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1. Introduction

Let (Y7, ...,Y,) be a sample following some unknown distribution P*. The max-
imum likelihood estimator can be formalized as follows: let {Py}gco, the model,
be a family of possible distributions; pick a distribution P4 of the model which
maximizes the likelihood of the observed sample.

In many situations, the true distribution may not belong to the model at
hand: this is the so-called misspecified setting. One would like the estimator to
give sensible results even in this setting. This can be done by showing that the
estimated distribution converges to the best approximation of the true distri-
bution within the model. The goal of this paper is to establish a finite sample
bound on the error of the maximum likelihood estimator for a large class of true
distributions and a large class of nonparametric hidden Markov models.

In this paper, we consider maximum likelihood estimators (shortened MLE)
based on model selection among finite state space hidden Markov models (short-
ened HMM). A finite state space hidden Markov model is a stochastic process
(X4,Y:): where only the observations (Y;); are observed, such that the process
(X¢): is a Markov chain taking values in a finite space and such that the Y; are
independent conditionally to (X;); with a distribution depending only on the
corresponding X;. The parameters of a HMM (X%, Y}); are the initial distribu-
tion and the transition matrix of (X;); and the distributions of Y, conditionally
to X;.

HMDMs have been widely used in practice, for instance in climatology (Lam-
bert et al., 2003), ecology (Boyd et al., 2014), voice activity detection and speech
recognition (Couvreur and Couvreur, 2000; Lefevre, 2003), biology (Yau et al.,
2011; Volant et al., 2014)... One of their advantages is their ability to account for
complex dependencies between the observations: despite the seemingly simple
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structure of these models, the fact that the process (X;); is hidden makes the
process (Y;); non-Markovian.

Up to now, most theoretical work in the literature focused on well-specified
and parametric HMMs, where a smooth parametrization by a subset of R?
is available, see for instance Baum and Petrie (1966) for discrete state and
observations spaces, Leroux (1992) for general observation spaces and Douc and
Matias (2001) and Douc et al. (2011) for general state and observation spaces.
Asymptotic properties for misspecified models have been studied recently by
Mevel and Finesso (2004) for consistency and asymptotic normality in finite
state space HMMs and Douc and Moulines (2012) for consistency in HMMs
with general state space. Let us also mention Pouzo et al. (2016), who studied a
generalization of hidden Markov models in a semi-misspecified setting. All these
results focus on parametric models.

Few results are available on nonparametric HMMs, and all of them focus
on the well-specified setting. Alexandrovich et al. (2016) prove consistency of a
nonparametric maximum likelihood estimator based on finite state space hid-
den Markov models with nonparametric mixtures of parametric densities. Vernet
(2015a,b) study the posterior consistency and concentration rates of a Bayesian
nonparametric maximum likelihood estimator. Other methods have also been
considered, such as spectral estimators in Anandkumar et al. (2012); Hsu et al.
(2012); De Castro et al. (2017); Bonhomme et al. (2016); Lehéricy (2018) and
least squares estimators in de Castro et al. (2016); Lehéricy (2018). Besides
Vernet (2015b), to the best of our knowledge, there has been no result on con-
vergence rates or finite sample error of the nonparametric maximum likelihood
estimator, even in the well-specified setting.

The main result of this paper is an oracle inequality that holds as soon as the
models have controlled tails. This bound is optimal when the true distribution
is a HMM taking values in R. Let us give some details about this result.

Let us start with an overview of the assumptions on the true distribution
P*. The first assumption is that the observed process is strongly mixing. Strong
mixing assumptions can be seen as a strengthened version of ergodicity. They
have been widely used to extend results on independent observation to depen-
dent processes, see for instance Bradley (2005) and Dedecker et al. (2007) for a
survey on strong mixing and weak dependence conditions. The second assump-
tion is that the process forgets its past exponentially fast. For hidden Markov
models, this forgetting property is closely related to the exponential stability of
the optimal filter, see for instance Le Gland and Mevel (2000); Gerencsér et al.
(2007); Douc et al. (2004, 2009). The last assumption is that the likelihood of
the true process has sub-polynomial tails, or equivalently a finite moment. None
of these assumptions are specific to HMMSs, thus making our result applicable
to the misspecified setting.

To approximate a large class of true distributions, we consider nonparametric
HMMs, where the parameters are not described by a finite dimensional space.
For instance, one may consider HMMs with arbitrary number of states and arbi-
trary emission distributions. Computing a maximizer of the likelihood directly
in a nonparametric model may be hard or result in overfitting. The model se-
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lection approach offers a way to circumvent this issue. It consists in considering
a countable family of parametric sets (Sur)mem—the models—and selecting one
of them. The larger the union of all models, the more distributions are approx-
imated. Several criteria can be used to select the model, such as bootstrap,
cross validation (see for instance Arlot and Celisse (2010)) or penalization (see
for instance Massart (2007)). We use a penalized criterion, which consists in
maximizing the function

1
(530 € S) — E 10gp9(Y17 s 7Yn) - penn(S)a

where py is the density of (Y7,...,Y,) under the parameter 6 and the penalty
pen only depends on the model .S and the number of observations n.

Assume that the emission distributions of the HMMs—that is the distribution
of the observations conditionally to the hidden states—are absolutely continuous
with respect to some known probability measure, and call emission densities
their densities with respect to this measure. The tail assumption ensures that
the emission densities have sub-polynomial tail:

1
Yo > e, P (Sup'y(Yl) > vfe log") < -,
~ v

where the supremum is taken over all emission densities v in the models and for
some constant Cq > 0. For instance, this assumption holds when all densities
are upper bounded by e“@1°8™ A key remark at this point is the dependency
of the exponent with n: we allow the models to depend on the sample size.
Typically, taking a larger sample makes it possible to consider larger models.

To stabilize the log-likelihood, we modify the models in the following way.
First, only keep HMMs whose transition matrix have entries that are neither
too small nor too large: when the HMM has K hidden states, the entries of
the transition matrix should belong to the interval [K/(C,logn), KC. logn]
for some constant C,, > 0. Then, replace the emission densities v by a convex
combination of the original emission densities and of the dominating measure A
with a weight that decreases polynomially with the sample size. In other words,
replace v by (1 —n~%)y +n~"%X for some a > 0. Taking a > 1 ensures that the
component A is asymptotically negligible. Any a > 0 works, but the constants
of the oracle inequality depend on it.

A simplified version of our main result (Theorem 6) is the following oracle
inequality: there exist constants A and ngy such that if the penalty is large
enough, the penalized maximum likelihood estimator 0,, satisfies for all ¢+ > 1,
n € (0,1) and n > ng, with probability larger than 1 —e~t —n=2:

R A 1 10
K0 < (o), inf it KO) + 2pen, (5) | + 2oL

where K (6) can be seen as a Kullback-Leibler divergence between the distribu-
tions P* and Py. In other words, the estimator recovers the best approximation
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of the true distribution within the model, up to the penalty and the residual
term.

In the case where the true distribution is a HMM, it is possible to quantify
the approximation error infge s K(6). Using the results of Kruijer et al. (2010),
we show that the above oracle inequality is optimal in the minimax sense—
up to logarithmic factors—for real-valued HMMs, see Corollary 9. This is done
by taking HMMs whose emission densities are mixtures of exponential power
distributions—which include Gaussian mixtures as a special case.

The paper is organized as follows. We detail the framework of the article
in Section 2. In particular, Section 2.3 describes the assumptions on the true
distribution, Section 2.4 presents the assumptions on the model and Section 2.5
introduces the Kullback Leibler criterion used in the oracle inequality. Our main
results are stated in Section 3. Section 3.1 contains the oracle inequality and
Section 3.2 shows how it can be used to show minimax adaptivity for real-valued
HMMs. Section 4 lists some perspectives for this work.

One may wish to relax our assumptions depending on the setting. For in-
stance, one could want to change the tail conditions or the rate of forgetting.
We give an overview of the key steps of the proof of our oracle inequality in
Section 5 to make it easier to adapt our result.

Some proofs are postponed the Appendices. Appendix A contains the proof
of the minimax adaptivity result and Appendix B contains the proof of the main
technical lemma of Section 5.

2. Notations and assumptions

We will use the following notations:

a V b is the maximum of a and b, a A b the minimum,;

For z € R, we write 27 = 2 V 0;

N* ={1,2,3,...} is the set of positive integers;

For K € N*, we write [K] ={1,2,...,K};

Y} is the vector (Yg,...,Y3);

L2(A, A, p) is the set of measurable and square integrable functions defined
on the measured space (A, A, 1). We write L2(A, ) when the sigma-field
is not ambiguous;

e log is the inverse function of the exponential function exp.

2.1. Hidden Markov models

Finite state space hidden Markov models (HMM in short) are stochastic pro-
cesses (X, Y;)i>1 with the following properties. The hidden state process (X;),
is a Markov chain taking value in a finite set X' (the state space). We denote
by K the cardinality of X, and m and Q the initial distribution and transition
matrix of (X;); respectively. The observation process (Y;); takes value in a pol-
ish space ) (the observation space) endowed with a Borel probability measure
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A. The observations Y; are independent conditionally to (X;); with a distribu-
tion depending only on X;. In the following, we assume that the distribution
of Y; conditionally to {X; = x} is absolutely continuous with respect to A with
density 7y,. We call v = (vz)zex the emission densities.

Therefore, the parameters of a HMM are its number of hidden states K,
its initial distribution 7 (the distribution of X;), its transition matrix Q and
its emission densities . When appropriate, we write p(k r q,y) the density
of the process with respect to the dominating measure under the parameters
(K, 7, Q,7). For a sequence of observations Y7*, we denote by {,,(K,m, Q,~) the
associated log-likelihood under the parameters (K, 7, Q, ), defined by

ln(K7 ™, Q7 ’7) = logp(K,ﬂ',Q;y) (Yln)

We denote by P* the true (and unknown) distribution of the process (Y;):, E*
the expectation under P*, p* the density of P* under the dominating measure
and [} the log-likelihood of the observations under P*. Let us stress that this
distribution may not be generated by a finite state space HMM.

2.2. The model selection estimator

Let (Sk,m.n)ken+,mem be a family of parametric models such that for all K €
N* and M € M, the parameters (K, 7, Q,7) € Sk v, correspond to HMMs
with K hidden states. Note that the models Sk nr,, may depend on the number
of observations n. Let us see two ways to construct such models.

Mixture densities. Let {f¢}ce= be a parametric family of probability den-
sities. Let M C N*. We choose Sk ar,n to be the set of parameters
(K,7,Q,v) such that 7 and Q are the initial distribution and transi-
tion matrix of a Markov chain on [K] and for all z € [K], -, is a convex
combination of M elements of { f¢}ee=.

L? densities. Let (Ey)arem be a family of finite dimensional subspaces of
L2(Y, ). We choose Sk ., to be the set of parameters (K, m, Q,~) such
that 7 and Q are the initial distribution and transition matrix of a Markov
chain on [K] and for all z € [K], v, is a probability density such that
Y. =g V 0 for a function g € Ey,.

For all K € N* and M € M, we define the maximum likelihood estimator on
SK,M,n:

R A R 1
(K, T, Mon, Qi My Vi, M) € argmax —1,(K,7,Q,7).
(K,m,Q)ESk,mn T

Since the true distribution does not necessarily correspond to a parameter
of Sk mn, taking a larger model Sk s, will reduce the bias of the estimator
(K, 7 5.arms Qi arms Y5010 )- However, larger models will make the estimation
more difficult, resulting in a larger variance. This means one has to perform
a bias-variance tradeoff to select a model with a reasonable size. To do so, we
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select a number of states K, among a set of integers K, and a model index M,
among a set of indices M,, such that the penalized log-likelihood is maximal:

. N 1 . A R
(Kn,M,) € argmax (—ln(K, i, Mns QK Mn, YK, Mn) — Pen,, (K, M))
KeKn,MeM, \T

for some penalty pen,, to be chosen.
In the following, we use the following notations.

S, = UKeKn.MeMn Sk, m.n is the set of all parameters involved with the
construction of the maximum likelihood estimator;

o Sgg’)M’n ={y|(K,7, Q,7) € Sk mn} is the set of density vectors from the

model Sk rrn- Sg” is defined in the same way.

2.3. Assumptions on the true distribution

In this section, we introduce the assumptions on the true distribution of the
process (Y;);>1. We assume that (Y;);>1 is stationary, so that one can extend it
into a process (Y;)iez.

[Axtail] There exists § > 0 such that

M; = SukI:)]E*[(p*(}/lD/ll:kl))é] < 0.

This assumption ensures that the true log-density rarely takes extreme values
(see Lemma 13).

[Axforget] There exist two constants C, > 0 and p, € (0,1) such that for all
i € Z, for all k, k' € N* and for all y:.;(kvk,) e YkVED+1

|log p* (yilyi—y) — log p* (wilyi— )| < Cupli™ 1

Let us recall the definition of the p-mixing coefficient. Let (€2, F, P) be a mea-
sured space and A C F and B C F be two sigma-fields. Let

pmix(A, B) = sup | COI‘I"(f, g)l
fEL2(Q,A,P)
geL?(Q,B,P)

The p-mixing coefficient of (Y;); is defined by
pmix(n) - pmix(a(}/hi 2 n)v U(}/z Z < O))
[Axmix]| There exist two constants ¢, > 0 and n, € N* such that

—can

Vn = n.,  pmix(n) < 4e
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Assumption [Axforget] ensures that the process forgets its initial distribution
exponentially fast. This assumption is especially useful for truncating the de-
pendencies in the likelihood. [A*mix] is a usual mixing assumption and is used
to obtain Bernstein-like concentration inequalities. Note that [Axmix] implies
that the process (Y;);>1 is ergodic.

Even if [Axforget] is analog to a ¥-mixing condition (see Bradley (2005) for
a survey on mixing conditions) and is proved using the same tool [Axmix]| in
hidden Markov models—namely the geometric ergodicity of the hidden state
process—these two assumptions are different in general. For instance, a Markov
chain always satisfies [Axforget] but not necessarily [Axmix]. Conversely, there
exist processes satisfying [Axmix] but not [Axforget].

Lemma 1. Assume that (Yi): is generated by a HMM with a compact metric
state space X (not necessarily finite) endowed with a Borel probability measure
w. Write Q* its transition kernel and assume that QF admits a density with
respect to p that is uniformly lower bounded and upper bounded by positive and
finite constants o and o.. Write (v})zcx ils emission densities and assume
that they satisfy [ vi(y)u(dz) € (0,400) for ally € Y.

Then [Axforget] and [Axmix] hold by taking p. = 1 — %, C, = 171,;* , Cy =

—log(l—0c?)

5 and n, = 1.

Proof. This lemma follows from the geometric ergodicity of the HMM.
For [Axforget], see for instance Douc et al. (2004), proof of Lemma 2.

For [Axmix], the Doeblin condition implies that for all distributions 7 and 7/
on X,

/Ip*(Xn = 2| Xo ~ ) = p* (X = 2| Xo ~ ) |p(dz) < (L — o) |7 — 7'l

Let A € o(Ys,t 2 k) and B € o(Y:, ¢t < 0) such that P*(B) > 0. Taking 7
the stationary distribution of (X;); and 7’ the distribution of X conditionally
to B in the above equation implies

[P*(A[B) = P*(A)| = ‘/P*(AIXn =) (p"(Xn = 2) = p" (X, = [B))p(dx)

N

/ p*(Xn = 2) — p* (X = 2| B) | u(de)

Therefore, the process (Y;);>1 is ¢-mixing with ¢nix(n) < 2(1 — )™, so
that it is p-mixing with ppix(n) < 2(¢mix(n))1/2 < 2v2(1 — Ui)”/2 (see e.g.
Bradley (2005) for the definition of the ¢-mixing coefficient and its relation to
the p-mixing coefficient). One can check that the choice of ¢, and n, allows to
obtain [A*mix] from this inequality. |
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2.4. Model assumptions

We now state the assumptions on the models. Let us recall that the distribution
of the observed process is not assumed to belong to one of these models.

Consider a family of models (Sk arn)Kxen< mem such that for each K and
M, the elements of Sk ., are of the form (K, 7, Q,~) where 7 is a probability
density on [K], Q is a transition matrix on [K] and + is a vector of K probability
densities on ) with respect to .

The first assumption is standard in maximum likelihood estimation. It en-
sures that the process forgets the past exponentially fast, which implies that the
difference between the normalized log-likelihood %ln and its limit converges to
zero with rate 1/n in supremum norm.

[Aergodic] There exists Cq > 1 such that for all (K, 7, Q,7) € Sy,

Vz,z' € [K], (Cqlogn)™' < KQ(z,2') < Cqlogn
and  Vz e [K], (Cqlogn)™" < Kn(x) < Cqlogn.

For all v € S and y € Y, let

by(y) = log <K‘1 Z%(@) :

When (K,7,Q,v) € S,, assumption [Aergodic| implies that under the pa-
rameters (K, 7, Q, ), for all z € [K], the probability to jump to state x at time
t is at least (Cqlogn) 'K !, whatever the past may be. This implies that the
density p(x.x,qq) (Ye|Y7 ") is lower bounded by (Cqlogn) tK~1Y" ~.(Y}).
For the same reason, it is upper bounded by Cq(logn)K !>~ ~,(Y;). Thus,
it is enough to bound b, to control p(g r.q,,) Without having to handle the
dependency in past observations.

The following assumption ensures that the log-likelihood rarely takes extreme
values.

[Atail] There exists C,, > 1 such that

Yu>1, P* [ sup |by(Y1)| > Cy(logn)u] <e
"/ESS)

In practice, it is enough to check the upper deviations, as shown in the following
lemma.

Lemma 2. Assume that there exists C > 1 such that
Vu>1, P*| sup by(Y1) > C(logn)u| <e ™.
vessy

Consider a new model where all v are replaced by v/ = (1 —n~%)y+n"* for
a fixed constant a > 0. Then [Atail] holds for this new model with Cy, = C'V a.
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Changing the densities as in the lemma amounts to adding a mixture com-
ponent (with weight n~% and distribution \) to the emission densities to make
sure that they are uniformly lower bounded. We shall see in the following that
if @ > 1, then this additional component changes nothing to the approximation
properties of the models, see the proof of Corollary 9. This is in agreement with
the fact that this component is asymptotically never observed as soon as a > 1.

The following assumption means that as far as the bracketing entropy is
concerned, the set of emission densities of the model Sk ar,, behaves like a
parametric model with dimension mj,.

[Aentropy] There exists a function (M, K,D,n) — Caux(M,K,D,n) > 1
and a sequence (mas)apem € NM such that for all § > 0, M, K, n and
D,

N {y»—>%(y)1 sup bw,(y)|<D} NN
yeS

/ ()
~' €Sy, frg,)M,nvxe[K]

< max (Oaux(M;SK’ D.n) , 1> , (1)

where d, is the supremum norm distance and N (A, d, €) is the smallest
number of brackets of size e for the distance d needed to cover A. Let
us recall that the bracket [a, b] is the set of functions f such that a(-) <
f() < b(+), and that the size of the bracket [a,b] is d(a, b).

Note that we allow the models to depend on the sample size n, which can make
Caux grow to infinity with n. The following assumption ensures that the models
do not grow absurdly fast.

[Agrowth] There exist ( > 0 and ngrowtn such that for all n > ngrowtn,

sup log Caux (M, K, 3C (log n)2, n) < nS.
K,M s.t. K<n and my<n

A typical way to check [Aentropy] is to use a parametrization of the emission

densities, for instance a lipschitz application [—1,1]™¥ — Sg)]\/ln This re-

duces the construction of a bracket covering on SQ)M ,, to the construction of

a bracket covering of the unit ball of R™* . In this case, C,ux depends on the
lipschitz constant of the parametrization. Baring models SSLV) that grow so fast
with respect to n that [Aentropy] becomes essentially meaningless, [Agrowth] is
usually immediately checked once [Aentropy] is established. An example of this
approach is given in Section 3.2 for mixtures of exponential power distributions.

2.5. Limait and properties of the normalized log-likelihood

In this section, we focus on the convergence of the normalized log-likelihood.



4926 L. Lehéricy

Lemma 3 (Barron (1985)). Assume that the process (Yi)i>1 is ergodic, then
there exists a quantity [* > —oo such that

1
=y — 1" as.
n " n—oo
and
I* = lim E*[logp*(Yn|Y7" 1)
n— oo
The second result follows from Theorem 2 of Leroux (1992).

Lemma 4 (Leroux (1992)). Let K be a positive integer, v a vector of K proba-
bility densities, Q a transition matriz of size K and 7® a probability measure
on [K]. Assume that the process (Yi)i>1 is ergodic and that w(x) > 0 and
E*|log v, (Y1)| < 00 for all z € [K].

Then there exists a finite quantity [(K, Q,~) which does not depend on 7 such
that

1
—I(K,7,Q,y) — I(K,Q,y) P*-a.s. and in L'(P*).
n n—00
In particular, l(K,Q,~) = limnE[%ln(K,ﬂ', Q.v)].
When appropriate, we define K(K, Q, ) by
K(K7 Qvfy) =1 - Z(Ka Q7’Y)

Note that K(K,Q,v) > 0 since it is the limit of a sequence of Kullback-
Leibler divergences: under the assumptions of Lemma 4,

o1 .
K(K7 Q7 7) = nh—>nclo EKL(PY{L ||PY17L|(K,7T,Q,’Y))

where Py (respectively Pyp(x,x,q,y)) is the distribution of Y7 under P* (re-
spectively Pk » .q,y))- We will see in the proofs that with some notation abuses:

priY?,) )}
P.Qy) (V1Y)

=E_ [KL®, yvo_[Prye xam)] -

K(K,Q,vy) =E* [log <

Thus, K(K, Q,~) can be seen as a Kullback Leibler divergence that measures
the difference between the distribution of Y; conditionally to the whole past
under the parameter (K, Q,~) and under the true distribution. In a way, it is a
prediction error under the parameter (K, Q, ).

In the particular case where the true distribution of (¥;); comes from a finite
state space hidden Markov model, K characterizes the true parameters, up to
permutation of the hidden states, provided the emission densities are all distinct
and the transition matrix is invertible, as shown in the following result.
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Lemma 5 (Alexandrovich et al. (2016), Theorem 5). Assume (Y;): is generated
by a finite state space HMM with parameters (K*,7n*, Q*,~v*). Assume Q* is
invertible and ergodic, that the emission densities (Vy)zc(x+) are all distinct
and that E* [(log (Y1) ] < oo for all z € [K*] (so that I* < 00).

Then for all K < K*, for all transition matrices Q of size K and for all
K -uples of probability densities v, K(K,Q,7v) =0 if and only if (K,Q,~) =
(K*,Q*,~*) up to permutation of the hidden states.

3. Main results
3.1. Oracle inequality for the prediction error

The following theorem states an oracle inequality on the prediction error of
our estimator. It shows that with high probability, our estimator performs as

well as the best model of the class in terms of Kullback Leibler divergence, up

(logn) "
Er—

to a multiplicative constant and up to an additive term decreasing as
provided the penalty is large enough.

Theorem 6. Assume [Axforget], [Axmix], [Axtail], [Aergodic], [Atail],
[Aentropy] and [Agrowth] hold.

Let (war)mem be a nonnegative sequence such that ), e”™ < e — 1.
For all K and M, let

. A N 1
(Kvﬂ-K,M,naQK,M,’na’yK,M,n) S argmax _ln(KaﬂaQ7’y)7
(K,m,Qv)ESk,mn T

PN 1 . A N
(K,M) e argmax <gln(K, i, Mns QK My YK, M) — Peny, (K, M))
K<n
M s.t. mpy<n

and let (IA(,fr,Q,’y) = (IA(,fTKMm, QKMn,’yKMn) be the nonparametric maz-
tmum likelihood estimator.

Then there exist constants A and Cpen depending only on Cq, C,, n. and c,
and a constant ng depending only on Cq, Cy, N, ¢, Ngrowth, Cx, ps«, 6 and M;
such that for alln > ng, t > 1 and n < 1, with probability at least 1 —e~t —2n72,

K(K,Q.4) < (1+ inf nf ., KUEQ,
( Q r}/) ( T]) K<n (K,m,Q,v)ESK, M,n ( Q ,Y)
M s.t. mpy<n

10
+ 2pen,, (K, M)} Ay logn)
n n

as soon as

Cpen (logn)10

pen,, (K, M) >
n

{wM + (logn)*(my K + K% — 1)
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x ((logn)*loglog n + log Cous(M, K, 3C, (logn)?, n)) }

The proof of this theorem is presented in Section 5. Its structure and main
steps are detailed in Section 5.1, and the proof of these steps are gathered in
Section 5.2.

Note that this theorem is not specific to one choice of the parametric models
Sk, Mmpn: one may choose the type of model that suits the density one wants
to estimate best. In the following section, we use mixture models to estimate
densities when ) is unbounded. If ) is compact, we could use L2 spaces and
this oracle inequality would still hold.

The powers of logn come from:

The limitation of the dependency to the logn most recent observations,
The dependency of the bounds Cq logn and C,, logn on n in assumptions
[Aergodic] and [Atail],

Truncating the emission log-densities (possible thanks to assumptions
[Atail] and [Axtail]),

The use of a Bernstein inequality for exponentially a-mixing processes.

3.2. Minimax adaptive estimation using location-scale mixtures

In this section, we show that the oracle inequality of Theorem 6 allows to con-
struct an estimator that is adaptive and minimax up to logarithmic factors when
the observations are generated by a finite state space hidden Markov model. To
do so, we consider models whose emission densities are finite mixtures of expo-
nential power distributions, and use an approximation result by Kruijer et al.
(2010).

Assume that (Y3);>1 is generated by a stationary HMM with parameters
(K*,Q*,v*), which we call the true parameters. Without loss of generality, we
identify the true hidden state space with [K*]. We consider the case Y = R
endowed with the probability A\ with density G : y — (m(1 + y?))~! with
respect to the Lebesgue measure.

In order to quantify the approximation error by location-scale mixtures, we
use the following assumptions from Kruijer et al. (2010).

(C1) Smoothness. For all x € [K*], log(vXG)) is locally S-Holder with 8 > 0,
i.e. there exist a polynomial L and a constant R > 0 such that if r is the
largest integer smaller than £, one has for all x € [K*],

Yy, y st ly—y | <R
0" log(v;G) 0" log(v;G\) /B
T . x / g 'L o B r.
’ oy (y) G ()| <rlL(y)ly —y'|

(C2) Moments. There exists € > 0 such that for all x € [K™],

) & log(v:Gy) I .
we o [[2REREE ) ey < o
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/ L(y) 5 (126 (y)dy < oo

(C3) Tuail. There exist positive constants ¢ and 7 such that for all = € [K*],
YiGy = O(e~WM).

(C4) Monotonicity. For all z € [K*], (7£G)) is positive and there exists y,, <
yu such that for all z € [K*], (v2G)) is nondecreasing on (—o0, ¥y, ) and
nonincreasing on (yys, +00).

All these assumptions refer to the functions (v:G,), which are the densities
of the true emission distributions with respect to the Lebesgue measure. Hence,
the choice of the dominating measure A\ does not matter as far as regularity
conditions are concerned.

Note that Kruijer et al. (2010) only assumed (C3) outside of a compact set.
However, since the regularity assumption (C1) implies that (y:G») is continu-
ous, one may assume (C3) for all y without loss of generality.

It is important to note that even though we require some regularity on the
emission densities, for instance through the polynomial L and the constants 8
and 7, we do not need to know them to construct our estimator, thus making
it adaptive.

We consider the following models. Let p > 2 be an even integer and

() = ————e V.

1
or (1 + 1—3)
Let M = N*. We take Sk ar,n as the set of parameters (K, m, Q,~) such that
e [Aergodic| holds with C, =1,

e For all z € [K], there exist (sz1,...,55,m) € [2, 0™, (Ha1s-- ., pa,n) €
[—n,n|™ and w, = (wg1,. .., we ) € [0,1] such that >, w,; = 1 and
for all y € R,

M
1 1 1 1 Y — Mayi
T - 5 1-— N A .
=g () e e ()

In other words, the emission densities are mixtures of A (with weight n=2)
and of M translations and dilatations of .

Lemma 7 (Checking the assumptions). Assume inf Q* > 0, then:

[Axforget] and [Axmix] hold.

Assume (C38), then [Axtail] holds.

[Atail] holds for all n > 3 by taking C., = 10.

[Aentropy] and [Agrowth] hold for any ¢ > 0 by taking my = 2M and
Coue(M, K, D,n) = 4pn?, for instance ¢ = 2 and Ngrowth = 4p.
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Proof. The first point follows from Lemma 1. The second point follows from the
fact that the densities 7} are uniformly bounded under (C3).
See Section A.1.1 for the proof of the last two points. O

Comment. The results of this section remain the same when the weight of A
in the emission densities of Sk nn 15 allowed to be larger than n™2 instead of
being exactly n=2.

Lemma 4 from Kruijer et al. (2010) implies the following result.

Lemma 8 (Approximation rates). Assume (C1)-(C4) hold. Then there exists
sequences of miztures (ga,o)m for each x € [K*| such that for M large enough

and alln > M, (02 + (1 = n"?)gra)ze[ix+] € SE;Q’M’” and

max KL o) = O (1og M)**%),
ze|K*

Proof. Proof in Section A.1.2. O

Corollary 9 (Minimax adaptive estimation rates). Assume (C1)-(C4) hold.
Also assume that inf Q* > 0. Then there exists a constant C > 0 such that for
all M >3 andn > M,

1 P
inf K(K* Q,v) < C(lo n2(——|—M_26 lo Mw?)
(k@ s py U @ 7) S Cllogm)™ {3 (log M)

Hence, using Theorem 6 with pen, (K, M) = (KM + K?)(logn)'®/n, there
exists a constant C such that almost surely, there exists a (random) ng such that

R R ) _ap 1842 16+ 2
Vn = mno, K(Kn,Qn,¥n) < Cn2+1 (logn) >~ 271
< Cn77 (log n)18+%.
Proof. Proof in Section A.1.3. O

This result shows that our estimator reaches the minimax rate of conver-
gence proved by Maugis-Rabusseau and Michel (2013) for density estimation in
Hellinger distance, up to logarithmic factors. Since estimating a density is the
same thing as estimating a one-state HMM, this means that our result is adap-
tive and minimax up to logarithmic factors when K* = 1. As far as we know, it
is still unknown whether increasing the number of states improves the minimax
rates of convergence. It seems reasonable to think that it doesn’t, which would
imply that our estimator is in general adaptive and minimax.

4. Perspectives

The main result of this paper is a guarantee that maximum likelihood estimators
based on nonparametric hidden Markov models give sensible results even in the
misspecified setting, and that their error can be controlled nonasymptotically.
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Two properties of both the models and the true distributions are at the core of
this result: a mixing property and a forgetting property, which can be seen as a
local dependence property.

These two properties are not specific to hidden Markov models. Therefore, it
is likely that our result can be generalized to many other models and distribu-
tions. To name a few, one could consider hidden Markov models with continuous
state space as studied in Douc and Matias (2001) or Douc et al. (2011), or more
generally partially observed Markov models, see for instance Douc et al. (2020)
and reference therein. Special cases of partially observed Markov models are
HMMs with autoregressive properties (Douc et al., 2004) and models with time
inhomogeneous Markov regimes (Pouzo et al., 2016). One could also consider
hidden Markov fields (Kunsch et al., 1995) and graphical models to generalize
to more general distributions than time processes.

Another interesting approach is to consider other forgetting and mixing as-
sumptions. For instance, Le Gland and Mevel (2000) state a more general version
of the forgetting assumption where the constant is replaced by an almost surely
finite random variable, and Gerencsér et al. (2007) give conditions under which
the moments of this random variable are finite. Other mixing and weak depen-
dence conditions have also been introduced in the litterature with the hope of
describing more general processes, see for instance Dedecker et al. (2007).

5. Proof of the oracle inequality (Theorem 6)
5.1. Overview of the proof

By definition of (K, #.Q, 4), one has for all K < n, for all M such that my; < n
and for all (K, mx am, Qr, v, Y, M) € Sk M

1 1 A A 1 1
_l:; - —ln(K,’ﬁ',Q,’A)/) < —1,
n n n

"= ﬁln(Ka Tr,M> Qr, My YK M)

+ pen,, (K, M) — pen, (K, M)
where K and M are the selected number of hidden states and model index

respectively.
Let

1., 1
V(K7ﬂ-a Q?f}/) = <Eln - EZTL(KvTra Q7’Y)> - K(K7 Qa7)7
then
K(K7 Q7 ’3’) < K(K7 QK,M? ’YK,M) + 2penn(K7 M)
+v(K, 7x m, Qr,nr, Y, 0r) — pen,, (K, M)
- V(IA{,’]AI', Qaﬁy) - penn(Kv M)
Now, assume that with high probability, for all K, M and (K, 7, Q,v) €

Sk Mn,
|V(K77T3Q77)|_penn(K’M) gnK(Kan’Y)—’—Rn (2)
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for some constant n € (0, %), some penalty pen,, and some residual term R,,.
The above inequality leads to

(1-n)K(K,Q,%) < (1 +nK(K, Qrar. vi,mr) + 2pen,, (K, M) + 2R,

and the oracle inequality follows by noticing that }J“TZ < 1+ 4n and ﬁ < 2
when 7 € (0, 3).
Let us now prove equation (2). For all i € Z, k € N*| let

in = logp* (YilY;5), (3)

where the process (Y7):>1 is extended into a process (Y;)iez by stationarity. Like-
wise, forallt € Z, k € N* (K, 7,Q,~) € S,, and for all probability distributions
won [K], let

Li,k,ﬂ(Ka Qv 7) = logp(K,Q,’y) (}/1|Y;Z:k17 Xifk ~ /1’)7

where p(x,q,) (-|Xi—x ~ ) is the density of a HMM with parameters (K, Q,)
starting at time ¢ — k with the distribution u. When g is the stationary distribu-
tion of the Markov chain under the parameter (K, Q, ), we write L; (K, Q, 7).
The following remark will be useful in our proofs: since

Z P(K,7,Q,y) (Xk—l = x,|}/1k_2)Q(zla I)FYJC’ (Yk—l)
z’' €[K]

> pire (Xeo1 =2/ ¥ ) (Yio1)
z’' €[K]
€ [(Cqlogn) 'K~ Cqlogn)K 1]

Pk (X = 2|V h) =

using [Aergodic], one has for all k, u and (K, 7, Q,v) € S,
| Li e (K, Q, ) — by (Y3)[ < log(Cq logn). (4)

Assume from now on that n > exp(Cq). For all k, k" € N*, for all p, 1/
probability distributions and for all (K, m, Q,~), (K',7',Q’,7") € S,

[ Liku (K, Q, ) = Ligr o (K7, Q' y")| < dloglogn + [by (Y5)] 4 [by (Yi)],
[ Liku (K Q, ) — L | < 2loglogn + [by (V)] + [ L] -

(5)

Let £ > 1 and D > 0. Approximate v(K,m, Q,~) by the deviation

n

_ (D) 1 (D) i (D) 0
e(t(x.qm) = ;Z (@ Yime) = Bl (g ) (Y2k)]

i=1
where

(D) 0 *
t Yo, — (Lo — L K,Q 1
(K,Qny) " Tk ( 0,k 0k, (1, Q, 7)) \Lé,klv(supw,esm Ibwf(Yo)Q <D
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for a fixed measure p, for instance the uniform measure on [K]. Note that
i) g,y llee < 2(D +loglogn) by equation (5).

Considering these functions ¢ (?Qn) has two advantages. The first one is to
limit the time dependency on the past to only k observations, which makes
it possible to use the forgetting property of the process (Y;):ez. The second
one is to consider bounded functionals of this process, for which Bernstein-like
concentration inequalities apply. The error of this approximation is given by the
following lemma.

Lemma 10. Assume [Atail], [Aergodic], [Axtail] and [Axforget] hold. Then
there exists ng depending on Cq, Cy, p«, Ms and 0 such that for all n > ny,
for all uw > 1, with probability greater than 1 — 2ne™", for oll (K,m,Q,v) € Sy,
2 4pk=1
z T &
np(l—p)*>  1-p

C (logn)u —u
V(7. Q) = TG < 100, (log mue ™ +

where p = 1 — (Cqlogn)~2. In particular, if k > Cg(logn)® and n > ngy v
\/30C,, for all D > 3C,(logn)?, with probability greater than 1 —2n=2,

_ logn
’V(Ka , Qa 7) — Vg (téi?Qﬁ))‘ 1SCQ ( ) (6)
Proof. Proof in Section 5.2.1. O

The following theorem is our main technical result. It shows that (té?q 'y))
can be controlled uniformly on all models with high probability.

Theorem 11. Assume [Aergodic], [Aentropy] and [Axmiz]. Also assume that
D > logn, that k > n, + 1 and that there exists ny such that for all n > nq, for
all K <n and M such that my; < n,

l4r (my K + K? — 1)e *P (logn)?(k + log Couz(M, K, D,n)) <n.  (7)

Let (war) mem be a sequence of positive numbers such that ) ,, e~ "™ < e—1.
Then there exist constants Cpepn, and A depending on n, and ¢, and a numerical
constant ng such that for all € > 0 and n > ny V ng, the following holds.

Let pen,, be a function such that for all K < n and M such that my < n

2
pen,, (K, M) > %}& (1 Vi M) X
n € k

(wM + (mpy K 4+ K2 —1)D(logn)*(D + kloglogn + log Cauz)>. (8)

Then for all s > 0, with probability larger than 1 — e, for all K < n and M
such that mar < n and for all (K, 7,Q,%) € Sk .Mn,

— D D
70t )| — Pemy (K, M) < €BltD g (V0%

AR (% v D(IOTW) 2 )
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Proof. Proof in Section B. o

The last step is to control the variance term E[tég?qﬁ) (Y9)? by K(K, Q,7).
Lemma 12. Assume [Atail], [Aergodic], [Axtail] and [Axforget] hold. There
exists a constant ng depending on Ms, 6, p., Cx and Cq such that for all
n = ng, k> Cq(logn)®, D >0 and (K, m,Q,7) € Sy,

1 +14(D) P2 22
1402 (ognyt e g Vi) TS KK, Q)+ 5

Proof. Proof in Section 5.2.2. O

Take u = 3logn in order to have ne™™ < n~2 in Lemma 10. Note that v > 1
for all n > e. Based on Lemma 10 and 12, also take

D = C,(logn)u = 3C,(logn)?,
k= Cg(logn)®.

In the following, we assume n > e Vexp([(n. + 1)/0(22]1/3), so that k > n.+1

and D > logn. Let n < 1. In order to get e]E*[tEIL;)Q 7)(Yiﬂk)2] <nK(K,Q,7) +

% using Lemma 12, take

1 1
= = 244C%(1 4
<= ~(logn)

When assumption [Agrowth] holds and my; < n and K < n, equation (7) is
implied by

28mn?(log n)?e =126~ (o8 n)? (ng (logn)3loglogn +n¢) < n

for all n > ngrowtn, which is true for n > n; for a constant n; depending only
on Ngrowth; Cq and (.
Moreover, there exists a constant C. depending only on Cq and C,, such that
for all n,
1 D(l 2
1,, Dlogn) < e
€ k n
Thus, there exists an integer ng depending on Cq and C, (for instance
exp(3C,/CQ)) such that for all n > ng equation (8) is implied by

(logn)*.

Cpen
n

pen,, (K, M) >

Ce
Cé (logn)® o (logn)*

x |war + 6C,(logn)*(my K + K* — 1)

X (C’a (logn)? loglog n + log Caux (M, K, 3C, (logn)?,n)) |,
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so if in addition n is larger than the thresholds of Theorem 11 and Lemma 12,
equation (9) and Lemma 12 imply for all s > 0, with probability at least 1 —e™*,
for all K < n and M such that my; < n and all (K, 7, Q,7) € Sk.mn,

_ D
|7k (£ . )| —Den, (K, M)
22n 4 6 Ce 48
<nK(K,Q,7) + T ACq(logn) 7(1ogn) -
C.
< TK(K, Q,7) +234C (logn)°~<(logn)* - (10)

since we may assume A > 1 without loss of generality. Therefore, putting to-
gether equations (6) and (10) shows

|1/(K77T7 Qa7)|_penn(K7 M)

23ACEC. (1 10 1 4
< nK(K,Q,7) + nQ sogn) +13C§@
36ACH C. (logn)to

<IK(K, Q)+ =4 steen)

which is equation (2) with the appropriate residual terms for Theorem 6.

5.2. Proofs

Let us first state two lemmas that will be of use in subsequent proofs.

Lemma 13. Assume [Atail] and [Axtail]. Then there exists a constant ng de-
pending on § and My such that for all n > ng, for all i,k, and for all u > 1,

PH[|Lj k| = Cy(logn)u] < e

where L}, = log p*(Y;|Y;")h) as defined in (3), and writing D = C.,(logn)u,

E| sup [by(Y1)|Leup . pp0vi)izp| VE [|Lf,k|1\L;k|>D] <2De™™,
ves( vesn ‘
2 _
E | sup [b,(Y1)] lsupwes(w)\bw(Y1)|2D \/E“L;‘,kﬁllL;k\;D] < 5D

veshy
Proof. Let i € Z, k € N and v > 0. By [Axtail] and Markov’s inequality,
P* L7y > 0] = P* [p (Vi[Y5))) > ']

e B (" (VY 5)°]
log M[;—év.

NN

e
On the other hand,
P*[Lj), < —v] =P [p"(Vi|Y[5) < e7]
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= U L yiyiy<eo P (W50 dy)
<e
Thus, there exists B* > 1 such that if u > 1, IP’*HL;‘),J > B*u] < e
Therefore, for all n > exp(B*), the first equation holds, and under [Atail], the
variables |L; ;| and SUp_ () |b(Y71)| are dominated by C, (logn)(W V1) where

W is an exponential random variable with parameter 1. To conclude, note that
for all u > 0,

E' [Wlws, < (14+u)e™ < 2ue™™,
E* W21y s, < (u? +2u+2)e™" < bule ™. O

Lemma 14. Assume [Aergodic] and [Axforget].
1. Let p=1— (Cqlogn)~2. Then for all i, k, k', p and ',

sup  |Ligu(K, Q) — Lig (K, Q)| < pM¥=1/(1 - p)
(Kaﬂ'va'Y)GSn

and there exists a process (L o0 )icz such that for all i, k and p,

sup  |Ligu(K,Q,7) — Liso(K,Q,7)] < p"71/(1 = p).
(K,TUQ,"/)ESH

2. For all i, k and k', |L;-*JC — L;k,| < C*pf’\k/_l and there exists a process
(L} o )iez such that for all i and k,

|Lik = Li ool < Cupl™h.

*

3. Under P*, the processes (L; . )icz and (Li (K, Q,7))icz are stationary
for all (K,7,Q,7) € S,,. Assume [Axmiz], [Atail] and [Axtail], then they
are also ergodic, integrable and

Z(K7Q77) = E*[LLOO(K7Q77)] and " = ]E*[LT7OO]

Proof. The first point is a result from Douc et al. (2004).

The second point follows directly from [Axforget].

The third point follows from the ergodicity of (Y;);>1 under [Axmix], from
the integrability of L;  and L} ., under [Atail] and [Axtail] by Lemma 13 and
from Lemmas 3 and 4 for the definition of [ and [*. O

5.2.1. Proof of Lemma 10
Let t(x.qq) : Yo% — L 1 — Lok, (K, Q,7). Then

V(K, 7, Q,7) — n(t(k,q.)
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1
= - Z i,i—1 ) - E Z(Li,i—l,ﬂ'(Ka Q:’Y) - Li,k,m(Kan’Y))
i=1

- E[LO,OO - LO,k] + ]E[LO,OO(Ka Q,’Y) - LO,k,,ut (K, Qv ’7)]

Thus, by Lemma 14,

|V(K’7T7Qa ) - Dk(t(K Q,’y))|

pz HAk—1 (i—1)Ak— 1 k 1 ko1
— C,— - C.,
DO I o PN
1 2p"! ( 1 k1>
np(l—p)>  1—p nps(1 = p)
2 4pk—1

+
np(l—p)*  1-—p

as soon as p, < p and C, < 1/(1 — p), which holds when Cqlogn > (C. Vv (1 —
p+)" D2, in particular when logn > (C, V (1 — p,)~1)/2.

Let w > 1 and D = Cv(log n)u and assume that n > ng from Lemma 13.
Then

Pr(t.am) — Tt qay) = ZtKQv )1|L*k\v<sup, cot 1B (YOD>D
—E [tk (Y21 L AV, o) b,/ (Yo))>D)-

We restrict ourselves to the event (/_, {|L; KV (sup rest) b4 (Y3)]) < D},

which occurs with probability greater than 1 — 2ne~" using assumption [Atail]
and Lemma 13. On this event,

1 T
E ;t(K’Q’W)(}/i_k)lll’z,klv(supwesgg)|bw’( =0.

i)|)>D
Moreover,

* D
B[t x.Qm) (Y2 — tEK,)Q;y) Y20

* 0
=Bt (V20 Lizg vesup,_ o0 102 (Vo)) >D)-

Equation (5) ensures that [¢(x.q.)(Y%,)| < |Lo sl + SUp_, g |61 (Yo)| +
2loglogn when n > exp(Cq), so that

D
B [t (Y08) =t gy (V2N

< E*

L6 x| <1L37k|>D + 1Ly, <D< sup |bW/(Y0)>‘|

~'esy)
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+E*

sup by (Yo)] (1 sup |bw,(Y0)|>D+1 sup bv/(Y0)|§D<L3,k|>‘|

,Y/esSL'Y) ~res) ' esty

+ 2(loglog n)E* [<1L3,k|>D +1 oup bw’(YO)>D>‘| .

~resly

Thus, by Lemma 13,
* D
B [t . (Yo%) — ti gy (Vo)

< 2De”" + DP* < sup |by ()| > D) +2De”" + DP*(|L§ | > D)
’Y’ESE{Y)

+ 2(loglogn) (IP’* < sup |by(Y0)| > D) +P*(|L37k| > D))

,ylessl"f)
< 6De™ + 4(loglogn)e ™.
Finally, using loglogn < logn < C, lognu when u > 1 concludes the proof
of the first equation.

For the second equation, take u = 3logn. Since p* < n~! when k >
C(% (logn)® and u — ue™* is nonincreasing on [1, +oc), for all D > 3C.,(logn)?,

V(K. ™ Q%) = 7i(t(q )
2(Cq logn)* n 4(Cq logn)?
np np
(logn)?  12(Cqlogn)* _ 13(Cqlogn)*
5 T n S n

for n > 1/30C, (using p < 1/2 for the second line).

< 10C, (logn)(3logn)e 3108™ 4

< 300,

5.2.2. Proof of Lemma 12

Lemma 15. Assume [Atail], [Aergodic] and [Axtail] hold. Let
VK, Q,7) = E" [(L§ oo — Lo (K, Q,7))°]
Then for all n > e* V exp(Cq),

1 11
S — <K(K,Q, -,

Proof. We need the following lemma:

Lemma 16 (Shen et al. (2013), Lemma 4). For any two probability measures
P and Q with density p and q and any X € (0,e~%],

r\’ 2 1) P\, (p_1
Ep (logg) < H(P,Q) 12+2(logx> + 8Ep <loga> 1(§>X>



Oracle inequality for misspecified NPHMMs 4939

where H(P, Q) is the Hellinger distance between P and Q:
H(P.Q? = ~28sl(/p)* ~ 1) = [ (VB vDPir

Let n € N* and D’ = C,(logn)?. Take P = IP’*YO‘Y:; and Q =Py y1 1 q.)
so that Ep(log 2)? = V(K, Q, 7). Using equation (5) for n > exp(Cq),

9 2
<10gp) < sup by (Yo)| + L o] + 2loglogn
q 4rest)

<3 sup |by (Yo)|® + 3|L§ oo|* + 12(loglog n)?
vesy

Let A > 0 be such that 2D’ = log% — 2loglogn. Note that A < e™* when
n > e*. By equation (5),

1 1
1 (? > —) <1( swp [by (V)| + |Li | > log + — 2loglogn
~es() A

<1< sup by (Y0)| V| L o] >D’>,
W’GSS’)

hence

o () 3 (325)

< 2AUE" || LG oo <1L3,W>D/+1|La,w@f< sup bw/(Yo)|>]
~esly
+24E" | sup by (Yo)|? (1 sup (b, (vo)[>0 + 1 sup |bw/<Yo>|<D/<|Lam|>]
v esyy v esy v esy
+96(10g10gn)2E* 1|LSOO|>D’+1 sup |bw/(Y0)>D"|a
Y 4 esy)

and by Lemma 13 (for n large enough)

2
1 D/2 D/2 D/2 D/2
(logp) 1(1’32)] <24<5 + >+24(5 + )
q q A n n n n

S8Ep
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using loglogn < D’ for n > e. Therefore, by Lemma 16,

V(K. Q) <Ej- [H( AT (K,Q,v))ﬂ (12 +2(2D’' + 2loglog n)?)

Yol Y74 —oo?
+ @D’z
n

450
n

SEj- [KL(P;OIY::CH]P)Y0|Y__;,(KaQ,’Y)):| (12+32D"%) + ——=D"

using that the Kullback Leibler divergence is lower bounded by the Hellinger
distance. Finally, since E;__olc [KL(P;]IY_‘; HPYMY:;’(K’QW))] =K(K,Q,7),

480

V(K,Q,7) < 4D'*K(K,Q,7) + —D'?. .
n

Next, let D > 0 and let us bound the difference between V(K,Q,~) and
B[t 7 .y (Vi 1)?). Taking t(xc.q.q) 1 Yo — Li = Lo g2 (K, Q,7), by defini-

: (D)
tion of t(K7Q77)

s1,(D 3 % i
E* [t gy (Vioe)?] < B [t.q (Viii)?):

Then,

B[t (re.q (Yiig)?] = VK, Q,)|
= [E* [(Ls — Lope (K, Q)% — E* [(Lf .0 — Looo(K, Q7))
SE*|((Lg 1 — Lo oo) — (Lokz — Lo,0o) (K, Q, 7))

X (Lo g = Lo,z (K, Q, 7)) + (L§ 0o — Lo,0o (K, Q, 7))

k—1
<2’ E*
p

2 sup by (Yo)| + Lokl + [L6,ocl
v esyy

+ 4loglog n>

by Lemma 14 and equation (5), provided p, < p and C, < 1/(1 — p) (which is
ensured by logn > (C,V(1—p.)~1)1/?). Note that the condition k > C% (logn)?
ensures that pk <n~! and that p<1/2 whenn > e*. The expectation can be
upper bounded using Lemma 13 with u = 1:

E*[tx,q (YViik)?] = VK, Q,7)| < (8Cy logn + 4loglogn)

2

np(l—p)

48C3C

< —2 " (logn)®.
n

Therefore, under the assumptions of Lemma 15, if D > C, (log n)?,

E* {0 q.) (Vi) 11 1 48C3C
(K,.Qy)\ i~k K(K,Q Q- 3
< 9 )
44C%(logn)* ( "+ n * 44C2%(logn)*  n (log )
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S K( 7Q”Y)—’—;—’_44nlogn
22

for n larger than a constant that only depends on Cgq, which concludes the
proof.

Appendix A: Proofs for the minimax adaptive estimation
A.1. Proofs for the mirture framework
A.1.1. Proof of Lemma 7 (checking the assumptions)

Checking [Atail] By definition of the emission densities, b, (y) > —2logn for
all vy € SS{Y), Moreover, for all y € Y and v € S}g’)MW

1 (y—p\* 2

<0V [ max{log = — [ —F + log(1+ y*) + log

b s S 2r

<0V (logn —n"Pmin(y — p)? + log(1 + y?) + log 7r> ,
M

where we recall that the maximum is taken over p € [-n,n] and s € [L n].
If y € [—n,n],

by (y) <0V (logn + log(1 + y*) + log )

<
<logn+1+2logn+logm sincen > 1
< 3logn + log(me) < 5logn

as soon as n > 3. Otherwise, one can take y > n and then

<0V (logn —n"P(y —n)? +log(l + y*) + log )
<0V (logn —n"P(y —n)? 4+ log(1+2(y — n)? + 2n?) + log )
<0V (logn —n"PYP +log(1l +2Y?) + 1+ log 2n? + log )

by writing ¥ = y—n and using that log(a+b) < log a+log(1+b) < loga+1+logb
when a,b > 1. Thus, writing Y/ = Y/n,

b (y) < 3logn + log(2em) + 0V (—(Y')P + log(1 + 2n%(Y")?))
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3logn + log(2er) + 0V (—(Y')P + 1 + log(2n?(Y")?)) otherwise
logn + log(4e*m) + 0V (—(Y')? 4 21log(Y"))

{310gn+log 2em) + log(1 +2n2) fY' <1
5
5logn + log(4e*T),

<
<
so that b, (y) < 10logn as soons as n > 3.

Checking [Aentropy] and [Agrowth] Let us first assume that there exists

a constant L, such that the function (p,s) — W is L,-Lipschitz

for all y (where the origin space is endowed with the supremum norm). Then
a bracket covering of size € of ([n,n] x [+,n])™ provides a bracket covering of

{%}WESQ)@G[K} of size Lpe. Since there exists a bracket covering of size € of

[n,n] x [+, n] for the supremum norm with less than (%% Vv 1)? brackets, one gets
[Aentropy] by taking Caux(M, K, D,n) = 4L,n and my; = 2M.
Let us now check that this constant L,, exists.

9 v (") 1 ‘516 ( <y—u>p>’
e = ——ex .
o Galy) | 2D+ DA +g?) s " s
1 y—pl' < (y—u>p>
= T exp | —
2r(1 + 5)(1 +y2)s?2| s s
1,
< §Y” Lexp(=YP)

n2Z11pe=7 < 2

by writing Y = |y — p|/s and Z = YP. Likewise,

ﬁ%w(y_:/i) _ 1 _i EM - (_(y_u>p)
9s  Ga(y) _27TF(1+1_1))(1+y2) 52 5 gptl p —

1
< Sz —1e?
s

< nﬂZ

)
as soon as p > 2. Thus, one can take L, = pn? and Caux(M, K, D,n) = 4pn>.
With this Caux, checking [Agrowth] is straightforward for all ¢ > 0: with n > 4p,
it is ensured by logn* < n¢, which is always true for ¢ = 2 for instance.

A.1.2. Proof of Lemma 8 (approximation rates)

Let F(y) = e~°¥". Lemma 4 of Kruijer et al. (2010) ensures that there exist
¢ > 0and H > 68+ 4p such that for all x € [K*] and s > 0, there exists a
mixture g, » w1th O(s~*|log s[P/™) components, each with density 1¢(*=£) with
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respect to the Lebesgue measure for some p € {y | F(y) > /sf}, such that g; .
approximates the emission density v}:

max KL(v;|gs,2) = O(s™%7).

For M large enough, the condition M > O(s~!|logs|?/™) (number of com-
ponents) is ensured by s~ < ¢M (log M)~P/7 for some small enough constant
¢ > 0. Take this s in the following and gar,z = gs.o-

Let us now check that (n™2 + (1 —n"2)gnr0)ze[x+] € S};Q,M,n. When M < n
is large enough that s < 1, this s is indeed in [+, n]. When |u] > s71, F(u) <
exp(—cs~T) = o(c’s™T). Thus, for s small enough (i.e. for M large enough), all

translation parameters y belong to [—s~!, s71], which is indeed in [~n,n] when
M < n.

A.1.8. Proof of Corollary 9 (minimaz adaptive estimation rate)

Denote by h the Hellinger distance, defined by h(p, q)? = Ep[(1/q/p — 1)?] for
all probability densities p and ¢ associated to probability measures P and Q.
Let

H*(K,Q,v) = Eixgm h2(p;/1|y9007pY1\YEOO,(K,Q,7))}

be the Hellinger distance between the distributions of Y; conditionally to Y°__
under the true distribution and under the parameters (K, Q,~) (see Lemma 14
for the definition of these conditional distributions).

The following lemma shows that the Kullback-Leibler divergence and the
Hellinger distance are equivalent up to a logarithmic factor and a small additive
term.

Lemma 17. Assume that [Axtail], [Axforget], [Atail] and [Aergodic] hold. Then
there exists a constant ni depending on Cy, Cq, 6 and Ms such that for all
n = ny, fOT’ all (KvaY) € Sn;

H’(K,Q,7) < K(K,Q,7) < 7C, (logn)? (HQ(KvQ,v) + %) '

Proof. The lower bound comes from the fact that the square of the Hellinger
distance is smaller than the Kullback-Leibler divergence. For the upper bound,
we use Lemma 4 of Shen et al. (2013): for all v > 4 and for all probability
measures P and ) with densities p and g,

KL(pllq) < h*(p,q) (1 + 2v) + 2Ep [<IOgZ> 1 {IOgZ > UH :

Take p = and ¢ = py,yo_ (k,Q.y)- Then by equation (4), 10g§ <

p;ﬂyfx
by |+|L7 oo| +1og(Cq log n) where Lj ., is as in Lemma 14 and 1 {log% > v} <

1{|by| = & (v —1log(Cqlogn))} V1{|L] .| > 5(v—1log(Cqlogn))}. There exists
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n1 depending only on C, and Cgq such that for all n > nq, log(Cqlogn) <
C,(logn)?. Assume n > n; and take v = 3C,(logn)?, then 3 (v —log(Cq logn))
> (C,logn)? and 1+ 2v < 7C,,(logn)?, so that
K(K,Q,7) < 70, (logn)*H*(K,Q,7)
+2C, (logn)? {P*(|b,] = C, (log n)*) + P*(|L] | > C;(logn)*) }
+2E*[(|L7 0| + [b41)
x (H|L] ool = Oy (logn)?} v 1{[by] = C, (logn)*})].
By Lemma 13, which also holds for Lj . using the uniform convergence of
Lemma 14, P*(|L} .| = C,(logn)?) < exp(—logn) < n~! for n > ng where
no is defined in Lemma 13 (and depends on § and Mj). Likewise, by [Atail],

P*(|by| = C,(logn)?) < n~t.
The last expectation of the above equation can be written as

2E*[(a + b)1{a V b > C,(logn)*}]
where a = |L] .| and b = |b,|. Then,
2E*[al{a V b > C,(logn)*})]
=2E*[al{a > C,(logn)*})] + 2E*[al{b > C,(logn)? > a})]

>
< 40, (logn)?e™ 8" 4+ 20, (logn)?P*[b > C,(logn)?]

2
<60, 108

by Lemma 13 for the first term and [Atail] for the second one. Likewise,

2
9E*[b1{aV b > C,(logn)?})] < 6C, (logn )’

so that finally

1 2
K(K,Q,) < 7C,(logn)*H?*(K,Q,) + 1407( Ognn) :

which concludes the proof. O

Let M € N*. Let gar be the approximating densities given by Lemma 8 and
write yare = n "2+ (1—n"2)g . for all z € [K*]. The following lemma controls
the error H(K™, Q*, (Yam,5)») coming from the approximation of the densities.

Lemma 18. Let o* > 0 be such that o* < K*Q*(z,2') < (¢*)7! for all
z,x’ € [K*]. Then

Z hz(py;a’YM,z)

H2(K*, Q" (1a10)s) < (2 n
TE[K*]
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Proof. Let pj = p*(X1 = 2|Y) and pe = p(x+,Q*,(yar.0)e) (X1 = 2[Y). The
Cauchy-Schwarz inequality implies that (\/>, az — />, b2)* < >, (Vaz —
Vb,)?, so that

h? (Z%%ZPHM,O :/ \/Zpé‘ﬂ; - \/prw,x dA
< /Z( V P?,ZV; - \/pw'YM,m)Qd)‘
2 / > (pmm’;; — V) + (Ve mm) ax
2Zh2 0% 1aaa) +23 VB

Thus, one needs to control the expectation of the second term. Since p, and

pE belong to [f( , 775>=] by assumption on Q*,

Z —Vpi)? € [K - i] %:(pm - ;)%

The following equation follows from a careful reading of the proof of Propo-
sition 2.1 of De Castro et al. (2017) by noticing that the roles of v* and
yp are symmetrical in their proof and that their reasoning works with p, =

1 — min Q,/ max Q..

% 00

i masy |72 (V-) — 7are (Vo)
px pa; ~X * :
2l = pil < oo D (= O S VS ()

Therefore, using Cauchy-Schwarz’s inequality:

> e 1))’ < <Z Pe —p2|>

x

L6(K") S~ ey (2005 11 (Vi) — s (Vo)
<o 20 (e )

=0

Since Q‘f/% lva — Vb,

o max, [VE(Y) — (V)] ) max, (Vi (y) — Y2 (y))?
£ (zﬂzwwzm,z(m) <) S VS, e Y

<3 / (vj*(y) —Ym,2(Y)) dA(y)

(Y) Ve (y)
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< 4;/ (\/W— \/VM,m(y)>2dA(y)

= 4Zh2(’7;77M,a:)7

so that
E* 1Y (Vs = vie)?| < 5 e > e — 1))
~ T 4do* - x
16(K*)3 .
< (*713 Z h2(7$7 ’YM,I)a
) 2
which concludes the proof of the lemma. O

Finally, since |[va+b— v/c| < |va—+/c|++/[bl forallb € R, a > (—=b) VO

and ¢ > 0, for all x,
2% 2/ % 4
W (Vs ) < 20°(75 9aa) +
. 4
< 2KL(vllgrra) + -
Therefore,

log n)?
K(K*, Q" (1a1.0).) < 14, 1287

+7C, (logn)? (2 + %) > (% + 2KL(7;;,9M@)> .

zE[K*|

Thus, there exists a constant C such that for all n > 3,
1 P
K(K*,Q", (Ym,2)z) < C(logn)? (H + M~ (log M)2/37>

by definition of the densities gas .

The choice of penalty verifies the lower bound of Theorem 6. Thus, the oracle
inequality of Theorem 6 with n = 1, « = 2 and ¢t = 2logn entails that for n
large enough and for any sequence (M,,),, such that K* < M,, < n/2 for all n:

<. G 10
K(K’ Q’ :Y) g 2K(K*a Q*7 (rYMn,:L‘)OL‘) + 4penn(K*7 Mn) + AM

1 P
< 2C(logn)? (E + M %% (log n)25?>

1 18 1 10
+4}(*(ogn) Mn+2A(0gn) .
n n

28p/

T—16
Taking M,, ~ R (logn) 5771 leads to the desired rate.
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Appendix B: Proof of the control of 7 (Theorem 11)

Let us give an overview of the proof of the control of 7.

The first step of the proof is to obtain a Bernstein inequality on 7 (t) for a
single function ¢. This is done using the mixing properties of the process (Y;);
and by noticing that 7y (t) is the deviation of an empirical mean.

The second step is to transform the inequality on one function ¢ into an
inequality on the supremum over all function ¢ belonging to a given class. This
step involves the bracketing entropy of the aforementionned class. The control
of this entropy is where the shape of the penalty appears.

At this stage, one is able to upper bound the supremum of 7 (tgg’)Qﬁ)) over
all parameters (K, 7, Q,v) € Sk, m,n. However, this upper bound is of order
n=1/2 (up to logarithmic factors), which is suboptimal. The third step of the
proof gets rid of the n~'/2 term by considering the processes

_ (D
W .f ‘Vk(tEKa)Q,’Y)”
K,Mmn ‘= sup D) 5
(K,m,Q.7) €Sk, nm,n E* [t(K’QN)(Zo)z] + 2% arn

for some constants xk ar,. The last step of the proof consists in taking appro-
priate g ar,n in order to have with high probability and for all K and M

Wk mn <€
Wi M2 v, < Peny, (K, M) + R,

for a residual term R,, depending on the probability, which leads to the desired
inequality
(K, 7, Q,7) € Skt [Pr(t5 q)| — Pen, (K, M) < B[t (Z0)%] + R
The concentration results are stated in Section B.1. The control of the brack-
eting entropy is done in Section B.2. Finally, the choice of xx s, and the
synthesis of the proof are done in Section B.3.
Without loss of generality, we assume n > exp(Cq) and D > logn so that
Htég?Qﬁ)Hoo < 4D for all (K,7,Q,7y) € Sk, mn by equation (5) and n larger
than the constant ng from Lemma 13.

Changes of notations. In the rest of this section, we omit the dependency
of Wik ar, i, m and Sk ar on n in the notations. We also introduce the notation
0 € S, instead of (K, 7, Q,7) € S,, to make the notation shorter. Given 6 € S,,,
we write g, Qg and 7y its components. To avoid multiple subscripts, we write
Y6(y|x) instead of vg,2(y).

B.1. Concentration inequality

First, let us introduce some notations. Let D >0, K > 1, M € M and k > 1.
For all i € Z, let Z; =Y} ,. Define for all o > 0 the sets

B, = {6 € Sk | E*[t”)(20)%] < 0%}
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Let dy be the semi-distance defined by dz(t1,ts) = E*[(t1 — t2)*(Zo)]. For
any semi-distance d, write N(A,d,e) = e4%¢) the minimal cardinality of
a covering of A by brackets of size € for the semi-distance d, that is by sets
[t1,to] = {t : VF =R, t1(-) < t(-) < t2()} such that d(t1,ts) < e. H(A,d,-) is
called the bracketing entropy of A for the semi-distance d.

The first step of the proof is to obtain a Bernstein inequality for the deviations
of a single t(P)(Z;).

Theorem 19. Assume [Axmix] holds. Then there exists a constant Cyy de-
pending on ¢, and n, such that the following holds.
Let t be a real valued, measurable bounded function on Y**' and let V =

E*[t?(Zy)]. Then for all X € (0 and for all n € N:

1
? Chig(ns+k+1)]|t]] oo (log )2 )

n

¢(N) = logE*exp [\ > (H(Z;) — E*H(Z;))
i=1
< Chis(ne + 5+ 10V + [[H|3) N

1 — Crig(na + &+ 1)t 0o (logn)2 A

Proof. The following result is a Bernstein inequality for exponentially a-mixing
processes.

Lemma 20 (Merlevede et al. (2009), Theorem 2). Let (A;)i>1 be a stationary
sequence of centered real-valued random variables such that ||A1|lcc < M and
whose a-mixing coefficients satisfy, for a certain ¢ > 0,

Vn €N, Umiz(n) < e 2",

Then there exist positive constants Cy and Cs depending on ¢ such that for

allm > 2 and all X € (0, m),

n

AZAi

i=1

CoX?(nv + M?)
S 1-CiAM(logn)?’

log E exp

where v is defined by

v ="Var(4;) + 23 _|Cov (4, 4;)|.

i>1

Assumption [Axmix] implies that the a-mixing coefficients of (Y;),; satisfy
amix(n) < e =" for all n > n, since damix(n) < pmix(n) (see for instance
Bradley (2005)). However, this is not enough to apply the previous result: one
needs the inequality to hold for all n (and not for n larger than some constant)
and for the process (Z;);. To do so, we partition the process (Z;); into several
processes for which the above result applies, and then gather the inequalities.

Consider the processes (Z;(n, +k+1)+;)i With a-mixing coefficients a7 ;(n). By
construction, they satisfy az ;j(n) <e ™" foralln>1and j € {1,...,n.+
k+1}. Apply Lemma 20, one gets that there exist two positive constants C7 and
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C5 depending on ¢, and n, such that for all functions ¢, all A € (0

’ ClM(}ogn)Q)
and all n € N:

n
¢;(N) = 10gE exp | A (H(Zi(n. sk 11)45) = EWZinoth1)45))

=1
CoN*(nv + |12
S T Ot (log )2

where, denoting V = E*t?(Zy):

v = Var(t(Z;)) + 2 Z | Cov (L(Z;), t(Zi(n. +k+1)+5)]

i>1
SV 42V Y | Corr (HZ), U Zign. +h+1)45)]
i>1
. 8V
< 1 —CuMxt <27
V( +8i>zle ) Py

using [A*mix]. Finally, using that EHle A; < Hle(]EAf)l/k for any positive

integer k and any positive random variable (4;)1<i<k,

1 n.+k+1
A ——— ((ne + kE+ 1A),
o0 < T ; 65((ne + b+ 1)N)
so that
o) < et (e + k + 1D2N2 (V. + [J£]130)
S 1= COi(ne + kE+ DA|t]|c(logn)2
which concludes the proof. O

The following result follows mutatis mutandis from the proof of Theorem 6.8
of Massart (2007) using the previous theorem.

Lemma 21. Assume [Axmiz] holds. Then there exists a constant C* > 1 de-
pending on n. and c, such that the following holds.

Let T be a class of real valued and measurable functions on Y*+1 such that
T is separable for the supremum norm. Also assume that there exist positive
numbers o and b such that for all t € T, |[t|ec < b and E*t*(Zy) < 02 and
assume that N(T,dy,d) is finite for all § > 0.

Then for all measurable sets A such that P*(A) > 0:

E* (Sup|l7k(t)|’A> <C*(na+k+1)
teT

€+ l] 1
n O\ n® P+(A)

i)
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where

E= \/ﬁ/ VH(T, dg,u) Andu+ b(logn)?H (T, dg, o).
0
By taking 7 = {téD) |0 € B,} and b = 4D, one gets the following lemma
from Lemma 4.23 and Lemma 2.4 of Massart (2007):

Lemma 22. Assume that there exist a function ¢ and constants C' and o p

such that x — @ is monincreasing and

Vo = oxm E < Cp(o)v/n. (11)

Then for all xg pr > ok, and z > 0, with probability greater than 1 —e™?:

7k (ts™)] . P(wrcnr)
Wk v == sup — 5 92 . <4C*(ne + k+1) C 22 \f
vesicm B[ty (Z20)%] + 2% TH,M
1
+ |~ +4D (Og”) . (12)
IK7M’H, SCKMTL

The two remaining steps are the control of the bracketing entropy which will
lead to equation (11) (see Section B.2) and the choice of the parameters zx as
and z (see Section B.3).

B.2. Control of the bracketing entropy
In this section, we show that for all £k > 2 and € > 0,

k+3/2
H(e) < 2(mp K + K? — 1) log max (95D62D (V2Cqlogn) chaUXI7

€

k+1/2
4 (\/§CQ lOg n) kKCauxl>
where Couy’ = (Cauxe®?) V (K —1).

B.2.1. Reduction of the set
For all 6 € Sk, let g9 = (90,2 )ze[x] Where
po(Xy =2, Yy = yp Yyt = yg ) if [Lj 4 V Sup |bor (yx)| < D,

90.2(y5) = =
0 otherwise.

In order to control the bracketing entropy of {téD) | 8 € B,}, we control the
bracketing entropy of the set G := {gg | 0 € Sk s} for the distance
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dg(g917g92) = E;Dk—l Z /‘9917I(%k_1ayk) - g@z,z(yz)k_lvyk)|

X 1Ly, [vsupyscs,, b (ui)|<DAA(YR) | -
Comment. In the rest of Section B.2, we always assume that
Lyl vV sup |be(yr)| < D (13)
0'eS,

since if this is not the case, then téD)(yk) = té,D) (yx) = 0. This means that only
the yi satisfying equation (13) are relevant for the construction of the brackets.

For all 6§ € SK’]W,

D goa= Y pe(Yi =yl Xy = 2)Qu(a’,2)pe(Xp-1 = 2|V =y
z€[K] z,x’' €[K]

m

(Cqlogn) ' K™" " po(Vi = gl X = ),
z€[K]

CQ(IOgTL)K_l Z pg(Yk = ylek = x)}
z€[K]

_ |:(CQ logn)flebg(yk)’CQ(logn)ebe(yk)} ,
so that for all 8 € Sk ar,

(Cq(logn)e®? Z go.. < Cq(logn)e”. (14)
z€[K]

Let [a, b] be a bracket of size € for G with the distance dg such that
(2Cq(logn)e” Zam Z b, < 2Cq(logn)e” (15)

Then

<log Z a; — log Z b ) < 2log (2Cq(logn)e”) |log Z a; — log Z by

< 8D x 2Cq(logn)e® Z |ag — by

x

when n > e? using that |loga — logb| < |a — b|/(a A b). Therefore,

2
k <log Z az,log Z bx>
x xr
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2
=2 | [ (lOgZaz—logaar) (Vi gp” (Y = YA )

< 16DC’Q(logn)eDE;‘,0k_1 [/ Z lay — b | (Y¢ ur) exp(L,*c)k))\(dyk)l
< 16DCq(logn)e*Pdg(a,b),

so that

2
N{tP?) |6 € By}, dy,e) < N (g,dg, <16ch(§0gn)ew) ) (16)

where N is the minimal cardinality of a bracket covering of G such that all
brackets [a, b] satisfy equation (15).

B.2.2. Decomposition into simple sets
The aim of this section is to prove the following lemma.

Lemma 23. Assume k > 2 and let € € (0 7—0> Then

" 168
_ €
N (g7dga 6) < N <{7T9}9€S' 7d007 )
o 70k (\/ECQ log n) 2k K
€
X N {QO}@GS R 7doo; )
( o 70k (\/iCQ log n) e

ee P

70k (V2Cqlogn)™ K)
where do 1s the distance of the supremum norm and where vy denotes the func-
tion (z,y) — 7o (ylz).

Let:

x N <{79}9es;<,M7doo,

e [a,b] be a bracket of {mg}gecsy ,, of size e for the supremum norm;
e [p, q] be a bracket of {Qp}oes, ,, of size € pour the supremum norm;
e [u,v] be a bracket of {vs}oesy ,, of size ee~? for the supremum norm.

Without loss of generality, we assume (Cqlogn) 'K~ < a(z) < b(z) <
Cq(logn)K~! and (Cqlogn) *K~! < p(z,2') < q(z,2') < Cq(logn)K~! for
all z,2" € [K] since all elements of {7y }oes, ,, and {Qg}oesy ,, satisfy these in-
equalities. We also assume that the brackets aren’t empty: there exists 8 € Sk
such that mp € [a,b], Qo € [p,q] and vy € [u,v]. Under this assumption, for all
yey,

Ke P(1-€ <) ulylz) <) v(ylr) < K(eP + e P). (17)

T xT
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Using the approach of Appendix A of De Castro et al. (2017), one can write
9o, as the following product of matrices

9e, a:(yo) (Mouc 1 l\k 1° F/f—1|k—1Q9>x79(yk|x)
where
Buw(i) = Y Qolwi,zip1)veWiralwi1) . Qo(wr—1,2x)76 (ykz1),
ak, e[K]k—i
for 0 <i <k —1and Byp(z) =1 for all z € [K],
Ne (z) = g (w )ﬂom( )y (Yol )
Ol D 1€[K] 7T9( ) Bojk (") e (Yol 2”)
(

ﬂz|k(1‘z) o \Ti— 1,%)79(%\%)
> wex) Bilk(@)Qo(zi—1, 2)v0 (yilz)

To clarify the role of these quantities, observe that
Bipe(@:) = po (Y| Xi = 33),
pop () = Po(Xo = 2|Yy),
i (i, ) = Po(X; = | VF, X = i),

and F‘k(:rZ 1,T;) =

so that
(ug‘kalk . F,f,k)w = Py(X), = z|Y).
Now, let
o) (2i) = Z p(xi; Tiv1)u(Yitr|Tivr) - p(Th—1, T )u(yrl o)
ok E[K]FE
Gik(2i) = Z 4(z, it 1)0(Yir1|2it1) - @(Tp—1, Tr)V(Yr|TK)

ak, e[K]k—?
for 0 <i <k —1and ag(z) = dp(z) = 1 for all z € [K],

a(@)aopk (@) u(yo| )
> wrerr) b0 (2)v(yo 2')

b($)50|k($)v(yo|$)
Zg:/e[K] (@)oo, (@) u(yolz’)

v(z) =

w(z) =

and
ijr(zi)p(Tio1, zi)u(yilz:)

faw(@i-r,20) = > et itk (@)q (i1, @)o(yi|x)

ik (i1, i) = Guppe(xi)q(i-1, xi)v(yilzi)
T ) S i i (0)p(wi 1, @) ulyil)




4954 L. Lehéricy

[v,w] and [f;x, gix] are brackets of {,uo‘k}geg,( v and {F |k}9€SK o forall i €
{1,...,k}. Moreover, if one has a bracket covering of the sets {m}ocsy r >
{Qe}@eSK . and {’)/g}gesK ., then this construction gives a bracket covering
of {/J,O|k}9€SK o and { z\k}GGSK,M for all i € {1,...,k}.

The next step of the proof is to control the size of these new brackets.

Lemma 24. Assume € < 5, then
N gk (2)u(yi|x) — 65 (z)v(ys |z 2k+1
oy Zrcta 124(2) () - ) <4 (VECqlogn)™" K.
0<i<k ZwE[K] ik (z)u(yilz)

Proof. Using minimalist notations,

Z lovipr (@) ulyi|z) — &ip (2)v(ys|@)]

i+1 j j k
g g UiP; Uil - - - Uj—1|pj_1 - (Jj_1|Uj <o qr—1Vk

J=i+1 ghe[K]k—it1
i+1 J Jj+1 k
+ E E wipy Uit Py ug = vilglT g1
J=i ok e[K]k—i+1

Then, note that for all j € {i +1,...,k},

i1 -l j i gl k
E WPy 'pj72uj*1|pj71 - qj71|vjqj <o Qi1 Vk
kE[K]k—i+l

e(Cqlogn)K—1)k=J Z upttt .pgjuj_l

2l e[K)i—i
X Z (uj +ee Py Z (up +ee™P)
z; €[K] wRE[K]

and for all j € {4,...,k} (with a special case for j = 1),

- , -
Yo ap@ulyilz) = Y i Pl
z€[K] sfE[K]Rmitt
> (Cq(logn)K)~(h=i+D) Z up”'1 .piiéuj_l Z uj - Z (.

I Te[K)i- z; €[K] z E[K]
so that

i+1 J J k
abe[ke—i+t WPy ... Uj—1|pj71 - q]'71|'Uj - Q1 Vk

i+1 J k
ahe[Kh-it1 Wili - Uj—1PjqUj - - - Py Uk

k -D
Kee P + 5" uy
K(C logn)Q(k L Le
a ="
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2(k—j)+1 - Kee P

=
Cglog )=+
< 6K( Qlogn) |
(1 —e)k—d+1
Likewise, for all j € {3,...,k},
, it J lu; — v J+1 k 2(k—j)+1
ekeKe—itt Wby - Py qUj — Ujlq5 - Qg1 Uk (Cqlogn)=tv=7
. . <e —
ake[K]h—i+1 Uip;-H cee U«j—lpz‘fﬂij - .pﬁ,luk (1- e)k i+

Therefore, when € < 1/2,

a;k(@)u(yi|z) — 0 (x)v(yi|x € - AR
ZzG[K]‘ z\k( ) (yzl ) 5z|k( ) (yl| )l < K Z(2(CQlogn)2)k It

> vek] Yl (@)u(yilz) ~ "Cqlogn g

2(Cqlogn)?)" " —1

< 4eKCq(logn) ( 2{Cqlogn)’ — 1

2(k—i)+1
S deK (\/§CQ log n)
since n > €2, which gives the desired result. O
Lemma 25. Assume € < 5, then
2k+3

[l — wl <6<\/§CQlogn> Ke

and
2k+3
sup sup [|fie(,) = gipe(w, ) <6 (V2Cqlogn)  Ke.  (18)
0<i<k z€[K)]
Proof. With minimalist notations,
bov
Z|V_w| Z Zb&} > aau
> lacu — bdv| 1 1
<E=E——7-—7 b -
> bdv +Z| vl Sacu > bv
o > lacu — bv| n > lacqu — bv|
h > b > aou
Z |acu — bv|
< 2Cq( =
Callogm) K=

using (C’Q(logn)K)_1 <a<bg C’Q(logn)K_l7 0<a<dand 0 <u <o
Thus,

3|y —w| < 2Cq(ogn)K (ZMO‘“ — vl 2la= b'““)

S au > au
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511|
_ |3 Jou
<2Cq(logn)K <CQ (logn) K~ S u +e

2k+1
< 2Cq(logn)K <C’Q(log n)4 (\@C’Q log n) €+ e) (Lemma 24)

>2k+3

6 (\@CQ logn Ke.

The control of ZI,G[K] |9ij — fijx|(z,2") is the same after replacing a and b by
p and q. O

Write n = 6 (v/2Cqlog n)2k+3 Ke. Equation (18) implies that as soon as
n < 1, it is possible to enlarge the bracket [fj,g;x] into a bracket [fi"k,gglk]
of size smaller than 37 for the norm of Lemma 25 such that fi"k/(l —n) and

9§|k/(1 + ) are transition matrices.
Let

Au(yp) = (Vf{|k71 e flé—l\k—lp)lu<yk|x)

Bu(y) = (w8 s g 1p-1)  vluile)

[A, B] is a bracket of G, and this construction gives a bracket covering of G.

. < L —. k
Lemma 26. Assume € < 2h(vViCqlos )R Then for all yg,

2k+3
) Ke

Z ‘(Vf{\k : "fl,c\k)m’ - (w9/1\k = ‘g;c|k)r| < Tk = 42k (\/QCQ logn

z€[K]

and

2k+3
) Ke.

Z I( Vf1|k fé|kp)m - (W9/1|k . -gk\kQ)ﬂ < 64k (\/§CQ logn
z€[K]

Proof. First,
Z ‘(Vf{\k . ~-f1/c\k)m - (w9/1\k gk|k Z (v — fl\k fl/c\k)x‘

z€[K] z€[K]

+Z > AWk (G = Fi) Fage - Fe)al-

j= 1m€[K

Then, since f}, /(1 —n) and g, /(1 + n) are transition matrices (and thus are
1-Lipschitz linear operators of L!([K])),

W fig - Fage = w99 - gl < llw = vl (1 =n)*

k
+ > llwlla (L +n)y ( sup - sup | fij (2, ) — gék(ww)ll1> (1=
j=1

1<i<k €K
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By Lemma 25, ||w||; < 147 (since the bracket [v, w] contains a probability distri-

bution Mg\k for some 0 € Sk ar) and supy ;< SUP,e k] ||fi’|k(x, =g ()]l <
37, so that

k
W fi - Fge = whn - Gl <m+ (L+m) Y (L+n)""3n
Jj=1

k—1
L+3(1+m) ) (1+n)

7=0
(1+n)k -1
\n<1+31+7]737) >

<n+3(1+n)(e" —1).
For all z € [0, %], 3(1+z)(e” — 1) < 62. Since kn < % by the assumption on e,
v fie - fige — @91k - - Grprelln <m0+ 6kn < Thn.

For the second part, note that

Z I( Vf1|k fllc\kp)w - (W91|k---g;c|k(1)x|

z€[K]

< ZZ |(Vf{|k e fllc|k)w’pw’,ﬂc - (Wg{uk - 'g;c\k)w’Qw’7w|
xT x/

< ZZ \(Whig - Fop)er — (W3 - - - G )ar [
+ZZ V- Trp)a [P — Qo -

Since [p,q] is a non-empty bracket of {Qo}ocsy ps Doy @are < 1+ Ke for
all ' and since v f{lk e f,’cl  is the lower bound of a non empty bracket of

{pXk|Y1’“,9}9€SK,Ma Zx'(yf{‘k e f/:;‘k)”c/ < 1. Hence,

Z I( Vf1|k f1/c|kp)w - (wgi|k-~-9§g\kQ)w|

z€[K]

< (1+Ke) Z (W Frp)er — (W g - - Gy )ar | + Ke Z(Vf{uc e
2k+3

< (1+ Ke)42 (\/QCQ log n) Ke+ Ke (by the first part of the lemma)

)2k+3 Ke

< 64k (V2Cqlogn

since € < 5% under the assumption of the lemma and kA (v2Cq logn) > O
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Lemma 27. Assume € < 1 : . Then
= 12k(\/§CQ logn)2k+1K

2k+1
dg (A, B) < T0k (\/ECQ log n) Ke.

Proof. By definition,

Ao, B) =By > [ 14.() - B @),

z€[K]

Taking some fixed Yok_l7
S [ 14s() ~ BN )

-y / u(il2) s - Foapoap)e
— v(Yk|2) (W8 1 - - - G- 192 A(dyr)

<X [ utunle) = ol 0 St Fi )N )
+ Z/v(yk|x)|(l/f{‘k,1 e f1/<71|k71p)z - (W91|k71 = ~9;cf1\k71Q)r|)‘(dyk)~

Since the brackets are not empty, for all z € [K], [v(y|z)A(dy) < 1+ ee P
and Zw(yfilk_l "'fl/c—1|k—1p)w < 1 (it is the lower bound of a non empty
bracket of {pXklyok—l 0|0 € Sk n}). Therefore, Lemma 26 entails

dg(A,B) < e 7DZ(Vf{|k 1+ fee1p-1P)a
I +ee” Z| Vfuk 1 fllc—1|k—1p)w—(ng|k—1~-~9;c—1\k—ﬂ)w\

2(k—1)+3
<ee P+ (1+eeP)64(k —1) (\/_C'Q 1ogn) Ke

2k+1
< 70k (\/QC’Q log n) Ke

since 1 + ee~ P < 13/12 under the assumption of the lemma. O

Assume k > 2 and let )’ := 42(k—1) (v2Cqlogn) ! Ke. Lemma 26 implies
Sl fip)e — (@Y1 - Gh_qjk—1)=| < 7. Since the bracket
[Vf{lk_l . fllc—1|k—1’ w9/1\k—1 .. .g;c_llk_l] is not empty, it contains a probability

measure. Thus, using (Cqlogn) ' K~! < p < ¢ < Cq(logn)K 1, for all z €
(K7,

(Cqlog n) 'K (1 —n') < (Vf{|k—l s fl,c—1|k—1p)m
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< (WY ho1 -+ Tho1 1Dz < Cqlogn) K~ (1 +1).

Therefore, by equation (17),

(Cqlogn) 'K *(1—n)ePK(1—¢) < Z A,
z€[K]

Z B, < Cq(logn) K~ (1 + 1)K (P +ee™P).
z€[K]
The inequality (2Cq(logn)eP)~1 < YveirAs < 2Dy Be < 2Cq(log n)el
required in the definition of N follows as soon as (1 — 7)(1 —¢) > 1/2 and

(1 +7)(1 + ee2P) < 2, for instance when (1 —7/)? > 1/2 since 7' > € and
D > 0, which holds when " < 1/4, in other words when

1
168(k — 1) (vV2Cqlogn

€< .
)2k+1 1%

Thus, taking ¢ = 70k (\/EC'Q log n)QkH Ke ensures that if ¢ < 168, then
dg(A, B) < €/. Lemma 23 follows.

B.2.3. Control of the bracketing entropy of the simple sets and synthesis

Lemma 28. Let § > 0, then
K-1
K-1
N({ﬂ'@}gesKYM7doo,6) < max (T,l> ,

K1 \KE-D
N ({QG}QESK,AI?dOOa 5) < max ((5, 1) )

Let Caux’ = Cauxe? V (K — 1), then by [Aentropy],

!

C ml\/[K
N ({'yg}QGSK,M,dOO,ée_D) < max( aglx 71> .

70

Then, Lemma 23 ensures that for all € < 355,

70k (V2Cqlogn)™"

€

_ 2 KO&UX/
log N (G,dg,€) < (mpy K+K*—1)logmax 1,

so that using Equation (16) and letting H(u) = H({t((,D) | 0 € By}, dg,u),
one gets for all ¢ < 16DCq(logn)e*?/70/168 and in particular for all € <
D(v2Cqlogn)e?P:

H(e) < (muK + K? - 1)



4960 L. Lehéricy

" (16DCq(log n)e?P)270k (v2Cq log )™ K Cly '
0g max = ,
95D¢2P (v3Cq logn) "> /KK Con’
< 2(my K + K? — 1) log max P (V2Cqlogn) ,1

€

Thus, for all € > 0,

k+3/2
H(e) < 2(my K + K? — 1) log max (95D62D (V2Cqlogn) \/m7
€

14 (\/QCQ 10g n) AR \% kKCaux/> .

B.3. Choice of parameters

The goal of this section is to find a function ¢ and a constant C' for which
equation (11) holds, and to choose the weights xx ps of Lemma 22.
Lemma 29. Let A,B,C € R}, H : x € R} ~ Alogmax(%,C), and () :
z € RY — 2vmA(1 4 \/logmax(£,C)). Then:

o H(z) < p(a)?,

/Ox vV H(u)du < o(x).

Let

o(u) = u\/2n(mpy K + K2 — 1) <1+

{ <95D62D (\/§CQ log n) kts/2 VEKCou
log max

u

1/2
k+1/2
14 (\/icQ log n> chaux'> } )

The function z — @ is nonincreasing, so x +— Lpgg';c) is decreasing and one can
define ok ar as the unique solution of the equation (1 +2vDlogn)p(z) = /na?

with unknown z, when a solution exists. By the definition of F in Lemma 21,

)

2

4D(logn)?
< (1 T2 Bings) #V

2¢(0)?
Vo > oxm, E<np(o)+4D(logn)
o
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< (1+2vDlogn) ¢(0)v/n,

Using equation (12), for all z > 0 and zx p > 0k m, with probability larger
than 1 —e™ 7,

Wk < AC* (ne+k + 1)

x z z(logn)?
(1+2vDlogm) 2 | |z p=losn)
Tl VT Tr,m™ Trm™

o z z
KMy 5 + 4D(log n)? — .
TK,M Tx T Tr,m™

Let € > 0, and let us take

1 z
xK7M=5 OKM 4/~ |,
n

where 6 > 0 is such that 20 4+ 4D (logn)?6? <

<AC* (nu+k+1)

€
IC-(m. 7RFT) - Lhen

Wi < 4C* (i + k+1) [0 4 6 + 4D(logn)?*6%] < e

and

z 2
WK,Mx%(,M <4C* (ne +k+1) |ox MM + \/%CCK,M + 4D(logn)2g]

<A4C* (ny +k+1) _Hx%(’M + 4D(log n)Qﬂ

1 1\ ¢
<8C*(ny +k+1) 50%(71\/[ + <4D(logn)2 + 5) ﬁ] )

Take z = s + wys + K, then since ) ,, e < e — 1, with probability larger
than 1 — e~ for all M, K and for all functions pen such that
1

1
pen, (K, M) > 8C*(n. + k+ 1) |:_0-%{,M + <4D(10gn)2 + 5)

0

wy + K
n )

it holds

1

3w

A 0 that satisfies 20 + 4D(logn)?0° = jmp Sy 18

B 1 eD(logn)?
o= 4D(logn)? (\/1 + C*(n« +k+1) L)

Let us take this 6. Since

< max(1,3) for all z > 0,

D(logn)? 1
3C*(n«+k+1)"¢) "

1
Vitz—1

< 12C* (ny + k + 1)max<

SR
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Therefore,
WK,Mx%(,]W — pen,, (K, M)

D(logn)? 1 D(logn)? s
< *\2 . k 1 2( Ve - vl 1 L 11 )
BC etk +1) (30*(m+k+1)+€ 3C*(n +k+1) ) n

N 1 D(logn)? s
S192(C7) (e + k4 1)° (z v m) "

as soon as

pen,, (K, M) > 96(C*)?(n, + k + 1)?

1 D(logn)? 9 wyr + K
Vi AL oM T2 ).
% <6 V3C*(n*+k+1) Tw n

The last step of the proof is to find an upper bound of ok as.
Lemma 30. Let A, B, C and E be functions N — [1,00), and @, : © —
zA(n)(1+ \/log max(@, C(n))). Let o, be the only solution of the equation

i;—\(/i—z = ﬁ with unknown x € RY.. Let

A(n)C(n)

2
f(n) = [TE(WO + /log B(n) +logn)| .

Assume that there exists ny such that for all n = mny, f(n) <n. Then

A(n)E
Yn > nq, 0n<W(l+\/logB(n)+logn).

In our case,

A(n) = /2n(mu K + K2 — 1),

B(n) = 95De?*P (v/20q log n)k+3/2\/k K Coy,

C(n) = 14(v2Cqlog n)* /2 /kK Couy,

E(n)=1+ 2v/Dlogn < 3v/Dlogn.
Hence

14\’ 2
2 2
f(n) <187 (mpy K + K° —1)D(logn) (m> (1 + /log B(n) + logn)

4 —4D
< i (my K + K? — 1)(1ogn)26 (1 +logn + log 95 + log D + 2D+
3 1 ,
k+ 3 log(V2Cq logn) + 5 log(kK Coux’)
4 9 ,e 4P 1
< gw (my K + K= —1)(logn) 15D + 2kloglogn + 3 log Caux
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when logn > \/§C’Q > 1 by using that 1 < k, K < n, logx < x for all x > 0,
D > logn by assumption and log Cauy’ < log Caux + D + log K. Thus,

f(n) < frar(n) == 14m (my K + K2 — 1)e*P (log n)%(k 4 log Cauy)-

Now, assume that there exists ny such that fK’M(n) < nfor all m > nq, then
for all n > nq,

o 367 (my K + K? —1)D(logn)?

0% s < - (1+1logn + log B)
36 K + K2 —1)D(log n)? 1
< ™ (my K + y )D(logn) <15D+2kloglogn+ §log0aux>-

Therefore, there exists a numerical constant Cpen such that the condition on
the penalty is implied by

Coon 1 D(logn)?
KM)> 22n, +k+1)>? -V e

(my K 4+ K? —1)D(logn)?(D + kloglogn + log Caux)).
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