Now, taking Taylor’s expansion of �̆n(β̆n, θ̂n, γ̂n) around (β0, θ
∗, γ∗) gives

√
n(β̆n − β0)

=

(
− 1

n

∂�̆n(β0, θ
∗, γ∗)

∂β�

)−1(
1√
n
�̆n(β0, θ

∗, γ∗) +
1

n

∂�̆n(β0, θ
∗, γ∗)

∂θ�

×
√
n(θ̂n − θ∗) +

1

n

∂�̆n(β0, θ
∗, γ∗)

∂γ�
√
n(γ̂n − γ∗)

)
+ oP(1). (7.11)

Finally, combining (3.2), (5.1), (7.10) and (7.11) and using the limit central

theorem yield the asymptotic distribution of
√
n(β̆n−β0) when either m(Wi, θ)

or π(Wi, γ) is correctly specified. Formulas for the asymptotic variance follow
from easy albeit tedious calculations.

If both m(Wi, θ) and π(Wi, γ) are correctly specified, then Σ7(β0, θ0, γ0) =

Σ8(β0, θ0, γ0) = Σ1(β0) and the asymptotic variance of β̆n reduces to Σ−1
1 (β0),

which concludes the proof. �
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