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1. Introduction

Let (Y1, . . . , Yn) be a sample following some unknown distribution P
∗. The max-

imum likelihood estimator can be formalized as follows: let {Pθ}θ∈Θ, the model,
be a family of possible distributions; pick a distribution Pθ̂ of the model which
maximizes the likelihood of the observed sample.

In many situations, the true distribution may not belong to the model at
hand: this is the so-called misspecified setting. One would like the estimator to
give sensible results even in this setting. This can be done by showing that the
estimated distribution converges to the best approximation of the true distri-
bution within the model. The goal of this paper is to establish a finite sample
bound on the error of the maximum likelihood estimator for a large class of true
distributions and a large class of nonparametric hidden Markov models.

In this paper, we consider maximum likelihood estimators (shortened MLE)
based on model selection among finite state space hidden Markov models (short-
ened HMM). A finite state space hidden Markov model is a stochastic process
(Xt, Yt)t where only the observations (Yt)t are observed, such that the process
(Xt)t is a Markov chain taking values in a finite space and such that the Ys are
independent conditionally to (Xt)t with a distribution depending only on the
corresponding Xs. The parameters of a HMM (Xt, Yt)t are the initial distribu-
tion and the transition matrix of (Xt)t and the distributions of Ys conditionally
to Xs.

HMMs have been widely used in practice, for instance in climatology (Lam-
bert et al., 2003), ecology (Boyd et al., 2014), voice activity detection and speech
recognition (Couvreur and Couvreur, 2000; Lefèvre, 2003), biology (Yau et al.,
2011; Volant et al., 2014)... One of their advantages is their ability to account for
complex dependencies between the observations: despite the seemingly simple
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structure of these models, the fact that the process (Xt)t is hidden makes the
process (Yt)t non-Markovian.

Up to now, most theoretical work in the literature focused on well-specified
and parametric HMMs, where a smooth parametrization by a subset of R

d

is available, see for instance Baum and Petrie (1966) for discrete state and
observations spaces, Leroux (1992) for general observation spaces and Douc and
Matias (2001) and Douc et al. (2011) for general state and observation spaces.
Asymptotic properties for misspecified models have been studied recently by
Mevel and Finesso (2004) for consistency and asymptotic normality in finite
state space HMMs and Douc and Moulines (2012) for consistency in HMMs
with general state space. Let us also mention Pouzo et al. (2016), who studied a
generalization of hidden Markov models in a semi-misspecified setting. All these
results focus on parametric models.

Few results are available on nonparametric HMMs, and all of them focus
on the well-specified setting. Alexandrovich et al. (2016) prove consistency of a
nonparametric maximum likelihood estimator based on finite state space hid-
den Markov models with nonparametric mixtures of parametric densities. Vernet
(2015a,b) study the posterior consistency and concentration rates of a Bayesian
nonparametric maximum likelihood estimator. Other methods have also been
considered, such as spectral estimators in Anandkumar et al. (2012); Hsu et al.
(2012); De Castro et al. (2017); Bonhomme et al. (2016); Lehéricy (2018) and
least squares estimators in de Castro et al. (2016); Lehéricy (2018). Besides
Vernet (2015b), to the best of our knowledge, there has been no result on con-
vergence rates or finite sample error of the nonparametric maximum likelihood
estimator, even in the well-specified setting.

The main result of this paper is an oracle inequality that holds as soon as the
models have controlled tails. This bound is optimal when the true distribution
is a HMM taking values in R. Let us give some details about this result.

Let us start with an overview of the assumptions on the true distribution
P
∗. The first assumption is that the observed process is strongly mixing. Strong

mixing assumptions can be seen as a strengthened version of ergodicity. They
have been widely used to extend results on independent observation to depen-
dent processes, see for instance Bradley (2005) and Dedecker et al. (2007) for a
survey on strong mixing and weak dependence conditions. The second assump-
tion is that the process forgets its past exponentially fast. For hidden Markov
models, this forgetting property is closely related to the exponential stability of
the optimal filter, see for instance Le Gland and Mevel (2000); Gerencsér et al.
(2007); Douc et al. (2004, 2009). The last assumption is that the likelihood of
the true process has sub-polynomial tails, or equivalently a finite moment. None
of these assumptions are specific to HMMs, thus making our result applicable
to the misspecified setting.

To approximate a large class of true distributions, we consider nonparametric
HMMs, where the parameters are not described by a finite dimensional space.
For instance, one may consider HMMs with arbitrary number of states and arbi-
trary emission distributions. Computing a maximizer of the likelihood directly
in a nonparametric model may be hard or result in overfitting. The model se-
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lection approach offers a way to circumvent this issue. It consists in considering
a countable family of parametric sets (SM )M∈M–the models–and selecting one
of them. The larger the union of all models, the more distributions are approx-
imated. Several criteria can be used to select the model, such as bootstrap,
cross validation (see for instance Arlot and Celisse (2010)) or penalization (see
for instance Massart (2007)). We use a penalized criterion, which consists in
maximizing the function

(S, θ ∈ S) �−→ 1

n
log pθ(Y1, . . . , Yn)− penn(S),

where pθ is the density of (Y1, . . . , Yn) under the parameter θ and the penalty
pen only depends on the model S and the number of observations n.

Assume that the emission distributions of the HMMs–that is the distribution
of the observations conditionally to the hidden states–are absolutely continuous
with respect to some known probability measure, and call emission densities
their densities with respect to this measure. The tail assumption ensures that
the emission densities have sub-polynomial tail:

∀v � e, P
∗
(
sup
γ

γ(Y1) � vCQ log n

)
� 1

v
,

where the supremum is taken over all emission densities γ in the models and for
some constant CQ > 0. For instance, this assumption holds when all densities
are upper bounded by eCQ logn. A key remark at this point is the dependency
of the exponent with n: we allow the models to depend on the sample size.
Typically, taking a larger sample makes it possible to consider larger models.

To stabilize the log-likelihood, we modify the models in the following way.
First, only keep HMMs whose transition matrix have entries that are neither
too small nor too large: when the HMM has K hidden states, the entries of
the transition matrix should belong to the interval [K/(Cγ logn),KCγ logn]
for some constant Cγ > 0. Then, replace the emission densities γ by a convex
combination of the original emission densities and of the dominating measure λ
with a weight that decreases polynomially with the sample size. In other words,
replace γ by (1− n−a)γ + n−aλ for some a > 0. Taking a > 1 ensures that the
component λ is asymptotically negligible. Any a > 0 works, but the constants
of the oracle inequality depend on it.

A simplified version of our main result (Theorem 6) is the following oracle
inequality: there exist constants A and n0 such that if the penalty is large
enough, the penalized maximum likelihood estimator θ̂n satisfies for all t � 1,
η ∈ (0, 1) and n � n0, with probability larger than 1− e−t − n−2:

K(θ̂n) � (1 + η) inf
dim(S)�n

{
inf
θ∈S

K(θ) + 2penn(S)

}
+

A

η
t
(logn)10

n
,

where K(θ) can be seen as a Kullback-Leibler divergence between the distribu-
tions P∗ and Pθ. In other words, the estimator recovers the best approximation
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of the true distribution within the model, up to the penalty and the residual
term.

In the case where the true distribution is a HMM, it is possible to quantify
the approximation error infθ∈S K(θ). Using the results of Kruijer et al. (2010),
we show that the above oracle inequality is optimal in the minimax sense–
up to logarithmic factors–for real-valued HMMs, see Corollary 9. This is done
by taking HMMs whose emission densities are mixtures of exponential power
distributions–which include Gaussian mixtures as a special case.

The paper is organized as follows. We detail the framework of the article
in Section 2. In particular, Section 2.3 describes the assumptions on the true
distribution, Section 2.4 presents the assumptions on the model and Section 2.5
introduces the Kullback Leibler criterion used in the oracle inequality. Our main
results are stated in Section 3. Section 3.1 contains the oracle inequality and
Section 3.2 shows how it can be used to show minimax adaptivity for real-valued
HMMs. Section 4 lists some perspectives for this work.

One may wish to relax our assumptions depending on the setting. For in-
stance, one could want to change the tail conditions or the rate of forgetting.
We give an overview of the key steps of the proof of our oracle inequality in
Section 5 to make it easier to adapt our result.

Some proofs are postponed the Appendices. Appendix A contains the proof
of the minimax adaptivity result and Appendix B contains the proof of the main
technical lemma of Section 5.

2. Notations and assumptions

We will use the following notations:

• a ∨ b is the maximum of a and b, a ∧ b the minimum;
• For x ∈ R, we write x+ = x ∨ 0;
• N

∗ = {1, 2, 3, . . . } is the set of positive integers;
• For K ∈ N

∗, we write [K] = {1, 2, . . . ,K};
• Y b

a is the vector (Ya, . . . , Yb);
• L2(A,A, μ) is the set of measurable and square integrable functions defined

on the measured space (A,A, μ). We write L2(A, μ) when the sigma-field
is not ambiguous;

• log is the inverse function of the exponential function exp.

2.1. Hidden Markov models

Finite state space hidden Markov models (HMM in short) are stochastic pro-
cesses (Xt, Yt)t�1 with the following properties. The hidden state process (Xt)t
is a Markov chain taking value in a finite set X (the state space). We denote
by K the cardinality of X , and π and Q the initial distribution and transition
matrix of (Xt)t respectively. The observation process (Yt)t takes value in a pol-
ish space Y (the observation space) endowed with a Borel probability measure
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λ. The observations Yt are independent conditionally to (Xt)t with a distribu-
tion depending only on Xt. In the following, we assume that the distribution
of Yt conditionally to {Xt = x} is absolutely continuous with respect to λ with
density γx. We call γ = (γx)x∈X the emission densities.

Therefore, the parameters of a HMM are its number of hidden states K,
its initial distribution π (the distribution of X1), its transition matrix Q and
its emission densities γ. When appropriate, we write p(K,π,Q,γ) the density
of the process with respect to the dominating measure under the parameters
(K,π,Q, γ). For a sequence of observations Y n

1 , we denote by ln(K,π,Q, γ) the
associated log-likelihood under the parameters (K,π,Q, γ), defined by

ln(K,π,Q, γ) = log p(K,π,Q,γ)(Y
n
1 ).

We denote by P
∗ the true (and unknown) distribution of the process (Yt)t, E

∗

the expectation under P
∗, p∗ the density of P∗ under the dominating measure

and l∗n the log-likelihood of the observations under P
∗. Let us stress that this

distribution may not be generated by a finite state space HMM.

2.2. The model selection estimator

Let (SK,M,n)K∈N∗,M∈M be a family of parametric models such that for all K ∈
N

∗ and M ∈ M, the parameters (K,π,Q, γ) ∈ SK,M,n correspond to HMMs
with K hidden states. Note that the models SK,M,n may depend on the number
of observations n. Let us see two ways to construct such models.

Mixture densities. Let {fξ}ξ∈Ξ be a parametric family of probability den-
sities. Let M ⊂ N

∗. We choose SK,M,n to be the set of parameters
(K,π,Q, γ) such that π and Q are the initial distribution and transi-
tion matrix of a Markov chain on [K] and for all x ∈ [K], γx is a convex
combination of M elements of {fξ}ξ∈Ξ.

L2 densities. Let (EM )M∈M be a family of finite dimensional subspaces of
L2(Y , λ). We choose SK,M,n to be the set of parameters (K,π,Q, γ) such
that π and Q are the initial distribution and transition matrix of a Markov
chain on [K] and for all x ∈ [K], γx is a probability density such that
γx = g ∨ 0 for a function g ∈ EM .

For all K ∈ N
∗ and M ∈ M, we define the maximum likelihood estimator on

SK,M,n:

(K, π̂K,M,n, Q̂K,M,n, γ̂K,M,n) ∈ argmax
(K,π,Q,γ)∈SK,M,n

1

n
ln(K,π,Q, γ).

Since the true distribution does not necessarily correspond to a parameter
of SK,M,n, taking a larger model SK,M,n will reduce the bias of the estimator

(K, π̂K,M,n, Q̂K,M,n, γ̂K,M,n). However, larger models will make the estimation
more difficult, resulting in a larger variance. This means one has to perform
a bias-variance tradeoff to select a model with a reasonable size. To do so, we
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select a number of states K̂n among a set of integers Kn and a model index M̂n

among a set of indices Mn such that the penalized log-likelihood is maximal:

(K̂n, M̂n) ∈ argmax
K∈Kn,M∈Mn

(
1

n
ln(K, π̂K,M,n, Q̂K,M,n, γ̂K,M,n)− penn(K,M)

)

for some penalty penn to be chosen.

In the following, we use the following notations.

• Sn :=
⋃

K∈Kn,M∈Mn
SK,M,n is the set of all parameters involved with the

construction of the maximum likelihood estimator;

• S
(γ)
K,M,n = {γ | (K,π,Q, γ) ∈ SK,M,n} is the set of density vectors from the

model SK,M,n. S
(γ)
n is defined in the same way.

2.3. Assumptions on the true distribution

In this section, we introduce the assumptions on the true distribution of the
process (Yt)t�1. We assume that (Yt)t�1 is stationary, so that one can extend it
into a process (Yt)t∈Z.

[A�tail] There exists δ > 0 such that

Mδ := sup
i,k

E
∗[(p∗(Yi|Y i−1

i−k ))
δ] < ∞.

This assumption ensures that the true log-density rarely takes extreme values
(see Lemma 13).

[A�forget] There exist two constants C∗ > 0 and ρ∗ ∈ (0, 1) such that for all
i ∈ Z, for all k, k′ ∈ N

∗ and for all yii−(k∨k′) ∈ Y(k∨k′)+1,

| log p∗(yi|yi−1
i−k)− log p∗(yi|yi−1

i−k′)| � C∗ρ
k∧k′−1
∗

Let us recall the definition of the ρ-mixing coefficient. Let (Ω,F , P ) be a mea-
sured space and A ⊂ F and B ⊂ F be two sigma-fields. Let

ρmix(A,B) = sup
f∈L2(Ω,A,P )

g∈L2(Ω,B,P )

|Corr(f, g)|.

The ρ-mixing coefficient of (Yt)t is defined by

ρmix(n) = ρmix(σ(Yi, i � n), σ(Yi, i � 0)).

[A�mix] There exist two constants c∗ > 0 and n∗ ∈ N
∗ such that

∀n � n∗, ρmix(n) � 4e−c∗n.
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Assumption [A�forget] ensures that the process forgets its initial distribution
exponentially fast. This assumption is especially useful for truncating the de-
pendencies in the likelihood. [A�mix] is a usual mixing assumption and is used
to obtain Bernstein-like concentration inequalities. Note that [A�mix] implies
that the process (Yt)t�1 is ergodic.

Even if [A�forget] is analog to a ψ-mixing condition (see Bradley (2005) for
a survey on mixing conditions) and is proved using the same tool [A�mix] in
hidden Markov models–namely the geometric ergodicity of the hidden state
process–these two assumptions are different in general. For instance, a Markov
chain always satisfies [A�forget] but not necessarily [A�mix]. Conversely, there
exist processes satisfying [A�mix] but not [A�forget].

Lemma 1. Assume that (Yt)t is generated by a HMM with a compact metric
state space X (not necessarily finite) endowed with a Borel probability measure
μ. Write Q∗ its transition kernel and assume that Q∗ admits a density with
respect to μ that is uniformly lower bounded and upper bounded by positive and
finite constants σ∗

− and σ∗
+. Write (γ∗

x)x∈X its emission densities and assume
that they satisfy

∫
γ∗
x(y)μ(dx) ∈ (0,+∞) for all y ∈ Y.

Then [A�forget] and [A�mix] hold by taking ρ∗ = 1 − σ∗
−

σ∗
+
, C∗ = 1

1−ρ∗
, c∗ =

− log(1−σ∗
−)

2 and n∗ = 1.

Proof. This lemma follows from the geometric ergodicity of the HMM.

For [A�forget], see for instance Douc et al. (2004), proof of Lemma 2.

For [A�mix], the Doeblin condition implies that for all distributions π and π′

on X ,

∫
|p∗(Xn = x|X0 ∼ π)− p∗(Xn = x|X0 ∼ π′)|μ(dx) � (1− σ∗

−)
n‖π − π′‖1.

Let A ∈ σ(Yt, t � k) and B ∈ σ(Yt, t � 0) such that P
∗(B) > 0. Taking π

the stationary distribution of (Xt)t and π′ the distribution of X0 conditionally
to B in the above equation implies

|P∗(A|B)− P
∗(A)| =

∣∣∣∣
∫

P
∗(A|Xn = x)(p∗(Xn = x)− p∗(Xn = x|B))μ(dx)

∣∣∣∣
�
∫

|p∗(Xn = x)− p∗(Xn = x|B)|μ(dx)

� 2(1− σ∗
−)

n.

Therefore, the process (Yt)t�1 is φ-mixing with φmix(n) � 2(1 − σ∗
−)

n, so

that it is ρ-mixing with ρmix(n) � 2(φmix(n))
1/2 � 2

√
2(1 − σ∗

−)
n/2 (see e.g.

Bradley (2005) for the definition of the φ-mixing coefficient and its relation to
the ρ-mixing coefficient). One can check that the choice of c∗ and n∗ allows to
obtain [A�mix] from this inequality.
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2.4. Model assumptions

We now state the assumptions on the models. Let us recall that the distribution
of the observed process is not assumed to belong to one of these models.

Consider a family of models (SK,M,n)K∈N∗,M∈M such that for each K and
M , the elements of SK,M,n are of the form (K,π,Q, γ) where π is a probability
density on [K], Q is a transition matrix on [K] and γ is a vector of K probability
densities on Y with respect to λ.

The first assumption is standard in maximum likelihood estimation. It en-
sures that the process forgets the past exponentially fast, which implies that the
difference between the normalized log-likelihood 1

n ln and its limit converges to
zero with rate 1/n in supremum norm.

[Aergodic] There exists CQ � 1 such that for all (K,π,Q, γ) ∈ Sn,

∀x, x′ ∈ [K], (CQ logn)−1 � KQ(x, x′) � CQ logn

and ∀x ∈ [K], (CQ logn)−1 � Kπ(x) � CQ log n.

For all γ ∈ S
(γ)
n and y ∈ Y , let

bγ(y) = log

(
K−1

∑
x

γx(y)

)
.

When (K,π,Q, γ) ∈ Sn, assumption [Aergodic] implies that under the pa-
rameters (K,π,Q, γ), for all x ∈ [K], the probability to jump to state x at time
t is at least (CQ logn)−1K−1, whatever the past may be. This implies that the
density p(K,π,Q,γ)(Yt|Y t−1

1 ) is lower bounded by (CQ logn)−1K−1
∑

x γx(Yt).
For the same reason, it is upper bounded by CQ(logn)K−1

∑
x γx(Yt). Thus,

it is enough to bound bγ to control p(K,π,Q,γ) without having to handle the
dependency in past observations.

The following assumption ensures that the log-likelihood rarely takes extreme
values.

[Atail] There exists Cγ � 1 such that

∀u � 1, P
∗

[
sup

γ∈S
(γ)
n

|bγ(Y1)| � Cγ(logn)u

]
� e−u.

In practice, it is enough to check the upper deviations, as shown in the following
lemma.

Lemma 2. Assume that there exists C � 1 such that

∀u � 1, P
∗

[
sup

γ∈S
(γ)
n

bγ(Y1) � C(logn)u

]
� e−u.

Consider a new model where all γ are replaced by γ′ = (1− n−a)γ + n−a for
a fixed constant a > 0. Then [Atail] holds for this new model with Cγ = C ∨ a.
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Changing the densities as in the lemma amounts to adding a mixture com-
ponent (with weight n−a and distribution λ) to the emission densities to make
sure that they are uniformly lower bounded. We shall see in the following that
if a � 1, then this additional component changes nothing to the approximation
properties of the models, see the proof of Corollary 9. This is in agreement with
the fact that this component is asymptotically never observed as soon as a > 1.

The following assumption means that as far as the bracketing entropy is
concerned, the set of emission densities of the model SK,M,n behaves like a
parametric model with dimension mM .

[Aentropy] There exists a function (M,K,D, n) �−→ Caux(M,K,D, n) � 1
and a sequence (mM )M∈M ∈ N

M such that for all δ > 0, M , K, n and
D,

N

⎛
⎝{y �→ γx(y)1 sup

γ′∈S
(γ)
n

|bγ′ (y)|�D

}
γ∈S

(γ)
K,M,n,x∈[K]

, d∞, δ

⎞
⎠

� max

(
Caux(M,K,D, n)

δ
, 1

)mM

, (1)

where d∞ is the supremum norm distance and N (A, d, ε) is the smallest
number of brackets of size ε for the distance d needed to cover A. Let
us recall that the bracket [a, b] is the set of functions f such that a(·) �
f(·) � b(·), and that the size of the bracket [a, b] is d(a, b).

Note that we allow the models to depend on the sample size n, which can make
Caux grow to infinity with n. The following assumption ensures that the models
do not grow absurdly fast.

[Agrowth] There exist ζ > 0 and ngrowth such that for all n � ngrowth,

sup
K,M s.t. K�n and mM�n

logCaux(M,K, 3Cγ(logn)
2, n) � nζ .

A typical way to check [Aentropy] is to use a parametrization of the emission

densities, for instance a lipschitz application [−1, 1]mM −→ S
(γ)
K,M,n. This re-

duces the construction of a bracket covering on S
(γ)
K,M,n to the construction of

a bracket covering of the unit ball of RmM . In this case, Caux depends on the

lipschitz constant of the parametrization. Baring models S
(γ)
n that grow so fast

with respect to n that [Aentropy] becomes essentially meaningless, [Agrowth] is
usually immediately checked once [Aentropy] is established. An example of this
approach is given in Section 3.2 for mixtures of exponential power distributions.

2.5. Limit and properties of the normalized log-likelihood

In this section, we focus on the convergence of the normalized log-likelihood.
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Lemma 3 (Barron (1985)). Assume that the process (Yt)t�1 is ergodic, then
there exists a quantity l∗ > −∞ such that

1

n
l∗n −→

n→∞
l∗ a.s.

and

l∗ = lim
n→∞

E
∗[log p∗(Yn|Y n−1

1 )].

The second result follows from Theorem 2 of Leroux (1992).

Lemma 4 (Leroux (1992)). Let K be a positive integer, γ a vector of K proba-
bility densities, Q a transition matrix of size K and π a probability measure
on [K]. Assume that the process (Yt)t�1 is ergodic and that π(x) > 0 and
E
∗| log γx(Y1)| < +∞ for all x ∈ [K].

Then there exists a finite quantity l(K,Q, γ) which does not depend on π such
that

1

n
ln(K,π,Q, γ) −→

n→∞
l(K,Q, γ) P

∗-a.s. and in L1(P∗).

In particular, l(K,Q, γ) = limn E[
1
n ln(K,π,Q, γ)].

When appropriate, we define K(K,Q, γ) by

K(K,Q, γ) := l∗ − l(K,Q, γ).

Note that K(K,Q, γ) � 0 since it is the limit of a sequence of Kullback-
Leibler divergences: under the assumptions of Lemma 4,

K(K,Q, γ) = lim
n→∞

1

n
KL(P∗

Y n
1
‖PY n

1 |(K,π,Q,γ))

where P
∗
Y n
1

(respectively PY n
1 |(K,π,Q,γ)) is the distribution of Y n

1 under P
∗ (re-

spectively P(K,π,Q,γ)). We will see in the proofs that with some notation abuses:

K(K,Q, γ) = E
∗
[
log

(
p∗(Y1|Y 0

−∞)

p(K,Q,γ)(Y1|Y 0
−∞)

)]

= E
∗
Y 0
−∞

[
KL(P∗

Y1|Y 0
−∞

‖PY1|Y 0
−∞,(K,Q,γ))

]
.

Thus, K(K,Q, γ) can be seen as a Kullback Leibler divergence that measures
the difference between the distribution of Y1 conditionally to the whole past
under the parameter (K,Q, γ) and under the true distribution. In a way, it is a
prediction error under the parameter (K,Q, γ).

In the particular case where the true distribution of (Yt)t comes from a finite
state space hidden Markov model, K characterizes the true parameters, up to
permutation of the hidden states, provided the emission densities are all distinct
and the transition matrix is invertible, as shown in the following result.
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Lemma 5 (Alexandrovich et al. (2016), Theorem 5). Assume (Yt)t is generated
by a finite state space HMM with parameters (K∗, π∗,Q∗, γ∗). Assume Q∗ is
invertible and ergodic, that the emission densities (γ∗

x)x∈[K∗] are all distinct
and that E∗ [(log γ∗

x(Y1))
+] < ∞ for all x ∈ [K∗] (so that l∗ < ∞).

Then for all K � K∗, for all transition matrices Q of size K and for all
K-uples of probability densities γ, K(K,Q, γ) = 0 if and only if (K,Q, γ) =
(K∗,Q∗, γ∗) up to permutation of the hidden states.

3. Main results

3.1. Oracle inequality for the prediction error

The following theorem states an oracle inequality on the prediction error of
our estimator. It shows that with high probability, our estimator performs as
well as the best model of the class in terms of Kullback Leibler divergence, up

to a multiplicative constant and up to an additive term decreasing as (logn)···

n ,
provided the penalty is large enough.

Theorem 6. Assume [A�forget], [A�mix], [A�tail], [Aergodic], [Atail],
[Aentropy] and [Agrowth] hold.

Let (wM )M∈M be a nonnegative sequence such that
∑

M∈M e−wM � e − 1.
For all K and M , let

(K, π̂K,M,n, Q̂K,M,n, γ̂K,M,n) ∈ argmax
(K,π,Q,γ)∈SK,M,n

1

n
ln(K,π,Q, γ),

(K̂, M̂) ∈ argmax
K�n

M s.t. mM�n

(
1

n
ln(K, π̂K,M,n, Q̂K,M,n, γ̂K,M,n)− penn(K,M)

)

and let (K̂, π̂, Q̂, γ̂) = (K̂, π̂K̂,M̂,n, Q̂K̂,M̂,n, γ̂K̂,M̂,n) be the nonparametric max-
imum likelihood estimator.

Then there exist constants A and Cpen depending only on CQ, Cγ , n∗ and c∗
and a constant n0 depending only on CQ, Cγ, n∗, ζ, ngrowth, C∗, ρ∗, δ and Mδ

such that for all n � n0, t � 1 and η � 1, with probability at least 1−e−t−2n−2,

K(K̂, Q̂, γ̂) � (1 + η) inf
K�n

M s.t. mM�n

{
inf

(K,π,Q,γ)∈SK,M,n

K(K,Q, γ)

+ 2penn(K,M)

}
+

A

η
t
(log n)10

n

as soon as

penn(K,M) � Cpen

η

(logn)10

n

{
wM + (logn)4(mMK +K2 − 1)
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×
(
(logn)3 log log n+ logCaux(M,K, 3Cγ(log n)

2, n)
)}

.

The proof of this theorem is presented in Section 5. Its structure and main
steps are detailed in Section 5.1, and the proof of these steps are gathered in
Section 5.2.

Note that this theorem is not specific to one choice of the parametric models
SK,M,n: one may choose the type of model that suits the density one wants
to estimate best. In the following section, we use mixture models to estimate
densities when Y is unbounded. If Y is compact, we could use L2 spaces and
this oracle inequality would still hold.

The powers of log n come from:

• The limitation of the dependency to the logn most recent observations,
• The dependency of the bounds CQ logn and Cγ log n on n in assumptions

[Aergodic] and [Atail],
• Truncating the emission log-densities (possible thanks to assumptions

[Atail] and [A�tail]),
• The use of a Bernstein inequality for exponentially α-mixing processes.

3.2. Minimax adaptive estimation using location-scale mixtures

In this section, we show that the oracle inequality of Theorem 6 allows to con-
struct an estimator that is adaptive and minimax up to logarithmic factors when
the observations are generated by a finite state space hidden Markov model. To
do so, we consider models whose emission densities are finite mixtures of expo-
nential power distributions, and use an approximation result by Kruijer et al.
(2010).

Assume that (Yt)t�1 is generated by a stationary HMM with parameters
(K∗,Q∗, γ∗), which we call the true parameters. Without loss of generality, we
identify the true hidden state space with [K∗]. We consider the case Y = R

endowed with the probability λ with density Gλ : y �−→ (π(1 + y2))−1 with
respect to the Lebesgue measure.

In order to quantify the approximation error by location-scale mixtures, we
use the following assumptions from Kruijer et al. (2010).

(C1) Smoothness. For all x ∈ [K∗], log(γ∗
xGλ) is locally β-Hölder with β > 0,

i.e. there exist a polynomial L and a constant R > 0 such that if r is the
largest integer smaller than β, one has for all x ∈ [K∗],

∀y, y′ s.t. |y − y′| � R,∣∣∣∣∂r log(γ∗
xGλ)

∂yr
(y)− ∂r log(γ∗

xGλ)

∂yr
(y′)

∣∣∣∣ � r!L(y)|y − y′|β−r.

(C2) Moments. There exists ε > 0 such that for all x ∈ [K∗],

∀j ∈ {1, . . . , r},
∫ ∣∣∣∣∂j log(γ∗

xGλ)

∂yj
(y)

∣∣∣∣
2β+ε

j

(γ∗
xGλ)(y)dy < ∞
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L(y)

2β+ε
β (γ∗

xGλ)(y)dy < ∞

(C3) Tail. There exist positive constants c and τ such that for all x ∈ [K∗],

γ∗
xGλ = O(e−c|y|τ ).

(C4) Monotonicity. For all x ∈ [K∗], (γ∗
xGλ) is positive and there exists ym <

yM such that for all x ∈ [K∗], (γ∗
xGλ) is nondecreasing on (−∞, ym) and

nonincreasing on (yM ,+∞).

All these assumptions refer to the functions (γ∗
xGλ), which are the densities

of the true emission distributions with respect to the Lebesgue measure. Hence,
the choice of the dominating measure λ does not matter as far as regularity
conditions are concerned.

Note that Kruijer et al. (2010) only assumed (C3) outside of a compact set.
However, since the regularity assumption (C1) implies that (γ∗

xGλ) is continu-
ous, one may assume (C3) for all y without loss of generality.

It is important to note that even though we require some regularity on the
emission densities, for instance through the polynomial L and the constants β
and τ , we do not need to know them to construct our estimator, thus making
it adaptive.

We consider the following models. Let p � 2 be an even integer and

ψ(y) =
1

2Γ
(
1 + 1

p

)e−yp

.

Let M = N
∗. We take SK,M,n as the set of parameters (K,π,Q, γ) such that

• [Aergodic] holds with Cσ = 1,
• For all x ∈ [K], there exist (sx,1, . . . , sx,M ) ∈ [ 1n , n]

M , (μx,1, . . . , μx,M ) ∈
[−n, n]M and wx = (wx,1, . . . , wx,M ) ∈ [0, 1]M such that

∑
i wx,i = 1 and

for all y ∈ R,

γx(y) =
1

n2
+

(
1− 1

n2

)
1

Gλ(y)

M∑
i=1

wx,i
1

sx,i
ψ

(
y − μx,i

sx,i

)
.

In other words, the emission densities are mixtures of λ (with weight n−2)
and of M translations and dilatations of ψ.

Lemma 7 (Checking the assumptions). Assume infQ∗ > 0, then:

• [A�forget] and [A�mix] hold.
• Assume (C3), then [A�tail] holds.
• [Atail] holds for all n � 3 by taking Cγ = 10.
• [Aentropy] and [Agrowth] hold for any ζ > 0 by taking mM = 2M and

Caux(M,K,D, n) = 4pn3, for instance ζ = 2 and ngrowth = 4p.
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Proof. The first point follows from Lemma 1. The second point follows from the
fact that the densities γ∗

x are uniformly bounded under (C3).
See Section A.1.1 for the proof of the last two points.

Comment. The results of this section remain the same when the weight of λ
in the emission densities of SK,M,n is allowed to be larger than n−2 instead of
being exactly n−2.

Lemma 4 from Kruijer et al. (2010) implies the following result.

Lemma 8 (Approximation rates). Assume (C1)-(C4) hold. Then there exists
sequences of mixtures (gM,x)M for each x ∈ [K∗] such that for M large enough

and all n � M , (n−2 + (1− n−2)gM,x)x∈[K∗] ∈ S
(γ)
K∗,M,n and

max
x∈[K∗]

KL(γ∗
x‖gM,x) = O(M−2β(logM)2β

p
τ ).

Proof. Proof in Section A.1.2.

Corollary 9 (Minimax adaptive estimation rates). Assume (C1)-(C4) hold.
Also assume that infQ∗ > 0. Then there exists a constant C > 0 such that for
all M � 3 and n � M ,

inf
(K∗,π,Q,γ)∈SK∗,M,n

K(K∗,Q, γ) � C(logn)2
(
1

n
+M−2β(logM)2β

p
τ

)

Hence, using Theorem 6 with penn(K,M) = (KM + K2)(log n)18/n, there
exists a constant C such that almost surely, there exists a (random) n0 such that

∀n � n0, K(K̂n, Q̂n, γ̂n) � Cn
−2β
2β+1 (logn)18+

p
τ − 16+

p
τ

2β+1

� Cn
−2β
2β+1 (logn)18+

p
τ .

Proof. Proof in Section A.1.3.

This result shows that our estimator reaches the minimax rate of conver-
gence proved by Maugis-Rabusseau and Michel (2013) for density estimation in
Hellinger distance, up to logarithmic factors. Since estimating a density is the
same thing as estimating a one-state HMM, this means that our result is adap-
tive and minimax up to logarithmic factors when K∗ = 1. As far as we know, it
is still unknown whether increasing the number of states improves the minimax
rates of convergence. It seems reasonable to think that it doesn’t, which would
imply that our estimator is in general adaptive and minimax.

4. Perspectives

The main result of this paper is a guarantee that maximum likelihood estimators
based on nonparametric hidden Markov models give sensible results even in the
misspecified setting, and that their error can be controlled nonasymptotically.
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Two properties of both the models and the true distributions are at the core of
this result: a mixing property and a forgetting property, which can be seen as a
local dependence property.

These two properties are not specific to hidden Markov models. Therefore, it
is likely that our result can be generalized to many other models and distribu-
tions. To name a few, one could consider hidden Markov models with continuous
state space as studied in Douc and Matias (2001) or Douc et al. (2011), or more
generally partially observed Markov models, see for instance Douc et al. (2020)
and reference therein. Special cases of partially observed Markov models are
HMMs with autoregressive properties (Douc et al., 2004) and models with time
inhomogeneous Markov regimes (Pouzo et al., 2016). One could also consider
hidden Markov fields (Kunsch et al., 1995) and graphical models to generalize
to more general distributions than time processes.

Another interesting approach is to consider other forgetting and mixing as-
sumptions. For instance, Le Gland and Mevel (2000) state a more general version
of the forgetting assumption where the constant is replaced by an almost surely
finite random variable, and Gerencsér et al. (2007) give conditions under which
the moments of this random variable are finite. Other mixing and weak depen-
dence conditions have also been introduced in the litterature with the hope of
describing more general processes, see for instance Dedecker et al. (2007).

5. Proof of the oracle inequality (Theorem 6)

5.1. Overview of the proof

By definition of (K̂, π̂, Q̂, γ̂), one has for all K � n, for all M such that mM � n
and for all (K,πK,M ,QK,M , γK,M ) ∈ SK,M,n:

1

n
l∗n − 1

n
ln(K̂, π̂, Q̂, γ̂) � 1

n
l∗n − 1

n
ln(K,πK,M ,QK,M , γK,M )

+ penn(K,M)− penn(K̂, M̂)

where K̂ and M̂ are the selected number of hidden states and model index
respectively.

Let

ν(K,π,Q, γ) :=

(
1

n
l∗n − 1

n
ln(K,π,Q, γ)

)
−K(K,Q, γ),

then

K(K̂, Q̂, γ̂) � K(K,QK,M , γK,M ) + 2penn(K,M)

+ ν(K,πK,M ,QK,M , γK,M )− penn(K,M)

− ν(K̂, π̂, Q̂, γ̂)− penn(K̂, M̂).

Now, assume that with high probability, for all K, M and (K,π,Q, γ) ∈
SK,M,n,

|ν(K,π,Q, γ)| − penn(K,M) � ηK(K,Q, γ) +Rn (2)
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for some constant η ∈ (0, 1
2 ), some penalty penn and some residual term Rn.

The above inequality leads to

(1− η)K(K̂, Q̂, γ̂) � (1 + η)K(K,QK,M , γK,M ) + 2penn(K,M) + 2Rn,

and the oracle inequality follows by noticing that 1+η
1−η � 1 + 4η and 1

1−η � 2

when η ∈ (0, 1
2 ).

Let us now prove equation (2). For all i ∈ Z, k ∈ N
∗, let

L∗
i,k = log p∗(Yi|Y i−1

i−k ), (3)

where the process (Yt)t�1 is extended into a process (Yt)t∈Z by stationarity. Like-
wise, for all i ∈ Z, k ∈ N

∗, (K,π,Q, γ) ∈ Sn and for all probability distributions
μ on [K], let

Li,k,μ(K,Q, γ) = log p(K,Q,γ)(Yi|Y i−1
i−k , Xi−k ∼ μ),

where p(K,Q,γ)(·|Xi−k ∼ μ) is the density of a HMM with parameters (K,Q, γ)
starting at time i−k with the distribution μ. When μ is the stationary distribu-
tion of the Markov chain under the parameter (K,Q, γ), we write Li,k(K,Q, γ).
The following remark will be useful in our proofs: since

p(K,π,Q,γ)(Xk = x|Y k−1
1 ) =

∑
x′∈[K]

p(K,π,Q,γ)(Xk−1 = x′|Y k−2
1 )Q(x′, x)γx′(Yk−1)

∑
x′∈[K]

p(K,π,Q,γ)(Xk−1 = x′|Y k−2
1 )γx′(Yk−1)

∈ [(CQ logn)−1K−1, CQ(log n)K−1]

using [Aergodic], one has for all k, μ and (K,π,Q, γ) ∈ Sn

|Li,k,μ(K,Q, γ)− bγ(Yi)| � log(CQ logn). (4)

Assume from now on that n � exp(CQ). For all k, k′ ∈ N
∗, for all μ, μ′

probability distributions and for all (K,π,Q, γ), (K ′, π′,Q′, γ′) ∈ Sn,⎧⎨
⎩
|Li,k,μ(K,Q, γ)− Li,k′,μ′(K ′,Q′, γ′)| � 4 log logn+ |bγ(Yi)|+ |bγ′(Yi)|,

|Li,k,μ(K,Q, γ)− L∗
i,k′ | � 2 log logn+ |bγ(Yi)|+ |L∗

i,k′ |.
(5)

Let k � 1 and D > 0. Approximate ν(K,π,Q, γ) by the deviation

ν̄k(t
(D)
(K,Q,γ)) :=

1

n

n∑
i=1

t
(D)
(K,Q,γ)(Y

i
i−k)− E

∗[t
(D)
(K,Q,γ)(Y

0
−k)]

where

t
(D)
(K,Q,γ) : Y

0
−k �−→ (L∗

0,k − L0,k,μt(K,Q, γ))1
|L∗

0,k|∨
(
sup

γ′∈S
(γ)
n

|bγ′ (Y0)|
)

�D
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for a fixed measure μt, for instance the uniform measure on [K]. Note that

‖t(D)
(K,Q,γ)‖∞ � 2(D + log logn) by equation (5).

Considering these functions t
(D)
(K,Q,γ) has two advantages. The first one is to

limit the time dependency on the past to only k observations, which makes
it possible to use the forgetting property of the process (Yt)t∈Z. The second
one is to consider bounded functionals of this process, for which Bernstein-like
concentration inequalities apply. The error of this approximation is given by the
following lemma.

Lemma 10. Assume [Atail], [Aergodic], [A�tail] and [A�forget] hold. Then
there exists n0 depending on CQ, C∗, ρ∗,Mδ and δ such that for all n � n0,
for all u � 1, with probability greater than 1− 2ne−u, for all (K,π,Q, γ) ∈ Sn,∣∣∣ν(K,π,Q, γ)− ν̄k(t

(Cγ(logn)u)

(K,Q,γ) )
∣∣∣ � 10Cγ(logn)ue

−u +
2

nρ(1− ρ)2
+

4ρk−1

1− ρ

where ρ = 1 − (CQ logn)−2. In particular, if k � C2
Q(logn)3 and n � n0 ∨√

30Cγ, for all D � 3Cγ(log n)
2, with probability greater than 1− 2n−2,∣∣∣ν(K,π,Q, γ)− ν̄k(t

(D)
(K,Q,γ))

∣∣∣ � 13C4
Q

(logn)4

n
. (6)

Proof. Proof in Section 5.2.1.

The following theorem is our main technical result. It shows that ν̄k(t
(D)
(K,Q,γ))

can be controlled uniformly on all models with high probability.

Theorem 11. Assume [Aergodic], [Aentropy] and [A�mix]. Also assume that
D � logn, that k � n∗ +1 and that there exists n1 such that for all n � n1, for
all K � n and M such that mM � n,

14π (mMK +K2 − 1)e−4D(log n)2(k + logCaux(M,K,D, n)) � n. (7)

Let (wM )M∈M be a sequence of positive numbers such that
∑

M e−wM � e−1.
Then there exist constants Cpen and A depending on n∗ and c∗ and a numerical
constant n0 such that for all ε > 0 and n � n1 ∨ n0, the following holds.

Let penn be a function such that for all K � n and M such that mM � n,

penn(K,M) � Cpen

n
k2
(
1

ε
∨ D(log n)2

k

)
×(

wM + (mMK +K2 − 1)D(log n)2(D + k log logn+ logCaux)
)
. (8)

Then for all s > 0, with probability larger than 1 − e−s, for all K � n and M
such that mM � n and for all (K,π,Q, γ) ∈ SK,M,n,

|ν̄k(t(D)
(K,Q,γ))| − penn(K,M) � εE[t

(D)
(K,Q,γ)(Y

0
−k)

2]

+Ak2
(
1

ε
∨ D(log n)2

k

)
s

n
. (9)
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Proof. Proof in Section B.

The last step is to control the variance term E[t
(D)
(K,Q,γ)(Y

0
−k)

2] by K(K,Q, γ).

Lemma 12. Assume [Atail], [Aergodic], [A�tail] and [A�forget] hold. There
exists a constant n0 depending on Mδ, δ, ρ∗, C∗ and CQ such that for all
n � n0, k � CQ(log n)3, D > 0 and (K,π,Q, γ) ∈ Sn,

1

44C2
γ(log n)

4
E
∗[t

(D)
(K,Q,γ)(Y

i
i−k)

2] � K(K,Q, γ) +
22

n
.

Proof. Proof in Section 5.2.2.

Take u = 3 log n in order to have ne−u � n−2 in Lemma 10. Note that u � 1
for all n � e. Based on Lemma 10 and 12, also take{

D = Cγ(logn)u = 3Cγ(logn)
2,

k = C2
Q(log n)3.

In the following, we assume n � e∨exp([(n∗+1)/C2
Q]1/3), so that k � n∗+1

and D � log n. Let η � 1. In order to get εE∗[t
(D)
(K,Q,γ)(Y

i
i−k)

2] � ηK(K,Q, γ) +
22η
n using Lemma 12, take

1

ε
=

1

η
44C2

γ(logn)
4.

When assumption [Agrowth] holds and mM � n and K � n, equation (7) is
implied by

28πn2(logn)2e−12Cγ(logn)2(C2
Q(logn)3 log logn+ nζ) � n

for all n � ngrowth, which is true for n � n1 for a constant n1 depending only
on ngrowth, CQ and ζ.

Moreover, there exists a constant Cε depending only on CQ and Cγ such that
for all n,

1

ε
∨ D(log n)2

k
� Cε

η
(log n)4.

Thus, there exists an integer n′′
0 depending on CQ and Cγ (for instance

exp(3Cγ/C
2
Q)) such that for all n � n′′

0 equation (8) is implied by

penn(K,M) � Cpen

n
C4

Q(logn)6
Cε

η
(logn)4

×
[
wM + 6Cγ(logn)

4(mMK +K2 − 1)

×
(
C2

Q(logn)3 log logn+ logCaux(M,K, 3Cγ(log n)
2, n)

) ]
,
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so if in addition n is larger than the thresholds of Theorem 11 and Lemma 12,
equation (9) and Lemma 12 imply for all s > 0, with probability at least 1−e−s,
for all K � n and M such that mM � n and all (K,π,Q, γ) ∈ SK,M,n,

|ν̄k(t(D)
(K,Q,γ))|−penn(K,M)

� ηK(K,Q, γ) +
22η

n
+AC4

Q(log n)6
Cε

η
(logn)4

s

n

� ηK(K,Q, γ) + 23AC4
Q(log n)6

Cε

η
(logn)4

s

n
(10)

since we may assume A � 1 without loss of generality. Therefore, putting to-
gether equations (6) and (10) shows

|ν(K,π,Q, γ)|−penn(K,M)

� ηK(K,Q, γ) +
23AC4

QCε

η
s
(log n)10

n
+ 13C4

Q

(logn)4

n

� ηK(K,Q, γ) +
36AC4

QCε

η
s
(log n)10

n

which is equation (2) with the appropriate residual terms for Theorem 6.

5.2. Proofs

Let us first state two lemmas that will be of use in subsequent proofs.

Lemma 13. Assume [Atail] and [A�tail]. Then there exists a constant n0 de-
pending on δ and Mδ such that for all n � n0, for all i, k, and for all u � 1,

P
∗[|L∗

i,k| � Cγ(log n)u] � e−u

where L∗
i,k = log p∗(Yi|Y i−1

i−k ) as defined in (3), and writing D = Cγ(log n)u,

E

[
sup

γ∈S
(γ)
n

|bγ(Y1)|1sup
γ∈S

(γ)
n

|bγ(Y1)|�D

]
∨ E

[
|L∗

i,k|1|L∗
i,k|�D

]
� 2De−u,

E

[
sup

γ∈S
(γ)
n

|bγ(Y1)|2 1sup
γ∈S

(γ)
n

|bγ(Y1)|�D

]
∨ E

[
|L∗

i,k|21|L∗
i,k|�D

]
� 5D2e−u.

Proof. Let i ∈ Z, k ∈ N and v > 0. By [A�tail] and Markov’s inequality,

P
∗ [L∗

i,k � v
]
= P

∗ [p∗(Yi|Y i−1
i−k ) � ev

]
� e−δv

E
∗ [(p∗(Yi|Y i−1

i−k ))
δ
]

� elogMδ−δv.

On the other hand,

P
∗ [L∗

i,k � −v
]
= P

∗ [p∗(Yi|Y i−1
i−k ) � e−v

]
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= E
∗
[∫

1p∗(y|Y i−1
i−k )�e−vp

∗(y|Y i−1
i−k )λ(dy)

]
� e−v.

Thus, there exists B∗ � 1 such that if u � 1, P
∗[|L∗

i,k| � B∗u] � e−u.
Therefore, for all n � exp(B∗), the first equation holds, and under [Atail], the
variables |L∗

i,k| and sup
γ∈S

(γ)
n

|bγ(Y1)| are dominated by Cγ(log n)(W ∨1) where

W is an exponential random variable with parameter 1. To conclude, note that
for all u > 0,

E
∗[W1W�u] � (1 + u)e−u � 2ue−u,

E
∗[W 21W�u] � (u2 + 2u+ 2)e−u � 5u2e−u.

Lemma 14. Assume [Aergodic] and [A�forget].

1. Let ρ = 1− (CQ logn)−2. Then for all i, k, k′, μ and μ′,

sup
(K,π,Q,γ)∈Sn

|Li,k,μ(K,Q, γ)− Li,k′,μ′(K,Q, γ)| � ρk∧k′−1/(1− ρ)

and there exists a process (Li,∞)i∈Z such that for all i, k and μ,

sup
(K,π,Q,γ)∈Sn

|Li,k,μ(K,Q, γ)− Li,∞(K,Q, γ)| � ρk−1/(1− ρ).

2. For all i, k and k′, |L∗
i,k − L∗

i,k′ | � C∗ρ
k∧k′−1
∗ and there exists a process

(L∗
i,∞)i∈Z such that for all i and k,

|L∗
i,k − L∗

i,∞| � C∗ρ
k−1
∗ .

3. Under P
∗, the processes (L∗

i,∞)i∈Z and (Li,∞(K,Q, γ))i∈Z are stationary
for all (K,π,Q, γ) ∈ Sn. Assume [A�mix], [Atail] and [A�tail], then they
are also ergodic, integrable and

l(K,Q, γ) = E
∗[L1,∞(K,Q, γ)] and l∗ = E

∗[L∗
1,∞].

Proof. The first point is a result from Douc et al. (2004).
The second point follows directly from [A�forget].
The third point follows from the ergodicity of (Yt)t�1 under [A�mix], from

the integrability of Li,∞ and L∗
i,∞ under [Atail] and [A�tail] by Lemma 13 and

from Lemmas 3 and 4 for the definition of l and l∗.

5.2.1. Proof of Lemma 10

Let t(K,Q,γ) : Y
0
−k �−→ L∗

0,k − L0,k,μt(K,Q, γ). Then

ν(K,π,Q, γ)− ν̄k(t(K,Q,γ))
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=
1

n

n∑
i=1

(L∗
i,i−1 − L∗

i,k)−
1

n

n∑
i=1

(Li,i−1,π(K,Q, γ)− Li,k,μt(K,Q, γ))

− E[L∗
0,∞ − L∗

0,k] + E[L0,∞(K,Q, γ)− L0,k,μt(K,Q, γ)].

Thus, by Lemma 14,

|ν(K,π,Q, γ)− ν̄k(t(K,Q,γ))|

� 1

n

n∑
i=1

ρ(i−1)∧k−1

1− ρ
+ C∗

1

n

n∑
i=1

ρ
(i−1)∧k−1
∗ +

ρk−1

1− ρ
+ C∗ρ

k−1
∗

� 1

nρ(1− ρ)2
+

2ρk−1

1− ρ
+ C∗

(
1

nρ∗(1− ρ∗)
+ 2ρk−1

∗

)

� 2

nρ(1− ρ)2
+

4ρk−1

1− ρ

as soon as ρ∗ � ρ and C∗ � 1/(1− ρ), which holds when CQ logn � (C∗ ∨ (1−
ρ∗)

−1)1/2, in particular when logn � (C∗ ∨ (1− ρ∗)
−1)1/2.

Let u � 1 and D = Cγ(logn)u and assume that n � n0 from Lemma 13.
Then

ν̄k(t(K,Q,γ))− ν̄k(t
(D)
(K,Q,γ)) =

1

n

n∑
i=1

t(K,Q,γ)(Y
i
i−k)1|L∗

i,k|∨(sup
γ′∈S

(γ)
n

|bγ′ (Yi)|)>D

− E
∗[t(K,Q,γ)(Y

0
−k)1|L∗

0,k|∨(sup
γ′∈S

(γ)
n

|bγ′ (Y0)|)>D].

We restrict ourselves to the event
⋂n

i=1{|L∗
i,k| ∨ (sup

γ′∈S
(γ)
n

|bγ′(Yi)|) � D},
which occurs with probability greater than 1− 2ne−u using assumption [Atail]
and Lemma 13. On this event,

1

n

n∑
i=1

t(K,Q,γ)(Y
i
i−k)1|L∗

i,k|∨(sup
γ′∈S

(γ)
n

|bγ′ (Yi)|)>D = 0.

Moreover,

|E∗[t(K,Q,γ)(Y
0
−k)− t

(D)
(K,Q,γ)(Y

0
−k)]|

= E
∗[|t(K,Q,γ)(Y

0
−k)|1|L∗

0,k|∨(sup
γ′∈S

(γ)
n

|bγ′ (Y0)|)>D].

Equation (5) ensures that |t(K,Q,γ)(Y
0
−k)| � |L∗

0,k| + sup
γ′∈S

(γ)
n

|bγ′(Y0)| +
2 log logn when n � exp(CQ), so that

|E∗[t(K,Q,γ)(Y
0
−k)− t

(D)
(K,Q,γ)(Y

0
−k)]|

� E
∗

[
|L∗

0,k|
(
1|L∗

0,k|>D + 1|L∗
0,k|�D< sup

γ′∈S
(γ)
n

|bγ′ (Y0)|

)]
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+ E
∗

[
sup

γ′∈S
(γ)
n

|bγ′(Y0)|
(
1 sup

γ′∈S
(γ)
n

|bγ′ (Y0)|>D + 1 sup

γ′∈S
(γ)
n

|bγ′ (Y0)|�D<|L∗
0,k|

)]

+ 2(log logn)E∗

[(
1|L∗

0,k|>D + 1 sup

γ′∈S
(γ)
n

|bγ′ (Y0)|>D

)]
.

Thus, by Lemma 13,

|E∗[t(K,Q,γ)(Y
0
−k)− t

(D)
(K,Q,γ)(Y

0
−k)]|

� 2De−u +DP
∗

(
sup

γ′∈S
(γ)
n

|bγ′(Y0)| > D

)
+ 2De−u +DP

∗(|L∗
0,k| > D)

+ 2(log logn)

(
P
∗

(
sup

γ′∈S
(γ)
n

|bγ′(Y0)| > D

)
+ P

∗(|L∗
0,k| > D)

)

� 6De−u + 4(log logn)e−u.

Finally, using log log n � logn � Cγ lognu when u � 1 concludes the proof
of the first equation.

For the second equation, take u = 3 log n. Since ρk � n−1 when k �
C2

Q(log n)3 and u �−→ ue−u is nonincreasing on [1,+∞), for allD � 3Cγ(log n)
2,∣∣∣ν(K,π,Q, γ)− ν̄k(t

(D)
(K,Q,γ))

∣∣∣
� 10Cγ(logn)(3 log n)e

−3 log n +
2(CQ logn)4

nρ
+

4(CQ logn)2

nρ

� 30Cγ
(log n)2

n3
+

12(CQ logn)4

n
� 13(CQ logn)4

n

for n �
√

30Cγ (using ρ � 1/2 for the second line).

5.2.2. Proof of Lemma 12

Lemma 15. Assume [Atail], [Aergodic] and [A�tail] hold. Let

V(K,Q, γ) := E
∗ [(L∗

0,∞ − L0,∞(K,Q, γ))2
]
.

Then for all n � e4 ∨ exp(CQ),

1

44C2
γ(log n)

4
V(K,Q, γ) � K(K,Q, γ) +

11

n
.

Proof. We need the following lemma:

Lemma 16 (Shen et al. (2013), Lemma 4). For any two probability measures
P and Q with density p and q and any λ ∈ (0, e−4],

EP

(
log

p

q

)2

� H(P,Q)2

(
12 + 2

(
log

1

λ

)2
)

+ 8EP

[(
log

p

q

)2

1

(
p

q
� 1

λ

)]



Oracle inequality for misspecified NPHMMs 4939

where H(P,Q) is the Hellinger distance between P and Q:

H(P,Q)2 = −2EP [(q/p)
1/2 − 1] =

∫
(
√
p−√

q)2dλ.

Let n ∈ N
∗ and D′ = Cγ(logn)

2. Take P = P
∗
Y0|Y −1

−∞
and Q = PY0|Y −1

−∞,(K,Q,γ),

so that EP (log
p
q )

2 = V(K,Q, γ). Using equation (5) for n � exp(CQ),

(
log

p

q

)2

�
(

sup
γ′∈S

(γ)
n

|bγ′(Y0)|+ |L∗
0,∞|+ 2 log logn

)2

� 3 sup
γ′∈S

(γ)
n

|bγ′(Y0)|2 + 3|L∗
0,∞|2 + 12(log logn)2

Let λ > 0 be such that 2D′ = log 1
λ − 2 log logn. Note that λ � e−4 when

n � e4. By equation (5),

1

(
p

q
� 1

λ

)
� 1

(
sup

γ′∈S
(γ)
n

|bγ′(Y0)|+ |L∗
0,∞| � log

1

λ
− 2 log log n

)

� 1

(
sup

γ′∈S
(γ)
n

|bγ′(Y0)| ∨ |L∗
0,∞| � D′

)
,

hence

8EP

[(
log

p

q

)2

1

(
p

q
� 1

λ

)]

� 24E∗

[
|L∗

0,∞|2
(
1|L∗

0,∞|>D′ + 1|L∗
0,∞|�D′< sup

γ′∈S
(γ)
n

|bγ′ (Y0)|

)]

+ 24E∗

[
sup

γ′∈S
(γ)
n

|bγ′(Y0)|2
(
1 sup

γ′∈S
(γ)
n

|bγ′ (Y0)|>D′ + 1 sup

γ′∈S
(γ)
n

|bγ′ (Y0)|�D′<|L∗
0,∞|

)]

+ 96(log logn)2E∗

[
1|L∗

0,∞|>D′ + 1 sup

γ′∈S
(γ)
n

|bγ′ (Y0)|>D′

]
,

and by Lemma 13 (for n large enough)

8EP

[(
log

p

q

)2

1

(
p

q
� 1

λ

)]
� 24

(
5D′ 2

n
+

D′ 2

n

)
+ 24

(
5D′ 2

n
+

D′ 2

n

)

+ 96
2(log logn)2

n

� 480

n
D′ 2
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using log log n � D′ for n � e. Therefore, by Lemma 16,

V(K,Q, γ) � E
∗
Y −1
−∞

[
H(P∗

Y0|Y −1
−∞

,PY0|Y −1
−∞,(K,Q,γ))

2
]
(12 + 2(2D′ + 2 log logn)2)

+
480

n
D′ 2

� E
∗
Y −1
−∞

[
KL(P∗

Y0|Y −1
−∞

‖PY0|Y −1
−∞,(K,Q,γ))

]
(12 + 32D′ 2) +

480

n
D′ 2

using that the Kullback Leibler divergence is lower bounded by the Hellinger
distance. Finally, since E

∗
Y −1
−∞

[KL(P∗
Y0|Y −1

−∞
‖PY0|Y −1

−∞,(K,Q,γ))] = K(K,Q, γ),

V(K,Q, γ) � 44D′ 2K(K,Q, γ) +
480

n
D′ 2.

Next, let D > 0 and let us bound the difference between V(K,Q, γ) and

E
∗[t

(D)
(K,Q,γ)(Y

i
i−k)

2]. Taking t(K,Q,γ) : Y
0
−k �−→ L∗

0,k − L0,k,x(K,Q, γ), by defini-

tion of t
(D)
(K,Q,γ)

E
∗[t

(D)
(K,Q,γ)(Y

i
i−k)

2] � E
∗[t(K,Q,γ)(Y

i
i−k)

2].

Then,

|E∗[t(K,Q,γ)(Y
i
i−k)

2]−V(K,Q, γ)|
=
∣∣E∗ [(L∗

0,k − L0,k,x(K,Q, γ))2
]
− E

∗ [(L∗
0,∞ − L0,∞(K,Q, γ))2

]∣∣
� E

∗|((L∗
0,k − L∗

0,∞)− (L0,k,x − L0,∞)(K,Q, γ))

× ((L∗
0,k − L0,k,x(K,Q, γ)) + (L∗

0,∞ − L0,∞(K,Q, γ)))|

� 2
ρk−1

1− ρ

(
E
∗

[
2 sup
γ′∈S

(γ)
n

|bγ′(Y0)|+ |L∗
0,k|+ |L∗

0,∞|
]
+ 4 log log n

)

by Lemma 14 and equation (5), provided ρ∗ � ρ and C∗ � 1/(1− ρ) (which is
ensured by logn � (C∗∨(1−ρ∗)

−1)1/2). Note that the condition k � C2
Q(logn)3

ensures that ρk � n−1, and that ρ � 1/2 when n � e4. The expectation can be
upper bounded using Lemma 13 with u = 1:

|E∗[t(K,Q,γ)(Y
i
i−k)

2]−V(K,Q, γ)| � 2

nρ(1− ρ)
(8Cγ log n+ 4 log log n)

�
48C2

QCγ

n
(logn)3.

Therefore, under the assumptions of Lemma 15, if D � Cγ(logn)
2,

E
∗[t

(D)
(K,Q,γ)(Y

i
i−k)

2]

44C2
γ(log n)

4
� K(K,Q, γ) +

11

n
+

1

44C2
γ(logn)

4

48C2
QCγ

n
(logn)3
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� K(K,Q, γ) +
11

n
+

48C2
Q

44n logn

� K(K,Q, γ) +
22

n

for n larger than a constant that only depends on CQ, which concludes the
proof.

Appendix A: Proofs for the minimax adaptive estimation

A.1. Proofs for the mixture framework

A.1.1. Proof of Lemma 7 (checking the assumptions)

Checking [Atail] By definition of the emission densities, bγ(y) � −2 logn for

all γ ∈ S
(γ)
n . Moreover, for all y ∈ Y and γ ∈ S

(γ)
K,M,n,

bγ(y) � log

⎛
⎝ 1

K

∑
x∈[K]

(
1 ∨

maxμ,s
1
sψ
(
y−μ
s

)
Gλ(y)

)⎞⎠
� 0 ∨

(
max
μ,s

log
1

s
ψ

(
y − μ

s

)
− logGλ(y)

)

� 0 ∨
(
max
μ,s

{
log

1

s
−
(
y − μ

s

)p}
+ log(1 + y2) + log

π

2Γ(1 + 1/p)

)

� 0 ∨
(
logn− n−p min

μ
(y − μ)p + log(1 + y2) + log π

)
,

where we recall that the maximum is taken over μ ∈ [−n, n] and s ∈ [ 1n , n].
If y ∈ [−n, n],

bγ(y) � 0 ∨
(
logn+ log(1 + y2) + log π

)
� logn+ 1 + 2 logn+ log π since n � 1

� 3 logn+ log(πe) � 5 logn

as soon as n � 3. Otherwise, one can take y � n and then

bγ(y) � 0 ∨ (log n− n−p(y − n)p + log(1 + y2) + log π)

� 0 ∨ (log n− n−p(y − n)p + log(1 + 2(y − n)2 + 2n2) + log π)

� 0 ∨ (log n− n−pY p + log(1 + 2Y 2) + 1 + log 2n2 + log π)

by writing Y = y−n and using that log(a+b) � log a+log(1+b) � log a+1+log b
when a, b � 1. Thus, writing Y ′ = Y/n,

bγ(y) � 3 logn+ log(2eπ) + 0 ∨ (−(Y ′)p + log(1 + 2n2(Y ′)2))
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�
{
3 log n+ log(2eπ) + log(1 + 2n2) if Y ′ � 1

3 log n+ log(2eπ) + 0 ∨ (−(Y ′)p + 1 + log(2n2(Y ′)2)) otherwise

� 5 logn+ log(4e2π) + 0 ∨ (−(Y ′)p + 2 log(Y ′))

� 5 logn+ log(4e2π),

so that bγ(y) � 10 logn as soons as n � 3.

Checking [Aentropy] and [Agrowth] Let us first assume that there exists

a constant Lp such that the function (μ, s) �−→ s−1ψ(s−1(y−u))
Gλ(y)

is Lp-Lipschitz

for all y (where the origin space is endowed with the supremum norm). Then
a bracket covering of size ε of ([n, n] × [ 1n , n])

M provides a bracket covering of
{γx}γ∈S

(γ)
n ,x∈[K]

of size Lpε. Since there exists a bracket covering of size ε of

[n, n]× [ 1n , n] for the supremum norm with less than (4nε ∨1)2 brackets, one gets
[Aentropy] by taking Caux(M,K,D, n) = 4Lpn and mM = 2M .

Let us now check that this constant Lp exists.∣∣∣∣∣ ∂∂μ
1
sψ
(
y−μ
s

)
Gλ(y)

∣∣∣∣∣ = 1

2πΓ(1 + 1
p )(1 + y2)

∣∣∣∣ ∂∂μ 1

s
exp

(
−
(
y − μ

s

)p)∣∣∣∣
=

1

2πΓ(1 + 1
p )(1 + y2)s2

∣∣∣∣y − μ

s

∣∣∣∣
p−1

exp

(
−
(
y − μ

s

)p)

� 1

s2
Y p−1 exp(−Y p)

� n2Z1−1/pe−Z � n2

by writing Y = |y − μ|/s and Z = Y p. Likewise,∣∣∣∣∣ ∂∂s
1
sψ
(
y−μ
s

)
Gλ(y)

∣∣∣∣∣ = 1

2πΓ(1 + 1
p )(1 + y2)

∣∣∣∣− 1

s2
+ p

1

s

(y − μ)p

sp+1

∣∣∣∣ exp
(
−
(
y − μ

s

)p)

� 1

s2
|pZ − 1|e−Z

� n2 p

2

as soon as p � 2. Thus, one can take Lp = pn2 and Caux(M,K,D, n) = 4pn3.
With this Caux, checking [Agrowth] is straightforward for all ζ > 0: with n � 4p,
it is ensured by logn4 � nζ , which is always true for ζ = 2 for instance.

A.1.2. Proof of Lemma 8 (approximation rates)

Let F (y) = e−c|y|τ . Lemma 4 of Kruijer et al. (2010) ensures that there exist
c′ > 0 and H � 6β + 4p such that for all x ∈ [K∗] and s > 0, there exists a
mixture gs,x with O(s−1| log s|p/τ ) components, each with density 1

sψ(
·−μ
s ) with
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respect to the Lebesgue measure for some μ ∈ {y |F (y) � c′sH}, such that gs,x
approximates the emission density γ∗

x:

max
x

KL(γ∗
x‖gs,x) = O(s−2β).

For M large enough, the condition M � O(s−1| log s|p/τ ) (number of com-
ponents) is ensured by s−1 � cM(logM)−p/τ for some small enough constant
c > 0. Take this s in the following and gM,x = gs,x.

Let us now check that (n−2+(1−n−2)gM,x)x∈[K∗] ∈ S
(γ)
K∗,M,n. When M � n

is large enough that s � 1, this s is indeed in [ 1n , n]. When |μ| � s−1, F (μ) �
exp(−cs−τ ) = o(c′sH). Thus, for s small enough (i.e. for M large enough), all
translation parameters μ belong to [−s−1, s−1], which is indeed in [−n, n] when
M � n.

A.1.3. Proof of Corollary 9 (minimax adaptive estimation rate)

Denote by h the Hellinger distance, defined by h(p, q)2 = EP [(
√
q/p − 1)2] for

all probability densities p and q associated to probability measures P and Q.
Let

H2(K,Q, γ) = E
∗
Y 0
−∞

[
h2(p∗Y1|Y 0

−∞
, pY1|Y 0

−∞,(K,Q,γ))
]

be the Hellinger distance between the distributions of Y1 conditionally to Y 0
−∞

under the true distribution and under the parameters (K,Q, γ) (see Lemma 14
for the definition of these conditional distributions).

The following lemma shows that the Kullback-Leibler divergence and the
Hellinger distance are equivalent up to a logarithmic factor and a small additive
term.

Lemma 17. Assume that [A�tail], [A�forget], [Atail] and [Aergodic] hold. Then
there exists a constant n1 depending on Cγ, CQ, δ and Mδ such that for all
n � n1, for all (K,Q, γ) ∈ Sn,

H2(K,Q, γ) � K(K,Q, γ) � 7Cγ(log n)
2

(
H2(K,Q, γ) +

2

n

)
.

Proof. The lower bound comes from the fact that the square of the Hellinger
distance is smaller than the Kullback-Leibler divergence. For the upper bound,
we use Lemma 4 of Shen et al. (2013): for all v � 4 and for all probability
measures P and Q with densities p and q,

KL(p‖q) � h2(p, q) (1 + 2v) + 2EP

[(
log

p

q

)
1

{
log

p

q
� v

}]
.

Take p = p∗
Y1|Y 0

−∞
and q = pY1|Y 0

−∞,(K,Q,γ). Then by equation (4), log p
q �

|bγ |+ |L∗
1,∞|+log(CQ logn) where L∗

1,∞ is as in Lemma 14 and 1
{
log p

q � v
}

�
1{|bγ | � 1

2 (v− log(CQ logn))}∨1{|L∗
1,∞| � 1

2 (v− log(CQ logn))}. There exists
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n1 depending only on Cγ and CQ such that for all n � n1, log(CQ logn) �
Cγ(logn)

2. Assume n � n1 and take v = 3Cγ(log n)
2, then 1

2 (v− log(CQ logn))
� (Cγ logn)

2 and 1 + 2v � 7Cγ(log n)
2, so that

K(K,Q, γ) � 7Cγ(log n)
2H2(K,Q, γ)

+2Cγ(log n)
2
{
P
∗(|bγ | � Cγ(logn)

2) + P
∗(|L∗

1,∞| � Cγ(logn)
2)
}

+2E∗[(|L∗
1,∞|+ |bγ |)
× (1{|L∗

1,∞| � Cγ(log n)
2} ∨ 1{|bγ | � Cγ(logn)

2})].

By Lemma 13, which also holds for L∗
1,∞ using the uniform convergence of

Lemma 14, P∗(|L∗
1,∞| � Cγ(log n)

2) � exp(− log n) � n−1 for n � n0 where
n0 is defined in Lemma 13 (and depends on δ and Mδ). Likewise, by [Atail],
P
∗(|bγ | � Cγ(log n)

2) � n−1.
The last expectation of the above equation can be written as

2E∗[(a+ b)1{a ∨ b � Cγ(log n)
2}]

where a = |L∗
1,∞| and b = |bγ |. Then,

2E∗[a1{a ∨ b � Cγ(logn)
2})]

=2E∗[a1{a � Cγ(logn)
2})] + 2E∗[a1{b � Cγ(logn)

2 > a})]
� 4Cγ(log n)

2e− logn + 2Cγ(logn)
2
P
∗[b � Cγ(logn)

2]

� 6Cγ
(logn)2

n

by Lemma 13 for the first term and [Atail] for the second one. Likewise,

2E∗[b1{a ∨ b � Cγ(logn)
2})] � 6Cγ

(log n)2

n
,

so that finally

K(K,Q, γ) � 7Cγ(logn)
2H2(K,Q, γ) + 14Cγ

(logn)2

n
,

which concludes the proof.

Let M ∈ N
∗. Let gM,x be the approximating densities given by Lemma 8 and

write γM,x = n−2+(1−n−2)gM,x for all x ∈ [K∗]. The following lemma controls
the error H(K∗,Q∗, (γM,x)x) coming from the approximation of the densities.

Lemma 18. Let σ∗ > 0 be such that σ∗ � K∗Q∗(x, x′) � (σ∗)−1 for all
x, x′ ∈ [K∗]. Then

H2(K∗,Q∗, (γM,x)x) �
(
2 +

32(K∗)3

(σ∗)11

) ∑
x∈[K∗]

h2(γ∗
x, γM,x)
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Proof. Let p∗x = p∗(X1 = x|Y 0
−∞) and px = p(K∗,Q∗,(γM,x)x)(X1 = x|Y 0

−∞). The

Cauchy-Schwarz inequality implies that (
√∑

x ax −
√∑

x bx)
2 �

∑
x(
√
ax −√

bx)
2, so that

h2

(∑
x

p∗xγ
∗
x,
∑
x

pxγM,x

)
=

∫ ⎛⎝√∑
x

p∗xγ
∗
x −
√∑

x

pxγM,x

⎞
⎠

2

dλ

�
∫ ∑

x

(
√
p∗xγ

∗
x −√

pxγM,x)
2dλ

� 2

∫ ∑
x

(
px(
√

γ∗
x −√

γM,x)
2 + (

√
px −

√
p∗x)

2γ∗
x

)
dλ

� 2
∑
x

pxh
2(γ∗

x, γM,x) + 2
∑
x

(
√

p∗x −√
px)

2

� 2
∑
x

h2(γ∗
x, γM,x) + 2

∑
x

(
√

p∗x −√
px)

2

Thus, one needs to control the expectation of the second term. Since px and
p∗x belong to [ σ

∗

K∗ ,
1

K∗σ∗ ] by assumption on Q∗,

∑
x

(
√
px −

√
p∗x)

2 ∈
[
K∗σ∗

4
,
K∗

4σ∗

]∑
x

(px − p∗x)
2.

The following equation follows from a careful reading of the proof of Propo-
sition 2.1 of De Castro et al. (2017) by noticing that the roles of γ∗ and
γM are symmetrical in their proof and that their reasoning works with ρ� =
1−minQ�/maxQ�.

∑
x

|px − p∗x| � 4K∗

(σ∗)3

+∞∑
i=0

(1− (σ∗)2)i
maxx |γ∗

x(Y−i)− γM,x(Y−i)|∑
x γ

∗
x(Y−i) ∨

∑
x γM,x(Y−i)

.

Therefore, using Cauchy-Schwarz’s inequality:

∑
x

(px − p∗x)
2 �

(∑
x

|px − p∗x|
)2

� 16(K∗)2

(σ∗)8

+∞∑
i=0

(1− (σ∗)2)i
(
maxx |γ∗

x(Y−i)− γM,x(Y−i)|∑
x γ

∗
x(Y−i) ∨

∑
x γM,x(Y−i)

)2

.

Since |a−b|
2
√
a∨b

� |√a−
√
b|,

E
∗
(
maxx |γ∗

x(Y )− γM,x(Y )|∑
x γ

∗
x(Y ) ∨

∑
x γM,x(Y )

)2

�
∫

maxx(γ
∗
x(y)− γM,x(y))

2∑
x γ

∗
x(y) ∨

∑
x γM,x(y)

dλ(y)

�
∑
x

∫
(γ∗

x(y)− γM,x(y))
2

γ∗
x(y) ∨ γM,x(y)

dλ(y)
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� 4
∑
x

∫ (√
γ∗
x(y)−

√
γM,x(y)

)2

dλ(y)

= 4
∑
x

h2(γ∗
x, γM,x),

so that

E
∗

[∑
x

(
√
p∗x −√

px)
2

]
� K∗

4σ∗E
∗

[∑
x

(px − p∗x)
2

]

� 16(K∗)3

(σ∗)11

∑
x

h2(γ∗
x, γM,x),

which concludes the proof of the lemma.

Finally, since |
√
a+ b −√

c| � |√a −√
c| +

√
|b| for all b ∈ R, a � (−b) ∨ 0

and c � 0, for all x,

h2(γ∗
x, γM,x) � 2h2(γ∗

x, gM,x) +
4

n2

� 2KL(γ∗
x‖gM,x) +

4

n2
.

Therefore,

K(K∗,Q∗, (γM,x)x) � 14Cγ
(logn)2

n

+ 7Cγ(log n)
2

(
2 +

32(K∗)3

(σ∗)11

) ∑
x∈[K∗]

(
4

n2
+ 2KL(γ∗

x, gM,x)

)
.

Thus, there exists a constant C such that for all n � 3,

K(K∗,Q∗, (γM,x)x) � C(logn)2
(
1

n
+M−2β(logM)2β

p
τ

)

by definition of the densities gM,x.
The choice of penalty verifies the lower bound of Theorem 6. Thus, the oracle

inequality of Theorem 6 with η = 1, α = 2 and t = 2 logn entails that for n
large enough and for any sequence (Mn)n such that K∗ � Mn � n/2 for all n:

K(K̂, Q̂, γ̂) � 2K(K∗,Q∗, (γMn,x)x) + 4penn(K
∗,Mn) +A

(log n)10

n

� 2C(logn)2
(
1

n
+M−2β

n (logn)2β
p
τ

)

+ 4K∗ (logn)
18

n
Mn + 2A

(log n)10

n
.

Taking Mn ∼ n
1

2β+1 (log n)
2βp/τ−16

2β+1 leads to the desired rate.
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Appendix B: Proof of the control of ν̄k (Theorem 11)

Let us give an overview of the proof of the control of ν̄k.
The first step of the proof is to obtain a Bernstein inequality on ν̄k(t) for a

single function t. This is done using the mixing properties of the process (Yi)i
and by noticing that ν̄k(t) is the deviation of an empirical mean.

The second step is to transform the inequality on one function t into an
inequality on the supremum over all function t belonging to a given class. This
step involves the bracketing entropy of the aforementionned class. The control
of this entropy is where the shape of the penalty appears.

At this stage, one is able to upper bound the supremum of ν̄k(t
(D)
(K,Q,γ)) over

all parameters (K,π,Q, γ) ∈ SK,M,n. However, this upper bound is of order
n−1/2 (up to logarithmic factors), which is suboptimal. The third step of the
proof gets rid of the n−1/2 term by considering the processes

WK,M,n := sup
(K,π,Q,γ)∈SK,M,n

|ν̄k(t(D)
(K,Q,γ))|

E∗[t
(D)
(K,Q,γ)(Z0)2] + x2

K,M,n

for some constants xK,M,n. The last step of the proof consists in taking appro-
priate xK,M,n in order to have with high probability and for all K and M{

WK,M,n � ε

WK,M,nx
2
K,M,n � penn(K,M) +Rn

for a residual term Rn depending on the probability, which leads to the desired
inequality

∀(K,π,Q, γ) ∈ SK,M,n, |ν̄k(t(D)
(K,Q,γ))| −penn(K,M) � εE∗[t

(D)
(K,Q,γ)(Z0)

2] +Rn.

The concentration results are stated in Section B.1. The control of the brack-
eting entropy is done in Section B.2. Finally, the choice of xK,M,n and the
synthesis of the proof are done in Section B.3.

Without loss of generality, we assume n � exp(CQ) and D � logn so that

‖t(D)
(K,Q,γ)‖∞ � 4D for all (K,π,Q, γ) ∈ SK,M,n by equation (5) and n larger

than the constant n0 from Lemma 13.

Changes of notations. In the rest of this section, we omit the dependency
of WK,M , xK,M and SK,M on n in the notations. We also introduce the notation
θ ∈ Sn instead of (K,π,Q, γ) ∈ Sn to make the notation shorter. Given θ ∈ Sn,
we write πθ, Qθ and γθ its components. To avoid multiple subscripts, we write
γθ(y|x) instead of γθ,x(y).

B.1. Concentration inequality

First, let us introduce some notations. Let D > 0, K � 1, M ∈ M and k � 1.
For all i ∈ Z, let Zi = Y i

i−k. Define for all σ > 0 the sets

Bσ = {θ ∈ SK,M | E∗[t
(D)
θ (Z0)

2] � σ2}.
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Let dk be the semi-distance defined by d2k(t1, t2) = E
∗[(t1 − t2)

2(Z0)]. For
any semi-distance d, write N(A, d, ε) = eH(A,d,ε) the minimal cardinality of
a covering of A by brackets of size ε for the semi-distance d, that is by sets
[t1, t2] = {t : Yk �−→ R , t1(·) � t(·) � t2(·)} such that d(t1, t2) � ε. H(A, d, ·) is
called the bracketing entropy of A for the semi-distance d.

The first step of the proof is to obtain a Bernstein inequality for the deviations
of a single t(D)(Zi).

Theorem 19. Assume [A�mix] holds. Then there exists a constant Cmix de-
pending on c∗ and n∗ such that the following holds.

Let t be a real valued, measurable bounded function on Yk+1 and let V =
E
∗[t2(Z0)]. Then for all λ ∈ (0, 1

Cmix(n∗+k+1)‖t‖∞(logn)2 ) and for all n ∈ N:

φ(λ) := logE∗ exp

[
λ

n∑
i=1

(t(Zi)− E
∗t(Zi))

]

� C2
mix(n∗ + k + 1)2(nV + ‖t‖2∞)λ2

1− Cmix(n∗ + k + 1)‖t‖∞(logn)2λ

Proof. The following result is a Bernstein inequality for exponentially α-mixing
processes.

Lemma 20 (Merlevède et al. (2009), Theorem 2). Let (Ai)i�1 be a stationary
sequence of centered real-valued random variables such that ‖A1‖∞ � M and
whose α-mixing coefficients satisfy, for a certain c > 0,

∀n ∈ N, αmix(n) � e−2cn.

Then there exist positive constants C1 and C2 depending on c such that for
all n � 2 and all λ ∈ (0, 1

C1M(logn)2 ),

logE exp

[
λ

n∑
i=1

Ai

]
� C2λ

2(nv +M2)

1− C1λM(log n)2
,

where v is defined by

v = Var(A1) + 2
∑
i>1

|Cov (A1, Ai)|.

Assumption [A�mix] implies that the α-mixing coefficients of (Yi)i satisfy
αmix(n) � e−c∗n for all n � n∗ since 4αmix(n) � ρmix(n) (see for instance
Bradley (2005)). However, this is not enough to apply the previous result: one
needs the inequality to hold for all n (and not for n larger than some constant)
and for the process (Zi)i. To do so, we partition the process (Zi)i into several
processes for which the above result applies, and then gather the inequalities.

Consider the processes (Zi(n∗+k+1)+j)i with α-mixing coefficients αZ,j(n). By
construction, they satisfy αZ,j(n) � e−c∗n∗n for all n � 1 and j ∈ {1, . . . , n∗ +
k+1}. Apply Lemma 20, one gets that there exist two positive constants C1 and
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C2 depending on c∗ and n∗ such that for all functions t, all λ ∈ (0, 1
C1M(logn)2 )

and all n ∈ N:

φj(λ) := logE∗ exp

[
λ

n∑
i=1

(t(Zi(n∗+k+1)+j)− Et(Zi(n∗+k+1)+j))

]

� C2λ
2(nv + ‖t‖2∞)

1− C1λ‖t‖∞(logn)2

where, denoting V = E
∗t2(Z0):

v = Var(t(Zj)) + 2
∑
i>1

|Cov (t(Zj), t(Zi(n∗+k+1)+j)|

� V + 2V
∑
i>1

|Corr (t(Zj), t(Zi(n∗+k+1)+j)|

� V

(
1 + 8

∑
i>1

e−c∗n∗i

)
� 8V

1− e−c∗n∗

using [A�mix]. Finally, using that E
∏k

i=1 Ai �
∏k

i=1(EA
k
i )

1/k for any positive
integer k and any positive random variable (Ai)1�i�k,

φ(λ) � 1

n∗ + k + 1

n∗+k+1∑
j=1

φj((n∗ + k + 1)λ),

so that

φ(λ) �
8C2

1−e−c∗n∗ (n∗ + k + 1)2λ2(nV + ‖t‖2∞)

1− C1(n∗ + k + 1)λ‖t‖∞(logn)2
,

which concludes the proof.

The following result follows mutatis mutandis from the proof of Theorem 6.8
of Massart (2007) using the previous theorem.

Lemma 21. Assume [A�mix] holds. Then there exists a constant C∗ � 1 de-
pending on n∗ and c∗ such that the following holds.

Let T be a class of real valued and measurable functions on Yk+1 such that
T is separable for the supremum norm. Also assume that there exist positive
numbers σ and b such that for all t ∈ T , ‖t‖∞ � b and E

∗t2(Z0) � σ2 and
assume that N(T , dk, δ) is finite for all δ > 0.

Then for all measurable sets A such that P∗(A) > 0:

E
∗
(
sup
t∈T

|ν̄k(t)|
∣∣∣A) � C∗(n∗ + k + 1)

[
E

n
+ σ

√
1

n
log

(
1

P∗(A)

)

+
b(logn)2

n
log

(
1

P∗(A)

)]
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where

E =
√
n

∫ σ

0

√
H(T , dk, u) ∧ ndu+ b(logn)2H(T , dk, σ).

By taking T = {t(D)
θ |θ ∈ Bσ} and b = 4D, one gets the following lemma

from Lemma 4.23 and Lemma 2.4 of Massart (2007):

Lemma 22. Assume that there exist a function ϕ and constants C and σK,M

such that x �→ ϕ(x)
x is nonincreasing and

∀σ � σK,M E � Cϕ(σ)
√
n. (11)

Then for all xK,M � σK,M and z > 0, with probability greater than 1− e−z:

WK,M := sup
θ∈SK,M

∣∣∣∣∣ |ν̄k(t(D)
θ )|

E∗[t
(D)
θ (Z0)2] + x2

K,M

∣∣∣∣∣ � 4C∗(n∗ + k + 1)

[
C
ϕ(xK,M )

x2
K,M

√
n

+

√
z

x2
K,Mn

+ 4D
z(log n)2

x2
K,Mn

]
. (12)

The two remaining steps are the control of the bracketing entropy which will
lead to equation (11) (see Section B.2) and the choice of the parameters xK,M

and z (see Section B.3).

B.2. Control of the bracketing entropy

In this section, we show that for all k � 2 and ε > 0,

H(ε) � 2(mMK +K2 − 1) logmax

(
95De2D

(√
2CQ logn

)k+3/2√
kKCaux

′

ε
,

14
(√

2CQ logn
)k+1/2√

kKCaux
′
)

where Caux
′ = (Cauxe

D) ∨ (K − 1).

B.2.1. Reduction of the set

For all θ ∈ SK,M , let gθ = (gθ,x)x∈[K] where

gθ,x(y
k
0 ) =

⎧⎨
⎩
pθ(Xk = x, Yk = yk|Y k−1

0 = yk−1
0 ) if |L∗

k,k| ∨ sup
θ′∈Sn

|bθ′(yk)| � D,

0 otherwise.

In order to control the bracketing entropy of {t(D)
θ | θ ∈ Bσ}, we control the

bracketing entropy of the set G := {gθ | θ ∈ SK,M} for the distance
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dG(gθ1 ,gθ2) = E
∗
Y k−1
0

[ ∑
x∈[K]

∫
|gθ1,x(Y k−1

0 , yk)− gθ2,x(Y
k−1
0 , yk)|

× 1|L∗
k,k|∨supθ′∈Sn

|bθ′ (yk)|�Ddλ(yk)

]
.

Comment. In the rest of Section B.2, we always assume that

|L∗
k,k| ∨ sup

θ′∈Sn

|bθ′(yk)| � D (13)

since if this is not the case, then t
(D)
θ (yk) = t

(D)
θ′ (yk) = 0. This means that only

the yk satisfying equation (13) are relevant for the construction of the brackets.

For all θ ∈ SK,M ,∑
x∈[K]

gθ,x =
∑

x,x′∈[K]

pθ(Yk = yk|Xk = x)Qθ(x
′, x)pθ(Xk−1 = x′|Y k−1

0 = yk−1
0 )

∈
[
(CQ log n)−1K−1

∑
x∈[K]

pθ(Yk = yk|Xk = x),

CQ(logn)K−1
∑

x∈[K]

pθ(Yk = yk|Xk = x)

]

=
[
(CQ log n)−1ebθ(yk), CQ(logn)ebθ(yk)

]
,

so that for all θ ∈ SK,M ,

(CQ(logn)eD)−1 �
∑

x∈[K]

gθ,x � CQ(logn)eD. (14)

Let [a, b] be a bracket of size ε for G with the distance dG such that

(2CQ(log n)eD)−1 �
∑
x

ax �
∑
x

bx � 2CQ(logn)eD. (15)

Then(
log
∑
x

ax − log
∑
x

bx

)2

� 2 log
(
2CQ(logn)eD

) ∣∣∣∣∣log
∑
x

ax − log
∑
x

bx

∣∣∣∣∣
� 8D × 2CQ(logn)eD

∑
x

|ax − bx|

when n � e2 using that | log a− log b| � |a− b|/(a ∧ b). Therefore,

dk

(
log
∑
x

ax, log
∑
x

bx

)2
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= E
∗
Y k−1
0

⎡
⎣∫ (log∑

x

ax − log
∑
x

bx

)2

(Y k−1
0 , yk)p

∗(Yk = yk|Y k−1
0 )λ(dyk)

⎤
⎦

� 16DCQ(logn)eDE
∗
Y k−1
0

[∫ ∑
x

|ax − bx|(Y k−1
0 , yk) exp(L

∗
k,k)λ(dyk)

]

� 16DCQ(logn)e2DdG(a, b),

so that

N({t(D)
θ | θ ∈ Bσ}, dk, ε) � N̄

(
G, dG ,

(
ε

16DCQ(logn)e2D

)2
)

(16)

where N̄ is the minimal cardinality of a bracket covering of G such that all
brackets [a, b] satisfy equation (15).

B.2.2. Decomposition into simple sets

The aim of this section is to prove the following lemma.

Lemma 23. Assume k � 2 and let ε ∈
(
0,

70

168

)
. Then

N̄ (G, dG , ε) � N

(
{πθ}θ∈SK,M

, d∞,
ε

70k
(√

2CQ log n
)2k+1

K

)

×N

(
{Qθ}θ∈SK,M

, d∞,
ε

70k
(√

2CQ logn
)2k+1

K

)

×N

(
{γθ}θ∈SK,M

, d∞,
ε e−D

70k
(√

2CQ logn
)2k+1

K

)

where d∞ is the distance of the supremum norm and where γθ denotes the func-
tion (x, y) �−→ γθ(y|x).
Let:

• [a, b] be a bracket of {πθ}θ∈SK,M
of size ε for the supremum norm;

• [p, q] be a bracket of {Qθ}θ∈SK,M
of size ε pour the supremum norm;

• [u, v] be a bracket of {γθ}θ∈SK,M
of size εe−D for the supremum norm.

Without loss of generality, we assume (CQ logn)−1K−1 � a(x) � b(x) �
CQ(log n)K−1 and (CQ logn)−1K−1 � p(x, x′) � q(x, x′) � CQ(logn)K−1 for
all x, x′ ∈ [K] since all elements of {πθ}θ∈SK,M

and {Qθ}θ∈SK,M
satisfy these in-

equalities. We also assume that the brackets aren’t empty: there exists θ ∈ SK,M

such that πθ ∈ [a, b], Qθ ∈ [p, q] and γθ ∈ [u, v]. Under this assumption, for all
y ∈ Y ,

Ke−D(1− ε) �
∑
x

u(y|x) �
∑
x

v(y|x) � K(eD + εe−D). (17)
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Using the approach of Appendix A of De Castro et al. (2017), one can write
gθ,x as the following product of matrices

gθ,x(y
k
0 ) =

(
μθ
0|k−1F

θ
1|k−1 . . . F

θ
k−1|k−1Qθ

)
x
γθ(yk|x)

where

βi|k(xi) =
∑

xk
i+1∈[K]k−i

Qθ(xi, xi+1)γθ(yi+1|xi+1) . . .Qθ(xk−1, xk)γθ(yk|xk),

for 0 � i � k − 1 and βk|k(x) = 1 for all x ∈ [K],

μθ
0|k(x) =

πθ(x)β0|k(x)γθ(y0|x)∑
x′∈[K] πθ(x′)β0|k(x′)γθ(y0|x′)

and F θ
i|k(xi−1, xi) =

βi|k(xi)Qθ(xi−1, xi)γθ(yi|xi)∑
x∈[K] βi|k(x)Qθ(xi−1, x)γθ(yi|x)

.

To clarify the role of these quantities, observe that

βi|k(xi) = pθ(Y
k
i+1|Xi = xi),

μθ
0|k(x) = Pθ(X0 = x|Y k

0 ),

F θ
i|k(xi−1, xi) = Pθ(Xi = xi|Y k

i , Xi−1 = xi−1),

so that (
μθ
0|kF

θ
1|k . . . F

θ
k|k

)
x
= Pθ(Xk = x|Y k

0 ).

Now, let⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αi|k(xi) =
∑

xk
i+1∈[K]k−i

p(xi, xi+1)u(yi+1|xi+1) . . . p(xk−1, xk)u(yk|xk)

δi|k(xi) =
∑

xk
i+1∈[K]k−i

q(xi, xi+1)v(yi+1|xi+1) . . . q(xk−1, xk)v(yk|xk)

for 0 � i � k − 1 and αk|k(x) = δk|k(x) = 1 for all x ∈ [K],⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ν(x) =
a(x)α0|k(x)u(y0|x)∑

x′∈[K] b(x
′)δ0|k(x′)v(y0|x′)

ω(x) =
b(x)δ0|k(x)v(y0|x)∑

x′∈[K] a(x
′)α0|k(x′)u(y0|x′)

,

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

fi|k(xi−1, xi) =
αi|k(xi)p(xi−1, xi)u(yi|xi)∑
x∈[K] δi|k(x)q(xi−1, x)v(yi|x)

gi|k(xi−1, xi) =
δi|k(xi)q(xi−1, xi)v(yi|xi)∑
x∈[K] αi|k(x)p(xi−1, x)u(yi|x)

.



4954 L. Lehéricy

[ν, ω] and [fi|k, gi|k] are brackets of {μθ
0|k}θ∈SK,M

and {F θ
i|k}θ∈SK,M

for all i ∈
{1, . . . , k}. Moreover, if one has a bracket covering of the sets {πθ}θ∈SK,M

,
{Qθ}θ∈SK,M

and {γθ}θ∈SK,M
, then this construction gives a bracket covering

of {μθ
0|k}θ∈SK,M

and {F θ
i|k}θ∈SK,M

for all i ∈ {1, . . . , k}.
The next step of the proof is to control the size of these new brackets.

Lemma 24. Assume ε � 1
2 , then

sup
0�i�k

∑
x∈[K] |αi|k(x)u(yi|x)− δi|k(x)v(yi|x)|∑

x∈[K] αi|k(x)u(yi|x)
� 4
(√

2CQ logn
)2k+1

Kε.

Proof. Using minimalist notations,∑
x∈[K]

|αi|k(x)u(yi|x)− δi|k(x)v(yi|x)|

�
k∑

j=i+1

∑
xk
i ∈[K]k−i+1

uip
i+1
i ui+1 . . . uj−1|pjj−1 − qjj−1|vj . . . qkk−1vk

+

k∑
j=i

∑
xk
i ∈[K]k−i+1

uip
i+1
i ui+1 . . . p

j
j−1|uj − vj |qj+1

j . . . qkk−1vk.

Then, note that for all j ∈ {i+ 1, . . . , k},∑
xk
i ∈[K]k−i+1

uip
i+1
i . . . pj−1

j−2uj−1|pjj−1 − qjj−1|vjq
j+1
j . . . qkk−1vk

� ε(CQ(log n)K−1)k−j
∑

xj−1
i ∈[K]j−i

uip
i+1
i . . . pj−1

j−2uj−1

×
∑

xj∈[K]

(uj + εe−D) · · ·
∑

xk∈[K]

(uk + εe−D)

and for all j ∈ {i, . . . , k} (with a special case for j = i),

∑
x∈[K]

αi|k(x)u(yi|x) =
∑

xk
i ∈[K]k−i+1

uip
i+1
i . . . pj−1

j−2uj−1p
j
j−1ujp

j+1
j . . . pkk−1uk

� (CQ(log n)K)−(k−j+1)
∑

xj−1
i ∈[K]j−i

uip
i+1
i . . . pj−1

j−2uj−1

∑
xj∈[K]

uj · · ·
∑

xk∈[K]

uk.

so that∑
xk
i ∈[K]k−i+1 uip

i+1
i . . . uj−1|pjj−1 − qjj−1|vj . . . qkk−1vk∑

xk
i ∈[K]k−i+1 uip

i+1
i . . . uj−1p

j
j−1uj . . . pkk−1uk

� εK(CQ logn)2(k−j)+1
k∏

�=j

Kεe−D +
∑

x	
u�∑

x	
u�
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� εK(CQ logn)2(k−j)+1
k∏

�=j

(
1 +

Kεe−D

Ke−D(1− ε)

)

� εK
(CQ logn)2(k−j)+1

(1− ε)k−j+1
.

Likewise, for all j ∈ {i, . . . , k},∑
xk
i ∈[K]k−i+1 uip

i+1
i . . . pjj−1|uj − vj |qj+1

j . . . qkk−1vk∑
xk
i ∈[K]k−i+1 uip

i+1
i . . . uj−1p

j
j−1uj . . . pkk−1uk

� εK
(CQ logn)2(k−j)+1

(1− ε)k−j+1
.

Therefore, when ε � 1/2,∑
x∈[K] |αi|k(x)u(yi|x)− δi|k(x)v(yi|x)|∑

x∈[K] αi|k(x)u(yi|x)
� 2

εK

CQ logn

k∑
j=i

(
2(CQ logn)2

)k−j+1

� 4εKCQ(log n)

(
2(CQ logn)2

)k−i − 1

2(CQ log n)2 − 1

� 4εK
(√

2CQ log n
)2(k−i)+1

since n � e2, which gives the desired result.

Lemma 25. Assume ε � 1
2 , then

‖ν − ω‖1 � 6
(√

2CQ log n
)2k+3

Kε

and

sup
0�i�k

sup
x∈[K]

‖fi|k(x, ·)− gi|k(x, ·)‖1 � 6
(√

2CQ logn
)2k+3

Kε. (18)

Proof. With minimalist notations,

∑
|ν − ω| =

∑∣∣∣∣ aαu∑
bδv

− bδv∑
aαu

∣∣∣∣
�
∑

|aαu− bδv|∑
bδv

+
∑

|bδv|
∣∣∣∣ 1∑

aαu
− 1∑

bδv

∣∣∣∣
�
∑

|aαu− bδv|∑
bδv

+

∑
|aαu− bδv|∑

aαu

� 2CQ(logn)K

∑
|aαu− bδv|∑

αu

using (CQ(log n)K)−1 � a � b � CQ(logn)K−1, 0 � α � δ and 0 � u � v.
Thus,

∑
|ν − ω| � 2CQ(log n)K

(∑
b|αu− δv|∑

αu
+

∑
|a− b|αu∑

αu

)
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� 2CQ(logn)K

(
CQ(logn)K−1

∑
|αu− δv|∑

αu
+ ε

)

� 2CQ(logn)K

(
CQ(logn)4

(√
2CQ logn

)2k+1

ε+ ε

)
(Lemma 24)

� 6
(√

2CQ logn
)2k+3

Kε.

The control of
∑

x′∈[K] |gi|k − fi|k|(x, x′) is the same after replacing a and b by
p and q.

Write η = 6
(√

2CQ log n
)2k+3

Kε. Equation (18) implies that as soon as
η < 1, it is possible to enlarge the bracket [fi|k, gi|k] into a bracket [f ′

i|k, g
′
i|k]

of size smaller than 3η for the norm of Lemma 25 such that f ′
i|k/(1 − η) and

g′i|k/(1 + η) are transition matrices.
Let ⎧⎪⎪⎨

⎪⎪⎩
Ax(y

k
0 ) =

(
νf ′

1|k−1 . . . f
′
k−1|k−1p

)
x
u(yk|x)

Bx(y
k
0 ) =

(
ωg′1|k−1 . . . g

′
k−1|k−1q

)
x
v(yk|x)

.

[A,B] is a bracket of G, and this construction gives a bracket covering of G.
Lemma 26. Assume ε � 1

12k(
√
2CQ logn)

2k+3
K
. Then for all yk0 ,

∑
x∈[K]

|(νf ′
1|k . . . f

′
k|k)x − (ωg′1|k . . . g

′
k|k)x| � 7kη = 42k

(√
2CQ log n

)2k+3

Kε

and ∑
x∈[K]

|(νf ′
1|k . . . f

′
k|kp)x − (ωg′1|k . . . g

′
k|kq)x| � 64k

(√
2CQ logn

)2k+3

Kε.

Proof. First,

∑
x∈[K]

|(νf ′
1|k . . . f

′
k|k)x − (ωg′1|k . . . g

′
k|k)x| �

∑
x∈[K]

|((ν − ω)f ′
1|k . . . f

′
k|k)x|

+

k∑
j=1

∑
x∈[K]

|(ωg′1|k . . . g′j−1|k(g
′
j|k − f ′

j|k)f
′
j+1|k . . . f

′
k|k)x|.

Then, since f ′
i|k/(1 − η) and g′i|k/(1 + η) are transition matrices (and thus are

1-Lipschitz linear operators of L1([K])),

‖νf ′
1|k . . . f

′
k|k − ωg′1|k . . . g

′
k|k‖1 � ‖ω − ν‖1(1− η)k

+

k∑
j=1

‖ω‖1(1 + η)j−1

(
sup

1�i�k
sup
x∈[K]

‖f ′
i|k(x, ·)− g′i|k(x, ·)‖1

)
(1− η)k−j .
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By Lemma 25, ‖ω‖1 � 1+η (since the bracket [ν, ω] contains a probability distri-
bution μθ

0|k for some θ ∈ SK,M ) and sup1�i�k supx∈[K] ‖f ′
i|k(x, ·)−g′i|k(x, ·)‖1 �

3η, so that

‖νf ′
1|k . . . f

′
k|k − ωg′1|k . . . g

′
k|k‖1 � η + (1 + η)

k∑
j=1

(1 + η)j−13η

� η

⎛
⎝1 + 3(1 + η)

k−1∑
j=0

(1 + η)j

⎞
⎠

� η

(
1 + 3(1 + η)

(1 + η)k − 1

η

)
� η + 3(1 + η)(ekη − 1).

For all x ∈ [0, 1
2 ], 3(1 + x)(ex − 1) � 6x. Since kη � 1

2 by the assumption on ε,

‖νf ′
1|k . . . f

′
k|k − ωg′1|k . . . g

′
k|k‖1 � η + 6kη � 7kη.

For the second part, note that∑
x∈[K]

|(νf ′
1|k . . . f

′
k|kp)x − (ωg′1|k . . . g

′
k|kq)x|

�
∑
x

∑
x′

|(νf ′
1|k . . . f

′
k|k)x′px′,x − (ωg′1|k . . . g

′
k|k)x′qx′,x|

�
∑
x

∑
x′

|(νf ′
1|k . . . f

′
k|k)x′ − (ωg′1|k . . . g

′
k|k)x′ |qx′,x

+
∑
x

∑
x′

(νf ′
1|k . . . f

′
k|k)x′ |px′,x − qx′,x|.

Since [p, q] is a non-empty bracket of {Qθ}θ∈SK,M
,
∑

x qx′,x � 1 + Kε for
all x′ and since νf ′

1|k . . . f
′
k|k is the lower bound of a non empty bracket of

{pXk|Y k
1 ,θ}θ∈SK,M

,
∑

x′(νf ′
1|k . . . f

′
k|k)x′ � 1. Hence,

∑
x∈[K]

|(νf ′
1|k . . . f

′
k|kp)x − (ωg′1|k . . . g

′
k|kq)x|

� (1 +Kε)
∑
x′

|(νf ′
1|k . . . f

′
k|k)x′ − (ωg′1|k . . . g

′
k|k)x′ |+Kε

∑
x′

(νf ′
1|k . . . f

′
k|k)x′

� (1 +Kε)42
(√

2CQ log n
)2k+3

Kε+Kε (by the first part of the lemma)

� 64k
(√

2CQ logn
)2k+3

Kε

since ε � 1
2K under the assumption of the lemma and k∧ (

√
2CQ logn) � 1.
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Lemma 27. Assume ε � 1

12k(
√
2CQ logn)

2k+1
K
. Then

dG(A,B) � 70k
(√

2CQ logn
)2k+1

Kε.

Proof. By definition,

dG(A,B) = E
∗
Y k−1
0

∑
x∈[K]

∫
|Ax(Y

k
0 )−Bx(Y

k
0 )|λ(dYk).

Taking some fixed Y k−1
0 ,

∑
x

∫
|Ax(yk)−Bx(yk)|λ(dyk)

=
∑
x

∫
|u(yk|x)(νf ′

1|k−1 . . . f
′
k−1|k−1p)x

− v(yk|x)(ωg′1|k−1 . . . g
′
k−1|k−1q)x|λ(dyk)

�
∑
x

∫
|u(yk|x)− v(yk|x)|(νf ′

1|k−1 . . . f
′
k−1|k−1p)xλ(dyk)

+
∑
x

∫
v(yk|x)|(νf ′

1|k−1 . . . f
′
k−1|k−1p)x − (ωg′1|k−1 . . . g

′
k−1|k−1q)x|λ(dyk).

Since the brackets are not empty, for all x ∈ [K],
∫
v(y|x)λ(dy) � 1 + εe−D

and
∑

x(νf
′
1|k−1 . . . f

′
k−1|k−1p)x � 1 (it is the lower bound of a non empty

bracket of {pXk|Y k−1
0 ,θ | θ ∈ SK,M}). Therefore, Lemma 26 entails

dG(A,B) � εe−D
∑
x

(νf ′
1|k−1 . . . f

′
k−1|k−1p)x

+ (1 + εe−D)
∑
x

|(νf ′
1|k−1 . . . f

′
k−1|k−1p)x − (ωg′1|k−1 . . . g

′
k−1|k−1q)x|

� εe−D + (1 + εe−D)64(k − 1)
(√

2CQ logn
)2(k−1)+3

Kε

� 70k
(√

2CQ logn
)2k+1

Kε

since 1 + εe−D � 13/12 under the assumption of the lemma.

Assume k � 2 and let η′ := 42(k−1)
(√

2CQ logn
)2k+1

Kε. Lemma 26 implies∑
x |(νf ′

1|k−1 . . . f
′
k−1|k−1)x − (ωg′1|k−1 . . . g

′
k−1|k−1)x| � η′. Since the bracket

[νf ′
1|k−1 . . . f

′
k−1|k−1, ωg

′
1|k−1 . . . g

′
k−1|k−1] is not empty, it contains a probability

measure. Thus, using (CQ logn)−1K−1 � p � q � CQ(log n)K−1, for all x ∈
[K],

(CQ logn)−1K−1(1− η′) � (νf ′
1|k−1 . . . f

′
k−1|k−1p)x
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� (ωg′1|k−1 . . . g
′
k−1|k−1q)x � CQ(logn)K−1(1 + η′).

Therefore, by equation (17),

(CQ logn)−1K−1(1− η′)e−DK(1− ε) �
∑

x∈[K]

Ax

�
∑

x∈[K]

Bx � CQ(logn)K−1(1 + η′)K(eD + εe−D).

The inequality (2CQ(logn)eD)−1�
∑

x∈[K]Ax �
∑

x∈[K]Bx � 2CQ(log n)eD

required in the definition of N̄ follows as soon as (1 − η′)(1 − ε) � 1/2 and
(1 + η′)(1 + εe−2D) � 2, for instance when (1 − η′)2 � 1/2 since η′ � ε and
D � 0, which holds when η′ � 1/4, in other words when

ε � 1

168(k − 1)
(√

2CQ logn
)2k+1

K
.

Thus, taking ε′ = 70k
(√

2CQ logn
)2k+1

Kε ensures that if ε′ � 70
168 , then

dG(A,B) � ε′. Lemma 23 follows.

B.2.3. Control of the bracketing entropy of the simple sets and synthesis

Lemma 28. Let δ > 0, then

N
(
{πθ}θ∈SK,M

, d∞, δ
)

� max

(
K − 1

δ
, 1

)K−1

,

N
(
{Qθ}θ∈SK,M

, d∞, δ
)

� max

(
K − 1

δ
, 1

)K(K−1)

,

Let Caux
′ = Cauxe

D ∨ (K − 1), then by [Aentropy],

N
(
{γθ}θ∈SK,M

, d∞, δe−D
)

� max

(
Caux

′

δ
, 1

)mMK

.

Then, Lemma 23 ensures that for all ε � 70
168 ,

log N̄ (G, dG , ε) � (mMK+K2−1) logmax

(
70k
(√

2CQ log n
)2k+1

KCaux
′

ε
, 1

)
,

so that using Equation (16) and letting H(u) = H({t(D)
θ | θ ∈ Bσ}, dk, u),

one gets for all ε � 16DCQ(log n)e2D
√

70/168 and in particular for all ε �
7D(

√
2CQ log n)e2D:

H(ε) � (mMK +K2 − 1)



4960 L. Lehéricy

× logmax

(
(16DCQ(logn)e2D)270k

(√
2CQ logn

)2k+1
KCaux

′

ε2
, 1

)

� 2(mMK +K2 − 1) logmax

⎛
⎝95De2D

(√
2CQ logn

)k+3/2√
kKCaux

′

ε
, 1

⎞
⎠ .

Thus, for all ε > 0,

H(ε) � 2(mMK +K2 − 1) logmax

(
95De2D

(√
2CQ logn

)k+3/2√
kKCaux

′

ε
,

14
(√

2CQ log n
)k+1/2√

kKCaux
′
)
.

B.3. Choice of parameters

The goal of this section is to find a function ϕ and a constant C for which
equation (11) holds, and to choose the weights xK,M of Lemma 22.

Lemma 29. Let A,B,C ∈ R
∗
+, H : x ∈ R

∗
+ �→ A logmax(Bx , C), and ϕ(x) :

x ∈ R
∗
+ �→ x

√
πA(1 +

√
logmax(Bx , C)). Then:

⎧⎨
⎩
x2H(x) � ϕ(x)2,∫ x

0

√
H(u)du � ϕ(x).

Let

ϕ(u) = u
√
2π(mMK +K2 − 1)

(
1+

{
logmax

(
95De2D

(√
2CQ logn

)k+3/2√
kKCaux

′

u
,

14
(√

2CQ logn
)k+1/2√

kKCaux
′
)}1/2)

.

The function x �→ ϕ(x)
x is nonincreasing, so x �→ ϕ(x)

x2 is decreasing and one can

define σK,M as the unique solution of the equation (1+2
√
D log n)ϕ(x) =

√
nx2

with unknown x, when a solution exists. By the definition of E in Lemma 21,

∀σ � σK,M , E �
√
nϕ(σ) + 4D(log n)2

ϕ(σ)2

σ2

�
(
1 +

4D(logn)2

1 + 2
√
D logn

)
ϕ(σ)

√
n
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�
(
1 + 2

√
D logn

)
ϕ(σ)

√
n.

Using equation (12), for all z > 0 and xK,M � σK,M , with probability larger
than 1− e−z,

WK,M � 4C∗(n∗+ k + 1)

[
(1 + 2

√
D logn)

ϕ(xK,M )

x2
K,M

√
n
+

√
z

x2
K,Mn

+4D
z(log n)2

x2
K,Mn

]

� 4C∗(n∗+ k + 1)

[
σK,M

xK,M
+

√
z

x2
K,Mn

+ 4D(log n)2
z

x2
K,Mn

]
.

Let ε > 0, and let us take

xK,M =
1

θ

(
σK,M +

√
z

n

)
,

where θ > 0 is such that 2θ + 4D(logn)2θ2 � ε
4C∗(n∗+k+1) . Then

WK,M � 4C∗(n∗ + k + 1)
[
θ + θ + 4D(log n)2θ2

]
� ε

and

WK,Mx2
K,M � 4C∗(n∗ + k + 1)

[
σK,MxK,M +

√
z

n
xK,M + 4D(log n)2

z

n

]

� 4C∗(n∗ + k + 1)
[
θx2

K,M + 4D(log n)2
z

n

]
� 8C∗(n∗ + k + 1)

[
1

θ
σ2
K,M +

(
4D(log n)2 +

1

θ

)
t

n

]
.

Take z = s+wM +K, then since
∑

M e−wM � e− 1, with probability larger
than 1− e−s, for all M , K and for all functions pen such that

penn(K,M) � 8C∗(n∗ + k + 1)

[
1

θ
σ2
K,M +

(
4D(log n)2 +

1

θ

)
wM +K

n

]
,

it holds

WK,Mx2
K,M − penn(K,M) � 8C∗(n∗ + k + 1)

(
4D(log n)2 +

1

θ

)
s

n
.

A θ that satisfies 2θ + 4D(log n)2θ2 = ε
4C∗(n∗+k+1) is

θ =
1

4D(log n)2

(√
1 +

εD(logn)2

C∗(n∗ + k + 1)
− 1

)
.

Let us take this θ. Since 1√
1+x−1

� max(1, 3
x ) for all x > 0,

1

θ
� 12C∗(n∗ + k + 1)max

(
D(log n)2

3C∗(n∗ + k + 1)
,
1

ε

)
.
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Therefore,

WK,Mx2
K,M − penn(K,M)

� 96(C∗)2(n∗ + k + 1)2
(

D(log n)2

3C∗(n∗ + k + 1)
+

1

ε
∨ D(log n)2

3C∗(n∗ + k + 1)

)
s

n

� 192(C∗)2(n∗ + k + 1)2
(
1

ε
∨ D(log n)2

3C∗(n∗ + k + 1)

)
s

n

as soon as

penn(K,M) � 96(C∗)2(n∗ + k + 1)2

×
(
1

ε
∨ D(log n)2

3C∗(n∗ + k + 1)

)(
σ2
K,M + 2

wM +K

n

)
.

The last step of the proof is to find an upper bound of σK,M .

Lemma 30. Let A, B, C and E be functions N −→ [1,∞), and ϕn : x �−→
xA(n)(1 +

√
logmax(B(n)

x , C(n))). Let σn be the only solution of the equation
ϕn(x)
x2

√
n
= 1

E(n) with unknown x ∈ R
∗
+. Let

f(n) =

[
A(n)C(n)E(n)

B(n)
(1 +

√
logB(n) + log n)

]2
.

Assume that there exists n1 such that for all n � n1, f(n) � n. Then

∀n � n1, σn � A(n)E(n)√
n

(1 +
√

logB(n) + logn).

In our case,⎧⎪⎪⎪⎨
⎪⎪⎪⎩
A(n) =

√
2π(mMK +K2 − 1),

B(n) = 95De2D(
√
2CQ log n)k+3/2

√
kKCaux

′,

C(n) = 14(
√
2CQ logn)k+1/2

√
kKCaux

′,

E(n) = 1 + 2
√
D logn � 3

√
D logn.

Hence

f(n) � 18π (mMK +K2 − 1)D(log n)2
(

14

95De2D

)2 (
1 +
√
logB(n) + logn

)2

� 4

5
π (mMK +K2 − 1)(logn)2

e−4D

D

(
1 + logn+ log 95 + logD + 2D+

(
k +

3

2

)
log(

√
2CQ logn) +

1

2
log(kKCaux

′)

)

� 4

5
π (mMK +K2 − 1)(logn)2

e−4D

D

(
15D + 2k log logn+

1

2
logCaux

)
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when logn �
√
2CQ � 1 by using that 1 � k,K � n, log x � x for all x � 0,

D � logn by assumption and logCaux
′ � logCaux +D + logK. Thus,

f(n) � f̃K,M (n) := 14π (mMK +K2 − 1)e−4D(logn)2(k + logCaux).

Now, assume that there exists n1 such that f̃K,M (n) � n for all n � n1, then
for all n � n1,

σ2
K,M � 36π (mMK +K2 − 1)D(log n)2

n
(1 + logn+ logB)

� 36π (mMK +K2 − 1)D(log n)2

n

(
15D + 2k log logn+

1

2
logCaux

)
.

Therefore, there exists a numerical constant Cpen such that the condition on
the penalty is implied by

penn(K,M) � Cpen

n
(n∗ + k + 1)2

(
1

ε
∨ D(log n)2

3C∗(n∗ + k + 1)

)(
wM+

(mMK +K2 − 1)D(log n)2(D + k log logn+ logCaux)
)
.
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Randal Douc, Gersende Fort, Éric Moulines, and Pierre Priouret. Forgetting the
initial distribution for hidden Markov models. Stochastic processes and their
applications, 119(4):1235–1256, 2009. MR2508572
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László Gerencsér, György Michaletzky, and Gábor Molnár-Sáska. An improved
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